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Summary 15 

Monitoring neutrophil gene expression is a powerful tool for understanding disease mechanisms, 16 

developing new diagnostics, therapies and optimizing clinical trials. Neutrophils are sensitive to the 17 

processing, storage and transportation steps that are involved in clinical sample analysis. This study is 18 

the first to evaluate the capabilities of technologies from 10X Genomics, PARSE Biosciences, and HIVE 19 

(Honeycomb Biotechnologies) to generate high-quality RNA data from human blood-derived 20 

neutrophils. Our comparative analysis shows that all methods produced high quality data, 21 

importantly capturing the transcriptomes of neutrophils. 10X FLEX cell populations in particular 22 

showed a close concordance with the flow cytometry data. Here, we establish a reliable single-cell 23 

RNA sequencing workflow for neutrophils in clinical trials:  we offer guidelines on sample collection 24 

to preserve RNA quality and demonstrate how each method performs in capturing sensitive cell 25 

populations in clinical practice. 26 

 27 
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Introduction 30 

Neutrophils are innate immune effector cells that comprise approximately 60% of leukocytes in 31 

circulation. They mediate the body’s first response to invading microorganisms through 32 

degranulation, phagocytosis and the production of Neutrophil Extracellular Traps 33 

(NETs)(Papayannopoulos, 2018). Neutrophil dysregulation, particularly NET formation, is strongly 34 

implicated in human diseases ranging from sepsis, autoimmunity to cancer metastasis and 35 

inflammatory diseases (Papayannopoulos, 2018). In the clinic, neutrophils and neutrophil expression 36 

signatures are increasingly being used as biomarkers. Notably, the neutrophil-to-lymphocytes ratio, 37 

when combined with tumor mutation burden, is being used to forecast the effectiveness of immune 38 

checkpoint inhibitors in cancer treatment (Salcher et al., 2022; Valero et al., 2021).  Additionally, 39 

biomarkers derived from neutrophils are being investigated for their potential to predict major 40 

adverse cardiac events (Yiu et al., 2023). 41 

 42 

Single cell sequencing has helped to improve our understanding of the different transcriptional states 43 

of neutrophils, and suggested a future role for the neutrophil gene expression signatures as clinical 44 

biomarkers. Four distinct and stable transcriptomic states observed during the maturation and 45 

activation of neutrophils have been described: Nh0, Nh1, Nh2 and Nh3 (Wigerblad et al., 2022) 46 

suggesting that a deeper understanding of these transcriptomes could provide disease biomarkers. 47 

Expanding on this (Montaldo et al., 2022)  have described the transcriptome of neutrophils in a 48 

steady state and upon stress using both bulk RNA-seq approach and scRNA-seq on live cells using 10X 49 

3 prime library methods that were modified to capture neutrophils. Here they describe how the 50 

different activation status of neutrophils are predictive biomarkers for organ transplant success 51 

(Montaldo et al., 2022).  A recent study has highlighted how there is a high level of transcriptional 52 

heterogeneity in neutrophils isolated from different cancer types. Originally, high levels of invading 53 

neutrophils were thought to be a poor prognostic indicator. However, more recent findings suggest 54 
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that neutrophils with an antigen presenting transcriptional program are associated with a positive 55 

outcome in most cancers (Wu et al., 2024b). Understanding of neutrophil biology and phenotypes 56 

will help develop biomarkers for identifying patients that may experience cytokine release syndrome 57 

in response to T-cell engaging therapies, for example T-cell bispecifics (Leclercq et al., 2022). Taken 58 

together, these papers suggest a future requirement for profiling neutrophils in clinical samples. 59 

 60 

Neutrophils contain lower RNA levels than other cell types in the blood (Wigerblad et al., 2022). 61 

Classical methods using gel emulsion beads (e.g. 10X) have proved challenging to capture neutrophils 62 

and granulocytes (Salcher et al., 2022). Indeed, without modification, 10X 3 prime transcriptomic 63 

methods are unable to capture the transcriptomic profiles of neutrophils. However, several groups 64 

have demonstrated that generating neutrophil scRNA-seq data is technically feasible, even if there is 65 

a high percentage of loss. (Wigerblad et al., 2022) detailed a method where addition of an RNAse 66 

inhibitor and modifications to the bioinformatic pipeline was sufficient to capture the transcriptome 67 

of neutrophils.  As part of earlier work looking at neutrophils in whole blood, we showed that the 68 

microwell based scRNA-seq BD Rhapsody effectively captured the transcriptome from neutrophils. 69 

The percentage of neutrophils retrieved from samples was comparable to results from flow 70 

cytometry using CD16, CD11b and CD62L as markers (Leclercq et al., 2022). A direct comparison 71 

between the BD Rhapsody and 10X 3 prime suggested that RNA capture is significantly more 72 

sensitive in the microwell based method, leading to more sensitive detection of cells with a low RNA 73 

content (Salcher et al., 2024).  74 

 75 

Single cell RNA-seq is a powerful tool in drug discovery. However, its potential for use with clinical 76 

samples is limited by the requirement to use fresh cells. For PBMCs, protocols have been developed 77 

whereby cell separations can be performed at the clinical sites and then cells cryopreserved and 78 

banked for later analysis at a central testing facility (van der Wijst et al., 2018). However, for more 79 
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sensitive cell types such as neutrophils, this is not possible, as a high proportion of these cells die and 80 

the remaining cells are morphologically and functionally altered in the freeze-thaw process 81 

(Braudeau et al., 2021; de Ruiter et al., 2018; Verschoor et al., 2018).  For these cell types, the single 82 

cell analysis must be performed at the clinical site, which reduces the number of clinical sites that are 83 

able to collect samples for scRNA-seq analysis. Taken together the biological importance, sensitive 84 

nature of neutrophils in combination with the complexity of global clinical trial settings call for an 85 

easy-to-use stabilization protocol for subsequent single cell RNAseq. 86 

 87 

We selected three new technologies to compare: Evercode from PARSE technologies, 10X Genomics 88 

FLEX solution, and the Honeycomb Technologies HIVE device. The selection criteria was based on the 89 

ability to stabilize cells rapidly prior to library prep, the requirement to process large number of cells 90 

and a commercially available product that can be distributed easily to clinical sites. PARSE 91 

technologies scRNA-seq works on a principle of combinatorial barcoding, where fixed cells are given 92 

a sample barcode with the reverse transcription step, samples are then pooled and split before a 93 

further three successive barcoding steps, including the addition of a unique molecular barcode 94 

(Rosenberg et al., 2018). This approach allows for up to 96 multiplexed samples, and has been 95 

reported to detect more genes expressed at low levels than the 10X 3 prime library prep (Xie et al., 96 

