

1 **Novel high-content and open-source image analysis tools for profiling mitochondrial
2 morphology in neurological cell models**

3

4 Marcus Y. Chin^{1*}, David A. Joy^{1*}, Madhuja Samaddar¹, Anil Rana¹, Johann Chow¹, Takashi
5 Miyamoto¹, and Meredith Calvert^{1#}

6

7

8 ¹Denali Therapeutics Inc., South San Francisco, CA 94080 USA

9 [#]Corresponding author, calvert@dnli.com

10 *Authors contributed equally to this work

11

12 **Key words:** Mitochondria, mitochondrial morphology, high-content imaging, image analysis,
13 high-throughput screening, neurons, open-source, napari plugin

14 **Abstract**

15 Mitochondria undergo dynamic morphological changes depending on cellular cues, stress, genetic
16 factors, or disease. The structural complexity and disease-relevance of mitochondria have
17 stimulated efforts to generate image analysis tools for describing mitochondrial morphology for
18 therapeutic development. Using high-content analysis, we measured multiple morphological
19 parameters and employed unbiased feature clustering to identify the most robust pair of texture
20 metrics that described mitochondrial state. Here, we introduce a novel image analysis pipeline to
21 enable rapid and accurate profiling of mitochondrial morphology in various cell types and
22 pharmacological perturbations. We applied a high-content adapted implementation of our tool,
23 MitoProfilerHC, to quantify mitochondrial morphology changes in i) a mammalian cell dose
24 response study and ii) compartment-specific drug effects in primary neurons. Next, we expanded
25 the usability of our pipeline by using napari, a Python-powered image analysis tool, to build an
26 open-source version of MitoProfiler and validated its performance and applicability. In conclusion,
27 we introduce MitoProfiler as both a high-content-based and an open-source method to accurately
28 quantify mitochondrial morphology in cells, which we anticipate to greatly facilitate mechanistic
29 discoveries in mitochondrial biology and disease.

30 INTRODUCTION

31 Mitochondria are dynamic organelles responsible for maintaining metabolic homeostasis
32 and generating energy in a eukaryotic cell. They perform critical biochemical processes such as
33 ATP-production, ROS, fatty acid synthesis and calcium regulation (San-Millán, 2023; Zhang et
34 al., 2022). The cell coordinates these functions by regulating the fusion and fission of
35 mitochondria. These molecular mechanisms ultimately determine mitochondrial distribution, size,
36 and morphology, which change in response to various genetic factors, cellular cues, stress and
37 disease (Chan, 2020). Structurally, the mitochondrion consists of a double membrane decorated
38 by proteins. Mitofusin 1, Mitofusin 2 (MFN1, MFN2) and optic atrophy 1 (OPA1) are GTPases
39 that are key regulators of outer and inner mitochondrial membrane fusion (Cipolat et al., 2004;
40 Santel & Fuller, 2001). Dynamin-related protein 1 (DRP1) is one of the main proteins controlling
41 mitochondrial fission (Smirnova et al., 2001). Mutations in these and other fission and fusion
42 proteins cause early onset neurological disorders that can range in severity. For example, *Mfn2*
43 mutations are causal for Charcot-Marie Tooth neuropathy 2A, a disease that preferentially affects
44 axons of peripheral neurons and clinically manifests as muscle weakness (Cartoni & Martinou,
45 2009). At the cellular level, *Mfn2* deficiency prevents mitochondrial fusion and causes
46 fragmentation of neuronal mitochondria (Chen et al., 2003; Filadi et al., 2018).

47 Mitochondrial function and ATP generation is particularly important in the brain due to
48 the high energetic needs of neurons. Numerous past studies have identified important molecular
49 links between mitochondria and sporadic forms of neurodegeneration such as Alzheimer's disease
50 (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS) (Cabral-Costa &
51 Kowaltowski, 2020; Shields et al., 2021; Yang et al., 2021). In neurodegeneration, fragmentation
52 is considered one of the morphological hallmarks of mitochondrial dysfunction (Knott et al., 2008)
53 and precedes neuronal death. The disease-relevance of specific mitochondrial morphologies has
54 fueled the development of quantitative, image-based assays of mitochondrial dynamics, at scales
55 practical for use in therapeutic screening campaigns.

56 To date, there are many described image analysis programs for mitochondrial morphology;
57 a noncomprehensive list has been presented in Harwig et al. (Harwig et al., 2018). Many studies
58 utilized a range of imaging modalities including epifluorescence, spinning disk confocal, and
59 super-resolution microscopy on semi-automated systems. Both 2D and 3D image analyses have
60 been developed for custom analytical software such as ImageJ/FIJI, MATLAB and Image Pro

61 Plus, capturing conventional mitochondrial measurements including number, area, length, and
62 aspect ratio. Some programs employed supervised machine learning classification models to
63 cluster cells that exhibit defined morphologies (Harwig et al., 2018). For example, one study
64 classified mitochondrial morphologies in mouse photoreceptor cells using an automated wide-field
65 fluorescence microscope, IN Cell Analyzer 2000 Analyzer (Cytiva) (Leonard et al., 2015). In this
66 example, image segmentation of mitochondrial objects was performed using IN Cell Developer
67 Toolbox 1.9.1, while downstream machine-learning classification was performed on the R
68 platform. More recent phenotypic screens have used confocal based high-content systems,
69 including the Opera Phenix system (Revvity, formerly PerkinElmer) to profile the effect of small
70 molecules, environmental toxicants, and neurodegenerative disease mutations on mitochondrial
71 morphology (Charrasse et al., 2023; Little et al., 2018; Varkuti et al., 2020).

72 High-content screening and analysis (HCS/HCA) has been foundational to therapeutic
73 discovery, allowing researchers to quickly identify novel targets in both candidate-based and
74 phenotypic pipelines (Chin et al., 2021; Way et al., 2023). Here, we introduce MitoProfilerHC, a
75 novel high-content image analysis pipeline that enables the rapid and accurate profiling of
76 mitochondrial morphology. Unlike previously published image-based assays, MitoProfilerHC
77 uses a combination of texture-based measurements to measure mitochondria in individual cells,
78 identified using a custom-built feature selection pipeline. We employ this pipeline to characterize
79 mitochondrial responses to both genetic and chemical perturbations in a variety of cell types
80 including neurons, and we validate the utility of this tool for quantifying mitochondrial
81 morphologies in HCA accurately and at scale.

82 Commercially available image analysis tools, while powerful and integrated with popular
83 instrumentation, are often proprietary and therefore are inaccessible to most users. To expand
84 usability for all imaging users, we also developed MitoProfiler, an open-source adaptation of our
85 high-content mitochondrial morphology pipeline. MitoProfiler provides an interactive
86 segmentation interface as a napari plugin that allows users to visualize and tune the segmentation
87 and feature extraction components of the pipeline, in addition to a batch mode that enables
88 processing of whole plate datasets. By providing an open-source tool we hope to further expand
89 the accessibility and utility of our mitochondrial analysis platform to the broader scientific
90 community.

91 **RESULTS**

92 **Generation of MitoProfilerHC workflow to evaluate mitochondrial morphology**

93 To establish a platform capable of reproducibly resolving complex subcellular phenotypes
94 at scale, we first built our mitochondrial image analysis pipeline on a high-content screening
95 system. Because mitochondrial morphology is complex and dynamic and to demonstrate the
96 versatility of the pipeline, we optimized our assays in live cells derived from multiple origins and
97 subjected to multiple perturbations.

98 Cells were cultured in 96-well assay plates and labeled with Hoechst 33342, CellMask
99 Green Actin, and MitoTracker Deep Red (MTDR). MTDR is a cell-permeant dye that accumulates
100 on active mitochondria in cells and is conventionally used to measure mitochondrial mass, shape
101 and activity. Cells were imaged on a spinning-disk confocal-based Opera Phenix Plus high-content
102 microscope (Revvity) using either a 40X/NA 1.1 or 63X/NA1.15 water immersion objective lens
103 permitting sampling of a larger number of cells at sufficient resolution within a given image due
104 to its high numerical aperture and larger field of view.

105 Briefly, multi-channel images were first visually rendered in the Harmony software (**Fig. 1A**).
106 Individual cells labeled with Hoechst 33342 were identified using the ‘Find Nuclei’
107 building block (**Fig. 1B**). All subsequent analyses were performed on a per-cell basis; therefore,
108 the nuclei identification step should not be bypassed. The ‘Find Cytoplasm’ building block was
109 used to delineate cell borders (**Fig. 1C**). The 647-channel image of the mitochondria was acquired
110 and pre-processed using the sliding parabola background subtraction method (**Fig. 1D**). This step
111 produced a sharper image from which the ‘Find Image Region’ building block segmented
112 mitochondrial signal within the cell cytoplasm (**Fig. 1E**).

113 With mitochondrial structures identified, we next measured morphological and textural
114 features using the ‘Calculate Morphology Properties’ and ‘Calculate Texture Properties’ building
115 blocks, respectively, for each identified mitochondrion (**Fig. 1F**). The Symmetry-Threshold
116 Compactness-Axial-Radial (STAR) methodology includes a set of properties that classifies
117 phenotypes based on the distribution of intensity within segmented objects. Spot-Edge-Ridge
118 (SER) features are texture filters that are sensitive to different characteristic intensity patterns.
119 Standard morphological properties such as area, roundness, width, and length were also included
120 in the initial protocol development process (**Table 1**).

