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15 Summary

16  Monitoring neutrophil gene expression is a powerful tool for understanding disease mechanisms,

17  developing new diagnostics, therapies and optimizing clinical trials. Neutrophils are sensitive to the
18  processing, storage and transportation steps that are involved in clinical sample analysis. This study is
19  the first to evaluate the capabilities of technologies from 10X Genomics, PARSE Biosciences, and HIVE
20  (Honeycomb Biotechnologies) to generate high-quality RNA data from human blood-derived

21 neutrophils. Our comparative analysis shows that all methods produced high quality data,

22 importantly capturing the transcriptomes of neutrophils. 10X FLEX cell populations in particular

23 showed a close concordance with the flow cytometry data. Here, we establish a reliable single-cell

24 RNA sequencing workflow for neutrophils in clinical trials: we offer guidelines on sample collection
25  to preserve RNA quality and demonstrate how each method performs in capturing sensitive cell

26 populations in clinical practice.
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30 Introduction

31  Neutrophils are innate immune effector cells that comprise approximately 60% of leukocytes in

32  circulation. They mediate the body’s first response to invading microorganisms through

33 degranulation, phagocytosis and the production of Neutrophil Extracellular Traps

34  (NETs)(Papayannopoulos, 2018). Neutrophil dysregulation, particularly NET formation, is strongly

35  implicated in human diseases ranging from sepsis, autoimmunity to cancer metastasis and

36 inflammatory diseases (Papayannopoulos, 2018). In the clinic, neutrophils and neutrophil expression
37  signatures are increasingly being used as biomarkers. Notably, the neutrophil-to-lymphocytes ratio,
38  when combined with tumor mutation burden, is being used to forecast the effectiveness of immune
39  checkpoint inhibitors in cancer treatment (Salcher et al., 2022; Valero et al., 2021). Additionally,

40  biomarkers derived from neutrophils are being investigated for their potential to predict major

41  adverse cardiac events (Yiu et al., 2023).

42

43  Single cell sequencing has helped to improve our understanding of the different transcriptional states
44  of neutrophils, and suggested a future role for the neutrophil gene expression signatures as clinical
45  biomarkers. Four distinct and stable transcriptomic states observed during the maturation and

46  activation of neutrophils have been described: NhO, Nh1, Nh2 and Nh3 (Wigerblad et al., 2022)

47  suggesting that a deeper understanding of these transcriptomes could provide disease biomarkers.
48 Expanding on this (Montaldo et al., 2022) have described the transcriptome of neutrophilsin a

49  steady state and upon stress using both bulk RNA-seq approach and scRNA-seq on live cells using 10X
50 3 prime library methods that were modified to capture neutrophils. Here they describe how the

51  different activation status of neutrophils are predictive biomarkers for organ transplant success

52 (Montaldo et al., 2022). A recent study has highlighted how there is a high level of transcriptional

53  heterogeneity in neutrophils isolated from different cancer types. Originally, high levels of invading

54 neutrophils were thought to be a poor prognostic indicator. However, more recent findings suggest
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55 that neutrophils with an antigen presenting transcriptional program are associated with a positive
56  outcome in most cancers (Wu et al., 2024b). Understanding of neutrophil biology and phenotypes
57  will help develop biomarkers for identifying patients that may experience cytokine release syndrome
58 inresponse to T-cell engaging therapies, for example T-cell bispecifics (Leclercq et al., 2022). Taken

59  together, these papers suggest a future requirement for profiling neutrophils in clinical samples.

60

61  Neutrophils contain lower RNA levels than other cell types in the blood (Wigerblad et al., 2022).

62  Classical methods using gel emulsion beads (e.g. 10X) have proved challenging to capture neutrophils
63  and granulocytes (Salcher et al., 2022). Indeed, without modification, 10X 3 prime transcriptomic

64  methods are unable to capture the transcriptomic profiles of neutrophils. However, several groups
65  have demonstrated that generating neutrophil scRNA-seq data is technically feasible, even if there is
66  ahigh percentage of loss. (Wigerblad et al., 2022) detailed a method where addition of an RNAse

67  inhibitor and modifications to the bioinformatic pipeline was sufficient to capture the transcriptome
68  of neutrophils. As part of earlier work looking at neutrophils in whole blood, we showed that the

69  microwell based scRNA-seq BD Rhapsody effectively captured the transcriptome from neutrophils.
70  The percentage of neutrophils retrieved from samples was comparable to results from flow

71  cytometry using CD16, CD11b and CD62L as markers (Leclercq et al., 2022). A direct comparison

72 between the BD Rhapsody and 10X 3 prime suggested that RNA capture is significantly more

73 sensitive in the microwell based method, leading to more sensitive detection of cells with a low RNA

74  content (Salcher et al., 2024).

75

76  Single cell RNA-seq is a powerful tool in drug discovery. However, its potential for use with clinical
77  samples is limited by the requirement to use fresh cells. For PBMCs, protocols have been developed
78  whereby cell separations can be performed at the clinical sites and then cells cryopreserved and

79  banked for later analysis at a central testing facility (van der Wijst et al., 2018). However, for more
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80  sensitive cell types such as neutrophils, this is not possible, as a high proportion of these cells die and
81 the remaining cells are morphologically and functionally altered in the freeze-thaw process

82  (Braudeau et al., 2021; de Ruiter et al., 2018; Verschoor et al., 2018). For these cell types, the single
83  cell analysis must be performed at the clinical site, which reduces the number of clinical sites that are
84  able to collect samples for scRNA-seq analysis. Taken together the biological importance, sensitive
85  nature of neutrophils in combination with the complexity of global clinical trial settings call for an

86  easy-to-use stabilization protocol for subsequent single cell RNAseq.