2020). The HIVE device works on the principle that cells are distributed into nano-wells and 97 

stabilized. The samples can be stored at -80°C prior to the library preparation steps. The HIVE device 98 

has successfully been used to isolate neutrophils from RBC-depleted donor samples (Sheerin et al., 99 

2023). In the 10X RNA Flex fixed and permeabilized cells are incubated with a set of 18,532 probes 100 

covering the entire transcriptome prior to library preparation steps. The use of probe hybridization 101 

allows for the capture of smaller fragments of RNA which are found in formalin fixed, paraffin 102 

embedded tissue. This method has been successfully used on FFPE tissues and xenograft models 103 

(Llora-Batlle et al., 2024; Wang et al., 2023). 104 
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 105 

Neutrophils are reported to have a short half-life ex vivo and the methods of isolation can lead to 106 

activation or apoptosis. Therefore, we used the findings of previous studies on neutrophil isolation to 107 

define the conditions for this study. Previous reports have demonstrated that neutrophils suitable for 108 

functional characterization can be isolated from blood stored at room temperature or at 4°C for 24 109 

hours, or up to 72 hours when stored at 37°C (Bonilla et al., 2020; Li et al., 2024; Wood et al., 1999). 110 

Incubators for sample storage are not always be available at clinical sites, therefore we opted to look 111 

at the impact of storage at 4°C for 24 hours. Currently, there is little information exploring the effect 112 

of time from blood draw to analysis or fixation on neutrophil transcriptome stability. This work aims 113 

to evaluate the new generation of fixed single cell technologies to determine their suitability for 1) 114 

measuring the neutrophil transcriptome and 2) their potential for implementation in clinical trials 115 

which require minimal sample processing and sample stabilization. 116 

  117 
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Results 118 

Study design 119 

To compare the different technologies, blood was drawn from healthy donors and then divided into 120 

different aliquots which were tested using 10X Flex, PARSE, and 10X 3 prime chemistries (Figure 1A). 121 

An aliquot for each donor was run on the flow cytometer to characterize cells into the major cell 122 

types to compare with the results from the scRNA-seq clustering. We evaluated the HIVE devices in a 123 

separate experiment using the same format: The blood samples were profiled using HIVE, 10X 3 124 

prime and flow cytometry in parallel (Figure 1B). In order to compare directly across the technologies 125 

we limited our analysis to the 18,532 genes captured in the 10X RNA FLEX probe set. We used our 126 

established BESCA pipeline (Madler et al., 2021).  The knee plots (Supplementary Figure 1) reveal a 127 

clear separation between cells and empty droplets for PBMC isolation, aiding in cutoff determination. 128 

However, RBC-depleted samples lack this distinct separation due to low gene expression in 129 

granulocytes. To ensure inclusion of neutrophils, we applied a minimum threshold of 200 genes and 130 

200 UMIs across all samples. 131 

 132 

Comparing the quality of scRNA-seq from the different methods 133 

We compared the quality of the scRNA-seq data using the following parameters: UMI counts, the 134 

number of genes detected and the percentage of mitochondrial genes (Figure 2A). These parameters 135 

are used to discriminate low quality cells where the cells are stressed, or cell leakage occurring 136 

during processing (Ilicic et al., 2016). Across all of the scRNA-seq technologies the mitochondrial gene 137 

expression levels were low, between 0-8%, with PARSE showing the lowest levels of mitochondrial 138 

gene expression, followed by 10X RNA FLEX. 10X 3 prime samples and HIVE which used non-fixed 139 

cells as input both had higher levels of mitochondrial genes detected. For all the novel 140 

methodologies, the number of genes detected and the number of UMIs were lower in the RBC 141 

depleted samples compared to the PBMC samples (Figure 2B & C, Supplementary Figure 2). For the 142 
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RBC depleted samples, we observed a bimodal distribution in the violin plots. This was due to two 143 

populations of cells with different overall gene expression levels:  the PBMC population with high 144 

gene expression and the granulocytes with low levels of genes expressed per cell and lower mRNA 145 

levels in general (Wigerblad et al., 2022). 146 

 147 

Next, we examined the dynamic range of 10X Flex, Parse, and HIVE alongside the 10X 3 prime 148 

technology. To do this we examined the expression of genes that have been classified with high 149 

(B2M), high-medium (ACTB), low-medium (CTCF) and low expressed (PGK1).  In 10X Flex, HIVE and 150 

10X  3 prime we observed that the majority of the cells were expressing high levels of B2M and ACTB, 151 

with the number of cells expressing PGK1  and CTCF reducing and the magnitude of expression also 152 

decreasing (Supplementary Figures 3 &4).  For the PARSE PBMC samples, the number of counts per 153 

cell were comparable with the 10X 3 prime and 10X Flex samples. However, the PARSE samples still 154 

showed lower expression of B2M and ACTB, and higher levels of the lower expressed genes PGK1 155 

and CTCF. From this data, we conclude that the PARSE samples show a different dynamic range to 156 

the 10X data and HIVE data with a greater representation of genes with lower levels of expression. 157 

 158 

scRNA-seq Clustering 159 

We combined the data from the different technologies for clustering purposes and observed that the 160 

cells clustered based on the technology used (Figure 3A). Within the technology-specific clusters we 161 

observed that the cells separated into clusters based on the cell separation method used (PBMC 162 

versus RBC depletion) (Figure 3A), and finally the cells clustered into different cell types (Figure 3A). 163 

We observed that the neutrophils clusters in all technologies were associated with lower n_counts 164 

and UMI counts which is in line with the low levels of RNA and gene expression in this cell population 165 

(Figure 3B). The 10X 3 prime and HIVE clusters showed higher percentage mitochondrial gene 166 

expression (Figure 1A and 3B). Looking at the cell type clustering for each individual technology 167 

(Figure 3A & Supplementary Figure 5), we see that the major cell types can be identified clearly in the 168 
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four different technologies, however neutrophil clusters were absent in the 10x 3 prime. The cell 169 

types separated into more defined clusters for both the 10X technologies.  In all technologies, we 170 

also observed artifact clusters, which are composed of empty droplets due to the lower cutoffs used, 171 

doublets or cell types that cannot be assigned to any group. The throughput of the PARSE and 10X 172 

FLEX technologies was much higher than the 10X 3 prime and HIVE technologies. We did observe a 173 

high level of doublets in the 10X Flex RBC-depleted samples (~20%) compared to the other 174 

technologies. However, we could easily identify the doublets and could remove them from the 175 

analysis (Figure 3A & Supplementary Figure 3C). 176 

 177 

Percentage cell populations determined by scRNA-seq compared to flow cytometry 178 

