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Abstract

Mitochondria undergo dynamic morphological changes depending on cellular cues, stress, genetic
factors, or disease. The structural complexity and disease-relevance of mitochondria have
stimulated efforts to generate image analysis tools for describing mitochondrial morphology for
therapeutic development. Using high-content analysis, we measured multiple morphological
parameters and employed unbiased feature clustering to identify the most robust pair of texture
metrics that described mitochondrial state. Here, we introduce a novel image analysis pipeline to
enable rapid and accurate profiling of mitochondrial morphology in various cell types and
pharmacological perturbations. We applied a high-content adapted implementation of our tool,
MitoProfilerHC, to quantify mitochondrial morphology changes in i) a mammalian cell dose
response study and ii) compartment-specific drug effects in primary neurons. Next, we expanded
the usability of our pipeline by using napari, a Python-powered image analysis tool, to build an
open-source version of MitoProfiler and validated its performance and applicability. In conclusion,
we introduce MitoProfiler as both a high-content-based and an open-source method to accurately
quantify mitochondrial morphology in cells, which we anticipate to greatly facilitate mechanistic

discoveries in mitochondrial biology and disease.
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INTRODUCTION

Mitochondria are dynamic organelles responsible for maintaining metabolic homeostasis
and generating energy in a eukaryotic cell. They perform critical biochemical processes such as
ATP-production, ROS, fatty acid synthesis and calcium regulation (San-Millan, 2023; Zhang et
al., 2022). The cell coordinates these functions by regulating the fusion and fission of
mitochondria. These molecular mechanisms ultimately determine mitochondrial distribution, size,
and morphology, which change in response to various genetic factors, cellular cues, stress and
disease (Chan, 2020). Structurally, the mitochondrion consists of a double membrane decorated
by proteins. Mitofusin 1, Mitofusin 2 (MFN1, MFN2) and optic atrophy 1 (OPA1) are GTPases
that are key regulators of outer and inner mitochondrial membrane fusion (Cipolat et al., 2004;
Santel & Fuller, 2001). Dynamin-related protein 1 (DRP1) is one of the main proteins controlling
mitochondrial fission (Smirnova et al., 2001). Mutations in these and other fission and fusion
proteins cause early onset neurological disorders that can range in severity. For example, Mfn2
mutations are causal for Charcot-Marie Tooth neuropathy 2A, a disease that preferentially affects
axons of peripheral neurons and clinically manifests as muscle weakness (Cartoni & Martinou,
2009). At the cellular level, Mfn2 deficiency prevents mitochondrial fusion and causes
fragmentation of neuronal mitochondria (Chen et al., 2003; Filadi et al., 2018).

Mitochondrial function and ATP generation is particularly important in the brain due to
the high energetic needs of neurons. Numerous past studies have identified important molecular
links between mitochondria and sporadic forms of neurodegeneration such as Alzheimer’s disease
(AD), Parkinson’s disease (PD), and amyotrophic lateral sclerosis (ALS) (Cabral-Costa &
Kowaltowski, 2020; Shields et al., 2021; Yang et al., 2021). In neurodegeneration, fragmentation
is considered one of the morphological hallmarks of mitochondrial dysfunction (Knott et al., 2008)
and precedes neuronal death. The disease-relevance of specific mitochondrial morphologies has
fueled the development of quantitative, image-based assays of mitochondrial dynamics, at scales
practical for use in therapeutic screening campaigns.

To date, there are many described image analysis programs for mitochondrial morphology;
a noncomprehensive list has been presented in Harwig et al. (Harwig et al., 2018). Many studies
utilized a range of imaging modalities including epifluorescence, spinning disk confocal, and
super-resolution microscopy on semi-automated systems. Both 2D and 3D image analyses have

been developed for custom analytical software such as ImagelJ/F1JI, MATLAB and Image Pro


https://doi.org/10.1101/2024.08.15.607824
http://creativecommons.org/licenses/by-nc-nd/4.0/

61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90

bioRxiv preprint doi: https://doi.org/10.1101/2024.08.15.607824; this version posted August 16, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC-ND 4.0 International license.

Plus, capturing conventional mitochondrial measurements including number, area, length, and
aspect ratio. Some programs employed supervised machine learning classification models to
cluster cells that exhibit defined morphologies (Harwig et al., 2018). For example, one study
classified mitochondrial morphologies in mouse photoreceptor cells using an automated wide-field
fluorescence microscope, IN Cell Analyzer 2000 Analyzer (Cytiva) (Leonard et al., 2015). In this
example, image segmentation of mitochondrial objects was performed using IN Cell Developer
Toolbox 1.9.1, while downstream machine-learning classification was performed on the R
platform. More recent phenotypic screens have used confocal based high-content systems,
including the Opera Phenix system (Revvity, formerly PerkinElmer) to profile the effect of small
molecules, environmental toxicants, and neurodegenerative disease mutations on mitochondrial
morphology (Charrasse et al., 2023; Little et al., 2018; Varkuti et al., 2020).

High-content screening and analysis (HCS/HCA) has been foundational to therapeutic
discovery, allowing researchers to quickly identify novel targets in both candidate-based and
phenotypic pipelines (Chin et al., 2021; Way et al., 2023). Here, we introduce MitoProfilerHC, a
novel high-content image analysis pipeline that enables the rapid and accurate profiling of
mitochondrial morphology. Unlike previously published image-based assays, MitoProfilerHC
uses a combination of texture-based measurements to measure mitochondria in individual cells,
identified using a custom-built feature selection pipeline. We employ this pipeline to characterize
mitochondrial responses to both genetic and chemical perturbations in a variety of cell types
including neurons, and we validate the utility of this tool for quantifying mitochondrial
morphologies in HCA accurately and at scale.