87

88  We selected three new technologies to compare: Evercode from PARSE technologies, 10X Genomics
89 FLEX solution, and the Honeycomb Technologies HIVE device. The selection criteria was based on the
90 ability to stabilize cells rapidly prior to library prep, the requirement to process large number of cells
91  and a commercially available product that can be distributed easily to clinical sites. PARSE
92  technologies scRNA-seq works on a principle of combinatorial barcoding, where fixed cells are given
93  asample barcode with the reverse transcription step, samples are then pooled and split before a
94  further three successive barcoding steps, including the addition of a unique molecular barcode
95  (Rosenberg et al., 2018). This approach allows for up to 96 multiplexed samples, and has been
96 reported to detect more genes expressed at low levels than the 10X 3 prime library prep (Xie et al.,
97 2020). The HIVE device works on the principle that cells are distributed into nano-wells and
98  stabilized. The samples can be stored at -80°C prior to the library preparation steps. The HIVE device
99 has successfully been used to isolate neutrophils from RBC-depleted donor samples (Sheerin et al.,
100  2023). In the 10X RNA Flex fixed and permeabilized cells are incubated with a set of 18,532 probes
101  covering the entire transcriptome prior to library preparation steps. The use of probe hybridization
102  allows for the capture of smaller fragments of RNA which are found in formalin fixed, paraffin
103  embedded tissue. This method has been successfully used on FFPE tissues and xenograft models

104 (Llora-Batlle et al., 2024; Wang et al., 2023).
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105

106  Neutrophils are reported to have a short half-life ex vivo and the methods of isolation can lead to

107  activation or apoptosis. Therefore, we used the findings of previous studies on neutrophil isolation to
108  define the conditions for this study. Previous reports have demonstrated that neutrophils suitable for
109 functional characterization can be isolated from blood stored at room temperature or at 4°C for 24
110 hours, or up to 72 hours when stored at 37°C (Bonilla et al., 2020; Li et al., 2024; Wood et al., 1999).
111 Incubators for sample storage are not always be available at clinical sites, therefore we opted to look
112 at the impact of storage at 4°C for 24 hours. Currently, there is little information exploring the effect
113  of time from blood draw to analysis or fixation on neutrophil transcriptome stability. This work aims
114  to evaluate the new generation of fixed single cell technologies to determine their suitability for 1)
115 measuring the neutrophil transcriptome and 2) their potential for implementation in clinical trials

116  which require minimal sample processing and sample stabilization.

117
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118 Results

119  Study design

120  To compare the different technologies, blood was drawn from healthy donors and then divided into
121  different aliquots which were tested using 10X Flex, PARSE, and 10X 3 prime chemistries (Figure 1A).
122 Analiquot for each donor was run on the flow cytometer to characterize cells into the major cell

123 types to compare with the results from the scRNA-seq clustering. We evaluated the HIVE devicesin a
124  separate experiment using the same format: The blood samples were profiled using HIVE, 10X 3

125  prime and flow cytometry in parallel (Figure 1B). In order to compare directly across the technologies
126  we limited our analysis to the 18,532 genes captured in the 10X RNA FLEX probe set. We used our
127  established BESCA pipeline (Madler et al., 2021). The knee plots (Supplementary Figure 1) reveal a
128  clear separation between cells and empty droplets for PBMC isolation, aiding in cutoff determination.
129 However, RBC-depleted samples lack this distinct separation due to low gene expression in

130  granulocytes. To ensure inclusion of neutrophils, we applied a minimum threshold of 200 genes and

131 200 UMs across all samples.

132

133 Comparing the quality of scRNA-seq from the different methods

134  We compared the quality of the scRNA-seq data using the following parameters: UMI counts, the
135  number of genes detected and the percentage of mitochondrial genes (Figure 2A). These parameters
136  are used to discriminate low quality cells where the cells are stressed, or cell leakage occurring

137  during processing (llicic et al., 2016). Across all of the scRNA-seq technologies the mitochondrial gene
138 expression levels were low, between 0-8%, with PARSE showing the lowest levels of mitochondrial
139  gene expression, followed by 10X RNA FLEX. 10X 3 prime samples and HIVE which used non-fixed
140  cells as input both had higher levels of mitochondrial genes detected. For all the novel

141  methodologies, the number of genes detected and the number of UMIs were lower in the RBC

142 depleted samples compared to the PBMC samples (Figure 2B & C, Supplementary Figure 2). For the
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143  RBC depleted samples, we observed a bimodal distribution in the violin plots. This was due to two
144  populations of cells with different overall gene expression levels: the PBMC population with high
145  gene expression and the granulocytes with low levels of genes expressed per cell and lower mRNA
146 levels in general (Wigerblad et al., 2022).

147

148 Next, we examined the dynamic range of 10X Flex, Parse, and HIVE alongside the 10X 3 prime

149  technology. To do this we examined the expression of genes that have been classified with high

150  (B2M), high-medium (ACTB), low-medium (CTCF) and low expressed (PGK1). In 10X Flex, HIVE and
151 10X 3 prime we observed that the majority of the cells were expressing high levels of B2M and ACTB,
152  with the number of cells expressing PGK1 and CTCF reducing and the magnitude of expression also
153  decreasing (Supplementary Figures 3 &4). For the PARSE PBMC samples, the number of counts per
154  cell were comparable with the 10X 3 prime and 10X Flex samples. However, the PARSE samples still
155  showed lower expression of B2M and ACTB, and higher levels of the lower expressed genes PGK1
156  and CTCF. From this data, we conclude that the PARSE samples show a different dynamic range to
157  the 10X data and HIVE data with a greater representation of genes with lower levels of expression.
158

159  scRNA-seq Clustering

160  We combined the data from the different technologies for clustering purposes and observed that the
161  cells clustered based on the technology used (Figure 3A). Within the technology-specific clusters we
162  observed that the cells separated into clusters based on the cell separation method used (PBMC

163  versus RBC depletion) (Figure 3A), and finally the cells clustered into different cell types (Figure 3A).
164  We observed that the neutrophils clusters in all technologies were associated with lower n_counts
165  and UMI counts which is in line with the low levels of RNA and gene expression in this cell population
166  (Figure 3B). The 10X 3 prime and HIVE clusters showed higher percentage mitochondrial gene

167  expression (Figure 1A and 3B). Looking at the cell type clustering for each individual technology

168  (Figure 3A & Supplementary Figure 5), we see that the major cell types can be identified clearly in the
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169 four different technologies, however neutrophil clusters were absent in the 10x 3 prime. The cell
170  types separated into more defined clusters for both the 10X technologies. In all technologies, we
171  also observed artifact clusters, which are composed of empty droplets due to the lower cutoffs used,
172 doublets or cell types that cannot be assigned to any group. The throughput of the PARSE and 10X
173 FLEX technologies was much higher than the 10X 3 prime and HIVE technologies. We did observe a
174  high level of doublets in the 10X Flex RBC-depleted samples (~*20%) compared to the other

175  technologies. However, we could easily identify the doublets and could remove them from the

176  analysis (Figure 3A & Supplementary Figure 3C).

