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Abstract 14 

Mitochondria undergo dynamic morphological changes depending on cellular cues, stress, genetic 15 

factors, or disease. The structural complexity and disease-relevance of mitochondria have 16 

stimulated efforts to generate image analysis tools for describing mitochondrial morphology for 17 

therapeutic development. Using high-content analysis, we measured multiple morphological 18 

parameters and employed unbiased feature clustering to identify the most robust pair of texture 19 

metrics that described mitochondrial state. Here, we introduce a novel image analysis pipeline to 20 

enable rapid and accurate profiling of mitochondrial morphology in various cell types and 21 

pharmacological perturbations. We applied a high-content adapted implementation of our tool, 22 

MitoProfilerHC, to quantify mitochondrial morphology changes in i) a mammalian cell dose 23 

response study and ii) compartment-specific drug effects in primary neurons. Next, we expanded 24 

the usability of our pipeline by using napari, a Python-powered image analysis tool, to build an 25 

open-source version of MitoProfiler and validated its performance and applicability. In conclusion, 26 

we introduce MitoProfiler as both a high-content-based and an open-source method to accurately 27 

quantify mitochondrial morphology in cells, which we anticipate to greatly facilitate mechanistic 28 

discoveries in mitochondrial biology and disease.  29 
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INTRODUCTION  30 

Mitochondria are dynamic organelles responsible for maintaining metabolic homeostasis 31 

and generating energy in a eukaryotic cell. They perform critical biochemical processes such as 32 

ATP-production, ROS, fatty acid synthesis and calcium regulation (San-Millán, 2023; Zhang et 33 

al., 2022). The cell coordinates these functions by regulating the fusion and fission of 34 

mitochondria. These molecular mechanisms ultimately determine mitochondrial distribution, size, 35 

and morphology, which change in response to various genetic factors, cellular cues, stress and 36 

disease (Chan, 2020). Structurally, the mitochondrion consists of a double membrane decorated 37 

by proteins. Mitofusin 1, Mitofusin 2 (MFN1, MFN2) and optic atrophy 1 (OPA1) are GTPases 38 

that are key regulators of outer and inner mitochondrial membrane fusion (Cipolat et al., 2004; 39 

Santel & Fuller, 2001).  Dynamin-related protein 1 (DRP1) is one of the main proteins controlling 40 

mitochondrial fission (Smirnova et al., 2001).  Mutations in these and other fission and fusion 41 

proteins cause early onset neurological disorders that can range in severity. For example, Mfn2 42 

mutations are causal for Charcot-Marie Tooth neuropathy 2A, a disease that preferentially affects 43 

axons of peripheral neurons and clinically manifests as muscle weakness (Cartoni & Martinou, 44 

2009). At the cellular level, Mfn2 deficiency prevents mitochondrial fusion and causes 45 

fragmentation of neuronal mitochondria (Chen et al., 2003; Filadi et al., 2018).  46 

Mitochondrial function and ATP generation is particularly important in the brain due to 47 

the high energetic needs of neurons. Numerous past studies have identified important molecular 48 

links between mitochondria and sporadic forms of neurodegeneration such as Alzheimer’s disease 49 

(AD), Parkinson’s disease (PD), and amyotrophic lateral sclerosis (ALS) (Cabral-Costa & 50 

Kowaltowski, 2020; Shields et al., 2021; Yang et al., 2021). In neurodegeneration, fragmentation 51 

is considered one of the morphological hallmarks of mitochondrial dysfunction (Knott et al., 2008) 52 

and precedes neuronal death. The disease-relevance of specific mitochondrial morphologies has 53 

fueled the development of quantitative, image-based assays of mitochondrial dynamics, at scales 54 

practical for use in therapeutic screening campaigns. 55 

To date, there are many described image analysis programs for mitochondrial morphology; 56 

a noncomprehensive list has been presented in Harwig et al. (Harwig et al., 2018). Many studies 57 

utilized a range of imaging modalities including epifluorescence, spinning disk confocal, and 58 

super-resolution microscopy on semi-automated systems. Both 2D and 3D image analyses have 59 

been developed for custom analytical software such as ImageJ/FIJI, MATLAB and Image Pro 60 
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Plus, capturing conventional mitochondrial measurements including number, area, length, and 61 

aspect ratio. Some programs employed supervised machine learning classification models to 62 

cluster cells that exhibit defined morphologies (Harwig et al., 2018). For example, one study 63 

classified mitochondrial morphologies in mouse photoreceptor cells using an automated wide-field 64 

fluorescence microscope, IN Cell Analyzer 2000 Analyzer (Cytiva) (Leonard et al., 2015). In this 65 

example, image segmentation of mitochondrial objects was performed using IN Cell Developer 66 

Toolbox 1.9.1, while downstream machine-learning classification was performed on the R 67 

platform. More recent phenotypic screens have used confocal based high-content systems, 68 

including the Opera Phenix system (Revvity, formerly PerkinElmer) to profile the effect of small 69 

molecules, environmental toxicants, and neurodegenerative disease mutations on mitochondrial 70 

morphology (Charrasse et al., 2023; Little et al., 2018; Varkuti et al., 2020).  71 

High-content screening and analysis (HCS/HCA) has been foundational to therapeutic 72 

discovery, allowing researchers to quickly identify novel targets in both candidate-based and 73 

phenotypic pipelines (Chin et al., 2021; Way et al., 2023). Here, we introduce MitoProfilerHC, a 74 

novel high-content image analysis pipeline that enables the rapid and accurate profiling of 75 

mitochondrial morphology. Unlike previously published image-based assays, MitoProfilerHC 76 

uses a combination of texture-based measurements to measure mitochondria in individual cells, 77 

identified using a custom-built feature selection pipeline. We employ this pipeline to characterize 78 

mitochondrial responses to both genetic and chemical perturbations in a variety of cell types 79 

including neurons, and we validate the utility of this tool for quantifying mitochondrial 80 

morphologies in HCA accurately and at scale.  81 

Commercially available image analysis tools, while powerful and integrated with popular 82 

instrumentation, are often proprietary and therefore are inaccessible to most users. To expand 83 

usability for all imaging users, we also developed MitoProfiler, an open-source adaptation of our 84 

high-content mitochondrial morphology pipeline. MitoProfiler provides an interactive 85 

segmentation interface as a napari plugin that allows users to visualize and tune the segmentation 86 

and feature extraction components of the pipeline, in addition to a batch mode that enables 87 

processing of whole plate datasets. By providing an open-source tool we hope to further expand 88 

the accessibility and utility of our mitochondrial analysis platform to the broader scientific 89 

community.  90 
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RESULTS 91 

 Generation of MitoProfilerHC workflow to evaluate mitochondrial morphology 92 

To establish a platform capable of reproducibly resolving complex subcellular phenotypes 93 

at scale, we first built our mitochondrial image analysis pipeline on a high-content screening 94 

system. Because mitochondrial morphology is complex and dynamic and to demonstrate the 95 

versatility of the pipeline, we optimized our assays in live cells derived from multiple origins and 96 

subjected to multiple perturbations.  97 

Cells were cultured in 96-well assay plates and labeled with Hoechst 33342, CellMask 98 