Commercially available image analysis tools, while powerful and integrated with popular
instrumentation, are often proprietary and therefore are inaccessible to most users. To expand
usability for all imaging users, we also developed MitoProfiler, an open-source adaptation of our
high-content mitochondrial morphology pipeline. MitoProfiler provides an interactive
segmentation interface as a napari plugin that allows users to visualize and tune the segmentation
and feature extraction components of the pipeline, in addition to a batch mode that enables
processing of whole plate datasets. By providing an open-source tool we hope to further expand
the accessibility and utility of our mitochondrial analysis platform to the broader scientific

community.
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91 RESULTS

92 Generation of MitoProfilerHC workflow to evaluate mitochondrial morphology

93 To establish a platform capable of reproducibly resolving complex subcellular phenotypes

94  at scale, we first built our mitochondrial image analysis pipeline on a high-content screening

95  system. Because mitochondrial morphology is complex and dynamic and to demonstrate the

96  versatility of the pipeline, we optimized our assays in live cells derived from multiple origins and

97  subjected to multiple perturbations.

98 Cells were cultured in 96-well assay plates and labeled with Hoechst 33342, CellMask

99  Green Actin, and MitoTracker Deep Red (MTDR). MTDR is a cell-permeant dye that accumulates
100  on active mitochondria in cells and is conventionally used to measure mitochondrial mass, shape
101  and activity. Cells were imaged on a spinning-disk confocal-based Opera Phenix Plus high-content
102  microscope (Revvity) using either a 40X/NA 1.1 or 63X/NA1.15 water immersion objective lens
103  permitting sampling of a larger number of cells at sufficient resolution within a given image due
104  to its high numerical aperture and larger field of view.
105 Briefly, multi-channel images were first visually rendered in the Harmony software (Fig.
106 1A) and individual cells labeled with Hoechst 33342 were identified using the ‘Find Nuclei’
107  building block (Fig. 1B). All subsequent analyses were performed on a per-cell basis; therefore,
108 the nuclei identification step should not be bypassed. The ‘Find Cytoplasm’ building block was
109  used to delineate cell borders (Fig. 1C). The 647-channel image of the mitochondria was acquired
110  and pre-processed using the sliding parabola background subtraction method (Fig. 1D). This step
111 produced a sharper image from which the ‘Find Image Region’ building block segmented
112  mitochondrial signal within the cell cytoplasm (Fig. 1E).
113 With mitochondrial structures identified, we next measured morphological and textural
114  features using the ‘Calculate Morphology Properties’ and ‘Calculate Texture Properties’ building
115  blocks, respectively, for each identified mitochondrion (Fig. 1F). The Symmetry-Threshold
116  Compactness-Axial-Radial (STAR) methodology includes a set of properties that classifies
117  phenotypes based on the distribution of intensity within segmented objects. Spot-Edge-Ridge
118  (SER) features are texture filters that are sensitive to different characteristic intensity patterns.
119  Standard morphological properties such as area, roundness, width, and length were also included

120  in the initial protocol development process (Table 1).
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121 Table 1: List of Standard Morphology, STAR Morphology, and SER Texture features

SER Texture STAR Morphology Standard Morphology
SER Spot 1 px Symmetry 02 Threshold Compactness 40% Area (um”2)
SER Hole 1 px Symmetry 03 Threshold Compactness 50% Roundness
SER Edge 1 px Symmetry 04 Threshold Compactness 60% Perimeter
SER Ridge 1 px Symmetry 05 Axial Small Length Width
SER Valley 1 px Symmetry 12 Axial Length Ratio Length
SER Saddle 1 px Symmetry 13 Radial Mean Ratio Width to Length
SER Bright 1 px Symmetry 14 Radial Relative Deviation
SER Dark 1 px Symmetry 15 Profile 1/2
_ Threshold Compactness 30% Profile 2/2

122

123 To generate mitochondrial morphology ground truths in determining which features
124  accurately distinguish mitochondrial states, we acquired images of wildtype (WT) and Mfn2
125  deficient mouse embryonic fibroblast (MEF) cells. WT cells under basal conditions were expected
126  to show normal, networked mitochondria while Mfn2 knockout (KO) cells were expected to show
127  more fragmented morphology. A total set of 33 features were calculated and extracted from
128  mitochondria-segmented images across 9,620 cells (4,810 cells per condition). Feature results
129  were output on a per-cell basis, exported from Harmony, and loaded into a custom-built feature
130  selection pipeline.

131 Ranking features by largest difference between WT and Mfn2 KO, we determined that SER
132  features, a family of texture features, were the most robust in distinguishing between fragmented
133  and networked mitochondria (Table 1). Ranking individual features by effect size showed that
134  “SER ridge” was the most decreased in Mfn2 KO compared to WT while “SER valley” was the
135 most increased (Fig. 1G). The most discriminative individual feature was “SER valley” with
136  ~70.8% classification accuracy when training a logistic regression model on these data (5-fold
137  cross validation with balanced sampling between classes). To further improve this metric, we
138  calculated ratios of all possible pairs of features in the dataset and trained a logistic regression
139  model on the ratio. The ratio of “SER spot” to “SER ridge” was the most discriminative ratio, with
140 ~75.0% accuracy in cross validation, and was the ratio most increased by Mfm2 KO (Fig. 1H)
141  (Table S1). SER features detect pixel intensity gradient and curvature; for example, the ‘Spot” and
142  ‘Ridge’ filters are more sensitive to intensity distributions adopting 3D and 2D Gaussian bell
143  curves, respectively (Fig. 1I). The value of a SER Spot measurement increases in the context of

144  fragmented mitochondria because it is sensitive to round, symmetrical punctate-like structures.
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145  Inversely, the value of SER Ridge increases in networked mitochondria exhibiting continuous and
146  elongated structures (Fig. 1J). Together, SER Spot and SER Ridge were identified as the most
147  robust features and were applied in all subsequent morphological analyses performed in cells.
148

149  Validation of MitoProfilerHC in genetic and pharmacological paradigms for mitochondrial
150  disruption

151 To validate MitoProfilerHC, we quantified mitochondrial morphologies under genetic and
152  pharmacological perturbations in live cells. First, we assessed Mfn2 KO MEFs, which visually
153  exhibit a striking punctate pattern, indicative of fragmented mitochondria (Fig. 2A). In contrast,
154  unperturbed mitochondria in wildtype (WT) MEFs appear elongated and networked. We first
155 measured the mitochondrial aspect ratio (AR) to provide a benchmark for our analysis in
156  comparison to more traditional methods for quantifying morphology. AR is a proxy for the degree
157  of mitochondrial fusion, defined as the mitochondrial major axis divided by minor axis (i.e. length
158  to width ratio) (Picard et al., 2013). As expected, AR was significantly higher (p = 0.0025) in WT
159  cells, reflecting more networked mitochondria (Fig. 2B). Next, we measured mitochondrial
160  morphology in WT and Mfn2 KO cells using the SER Ridge and Spot textures. Matching the trend
161  in AR, SER Ridge score was significantly higher (p < 0.001) in WT cells (Fig. 2C), whereas the
162  SER Spot score was significantly higher (p = 0.0023) in Mfn2 KO cells (Fig. 2D). Overall, these
163  results provided further validation for our high-content analysis method for quantifying both
164  networked and fragmented mitochondria.