177

178  Percentage cell populations determined by scRNA-seq compared to flow cytometry

179 In order to determine how well the fixed cell scRNA-seq technologies captured neutrophils we

180 compared the percentage neutrophils from each technology with the percentage neutrophils

181  determined by flow cytometry on the same sample. Please note that for the 10X RNA FLEX, 10X 3
182  prime and PARSE blood for the same 3 donors was tested. For the HIVE evaluation, blood from a
183  different three was tested. We profiled an aliquot from each blood sample by flow cytometry to
184 identify different cell types. 10X FLEX, PARSE and HIVE all successfully isolated neutrophils from the
185  red blood cell depleted samples. The percentage of neutrophil populations using FLEX were the

186  closest to those determined by flow cytometry (Table 2, Figure 3C, Supplementary Tables 1, 2, 3, 4, 5
187 & 6; Supplementary Figure 6). FLEX and PARSE also compared favorably with flow cytometry results
188  for theisolation of T-cells, B-cells, Monocytes, Natural Killer cells. Indeed, the performance was

189  comparable on the PBMC isolations with the 10x 3 prime methods and flow cytometry

190 (Supplementary Tables 1, 2, 3,4, 5 & 6).

191

192  Identification of neutrophil populations

193  We looked at the clustering within the granulocyte clusters for the different technologies to

194  determine if different populations of neutrophils could be identified. Unsupervised clustering
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195 demonstrated that two different populations of neutrophils can be defined in the FLEX (Cluster 46)
196  and PARSE (Cluster 43) data (Figure 3D), these clusters have elevated expression of LTF and BPI

197  compared to the other granulocyte clusters. A second group consisting of clusters 3 (10X Flex), 10
198  and 13 (HIVE) is characterized by expression of only FCGR3B, CSF3R and S100A8, the canonical

199  markers for neutrophils found in the blood (Figure 3D). A population expressing Basophil markers
200  (FCER1A, HDC and MS4A2) was defined only in the FLEX data set (Cluster 39) (Figure 3D&E). We were
201  unable to identify Eosinophils in any of the data sets.

202

203 Time course for optimum sampling of neutrophils

204  Neutrophils are a particularly sensitive cell type with a reported short half-life In Vivo and In Vitro
205 (Lahoz-Beneytez et al., 2016; Scheel-Toellner et al., 2004). In order to determine the maximum time
206  that samples could be stored prior to processing, we tested cells at different time points after blood
207 draw (immediate processing, 2, 4, 6, 8 and 24 hours after blood draw), prior to fixing and measuring
208  transcriptome by 10X Flex. After the cell isolation steps we performed a cell count prior to

209  stabilization (data not shown). We observed little overall cell death or decrease in cell count over the
210 24 hours after the blood draw. In concordance with this, the general quality of the scRNA-seq data
211 was unchanged across the time course. There was little increase in expression of mitochondrial

212 genes, with all samples having expression levels of <1% for mitochondrial genes, number of counts or
213 UMI counts across the time course (Supplementary Figure 7A, B &C). There were also no differences
214  inthe % cell types over time since blood draw as determined the scRNA-seq (Supplementary Figure
215 7D, E & F), indicating that there is no apoptosis of specific cell types taking place over the 24 hours.
216  We compared the transcriptional profile of neutrophils at different time intervals after the blood
217  draw and we did observe that the number of genes differentially regulated compared to the Oh time
218  point started to significantly increase 4 hours post blood draw, with the number of genes up and

219  down regulated increasing at each time point (Figure 4A & B). The most significantly changed

220  pathway was associated with cell stress defined as Stress MP5 by (Gavish et al., 2023). In our results,

10
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we observed that stress signatures were upregulated in all time points 2 hours after blood draw,
showing the importance of prompt sample processing (Figure 4C). This data is concordance with the
previous report by (Connelly et al., 2022) which found that markers of neutrophil activation,
apoptosis and degranulation 4 hours post blood draw. Therefore, despite live, functionally active
neutrophils being present in blood samples 24 hours post blood draw, the transcriptome of
neutrophils is significantly changed after 4 hours post blood draw. Our results indicate that

immediate fixation of neutrophils is required if the transcriptome is being analyzed.

11
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229 Conclusions

230  The recent advances in fixed cell scRNA-seq allowing the rapid stabilization and storage of cells prior
231  tolibrary prep will enable the wider implementation of scRNA seq analysis in clinical trials. 10X FLEX,
232 PARSE and HIVE protocols would support a model where cells are stabilized at the clinical site

233  allowing storage and transport to the analytical labs where library prep and sequencing can take

234  place. Practically, the HIVE devices presents a straightforward protocol for use at a clinical site, with
235  the cells simply pipetted into the device after the cell separation step. We also found that cells stored
236  in HIVE devices at -80C for up to 3 weeks showed good quality data comparable to cells processed
237  immediately (data not shown). For Flex, the samples need to be centrifuged after the cell separation
238  and then resuspended in paraformaldehyde. Since these experiments were completed, 10X have
239  modified their protocols allowing whole blood to be stabilized with paraformaldehyde, then stored
240  andtransported at -80°C. This would allow the cell separation and analysis to be performed at the
241  analytical site, presenting a simple procedure for cell stabilization at the clinical site. The PARSE

242  Technologies protocol for fixation of cells requires several consecutive centrifugation steps, making it
243 the protocol that requires the longest hands on time for the fixation steps and practically the hardest
244 to perform at a clinical site.