Green Actin, and MitoTracker Deep Red (MTDR). MTDR is a cell-permeant dye that accumulates 99 

on active mitochondria in cells and is conventionally used to measure mitochondrial mass, shape 100 

and activity. Cells were imaged on a spinning-disk confocal-based Opera Phenix Plus high-content 101 

microscope (Revvity) using either a 40X/NA 1.1 or 63X/NA1.15 water immersion objective lens 102 

permitting sampling of a larger number of cells at sufficient resolution within a given image due 103 

to its high numerical aperture and larger field of view. 104 

  Briefly, multi-channel images were first visually rendered in the Harmony software (Fig. 105 

1A) and individual cells labeled with Hoechst 33342 were identified using the ‘Find Nuclei’ 106 

building block (Fig. 1B). All subsequent analyses were performed on a per-cell basis; therefore, 107 

the nuclei identification step should not be bypassed. The ‘Find Cytoplasm’ building block was 108 

used to delineate cell borders (Fig. 1C). The 647-channel image of the mitochondria was acquired 109 

and pre-processed using the sliding parabola background subtraction method (Fig. 1D). This step 110 

produced a sharper image from which the ‘Find Image Region’ building block segmented 111 

mitochondrial signal within the cell cytoplasm (Fig. 1E). 112 

  With mitochondrial structures identified, we next measured morphological and textural 113 

features using the ‘Calculate Morphology Properties’ and ‘Calculate Texture Properties’ building 114 

blocks, respectively, for each identified mitochondrion (Fig. 1F). The Symmetry-Threshold 115 

Compactness-Axial-Radial (STAR) methodology includes a set of properties that classifies 116 

phenotypes based on the distribution of intensity within segmented objects. Spot-Edge-Ridge 117 

(SER) features are texture filters that are sensitive to different characteristic intensity patterns. 118 

Standard morphological properties such as area, roundness, width, and length were also included 119 

in the initial protocol development process (Table 1).   120 
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Table 1: List of Standard Morphology, STAR Morphology, and SER Texture features 121 

SER Texture STAR Morphology Standard Morphology 
SER Spot 1 px Symmetry 02 Threshold Compactness 40% Area (um^2) 

SER Hole 1 px Symmetry 03 Threshold Compactness 50% Roundness 

SER Edge 1 px Symmetry 04 Threshold Compactness 60% Perimeter 

SER Ridge 1 px Symmetry 05 Axial Small Length Width 

SER Valley 1 px Symmetry 12 Axial Length Ratio Length 

SER Saddle 1 px Symmetry 13 Radial Mean Ratio Width to Length 

SER Bright 1 px Symmetry 14 Radial Relative Deviation  

SER Dark 1 px Symmetry 15 Profile 1/2  

 Threshold Compactness 30% Profile 2/2  

 122 

To generate mitochondrial morphology ground truths in determining which features 123 

accurately distinguish mitochondrial states, we acquired images of wildtype (WT) and Mfn2 124 

deficient mouse embryonic fibroblast (MEF) cells. WT cells under basal conditions were expected 125 

to show normal, networked mitochondria while Mfn2 knockout (KO) cells were expected to show 126 

more fragmented morphology. A total set of 33 features were calculated and extracted from 127 

mitochondria-segmented images across 9,620 cells (4,810 cells per condition). Feature results 128 

were output on a per-cell basis, exported from Harmony, and loaded into a custom-built feature 129 

selection pipeline. 130 

Ranking features by largest difference between WT and Mfn2 KO, we determined that SER 131 

features, a family of texture features, were the most robust in distinguishing between fragmented 132 

and networked mitochondria (Table 1). Ranking individual features by effect size showed that 133 

“SER ridge” was the most decreased in Mfn2 KO compared to WT while “SER valley” was the 134 

most increased (Fig. 1G). The most discriminative individual feature was “SER valley” with 135 

~70.8% classification accuracy when training a logistic regression model on these data (5-fold 136 

cross validation with balanced sampling between classes). To further improve this metric, we 137 

calculated ratios of all possible pairs of features in the dataset and trained a logistic regression 138 

model on the ratio. The ratio of “SER spot” to “SER ridge” was the most discriminative ratio, with 139 

~75.0% accuracy in cross validation, and was the ratio most increased by Mfn2 KO (Fig. 1H) 140 

(Table S1). SER features detect pixel intensity gradient and curvature; for example, the ‘Spot’ and 141 

‘Ridge’ filters are more sensitive to intensity distributions adopting 3D and 2D Gaussian bell 142 

curves, respectively (Fig. 1I). The value of a SER Spot measurement increases in the context of 143 

fragmented mitochondria because it is sensitive to round, symmetrical punctate-like structures. 144 
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Inversely, the value of SER Ridge increases in networked mitochondria exhibiting continuous and 145 

elongated structures (Fig. 1J). Together, SER Spot and SER Ridge were identified as the most 146 

robust features and were applied in all subsequent morphological analyses performed in cells.  147 

 148 

Validation of MitoProfilerHC in genetic and pharmacological paradigms for mitochondrial 149 

disruption 150 

To validate MitoProfilerHC, we quantified mitochondrial morphologies under genetic and 151 

pharmacological perturbations in live cells. First, we assessed Mfn2 KO MEFs, which visually 152 

exhibit a striking punctate pattern, indicative of fragmented mitochondria (Fig. 2A). In contrast, 153 

unperturbed mitochondria in wildtype (WT) MEFs appear elongated and networked. We first 154 

measured the mitochondrial aspect ratio (AR) to provide a benchmark for our analysis in 155 

comparison to more traditional methods for quantifying morphology. AR is a proxy for the degree 156 

of mitochondrial fusion, defined as the mitochondrial major axis divided by minor axis (i.e. length 157 

to width ratio) (Picard et al., 2013). As expected, AR was significantly higher (p = 0.0025) in WT 158 

cells, reflecting more networked mitochondria (Fig. 2B). Next, we measured mitochondrial 159 

morphology in WT and Mfn2 KO cells using the SER Ridge and Spot textures. Matching the trend 160 

in AR, SER Ridge score was significantly higher (p < 0.001) in WT cells (Fig. 2C), whereas the 161 