121 Table 1: List of Standard Morphology, STAR Morphology, and SER Texture features

SER Texture	STAR Morphology	Standard Morphology
SER Spot 1 px	Symmetry 02	Threshold Compactness 40%
SER Hole 1 px	Symmetry 03	Threshold Compactness 50%
SER Edge 1 px	Symmetry 04	Threshold Compactness 60%
SER Ridge 1 px	Symmetry 05	Axial Small Length
SER Valley 1 px	Symmetry 12	Axial Length Ratio
SER Saddle 1 px	Symmetry 13	Radial Mean
SER Bright 1 px	Symmetry 14	Radial Relative Deviation
SER Dark 1 px	Symmetry 15	Profile 1/2
	Threshold Compactness 30%	Profile 2/2

122

123 To generate mitochondrial morphology ground truths in determining which features
124 accurately distinguish mitochondrial states, we acquired images of wildtype (WT) and *Mfn2*
125 deficient mouse embryonic fibroblast (MEF) cells. WT cells under basal conditions were expected
126 to show normal, networked mitochondria while *Mfn2* knockout (KO) cells were expected to show
127 more fragmented morphology. A total set of 33 features were calculated and extracted from
128 mitochondria-segmented images across 9,620 cells (4,810 cells per condition). Feature results
129 were output on a per-cell basis, exported from Harmony, and loaded into a custom-built feature
130 selection pipeline.

131 Ranking features by largest difference between WT and *Mfn2* KO, we determined that SER
132 features, a family of texture features, were the most robust in distinguishing between fragmented
133 and networked mitochondria (**Table 1**). Ranking individual features by effect size showed that
134 “SER ridge” was the most decreased in *Mfn2* KO compared to WT while “SER valley” was the
135 most increased (**Fig. 1G**). The most discriminative individual feature was “SER valley” with
136 ~70.8% classification accuracy when training a logistic regression model on these data (5-fold
137 cross validation with balanced sampling between classes). To further improve this metric, we
138 calculated ratios of all possible pairs of features in the dataset and trained a logistic regression
139 model on the ratio. The ratio of “SER spot” to “SER ridge” was the most discriminative ratio, with
140 ~75.0% accuracy in cross validation, and was the ratio most increased by *Mfn2* KO (**Fig. 1H**)
141 (**Table S1**). SER features detect pixel intensity gradient and curvature; for example, the ‘Spot’ and
142 ‘Ridge’ filters are more sensitive to intensity distributions adopting 3D and 2D Gaussian bell
143 curves, respectively (**Fig. 1I**). The value of a SER Spot measurement increases in the context of
144 fragmented mitochondria because it is sensitive to round, symmetrical punctate-like structures.

145 Inversely, the value of SER Ridge increases in networked mitochondria exhibiting continuous and
146 elongated structures (**Fig. 1J**). Together, SER Spot and SER Ridge were identified as the most
147 robust features and were applied in all subsequent morphological analyses performed in cells.

148

149 **Validation of MitoProfilerHC in genetic and pharmacological paradigms for mitochondrial**
150 **disruption**

151 To validate MitoProfilerHC, we quantified mitochondrial morphologies under genetic and
152 pharmacological perturbations in live cells. First, we assessed *Mfn2* KO MEFs, which visually
153 exhibit a striking punctate pattern, indicative of fragmented mitochondria (**Fig. 2A**). In contrast,
154 unperturbed mitochondria in wildtype (WT) MEFs appear elongated and networked. We first
155 measured the mitochondrial aspect ratio (AR) to provide a benchmark for our analysis in
156 comparison to more traditional methods for quantifying morphology. AR is a proxy for the degree
157 of mitochondrial fusion, defined as the mitochondrial major axis divided by minor axis (i.e. length
158 to width ratio) (Picard et al., 2013). As expected, AR was significantly higher ($p = 0.0025$) in WT
159 cells, reflecting more networked mitochondria (**Fig. 2B**). Next, we measured mitochondrial
160 morphology in WT and *Mfn2* KO cells using the SER Ridge and Spot textures. Matching the trend
161 in AR, SER Ridge score was significantly higher ($p < 0.001$) in WT cells (**Fig. 2C**), whereas the
162 SER Spot score was significantly higher ($p = 0.0023$) in *Mfn2* KO cells (**Fig. 2D**). Overall, these
163 results provided further validation for our high-content analysis method for quantifying both
164 networked and fragmented mitochondria.

165 The values of SER Spot and SER Ridge consistently yielded an inverse correlation,
166 predictive of either fragmented or networked mitochondrial morphologies, respectively. We
167 further simplified the quantification by taking the ratio of SER Spot-to-SER Ridge, generating a
168 new metric we termed ‘SER Ratio’ (SR). SR thus incorporates both measurements into a single
169 ratiometric value that can be interpreted as the extent of mitochondrial fragmentation. We next
170 sought to demonstrate the applicability of our image analysis pipeline in the context of phenotypic
171 drug discovery using mitochondrial SR. Because mitochondrial dysfunction has a strong link to
172 many human diseases, we moved towards immortalized human cell lines and adapted
173 MitoProfilerHC for Hela cells, a common cell type employed for early-stage drug screening
174 campaigns.

175 In a comparative study on the effect of pharmacological agents on mitochondrial
176 morphology, oligomycin A was reported to induce robust fragmentation in various cancer cell
177 types (Fu & Lippincott-Schwartz, 2018). Oligomycin is a potent antibiotic that disrupts
178 mitochondrial function by inhibiting proton coupling and ATP synthesis (Hearne et al., 2020;
179 Lardy et al., 1958). In our study, we treated Hela cells for 1.5 hours with oligomycin at a
180 concentration range from 0 to 51 μ M, imaged and analyzed mitochondrial morphology using
181 MitoProfilerHC. Mitochondrial fragmentation increased, which is reflected visually (Fig. 2E) and
182 through the dose-dependent increase of mitochondrial SR (Fig. 2F). SR values were less variable
183 than its contributing components, SER Ridge and SER Spot (Figs 2G, H), providing a more robust
184 measurement for mitochondrial fragmentation. Importantly, the overall predictive score for
185 mitochondrial SR (~75%) was higher compared to mitochondrial AR, a commonly used classifier
186 (~52%) (Table S1). Thus, we were able to demonstrate that MitoProfilerHC provides reduced
187 variability and improved predictive capabilities as compared to commonly used methods and can
188 accurately profile mitochondrial fragmentation in dose-response studies in a human cell line.

189

190 **Characterizing drug-induced mitochondrial morphology changes in primary hippocampal
191 neurons using MitoProfilerHC**

192 Neurons are bioenergetically demanding, relying heavily on ATP production and calcium
193 regulation by mitochondria. Mitochondrial dysfunction causes an energetic failure that can acutely
194 induce ischemia (Liu et al., 2018) and has been implicated in several neurological disorders
195 including ALS, Alzheimer's, and Parkinson's disease (Cabral-Costa & Kowaltowski, 2020; Norat
196 et al., 2020). To demonstrate its application to drug development in neurological diseases, we
197 adapted the MitoProfilerHC pipeline for quantifying mitochondrial morphology changes under
198 various perturbation conditions in primary hippocampal neurons (Fig. 3A).

199 We further developed the protocol to include segmentation of both neuronal soma and
200 neurite structures (Fig. 3B, C). Given the narrow morphology of neurite processes, we dilated the
201 neurite mask by ~0.4 μ m to ensure detection of the entire structure and its contents (Fig. 3D).
202 Following our previous findings in Hela cells, we treated neurons with various compounds known
203 to disrupt mitochondrial function and induce fragmentation, including oligomycin (Fig. 3E).
204 FCCP, or carbonyl cyanide p-trifluoromethoxyphenylhydrazone, is a commonly used
205 protonophore that uncouples mitochondrial oxidative phosphorylation and inhibits ATP synthesis

206 (Benz & McLaughlin, 1983). It has been extensively characterized in living cells in relation to its
207 inhibitory effect on mitochondrial function. We also used Vacor, a cell permeable precursor of the
208 sterile alpha and TIR motif-containing protein 1 (SARM1) agonist (Loreto et al., 2021), to induce
209 mitochondrial dysfunction. SARM1 plays a crucial role in regulating both axons and dendritic
210 degeneration in hippocampal neurons (Miyamoto et al., 2024; Osterloh et al., 2012) and
211 importantly, is a downstream factor to mitochondrial damage (Summers et al., 2014).

212 In our comparison between oligomycin, FCCP and Vacor, we found that after two hours
213 of treatment all drugs induced significant mitochondrial fragmentation in neuronal soma, as
214 measured by the SER ratio (**Fig. 3E, G**). While oligomycin and Vacor fragmented mitochondria
215 slowly and at later timepoints, FCCP induced a much earlier effect that is evident at around 20
216 minutes post-treatment. Because FCCP had such a rapid and potent effect on mitochondria, we
217 also wanted to test whether our analysis protocol can measure the effect of FCCP in a dose-
218 dependent manner. Indeed, when neurons were treated with FCCP at 2 and 20 μ M, we observed a
219 dose-dependent effect (**Fig. 3E, H**), demonstrating the value of MitoProfilerHC applications
220 requiring *in vitro* dose-response studies of mitochondrial function.

221 Finally, we investigated whether mitochondria located in different neuronal compartments
222 behave differently in response to pharmacological stress. In neurons that were treated with FCCP
223 at 20 μ M, we measured the SR in both soma and neurites (**Fig. 3F, I**). Compared to control
224 neurites, FCCP induced a significant elevation in SR, suggesting that like soma, mitochondria in
225 neurites also undergo fragmentation in response to chemical stress and indicate that there are
226 compartment-specific responses to perturbation.

227

228 **MitoProfiler, an open-source mitochondrial morphology image analysis tool**

229 While MitoProfilerHC was developed on a specific platform using the Harmony software
230 toolkit, we wanted to enable broad usability of our mitochondrial morphology image analysis
231 pipeline to the scientific community. We created MitoProfiler, an open-source version of our
232 previously described methodology using napari, a multi-dimensional image visualization,
233 annotation, and analysis library for Python (Sofroniew et al., 2024). We followed a similar
234 approach as in MitoProfilerHC to extract morphological features from cells. Briefly, we
235 implemented a three-stage segmentation pipeline to first segment cell nuclei followed by
236 cytoplasm and then mitochondria. Next, we implemented a bank of texture features based on the

237 principal curvatures of the mitochondria intensity image similar to the shape index (SI) from
238 (Koenderink and van Doorn, 1992). Finally, we packaged our segmentation and feature extraction
239 code into a napari plugin which can be directly used from an interactive napari session (**Fig. 4A**).