245

246 Our experiments indicate that all three of the technologies produce high scRNA-seq quality data,

247  with low levels of mitochondrial gene expression. FLEX and PARSE, which use fixed cells, have lower
248  levels of mitochondrial gene expression than 10X 3 prime and HIVE that use live or frozen cells as
249  input. This may be due to the release of cytoplasmic RNA on fixation or permeabilization of the cell
250 (DeSimone et al., 2024). Interestingly, for PARSE data we observed a different dynamic range than
251  observed for the other technologies. Here we observed that the fully combinatorial barcoding

252  approach (Rosenberg et al., 2018) led to greater sensitivity of detection of genes with lower

253  expression levels. Interestingly, for approaches where combinatorial barcoding techniques were

254  combined with droplet based fluidic systems for scRNA-seq have been reported to have lower

255  sensitivity of detection for genes that have a low level of gene expression in comparison to 10X 3
12
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256  prime, this maybe due to the combinatorial barcoding being performed inside the droplet, as

257  opposed to within the fixed cell (PARSE) (Datlinger et al., 2021; Wu et al., 2024a). All three fixed

258  scRNA-seq methods successfully captured neutrophils from RBC depleted samples. Our analysis

259  suggested that 10x FLEX captured the different white blood cell components in the red blood cell
260  depleted samples to a similar percentage as flow cytometry. HIVE and PARSE, while capturing

261  neutrophil profiles did not compare as favorably with the flow cytometry results. For cell type

262  assignment in general, we observed the closest alignment with flow cytometry using FLEX, which

263  performed well across all cell types. PARSE and HIVE both had greater deviation from the cell type
264  proportions estimated by flow cytometry. Although technical optimization of the methods and

265  bioinformatic pipeline may improve the cell assignment, these results are in alignment with a

266  previously published study on PBMC which showed that cell type calling for FLEX was closely aligned
267  with CyTOF for the same sample, whereas greater differences were observed with PARSE and HIVE
268  (DeSimone et al., 2024).

269

270 Unsupervised clustering of the granulocyte cells across all the methods tested defined two distinct
271  groups of neutrophils. The first subtype, expressing BPI and LTF was detected in the FLEX and PARSE
272  dataaligns with immature neutrophils: LTF in particular has been shown to be highly expressed at
273 earlier time points in neutrophil differentiation (Grieshaber-Bouyer et al., 2021). A neutrophil type
274  was observed in all three technologies and is characterized by expression of FCGR3B, CSF3R and

275  S100A8 markers of mature neutrophils (Grieshaber-Bouyer et al., 2021). In the FLEX data only, we
276  were able to identify a population of basophils, a rare and sensitive cell type that is <1% of cells in
277  peripheral blood (Min et al., 2012). The cell type was not detected by the other technologies. Taken
278  together, we could only differentiate all three different cell types detected in the 10X FLEX data. FLEX
279  has previously been shown to have more stable gene expression and improved variance compared to
280  HIVE and PARSE (De Simone et al., 2024), we propose that this may play a role in detecting these rare

281  cell types.

13
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282  This work compared three novel methods to determine if scRNA-seq could be implemented at

283  clinical sites for profiling neutrophils. All three methods produced high quality data and were able to
284  capture neutrophils from peripheral blood samples. However, for clinical samples we determined
285  that FLEX had the best performance, with the proportions of neutrophils captured in blood samples
286  comparable to those observed by flow cytometry and the workflow being the most amenable to
287  sample collection at the clinical site. Additionally using FLEX, we were able to define two distinct
288  populations of neutrophils: immature neutrophils and those expressing canonical neutrophil

289 markers. We recommend that the time between blood draw and fixation is limited to 2 hours, as
290  after this time we observe an increase in differential gene expression regulation associated with
291  stress. To our knowledge, this is the first study to present a route to scRNA-seq implementation in
292  clinical trials and a powerful tool for biomarker development and understanding of neutrophil

293  biology.

294
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316  Supplemental Information titles and legends

317
318  Supplementary Table 1: Comparison of the technologies used in this study

319
320  Supplementary Table 2: Cell population comparison. Table shows the mean % neutrophils of the

321  three donors tested determined by cell type analysis. For each technology there is a Mean absolute
322 error (MAE) and Root mean squared error (RMSE) which shows the difference between the flow
323  cytometry values and the scRNA-seq derived results.

324
325  Supplementary Table 3: Donor 1 cell population comparison for Flow cytometry, 10X 3 prime

326 transcriptome, 10X FLEX, PARSE for PBMC isolation and RBC depletion

327
328  Supplementary Table 4: Donor 2 cell population comparison for Flow cytometry, 10X 3 prime

329 transcriptome, 10X FLEX, PARSE for PBMC isolation and RBC depletion

330
331  Supplementary Table 5: Donor 3 cell population comparison for Flow cytometry, 10X 3 prime

332 transcriptome, 10X FLEX, PARSE for PBMC isolation and RBC depletion

333
334  Supplementary Table 6: Donor 4 cell population comparison for Flow cytometry,10X 3 prime

335  transcriptome and HIVE for PBMC isolation and RBC depletion

336
337  Supplementary Table 7: Donor 5 cell population comparison for Flow cytometry,10X 3 prime

338  transcriptome and HIVE for PBMC isolation and RBC depletion

339
340  Supplementary Table 8: Donor 6 cell population comparison for Flow cytometry,10X 3 prime

341  transcriptome and HIVE for PBMC isolation and RBC depletion

342
343  Supplementary Table 9: Flow cytometry antibodies

344
345  Supplementary Figure 1: Knee plots for PARSE, FLEX and HIVE data for number of genes expressed

346  per cell and UMI counts per cell for (A) PBMC and (B) RBC depleted samples.
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347  Supplementary Figure 2: Violin plots showing the (A) mitochondrial gene expression levels (B)
348 n_counts and (C) UMI counts for 10x 3 prime, 10X FLEX and PARSE for PBMC samples.

349
350 Supplementary Figure 3: A comparison of the dynamic range for the 10X 3prime, 10X FLEX and

351 PARSE for 4 different genes that represent highly expressed (B2M), medium high expression (ACTB),
352 medium low (PGK1) and low (CTCF) expression. These graphs show the expression in the RBC
353 depleted samples.

354
355  Supplementary Figure 4: A comparison of the dynamic range for the 4 different technologies using 4

356 different genes that represent highly expressed (B2M), medium high expression (ACTB), medium low
357  (PGK1) and low (CTCF) expression. These graphs show the expression of the PBMC samples.