165 The values of SER Spot and SER Ridge consistently yielded an inverse correlation,
166  predictive of either fragmented or networked mitochondrial morphologies, respectively. We
167  further simplified the quantification by taking the ratio of SER Spot-to-SER Ridge, generating a
168 new metric we termed ‘SER Ratio’ (SR). SR thus incorporates both measurements into a single
169  ratiometric value that can be interpreted as the extent of mitochondrial fragmentation. We next
170  sought to demonstrate the applicability of our image analysis pipeline in the context of phenotypic
171 drug discovery using mitochondrial SR. Because mitochondrial dysfunction has a strong link to
172  many human diseases, we moved towards immortalized human cell lines and adapted
173  MitoProfilerHC for Hela cells, a common cell type employed for early-stage drug screening

174  campaigns.
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175 In a comparative study on the effect of pharmacological agents on mitochondrial
176  morphology, oligomycin A was reported to induce robust fragmentation in various cancer cell
177  types (Fu & Lippincott-Schwartz, 2018). Oligomycin is a potent antibiotic that disrupts
178  mitochondrial function by inhibiting proton coupling and ATP synthesis (Hearne et al., 2020;
179  Lardy et al., 1958). In our study, we treated Hela cells for 1.5 hours with oligomycin at a
180  concentration range from 0 to 51 uM, imaged and analyzed mitochondrial morphology using
181  MitoProfilerHC. Mitochondrial fragmentation increased, which is reflected visually (Fig. 2E) and
182  through the dose-dependent increase of mitochondrial SR (Fig. 2F). SR values were less variable
183  than its contributing components, SER Ridge and SER Spot (Figs 2G, H), providing a more robust
184  measurement for mitochondrial fragmentation. Importantly, the overall predictive score for
185  mitochondrial SR (~75%) was higher compared to mitochondrial AR, a commonly used classifier
186  (~52%) (Table S1). Thus, we were able to demonstrate that MitoProfilerHC provides reduced
187  variability and improved predictive capabilities as compared to commonly used methods and can
188  accurately profile mitochondrial fragmentation in dose-response studies in a human cell line.

189

190  Characterizing drug-induced mitochondrial morphology changes in primary hippocampal
191  neurons using MitoProfilerHC

192 Neurons are bioenergetically demanding, relying heavily on ATP production and calcium
193  regulation by mitochondria. Mitochondrial dysfunction causes an energetic failure that can acutely
194  induce ischemia (Liu et al., 2018) and has been implicated in several neurological disorders
195 including ALS, Alzheimer’s, and Parkinson’s disease (Cabral-Costa & Kowaltowski, 2020; Norat
196 et al., 2020). To demonstrate its application to drug development in neurological diseases, we
197  adapted the MitoProfilerHC pipeline for quantifying mitochondrial morphology changes under
198  various perturbation conditions in primary hippocampal neurons (Fig. 3A).

199 We further developed the protocol to include segmentation of both neuronal soma and
200 neurite structures (Fig. 3B, C). Given the narrow morphology of neurite processes, we dilated the
201  neurite mask by ~0.4 um to ensure detection of the entire structure and its contents (Fig. 3D).
202  Following our previous findings in Hela cells, we treated neurons with various compounds known
203  to disrupt mitochondrial function and induce fragmentation, including oligomycin (Fig. 3E).
204 FCCP, or carbonyl cyanide p-trifluoromethoxyphenylhydrazone, is a commonly used
205 protonophore that uncouples mitochondrial oxidative phosphorylation and inhibits ATP synthesis
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206 (Benz & McLaughlin, 1983). It has been extensively characterized in living cells in relation to its
207  inhibitory effect on mitochondrial function. We also used Vacor, a cell permeable precursor of the
208  sterile alpha and TIR motif-containing protein 1 (SARM1) agonist (Loreto et al., 2021), to induce
209 mitochondrial dysfunction. SARMI plays a crucial role in regulating both axons and dendritic
210  degeneration in hippocampal neurons (Miyamoto et al., 2024; Osterloh et al., 2012) and
211 importantly, is a downstream factor to mitochondrial damage (Summers et al., 2014).

212 In our comparison between oligomycin, FCCP and Vacor, we found that after two hours
213  of treatment all drugs induced significant mitochondrial fragmentation in neuronal soma, as
214  measured by the SER ratio (Fig. 3E, G). While oligomycin and Vacor fragmented mitochondria
215  slowly and at later timepoints, FCCP induced a much earlier effect that is evident at around 20
216  minutes post-treatment. Because FCCP had such a rapid and potent effect on mitochondria, we
217  also wanted to test whether our analysis protocol can measure the effect of FCCP in a dose-
218  dependent manner. Indeed, when neurons were treated with FCCP at 2 and 20 uM, we observed a
219  dose-dependent effect (Fig. 3E, H), demonstrating the value of MitoProfilerHC applications
220  requiring in vitro dose-response studies of mitochondrial function.

221 Finally, we investigated whether mitochondria located in different neuronal compartments
222 behave differently in response to pharmacological stress. In neurons that were treated with FCCP
223  at 20 puM, we measured the SR in both soma and neurites (Fig. 3F, I). Compared to control
224 neurites, FCCP induced a significant elevation in SR, suggesting that like soma, mitochondria in
225 neurites also undergo fragmentation in response to chemical stress and indicate that there are
226  compartment-specific responses to perturbation.