SER Spot score was significantly higher (p = 0.0023) in Mfn2 KO cells (Fig. 2D). Overall, these 162 

results provided further validation for our high-content analysis method for quantifying both 163 

networked and fragmented mitochondria. 164 

The values of SER Spot and SER Ridge consistently yielded an inverse correlation, 165 

predictive of either fragmented or networked mitochondrial morphologies, respectively. We 166 

further simplified the quantification by taking the ratio of SER Spot-to-SER Ridge, generating a 167 

new metric we termed ‘SER Ratio’ (SR). SR thus incorporates both measurements into a single 168 

ratiometric value that can be interpreted as the extent of mitochondrial fragmentation. We next 169 

sought to demonstrate the applicability of our image analysis pipeline in the context of phenotypic 170 

drug discovery using mitochondrial SR. Because mitochondrial dysfunction has a strong link to 171 

many human diseases, we moved towards immortalized human cell lines and adapted 172 

MitoProfilerHC for Hela cells, a common cell type employed for early-stage drug screening 173 

campaigns.  174 
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In a comparative study on the effect of pharmacological agents on mitochondrial 175 

morphology, oligomycin A was reported to induce robust fragmentation in various cancer cell 176 

types (Fu & Lippincott-Schwartz, 2018). Oligomycin is a potent antibiotic that disrupts 177 

mitochondrial function by inhibiting proton coupling and ATP synthesis (Hearne et al., 2020; 178 

Lardy et al., 1958). In our study, we treated Hela cells for 1.5 hours with oligomycin at a 179 

concentration range from 0 to 51 µM, imaged and analyzed mitochondrial morphology using 180 

MitoProfilerHC. Mitochondrial fragmentation increased, which is reflected visually (Fig. 2E) and 181 

through the dose-dependent increase of mitochondrial SR (Fig. 2F). SR values were less variable 182 

than its contributing components, SER Ridge and SER Spot (Figs 2G, H), providing a more robust 183 

measurement for mitochondrial fragmentation. Importantly, the overall predictive score for 184 

mitochondrial SR (~75%) was higher compared to mitochondrial AR, a commonly used classifier 185 

(~52%) (Table S1). Thus, we were able to demonstrate that MitoProfilerHC provides reduced 186 

variability and improved predictive capabilities as compared to commonly used methods and can 187 

accurately profile mitochondrial fragmentation in dose-response studies in a human cell line.  188 

 189 

Characterizing drug-induced mitochondrial morphology changes in primary hippocampal 190 

neurons using MitoProfilerHC 191 

Neurons are bioenergetically demanding, relying heavily on ATP production and calcium 192 

regulation by mitochondria. Mitochondrial dysfunction causes an energetic failure that can acutely 193 

induce ischemia (Liu et al., 2018) and has been implicated in several neurological disorders 194 

including ALS, Alzheimer’s, and Parkinson’s disease (Cabral-Costa & Kowaltowski, 2020; Norat 195 

et al., 2020). To demonstrate its application to drug development in neurological diseases, we 196 

adapted the MitoProfilerHC pipeline for quantifying mitochondrial morphology changes under 197 

various perturbation conditions in primary hippocampal neurons (Fig. 3A).  198 

We further developed the protocol to include segmentation of both neuronal soma and 199 

neurite structures (Fig. 3B, C). Given the narrow morphology of neurite processes, we dilated the 200 

neurite mask by ~0.4 µm to ensure detection of the entire structure and its contents (Fig. 3D). 201 

Following our previous findings in Hela cells, we treated neurons with various compounds known 202 

to disrupt mitochondrial function and induce fragmentation, including oligomycin (Fig. 3E). 203 

FCCP, or carbonyl cyanide p-trifluoromethoxyphenylhydrazone, is a commonly used 204 

protonophore that uncouples mitochondrial oxidative phosphorylation and inhibits ATP synthesis 205 
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(Benz & McLaughlin, 1983). It has been extensively characterized in living cells in relation to its 206 

inhibitory effect on mitochondrial function. We also used Vacor, a cell permeable precursor of the 207 

sterile alpha and TIR motif-containing protein 1 (SARM1) agonist (Loreto et al., 2021), to induce 208 

mitochondrial dysfunction. SARM1 plays a crucial role in regulating both axons and dendritic 209 

degeneration in hippocampal neurons (Miyamoto et al., 2024; Osterloh et al., 2012) and 210 

importantly, is a downstream factor to mitochondrial damage (Summers et al., 2014).  211 

In our comparison between oligomycin, FCCP and Vacor, we found that after two hours 212 

of treatment all drugs induced significant mitochondrial fragmentation in neuronal soma, as 213 

measured by the SER ratio (Fig. 3E, G). While oligomycin and Vacor fragmented mitochondria 214 

slowly and at later timepoints, FCCP induced a much earlier effect that is evident at around 20 215 

minutes post-treatment. Because FCCP had such a rapid and potent effect on mitochondria, we 216 

also wanted to test whether our analysis protocol can measure the effect of FCCP in a dose-217 

dependent manner. Indeed, when neurons were treated with FCCP at 2 and 20 µM, we observed a 218 

dose-dependent effect (Fig. 3E, H), demonstrating the value of MitoProfilerHC applications 219 

requiring in vitro dose-response studies of mitochondrial function. 220 

Finally, we investigated whether mitochondria located in different neuronal compartments 221 

behave differently in response to pharmacological stress. In neurons that were treated with FCCP 222 

at 20 µM, we measured the SR in both soma and neurites (Fig. 3F, I). Compared to control 223 

neurites, FCCP induced a significant elevation in SR, suggesting that like soma, mitochondria in 224 

neurites also undergo fragmentation in response to chemical stress and indicate that there are 225 

compartment-specific responses to perturbation.   226 

 227 

MitoProfiler, an open-source mitochondrial morphology image analysis tool 228 

While MitoProfilerHC was developed on a specific platform using the Harmony software 229 

toolkit, we wanted to enable broad usability of our mitochondrial morphology image analysis 230 

pipeline to the scientific community. We created MitoProfiler, an open-source version of our 231 

previously described methodology using napari, a multi-dimensional image visualization, 232 

annotation, and analysis library for Python  (Sofroniew et al., 2024). We followed a similar 233 

approach as in MitoProfilerHC to extract morphological features from cells. Briefly, we 234 

implemented a three-stage segmentation pipeline to first segment cell nuclei followed by 235 

cytoplasm and then mitochondria. Next, we implemented a bank of texture features based on the 236 
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principal curvatures of the mitochondria intensity image similar to the shape index (SI) from 237 