240 To demonstrate the utility of our open-source pipeline, we re-segmented the mitochondria
241 in our WT and *Mfn2* deficient (KO) mouse fibroblasts and extracted an SI feature corresponding
242 to ridges ($0.75 > SI > 0.25$; **Fig. 4B**) and an SI feature corresponding to spots ($1.0 > SI > 0.5$; **Fig.**
243 **4C**) and calculated their per-cell averages (**Fig. 4D, E**, respectively). While the spot feature alone
244 was not significantly different between the two groups (likely due to differences in segmentation
245 between the original Harmony pipeline and our reimplemented pipeline), both the ridge feature
246 alone and the ratio of spot to ridge (SI Ratio) were significantly different between KO and WT
247 (**Fig. 4D-F**), confirming the robustness of our image texture measures to differences in cell
248 segmentation pipelines. Further, we found good linear correlation between the SER Ratio and our
249 SI Ratio when comparing individual fields of view between the Harmony processed and open-
250 source images ($R=0.913$; **Fig. 4G**). We next replicated analysis of the dose response study using
251 our shape index-derived spot, ridge, and spot to ridge ratios (**Fig. 4H-J** respectively), validating
252 the mitochondrial feature response from **Fig. 2F-H**. As in the WT vs KO study, the SER Ratio and
253 SI Ratio were well correlated on an individual field of view basis ($R=0.934$; **Fig. 4K**), indicating
254 that our open-source texture features capture comparable per-image information about
255 mitochondrial fragmentation across experimental modalities. Despite imperfectly reproducing the
256 original Harmony segmentation and featurization pipeline (which is closed source and cannot be
257 directly reimplemented), we believe that our open-source feature extraction pipeline validates the
258 use of spot and ridge texture features as a general measure of microglia fragmentation. The code
259 to calculate these features interactively for a single field of view and as a batch across an imaging
260 study is provided at <https://github.com/denalitherapeutics/napari-mito-hcs>.

261 **DISCUSSION**

262 Mitochondrial morphology is highly dynamic and changes rapidly in response to metabolic
263 shifts, cellular perturbation, and various functional impairments in the context of several major
264 diseases. Building upon previous image analysis techniques, we developed a novel high-content
265 image analysis tool, MitoProfilerHC, that robustly quantifies mitochondrial morphology using
266 texture-based measurements in live cells, enabling efficient therapeutic and biomarker screening
267 and development in mitochondrial disorders, cancer, and neurodegeneration. In our study, we
268 provide a comprehensive analysis to determine which texture or morphological feature best
269 predicts relevant mitochondrial phenotypes in healthy and diseased cells with known
270 mitochondrial disruption. MitoProfilerHC is designed for use with the Opera Phenix Plus High-
271 Content System by Revvity, an automated, spinning-disk confocal-based microscope that is widely
272 used in academic and drug discovery research. The MitoProfilerHC analytical pipeline is designed
273 to be easy to use with the Harmony image analysis software that is employed for both the
274 acquisition and analysis of images from the Opera Phenix Plus, and our open-source version of
275 MitoProfilerHC can be made compatible with any high content imaging platform that can export
276 images into the standard Tag Image File Format (TIFF). Given the prevalence of high content
277 imaging in both foundational and translational research, we believe this tool will be of broad
278 interest. Additionally, this analytical tool is simple to use and, as our results demonstrate,
279 applicable for use in multiple cell types and assay conditions. Note that although the pipeline is
280 compatible with either of the higher magnification lenses (40X and 63X) that are standard on the
281 Opera Phenix, objectives with lower magnification or resolution (i.e., less than NA=1) are not
282 recommended, due to inadequate resolution of mitochondrial structures.

283 The SER feature set are texture-based measurements of the spatial distribution of intensity
284 levels in a neighborhood defined through image segmentation strategies and provided as standard
285 metrics within the Harmony image analysis software. We identified two SER texture features –
286 SER Spot and SER Ridge, that when calculated as a ratio, were highly robust in measuring
287 mitochondrial morphology change in drug dose-response studies across multiple cell types,
288 including screenable human cell lines and mature primary neurons. Though previous studies have
289 explored other tools for automating the morphological analysis of mitochondria, to our knowledge
290 there are no published approaches that provide comparable throughput and precision to
291 MitoProfilerHC. One previously published method tracked live mitochondrial movement and

292 classified defined morphologies in response to environmental insult. Image analysis was
293 performed on the CellProfiler software followed by deep learning classification using MATLAB
294 (Zahedi et al., 2018). This method employed traditional confocal imaging and a multi-step image
295 processing and segmentation pipeline and is therefore a substantially lower-throughput approach
296 than that presented here. Another study used the IN Cell Analyzer and IN Cell Developer 1.9.1.
297 image analysis software to segment mitochondria and calculate morphometrics. Subsequently, a
298 machine learning scheme was used in R to classify mitochondrial subtypes based on a priori
299 knowledge of mitochondrial morphology (Leonard et al., 2015). Such morphological classification
300 has been a popular technique to describe complex networks including mitochondria; however, they
301 do not eliminate subjectivity and translatability requires further validation. Additionally, this
302 instrument and associated software is no longer supported by Cytiva Life Sciences (Leonard et al.,
303 2015). Other functionally similar high-content systems include the CellVoyager CV8000 by
304 Yokogawa and ImageXpress Confocal HT.ai by Molecular Devices and it would be interesting to
305 consider adapting our texture-based analytical pipeline for use with their acquisition software. Our
306 tool improves upon previous morphometric-based analyses by enhancing both speed and accuracy
307 of mitochondrial assays performed at-scale under cellular conditions.

308 Although recent advances in ensemble methods such as deep learning have revolutionized
309 many aspects of image processing in cell biology, classic feature-based approaches such as
310 MitoProfilerHC remain competitive in domains where minimal training data is available, and
311 where computational resources are at a premium such as in high throughput screening campaigns
312 (Chai et al, 2023). Further, while deep learning approaches show impressive performance on
313 classification benchmarks (Natekar et al 2023), establishing methods to explain the “black box”
314 nature of their predictions remains an area of active research (Chai et al 2023, Allen et al 2024,
315 Samek et al 2021). Interpretable feature-based methods such as MitoProfilerHC help build
316 confidence in algorithmic classification of images, both by providing insight into which features
317 of an image are salient to understanding the underlying biology, and by providing confidence that
318 the algorithm can reasonably extrapolate outside of the domain it was initially trained on (Chai et
319 al 2023, Allen et al 2024).

320 In parallel with our high-content pipeline, we have also developed an open-source version
321 called MitoProfiler that will be made publicly available. Our image analysis work, both in this
322 manuscript and elsewhere has greatly benefitted from the availability of high-quality open-source

323 implementations of image processing algorithms. Building novel analysis algorithms is iterative,
324 and sharing source code across the broader bioimaging community not only enhances efficiency
325 but also data reproducibility as well (Levet et al, 2021). By providing our tool as a plugin to the
326 popular image analysis library napari, we hope to improve the accessibility of our texture analysis
327 method, especially for image analysts who prefer to interact with their data through an open-source
328 graphical user interface (Jamali et al, 2022). Further, we hope to encourage other software
329 developers, especially our colleagues outside of academia, to provide more extensive disclosure
330 of the algorithms that the community relies on to accurately analyze image data.

331 The image analysis tools that we have developed allowed us to take a deeper dive into
332 investigating mitochondrial function, particularly in the context of neurobiology. Mitochondrial
333 function is crucial in supplying the large bioenergetic demands of neurons (López-Doménech &
334 Kittler, 2023). Its regulation starts during early neuronal development and persists throughout the
335 lifetime of a neuron to ensure survival and protection against neurodegeneration (Rangaraju et al.,
336 2019; Rugarli & Langer, 2012). As such, understanding neuronal response to mitochondrial
337 inhibition has been extensively studied using mitochondrial targeting tool compounds, such as
338 FCCP and oligomycin that both negatively impact the electron transport chain (ETC) and cause
339 subsequent mitochondrial fragmentation. FCCP fragmented mitochondria maximally starting at
340 earlier timepoints and oligomycin induced a milder fragmentation effect at only the highest tested
341 concentration and at later time points. FCCP acts as a rapid protonophore dissipating the proton
342 gradient across mitochondrial membranes, while oligomycin inhibits ATP synthase at the final
343 ETC step. We therefore posit that the degree of ETC disruption is directly correlated with
344 mitochondrial morphology change in neurons.

345 Similarly, Vacor fragmented mitochondria to a lesser extent compared to FCCP which can
346 potentially be explained by NAD⁺ depletion by SARM1 agonism and subsequent inhibition of
347 ATP production (Ko et al., 2021; Sato-Yamada et al., 2022). Vacor-mediated activation of SARM1
348 causes degeneration in all neuronal compartments including cell bodies, axons, and dendrites in
349 primary hippocampal neurons (Miyamoto et al., 2024). Indeed, when we interrogated the effect of
350 mitochondrial inhibition on the neuronal compartment, we observed that mitochondria became
351 fragmented in both neuron soma and neurite processes. We note that the calculated SR is
352 normalized to each region of interest (ROI), thus precluding the direct comparison of absolute SR
353 values between ROIs. In this case, since the overall quantified mitochondrial region was much

354 larger in neurites compared to soma, lower absolute values of SR are seen in soma from both the
355 control and FCCP-treated conditions. Nonetheless, the overall fit of the time course curve between
356 FCCP-treated mitochondria in soma and neurites was also significantly different, suggesting that
357 mitochondria exhibit different dynamics in morphological response to pharmacological
358 perturbation, based on localization. Indeed, mitochondrial localization affects their function and
359 dynamics in the soma, axons, and dendrites. Mitochondria also have been described as having
360 compartment-specific morphologies; for example, mitochondria are densely packed in soma,
361 sparse and rounded in axons, and are larger in dendrites to occupy most of the process (Seager et
362 al., 2020). This result indicates that mitochondria are differentially sensitive to environmental
363 stress depending on the neuronal compartment. Despite compartment differences in function and
364 governing transport mechanisms, MitoProfilerHC was able to quantify differences in morphology
365 between soma and neurites under mitochondrial chemical perturbation.