227

228  MitoProfiler, an open-source mitochondrial morphology image analysis tool

229 While MitoProfilerHC was developed on a specific platform using the Harmony software
230 toolkit, we wanted to enable broad usability of our mitochondrial morphology image analysis
231  pipeline to the scientific community. We created MitoProfiler, an open-source version of our
232  previously described methodology using napari, a multi-dimensional image visualization,
233 annotation, and analysis library for Python (Sofroniew et al., 2024). We followed a similar
234  approach as in MitoProfilerHC to extract morphological features from cells. Briefly, we
235 implemented a three-stage segmentation pipeline to first segment cell nuclei followed by

236  cytoplasm and then mitochondria. Next, we implemented a bank of texture features based on the
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237  principal curvatures of the mitochondria intensity image similar to the shape index (SI) from
238  (Koenderink and van Doorn, 1992). Finally, we packaged our segmentation and feature extraction
239  code into a napari plugin which can be directly used from an interactive napari session (Fig. 4A).
240 To demonstrate the utility of our open-source pipeline, we re-segmented the mitochondria
241  in our WT and Mfn2 deficient (KO) mouse fibroblasts and extracted an SI feature corresponding
242  toridges (0.75 > SI > 0.25; Fig. 4B) and an SI feature corresponding to spots (1.0 > SI > 0.5; Fig.
243  4C) and calculated their per-cell averages (Fig. 4D, E, respectively). While the spot feature alone
244  was not significantly different between the two groups (likely due to differences in segmentation
245  between the original Harmony pipeline and our reimplemented pipeline), both the ridge feature
246  alone and the ratio of spot to ridge (SI Ratio) were significantly different between KO and WT
247  (Fig. 4D-F), confirming the robustness of our image texture measures to differences in cell
248  segmentation pipelines. Further, we found good linear correlation between the SER Ratio and our
249  SI Ratio when comparing individual fields of view between the Harmony processed and open-
250  source images (R=0.913; Fig. 4G). We next replicated analysis of the dose response study using
251  our shape index-derived spot, ridge, and spot to ridge ratios (Fig. 4H-J respectively), validating
252  the mitochondrial feature response from Fig. 2F-H. As in the WT vs KO study, the SER Ratio and
253  SI Ratio were well correlated on an individual field of view basis (R=0.934; Fig. 4K), indicating
254  that our open-source texture features capture comparable per-image information about
255  mitochondrial fragmentation across experimental modalities. Despite imperfectly reproducing the
256  original Harmony segmentation and featurization pipeline (which is closed source and cannot be
257  directly reimplemented), we believe that our open-source feature extraction pipeline validates the
258  use of spot and ridge texture features as a general measure of microglia fragmentation. The code
259  to calculate these features interactively for a single field of view and as a batch across an imaging

260  study is provided at https://github.com/denalitherapeutics/napari-mito-hcs.

10
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261  DISCUSSION

262 Mitochondrial morphology is highly dynamic and changes rapidly in response to metabolic
263  shifts, cellular perturbation, and various functional impairments in the context of several major
264  diseases. Building upon previous image analysis techniques, we developed a novel high-content
265 image analysis tool, MitoProfilerHC, that robustly quantifies mitochondrial morphology using
266  texture-based measurements in live cells, enabling efficient therapeutic and biomarker screening
267 and development in mitochondrial disorders, cancer, and neurodegeneration. In our study, we
268 provide a comprehensive analysis to determine which texture or morphological feature best
269  predicts relevant mitochondrial phenotypes in healthy and diseased cells with known
270  mitochondrial disruption. MitoProfilerHC is designed for use with the Opera Phenix Plus High-
271  Content System by Revvity, an automated, spinning-disk confocal-based microscope that is widely
272  used in academic and drug discovery research. The MitoProfilerHC analytical pipeline is designed
273  to be easy to use with the Harmony image analysis software that is that is employed for both the
274  acquisition and analysis of images from the Opera Phenix Plus, and our open-source version of
275  MitoProfilerHC can be made compatible with any high content imaging platform that can export
276  images into the standard Tag Image File Format (TIFF). Given the prevalence of high content
277  imaging in both foundational and translational research, we believe this tool will be of broad
278  interest. Additionally, this analytical tool is simple to use and, as our results demonstrate,
279  applicable for use in multiple cell types and assay conditions. Note that although the pipeline is
280 compatible with either of the higher magnification lenses (40X and 63X) that are standard on the
281  Opera Phenix, objectives with lower magnification or resolution (i.e., less than NA=I) are not
282  recommended, due to inadequate resolution of mitochondrial structures.

283 The SER feature set are texture-based measurements of the spatial distribution of intensity
284  levels in a neighborhood defined through image segmentation strategies and provided as standard
285  metrics within the Harmony image analysis software. We identified two SER texture features —
286 SER Spot and SER Ridge, that when calculated as a ratio, were highly robust in measuring
287  mitochondrial morphology change in drug dose-response studies across multiple cell types,
288  including screenable human cell lines and mature primary neurons. Though previous studies have
289  explored other tools for automating the morphological analysis of mitochondria, to our knowledge
290 there are no published approaches that provide comparable throughput and precision to

291  MitoProfilerHC. One previously published method tracked live mitochondrial movement and

11
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292  classified defined morphologies in response to environmental insult. Image analysis was
293  performed on the CellProfiler software followed by deep learning classification using MATLAB
294  (Zahedi et al., 2018). This method employed traditional confocal imaging and a multi-step image
295  processing and segmentation pipeline and is therefore a substantially lower-throughput approach
296  than that presented here. Another study used the IN Cell Analyzer and IN Cell Developer 1.9.1.
297  image analysis software to segment mitochondria and calculate morphometrics. Subsequently, a
298 machine learning scheme was used in R to classify mitochondrial subtypes based on a priori
299  knowledge of mitochondrial morphology (Leonard et al., 2015). Such morphological classification
300  has been a popular technique to describe complex networks including mitochondria; however, they
301 do not eliminate subjectivity and translatability requires further validation. Additionally, this
302 instrument and associated software is no longer supported by Cytiva Life Sciences (Leonard et al.,
303  2015). Other functionally similar high-content systems include the CellVoyager CV8000 by
304  Yokogawa and ImageXpress Confocal HT.ai by Molecular Devices and it would be interesting to
305 consider adapting our texture-based analytical pipeline for use with their acquisition software. Our
306 tool improves upon previous morphometric-based analyses by enhancing both speed and accuracy
307  of mitochondrial assays performed at-scale under cellular conditions.

