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ABSTRACT

Biological language model performance depends heavily on pretraining data
quality, diversity, and size. While metagenomic datasets feature enor-
mous biological diversity, their utilization as pretraining data has been
limited due to challenges in data accessibility, quality filtering and dedupli-
cation. Here, we present the Open MetaGenomic (OMG) corpus, a genomic
pretraining dataset totalling 3.1T base pairs and 3.3B protein coding se-
quences, obtained by combining two largest metagenomic dataset reposito-
ries (JGI’'s IMG and EMBL’s MGnify). We first document the composition
of the dataset and describe the quality filtering steps taken to remove poor
quality data. We make the OMG corpus available as a mixed-modality
genomic sequence dataset that represents multi-gene encoding genomic
sequences with translated amino acids for protein coding sequences, and
nucleic acids for intergenic sequences. We train the first mixed-modality
genomic language model (gLM2) that leverages genomic context informa-
tion to learn robust functional representations, as well as coevolutionary
signals in protein-protein interfaces and genomic regulatory syntax. Fur-
thermore, we show that deduplication in embedding space can be used to
balance the corpus, demonstrating improved performance on downstream
tasks. The OMG dataset is publicly hosted on the Hugging Face Hub
at https://huggingface.co/datasets/tattabio/0OMG and gLM?2 is avail-
able at https://huggingface.co/tattabio/gLM2_650M.

1 INTRODUCTION

Biological language models present an effective avenue for leveraging large amounts of un-
structured sequence data and learn functionally meaningful representations. Similar to
natural language processing (NLP) models (Touvron et all 2023} [Dodge et all 2021)), the
quality and diversity of pretraining data dictate the behavior and performance of biolog-
ical language models (Ding & Steinhardt] [2024). To date, the most widely used datasets
for biological language models (Hayes et al., [2024; [Lin et al., 2023} Madani et al., [2023;
Nguyen et al., |2024)) are derived from curated data repositories such as UniProt (UniProt
Consortium, 2019), UniRef (Suzek et all 2007) and GTDB (Parks et all 2022)). However,
biological sequence diversity is immense and the above-mentioned data repositories cover
only a small fraction of the full sequence diversity found in nature. In order for biological
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language models to improve, the size and diversity of pretraining data must also scale with
the size of the model.

Metagenomic sequences are partial genomic sequences derived from direct sequencing of
environmental (e.g. soil, ocean) or biological samples (e.g. human skin, gut). Because
metagenomic sequencing circumvents the need for cultivation and isolation of biological
organisms, metagenomes typically feature sequences derived from uncultivated and novel
microorganisms (Tyson et al., [2004). These microbial genomes encode high levels of molec-
ular diversity and span previously unexplored branches of the tree of life (Hug et al., |2016)).
Metagenomic datasets are unstructured by nature and a large fraction of the data is not
included in curated databases due to poor functional interpretability of these sequences. To
date, metagenomic sequences have not been fully utilized in biological language models due
to following limitations:

1. Metagenomic sequences are not readily downloadable in a single archive.
To date, the download of raw contigs (assembled genomic segments) from the two
main public repositories, Joint Genome Institute (JGI)’s IMG (Markowitz et al.,
2012) and European Molecular Biological Laboratory (EMBL)’s MGnify (Richard-
son et al., 2023), requires a large number of database queries and/or rate-limited
web API calls, as well as ad hoc approaches to robustly aggregate the results of
these queries into a single dataset.

2. Metagenomic sequences require extensive pre-processing. Raw metage-
nomically assembled contigs first undergo gene calling in order to identify protein
coding sequences and extract translated sequences. Additional quality filtering is
critical, as many metagenomes include poor or mis-assembled contigs.

3. Metagenomic sequences are difficult to deduplicate and balance. Like
most biological sequence datasets, metagenomes feature sampling biases (e.g. over-
representation of human gut microbiomes). Additionally, due to the lack of central-
ized databases for metagenomes, submissions of identical metagenomes to different
repositories result in duplicates. Unlike protein databases that can be deduplicated
and balanced using computationally efficient clustering algorithms (e.g. MMseqs2
(Steinegger & Soding, 2017))), clustering of a large dataset comprising genomic se-
quences of arbitrary region and length is computationally costly. Furthermore,
while curated genomic databases (e.g., GTDB (Parks et al.| 2022)) or BV-BRC (Ol-
son et al,, |2023)) can be balanced with taxonomic labels, metagenomic sequences
rarely have taxonomic assignment, and ad-hoc assignment (e.g. Kraken (Wood &
Salzberg), [2014)) is computationally expensive and not always reliable.