366 Overall, we demonstrated the wide utility of the MitoProfilerHC and MitoProfiler tool by
367 interrogating mitochondrial morphology under various *in vitro* cellular assays using a high-content
368 and open-source enabled image analysis. We confirmed the effect of a neurological disease-
369 causing genetic mutation, validated dose-response of various mitochondrial inhibitors, and
370 uncovered compartment-specific changes in mitochondrial morphology that corroborated previous
371 findings. By increasing our understanding of mitochondrial dynamics and morphology using HCS
372 and open-source tools, we hope to greatly facilitate the development of therapeutics targeting
373 mitochondrial diseases.

374 **MATERIALS AND METHODS**

375 **Cell staining**

376 Prior to live cell imaging, cells were stained with Mitotracker (MitoTracker™ Deep Red FM Dye,
377 Invitrogen, M46753) (MTDR) and Hoechst 33342 (NucBlue™ Live ReadyProbes™, Invitrogen,
378 R37605). The media was removed and a pre-warmed (37°C) staining solution containing MTDR
379 probe (200nM concentration) and Hoechst 33342 probe (75uL per 1ml working concentration)
380 was added to the wells. Cells were incubated at 37°C for 60 minutes. After the staining was
381 complete, the staining solution was replaced with fresh prewarmed media and cells prior to
382 imaging.

383 **HeLa cells culture and treatment with oligomycin**

384 20,000 HeLa cells were plated per well of a 96 well-plate for a day in 100 µL of DMEM + 10%
385 FBS media. The following day, cells were treated with different concentrations of Oligomycin
386 (Sigma-Aldrich, 75351) for 1.5 hours by adding Oligomycin directly to the cell culture media at
387 the required concentration.

388 **Mouse embryonic fibroblast cell culture**

389 Mouse embryonic fibroblasts (MEF), WT and *Mitofusin 2* Knockout (*Mfn2* KO), were cultured in
390 DMEM supplemented with 10% FBS and Penicillin/Streptomycin. 10,000 MEF cells were plated
391 per well of a 96 well-plate for one day. Cells were then live stained with MTDR and Hoechst
392 33342, as described in the cell staining protocol above.

393 **Primary mouse hippocampal neurons culture, pharmacological treatment, and staining**

394 Neurons were isolated from mouse embryonic hippocampi (CD-1 strain; Charles River
395 Laboratories) and maintained using NbActiv4 medium (BrainBits; #NB4500) supplemented with
396 Penicillin/Streptomycin (Gibco, #15140122), GlutaMAX (Gibco, #35050061) and 5-fluoro-2-
397 deoxyuridine (Sigma, 50-91-9), as described in (Miyamoto et al., 2024). On day 8 in vitro (DIV
398 8), neurons were stained with 100 nM MTDR (Invitrogen, #M22426), (1/1000) and NucBlue
399 (Invitrogen, #R37605) for 20 min at 37°C/5% CO₂. The mitochondrial inhibitors, Carbonyl
400 cyanide 4-(trifluoromethoxy)phenylhydrazone [FCCP; 2, and 20 µM (MedChemExpress, 370-86-
401 5)], Oligomycin [10 µM; (Sigma, 1404-19-9)], or Vacor [Pyrinuron; 20 µM (ChemService, 53558-
402 25-1)], were added to the stained neurons and imaging was immediately initiated with 20 min time
403 intervals up to 140 min, as described below.

404 **High-content image acquisition in live cells**

405 All images were acquired on a spinning disk confocal Opera Phenix™ Plus High-Content imager
406 (Revuity) using a 4-camera setup (16-bit sCMOS, 6.5 μm pixel size), with two-peak autofocus and
407 2x2 pixel binning. Environmental controls (37°C/5% CO₂) were used for live cell imaging.
408 Fixed wavelength lasers and emission bandpass filters were used to detect fluorophores (Hoechst
409 33342 E_x/E_m: 405/435-480 nm; CellMask E_x/E_m: 488/500-550 nm; MTDR E_x/E_m: 640/650-760
410 nm). Acquisition settings were adjusted as needed depending on cell type and density to maximize
411 signal while avoiding saturation and photobleaching. MEFs were imaged on a 40X/1.1 NA water
412 immersion lens (Revuity part number: HH14000422) for Hoechst 33342 (100 ms, 70% power),
413 CellMaskGreen (100 ms, 70% power) and MTDR (100 ms, 80% power) over 9 randomly selected,
414 equally spaced fields with 4 Z-planes (-1.0 to 2.0 μm , 1 μm step size). Hela cells were imaged on
415 a 63X/1.15 NA water immersion lens (Revuity part number: HH14000423) for Hoechst 33342 and
416 MTDR over 27 fields with 4 Z-planes, as detailed. Primary mouse hippocampal neurons were
417 imaged on a 63X/1.15 NA water immersion lens (Revuity part number: HH14000423) with gentler
418 exposure settings to limit phototoxicity (Hoechst 33342: 80 ms, 80%; CellMask Actin: 60 ms,
419 60%; MTDR: 40 ms, 80%) over 19 fields with 4 Z-planes (-3.0 to 0 μm , 1 μm step size).

420 **Mitochondrial image analysis, morphology and texture calculation, and data output**

421 The following protocol was built on Harmony 5.2 (Revuity) and applied across multiple cell types.
422 Unless otherwise mentioned, image analysis steps remained consistent across experiments. To
423 achieve even focus, a maximum projection of two planes was taken as the input image. First cells
424 were identified using the ‘Find Nuclei’ building block in the Hoechst 33342 channel (method B,
425 common threshold = 0.0, area > 50 μm^2 , splitting coefficient = 9.8, individual threshold = 0.29,
426 contrast = 0). Next, cytoplasm was identified using ‘Find Cytoplasm’ in the CellMask Green
427 channel (method D, individual threshold = 0.59). The MTDR channel was pre-processed with
428 ‘Filter Image’ (method: sliding parabola, curvature = 50). Mitochondrial signal was segmented
429 using ‘Find Image Region’ (threshold = 0.07, area > 8.75 50 μm^2) and the mitochondrial
430 morphological and texture metrics were measured. Morphology was calculated using ‘Calculate
431 Morphology’ using two methods: STAR (select Symmetry, Threshold Compactness, Axial,
432 Radial, Profile) and Standard (select Area, Roundness, Perimeter, Length, Width, Width-to-length
433 ratio). ‘Calculate Texture’ was used to measure SER features (method: SER, select SER Spot,
434 Hole, Edge, Ridge, Valley, Saddle, Bright, Dark). Mitochondrial aspect ratio was measured with

435 ‘Calculate Properties’ by taking the formula: mitochondrial per-cell length / per-cell width.
436 Additional steps were included directly after mitochondrial segmentation to identify neurites in
437 primary neuron experiments. The ‘Find Neurites’ building block was used to identify neurite
438 projections attached to neuron cell bodies (Channel: MTDR; Population: Hoechst 33342; Region:
439 Cell; Method: CSIRO Neurite Analysis 2). To quantify the entire neurite, the mask was dilated
440 laterally with ‘Select Region’ (Population: Neurites; Region: Neurite Segment; Method: Resize
441 Region with Outer Border = -2.0 px and Inner Border = INF px). Finally, per-cell results were
442 exported as means per well into Microsoft Excel for further analysis.

443 **Mitochondrial morphology feature selection**

444 Initial feature selection was performed using scikit-learn v1.3.0 (Pedregosa et al., 2011). First,
445 feature vectors were randomly drawn without replacement for cells in both the WT and KO
446 conditions to create a balanced dataset with 50% WT and 50% KO cells. Next, each feature was
447 mapped to a uniform distribution using the QuantileTransformer in scikit-learn. Features were
448 ranked by effect size (Cohen’s d) and all features with $p < 0.01$ (two-tailed t-test from scipy v1.11.2
449 (Virtanen et al., 2020), with the Holm Sidak correction for multiple comparisons from statsmodels
450 v0.14.0 (Seabold et al., 2010) were plotted on a volcano plot. To estimate the accuracy of each
451 feature as a classifier, the data were split into 5 cross validation folds. Each individual feature was
452 used to train a LogisticRegression model with each of the 5 folds (training on 4 out of 5 folds and
453 evaluating on the 5th fold) using scikit-learn with accuracy reported as the average evaluation set
454 score across all 5 folds. All possible combinations of pairs of features were generated and ratios
455 between those pairs were used to train and evaluate a LogisticRegression model as described
456 above.

457 **Open-source segmentation and feature extraction pipeline**

458 Mitochondria were segmented and assigned to cell masks using a three-phase pipeline. First, the
459 Hoechst-stained nuclei were thresholded and then split into individual nuclei using a watershed
460 transform with a minimum spacing of 3 μm using the watershed segmentation function in scikit-
461 image v0.21.0 (van der Walt et al 2014). Next, CellMaskGreen stained cells were thresholded and
462 then cells containing more than one nucleus were further split by assigning each pixel in a cell
463 mask to the closest nuclei. Finally, MTDR stained mitochondria were thresholded and split into 4-
464 connected components, then further split wherever a mitochondria label crossed a cell boundary
465 using the join segmentations function in scikit-image.