308 Although recent advances in ensemble methods such as deep learning have revolutionized
309 many aspects of image processing in cell biology, classic feature-based approaches such as
310  MitoProfilerHC remain competitive in domains where minimal training data is available, and
311  where computational resources are at a premium such as in high throughput screening campaigns
312  (Chai et al, 2023). Further, while deep learning approaches show impressive performance on
313 classification benchmarks (Natekar et al 2023), establishing methods to explain the “black box™
314  nature of their predictions remains an area of active research (Chai et al 2023, Allen et al 2024,
315  Samek et al 2021). Interpretable feature-based methods such as MitoProfilerHC help build
316  confidence in algorithmic classification of images, both by providing insight into which features
317  of an image are salient to understanding the underlying biology, and by providing confidence that
318  the algorithm can reasonably extrapolate outside of the domain it was initially trained on (Chai et
319  al 2023, Allen et al 2024).

320 In parallel with our high-content pipeline, we have also developed an open-source version
321  called MitoProfiler that will be made publicly available. Our image analysis work, both in this

322  manuscript and elsewhere has greatly benefitted from the availability of high-quality open-source
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323 implementations of image processing algorithms. Building novel analysis algorithms is iterative,
324  and sharing source code across the broader bioimaging community not only enhances efficiency
325  but also data reproducibility as well (Levet et al, 2021). By providing our tool as a plugin to the
326  popular image analysis library napari, we hope to improve the accessibility of our texture analysis
327  method, especially for image analysts who prefer to interact with their data through an open-source
328  graphical user interface (Jamali et al, 2022). Further, we hope to encourage other software
329  developers, especially our colleagues outside of academia, to provide more extensive disclosure
330  of the algorithms that the community relies on to accurately analyze image data.

331 The image analysis tools that we have developed allowed us to take a deeper dive into
332  investigating mitochondrial function, particularly in the context of neurobiology. Mitochondrial
333 function is crucial in supplying the large bioenergetic demands of neurons (Lopez-Doménech &
334  Kittler, 2023). Its regulation starts during early neuronal development and persists throughout the
335 lifetime of a neuron to ensure survival and protection against neurodegeneration (Rangaraju et al.,
336  2019; Rugarli & Langer, 2012). As such, understanding neuronal response to mitochondrial
337 inhibition has been extensively studied using mitochondrial targeting tool compounds, such as
338 FCCP and oligomycin that both negatively impact the electron transport chain (ETC) and cause
339  subsequent mitochondrial fragmentation. FCCP fragmented mitochondria maximally starting at
340 earlier timepoints and oligomycin induced a milder fragmentation effect at only the highest tested
341  concentration and at later time points. FCCP acts as a rapid protonophore dissipating the proton
342  gradient across mitochondrial membranes, while oligomycin inhibits ATP synthase at the final
343 ETC step. We therefore posit that the degree of ETC disruption is directly correlated with
344  mitochondrial morphology change in neurons.

345 Similarly, Vacor fragmented mitochondria to a lesser extent compared to FCCP which can
346  potentially be explained by NAD+ depletion by SARM1 agonism and subsequent inhibition of
347  ATP production (Ko et al., 2021; Sato-Yamada et al., 2022). Vacor-mediated activation of SARM1
348  causes degeneration in all neuronal compartments including cell bodies, axons, and dendrites in
349  primary hippocampal neurons (Miyamoto et al., 2024). Indeed, when we interrogated the effect of
350  mitochondrial inhibition on the neuronal compartment, we observed that mitochondria became
351 fragmented in both neuron soma and neurite processes. We note that the calculated SR is
352  normalized to each region of interest (ROI), thus precluding the direct comparison of absolute SR

353  values between ROIs. In this case, since the overall quantified mitochondrial region was much
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354  larger in neurites compared to soma, lower absolute values of SR are seen in soma from both the
355  control and FCCP-treated conditions. Nonetheless, the overall fit of the time course curve between
356  FCCP-treated mitochondria in soma and neurites was also significantly different, suggesting that
357  mitochondria exhibit different dynamics in morphological response to pharmacological
358  perturbation, based on localization. Indeed, mitochondrial localization affects their function and
359  dynamics in the soma, axons, and dendrites. Mitochondria also have been described as having
360 compartment-specific morphologies; for example, mitochondria are densely packed in soma,
361  sparse and rounded in axons, and are larger in dendrites to occupy most of the process (Seager et
362  al., 2020). This result indicates that mitochondria are differentially sensitive to environmental
363  stress depending on the neuronal compartment. Despite compartment differences in function and
364  governing transport mechanisms, MitoProfilerHC was able to quantify differences in morphology
365  between soma and neurites under mitochondrial chemical perturbation.

366 Overall, we demonstrated the wide utility of the MitoProfilerHC and MitoProfiler tool by
367 interrogating mitochondrial morphology under various in vitro cellular assays using a high-content
368 and open-source enabled image analysis. We confirmed the effect of a neurological disease-
369 causing genetic mutation, validated dose-response of various mitochondrial inhibitors, and
370 uncovered compartment-specific changes in mitochondrial morphology that corroborated previous
371 findings. By increasing our understanding of mitochondrial dynamics and morphology using HCS
372  and open-source tools, we hope to greatly facilitate the development of therapeutics targeting

373  mitochondrial diseases.
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374 MATERIALS AND METHODS

375  Cell staining

376  Prior to live cell imaging, cells were stained with Mitotracker (MitoTracker™ Deep Red FM Dye,
377  Invitrogen, M46753) (MTDR) and Hoechst 33342 (NucBlue™ Live ReadyProbes™, Invitrogen,
378 R37605). The media was removed and a pre-warmed (37°C) staining solution containing MTDR
379  probe (200nM concentration) and Hoechst 33342 probe (75ul. per 1ml working concentration)
380 was added to the wells. Cells were incubated at 37°C for 60 minutes. After the staining was
381  complete, the staining solution was replaced with fresh prewarmed media and cells prior to
382  imaging.