(Koenderink and van Doorn, 1992). Finally, we packaged our segmentation and feature extraction 238 

code into a napari plugin which can be directly used from an interactive napari session (Fig. 4A). 239 

To demonstrate the utility of our open-source pipeline, we re-segmented the mitochondria 240 

in our WT and Mfn2 deficient (KO) mouse fibroblasts and extracted an SI feature corresponding 241 

to ridges (0.75 > SI > 0.25; Fig. 4B) and an SI feature corresponding to spots (1.0 > SI > 0.5; Fig. 242 

4C) and calculated their per-cell averages (Fig. 4D, E, respectively). While the spot feature alone 243 

was not significantly different between the two groups (likely due to differences in segmentation 244 

between the original Harmony pipeline and our reimplemented pipeline), both the ridge feature 245 

alone and the ratio of spot to ridge (SI Ratio) were significantly different between KO and WT 246 

(Fig. 4D-F), confirming the robustness of our image texture measures to differences in cell 247 

segmentation pipelines. Further, we found good linear correlation between the SER Ratio and our 248 

SI Ratio when comparing individual fields of view between the Harmony processed and open-249 

source images (R=0.913; Fig. 4G). We next replicated analysis of the dose response study using 250 

our shape index-derived spot, ridge, and spot to ridge ratios (Fig. 4H-J respectively), validating 251 

the mitochondrial feature response from Fig. 2F-H. As in the WT vs KO study, the SER Ratio and 252 

SI Ratio were well correlated on an individual field of view basis (R=0.934; Fig. 4K), indicating 253 

that our open-source texture features capture comparable per-image information about 254 

mitochondrial fragmentation across experimental modalities. Despite imperfectly reproducing the 255 

original Harmony segmentation and featurization pipeline (which is closed source and cannot be 256 

directly reimplemented), we believe that our open-source feature extraction pipeline validates the 257 

use of spot and ridge texture features as a general measure of microglia fragmentation.  The code 258 

to calculate these features interactively for a single field of view and as a batch across an imaging 259 

study is provided at https://github.com/denalitherapeutics/napari-mito-hcs.  260 
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DISCUSSION 261 

Mitochondrial morphology is highly dynamic and changes rapidly in response to metabolic 262 

shifts, cellular perturbation, and various functional impairments in the context of several major 263 

diseases. Building upon previous image analysis techniques, we developed a novel high-content 264 

image analysis tool, MitoProfilerHC, that robustly quantifies mitochondrial morphology using 265 

texture-based measurements in live cells, enabling efficient therapeutic and biomarker screening 266 

and development in mitochondrial disorders, cancer, and neurodegeneration. In our study, we 267 

provide a comprehensive analysis to determine which texture or morphological feature best 268 

predicts relevant mitochondrial phenotypes in healthy and diseased cells with known 269 

mitochondrial disruption. MitoProfilerHC is designed for use with the Opera Phenix Plus High-270 

Content System by Revvity, an automated, spinning-disk confocal-based microscope that is widely 271 

used in academic and drug discovery research. The MitoProfilerHC analytical pipeline is designed 272 

to be easy to use with the Harmony image analysis software that is that is employed for both the 273 

acquisition and analysis of images from the Opera Phenix Plus, and our open-source version of 274 

MitoProfilerHC can be made compatible with any high content imaging platform that can export 275 

images into the standard Tag Image File Format (TIFF). Given the prevalence of high content 276 

imaging in both foundational and translational research, we believe this tool will be of broad 277 

interest. Additionally, this analytical tool is simple to use and, as our results demonstrate, 278 

applicable for use in multiple cell types and assay conditions. Note that although the pipeline is 279 

compatible with either of the higher magnification lenses (40X and 63X) that are standard on the 280 

Opera Phenix, objectives with lower magnification or resolution (i.e., less than NA=1) are not 281 

recommended, due to inadequate resolution of mitochondrial structures.  282 

The SER feature set are texture-based measurements of the spatial distribution of intensity 283 

levels in a neighborhood defined through image segmentation strategies and provided as standard 284 

metrics within the Harmony image analysis software. We identified two SER texture features – 285 

SER Spot and SER Ridge, that when calculated as a ratio, were highly robust in measuring 286 

mitochondrial morphology change in drug dose-response studies across multiple cell types, 287 

including screenable human cell lines and mature primary neurons. Though previous studies have 288 

explored other tools for automating the morphological analysis of mitochondria, to our knowledge 289 

there are no published approaches that provide comparable throughput and precision to 290 

MitoProfilerHC. One previously published method tracked live mitochondrial movement and 291 
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classified defined morphologies in response to environmental insult. Image analysis was 292 

performed on the CellProfiler software followed by deep learning classification using MATLAB 293 

(Zahedi et al., 2018). This method employed traditional confocal imaging and a multi-step image 294 

processing and segmentation pipeline and is therefore a substantially lower-throughput approach 295 

than that presented here. Another study used the IN Cell Analyzer and IN Cell Developer 1.9.1. 296 

image analysis software to segment mitochondria and calculate morphometrics. Subsequently, a 297 

machine learning scheme was used in R to classify mitochondrial subtypes based on a priori 298 

knowledge of mitochondrial morphology (Leonard et al., 2015). Such morphological classification 299 

has been a popular technique to describe complex networks including mitochondria; however, they 300 

do not eliminate subjectivity and translatability requires further validation. Additionally, this 301 

instrument and associated software is no longer supported by Cytiva Life Sciences (Leonard et al., 302 

2015). Other functionally similar high-content systems include the CellVoyager CV8000 by 303 

Yokogawa and ImageXpress Confocal HT.ai by Molecular Devices and it would be interesting to 304 

consider adapting our texture-based analytical pipeline for use with their acquisition software. Our 305 

tool improves upon previous morphometric-based analyses by enhancing both speed and accuracy 306 

of mitochondrial assays performed at-scale under cellular conditions. 307 

 Although recent advances in ensemble methods such as deep learning have revolutionized 308 

many aspects of image processing in cell biology, classic feature-based approaches such as 309 