466 Features were extracted from the mitochondrial intensity image with the following workflow.
467 First, if requested, a parabolic kernel was used to remove background using the rolling_ball
468 function in scikit-image. The kernel was defined as an axisymmetric inverted parabola of height h
469 with the following formula:

$$470 \quad k(x, y) = (h^2 - x^2 - y^2) \text{ if } k(x, y) \geq 0; \infty \text{ otherwise}$$

471 The filtered image was subtracted from the original image and all values less than 0 were set to 0.
472 The image was next smoothed with a gaussian filter to improve the stability of the gradient
473 calculation. Estimates of the first partial derivatives in x and y were calculated using central
474 differences of the smoothed image using the gradient function in numpy v1.24.4 (Harris et al,
475 2020). The second partial derivatives in xx , xy , and yy were then calculated in a similar manner
476 using the first derivative images. The eigenvalues of the resulting hessian matrix at each point
477 were calculated using the hessian_matrix_eigvals function in scikit-image giving the two principal
478 curvatures at each point with $\lambda_1 \geq \lambda_2$. The shape index from (Koenderink and van Doorn, 1992).
479 was next calculated as:

$$480 \quad SI = \arctan\left(\frac{\lambda_2 + \lambda_1}{\lambda_2 - \lambda_1}\right)$$

481 To more closely match the SER images generated by Harmony we selected empirical cutoffs of
482 the shape index approximately twice the width of those given by (Koenderink and van Doorn,
483 1992). Further, we found that multiplying the shape index by either the first or second principal
484 curvature depending on the texture of interest improved the quality of the resulting image.
485 Specifically, our texture images are defined as:

486 $TI = \text{threshold}(SI) * \text{weight}$

487 Where:

Threshold(SI)	Weight	Corresponding Shape Index Mnemonics	Feature Image (Ours)
$1.0 > SI > 0.5$	λ_1	All of “Spherical Cap” and “Dome” and part of “Ridge”	SI Spot
$0.75 > SI > 0.25$	λ_2	All of “Ridge” and part of “Dome” and “Saddle Ridge”	SI Ridge

0.25 > SI > -0.25	λ_2	All of “Saddle” and part of “Saddle Ridge” and “Saddle Rut”	SI Saddle
-0.25 > SI > -0.75	λ_1	All of “Rut” and part of “Trough” and “Saddle Rut”	SI Valley
-0.5 > SI > -1.0	λ_2	All of “Trough” and “Spherical Cup” and part of “Rut”	SI Hole

488 We did not investigate whether this combination of shape index and principal curvature could be
489 extended to approximate the remaining three SER features.

490 To extract final feature values per-field of view, we used the `regionprops_table` function in `scikit-image` to calculate mean values of each feature image within each cell segment. We then calculated
491 averages of the features per-field of view using the `group by` method in `pandas` v2.2.0 (McKinney
492 2010). We calculated the per field of view ratio of SI Spot to SI Ridge, then averaged over all
493 fields of view within a well to get the final values for SI Spot, SI Ridge, and SI Ratio presented in
494 **Fig 4**. Correlation plots were calculated using the per-field of view values for SI Ratio and SER
495 Ratio respectively, fitting a line of best fit using the `polyfit` function in `numpy`, then calculating the
496 correlation coefficient and two-sided p-value using the `pearsonr` function in `scipy`.

498 **Data presentation, statistical analysis and illustrations**

499 Data was organized and imported into GraphPad Prism 9 for statistical testing and plotting. A
500 minimum of three wells were imaged per plate and the Number of cells varied depending on the
501 cell type and experiment, as indicated in the Figure Legends. Significant differences between
502 experimental groups were indicated as * $P < 0.05$; ** $P < 0.01$; *** $P < 0.001$; only $P < 0.05$ was
503 considered as statistically significant. NS, not significant. Schematics were created on Microsoft
504 PowerPoint, SER feature plots were generated on `matplotlib` v3.8.2 (Hunter et al., 2007), and
505 figures were assembled on Adobe Illustrator.

506 **ACKNOWLEDGEMENTS**

507 We thank Tanya Weerakkody and Kathryn Monroe for early thoughtful discussions surrounding
508 interpretation of morphological parameters, Lesley Kane for providing insights on mitochondrial
509 biology and developing historical data in cells, Thomas Sandmann for project guidance and review
510 of manuscript, and Robert Graves (Revvity, Inc.) for technical assistance with image analysis
511 inquiries.

512

513 **AUTHOR CONTRIBUTIONS**

514 M.Y.C., M.S., M.C. conceived of the study idea and approaches. M.Y.C, M.S., A.R., T.M., M.C.
515 designed experiments. M.Y.C., M.S., A.R. J.C. performed experiments. M.Y.C., M.S., A.R.,
516 D.A.J., M.C. analyzed and interpreted data. D.A.J. wrote and tested the code for the open-source
517 pipeline. M.Y.C. and M.C. wrote the manuscript. All authors edited the manuscript.

518

519 **COMPETING INTERESTS**

520 All authors are full-time employees and/or shareholders of Denali Therapeutics.

521

522 **DATA AVAILABILITY**

523 All relevant data can be found within the article and its supplementary information.

524 **REFERENCES**

525 **Allen, G. I., Gan, L. & Zheng, L.** Interpretable Machine Learning for Discovery: Statistical
526 Challenges and Opportunities. *Annu. Rev. Stat. Appl.* **11**, annurev-statistics-040120-030919
527 (2024).

528 **Benz, R., & McLaughlin, S.** (1983). The molecular mechanism of action of the proton
529 ionophore FCCP (carbonylcyanide p-trifluoromethoxyphenylhydrazone). *Biophysical Journal*,
530 41(3), 381–398.

531 **Cabral-Costa, J. V., & Kowaltowski, A. J.** (2020). Neurological disorders and mitochondria.
532 *Molecular Aspects of Medicine*, **71**, 100826. <https://doi.org/10.1016/j.mam.2019.10.003>

533 **Cartoni, R., & Martinou, J.-C.** (2009). Role of mitofusin 2 mutations in the physiopathology of
534 Charcot-Marie-Tooth disease type 2A. *Experimental Neurology*, **218**(2), 268–273.
535 <https://doi.org/10.1016/j.expneurol.2009.05.003>

536 **Chai, B., Efstathiou, C., Yue, H. & Draviam, V. M.** Opportunities and challenges for deep
537 learning in cell dynamics research. *Trends in Cell Biology* S0962892423002283 (2023)
538 doi:[10.1016/j.tcb.2023.10.010](https://doi.org/10.1016/j.tcb.2023.10.010).

539 **Chan, D. C.** (2020). Mitochondrial Dynamics and Its Involvement in Disease. *Annual Review of
540 Pathology*, **15**, 235–259. <https://doi.org/10.1146/annurev-pathmechdis-012419-032711>

541 **Charrasse, S., Poquillon, T., Saint-Omer, C., Pastore, M., Bordignon, B., Frye, R. E.,
542 Reynes, C., Racine, V., & Aouacheria, A.** (2023). Quantitative assessment of mitochondrial
543 morphology relevant for studies on cellular health and environmental toxicity. *Computational
544 and Structural Biotechnology Journal*, **21**, 5609–5619.
545 <https://doi.org/10.1016/j.csbj.2023.11.015>

546 **Chen, H., Detmer, S. A., Ewald, A. J., Griffin, E. E., Fraser, S. E., & Chan, D. C.** (2003).
547 Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for
548 embryonic development. *The Journal of Cell Biology*, **160**(2), 189–200.
549 <https://doi.org/10.1083/jcb.200211046>

550 **Chin, M. Y., Espinosa, J. A., Pohan, G., Markossian, S., & Arkin, M. R.** (2021).
551 Reimagining dots and dashes: Visualizing structure and function of organelles for high-content
552 imaging analysis. *Cell Chemical Biology*, **28**(3), 320–337.
553 <https://doi.org/10.1016/j.chembiol.2021.01.016>

554 **Cipolat, S., de Brito, O. M., Dal Zilio, B., & Scorrano, L.** (2004). OPA1 requires mitofusin 1
555 to promote mitochondrial fusion. *Proceedings of the National Academy of Sciences of the United*
556 *States of America*, 101(45), 15927–15932. <https://doi.org/10.1073/pnas.0407043101>

557 **Filadi, R., Pendin, D., & Pizzo, P.** (2018). Mitofusin 2: From functions to disease. *Cell Death &*
558 *Disease*, 9(3), 330. <https://doi.org/10.1038/s41419-017-0023-6>

559 **Fu, D., & Lippincott-Schwartz, J.** (2018). Monitoring the Effects of Pharmacological Reagents
560 on Mitochondrial Morphology. *Current Protocols in Cell Biology*, 79(1), e45.
561 <https://doi.org/10.1002/cpcb.45>

562 **Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen, P., Cournapeau,
563 **D., Wieser, E., Taylor, J., Berg, S., Smith, N. J., Kern, R., Picus, M., Hoyer, S., van**
564 **Kerkwijk, M. H., Brett, M., Haldane, A., Del Río, J. F., Wiebe, M., Peterson, P., ...**
565 **Oliphant, T. E.** (2020). Array programming with NumPy. *Nature*, 585(7825), 357–362.
566 <https://doi.org/10.1038/s41586-020-2649-2>**

567 **Harwig, M. C., Viana, M. P., Egner, J. M., Harwig, J. J., Widlansky, M. E., Rafelski, S. M.,**
568 **& Hill, R. B.** (2018). Methods for imaging mammalian mitochondrial morphology: A
569 prospective on MitoGraph. *Analytical Biochemistry*, 552, 81–99.
570 <https://doi.org/10.1016/j.ab.2018.02.022>

571 **Hearne, A., Chen, H., Monarchino, A., & Wiseman, J. S.** (2020). Oligomycin-induced proton
572 uncoupling. *Toxicology in Vitro: An International Journal Published in Association with BIBRA*,
573 67, 104907. <https://doi.org/10.1016/j.tiv.2020.104907>

574 **Hunter, J. D.** Matplotlib: A 2D graphics environment. *Computing in Science & Engineering* 9,
575 90–95 (2007).

576 **Jamali, N., Dobson, E. T. A., Eliceiri, K. W., Carpenter, A. E. & Cimini, B. A.** 2020
577 BioImage Analysis Survey: Community experiences and needs for the future. *Biol. Imaging* 1,
578 e4 (2022).