383  HelLa cells culture and treatment with oligomycin

384 20,000 HeLa cells were plated per well of a 96 well-plate for a day in 100 uL. of DMEM + 10%
385 FBS media. The following day, cells were treated with different concentrations of Oligomycin
386  (Sigma-Aldrich, 75351) for 1.5 hours by adding Oligomycin directly to the cell culture media at
387  the required concentration.

388  Mouse embryonic fibroblast cell culture

389  Mouse embryonic fibroblasts (MEF), WT and Mitofusin 2 Knockout (Mfn2 KO), were cultured in
390 DMEM supplemented with 10% FBS and Penicillin/Streptomycin. 10,000 MEF cells were plated
391  per well of a 96 well-plate for one day. Cells were then live stained with MTDR and Hoechst
392 33342, as described in the cell staining protocol above.

393  Primary mouse hippocampal neurons culture, pharmacological treatment, and staining
394  Neurons were isolated from mouse embryonic hippocampi (CD-1 strain; Charles River
395  Laboratories) and maintained using NbActiv4 medium (BrainBits; #NB4500) supplemented with
396  Penicillin/Streptomycin (Gibco, #15140122), GlutaMAX (Gibco, #35050061) and 5-fluoro-2-
397  deoxyuridine (Sigma, 50-91-9), as described in (Miyamoto et al., 2024). On day 8 in vitro (DIV
398  8), neurons were stained with 100 nM MTDR (Invitrogen, #M22426), (1/1000) and NucBlue
399  (Invitrogen, #R37605) for 20 min at 37°C/5% CO2. The mitochondrial inhibitors, Carbonyl
400 cyanide 4-(trifluoromethoxy)phenylhydrazone [FCCP; 2, and 20 pM (MedChemExpress, 370-86-
401 5)], Oligomycin [10 uM; (Sigma, 1404-19-9)], or Vacor [Pyrinuron; 20 uM (ChemService, 53558-
402  25-1)], were added to the stained neurons and imaging was immediately initiated with 20 min time

403  intervals up to 140 min, as described below.
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404  High-content image acquisition in live cells

405  All images were acquired on a spinning disk confocal Opera Phenix™ Plus High-Content imager
406  (Revvity) using a 4-camera setup (16-bit sCMOS, 6.5 um pixel size), with two-peak autofocus and
407  2x2 pixel binning. Environmental controls (37°C/5% CO2) were used for live cell imaging.

408 Fixed wavelength lasers and emission bandpass filters were used to detect fluorophores (Hoechst
409 33342 Ex/Em: 405/435-480 nm; CellMask Ex/Em: 488/500-550 nm; MTDR Ex/Em: 640/650-760
410 nm). Acquisition settings were adjusted as needed depending on cell type and density to maximize
411  signal while avoiding saturation and photobleaching. MEFs were imaged on a 40X/1.1 NA water
412  immersion lens (Revvity part number: HH14000422) for Hoechst 33342 (100 ms, 70% power),
413  CellMaskGreen (100 ms, 70% power) and MTDR (100 ms, 80% power) over 9 randomly selected,
414 equally spaced fields with 4 Z-planes (-1.0 to 2.0 pm, 1 um step size). Hela cells were imaged on
415  a63X/1.15 NA water immersion lens (Revvity part number: HH14000423) for Hoechst 33342 and
416  MTDR over 27 fields with 4 Z-planes, as detailed. Primary mouse hippocampal neurons were
417  imaged on a 63X/1.15 NA water immersion lens (Revvity part number: HH14000423) with gentler
418  exposure settings to limit phototoxicity (Hoechst 33342: 80 ms, 80%; CellMask Actin: 60 ms,
419  60%; MTDR: 40 ms, 80%) over 19 fields with 4 Z-planes (-3.0 to 0 um, 1 pum step size).

420  Mitochondrial image analysis, morphology and texture calculation, and data output

421  The following protocol was built on Harmony 5.2 (Revvity) and applied across multiple cell types.
422  Unless otherwise mentioned, image analysis steps remained consistent across experiments. To
423  achieve even focus, a maximum projection of two planes was taken as the input image. First cells
424 were identified using the ‘Find Nuclei’ building block in the Hoechst 33342 channel (method B,
425  common threshold = 0.0, area > 50 um?, splitting coefficient = 9.8, individual threshold = 0.29,
426  contrast = 0). Next, cytoplasm was identified using ‘Find Cytoplasm’ in the CellMask Green
427  channel (method D, individual threshold = 0.59). The MTDR channel was pre-processed with
428  ‘Filter Image’ (method: sliding parabola, curvature = 50). Mitochondrial signal was segmented
429  using ‘Find Image Region’ (threshold = 0.07, area > 8.75 50 pum?) and the mitochondrial
430 morphological and texture metrics were measured. Morphology was calculated using ‘Calculate
431  Morphology’ using two methods: STAR (select Symmetry, Threshold Compactness, Axial,
432  Radial, Profile) and Standard (select Area, Roundness, Perimeter, Length, Width, Width-to-length
433  ratio). ‘Calculate Texture’ was used to measure SER features (method: SER, select SER Spot,
434  Hole, Edge, Ridge, Valley, Saddle, Bright, Dark). Mitochondrial aspect ratio was measured with

16


https://doi.org/10.1101/2024.08.15.607824
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.08.15.607824; this version posted August 16, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

435  ‘Calculate Properties’ by taking the formula: mitochondrial per-cell length / per-cell width.
436  Additional steps were included directly after mitochondrial segmentation to identify neurites in
437  primary neuron experiments. The ‘Find Neurites’ building block was used to identify neurite
438  projections attached to neuron cell bodies (Channel: MTDR; Population: Hoechst 33342; Region:
439  Cell; Method: CSIRO Neurite Analysis 2). To quantify the entire neurite, the mask was dilated
440 laterally with ‘Select Region’ (Population: Neurites; Region: Neurite Segment; Method: Resize
441  Region with Outer Border = -2.0 px and Inner Border = INF px). Finally, per-cell results were
442  exported as means per well into Microsoft Excel for further analysis.