358
359  Supplementary Figure 5: UMAPs cell separations for cell type for each individual technology: 10X 3

360 prime, 10X FLEX, HIVE and PARSE.

361
362  Supplementary Figure 6: Bar graphs showing the % neutrophils determined by each technology

363 compared to the flow cytometry result. Each graph displays the data for a single donor.

364
365  Supplementary Figure 7: Violin plots showing the mitochondrial gene expression levels, n_counts

366  and UMI counts for samples taken 2, 4, 6, 8 and 24 after blood draw. The data was generated using
367 10X FLEX and each donor is shown individually: A) donor 1, (B) donor 2, (C) donor 3. The % cell type
368  for the time course is shown in (D) donor 1 (E) donor 2 and (F) donor 3.

369
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370  Figure legends

371  Figure 1: Diagram showing the experimental design to test the four different technologies. (A) PARSE,
372 10x FLEX, 10x 3 prime and flow cytometry were tested on the same three blood samples, and (B)

373 HIVE was tested on a different set of blood samples from three different donors at a different date.
374  The samples were also profiled using flow cytometry.

375
376  Figure 2: Violin plots showing the (A) mitochondrial gene expression levels (B) n_counts and (c) UMI

377 counts for 10x 3 prime, 10X FLEX, PARSE and HIVE for RBC depleted samples.

378
379  Figure 3: UMAPs cell separations with color coding denoting (A) technology, cell separation used and

380 % different cell types. (B) The quality control parameters are shown on UMAPs color coded by UMI
381  counts, n_counts and mitochondrial gene expression. (C) Box plots showing the % of B cells, T cells,
382  neutrophils, monocytes and NK cells determined by flow cytometry, FLEX and PARSE or flow

383  cytometry and HIVE. (D) UMAP of the granulocyte clusters coloured by technology, unsupervised
384  clustering of granulocytes. (E) Dot plot showing the expression of the top 5 marker genes per cluster,
385  for those clusters with >100 cells.

386

387  Figure 4: Transcriptional profile of neutrophils after blood draw (A) Graph showing the number of
388  genes differentially regulated (up or down) in neutrophil pseudobulks at 2h, 4h, 6h, 8h or 24h after
389  blood draw compared to the sample processed immediately after blood draw (0Oh). The data shows
390 results for the 3 donors (n=3) for each time point. (B) Volcano plots for the neutrophil pseudobulk
391  showing magnitude of the genes up or down regulated compared to Oh for each time point tested.

392  (C) Pathway enrichment for cell stress for neutrophil pseudobulks over the time course.
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ass STAR[EIMethods

489 Key resources table

REAGENT or RESOURCE SOURCE IRDENTIFIE

Antibodies

CD3, BUVSO05 intracellular BD Bioscience AB_28701
83

CD4 BUV737 intracellular BD Bioscience AB_28700
79

CD14 BUV563 surface BD Bioscience AB_28708
60

CD8 BUV496 surface BD Bioscience AB_28707
59

CD45 BUV395 surface BD Bioscience AB_28695
19

HLA-DR BV785 surface Biolegend AB_25634
61

CD56 BV750 surface BD Bioscience AB_28718
24

CD11c BV711 surface BD Bioscience AB_27380
19

CD19 BV650 surface Biolegend AB_25642
55

CD25 BV605 surface BD Bioscience AB_27401
27

CD123 BV421 surface Biolegend AB_10962
571

CD45RA PerCP-Cy5.5 Biolegend AB_89335

surface 7

CD15 Pe-Cy7 surface BD Bioscience AB_10563
901

CD20 Pe-Cy5 surface Biolegend AB_31425
6

CD193 PE-CF594 BD Bioscience AB_27376
60

FOXP3 PE intracellular Biolegend AB_49298
6

CCR7 APC-Cy7 surface Biolegend AB_10916
390

CD16 APC surface Biolegend AB_31421
2

human IgG Jackson ImmunoResearch,West Grove, Pennsylvania AB_23370
43

Biological samples

Six healthy volunteer donor | Roche medical centre

blood samples

Chemicals, peptides, and recombinant proteins

Phosphate buffered saline ThermoFisher, Massachusetts Catalogue

(PBS) #
10010023
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2% FBS VWR International, Pennsylvania 89510-
194

True Stain Monocyte Biolegend 426101

Blocker

Fixable Green Dead Cell ThermoFischer Scientific, Waltham, Massachusetts L23101

Stain

Critical commercial assays

Next GEM Single Cell 3B 10x Genomics, Pleasanton California PN-
Reagent Kits v3.1 1000121
Chromium Next GEM Chip G | 10x Genomics, Pleasanton California PN-
Single Cell Kit, 16 rxns 1000127
Single Index Kit T Set A, 96 10x Genomics, Pleasanton California PN-

rxns 1000213
Chromium Next GEM Single | 10x Genomics, Pleasanton California PN-

Cell Fixed RNA Sample 1000414
Preparation Kit

Chromium Fixed RNA Kit, 10x Genomics, Pleasanton California PN-
Human Transcriptome, 1000476
Chromium Next GEM Chip Q | 10x Genomics, Pleasanton California PN-
Single Cell Kit 1000422
Dual Index Kit TS Set A 96 10x Genomics, Pleasanton California PN-

rxns 1000251
HIVE collectors Honeycomb

HIVE scRNAseq v1 Sample Honeycomb

Capture Kit

Parse Evercode cell fixation Parse biosciences

v2

Evercode™ WT Mini v2 kit Parse biosciences

Deposited data

Software and algorithms

Scanpy https://scanpy.readthedocs.io/en/stable/generated/scanpy.tl.sc | SCR_0181
ore_genes.html 39
Besca (https://github.com/bedapub/besca/blob/master/besca/datase
ts/genesets/CellNames scseqCMs6_sigs.gmt
Uniform Manifold https://github.com/Imcinnes/umap SCR 0182
Approximation and 17
Projection (UMAP)
algorithm)
Leiden algorithm https://github.com/vtraag/leidenalg
Msigdb : https://www.gsea- SCR 0168
msigdb.org/gsea/msigdb/human/collections.jsp 63
Limma http://bioinf.wehi.edu.au/limma/ SCR_0109
43
Reactome pathways https://reactome.org SCR 0034
85
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cellranger 6.0.2 mkfastq