579 **Ko, K. W., Devault, L., Sasaki, Y., Milbrandt, J., & DiAntonio, A.** (2021). Live imaging
580 reveals the cellular events downstream of SARM1 activation. *eLife*, 10, e71148.
581 <https://doi.org/10.7554/eLife.71148>

582 **Knott, A. B., Perkins, G., Schwarzenbacher, R., & Bossy-Wetzel, E.** (2008).
583 MITOCHONDRIAL FRAGMENTATION IN NEURODEGENERATION. *Nature Reviews.*
584 *Neuroscience*, 9(7), 505–518. <https://doi.org/10.1038/nrn2417>

585 **Koenderink, J. J. & Van Doorn, A. J.** Surface shape and curvature scales. *Image and Vision*
586 *Computing* 10, 557–564 (1992).

587 **Lardy, H. A., Johnson, D., & McMURRAY, W. C.** (1958). Antibiotics as tools for metabolic
588 studies. I. A survey of toxic antibiotics in respiratory, phosphorylative and glycolytic systems.
589 *Archives of Biochemistry and Biophysics*, 78(2), 587–597.

590 [https://doi.org/10.1016/0003-9861\(58\)90383-7](https://doi.org/10.1016/0003-9861(58)90383-7)

591 **Leonard, A. P., Cameron, R. B., Speiser, J. L., Wolf, B. J., Peterson, Y. K., Schnellmann, R.**
592 **G., Beeson, C. C., & Rohrer, B.** (2015). Quantitative analysis of mitochondrial morphology and
593 membrane potential in living cells using high-content imaging, machine learning, and
594 morphological binning. *Biochimica et Biophysica Acta (BBA) - Molecular Cell Research*,
595 1853(2), 348–360. <https://doi.org/10.1016/j.bbamcr.2014.11.002>

596 **Levet, F., Carpenter, A. E., Eliceiri, K. W., Kreshuk, A., Bankhead, P., & Haase, R.** (2021).
597 Developing open-source software for bioimage analysis: Opportunities and challenges.
598 F1000Research, 10, 302. <https://doi.org/10.12688/f1000research.52531.1>

599 **Little, D., Luft, C., Mosaku, O., Lorvellec, M., Yao, Z., Paillusson, S., Kriston-Vizi, J.,**
600 **Gandhi, S., Abramov, A. Y., Ketteler, R., Devine, M. J., & Gissen, P.** (2018). A single cell
601 high content assay detects mitochondrial dysfunction in iPSC-derived neurons with mutations in
602 SNCA. *Scientific Reports*, 8(1), 9033. <https://doi.org/10.1038/s41598-018-27058-0>

603 **Liu, F., Lu, J., Manaenko, A., Tang, J., & Hu, Q.** (2018). Mitochondria in Ischemic Stroke:
604 New Insight and Implications. *Aging and Disease*, 9(5), 924–937.
605 <https://doi.org/10.14336/AD.2017.1126>

606 **López-Doménech, G., & Kittler, J. T.** (2023). Mitochondrial regulation of local supply of
607 energy in neurons. *Current Opinion in Neurobiology*, 81, 102747.
608 <https://doi.org/10.1016/j.conb.2023.102747>

609 **Loreto, A., Angeletti, C., Gu, W., Osborne, A., Nieuwenhuis, B., Gilley, J., Merlini, E.,**
610 **Arthur-Farraj, P., Amici, A., Luo, Z., Hartley-Tassell, L., Ve, T., Desrochers, L. M., Wang,**
611 **Q., Kobe, B., Orsomando, G., & Coleman, M. P.** (2021). Neurotoxin-mediated potent
612 activation of the axon degeneration regulator SARM1. *eLife*, 10, e72823.
613 <https://doi.org/10.7554/eLife.72823>

614 **McKinney, W.** (2010). Data Structures for Statistical Computing in Python. *SciPy*.

615 Miyamoto, T., Kim, C., Chow, J., Dugas, J. C., DeGroot, J., Bagdasarian, A. L.,
616 Thottumkara, A. P., Larhammar, M., Calvert, M. EK., Fox, B. M., Lewcock, J. W., &
617 Kane, L. A. (2024). SARM1 is responsible for calpain-dependent dendrite degeneration in
618 mouse hippocampal neurons. *The Journal of Biological Chemistry*, 300(2), 105630.
619 <https://doi.org/10.1016/j.jbc.2024.105630>

620 Norat, P., Soldozy, S., Sokolowski, J. D., Gorick, C. M., Kumar, J. S., Chae, Y., Yağmurlu,
621 K., Prada, F., Walker, M., Levitt, M. R., Price, R. J., Tvardik, P., & Kalani, M. Y. S. (2020).
622 Mitochondrial dysfunction in neurological disorders: Exploring mitochondrial transplantation.
623 *Npj Regenerative Medicine*, 5(1), 22. <https://doi.org/10.1038/s41536-020-00107-x>

624 Osterloh, J. M., Yang, J., Rooney, T. M., Fox, A. N., Adalbert, R., Powell, E. H., Sheehan,
625 A. E., Avery, M. A., Hackett, R., Logan, M. A., MacDonald, J. M., Ziegenfuss, J. S., Milde,
626 S., Hou, Y.-J., Nathan, C., Ding, A., Brown, R. H., Conforti, L., Coleman, M., ... Freeman,
627 M. R. (2012). dSarm/Sarm1 is required for activation of an injury-induced axon death pathway.
628 *Science (New York, N.Y.)*, 337(6093), 481–484. <https://doi.org/10.1126/science.1223899>

629 Pedregosa, F. *et al.* Scikit-learn: Machine Learning in Python. *Journal of Machine Learning
630 Research* 12, 2825–2830 (2011).

631 Picard, M., White, K., & Turnbull, D. M. (2013). Mitochondrial morphology, topology, and
632 membrane interactions in skeletal muscle: A quantitative three-dimensional electron microscopy
633 study. *Journal of Applied Physiology*, 114(2), 161–171.
634 <https://doi.org/10.1152/japplphysiol.01096.2012>

635 Rangaraju, V., Lewis, T. L., Hirabayashi, Y., Bergami, M., Motori, E., Cartoni, R., Kwon,
636 S.-K., & Courchet, J. (2019). Pleiotropic Mitochondria: The Influence of Mitochondria on
637 Neuronal Development and Disease. *Journal of Neuroscience*, 39(42), 8200–8208.
638 <https://doi.org/10.1523/JNEUROSCI.1157-19.2019>

639 Rugarli, E. I., & Langer, T. (2012). Mitochondrial quality control: A matter of life and death
640 for neurons. *The EMBO Journal*, 31(6), 1336–1349. <https://doi.org/10.1038/emboj.2012.38>

641 Samek, W., Montavon, G., Lapuschkin, S., Anders, C. J. & Muller, K.-R. Explaining Deep
642 Neural Networks and Beyond: A Review of Methods and Applications. *Proc. IEEE* 109, 247–
643 278 (2021).

644 San-Millán, I. (2023). The Key Role of Mitochondrial Function in Health and Disease.
645 *Antioxidants*, 12(4), 782. <https://doi.org/10.3390/antiox12040782>

646 **Santel, A., & Fuller, M. T.** (2001). Control of mitochondrial morphology by a human mitofusin.
647 *Journal of Cell Science*, 114(5), 867–874. <https://doi.org/10.1242/jcs.114.5.867>

648 **Sato-Yamada, Y., Strickland, A., Sasaki, Y., Bloom, J., DiAntonio, A., & Milbrandt, J.**
649 (2022). A SARM1-mitochondrial feedback loop drives neuropathogenesis in a Charcot-Marie-
650 Tooth disease type 2A rat model. *The Journal of Clinical Investigation*, 132(23), e161566.
651 <https://doi.org/10.1172/JCI161566>

652 **Seabold, S. & Perktold, J.** statsmodels: Econometric and statistical modeling with python. in *9th Python in Science Conference* (2010).

653 **Seager, R., Lee, L., Henley, J. M., & Wilkinson, K. A.** (2020). Mechanisms and roles of
654 mitochondrial localisation and dynamics in neuronal function. *Neuronal Signaling*, 4(2),
655 NS20200008. <https://doi.org/10.1042/NS20200008>

656 **Shields, L. Y., Li, H., Nguyen, K., Kim, H., Doric, Z., Garcia, J. H., Gill, T. M., Haddad, D.,**
657 **Vossel, K., Calvert, M., & Nakamura, K.** (2021). Mitochondrial fission is a critical modulator
658 of mutant APP-induced neural toxicity. *The Journal of Biological Chemistry*, 296, 100469.
659 <https://doi.org/10.1016/j.jbc.2021.100469>

660 **Smirnova, E., Griparic, L., Shurland, D.-L., & van der Bliek, A. M.** (2001). Dynamin-related
661 Protein Drp1 Is Required for Mitochondrial Division in Mammalian Cells. *Molecular Biology of*
662 *the Cell*, 12(8), 2245–2256.

663 **Sofroniew, N., Lambert, T., Bokota, G., Nunez-Iglesias, J., Sobolewski, P., Sweet, A.,**
664 **Gaifas, L., Evans, K., Burt, A., Doncila Pop, D., Yamauchi, K., Weber Mendonça, M.,**
665 **Buckley, G., Vierdag, W.-M., Royer, L., Can Solak, A., Harrington, K. I. S., Ahlers, J.,**
666 **Althviz Moré, D., ... Winston, P.** (2024). napari: a multi-dimensional image viewer for Python
667 (v0.5.1a1). Zenodo. <https://doi.org/10.5281/zenodo.12800570>

668 **Stéfan van der Walt, Johannes L. Schönberger, Juan Nunez-Iglesias, François Boulogne,**
669 **Joshua D. Warner, Neil Yager, Emmanuelle Gouillart, Tony Yu and the scikit-image**
670 **contributors.** scikit-image: Image processing in Python. *PeerJ* 2:e453 (2014)
671 <https://doi.org/10.7717/peerj.453>

672 **Summers, D. W., DiAntonio, A., & Milbrandt, J.** (2014). Mitochondrial Dysfunction Induces
673 Sarm1-Dependent Cell Death in Sensory Neurons. *The Journal of Neuroscience*, 34(28), 9338.
674 <https://doi.org/10.1523/JNEUROSCI.0877-14.2014>

676 **Way, G. P., Sailem, H., Shave, S., Kasprowicz, R., & Carragher, N. O.** (2023). Evolution and
677 impact of high content imaging. *SLAS Discovery*, 28(7), 292–305.
678 <https://doi.org/10.1016/j.slasd.2023.08.009>

679 **Varkuti, B. H., Kepiro, M., Liu, Z., Vick, K., Avchalumov, Y., Pacifico, R., MacMullen, C.**
680 **M., Kamenecka, T. M., Puthanveettil, S. V., & Davis, R. L.** (2020). Neuron-based high-
681 content assay and screen for CNS active mitotherapeutics. *Science Advances*, 6(2), eaaw8702.
682 <https://doi.org/10.1126/sciadv.aaw8702>

683 **Virtanen, P. et al.** SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python.
684 *Nature Methods* 17, 261–272 (2020).