In order to determine how well the fixed cell scRNA-seq technologies captured neutrophils we 179 

compared the percentage neutrophils from each technology with the percentage neutrophils 180 

determined by flow cytometry on the same sample. Please note that for the 10X RNA FLEX, 10X 3 181 

prime and PARSE blood for the same 3 donors was tested. For the HIVE evaluation, blood from a 182 

different three was tested. We profiled an aliquot from each blood sample by flow cytometry to 183 

identify different cell types. 10X FLEX, PARSE and HIVE all successfully isolated neutrophils from the 184 

red blood cell depleted samples. The percentage of neutrophil populations using FLEX were the 185 

closest to those determined by flow cytometry (Table 2, Figure 3C, Supplementary Tables 1, 2, 3, 4, 5 186 

& 6; Supplementary Figure 6). FLEX and PARSE also compared favorably with flow cytometry results 187 

for the isolation of T-cells, B-cells, Monocytes, Natural Killer cells. Indeed, the performance was 188 

comparable on the PBMC isolations with the 10x 3 prime methods and flow cytometry 189 

(Supplementary Tables 1, 2, 3, 4, 5 & 6). 190 

 191 

Identification of neutrophil populations 192 

We looked at the clustering within the granulocyte clusters for the different technologies to 193 

determine if different populations of neutrophils could be identified. Unsupervised clustering 194 
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demonstrated that two different populations of neutrophils can be defined in the FLEX (Cluster 46) 195 

and PARSE (Cluster 43) data (Figure 3D), these clusters have elevated expression of LTF and BPI 196 

compared to the other granulocyte clusters. A second group consisting of clusters 3 (10X Flex), 10 197 

and 13 (HIVE) is characterized by expression of only FCGR3B, CSF3R and S100A8, the canonical 198 

markers for neutrophils found in the blood (Figure 3D). A population expressing Basophil markers 199 

(FCER1A, HDC and MS4A2) was defined only in the FLEX data set (Cluster 39) (Figure 3D&E). We were 200 

unable to identify Eosinophils in any of the data sets.   201 

 202 

Time course for optimum sampling of neutrophils 203 

Neutrophils are a particularly sensitive cell type with a reported short half-life In Vivo and In Vitro 204 

(Lahoz-Beneytez et al., 2016; Scheel-Toellner et al., 2004).  In order to determine the maximum time 205 

that samples could be stored prior to processing, we tested cells at different time points after blood 206 

draw (immediate processing, 2, 4, 6, 8 and 24 hours after blood draw), prior to fixing and measuring 207 

transcriptome by 10X Flex. After the cell isolation steps we performed a cell count prior to 208 

stabilization (data not shown). We observed little overall cell death or decrease in cell count over the 209 

24 hours after the blood draw.  In concordance with this, the general quality of the scRNA-seq data 210 

was unchanged across the time course. There was little increase in expression of mitochondrial 211 

genes, with all samples having expression levels of <1% for mitochondrial genes, number of counts or 212 

UMI counts across the time course (Supplementary Figure 7A, B &C).  There were also no differences 213 

in the % cell types over time since blood draw as determined the scRNA-seq (Supplementary Figure 214 

7D, E & F), indicating that there is no apoptosis of specific cell types taking place over the 24 hours. 215 

We compared the transcriptional profile of neutrophils at different time intervals after the blood 216 

draw and we did observe that the number of genes differentially regulated compared to the 0h time 217 

point started to significantly increase 4 hours post blood draw, with the number of genes up and 218 

down regulated increasing at each time point (Figure 4A & B). The most significantly changed 219 

pathway was associated with cell stress defined as Stress MP5 by (Gavish et al., 2023).  In our results, 220 
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we observed that stress signatures were upregulated in all time points 2 hours after blood draw, 221 

showing the importance of prompt sample processing (Figure 4C). This data is concordance with the 222 

previous report by (Connelly et al., 2022) which found that markers of neutrophil activation, 223 

apoptosis and degranulation 4 hours post blood draw. Therefore, despite live, functionally active 224 

neutrophils being present in blood samples 24 hours post blood draw, the transcriptome of 225 

neutrophils is significantly changed after 4 hours post blood draw. Our results indicate that 226 

immediate fixation of neutrophils is required if the transcriptome is being analyzed.   227 

  228 
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Conclusions 229 

The recent advances in fixed cell scRNA-seq allowing the rapid stabilization and storage of cells prior 230 

to library prep will enable the wider implementation of scRNA seq analysis in clinical trials. 10X FLEX, 231 

PARSE and HIVE protocols would support a model where cells are stabilized at the clinical site 232 

allowing storage and transport to the analytical labs where library prep and sequencing can take 233 

place. Practically, the HIVE devices presents a straightforward protocol for use at a clinical site, with 234 

the cells simply pipetted into the device after the cell separation step. We also found that cells stored 235 

in HIVE devices at -80C for up to 3 weeks showed good quality data comparable to cells processed 236 

immediately (data not shown). For Flex, the samples need to be centrifuged after the cell separation 237 

and then resuspended in paraformaldehyde. Since these experiments were completed, 10X have 238 

modified their protocols allowing whole blood to be stabilized with paraformaldehyde, then stored 239 

and transported at -80°C.  This would allow the cell separation and analysis to be performed at the 240 

analytical site, presenting a simple procedure for cell stabilization at the clinical site. The PARSE 241 

Technologies protocol for fixation of cells requires several consecutive centrifugation steps, making it 242 

the protocol that requires the longest hands on time for the fixation steps and practically the hardest 243 

to perform at a clinical site. 244 

 245 

Our experiments indicate that all three of the technologies produce high scRNA-seq quality data, 246 

with low levels of mitochondrial gene expression. FLEX and PARSE, which use fixed cells, have lower 247 

levels of mitochondrial gene expression than 10X 3 prime and HIVE that use live or frozen cells as 248 

input. This may be due to the release of cytoplasmic RNA on fixation or permeabilization of the cell 249 