MitoProfilerHC remain competitive in domains where minimal training data is available, and 310 

where computational resources are at a premium such as in high throughput screening campaigns 311 

(Chai et al, 2023). Further, while deep learning approaches show impressive performance on 312 

classification benchmarks (Natekar et al 2023), establishing methods to explain the “black box” 313 

nature of their predictions remains an area of active research (Chai et al 2023, Allen et al 2024, 314 

Samek et al 2021). Interpretable feature-based methods such as MitoProfilerHC help build 315 

confidence in algorithmic classification of images, both by providing insight into which features 316 

of an image are salient to understanding the underlying biology, and by providing confidence that 317 

the algorithm can reasonably extrapolate outside of the domain it was initially trained on (Chai et 318 

al 2023, Allen et al 2024). 319 

In parallel with our high-content pipeline, we have also developed an open-source version 320 

called MitoProfiler that will be made publicly available. Our image analysis work, both in this 321 

manuscript and elsewhere has greatly benefitted from the availability of high-quality open-source 322 
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implementations of image processing algorithms. Building novel analysis algorithms is iterative, 323 

and sharing source code across the broader bioimaging community not only enhances efficiency 324 

but also data reproducibility as well (Levet et al, 2021). By providing our tool as a plugin to the 325 

popular image analysis library napari, we hope to improve the accessibility of our texture analysis 326 

method, especially for image analysts who prefer to interact with their data through an open-source 327 

graphical user interface (Jamali et al, 2022). Further, we hope to encourage other software 328 

developers, especially our colleagues outside of academia, to provide more extensive disclosure 329 

of the algorithms that the community relies on to accurately analyze image data. 330 

The image analysis tools that we have developed allowed us to take a deeper dive into 331 

investigating mitochondrial function, particularly in the context of neurobiology. Mitochondrial 332 

function is crucial in supplying the large bioenergetic demands of neurons (López-Doménech & 333 

Kittler, 2023). Its regulation starts during early neuronal development and persists throughout the 334 

lifetime of a neuron to ensure survival and protection against neurodegeneration (Rangaraju et al., 335 

2019; Rugarli & Langer, 2012). As such, understanding neuronal response to mitochondrial 336 

inhibition has been extensively studied using mitochondrial targeting tool compounds, such as 337 

FCCP and oligomycin that both negatively impact the electron transport chain (ETC) and cause 338 

subsequent mitochondrial fragmentation. FCCP fragmented mitochondria maximally starting at 339 

earlier timepoints and oligomycin induced a milder fragmentation effect at only the highest tested 340 

concentration and at later time points. FCCP acts as a rapid protonophore dissipating the proton 341 

gradient across mitochondrial membranes, while oligomycin inhibits ATP synthase at the final 342 

ETC step. We therefore posit that the degree of ETC disruption is directly correlated with 343 

mitochondrial morphology change in neurons. 344 

Similarly, Vacor fragmented mitochondria to a lesser extent compared to FCCP which can 345 

potentially be explained by NAD+ depletion by SARM1 agonism and subsequent inhibition of 346 

ATP production (Ko et al., 2021; Sato-Yamada et al., 2022). Vacor-mediated activation of SARM1 347 

causes degeneration in all neuronal compartments including cell bodies, axons, and dendrites in 348 

primary hippocampal neurons (Miyamoto et al., 2024). Indeed, when we interrogated the effect of 349 

mitochondrial inhibition on the neuronal compartment, we observed that mitochondria became 350 

fragmented in both neuron soma and neurite processes. We note that the calculated SR is 351 

normalized to each region of interest (ROI), thus precluding the direct comparison of absolute SR 352 

values between ROIs. In this case, since the overall quantified mitochondrial region was much 353 
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larger in neurites compared to soma, lower absolute values of SR are seen in soma from both the 354 

control and FCCP-treated conditions. Nonetheless, the overall fit of the time course curve between 355 

FCCP-treated mitochondria in soma and neurites was also significantly different, suggesting that 356 

mitochondria exhibit different dynamics in morphological response to pharmacological 357 

perturbation, based on localization. Indeed, mitochondrial localization affects their function and 358 

dynamics in the soma, axons, and dendrites. Mitochondria also have been described as having 359 

compartment-specific morphologies; for example, mitochondria are densely packed in soma, 360 

sparse and rounded in axons, and are larger in dendrites to occupy most of the process (Seager et 361 

al., 2020). This result indicates that mitochondria are differentially sensitive to environmental 362 

stress depending on the neuronal compartment. Despite compartment differences in function and 363 

governing transport mechanisms, MitoProfilerHC was able to quantify differences in morphology 364 

between soma and neurites under mitochondrial chemical perturbation.  365 

Overall, we demonstrated the wide utility of the MitoProfilerHC and MitoProfiler tool by 366 

interrogating mitochondrial morphology under various in vitro cellular assays using a high-content 367 

and open-source enabled image analysis. We confirmed the effect of a neurological disease-368 

causing genetic mutation, validated dose-response of various mitochondrial inhibitors, and 369 

uncovered compartment-specific changes in mitochondrial morphology that corroborated previous 370 

findings. By increasing our understanding of mitochondrial dynamics and morphology using HCS 371 

and open-source tools, we hope to greatly facilitate the development of therapeutics targeting 372 

mitochondrial diseases.  373 
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MATERIALS AND METHODS 374 

Cell staining 375 

Prior to live cell imaging, cells were stained with Mitotracker (MitoTracker™ Deep Red FM Dye, 376 

Invitrogen, M46753) (MTDR) and Hoechst 33342 (NucBlue™ Live ReadyProbes™, Invitrogen, 377 

R37605). The media was removed and a pre-warmed (37°C) staining solution containing MTDR 378 

probe (200nM concentration) and Hoechst 33342 probe (75uL per 1ml working concentration) 379 

was added to the wells. Cells were incubated at 37°C for 60 minutes. After the staining was 380 

complete, the staining solution was replaced with fresh prewarmed media and cells prior to 381 

imaging. 382 

HeLa cells culture and treatment with oligomycin 383 

20,000 HeLa cells were plated per well of a 96 well-plate for a day in 100 µL of DMEM + 10% 384 

FBS media. The following day, cells were treated with different concentrations of Oligomycin 385 