685 **Yang, D., Ying, J., Wang, X., Zhao, T., Yoon, S., Fang, Y., Zheng, Q., Liu, X., Yu, W., &**

686 **Hua, F.** (2021). Mitochondrial Dynamics: A Key Role in Neurodegeneration and a Potential
687 Target for Neurodegenerative Disease. *Frontiers in Neuroscience*, 15, 654785.
688 <https://doi.org/10.3389/fnins.2021.654785>

689 **Zahedi, A., On, V., Phandthong, R., Chaili, A., Remark, G., Bhanu, B., & Talbot, P.** (2018).
690 Deep Analysis of Mitochondria and Cell Health Using Machine Learning. *Scientific Reports*, 8,
691 16354. <https://doi.org/10.1038/s41598-018-34455-y>

692 **Zhang, D., Wang, F., Li, P., & Gao, Y.** (2022). Mitochondrial Ca²⁺ Homeostasis: Emerging
693 Roles and Clinical Significance in Cardiac Remodeling. *International Journal of Molecular*
694 *Sciences*, 23(6), 3025. <https://doi.org/10.3390/ijms23063025>

695 **FIGURE LEGENDS**

696 **Figure 1: MitoProfilerHC image analysis workflow to evaluate mitochondrial morphology**

697 A) Multi-channel fluorescence input image of WT MEF cells. B) Nuclei segmentation (individual
698 nuclei shown in multi-color). C) Cytoplasm segmentation (individual cells shown in multi-color).
699 D) Black/white pre-processed image of mitochondria. E) Mitochondrial segmentation (shown in
700 magenta). F) Calculation of Harmony morphology (STAR and Standard) and texture (SER)
701 features. G) Volcano plot of the most discriminative single features that increase with *Mfn2* KO
702 (two-tailed t-test with Holm Sidak correction for multiple comparisons). H) Volcano plot of the
703 most discriminative ratios of features that increase with *Mfn2* KO (two-tailed t-test with Holm
704 Sidak correction for multiple comparisons). I) Representative SER Spot and SER Ridge filtered
705 image (left; individual cells outlined in magenta). Gaussian-derived intensity patterns (right). J)
706 Expected SER Spot and SER Ridge directionality for networked and fragmented mitochondrial
707 morphologies. For all panels, image scale bar = 20 μ m.

708

709 **Figure 2: Validating of MitoProfilerHC in genetic and pharmacological paradigms for**
710 **mitochondrial disruption**

711 A) Representative fluorescence, zoomed inset, and processed images of WT and *Mfn2* KO MEFs.
712 Full-sized image scale bar = 20 μ m. Zoomed inset scale bar = 2 μ m. B) Mitochondrial aspect ratio
713 (AR) quantification. C) SER Ridge texture quantification. D) SER Spot texture quantification. (B-
714 D) Data points are presented as mean \pm SD from three technical replicates; $n = \sim$ 1,500-2,000 cells
715 per condition group. E) Representative fluorescence images with zoomed inset for WT HeLa cells
716 treated with oligomycin (“Oligo”) from 0 to 51 μ M. Full-sized image scale bar = 20 μ m. Zoomed
717 inset scale bar = 2 μ m. F) SER Ratio (SER Spot/SER Ridge) oligomycin dose-response
718 quantification. G) SER Ridge quantification. H) SER Spot quantification. (F-H) Data points are
719 presented as mean \pm SD from two technical replicates; $n = \sim$ 2,000 cells per condition group.
720 Statistical analysis was performed using two-tailed, unpaired Student’s *t*-test. ** $p \leq 0.01$; *** $p \leq$
721 0.001; ns = not significant.

722 **Figure 3: Characterizing drug-induced mitochondrial morphology changes in primary**
723 **hippocampal neurons using MitoProfilerHC**

724 A) Representative fluorescence input image (pseudo-colored black/white) of mitochondrial
725 channel in primary mouse hippocampal neurons. B) Neuron soma segmentation (blue). C) Neurite
726 segmentation (cyan). D) Dilated neurite mask (cyan). (A-D) All scale bars = 20 μ m. E)
727 Representative images of neurons treated with mitochondrial inhibitors, FCCP (2 or 20 μ M),
728 oligomycin (10 μ M) and Vacor (20 μ M) for 2 hrs. F) Representative images of neurons treated
729 with 20 μ M FCCP, highlighting mitochondrial fragmentation in neurites (cyan, white boxes). (E-
730 F) All scale bars = 10 μ m G) 2 hr time-course quantification comparing 20 μ M FCCP (solid blue),
731 10 μ M oligomycin (solid green) and 20 μ M Vacor (solid red). H) Dose-response quantification
732 for FCCP, 2 μ M (open blue) and 20 μ M (solid blue). I) Quantification of SR in neuron soma (solid
733 blue) and neurites (solid light blue) in response to FCCP (20 μ M). A simple linear regression
734 comparison was performed on soma and neurites conditions treated with FCCP (dashed lines). (G-
735 I) Data points are presented as mean \pm SD from three technical replicates; $n = \sim$ 500 cells per
736 condition group. Statistical analysis was performed using two-tailed, unpaired Student's *t*-test. ***p*
737 ≤ 0.01 ; ****p* ≤ 0.001 ; ns = not significant.

738

739 **Figure 4: MitoProfiler, an open-source mitochondrial morphology image analysis tool**

740 A) Example session of the MitoProfiler napari plugin analyzing an image of WT MEF cells.
741 Individual cell and mitochondria clusters are colored by cluster identity. Controls to configure
742 individual steps of the MitoProfiler pipeline are shown on the right hand panel. B) SI Ridge and
743 C) SI Spot texture images calculated from the MTDR stained example image with inset to show
744 texture details (scale bar 25 μ m for overview image, 10 μ m for inset). D) SI Ridge quantification,
745 E) SI Spot quantification and, F) SI Ratio quantification for WT vs *Mfn2* KO MEFs. (D-F) Data
746 points are presented as mean \pm SD from three technical replicates; $n = \sim$ 1,500-2,000 cells per
747 condition group. Statistical analysis was performed using two-tailed, unpaired Student's *t*-test. **p*
748 ≤ 0.05 ; ****p* ≤ 0.001 ; ns = not significant. G) Correlation plot between SI Ratio and SER ratio for
749 *Mfn2* KO experiment with dots individual fields of view colored by WT (gray) or *Mfn2* KO
750 (orange) and a line of best fit (dotted line, slope = 0.501, intercept = 0.000) with Pearson's
751 correlation coefficient between measurements for each field of view ($R = 0.913$, $p < 1e-10$, two-
752 tailed test). H) SI Ridge quantification, I) SI Spot quantification, and J) SI Ratio quantification for

753 WT HeLa cells treated with oligomycin (“Oligo”) from 0 to 51 μ M. K) Correlation plot between
754 SI Ratio and SER ratio for treated HeLa cells with dots individual fields of view colored by
755 oligomycin dose and a line of best fit (dotted line, slope = 0.988, intercept = -0.254) with Pearson’s
756 correlation coefficient between measurements for each field of view ($R = 0.934$, $p < 1e-10$, two-
757 tailed test).