(De Simone et al., 2024). Interestingly, for PARSE data we observed a different dynamic range than 250 

observed for the other technologies. Here we observed that the fully combinatorial barcoding 251 

approach (Rosenberg et al., 2018) led to greater sensitivity of detection of genes with lower 252 

expression levels. Interestingly, for approaches where combinatorial barcoding techniques were 253 

combined with droplet based fluidic systems for scRNA-seq have been reported to have lower 254 

sensitivity of detection for genes that have a low level of gene expression in comparison to 10X 3 255 
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prime, this maybe due to the combinatorial barcoding being performed inside the droplet, as 256 

opposed to within the fixed cell (PARSE) (Datlinger et al., 2021; Wu et al., 2024a). All three fixed 257 

scRNA-seq methods successfully captured neutrophils from RBC depleted samples. Our analysis 258 

suggested that 10x FLEX captured the different white blood cell components in the red blood cell 259 

depleted samples to a similar percentage as flow cytometry. HIVE and PARSE, while capturing 260 

neutrophil profiles did not compare as favorably with the flow cytometry results. For cell type 261 

assignment in general, we observed the closest alignment with flow cytometry using FLEX, which 262 

performed well across all cell types. PARSE and HIVE both had greater deviation from the cell type 263 

proportions estimated by flow cytometry. Although technical optimization of the methods and 264 

bioinformatic pipeline may improve the cell assignment, these results are in alignment with a 265 

previously published study on PBMC which showed that cell type calling for FLEX was closely aligned 266 

with CyTOF for the same sample, whereas greater differences were observed with PARSE and HIVE 267 

(De Simone et al., 2024). 268 

 269 

Unsupervised clustering of the granulocyte cells across all the methods tested defined two distinct 270 

groups of neutrophils. The first subtype, expressing BPI and LTF was detected in the FLEX and PARSE 271 

data aligns with immature neutrophils: LTF in particular has been shown to be highly expressed at 272 

earlier time points in neutrophil differentiation (Grieshaber-Bouyer et al., 2021). A neutrophil type 273 

was observed in all three technologies and is characterized by expression of FCGR3B, CSF3R and 274 

S100A8 markers of mature neutrophils (Grieshaber-Bouyer et al., 2021). In the FLEX data only, we 275 

were able to identify a population of basophils, a rare and sensitive cell type that is <1% of cells in 276 

peripheral blood (Min et al., 2012). The cell type was not detected by the other technologies. Taken 277 

together, we could only differentiate all three different cell types detected in the 10X FLEX data. FLEX 278 

has previously been shown to have more stable gene expression and improved variance compared to 279 

HIVE and PARSE (De Simone et al., 2024), we propose that this may play a role in detecting these rare 280 

cell types. 281 
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This work compared three novel methods to determine if scRNA-seq could be implemented at 282 

clinical sites for profiling neutrophils. All three methods produced high quality data and were able to 283 

capture neutrophils from peripheral blood samples. However, for clinical samples we determined 284 

that FLEX had the best performance, with the proportions of neutrophils captured in blood samples 285 

comparable to those observed by flow cytometry and the workflow being the most amenable to 286 

sample collection at the clinical site. Additionally using FLEX, we were able to define two distinct 287 

populations of neutrophils: immature neutrophils and those expressing canonical neutrophil 288 

markers. We recommend that the time between blood draw and fixation is limited to 2 hours, as 289 

after this time we observe an increase in differential gene expression regulation associated with 290 

stress. To our knowledge, this is the first study to present a route to scRNA-seq implementation in 291 

clinical trials and a powerful tool for biomarker development and understanding of neutrophil 292 

biology. 293 

  294 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 17, 2024. ; https://doi.org/10.1101/2024.08.14.607767doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.14.607767
http://creativecommons.org/licenses/by-nd/4.0/


15 

 

Acknowledgements 295 

We would like to acknowledge the Flow 360 Labs team at Roche for their support in Flow cytometry 296 

data acquisition. 297 

 298 

Author Contributions 299 

KH: Experimental design, Data Analysis and Interpretation, Manuscript Preparation.   KS: 300 

Experimental design, Data Analysis and Interpretation, Manuscript Preparation SD: Experimental 301 

Design, Experimental Execution, Manuscript Preparation FK: Experimental Design, Experimental 302 

Execution, Manuscript Preparation NG: Experimental Design, Experimental Execution LJ: 303 

Experimental Execution, Data Analysis and Interpretation, Manuscript Preparation DM: Data Analysis 304 

and Interpretation, Manuscript Preparation PK: Data Analysis and Interpretation, Manuscript 305 

Preparation. MM: Experimental design, Manuscript Preparation TB: Experimental Design, Manuscript 306 

Preparation AG: Manuscript Preparation JDZ: Data Analysis and Interpretation MS: Manuscript 307 

preparation EB: Experimental Design, Experimental Execution, Data Analysis and Interpretation, 308 

Manuscript Preparation. 309 

 310 

Declaration of Interest: The authors declare no competing interests 311 

 312 

Declaration of AI and AI Assisted Technology: During the preparation of this work the authors did 313 

not use any AI or AI assisted technology. 314 

  315 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 17, 2024. ; https://doi.org/10.1101/2024.08.14.607767doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.14.607767
http://creativecommons.org/licenses/by-nd/4.0/


16 

 

Supplemental Information titles and legends 316 

 317 

Supplementary Table 1: Comparison of the technologies used in this study 318 

 319 

Supplementary Table 2: Cell population comparison. Table shows the mean % neutrophils of the 320 

three donors tested determined by cell type analysis. For each technology there is a Mean absolute 321 

error (MAE) and Root mean squared error (RMSE) which shows the difference between the flow 322 

cytometry values and the scRNA-seq derived results. 323 

 324 

Supplementary Table 3: Donor 1 cell population comparison for Flow cytometry, 10X 3 prime 325 

transcriptome, 10X FLEX, PARSE for PBMC isolation and RBC depletion 326 

 327 

Supplementary Table 4: Donor 2 cell population comparison for Flow cytometry, 10X 3 prime 328 

transcriptome, 10X FLEX, PARSE for PBMC isolation and RBC depletion 329 

 330 

Supplementary Table 5:  Donor 3 cell population comparison for Flow cytometry, 10X 3 prime 331 

transcriptome, 10X FLEX, PARSE for PBMC isolation and RBC depletion 332 

 333 

Supplementary Table 6: Donor 4 cell population comparison for Flow cytometry,10X 3 prime 334 

transcriptome and HIVE for PBMC isolation and RBC depletion 335 

 336 

Supplementary Table 7: Donor 5 cell population comparison for Flow cytometry,10X 3 prime 337 

transcriptome and HIVE for PBMC isolation and RBC depletion 338 

 339 

Supplementary Table 8: Donor 6 cell population comparison for Flow cytometry,10X 3 prime 340 

transcriptome and HIVE for PBMC isolation and RBC depletion 341 

 342 

Supplementary Table 9:  Flow cytometry antibodies 343 

 344 

Supplementary Figure 1: Knee plots for PARSE, FLEX and HIVE data for number of genes expressed 345 

per cell and UMI counts per cell for (A) PBMC and (B) RBC depleted samples. 346 
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Supplementary Figure 2: Violin plots showing the (A) mitochondrial gene expression levels (B) 347 

n_counts and (C) UMI counts for 10x 3 prime, 10X FLEX and PARSE for PBMC samples.  348 