Here, we document the collection and preprocessing steps of the OpenMetaGenome (OMG)
corpus. We then train the first mixed-modality genomic language model (gLM2) trained
on OMG, that leverages genomic context information to learn contextualized functional
representations of genomic elements. By training on mixed-modality data, gLM2 can per-
form both protein and DNA downstream tasks, and outperforms ESM2 (Lin et al.| 2023)
on most protein tasks. Additionally, training on multi-protein contexts enables gL.M2 to
predict protein-protein interfaces through co-evolutionary signal. Finally, we show that
embedding-based deduplication of the OMG dataset leads to improved functional represen-
tations, especially for underrepresented sequences.

2 RELATED WORKS

Pretraining corpora preprocessing in NLP. A number of previous studies have de-
veloped methods to improve the diversity and quality of pretraining corpora in NLP. For
instance, raw snapshots of Common Crawl (collection of webtext crawls) contain undesirable
data (e.g. hate speech, placeholder text). Studies have demonstrated that careful deduplica-
tion and rule-based filtering of Common Crawl (Dodge et al 2021]) improves overall model
performance (Penedo et al., 2024). More recently, efforts have been made to prune and bal-
ance pre-training data in semantic embedding space to achieve increased training efficiency
(Sorscher et all 2022; Tirumala et al.l [2023; |Abbas et al.| [2023). Dataset preprocessing
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Figure 1: (A) UMAP visualization of the OG dataset examples, colored by taxonomic
phylum, using embeddings from the 150M parameter gLM2 model. Distinct clusters form
for different phyla in embedding space. (B) Semantic deduplication of the OG dataset, with
pruned points highlighted in blue. Deduplication primarily removes samples from dense
clusters corresponding to overrepresented phyla. We visualize the semantic deduplication
on OG dataset to highlight taxonomic phyla most heavily pruned, and apply the same
pruning process to the OMG dataset for model training. (C) Comparison of the OG and
OMG datasets using a random 0.1% subset of each. Notably, the metagenomic data (OMG)
exhibits higher diversity.

presents an important opportunity to minimize training resources, given the power-law na-
ture of LLM scaling (i.e. exponentially increasing compute requirement for diminishing
returns in performance improvement) (Hestness et al.,|2017; [Kaplan et al., [2020).

Biological sequence language models and their training datasets. Biological se-
quence language models are self-supervised models trained on discrete protein sequences or
genomic segments. Protein language models (pLMs) (Lin et al., 2023; Madani et al., 2023;
[Elnaggar et all 2022)) are typically trained on high quality and curated publicly available
datasets such as UniRef (Suzek et al) 2007). UniRef is convenient for pLM training be-
cause it has been deduplicated using sequence similarity-based clustering (i.e. UniRef50
is deduplicated using 50% sequence identity). Previous efforts to increase the diversity of
the pretraining data includes cluster-balanced sampling (e.g. UniRef50/D for ESM models
(Rives et all [2021) and sequence identity-based clustering of compiled protein databases
beyond curated databases (e.g. BFD (Steinegger et al., [2019; Elnaggar et all, 2022))). Ge-
nomic language models (gLMs) are trained on genomic sequences chunked at predefined
length thresholds. Diversification efforts for genomic datasets include pretraining on MG-
nify’s metagenomic contigs (Hwang et al.,[2024) and balancing efforts in genomic pretraining
datasets include taxonomy-aware sampling (Dalla-Torre et al.,2023; Nguyen et al., [2024) of
curated genomic databases such as RefSeq (Pruitt et al [2014), IMG/VR (Camargo et al.,
2022), IMG/PR (Camargo et all [2024) and GTDB (Parks et all, [2022).

Metagenomic datasets. In this study, we define metagenomic datasets as collections
of genomic contigs (contiguous genomic segments) computationally assembled from either
short-read or long-read raw sequence libraries. Typically, metagenomic datasets are se-
quenced from mixed community samples, which consist of multiple species, ranging from
hundreds to thousands of distinct species (Bahram et al., 2021). Complete genomes are
rarely obtained from metagenomic assemblies. Therefore, metagenomic assemblies require
extensive taxonomic profiling (Parks et al.| [2021)) and partial genome reconstruction through
contig clustering (i.e. binning). Because metagenomes are sequenced from diverse environ-
ments without the need for cultivation, their sequences feature the highest level of molecular
diversity amongst publicly available sequence datasets (Pavlopoulos et all [2023). Metage-
nomic datasets also vary in quality depending on sequencing depth and sample type, where
low quality metagenomes feature computational assembly errors, short contig lengths, and
truncated protein sequences (Mende et all 2012} [Lai et al) [2022)). Furthermore, while most
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metagenomic datasets are predominantly analyzed with a focus on microbial (archaea, bac-
teria, viruses) communities, eukaryotic genomic material can comprise a substantial portion
of the raw library (West et al., [2018). Many standard metagenomic post-processing steps
(e.g. gene calling) fail on eukaryotic sequences, resulting in poor quality protein sequence
predictions. Critically, quality filtering and dataset deduplication of metagenomes require
domain-specific knowledge, yet there is little documentation of preprocessing steps needed
to make these datasets suitable for biological language model pretraining.