(Sigma-Aldrich, 75351) for 1.5 hours by adding Oligomycin directly to the cell culture media at 386 

the required concentration. 387 

Mouse embryonic fibroblast cell culture  388 

Mouse embryonic fibroblasts (MEF), WT and Mitofusin 2 Knockout (Mfn2 KO), were cultured in 389 

DMEM supplemented with 10% FBS and Penicillin/Streptomycin. 10,000 MEF cells were plated 390 

per well of a 96 well-plate for one day.  Cells were then live stained with MTDR and Hoechst 391 

33342, as described in the cell staining protocol above. 392 

Primary mouse hippocampal neurons culture, pharmacological treatment, and staining 393 

Neurons were isolated from mouse embryonic hippocampi (CD-1 strain; Charles River 394 

Laboratories) and maintained using NbActiv4 medium (BrainBits; #NB4500) supplemented with 395 

Penicillin/Streptomycin (Gibco, #15140122), GlutaMAX (Gibco, #35050061) and 5-fluoro-2-396 

deoxyuridine (Sigma, 50-91-9), as described in (Miyamoto et al., 2024). On day 8 in vitro (DIV 397 

8), neurons were stained with 100 nM MTDR (Invitrogen, #M22426), (1/1000) and NucBlue 398 

(Invitrogen, #R37605) for 20 min at 37°C/5% CO2. The mitochondrial inhibitors, Carbonyl 399 

cyanide 4-(trifluoromethoxy)phenylhydrazone [FCCP; 2, and 20 µM (MedChemExpress, 370-86-400 

5)], Oligomycin [10 µM; (Sigma, 1404-19-9)], or Vacor [Pyrinuron; 20 µM (ChemService, 53558-401 

25-1)], were added to the stained neurons and imaging was immediately initiated with 20 min time 402 

intervals up to 140 min, as described below.  403 
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High-content image acquisition in live cells 404 

All images were acquired on a spinning disk confocal Opera Phenix™ Plus High-Content imager 405 

(Revvity) using a 4-camera setup (16-bit sCMOS, 6.5 µm pixel size), with two-peak autofocus and 406 

2x2 pixel binning. Environmental controls (37°C/5% CO2) were used for live cell imaging.  407 

Fixed wavelength lasers and emission bandpass filters were used to detect fluorophores (Hoechst 408 

33342 Ex/Em: 405/435-480 nm; CellMask Ex/Em: 488/500-550 nm; MTDR Ex/Em: 640/650-760 409 

nm). Acquisition settings were adjusted as needed depending on cell type and density to maximize 410 

signal while avoiding saturation and photobleaching. MEFs were imaged on a 40X/1.1 NA water 411 

immersion lens (Revvity part number: HH14000422) for Hoechst 33342 (100 ms, 70% power), 412 

CellMaskGreen (100 ms, 70% power) and MTDR (100 ms, 80% power) over 9 randomly selected, 413 

equally spaced fields with 4 Z-planes (-1.0 to 2.0 µm, 1 µm step size). Hela cells were imaged on 414 

a 63X/1.15 NA water immersion lens (Revvity part number: HH14000423) for Hoechst 33342 and 415 

MTDR over 27 fields with 4 Z-planes, as detailed. Primary mouse hippocampal neurons were 416 

imaged on a 63X/1.15 NA water immersion lens (Revvity part number: HH14000423) with gentler 417 

exposure settings to limit phototoxicity (Hoechst 33342: 80 ms, 80%; CellMask Actin: 60 ms, 418 

60%; MTDR: 40 ms, 80%) over 19 fields with 4 Z-planes (-3.0 to 0 µm, 1 µm step size). 419 

Mitochondrial image analysis, morphology and texture calculation, and data output 420 

The following protocol was built on Harmony 5.2 (Revvity) and applied across multiple cell types. 421 

Unless otherwise mentioned, image analysis steps remained consistent across experiments. To 422 

achieve even focus, a maximum projection of two planes was taken as the input image. First cells 423 

were identified using the ‘Find Nuclei’ building block in the Hoechst 33342 channel (method B, 424 

common threshold = 0.0, area > 50 µm2, splitting coefficient = 9.8, individual threshold = 0.29, 425 

contrast = 0). Next, cytoplasm was identified using ‘Find Cytoplasm’ in the CellMask Green 426 

channel (method D, individual threshold = 0.59). The MTDR channel was pre-processed with 427 

‘Filter Image’ (method: sliding parabola, curvature = 50). Mitochondrial signal was segmented 428 

using ‘Find Image Region’ (threshold = 0.07, area > 8.75 50 µm2) and the mitochondrial 429 

morphological and texture metrics were measured. Morphology was calculated using ‘Calculate 430 

Morphology’ using two methods: STAR (select Symmetry, Threshold Compactness, Axial, 431 

Radial, Profile) and Standard (select Area, Roundness, Perimeter, Length, Width, Width-to-length 432 

ratio). ‘Calculate Texture’ was used to measure SER features (method: SER, select SER Spot, 433 

Hole, Edge, Ridge, Valley, Saddle, Bright, Dark). Mitochondrial aspect ratio was measured with 434 
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‘Calculate Properties’ by taking the formula: mitochondrial per-cell length / per-cell width. 435 

Additional steps were included directly after mitochondrial segmentation to identify neurites in 436 

primary neuron experiments. The ‘Find Neurites’ building block was used to identify neurite 437 

projections attached to neuron cell bodies (Channel: MTDR; Population: Hoechst 33342; Region: 438 

Cell; Method: CSIRO Neurite Analysis 2). To quantify the entire neurite, the mask was dilated 439 

laterally with ‘Select Region’ (Population: Neurites; Region: Neurite Segment; Method: Resize 440 

Region with Outer Border = -2.0 px and Inner Border = INF px). Finally, per-cell results were 441 

exported as means per well into Microsoft Excel for further analysis. 442 

Mitochondrial morphology feature selection 443 

Initial feature selection was performed using scikit-learn v1.3.0 (Pedregosa et al., 2011). First, 444 

feature vectors were randomly drawn without replacement for cells in both the WT and KO 445 

conditions to create a balanced dataset with 50% WT and 50% KO cells. Next, each feature was 446 

mapped to a uniform distribution using the QuantileTransformer in scikit-learn. Features were 447 

ranked by effect size (Cohen’s d) and all features with p < 0.01 (two-tailed t-test from scipy v1.11.2 448 