 349 

Supplementary Figure 3: A comparison of the dynamic range for the 10X 3prime, 10X FLEX and 350 

PARSE for 4 different genes that represent highly expressed (B2M), medium high expression (ACTB), 351 

medium low (PGK1) and low (CTCF) expression. These graphs show the expression in the RBC 352 

depleted samples.  353 

 354 

Supplementary Figure 4: A comparison of the dynamic range for the 4 different technologies using 4 355 

different genes that represent highly expressed (B2M), medium high expression (ACTB), medium low 356 

(PGK1) and low (CTCF) expression. These graphs show the expression of the PBMC samples.  357 

 358 

Supplementary Figure 5: UMAPs cell separations for cell type for each individual technology: 10X 3 359 

prime, 10X FLEX, HIVE and PARSE. 360 

 361 

Supplementary Figure 6: Bar graphs showing the % neutrophils determined by each technology 362 

compared to the flow cytometry result. Each graph displays the data for a single donor. 363 

 364 

Supplementary Figure 7: Violin plots showing the mitochondrial gene expression levels, n_counts 365 

and UMI counts for samples taken 2, 4, 6, 8 and 24 after blood draw. The data was generated using 366 

10X FLEX and each donor is shown individually: A) donor 1, (B) donor 2, (C) donor 3. The % cell type 367 

for the time course is shown in (D) donor 1 (E) donor 2 and (F) donor 3. 368 

  369 
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Figure legends 370 

Figure 1: Diagram showing the experimental design to test the four different technologies. (A) PARSE, 371 

10x FLEX, 10x 3 prime and flow cytometry were tested on the same three blood samples, and (B) 372 

HIVE was tested on a different set of blood samples from three different donors at a different date. 373 

The samples were also profiled using flow cytometry. 374 

 375 

Figure 2:  Violin plots showing the (A) mitochondrial gene expression levels (B) n_counts and (c) UMI 376 

counts for 10x 3 prime, 10X FLEX, PARSE and HIVE for RBC depleted samples.  377 

 378 

Figure 3:  UMAPs cell separations with color coding denoting (A) technology, cell separation used and 379 

% different cell types. (B) The quality control parameters are shown on UMAPs color coded by UMI 380 

counts, n_counts and mitochondrial gene expression. (C) Box plots showing the % of B cells, T cells, 381 

neutrophils, monocytes and NK cells determined by flow cytometry, FLEX and PARSE or flow 382 

cytometry and  HIVE. (D) UMAP of the granulocyte clusters coloured by technology, unsupervised 383 

clustering of granulocytes. (E) Dot plot showing the expression of the top 5 marker genes per cluster, 384 

for those clusters with >100 cells. 385 

  386 

Figure 4:  Transcriptional profile of neutrophils after blood draw (A) Graph showing the number of 387 

genes differentially regulated (up or down) in neutrophil pseudobulks at 2h, 4h, 6h, 8h or 24h after 388 

blood draw compared to the sample processed immediately after blood draw (0h). The data shows 389 

results for the 3 donors (n=3) for each time point. (B)  Volcano plots for the neutrophil pseudobulk 390 

showing magnitude of the genes up or down regulated compared to 0h for each time point tested. 391 

(C) Pathway enrichment for cell stress for neutrophil pseudobulks over the time course.  392 
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 487 

STAR�Methods 488 

Key resources table 489 

REAGENT or RESOURCE SOURCE IDENTIFIE

R 
Antibodies 
CD3, BUV805 intracellular BD Bioscience AB_28701

83 
CD4 BUV737 intracellular BD Bioscience AB_28700

79 
CD14 BUV563  surface BD Bioscience AB_28708

60 
CD8 BUV496 surface BD Bioscience AB_28707

59 
CD45 BUV395 surface BD Bioscience AB_28695

19 
HLA-DR BV785 surface Biolegend AB_25634

61 
CD56 BV750 surface BD Bioscience AB_28718

24 
CD11c BV711 surface BD Bioscience AB_27380

19 
CD19 BV650 surface Biolegend AB_25642

55 
CD25 BV605 surface BD Bioscience AB_27401

27 
CD123 BV421 surface Biolegend AB_10962

571 
CD45RA PerCP-Cy5.5 

surface 
Biolegend AB_89335

7 
CD15 Pe-Cy7 surface BD Bioscience AB_10563

901 
CD20 Pe-Cy5 surface Biolegend AB_31425

6 
CD193 PE-CF594 BD Bioscience AB_27376

60 
FOXP3 PE intracellular Biolegend AB_49298

6 
CCR7 APC-Cy7 surface Biolegend AB_10916

390 
CD16 APC surface Biolegend AB_31421

2 
human IgG Jackson ImmunoResearch,West Grove, Pennsylvania AB_23370

43 
 

Biological samples   
Six healthy volunteer donor 

blood samples  
Roche medical centre  

   
Chemicals, peptides, and recombinant proteins 
Phosphate buffered saline 

(PBS)  
ThermoFisher, Massachusetts Catalogue

  # 

10010023 
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2% FBS VWR International, Pennsylvania 89510-

194 
 True Stain Monocyte 

Blocker  
Biolegend 426101 

 Fixable Green Dead Cell 

Stain  
ThermoFischer Scientific, Waltham, Massachusetts  L23101 

   
   
   
Critical commercial assays 
Next GEM Single Cell 3@ 

Reagent Kits v3.1 
10x Genomics, Pleasanton California PN-

1000121 
Chromium Next GEM Chip G 

Single Cell Kit, 16 rxns 
10x Genomics, Pleasanton California PN-

1000127 
Single Index Kit T Set A, 96 

rxns  
10x Genomics, Pleasanton California PN-

1000213 
Chromium Next GEM Single 

Cell Fixed RNA Sample 

Preparation Kit 

10x Genomics, Pleasanton California PN-

1000414 

Chromium Fixed RNA Kit, 

Human Transcriptome,  
10x Genomics, Pleasanton California PN-

1000476 
Chromium Next GEM Chip Q 

Single Cell Kit 
10x Genomics, Pleasanton California PN-

1000422 
Dual Index Kit TS Set A 96 

rxns 
10x Genomics, Pleasanton California PN-

1000251 
HIVE collectors Honeycomb   
HIVE scRNAseq v1 Sample 

Capture Kit 
Honeycomb   

Parse Evercode cell fixation 

v2 
Parse biosciences  

Evercode™ WT Mini v2 kit  Parse biosciences  
   
Deposited data 
   
   
Software and algorithms 
Scanpy https://scanpy.readthedocs.io/en/stable/generated/scanpy.tl.sc