3 THE OPEN METAGENOME CORPUS

Here, we document the construction of the OMG corpus. The OMG is a 3.1T base pair (bp)
pretraining dataset comprising EMBL’s MGnify databaseﬂ and JGI's IMG databasdﬂ We
utilize the gene predictions conducted by the databases; the gene calling protocols for IMG
and MGnify are detailed in [Huntemann et al.| (2016) and Richardson et al.| (2023|) respec-
tively. The combined dataset is pre-processed into a mixed-modality dataset upon sequential
element-by-element quality-filtering (described in Section|3.1]) . The mixed-modality dataset
of Open Metagenomes is made available as the OMG dataset (Fig. [I) containing 3.3 billion
protein coding sequences (CDS) (Tab. . We also make available a 10x smaller subset
of OMG that only consists of prokaryotic and viral genomes from INSD(ﬂ as the Open
Genome mixed-modality dataset OG (Fig. Appendix . Finally, we make available a
protein-only dataset OMG__prot50, consisting of protein sequences derived from the OMG
dataset, clustered at 50% sequence identity (Appendix @[) OMG_ prot50 contains 207M
representative sequences from clusters with at least two members, representing >3-fold in-
crease in sequence diversity compared to UniRef50 (Suzek et al.| 2007). All three datasets
are available for download from the Hugging Face Hub, and all dataset processing scripts
are available at https://github.com/TattaBio/0MG. As more metagenomic data becomes
available, we plan on regular updated releases of the corpus in the future.

Table 1: Statistics for the datasets made available in this study. CDS: Coding
sequences, IGS: Intergenic sequences. For reference, UniRef50 consists of 66M proteins.

# CDS # IGS Total # Contig Size Description
(bps) (TB)

Filtered mixed-modality ge-
nomic sequences featuring mul-
tiple protein coding genes (rep-
resented in AAs) interleaved
with intergenic sequences (rep-
resented in NAs).

OMG 3.3B 2.8B 3.1T 271M 1.25

Fraction of the IMG data

0G 04B 03B 04T 62M 0.6 'hat comsist of prokaryotic
genomes and associated taxo-

nomic metadata.

Protein coding sequences in
AA, clustered at 50% se-
quence identity. Singleton clus-
ters were removed from the
database. Clustering detail is
found in Appendix E

OMG_ prot50 207M - - - 0.05

!Snapshot date 2022-11-23 (excluding all embargoed/restricted metagenomic samples, see
database statistics in Appendix [A]

ZSnapshot date 2023-08-27 (excluding all embargoed/restricted metagenomic samples and in-
cluding IMG genomes dataset derived from NCBI.)

3https://wuw.insdc.org, retrieved from IMG/M, metadata available in Appendix
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3.1 DATASET PREPROCESSING

Multi-modal data processing. Metagenomic contigs often encode multiple genes on
either strand of the sequence. A genomic language model can be trained on raw nucleic
acid sequences (e.g. Evo (Nguyen et al., [2024), Nucleotide Transformers (Dalla-Torre et al.,
2023))) or by representing each genomic sequence as an order- and orientation-preserved list
of translated coding sequences in amino acids (e.g. (Hwang et al., 2024))). For the former
method, the context length needed to encode genomic sequences in nucleic acids can result
in unfeasibly large compute requirements. Furthermore, a recent study comparing nucleic
acid (NA) models against amino acid (AA) models on protein functional representations
demonstrated that NA may not be the most efficient input format for learning translated
protein functions (West-Roberts et al., 2024]). The latter method, while benefiting from the
compressed sequence length and more expressive AA sequences for proteins, does not lever-
age the information stored in intergenic regions. These intergenic regions contain important,
yet, lesser characterized sequence patterns involved in transcription regulation and cellular
function such as ncRNA, microRNA, promoters, and transcription factor binding sites. We
developed a mixed-modality dataset that represents a genomic contig as a list of elements
where an element is either a coding sequence (CDS) or an intergenic sequence (IGS) (see
Fig. . CDS elements are represented in translated AA sequences and IGS elements are
represented in NA sequences. We also store the strand information (4-/-) of CDS elements
and the order of all elements in the contig.