https://www.10xgenomics.com/support/software/cell-

SCR_0173
ranger/latest/analysis/inputs/cr-mkfastq 44
bcl-convert 3.8.4 https://emea.support.illumina.com/sequencing/sequencing_sof
tware/bcl-convert/downloads.html
split-pipe v1.0.5p: available | https://support.parsebiosciences.com/hc/en-
to PARSE customers on us/articles/20403758539924-How-Do-I-Access-the-Parse-
request Biosciences-Pipeline
cellranger https://www.10xgenomics.com/support/software/cell- SCR 0173
ranger/latest/release-notes/cr-release-notes 44 -
Other
10mL EDTA KCL blood 18103
collection tubes
Ficoll GE healthcare
SepMate-50 tubes Stemcell technologies 85450
50 ml Falcon tube
EasySep™ RBC Depletion Stemcell technologies 18170
Reagent
EasySep Easy Eights magnet | Stemcell technologies 18103
S1Reagent Kit v1.5 (100 lllumina 2002831
cycles) 9
Fixable Green Dead Cell ThermoFischer Scientific L23101
Stain
50% Brilliant Stain Buffer BD Biosciences 659611

Resource availability

Lead contact

Further information and requests for resources and reagents should be directed to and will
be fulfilled by the lead contact, Emma Bell (emma.bell@roche.com)

Materials availability

All of the materials used in this study were commercially available

Data and code availability
e All data reported in this paper will be shared by the lead contact upon request.

e This paper does not report original code

e Any additional information required to reanalyze the data reported in this work
paper is available from the lead contact upon request

Experimental model and study participant details
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508

509 Whole blood was drawn from 6 healthy human donors. We do not have any information on
510 the sex, gender, ancestry, age, race or ethnicity. These factors are not anticipated to affect
511 the findings of the study which is to compare methods of scRNA-seq as we are not looking at
512  biological variation.

513

s14 Method details

515  Samples

516 Whole blood from healthy donors was drawn into 10mL EDTA KCL or sodium Heparin tubes.
517  For the technology comparison experiments, the blood was divided into 2 ml aliquots, then
518  processed immediately for PBMC isolation or red blood cell removal. In order to determine
519  the time limit for processing and fixing samples after the blood draw we set up a time

520  course. 10 ml of blood was drawn from three donors, a 2 ml aliquot was processed

521 immediately, then subsequent aliquots were processed (RBC depletion) 2, 6, 8 and 24 hours
522  after the original blood draw. In the interim, the sample was stored at 4°C.

523  PBMC Isolation

524  PBMC were isolated from whole blood using Ficoll (GE healthcare, lllinois) separation

525 according to manufacturer’s instructions. Briefly 15 ml Ficoll was added to SepMate tubes
526  (Stemcell technologies, Vancouver, Canada). Blood was diluted 1:1 with phosphate buffered
527  saline (PBS) (ThermoFischer, Massachusetts) + 2% FBS (VWR International, Pennsylvania).
528  The diluted blood was then added to the SepMate tube. Tubes were then sealed and

529  centrifuged at 1200xg for 10 mins at room temperature. The top layer of cells, containing
530 enriched mononuclear cells was decanted int,0 a new 50 ml Falcon tube. The isolated cells
531  were then washed three times with PBS+2%FBS.

532 RBC Removal

533  RBCs were removed from blood samples using the EasySep™ RBC Depletion Reagent

534  (Stemcell technologies) and the associated EasySep Easy Eights magnet, according to the
535  manufacturer’s instructions. Briefly, 5mls of whole blood was diluted with PBS-2%FBS

536  solution. The EDTA and RBC depletion solution were added to the samples prior to gently
537  pipette mixing. The samples were transferred to the magnet and left for 5 mins. The

538  supernatant was transferred to a new 14ml tube and the process repeated at least 3 times,
539  or until no RBCs were visibly remaining.

540  Cell counting and viability

541  After the cell isolations and before fixation or library preparation, the cell viability and

542  number were measured using a Cellaca Cellcounter (Nexcellom Bioscience, Massachusetts).
543  The viability of all samples was high and ranged between 100-96% viability. The number of
544  cells required as input for each different technology is summarized in Table 1. For the library
545  preps for fixed cells, the cell number and viability were counted before fixation and then the
546  fixed cells were counted prior to library prep. For PBMC samples between 250 000- 400 000
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547  cells were fixed per sample, and for the RBC depleted samples 500 000- 850 000 cells per
548  sample were fixed.

549  10x 3’transcriptome

550

551  Aninput of 8000 live cells per sample were used for the 10X 3 prime libraries. The libraries
552  were prepared using the Next GEM Single Cell 3 Reagent Kits v3.1. This involves GEM

553  generation on the Chromium instrument, where gel beads were mixed with the live cells and
554  partitioned using oil droplets, resulting in droplets containing a single cell and a gel bead

555  containing barcodes and primers. After barcoding, samples were transferred to a PCR

556  machine for the reverse transcriptase step. Full length, barcoded cDNA from poly adenylated
557  mRNAis then purified using magnetic beads, before PCR amplification. After fragmentation
558  and size selection, P5 and P7 illumina adapters alongside sample barcodes were added to
559  create the final libraries. For sequencing, we targeted 50,000 reads per cell. Therefore, we
560 sequenced the samples on a single NovaSeq S1 flow cell.

561

562 10x FLEX

563  Live cells were fixed using the Chromium Next GEM Single Cell Fixed RNA Sample

564  Preparation Kit (10X Genomics) according to the manufacturer’s instructions. For PBMC

565 samples between 250 000 - 400 000 cells were fixed per sample, and for the RBC depleted
566  samples 500 000- 850 000 cells per sample were fixed. Briefly, cells were centrifuged and

567  supernatant removed. Cells were resuspended in the kit supplied fixation buffer, then

568 incubated for 16 hours at 4°C. The cells were centrifuged and supernatant removed before
569  resuspension in the Quenching buffer. The cells were washed, counted and the number of
570 cells adjusted to that of the lowest sample. The Chromium Next GEM Single Cell Fixed RNA
571 Sample Preparation Kit and Chromium Fixed RNA Kit, Human Transcriptome, Chromium Next
572 GEM Chip Q Single Cell Kit were used according to manufacturer’s instructions.