ore_genes.html 

SCR_0181

39 
Besca (https://github.com/bedapub/besca/blob/master/besca/datase

ts/genesets/CellNames_scseqCMs6_sigs.gmt 
 

Uniform Manifold 

Approximation and 

Projection (UMAP) 

algorithm) 

https://github.com/lmcinnes/umap SCR_0182

17 

Leiden algorithm  https://github.com/vtraag/leidenalg  
Msigdb : https://www.gsea-

msigdb.org/gsea/msigdb/human/collections.jsp 
SCR_0168

63 
 

Limma http://bioinf.wehi.edu.au/limma/ SCR_0109

43 
 

Reactome pathways  https://reactome.org SCR_0034

85 
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 cellranger 6.0.2 mkfastq https://www.10xgenomics.com/support/software/cell-

ranger/latest/analysis/inputs/cr-mkfastq 
SCR_0173

44 
 

 bcl-convert 3.8.4 https://emea.support.illumina.com/sequencing/sequencing_sof

tware/bcl-convert/downloads.html  

split-pipe v1.0.5p: available 

to PARSE customers on 

request 

https://support.parsebiosciences.com/hc/en-

us/articles/20403758539924-How-Do-I-Access-the-Parse-

Biosciences-Pipeline 

 

 cellranger  https://www.10xgenomics.com/support/software/cell-

ranger/latest/release-notes/cr-release-notes 
SCR_0173

44 
 

   
Other 
10mL EDTA KCL blood 

collection tubes 
 18103 

Ficoll  GE healthcare  
SepMate-50 tubes  Stemcell technologies 85450 
50 ml Falcon tube   
EasySep™ RBC Depletion 

Reagent 
Stemcell technologies 18170  

EasySep Easy Eights magnet Stemcell technologies  18103 
S1 Reagent Kit v1.5 (100 

cycles) 
Illumina 2002831

9 

 Fixable Green Dead Cell 

Stain  

ThermoFischer Scientific L23101 
 

50% Brilliant Stain Buffer  BD Biosciences 659611 

   
 490 

Resource availability 491 

Lead contact 492 

  493 

Further information and requests for resources and reagents should be directed to and will 494 

be fulfilled by the lead contact, Emma Bell (emma.bell@roche.com) 495 

 496 

Materials availability 497 

 498 

All of the materials used in this study were commercially available 499 

 500 

Data and code availability 501 

• All data reported in this paper will be shared by the lead contact upon request. 502 

• This paper does not report original code 503 

• Any additional information required to reanalyze the data reported in this work 504 

paper is available from the lead contact upon request 505 

 506 

Experimental model and study participant details 507 
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 508 

Whole blood was drawn from 6 healthy human donors. We do not have any information on 509 

the sex, gender, ancestry, age, race or ethnicity. These factors are not anticipated to affect 510 

the findings of the study which is to compare methods of scRNA-seq as we are not looking at 511 

biological variation.  512 

 513 

Method details 514 

Samples 515 

Whole blood from healthy donors was drawn into 10mL EDTA KCL or sodium Heparin tubes. 516 

For the technology comparison experiments, the blood was divided into 2 ml aliquots, then 517 

processed immediately for PBMC isolation or red blood cell removal.  In order to determine 518 

the time limit for processing and fixing samples after the blood draw we set up a time 519 

course. 10 ml of blood was drawn from three donors, a 2 ml aliquot was processed 520 

immediately, then subsequent aliquots were processed (RBC depletion) 2, 6, 8 and 24 hours 521 

after the original blood draw. In the interim, the sample was stored at 4°C.  522 

PBMC Isolation 523 

PBMC were isolated from whole blood using Ficoll (GE healthcare, Illinois) separation 524 

according to manufacturer’s instructions. Briefly 15 ml Ficoll was added to SepMate tubes 525 

(Stemcell technologies, Vancouver, Canada). Blood was diluted 1:1 with phosphate buffered 526 

saline (PBS) (ThermoFischer, Massachusetts) + 2% FBS (VWR International, Pennsylvania). 527 

The diluted blood was then added to the SepMate tube. Tubes were then sealed and 528 

centrifuged at 1200xg for 10 mins at room temperature. The top layer of cells, containing 529 

enriched mononuclear cells was decanted int,o a new 50 ml Falcon tube. The isolated cells 530 

were then washed three times with PBS+2%FBS. 531 

RBC Removal 532 

RBCs were removed from blood samples using the EasySep™ RBC Depletion Reagent 533 

(Stemcell technologies) and the associated EasySep Easy Eights magnet, according to the 534 

manufacturer’s instructions. Briefly, 5mls of whole blood was diluted with PBS-2%FBS 535 

solution. The EDTA and RBC depletion solution were added to the samples prior to gently 536 

pipette mixing. The samples were transferred to the magnet and left for 5 mins. The 537 

supernatant was transferred to a new 14ml tube and the process repeated at least 3 times, 538 

or until no RBCs were visibly remaining. 539 

Cell counting and viability 540 

After the cell isolations and before fixation or library preparation, the cell viability and 541 

number were measured using a Cellaca Cellcounter (Nexcellom Bioscience, Massachusetts). 542 

The viability of all samples was high and ranged between 100-96% viability. The number of 543 

cells required as input for each different technology is summarized in Table 1. For the library 544 

preps for fixed cells, the cell number and viability were counted before fixation and then the 545 

fixed cells were counted prior to library prep. For PBMC samples between 250 000- 400 000 546 
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cells were fixed per sample, and for the RBC depleted samples 500 000- 850 000 cells per 547 

sample were fixed. 548 

10x 3’transcriptome 549 

 550 

An input of 8000 live cells per sample were used for the 10X 3 prime libraries. The libraries 551 

were prepared using the Next GEM Single Cell 3D Reagent Kits v3.1. This involves GEM 552 

generation on the Chromium instrument, where gel beads were mixed with the live cells and 553 

partitioned using oil droplets, resulting in droplets containing a single cell and a gel bead 554 

containing barcodes and primers. After barcoding, samples were transferred to a PCR 555 

machine for the reverse transcriptase step. Full length, barcoded cDNA from poly adenylated 556 

mRNA is then purified using magnetic beads, before PCR amplification. After fragmentation 557 

and size selection, P5 and P7 illumina adapters alongside sample barcodes were added to 558 

create the final libraries. For sequencing, we targeted 50,000 reads per cell. Therefore, we 559 

sequenced the samples on a single NovaSeq S1 flow cell. 560 

 561 

10x FLEX 562 

Live cells were fixed using the Chromium Next GEM Single Cell Fixed RNA Sample 563 