Edge-element removal. Metagenomic contigs are not complete genomic sequences,
therefore, both edges of the sequences are more likely to contain gene-calling errors. In
our pre-processing, we remove edge CDS elements to address miscalled open reading frames
(ORFs) and fragmented protein sequences at the beginning and end of the metagenomic
contigs (Steinegger & Salzberg) [2020)). Specifically, if a scaffold starts/ends with an inter-
rupted CDS, we remove that CDS element. If a scaffold starts/ends with a non-coding
region, we remove the IGS element and the CDS adjacent to the IGS element.

Contig length-based filtering and preprocessing. Assembly of shotgun metagenomic
libraries results in many short contigs that are often low in quality. To limit the impact of the
fragmented nature of metagenome assemblies, we first remove all metagenomic contigs that
are shorter than 2kb from the raw databases. Secondly, we enrich the corpus with contigs
that contain multiple genes by removing contigs that contain less than seven elements in
total or less than three CDS elements. In preprocessing these contigs into Hugging Face
datasets (Lhoest et al., [2021), we found that extremely large contigs resulted in process
hanging errors and inefficient storage. To address this issue, we chunk large contigs into
1000 elements. Appendix [C] visualizes the distribution of contig length, as well as CDS and
IGS element lengths.

Assembly quality (N/X-frequency) filtering. Due to the computational nature of
the metagenomic assembly, misassembled contigs comprise a nontrivial fraction of the data.
The quality of the assembly differs significantly across samples, depending on the biological
community composition, sample type, and sequencing depth (Vollmers et al., 2017} [Lapidus
& Korobeynikov}, |2021)). Notably, the quality of assembly may vary across the contig, where
a section of the contig may contain assembly gaps due to shallow sequencing depth. One
way to determine poorly assembled sequences is by identifying the fraction of Ns (gaps or
ambiguous bases) in the raw DNA sequence (or Xs in the translated AA sequence). For
OMG, we process each contig sequentially element-by-element, and if an element comprises
>20% in invalid characters, we discard the element and start a new contig. Importantly,
only contigs that meet the length requirement (>3 CDS, >7 total elements) are added to
the dataset. This sequential processing allows high quality regions of the contigs to be
preserved, while low quality stretches are discarded.

Element length-based filtering. A nontrivial portion of the metagenome can be eukary-
otic, however, most metagenomic gene-calling software tools are not optimized for eukaryotic
ORF prediction (Bruna et al.,[2024). Additionally, metagenomes can contain sequences from
organisms that utilize alternative genetic codes (Borges et al., [2022;(Cook et al.,|2024), which


https://doi.org/10.1101/2024.08.14.607850
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.08.14.607850; this version posted October 1, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

may not all be correctly predicted by common tools. A salient pattern observed for poor
gene prediction is low coding density, (i.e. long stretches of IGS) or presence of very long
CDS sequences. To identify these, we process each contig sequentially element-by-element
and remove any CDS element >15,000 AAs or IGS element >4000 bps in length, and start
a new contig. These thresholds are designed to exclude regions of questionable gene calls,
such as long intergenic regions where no genes are predicted, and giant protein sequences,
which are prone to assembly errors and require careful curation to verify (West-Roberts
et al., 2023).

Metagenomic contig

Gene calling ) >. H;
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Figure 2: Mixed-modality sequence processing and gLM2 masked language mod-
eling. A gene-called metagenomic contig is first preprocessed into a mixed-modality se-
quence consisting of CDS elements (blue) and IGS elements (grey). The mixed-modality
sequence then undergoes masking at 30% and gLLM2 is trained with a masked token recon-
struction objective.

4 EXPERIMENTS

4.1 GLM2: A MIXED-MODALITY GENOMIC LANGUAGE MODEL

To showcase the efficacy of the OMG dataset for pretraining, we introduce gLM2: a mixed-
modality genomic language model pretrained on OMG. gLM2 learns contextualized rep-
resentations of genomic contigs, which are represented as sequences of CDS and IGS el-
ements. In order to tokenize the mixed-modality sequence, CDS elements are tokenized
using per-amino acid tokens, and IGS elements are tokenized using per-nucleotide tokens.
To distinguish strand orientation for CDS elements, we introduce two special tokens: <+>
and <->, which are prepended to each genomic element to indicate the positive and nega-
tive strands, respectively. glLM2 is trained using the masked language modeling objective,
where 30% of both CDS and IGS tokens are masked. Cross-entropy loss is applied only
on the masked tokens. gLM2 is trained at two scales: 150M and 650M parameters. Both
models are trained on the semantically deduplicated OMG dataset (Section for 600k
steps. We train gLM2 using a context window of 4096 tokens to allow for multiple (9.7 &+
3.3) CDS and IGS elements to appear in each example. For model architecture and training
hyperparameters, refer to Appendix [E]


https://doi.org/10.1101/2024.08.14.607850
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.08.14.607850; this version posted October 1, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

4.2 OMG CORPUS BALANCING WITH GENOMIC SEMANTIC DEDUPLICATION

Biological datasets exhibit significant biases that can influence the performance and gener-
alizability of trained models (Ding & Steinhardt} |2024; West-Roberts et al., [2024). Unlike
protein databases, where short sequence lengths allow for clustering-based deduplication,
(meta)genomic sequences have highly variable lengths (Appendix7 making sequence-based
clustering challenging. To address this challenge, we perform deduplication in embedding
space by pruning examples with small cosine distance, following Semantic Deduplication
(SemDeDup) (Abbas et al., 2023). SemDeDup previously showed efficacy in removing se-
mantically similar examples over web-scale text and image datasets, demonstrating signifi-
cant speed up in convergence for downstream tasks.