573

574  In summary, samples were incubated with the human transcriptome probes to allow

575  hybridization for 16 hours at 42°C. The samples were then washed and transferred to the
576  Chromium X instrument for GEM generation, during this stage the cell is partitioned into an
577  oil droplet containing a 10x barcoded gel bead, so that cell specific barcodes and UMIs are
578 added to the hybridized probes. The probes are then extended and then PCR amplified prior
579  to the addition of P5 and P7 illumina adapters and sample index barcodes. The samples were
580 sequenced on a Novaseq 6000 to a depth of at least 15 000 reads per cell using an SP -

581  100cycles v1.5 reagent kit.

582

583  HIVE

584  Eight HIVE collectors were loaded with freshly isolated cells. HIVE collectors contain more
585 than 65,000 60um-wide picowells that are pre-loaded with barcoded 3’ transcript capture
586 beads. Each collector was loaded by centrifugation with a total of 15,000 cells according to
587 HIVE scRNAseq vl Sample Capture Kit User Protocol (Revision A). Once loaded, 3 HIVE
588  devices were incubated for 30 minutes at room temperature before direct processing, and
589  the remaining HIVE devices were frozen at -20°C for later processing after 1 week or 3 weeks
590 of storage. Upon thawing the HIVE devices were equilibrated for 60 minutes at room
591 temperature before processing. All Hive devices, whether processed directly or after storage

592  at-20°C were processed the same way and according to the manufacturer’s instructions.
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593

594  Briefly, the cells were lysed and hybridized to beads in the HIVE collectors. Beads were
595  recovered by centrifugation into a bead collector and transferred to a filter plate set on a
596  vacuum manifold allowing beads washing and buffer exchanges by aspiration. After the first
597  strand synthesis (45 min at 37°C), 1X NaOH was added and beads washed 3 times before the
598  2nd strand synthesis (37°C for 30 min). Samples were washed and transferred to a deep well
599 plate for whole transcriptome PCR amplification. After a double-sided SPRI clean-up,
600 samples were indexed by PCR and a final SPRI was performed. Libraries size was checked the
601  bioanalyzer on high sensitivity DNA chips (Agilent), concentration determined on Qubit 3.0
602 using the dsDNA High sensitivity kit and sequenced on the Novaseq 6000 with a S1 -
603  100cycles v1.5 reagent kit, using HIVE custom primers and 25-8-8-50 sequencing cycles.

604

605  PARSE Evercode

606 Live cells were fixed using the Evercode Cell Fixation v2 kit {Parse Biosciences, Washington).
607 For PBMC samples between 250 000- 400 000 cells were fixed per sample, and for the RBC
608  depleted samples 500 000- 850 000 cells per sample were fixed according to the

609  manufacturer’s instructions. Cells were spun down at 200 x g at 4°C for 10 mins before

610 resuspension in a prefixation buffer. The cells suspension was then passed through a 40 pm
611  strainer to remove cell clumps. A fixation additive was then added to the suspension and the
612  sample was placed on ice for 10 mins, before the addition of a permeabilizing solution and a
613  further 3 minute incubation on ice. A neutralization buffer was added before a further

614  centrifugation step for 10 minutes, 200 x g at 4°C. The supernatant was removed and cells
615  were resuspended in Cell Buffer and DMSO added to the samples. The fixed cells were then
616  processed using the Evercode™ WT Mini v2 kit according to the manufacturer’s instructions.
617  This protocol uses successive pooling and barcode steps. In the first step, well barcodes are
618 added and reverse transcription of mRNA takes place within the cell. After this step the

619  samples are then pooled and redistributed and further barcodes ligated a further two times.
620  Inthe third step UMI’s are added to the cDNA. In the last step, cells are lysed, the cDNA

621 isolated and sequencing adapters and sub-library barcodes added by PCR. The resulting

622 libraries were sequenced on the Nova-seq 6000 using an S1 flow cell and S1 Reagent Kit v1.5
623 (100 cycles) with PE 74bp_6 index_86bp reads

624

625  Flow Cytometry

626 250 000 live cells were stained for flow cytometry, cells were centrifuged at 320 x g for 5
627  mins at 4°C. The supernatant was removed and cells resuspended in 50l of blocking

628  solution containing 1:100 dilution of human IgG (Jackson ImmunoResearch,West Grove,
629  Pennsylvania), 1:50 dilution True Stain Monocyte Blocker (Biolegend, California) and 1:800
630 dilution of Fixable Green Dead Cell Stain (ThermoFischer Scientific, Waltham, Massachusetts)
631  in PBS. The samples were incubated at 4°C for 20 minutes. The samples were centrifuged at
632 320 x g and washed with FACS buffer (PBS supplemented with 2% FCS and 2mM EDTA). The
633  cells were resuspended in 50uL of a solution containing a panel of antibodies for the

634 following surface markers: CD14, CD8, CD45, HLA-DR, CD56, CD11c, CD19, CD25, CD123,
635 CDA45RA, LD, CD15, CD20, CD193, CCR7 and CD16. The mix was prepared in a buffer

636  containing 50% FACS buffer and 50% Brilliant Stain Buffer (BD Biosciences, Franklin lakes,
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637  New Jersey). The antibodies (previously titrated) are summarized in Table 3. The cells were
638  then incubated for 20 mins at 4°C. Then centrifuged and washed with FACS buffer before
639  incubating for 30 mins with Foxp3 Fixation/Permeabilization working solution

640 (Thermofischer Scientific) at room temperature in the dark. The cells were washed in

641  permeabilization buffer, before the addition of the intracellular antibodies: CD3, CD4 and
642  FOXP3 prepared in permeabilization buffer / Brilliant Stain Buffer (1:1 vol/vol) (details in
643  Supplementary Table 3) and incubated for 30 mins at room temperature. The samples were
644  further centrifuged at 620 x g and resuspended in FACS buffer before running on a