443  Mitochondrial morphology feature selection

444  Initial feature selection was performed using scikit-learn v1.3.0 (Pedregosa et al., 2011). First,
445  feature vectors were randomly drawn without replacement for cells in both the WT and KO
446  conditions to create a balanced dataset with 50% WT and 50% KO cells. Next, each feature was
447  mapped to a uniform distribution using the QuantileTransformer in scikit-learn. Features were
448  ranked by effect size (Cohen’s d) and all features with p <0.01 (two-tailed t-test from scipy v1.11.2
449  (Virtanen et al., 2020), with the Holm Sidak correction for multiple comparisons from statsmodels
450  v0.14.0 (Seabold et al., 2010) were plotted on a volcano plot. To estimate the accuracy of each
451  feature as a classifier, the data were split into 5 cross validation folds. Each individual feature was
452  used to train a LogisticRegression model with each of the 5 folds (training on 4 out of 5 folds and
453  evaluating on the 5" fold) using scikit-learn with accuracy reported as the average evaluation set
454  score across all 5 folds. All possible combinations of pairs of features were generated and ratios
455  between those pairs were used to train and evaluate a LogisticRegression model as described
456  above.

457  Open-source segmentation and feature extraction pipeline

458  Mitochondria were segmented and assigned to cell masks using a three-phase pipeline. First, the
459  Hoechst-stained nuclei were thresholded and then split into individual nuclei using a watershed
460 transform with a minimum spacing of 3 pm using the watershed segmentation function in scikit-
461  image v0.21.0 (van der Walt et al 2014). Next, CellMaskGreen stained cells were thresholded and
462  then cells containing more than one nucleus were further split by assigning each pixel in a cell
463  mask to the closest nuclei. Finally, MTDR stained mitochondria were thresholded and split into 4-
464  connected components, then further split wherever a mitochondria label crossed a cell boundary

465  using the join segmentations function in scikit-image.

17


https://doi.org/10.1101/2024.08.15.607824
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.08.15.607824; this version posted August 16, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

466  Features were extracted from the mitochondrial intensity image with the following workflow.
467  First, if requested, a parabolic kernel was used to remove background using the rolling ball
468 function in scikit-image. The kernel was defined as an axisymmetric inverted parabola of height h
469  with the following formula:

470 k(x,y) = (b’ — x> —y?) if k(x,y) = 0; © otherwise

471  The filtered image was subtracted from the original image and all values less than 0 were set to 0.
472  The image was next smoothed with a gaussian filter to improve the stability of the gradient
473  calculation. Estimates of the first partial derivatives in x and y were calculated using central
474  differences of the smoothed image using the gradient function in numpy v1.24.4 (Harris et al,
475  2020). The second partial derivatives in xx, Xy, and yy were then calculated in a similar manner
476  using the first derivative images. The eigenvalues of the resulting hessian matrix at each point
477  were calculated using the hessian matrix_eigvals function in scikit-image giving the two principal
478  curvatures at each point with 4; > 4, . The shape index from (Koenderink and van Doorn, 1992).
479  was next calculated as:

Ay + 4,

480 SI = arctan(lz —Az)

481  To more closely match the SER images generated by Harmony we selected empirical cutoffs of
482  the shape index approximately twice the width of those given by (Koenderink and van Doorn,
483  1992). Further, we found that multiplying the shape index by either the first or second principal
484  curvature depending on the texture of interest improved the quality of the resulting image.
485  Specifically, our texture images are defined as:

486  TI = threshold(SI) * weight

487  Where:
Threshold(SI) Weight [ Corresponding Shape Index Feature Image (Ours)
Mnemonics
1.0>SI>0.5 A All of “Spherical Cap” and “Dome” and | SI Spot
part of “Ridge”
0.75>SI1>0.25 A All of “Ridge” and part of “Dome” and | SI Ridge
“Saddle Ridge”
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0.25>SI1>-0.25 A All of “Saddle” and part of “Saddle | SI Saddle
Ridge” and “Saddle Rut”

-0.25>SI> - A All of “Rut” and part of “Trough” and | SI Valley
075 “Saddle Rut”
-0.5>SI>-1.0 A All of “Trough” and “Spherical Cup” | SI Hole

and part of “Rut”

488  We did not investigate whether this combination of shape index and principal curvature could be
489  extended to approximate the remaining three SER features.

490 To extract final feature values per-field of view, we used the regionprops_table function in scikit-
491  image to calculate mean values of each feature image within each cell segment. We then calculated
492  averages of the features per-field of view using the group by method in pandas v2.2.0 (McKinney
493  2010). We calculated the per field of view ratio of SI Spot to SI Ridge, then averaged over all
494  fields of view within a well to get the final values for SI Spot, SI Ridge, and SI Ratio presented in
495  Fig 4. Correlation plots were calculated using the per-field of view values for SI Ratio and SER
496  Ratio respectively, fitting a line of best fit using the polyfit function in numpy, then calculating the
497  correlation coefficient and two-sided p-value using the pearsonr function in scipy.