For genomic semantic deduplication, we first trained a 150M gLLM2 on the tokenized OMG
dataset for 600k steps. We then embed the entire OMG dataset, by extracting a mean-
pooled, per-example representation from the model’s last hidden layer. The example-level
embeddings correspond closely to the taxonomic classification available for the OG dataset
(Fig. [A). We prune the OMG dataset at 49% (i.e. 49% of the original data is removed)
at the deduplication threshold 2e-3 (where examples with embeddings <2e-3 in cosine dis-
tance are deduplicated) (Appendix . The pruned examples are saturated in highly dense
clusters (Fig. ) which results in taxonomic balancing (Appendix |Gf) , measured by in-
creased entropies of distribution across taxonomic levels (Appendix [H]). We then trained a
150M gLLM2 on the pruned OMG dataset for an equal number of steps, and compared its
performance against the un-pruned version on DGEB (West-Roberts et al., 2024]). While
pruning results in a modest increase in the aggregate DGEB score (0.48 vs 0.47), we observe
improvements in tasks that feature underrepresented taxa (e.g. ArchRetrieval, RpoB Arch
phylogeny) (Appendix [I). This improved performance for underrepresented taxa appears
to come at the cost of small regressions on tasks that are biased towards overrepresented
taxa. Genomic SemDeDup presents a tunable method for effectively pruning unstructured
genomic data without reliance on taxonomic labels.
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Figure 3: Scaling performance on DGEB amino acid tasks for gLM2 and ESM2,
relative to pretraining floating point operations (FLOPs). gLM2 150M trained
with no data pruning is shown in black.
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4.3 GLM2 PERFORMANCE ON DGEB

We compare the performance of the 150M and 650M gL.M2 models trained on the pruned
OMG dataset against the ESM2 series trained on the UniRef50/D dataset (Fig. [3)). Overall,
we observe more efficient scaling on DGEB amino acid (AA) tasks for gLM2 compared to
the ESM2 series. In particular, gLM2’s performance scales with pretraining floating point
operations (FLOPs) on protein tasks where ESM2 plateaus in performance with scaling
(i.e. Operon pair classification tasks, ModAC paralogy task) (Appendix . Such improved
functional representation learning is likely due to gLM2’s ability to leverage genomic con-
text information, and thereby learn relationships between genomic elements. gLM2, being a
mixed-modality model, also learns intergenic sequence representations. We compare gLM2’s
performance on DGEB nucleic acid (NA) tasks against the Nucleotide Transformer series
(Appendix . gLM2 performs similarly on NA tasks when compared to Nucleotide Trans-
formers, despite only a small fraction of the training tokens consisting of DNA sequences.

A 20NK y B Potts model C
%, a-A

N

200 K

y) Inter-protein
co-evolutionary signal 400,

E ESM2 650M

R o

100

Figure 4: gLM2 learns protein-protein interface co-evolutionary signal in the
20NK (ModAC) complex. (A) ModA and ModC forms a structural complex with co-
evolutionary signal between residues (in yellow). (B) Co-evolutionary signal extracted from
multiple sequence alignment of 20NK[|(Ovchinnikov et al], 2014)), calculated and visualized
using GREMLIN (PDB_benchmark_alignments/20NK_A20NK_C.fas). The region of inter-
protein co-evolutionary signals are highlighted with a red box. (C) Zoomed-in region of
inter-protein coevolutionary signal in B. (D) Categorical Jacobian calculated for Evo on
the DNA sequence encoding 20NK__A and 20NK_ C (from 89,891 to 91,376 of genomic
sequence NC__000917.1). The L2 norm was computed over the (3,4,3,4) tensor for every
pair of codon positions to generate the contact map. (E) Categorical Jacobian calculated
for ESM2 650M on the concatenated 20NK_ A 20NK_ C sequence. No inter-protein co-
evolutionary signal is detected. (F) Categorical Jacobian calculated for gLM2_650M on
the concatenated 20NK_ A 20NK_ C sequence. (G) Zoomed-in region of inter-protein
coevolutionary signal in F.