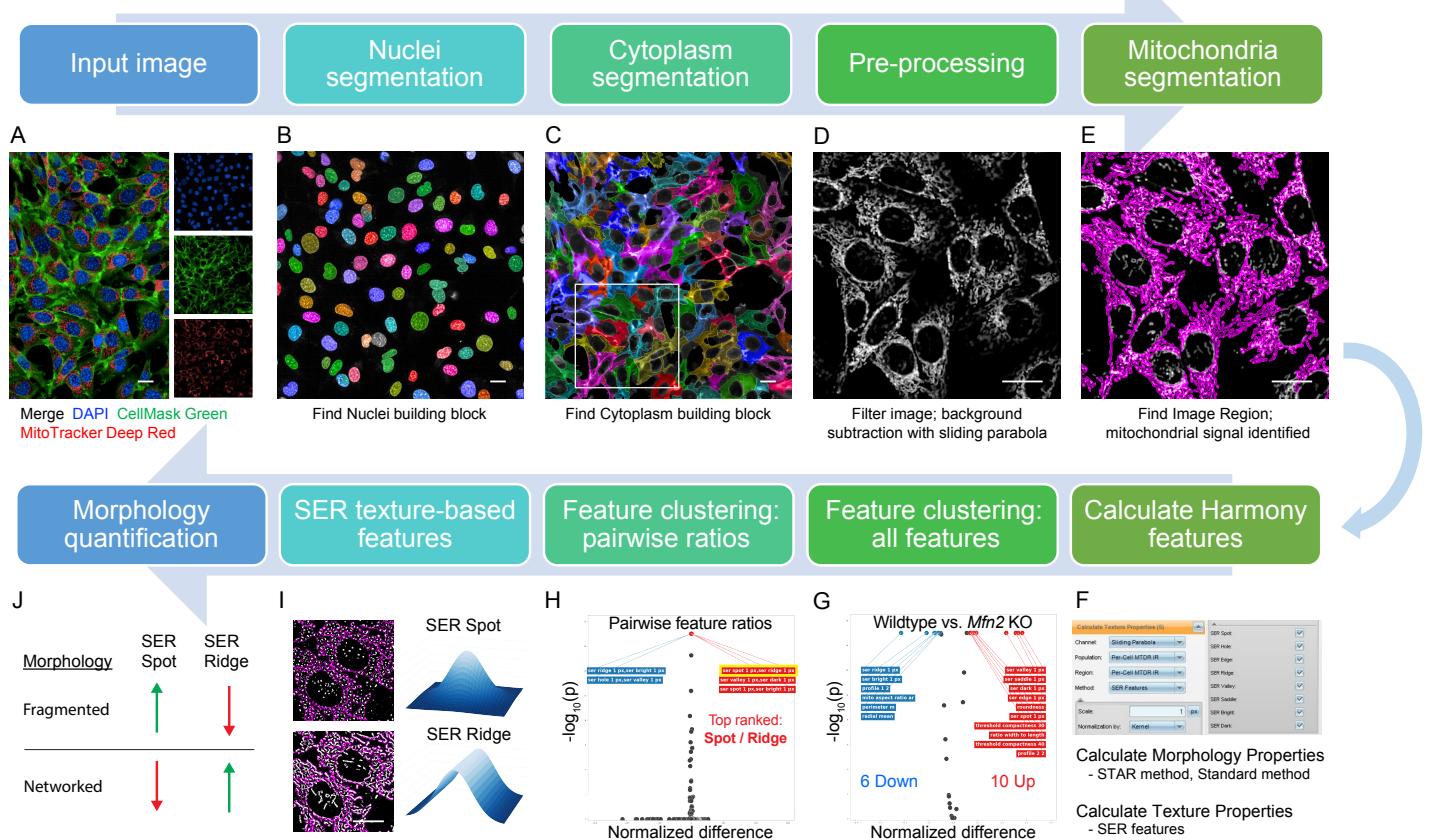


Figure 2: Validating MitoProfilerHC in genetic and pharmacological paradigms for mitochondrial disruption

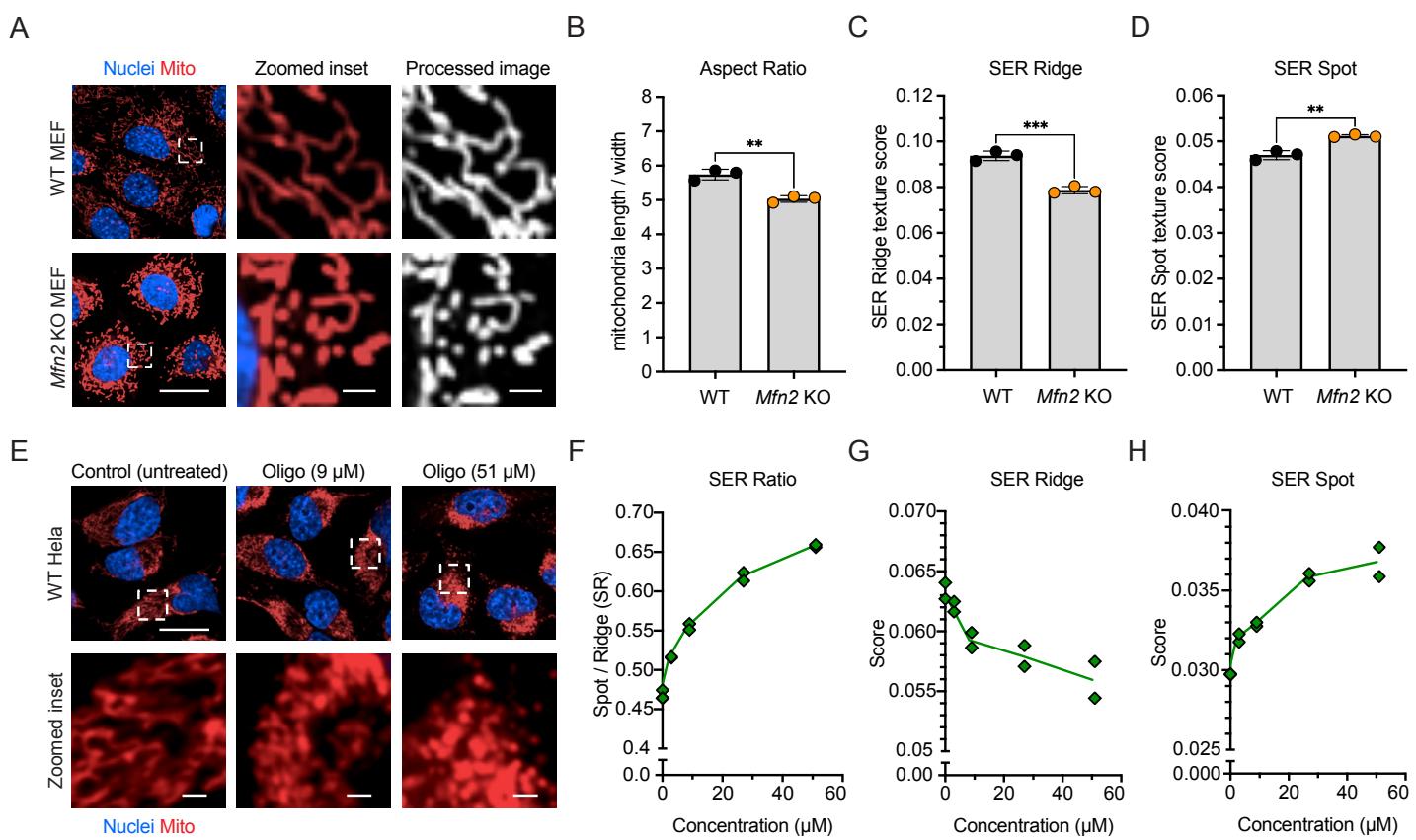


Figure 3: Characterizing drug-induced mitochondrial morphology changes in primary hippocampal neurons using MitoProfilerHC

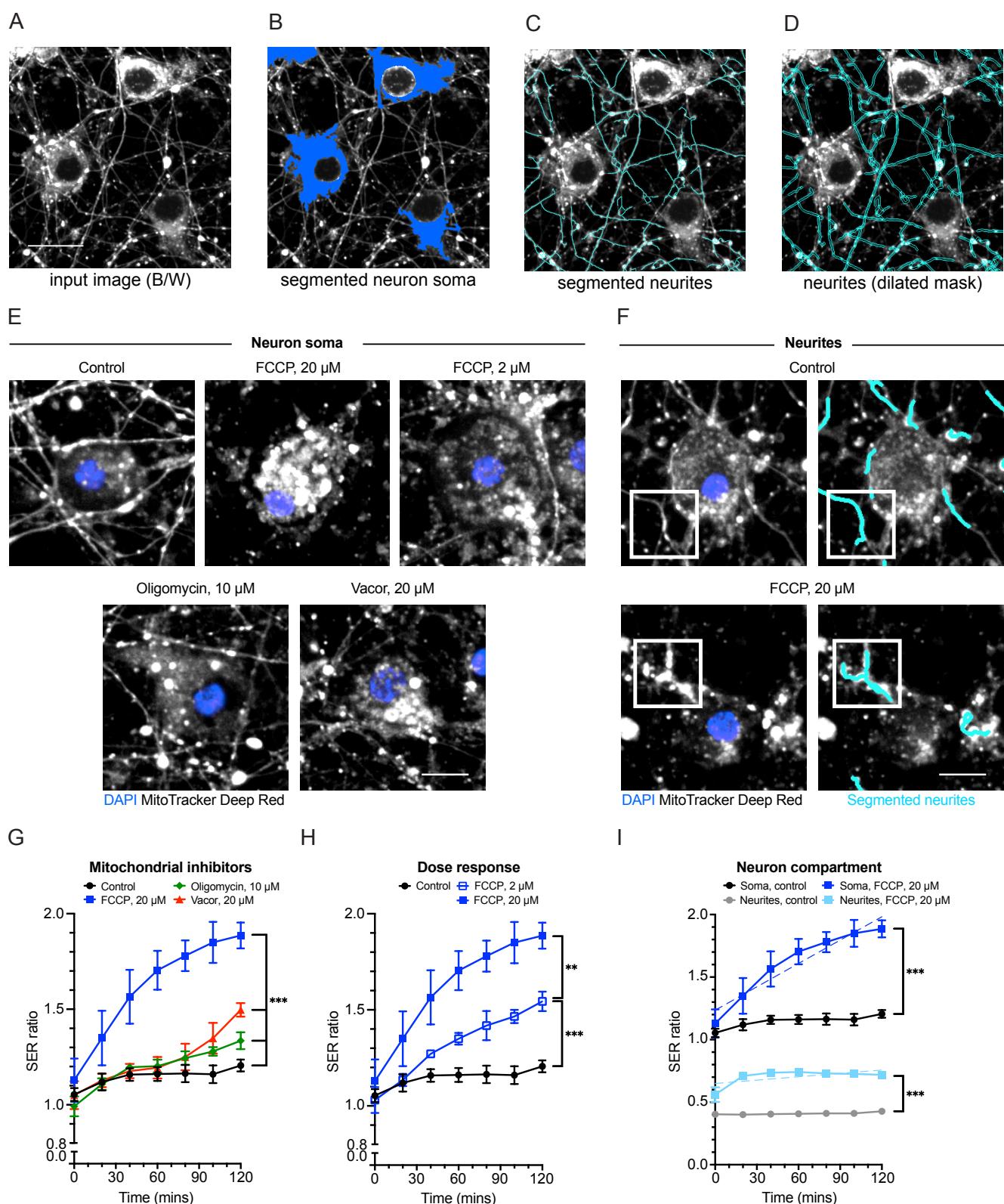


Figure 4: MitoProfiler, an open-source mitochondrial morphology image analysis tool built on Napari