Preparation Kit (10X Genomics) according to the manufacturer’s instructions. For PBMC 564 

samples between 250 000 - 400 000 cells were fixed per sample, and for the RBC depleted 565 

samples 500 000- 850 000 cells per sample were fixed. Briefly, cells were centrifuged and 566 

supernatant removed. Cells were resuspended in the kit supplied fixation buffer, then 567 

incubated for 16 hours at 4°C. The cells were centrifuged and supernatant removed before 568 

resuspension in the Quenching buffer. The cells were washed, counted and the number of 569 

cells adjusted to that of the lowest sample. The Chromium Next GEM Single Cell Fixed RNA 570 

Sample Preparation Kit and Chromium Fixed RNA Kit, Human Transcriptome, Chromium Next 571 

GEM Chip Q Single Cell Kit were used according to manufacturer’s instructions.  572 

 573 

In summary, samples were incubated with the human transcriptome probes to allow 574 

hybridization for 16 hours at 42°C. The samples were then washed and transferred to the 575 

Chromium X instrument for GEM generation, during this stage the cell is partitioned into an 576 

oil droplet containing a 10x barcoded gel bead, so that cell specific barcodes and UMIs are 577 

added to the hybridized probes. The probes are then extended and then PCR amplified prior 578 

to the addition of P5 and P7 illumina adapters and sample index barcodes. The samples were 579 

sequenced on a Novaseq 6000 to a depth of at least 15 000 reads per cell using an SP - 580 

100cycles v1.5 reagent kit.  581 

 582 

HIVE 583 

Eight HIVE collectors were loaded with freshly isolated cells. HIVE collectors contain more 584 

than 65,000 60µm-wide picowells that are pre-loaded with barcoded 3’ transcript capture 585 

beads. Each collector was loaded by centrifugation with a total of 15,000 cells according to 586 

HIVE scRNAseq v1 Sample Capture Kit User Protocol (Revision A). Once loaded, 3 HIVE 587 

devices were incubated for 30 minutes at room temperature before direct processing, and 588 

the remaining HIVE devices were frozen at -20°C for later processing after 1 week or 3 weeks 589 

of storage. Upon thawing the HIVE devices were equilibrated for 60 minutes at room 590 

temperature before processing. All Hive devices, whether processed directly or after storage 591 

at -20°C were processed the same way and according to the manufacturer’s instructions.  592 
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 593 

Briefly, the cells were lysed and hybridized to beads in the HIVE collectors. Beads were 594 

recovered by centrifugation into a bead collector and transferred to a filter plate set on a 595 

vacuum manifold allowing beads washing and buffer exchanges by aspiration. After the first 596 

strand synthesis (45 min at 37°C), 1X NaOH was added and beads washed 3 times before the 597 

2nd strand synthesis (37°C for 30 min). Samples were washed and transferred to a deep well 598 

plate for whole transcriptome PCR amplification. After a double-sided SPRI clean-up, 599 

samples were indexed by PCR and a final SPRI was performed. Libraries size was checked the 600 

bioanalyzer on high sensitivity DNA chips (Agilent), concentration determined on Qubit 3.0 601 

using the dsDNA High sensitivity kit and sequenced on the Novaseq 6000 with a S1 - 602 

100cycles v1.5 reagent kit, using HIVE custom primers and 25-8-8-50 sequencing cycles.  603 

 604 

PARSE Evercode 605 

Live cells were fixed using the Evercode Cell Fixation v2 kit (Parse Biosciences, Washington). 606 

 For PBMC samples between 250 000- 400 000 cells were fixed per sample, and for the RBC 607 

depleted samples 500 000- 850 000 cells per sample were fixed according to the 608 

manufacturer’s instructions. Cells were spun down at 200 x g at 4°C for 10 mins before 609 

resuspension in a prefixation buffer. The cells suspension was then passed through a 40 μm 610 

strainer to remove cell clumps. A fixation additive was then added to the suspension and the 611 

sample was placed on ice for 10 mins, before the addition of a permeabilizing solution and a 612 

further 3 minute incubation on ice. A neutralization buffer was added before a further 613 

centrifugation step for 10 minutes, 200 x g at 4°C. The supernatant was removed and cells 614 

were resuspended in Cell Buffer and DMSO added to the samples. The fixed cells were then 615 

processed using the Evercode™ WT Mini v2 kit according to the manufacturer’s instructions. 616 

This protocol uses successive pooling and barcode steps. In the first step, well barcodes are 617 

added and reverse transcription of mRNA takes place within the cell. After this step the 618 

samples are then pooled and redistributed and further barcodes ligated a further two times. 619 

In the third step UMI’s are added to the cDNA. In the last step, cells are lysed, the cDNA 620 

isolated and sequencing adapters and sub-library barcodes added by PCR. The resulting 621 

libraries were sequenced on the Nova-seq 6000 using an S1 flow cell and  S1 Reagent Kit v1.5 622 

(100 cycles) with PE 74bp_6 index_86bp reads 623 

 624 

Flow Cytometry 625 

250 000 live cells were stained for flow cytometry, cells were centrifuged at 320 x g for 5 626 

mins at 4°C. The supernatant was removed and cells resuspended in 50μl of blocking 627 

solution containing 1:100 dilution of human IgG (Jackson ImmunoResearch,West Grove, 628 

Pennsylvania), 1:50 dilution True Stain Monocyte Blocker (Biolegend, California)  and 1:800 629 

dilution of Fixable Green Dead Cell Stain (ThermoFischer Scientific, Waltham, Massachusetts) 630 

in PBS. The samples were incubated at 4°C for 20 minutes. The samples were centrifuged at 631 

320 x g and washed with FACS buffer (PBS supplemented with 2% FCS and 2mM EDTA). The 632 

cells were resuspended in 50uL of a solution containing a panel of antibodies for the 633 

following surface markers: CD14, CD8, CD45, HLA-DR, CD56, CD11c, CD19, CD25, CD123, 634 

CD45RA, LD, CD15, CD20, CD193, CCR7 and CD16. The mix was prepared in a buffer 635 

containing 50% FACS buffer and 50% Brilliant Stain Buffer (BD Biosciences, Franklin lakes, 636 
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New Jersey). The antibodies (previously titrated) are summarized in Table 3. The cells were 637 

then incubated for 20 mins at 4°C. Then centrifuged and washed with FACS buffer before 638 

incubating for 30 mins with Foxp3 Fixation/Permeabilization working solution 639 

(Thermofischer Scientific) at room temperature in the dark. The cells were washed in 640 

permeabilization buffer, before the addition of the intracellular antibodies: CD3, CD4 and 641 