4.4 GLM2 LEARNS PROTEIN-PROTEIN INTERACTION INTERFACES

We test gLM2’s ability to learn coevolutionary signals between proteins in protein-protein
interaction interfaces (Ovchinnikov et al.| 2014). Previous studies have shown that pLMs
learn within-protein co-evolutionary information that can be extracted with a supervised
contact prediction head (Lin et al. 2023) using an unsupervised "categorical Jacobian" cal-
culation (Zhang et all [2024). However, pLMs trained on individual proteins or protein
families cannot learn co-evolutionary information across proteins. We calculate the categor-
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ical jacobian values from gLM2_650M on the concatenated sequence of 20NK__A (ModA)
and 20NK_C (ModC) (Appendix [[)). We demonstrate that gLM2 leverages multi-protein
context to learn protein-protein interfaces from a single concatenated sequence that closely
matches the co-evolutionary signal that can be learned from multiple sequence alignment
(MSA) based Potts model (GREMLIN (Kamisetty et al} 2013)) (Fig. [d). Such protein-
protein interface signals cannot be extracted in existing language model methods such as
ESM2 650M and Evo-1-8k-base (Fig. and F). We validate the gLM2-predicted contacts
directly with the ground truth contacts from 20NK PDB structure (Fig. . The ability to
extract interacting residues without supervision nor MSA presents an opportunity to predict
novel protein-protein interactions from sequence information alone.

A 20NK PDB Contacts < 8.0 A 20NK gLM2 Jacobian Contacts 20NK Contact Comparison
0 0 9
T
i of «
100 100 F
o .
: i i,
200 200 <% ¢l . L
s
g s
300 300 c
400 400
: [
- - 250
100 200 300 400 100 200 300 400 0 50 100 150 200
B Protein position (chain A)
o 6UGG PDB Contacts < 8.0 A o 6UGG gLM2 Jacobian Contacts 6UGG Contact Comparison

N
)

w
S

RNA postion (chain A)
[EI
S 3

0 20 40 60
RNA position (chain A)
e gLM2 Jacobian Contacts « PDB contacts < 8A o Correct predictions

Figure 5: Ground truth comparisons of Jacobian-detected contacts against PDB
structures. (A) Left: Ground truth contacts derived from PDB structure (PDB: 20NK;
ModAC complex) shown in Fig. where contact is defined as residues that are within
<8A. Middle: gLM2-predicted contacts using Categorical Jacobian. Right: Inter-protein
region highlighting top n highest scoring predicted contacts (red for true positive, blue for
false positive) overlaying ground truth contacts (gray), where n is the number of inter-
protein contacts identified in the ground truth. (B) Left: Ground truth contacts derived
from tRNA-Asp (PDB: 6UGG) shown in Fig. @ Middle: gLM2-predicted contacts using
Categorical Jacobian. Right: Top n highest scoring contacts in gLM2 (red for true positive,
blue for false positive) overlaying ground truth contacts (gray), where n is the number of
contacts within tRNA identified in the PDB ground truth excluding the diagonal.

4.5 GLM2 LEARNS REGULATORY SYNTAX IN INTERGENIC DNA

We demonstrate gLLM2’s ability to identify regulatory syntax and non protein-coding ele-
ments in IGS regions. We first validate gLLM2’s ability to predict contacts in tRNA-Asp
against the ground truth 6UGG PDB structure (Fig. [5) We further demonstrate gLM2’s
ability to identify regulatory regions (sigma factor binding and terminator) in the genomic
context of tRNA-Asp (Fig. |§[) We additionally observe a signal downstream of aspV and
uptream of the terminator region. This region lacks annotation in EcoCyc (Karp et al.

“https://colab.research.google.com/github/sokrypton/GREMLIN_CPP/blob/master/
GREMLIN_TF.ipynb
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2023) and presents the potential for gLM2-based unsupervised discovery of novel regulatory
sequence motifs. We further conducted a similar analysis on B. subtilis 168 genomic region
119,848-120,978bp (5->3’) containing a L10 leader RNA gene and two ribosomal protein
coding genes rplJ and rplL (Appendix . We observe putative contacts between the L10
leader RNA and ribosomal protein RplL, an experimentally evidenced interaction (Johnsen
et al, [1982). We also observe contacts between RplJ and RplL, a known ribosomal protein
complex. Furthermore, our analysis highlights co-evolutionary signal between the Shine-
Dalgarno sequences (ribosomal binding site) upstream of rplJ and rplL, suggesting gLM2
understanding of genome-specific regulatory motifs.
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Figure 6: gLM2 learns intergenic regulatory syntax and tRNA structure. We vi-
sualize co-evolutionary signal in E. coli K-12 substr. MG1655 chromosomal region 236,866~
237,087bp (5->3’) containing aspV (tRNA-Asp encoding gene) using the Categorical Ja-
cobian. Structural signatures in tRNA-Asp sequence are visible. Other signals correspond
to known regulatory syntax including sigma factor binding sites (-35 and -10), transcription
initiation site (o7¢ binding region), and rho-independent terminator sequence.