(Virtanen et al., 2020), with the Holm Sidak correction for multiple comparisons from statsmodels 449 

v0.14.0 (Seabold et al., 2010) were plotted on a volcano plot. To estimate the accuracy of each 450 

feature as a classifier, the data were split into 5 cross validation folds. Each individual feature was 451 

used to train a LogisticRegression model with each of the 5 folds (training on 4 out of 5 folds and 452 

evaluating on the 5th fold) using scikit-learn with accuracy reported as the average evaluation set 453 

score across all 5 folds. All possible combinations of pairs of features were generated and ratios 454 

between those pairs were used to train and evaluate a LogisticRegression model as described 455 

above.  456 

Open-source segmentation and feature extraction pipeline 457 

Mitochondria were segmented and assigned to cell masks using a three-phase pipeline. First, the 458 

Hoechst-stained nuclei were thresholded and then split into individual nuclei using a watershed 459 

transform with a minimum spacing of 3 µm using the watershed segmentation function in scikit-460 

image v0.21.0 (van der Walt et al 2014). Next, CellMaskGreen stained cells were thresholded and 461 

then cells containing more than one nucleus were further split by assigning each pixel in a cell 462 

mask to the closest nuclei. Finally, MTDR stained mitochondria were thresholded and split into 4-463 

connected components, then further split wherever a mitochondria label crossed a cell boundary 464 

using the join segmentations function in scikit-image. 465 
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Features were extracted from the mitochondrial intensity image with the following workflow. 466 

First, if requested, a parabolic kernel was used to remove background using the rolling_ball 467 

function in scikit-image. The kernel was defined as an axisymmetric inverted parabola of height h 468 

with the following formula: 469 

𝑘(𝑥, 𝑦) 	= (ℎ2 − 𝑥2 − 𝑦2)	𝑖𝑓	𝑘(𝑥, 𝑦) 	≥ 	0; 	∞	𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒	 470 

The filtered image was subtracted from the original image and all values less than 0 were set to 0. 471 

The image was next smoothed with a gaussian filter to improve the stability of the gradient 472 

calculation. Estimates of the first partial derivatives in x and y were calculated using central 473 

differences of the smoothed image using the gradient function in numpy v1.24.4 (Harris et al, 474 

2020). The second partial derivatives in xx, xy, and yy were then calculated in a similar manner 475 

using the first derivative images. The eigenvalues of the resulting hessian matrix at each point 476 

were calculated using the hessian_matrix_eigvals function in scikit-image giving the two principal 477 

curvatures at each point with 𝜆1 	≥ 𝜆2	. The shape index from (Koenderink and van Doorn, 1992). 478 

was next calculated as: 479 

𝑆𝐼	 = 	𝑎𝑟𝑐𝑡𝑎𝑛(
𝜆2 + 𝜆1
𝜆2 − 𝜆1

) 480 

To more closely match the SER images generated by Harmony we selected empirical cutoffs of 481 

the shape index approximately twice the width of those given by (Koenderink and van Doorn, 482 

1992). Further, we found that multiplying the shape index by either the first or second principal 483 

curvature depending on the texture of interest improved the quality of the resulting image. 484 

Specifically, our texture images are defined as: 485 

TI = threshold(SI) * weight 486 

Where: 487 

Threshold(SI) Weight Corresponding Shape Index 
Mnemonics 

Feature Image (Ours) 

1.0 > SI > 0.5 𝜆1 All of “Spherical Cap” and “Dome” and 

part of “Ridge” 

SI Spot 

0.75 > SI > 0.25 𝜆2 All of “Ridge” and part of “Dome” and 

“Saddle Ridge” 

SI Ridge 
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0.25 > SI > -0.25 𝜆2 All of  “Saddle” and part of “Saddle 

Ridge” and  “Saddle Rut” 

SI Saddle 

-0.25 > SI > -
0.75 

𝜆1 All of “Rut” and part of “Trough” and 

“Saddle Rut” 

SI Valley 

-0.5 > SI > -1.0 𝜆2 All of “Trough” and “Spherical Cup” 

and part of “Rut” 

SI Hole 

We did not investigate whether this combination of shape index and principal curvature could be 488 

extended to approximate the remaining three SER features. 489 

To extract final feature values per-field of view, we used the regionprops_table function in scikit-490 

image to calculate mean values of each feature image within each cell segment. We then calculated 491 

averages of the features per-field of view using the group by method in pandas v2.2.0 (McKinney 492 

2010). We calculated the per field of view ratio of SI Spot to SI Ridge, then averaged over all 493 

fields of view within a well to get the final values for SI Spot, SI Ridge, and SI Ratio presented in 494 

Fig 4. Correlation plots were calculated using the per-field of view values for SI Ratio and SER 495 

Ratio respectively, fitting a line of best fit using the polyfit function in numpy, then calculating the 496 

correlation coefficient and two-sided p-value using the pearsonr function in scipy. 497 

Data presentation, statistical analysis and illustrations 498 

Data was organized and imported into GraphPad Prism 9 for statistical testing and plotting. A 499 

minimum of three wells were imaged per plate and the Number of cells varied depending on the 500 

cell type and experiment, as indicated in the Figure Legends. Significant differences between 501 

experimental groups were indicated as *P < 0.05; **P < 0.01; ***P < 0.001; only P < 0.05 was 502 

considered as statistically significant. NS, not significant. Schematics were created on Microsoft 503 

PowerPoint, SER feature plots were generated on matplotlib v3.8.2 (Hunter et al., 2007), and 504 

figures were assembled on Adobe Illustrator.  505 
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FIGURE LEGENDS 695 

Figure 1: MitoProfilerHC image analysis workflow to evaluate mitochondrial morphology 696 

A) Multi-channel fluorescence input image of WT MEF cells. B) Nuclei segmentation (individual 697 

nuclei shown in multi-color). C) Cytoplasm segmentation (individual cells shown in multi-color). 698 

D) Black/white pre-processed image of mitochondria. E) Mitochondrial segmentation (shown in 699 

magenta). F) Calculation of Harmony morphology (STAR and Standard) and texture (SER) 700 

features. G) Volcano plot of the most discriminative single features that increase with Mfn2 KO 701 

(two-tailed t-test with Holm Sidak correction for multiple comparisons). H) Volcano plot of the 702 

most discriminative ratios of features that increase with Mfn2 KO (two-tailed t-test with Holm 703 

Sidak correction for multiple comparisons). I) Representative SER Spot and SER Ridge filtered 704 

image (left; individual cells outlined in magenta). Gaussian-derived intensity patterns (right). J) 705 