498  Data presentation, statistical analysis and illustrations

499  Data was organized and imported into GraphPad Prism 9 for statistical testing and plotting. A
500 minimum of three wells were imaged per plate and the Number of cells varied depending on the
501 cell type and experiment, as indicated in the Figure Legends. Significant differences between
502  experimental groups were indicated as *P < 0.05; **P < 0.01; ***P < 0.001; only P < 0.05 was
503 considered as statistically significant. NS, not significant. Schematics were created on Microsoft
504  PowerPoint, SER feature plots were generated on matplotlib v3.8.2 (Hunter et al., 2007), and

505  figures were assembled on Adobe Illustrator.
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695 FIGURE LEGENDS

696  Figure 1: MitoProfilerHC image analysis workflow to evaluate mitochondrial morphology
697  A) Multi-channel fluorescence input image of WT MEF cells. B) Nuclei segmentation (individual
698  nuclei shown in multi-color). C) Cytoplasm segmentation (individual cells shown in multi-color).
699 D) Black/white pre-processed image of mitochondria. E) Mitochondrial segmentation (shown in
700 magenta). F) Calculation of Harmony morphology (STAR and Standard) and texture (SER)
701  features. G) Volcano plot of the most discriminative single features that increase with Mfn2 KO
702  (two-tailed t-test with Holm Sidak correction for multiple comparisons). H) Volcano plot of the
703  most discriminative ratios of features that increase with Mfn2 KO (two-tailed t-test with Holm
704  Sidak correction for multiple comparisons). I) Representative SER Spot and SER Ridge filtered
705  image (left; individual cells outlined in magenta). Gaussian-derived intensity patterns (right). J)
706  Expected SER Spot and SER Ridge directionality for networked and fragmented mitochondrial
707  morphologies. For all panels, image scale bar =20 pm.

708

709  Figure 2: Validating of MitoProfilerHC in genetic and pharmacological paradigms for
710  mitochondrial disruption

711 A) Representative fluorescence, zoomed inset, and processed images of WT and Mfn2 KO MEFs.
712 Full-sized image scale bar = 20 pm. Zoomed inset scale bar =2 um. B) Mitochondrial aspect ratio
713  (AR) quantification. C) SER Ridge texture quantification. D) SER Spot texture quantification. (B-
714 D) Data points are presented as mean + SD from three technical replicates; n = ~1,500-2,000 cells
715  per condition group. E) Representative fluorescence images with zoomed inset for WT HeLa cells
716  treated with oligomycin (“Oligo”) from 0 to 51 pM. Full-sized image scale bar = 20 pm. Zoomed
717  inset scale bar = 2 um. F) SER Ratio (SER Spot/SER Ridge) oligomycin dose-response
718  quantification. G) SER Ridge quantification. H) SER Spot quantification. (F-H) Data points are
719  presented as mean + SD from two technical replicates; n = ~2,000 cells per condition group.
720  Statistical analysis was performed using two-tailed, unpaired Student’s #-test. **p < 0.01; ***p <

721 0.001; ns = not significant.
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722  Figure 3: Characterizing drug-induced mitochondrial morphology changes in primary
723  hippocampal neurons using MitoProfilerHC

724  A) Representative fluorescence input image (pseudo-colored black/white) of mitochondrial
725  channel in primary mouse hippocampal neurons. B) Neuron soma segmentation (blue). C) Neurite
726  segmentation (cyan). D) Dilated neurite mask (cyan). (A-D) All scale bars = 20 um. E)
727  Representative images of neurons treated with mitochondrial inhibitors, FCCP (2 or 20 uM),
728  oligomycin (10 pM) and Vacor (20 uM) for 2 hrs. F) Representative images of neurons treated
729  with 20 uM FCCP, highlighting mitochondrial fragmentation in neurites (cyan, white boxes). (E-
730  F) All scale bars = 10 um G) 2 hr time-course quantification comparing 20 uM FCCP (solid blue),
731 10 pM oligomycin (solid green) and 20 pM Vacor (solid red). H) Dose-response quantification
732 for FCCP, 2 uM (open blue) and 20 uM (solid blue). I) Quantification of SR in neuron soma (solid
733  blue) and neurites (solid light blue) in response to FCCP (20 uM). A simple linear regression
734  comparison was performed on soma and neurites conditions treated with FCCP (dashed lines). (G-
735 1) Data points are presented as mean = SD from three technical replicates; n = ~500 cells per
736  condition group. Statistical analysis was performed using two-tailed, unpaired Student’s #-test. **p
737  <0.01; ***p <0.001; ns = not significant.

738

739  Figure 4: MitoProfiler, an open-source mitochondrial morphology image analysis tool

740  A) Example session of the MitoProfiler napari plugin analyzing an image of WT MEF cells.
741 Individual cell and mitochondria clusters are colored by cluster identity. Controls to configure
742  individual steps of the MitoProfiler pipeline are shown on the right hand panel. B) SI Ridge and
743  (C) SI Spot texture images calculated from the MTDR stained example image with inset to show
744 texture details (scale bar 25 um for overview image, 10 pm for inset). D) SI Ridge quantification,
745  E) SI Spot quantification and, F) SI Ratio quantification for WT vs Mfn2 KO MEFs. (D-F) Data
746  points are presented as mean + SD from three technical replicates; n = ~1,500-2,000 cells per
747  condition group. Statistical analysis was performed using two-tailed, unpaired Student’s #-test. *p
748  <0.05; ***p <0.001; ns = not significant. G) Correlation plot between SI Ratio and SER ratio for
749  Mfn2 KO experiment with dots individual fields of view colored by WT (gray) or Mfn2 KO
750 (orange) and a line of best fit (dotted line, slope = 0.501, intercept = 0.000) with Pearson’s
751 correlation coefficient between measurements for each field of view (R =0.913, p < le-10, two-

752  tailed test). H) SI Ridge quantification, I) SI Spot quantification, and J) SI Ratio quantification for
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WT HelLa cells treated with oligomycin (“Oligo”) from 0 to 51 uM. K) Correlation plot between
SI Ratio and SER ratio for treated HelLa cells with dots individual fields of view colored by
oligomycin dose and a line of best fit (dotted line, slope = 0.988, intercept = -0.254) with Pearson’s
correlation coefficient between measurements for each field of view (R = 0.934, p < le-10, two-

tailed test).
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Figure 2: Validating MitoProfilerHC in genetic and pharmacological paradigms for mitochondrial disruption
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Figure 3: Characterizing drug-induced mitochondrial morphology changes in primary hippocampal neurons using MitoProfilerHC
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Figure 4: MitoProfiler, an open-source mitochondrial morphology image analysis tool built on Napari
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