5 CONCLUSION

The OMG dataset is a large-scale mixed-modality biological pretraining corpus that lever-
ages the immense volume and diversity of unstructured metagenomic (primarily prokaryotic
and viral) sequences. We quality-filter and preprocess the raw metagenomic sequences into
a mixed-modality format ready for language model training. We showcase the efficacy of
mixed-modality input for genomic language modeling with gLM2. With genomic SemD-
eDup, we present an efficient method for reducing the bias and duplication in genomic
datasets. The gLM2 models trained on pruned OMG learn contextualized representations
for both CDS and IGS, and demonstrate efficient scaling and improved performance across
downstream tasks compared to uncontextualized protein language models trained on curated
databases. We further demonstrate the gLM2’s ability to learn protein-protein interfaces
at residue-level, paving the path towards unsupervised protein-protein complex prediction.
Finally, we show that glLM2 learns evolutionary couplings of regulatory motifs in the in-
tergenic DNA| indicating model understanding of both modalities of the data. The OMG
dataset and gLM2 models as well as the supporting code are publicly available for download.

6 ACKNOWLEDGEMENTS
The OMG dataset is derived from metagenomes deposited at JGI’s IMG and EBI’s MGnify.

We first acknowledge the teams that maintain these public data repositories. Secondly, we
acknowledge the work done by individual research labs who have collected and processed

10


https://doi.org/10.1101/2024.08.14.607850
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.08.14.607850; this version posted October 1, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

the original samples. We list the DOIs associated with the individual datasets/projects in
Appendix [N] We also thank Amro Abbas for engaging in helpful discussions regarding the
SemDeDup methodology.

7 DATA AND MODEL AVAILABILITY

The three datasets introduced in this study are publicly hosted on the Hugging Face Hub at
https://huggingface.co/datasets/tattabio/0OMG and the two gLM2 models are avail-
able at https://huggingface.co/tattabio/gLM2_150M and https://huggingface.co/
tattabio/gLM2_650M. We make the data preprocessing and corpus generation code avail-
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APPENDIX A DATA SOURCES

Type Snapshot date # Samples # contigs* Total bps # CDS

IMG  Metagenomes 2023-08-27 36,273 182M 1.70T 1.84B
Genomes 2023-08-27 131,744 6.2M 0.4T 0.4B

MGnify Metagenomes 2022-11-23 33,531 82M 1.03T 1.03B

*Number of contigs after filtering and preprocessing.

APPENDIX B DATASET PREPROCESSING

Sequences (purple) undergo filtering steps (green), yielding three Hugging Face datasets
(yellow) made available with this paper. ‘NA’ and ‘AA’ refer to nucleic acid and amino acid
data modalities respectively.

OMG_Prot50

CDS seqs (AA)

1GS seqs (NA)

e

IMG genomes subset with taxonomic info

Filtered CDS seqs (AA)

IMG raw scaffolds (NA)
>2kb length
U
Gene calling
MGrify raw scaffolds (NA)

Filtered IGS seqs (NA)

06

APPENDIX C DATASET LENGTH DISTRIBUTIONS

Length distributions of the OMG corpus. (A) Distribution of contig lengths in the number
of genomic elements (CDS and IGS). (B) Distribution of contig lengths in base pairs. (C)
Distribution of CDS lengths in amino acids. (D) Distribution of IGS lengths in base pairs.
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APPENDIX D OMG PROT50 CLUSTERING METHOD

A total of 4.2B protein sequences were first clustered to remove fragments using MMseqs2
linclust (Steinegger & Soding] 2018) (commit f6¢98, parameters:—min-seqg-id 0.9 -¢ 0.9 —cov-
mode 1). Subsequently, the resulting sequences were clustered at 50% sequence id and 90%
sequence coverage using MMseqs2 linclust -min-seq-id 0.5 -c 0.9. Singleton clusters
(only one sequence in the cluster across the full dataset) were removed and remaining 207M
cluster representatives were uploaded as the Hugging Face dataset.

APPENDIX E  GLM2 MODEL PARAMETERS

gLM2 is a transformer encoder optimized using AdamW (Loshchilov & Hutter, 2019) and
trained in mixed precision bfloat16. We set the AdamW betas to (0.9, 0.95) and weight
decay of 0.1. We disable dropout throughout training. The learning rate is warmed up
for 1k steps, followed by a cosine decay to 10% of the maximum learning rate. gLM2 uses
RoPE (Su et all [2023) position encoding, SwiGLU (Shazeer}, 2020)) feed-forward layers, and
RMS normalization (Zhang & Sennrich| [2019)). We leverage Flash Attention 2
to speed up attention computation over the sequence length of 4096.