Expected SER Spot and SER Ridge directionality for networked and fragmented mitochondrial 706 

morphologies. For all panels, image scale bar = 20 μm. 707 

 708 

Figure 2: Validating of MitoProfilerHC in genetic and pharmacological paradigms for 709 

mitochondrial disruption 710 

A) Representative fluorescence, zoomed inset, and processed images of WT and Mfn2 KO MEFs. 711 

Full-sized image scale bar = 20 μm. Zoomed inset scale bar = 2 μm. B) Mitochondrial aspect ratio 712 

(AR) quantification. C) SER Ridge texture quantification. D) SER Spot texture quantification. (B-713 

D) Data points are presented as mean ± SD from three technical replicates; n = ~1,500-2,000 cells 714 

per condition group. E) Representative fluorescence images with zoomed inset for WT HeLa cells 715 

treated with oligomycin (“Oligo”) from 0 to 51 µM. Full-sized image scale bar = 20 μm. Zoomed 716 

inset scale bar = 2 μm. F) SER Ratio (SER Spot/SER Ridge) oligomycin dose-response 717 

quantification. G) SER Ridge quantification. H) SER Spot quantification. (F-H) Data points are 718 

presented as mean ± SD from two technical replicates; n = ~2,000 cells per condition group. 719 

Statistical analysis was performed using two-tailed, unpaired Student’s t-test. **p ≤ 0.01; ***p ≤ 720 

0.001; ns = not significant.   721 
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Figure 3: Characterizing drug-induced mitochondrial morphology changes in primary 722 

hippocampal neurons using MitoProfilerHC 723 

A) Representative fluorescence input image (pseudo-colored black/white) of mitochondrial 724 

channel in primary mouse hippocampal neurons. B) Neuron soma segmentation (blue). C) Neurite 725 

segmentation (cyan). D) Dilated neurite mask (cyan). (A-D) All scale bars = 20 μm. E) 726 

Representative images of neurons treated with mitochondrial inhibitors, FCCP (2 or 20 µM), 727 

oligomycin (10 µM) and Vacor (20 µM) for 2 hrs. F) Representative images of neurons treated 728 

with 20 µM FCCP, highlighting mitochondrial fragmentation in neurites (cyan, white boxes). (E-729 

F) All scale bars = 10 μm G) 2 hr time-course quantification comparing 20 µM FCCP (solid blue), 730 

10 µM oligomycin (solid green) and 20 µM Vacor (solid red). H) Dose-response quantification 731 

for FCCP, 2 µM (open blue) and 20 µM (solid blue). I) Quantification of SR in neuron soma (solid 732 

blue) and neurites (solid light blue) in response to FCCP (20 µM). A simple linear regression 733 

comparison was performed on soma and neurites conditions treated with FCCP (dashed lines). (G-734 

I) Data points are presented as mean ± SD from three technical replicates; n = ~500 cells per 735 

condition group. Statistical analysis was performed using two-tailed, unpaired Student’s t-test. **p 736 

≤ 0.01; ***p ≤ 0.001; ns = not significant. 737 

 738 

Figure 4: MitoProfiler, an open-source mitochondrial morphology image analysis tool 739 

A) Example session of the MitoProfiler napari plugin analyzing an image of WT MEF cells. 740 

Individual cell and mitochondria clusters are colored by cluster identity. Controls to configure 741 

individual steps of the MitoProfiler pipeline are shown on the right hand panel. B) SI Ridge and 742 

C) SI Spot texture images calculated from the MTDR stained example image with inset to show 743 

texture details (scale bar 25 μm for overview image, 10 μm for inset). D) SI Ridge quantification, 744 

E) SI Spot quantification and, F) SI Ratio quantification for WT vs Mfn2 KO MEFs. (D-F) Data 745 

points are presented as mean ± SD from three technical replicates; n = ~1,500-2,000 cells per 746 

condition group. Statistical analysis was performed using two-tailed, unpaired Student’s t-test. *p 747 

≤ 0.05; ***p ≤ 0.001; ns = not significant. G) Correlation plot between SI Ratio and SER ratio for 748 

Mfn2 KO experiment with dots individual fields of view colored by WT (gray) or Mfn2 KO 749 

(orange) and a line of best fit (dotted line, slope = 0.501, intercept = 0.000) with Pearson’s 750 

correlation coefficient between measurements for each field of view (R = 0.913, p < 1e-10, two-751 

tailed test). H) SI Ridge quantification, I) SI Spot quantification, and J) SI Ratio quantification for 752 
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WT HeLa cells treated with oligomycin (“Oligo”) from 0 to 51 µM. K) Correlation plot between 753 

SI Ratio and SER ratio for treated HeLa cells with dots individual fields of view colored by 754 

oligomycin dose and a line of best fit (dotted line, slope = 0.988, intercept = -0.254) with Pearson’s 755 

correlation coefficient between measurements for each field of view (R = 0.934, p < 1e-10, two-756 

tailed test).  757 
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B C DA

Figure 3: Characterizing drug-induced mitochondrial morphology changes in primary hippocampal neurons using MitoProfilerHC

segmented neurites neurites (dilated mask)segmented neuron somainput image (B/W)

Control FCCP, 20 µM FCCP, 2 µM 

Oligomycin, 10 µM Vacor, 20 µM FCCP, 20 µM 

Control

Neuron soma Neurites

DAPI MitoTracker Deep Red DAPI MitoTracker Deep Red Segmented neurites

E F

0 30 60 90 120
0.0
0.8

1.0

1.5

2.0

Time (mins)

Control
FCCP, 20 µM 

Oligomycin, 10 µM
Vacor, 20 µM

0.0

0.5

1.0

1.5

2.0

Soma, control
Neurites, control

Soma, FCCP, 20 µM
Neurites, FCCP, 20 µM

Mitochondrial inhibitors Dose response
Control

FCCP, 20 µM 
FCCP, 2 µM 

Neuron compartment

SE
R

 ra
tio

0.0
0.8

1.0

1.5

2.0

SE
R

 ra
tio

0 30 60 90 120
Time (mins)

0 30 60 90 120
Time (mins)

SE
R

 ra
tio

G H I

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 16, 2024. ; https://doi.org/10.1101/2024.08.15.607824doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.15.607824
http://creativecommons.org/licenses/by-nc-nd/4.0/


B

Figure 4: MitoProfiler, an open-source mitochondrial morphology image analysis tool built on Napari
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