645  FACSymphony™ A5 Cell Analyzer (BD Bioscience).

646
647

648 Quantification and statistical analysis
649
650  Bioinformatic Analysis

651 Intotal, we sequence 29 samples for the technology comparison, six using Parse, six using
652 10X Flex, six using 10X 3’, eight using HIVE, and three using 10X 3’ from the HIVE donors. The
653  reads from all technologies were mapped to the human genome (hg38) and we created one
654  gene-by-cell count matrix per sample. FASTQ files from Parse were generated using bcl-

655  convert 3.8.4 and the split-pipe v1.0.5p was utilized to generate the count matrices. FASTQ
656  files from 10X Flex were generated using 10X Genomics cellranger 6.0.2 mkfastq and

657  cellranger 7.1.0 multi was utilized to generate the count matrices. FASTQ files from 10X 3’
658  were generated using 10X Genomics cellranger 6.0.2 mkfastq and cellranger 6.0.2 count was
659  utilized to generate the count matrices. FASTQ files from HIVE were generated using Bcl2fastq
660 for demultiplexing and BeeNet (Honeycomb) for data pre-processing to generate the count
661  matrices.

662 The count matrices were further processed using BESCA (Madler et al., 2021) and Scanpy
663  (Wolf et al., 2018). Low cutoffs for number of genes expressed and number of UMIs per cell
664  were used in order to capture the neutrophils. This method has been used by previous

665  studies (Wauters et al., 2021), as neutrophils typically have a lower levels of gene

666  expression, and generally have low levels of RNA meaning that they would be filtered out
667  using strict thresholds that have been developed for PBMCs. We applied the same cut-offs
668  for number of genes and UMls detected for all samples in order to achieve high

669  comparability. Cells that expressed at least 200 and not more than 10,000 genes and

670 included at least 200 and not more than 50,000 UMIs were kept for downstream analysis. In
671  addition, we removed cells with high mitochondrial gene expression, for Parse PBMC

672  samples above 1%, Parse RBC depleted samples above 2%, and all other samples above 10%
673  of UMIs mapping to mitochondrial genes. This resulted in 332,783 total cells.

674
675 Normalization was performed for the entire dataset using count depth scaling to 10,000
676  total counts per cell, resulting in the cp10k (counts per 10,000) unit. Count values were log-
677  transformed using natural logarithm: In(cp10kZ+211). To reduce dataset dimensionality
678  before clustering, the highly variable genes within the dataset were selected. Genes were
679  defined as being highly variable when they have a minimum mean expression of 0.0125, a
680  maximum mean expression of 3 and a minimum dispersion of 0.5. Technical variance was
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681  removed by regressing out the effects of count depth and mitochondrial gene content and
682  the gene expression values were scaled to a mean of 0 and variance of 1 with a maximum
683  value of 10. The first 50 principal components were calculated and used as input for

684  calculation of the 10 nearest neighbours. The neighbourhood graph was then embedded
685  into two-dimensional space using the Uniform Manifold Approximation and Projection

686  (UMAP) algorithm) [25] Cell communities are detected using the Leiden algorithm (Traag et
687  al., 2019) at a resolution of 1.

688 We performed cell type annotation for the clustering of cells from each technology

689 individually and mapped it to the entire dataset. We assessed the cell types by calculating
690  signature scores for all signatures provided by Besca

691  (https://github.com/bedapub/besca/blob/master/besca/datasets/genesets/CellNames_scse
692 gCMs6_sigs.emt). The score is the average expression of a set of genes subtracted with the
693  average expression of a reference set of genes, calculated by Scanpy’s score_genes function
694  (https://scanpy.readthedocs.io/en/stable/generated/scanpy.tl.score genes.html). For the
695  cell type composition comparison we removed clusters of doublets and other artifacts

696  before calculating cell type fractions per sample.

697  For each single cell sequencing technology, we calculated the mean absolute error (MAE)
698  and root mean squared error (RMSE) of the neutrophil abundance compared to the

699  abundance obtained by FACS. For each donor, we averaged the neutrophil abundance from
700  three FACS experiments (technical replicates). Then, for each donor and technology, we

701  determined the absolute difference between the FACS-derived abundance and the

702  sequencing technology- derived abundance. The average of these differences across donors
703  is the mean absolute error (MAE) for each technology. Similarly, we calculated the root

704  mean squared error (RMSE) by first determining the squared differences between the FACS-
705  derived and sequencing technology-derived abundances, then averaging these squared

706  differences, and finally taking the square-root of this average for each technology.

707  For the time course experiment, we sequence 18 samples, all on the 10X Flex technology.
708  The dataset was processed as described above, but different filtering criteria were applied to
709  the cells: number of genes: 200 - 4,000; number of UMI counts 200 - 15,000; maximal

710  mitochondrial fraction 1% (see Suppl. Fig. 7a-c). In order to identify differentially expressed
711 genes in neutrophils over time, we generated a pseudobulk gene-by-sample matrix for the
712  neutrophils identified. We tested each time point (2h, 4h, 6h, 8h, 24h) versus immediate
713 processing (Oh) by fitting the model: ~ 0 + Donor + Time point. We filtered genes at a cut-off
714  of average transcripts per million larger than 0.25. 12,726 genes were assessed for

715  differential expression using limma+voom (source: http://bioinf.wehi.edu.au/limma/). We
716  chose relaxed cut-offs to allow for high sensitivity to detect changes, fold-change larger than
717 1.5 or less than 0.666 and false discovery rate smaller than 10%. Afterwards we counted the
718  number of up- or down-regulated genes according to these cut-offs. We applied gene set
719  enrichment analysis using Camera (Wu and Smyth, 2012). We used multiple geneset

720  collections, including MSigDB hallmark (source: https://www.gsea-

721 msigdb.org/gsea/msigdb/human/collections.jsp), Reactome pathways (source:

722 https://reactome.org), and an internally curated set of cancer immuno-therapy (CIT)

723  signatures. The latter includes a Stress MP5 (meta-program 5) signature discovered by

724  (Gavish et al., 2023) which showed highest enrichment.

725
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