Num Num Context Learning Batch Pretraining

Dim heads layers length rate size tokens
gLM2-150M 640 10 30 4096 le-3 128 315B
gLM2-650M 1280 20 33 4096 le-3 128 315B
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APPENDIX F SEMANTIC DEDUPLICATION DISTANCE THRESHOLD

The percentage of remaining training examples as a function of the embedding distance
threshold. Examples within the distance threshold in embedding space are deduplicated.
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APPENDIX G TAXONOMIC DISTRIBUTION OF THE OG DATASET BEFORE
AND AFTER PRUNING

Data pruning through semantic deduplication reduces dataset bias toward overrepresented
phyla and orders.
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APPENDIX H TAXONOMIC ENTROPY OF THE OG DATASET BEFORE AND
AFTER PRUNING

Semantic deduplication of the OG dataset consistently increases the taxonomic entropy
across all taxonomic ranks, indicating a more even distribution.
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APPENDIX J PER TASK DGEB scaLING wiTH FLOPS FOrR ESM2 AND
GLM?2 MODELS IN AMINO ACID TASKS

Primary metric from the best scoring layer (between mid, and last) is reported for each
task. To account for model-specific patterns in learning task-relevant functional information
across different layers in the network (West-Roberts et al 2024), DGEB calculates model
performance for both mid and last layer and reports the best score between the two.
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APPENDIX K PER TASK DGEB scALING WITH FLOPS For
NUCLEOTIDE TRANSFORMERS AND GLM2 MODELS IN
NUCLEIC ACID TASKS.

Primary metric from the best scoring layer (between mid, and last) is reported for each
task. To account for model-specific patterns in learning task-relevant functional information
across different layers in the network (West-Roberts et al.l 2024)), DGEB calculates model
performance for both mid and last layer and reports the best score between the two.
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ApPPENDIX . MODA AND MoODC SEQUENCE CONCATENATION

This concatenated sequence was derived from the 20NK_ A 20NK_ C alignment used in
(Ovchinnikov et al., 2014).

MFLKVRAEKRLGNFRLNVDFEMGRDYCVLLGPTGAGKSVFLELIAGIVKPDRGEVRLNGADITPLPPERGIGFV
PQDYALFPHLSVYRNIAYGLRNVERVERDRRVREMAEKLGIAHLLDRKPARLSGGERQRVALARALVIQPRLLLLDEPLSAV
DLKTKGVLMEELRFVQREFDVPILHVTHDLIEAAMLADEVAVMLNGRIVEKGKLKELFSAKNGEVAEFLSARNLLLKVSKIL
DMRLLFSALLALLSSITLLFVLLPVAATVTLQLFNFDEFLKAASDPAVWKVVLTTYYAALTISTLIAVIFGTPLAYILARKSF
PGKSVVEGIVDLPVVIPHTVAGIALLVVFGSSGLIGSFSPLKFVDALPGIVVAMLFVSVPIYINQAKEGFASVDVRLEHVAR
TLGSSPLRVFFTVSLPLSVRHIVAGAIMSWARGISEFGAVVVIAYYPMIAPTLIYERYLSEGLSAAMPVAAILILLSLAVFV
ALRITIVGREDVSEGQG
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APPENDIX M PUTATIVE RNA-PROTEIN-PROTEIN INTERACTIONS

We visualize a contiguous stretch (119,848-120,978bp, 5->3’) of the B. sutilis 168 reference
genome. Putative residue-level interactions between L10 leader RNA (IdlJ), proteins RplJ
and RplL are highlighted in gray boxes. Shine-Dalgarno sequences upstream of the two
protein-coding genes are highlighted and co-evolve.

0= 10 teader RNA

Putative RNA-Protein
interface

50

100 A

1501

Shine-Dalgarno
sequence
/co—evo\ut\on

200 1

plj *
- RplJ-RplL PPI

250 1

300 A

350 1

400 A

450 4

500 1

550

0 50 100 150 200 250 300 350 400 450 500 550

APPENDIX N ADDITIONAL FILES

Additional Files are found in https://doi.org/10.5281/zenodo.13316133

Additional File 1. OG sample ID to original NCBI metadata. A JSON file mapping OG
sample ID (taxon_ oid) to NCBI metadata (accessions, collection dates).

Additional File 2. DOIs for MGnify samples. DOIs for MGnify samples that were included
in this study, where available.

Additional File 3. DOIs for IMG samples, DOIs for IMG samples that were included in
this study, where available.
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