FOXP3 prepared in permeabilization buffer / Brilliant Stain Buffer (1:1 vol/vol)   (details in 642 

Supplementary Table 3) and incubated for 30 mins at room temperature. The samples were 643 

further centrifuged at 620 x g  and resuspended in FACS buffer before running on a  644 

FACSymphony™ A5 Cell Analyzer (BD Bioscience). 645 

 646 

 647 

Quantification and statistical analysis 648 

 649 

Bioinformatic Analysis 650 

In total, we sequence 29 samples for the technology comparison, six using Parse, six using 651 

10X Flex, six using 10X 3’, eight using HIVE, and three using 10X 3’ from the HIVE donors. The 652 

reads from all technologies were mapped to the human genome (hg38) and we created one 653 

gene-by-cell count matrix per sample. FASTQ files from Parse were generated using bcl-654 

convert 3.8.4 and the split-pipe v1.0.5p was utilized to generate the count matrices. FASTQ 655 

files from 10X Flex were generated using 10X Genomics cellranger 6.0.2 mkfastq and 656 

cellranger 7.1.0 multi was utilized to generate the count matrices. FASTQ files from 10X 3’ 657 

were generated using 10X Genomics cellranger 6.0.2 mkfastq and cellranger 6.0.2 count was 658 

utilized to generate the count matrices. FASTQ files from HIVE were generated using Bcl2fastq 659 

for demultiplexing and BeeNet (Honeycomb) for data pre-processing to generate the count 660 

matrices. 661 

 The count matrices were further processed using BESCA (Madler et al., 2021) and Scanpy 662 

(Wolf et al., 2018). Low cutoffs for number of genes expressed and number of UMIs per cell 663 

were used in order to capture the neutrophils. This method has been used by previous 664 

studies (Wauters et al., 2021), as neutrophils typically have a lower levels of gene 665 

expression, and generally have low levels of RNA meaning that they would be filtered out 666 

using strict thresholds that have been developed for PBMCs. We applied the same cut-offs 667 

for number of genes and UMIs detected for all samples in order to achieve high 668 

comparability. Cells that expressed at least 200 and not more than 10,000 genes and 669 

included at least 200 and not more than 50,000 UMIs were kept for downstream analysis. In 670 

addition, we removed cells with high mitochondrial gene expression, for Parse PBMC 671 

samples above 1%, Parse RBC depleted samples above 2%, and all other samples above 10% 672 

of UMIs mapping to mitochondrial genes. This resulted in 332,783 total cells. 673 

 674 

Normalization was performed for the entire dataset using count depth scaling to 10,000 675 

total counts per cell, resulting in the cp10k (counts per 10,000) unit. Count values were log-676 

transformed using natural logarithm: ln(cp10kD+D1). To reduce dataset dimensionality 677 

before clustering, the highly variable genes within the dataset were selected. Genes were 678 

defined as being highly variable when they have a minimum mean expression of 0.0125, a 679 

maximum mean expression of 3 and a minimum dispersion of 0.5. Technical variance was 680 
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removed by regressing out the effects of count depth and mitochondrial gene content and 681 

the gene expression values were scaled to a mean of 0 and variance of 1 with a maximum 682 

value of 10. The first 50 principal components were calculated and used as input for 683 

calculation of the 10 nearest neighbours. The neighbourhood graph was then embedded 684 

into two-dimensional space using the Uniform Manifold Approximation and Projection 685 

(UMAP) algorithm) [25] Cell communities are detected using the Leiden algorithm (Traag et 686 

al., 2019) at a resolution of 1. 687 

 We performed cell type annotation for the clustering of cells from each technology 688 

individually and mapped it to the entire dataset. We assessed the cell types by calculating 689 

signature scores for all signatures provided by Besca 690 

(https://github.com/bedapub/besca/blob/master/besca/datasets/genesets/CellNames_scse691 

qCMs6_sigs.gmt). The score is the average expression of a set of genes subtracted with the 692 

average expression of a reference set of genes, calculated by Scanpy’s score_genes function 693 

(https://scanpy.readthedocs.io/en/stable/generated/scanpy.tl.score_genes.html). For the 694 

cell type composition comparison we removed clusters of doublets and other artifacts 695 

before calculating cell type fractions per sample. 696 

For each single cell sequencing technology, we calculated the mean absolute error (MAE) 697 

and root mean squared error (RMSE) of the neutrophil abundance compared to the 698 

abundance obtained by FACS. For each donor, we averaged the neutrophil abundance from 699 

three FACS experiments (technical replicates). Then, for each donor and technology, we 700 

determined the absolute difference between the FACS-derived abundance and the 701 

sequencing technology- derived abundance. The average of these differences across donors 702 

is the mean absolute error (MAE) for each technology. Similarly, we calculated the root 703 

mean squared error (RMSE) by first determining the squared differences between the FACS-704 

derived and sequencing technology-derived abundances, then averaging these squared 705 

differences, and finally taking the square-root of this average for each technology. 706 

For the time course experiment, we sequence 18 samples, all on the 10X Flex technology. 707 

The dataset was processed as described above, but different filtering criteria were applied to 708 

the cells: number of genes: 200 - 4,000; number of UMI counts 200 - 15,000; maximal 709 

mitochondrial fraction 1% (see Suppl. Fig. 7a-c). In order to identify differentially expressed 710 

genes in neutrophils over time, we generated a pseudobulk gene-by-sample matrix for the 711 

neutrophils identified. We tested each time point (2h, 4h, 6h, 8h, 24h) versus immediate 712 

processing (0h) by fitting the model: ~ 0 + Donor + Time point. We filtered genes at a cut-off 713 

of average transcripts per million larger than 0.25. 12,726 genes were assessed for 714 

differential expression using limma+voom (source: http://bioinf.wehi.edu.au/limma/). We 715 

chose relaxed cut-offs to allow for high sensitivity to detect changes, fold-change larger than 716 

1.5 or less than 0.666 and false discovery rate smaller than 10%. Afterwards we counted the 717 

number of up- or down-regulated genes according to these cut-offs. We applied gene set 718 

enrichment analysis using Camera (Wu and Smyth, 2012). We used multiple geneset 719 

collections, including MSigDB hallmark (source: https://www.gsea-720 

msigdb.org/gsea/msigdb/human/collections.jsp), Reactome pathways (source: 721 

https://reactome.org), and an internally curated set of cancer immuno-therapy (CIT) 722 

signatures. The latter includes a Stress MP5 (meta-program 5) signature discovered by 723 

(Gavish et al., 2023) which showed highest enrichment. 724 

 725 
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