

1 **Comparison of Fixed Single Cell RNA-seq Methods to Enable Transcriptome Profiling of Neutrophils**
2 **in Clinical Samples**

3 Klas Hatje, Kim Schneider, Sabrina Danilin, Fabian Koechl, Nicolas Giroud, Laurent Juglair, Daniel
4 Marbach, Philip Knuckles, Tobias Bergauer, Matteo Metruccio, Alba Garrido, Jitao David Zhang, Marc
5 Sultan and Emma Bell*.

6

7 *Correspondence: emma.bell@roche.com

8

9 Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center
10 Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070 Basel, Switzerland

11

12 Abbreviations: Neutrophil Extracellular Traps (NETs); Peripheral Blood Mononuclear Cells (PBMC);
13 Red Blood Cell (RBC); scRNA-seq (single cell RNA-sequencing); Unique Molecular Identifier (UMI).

14

15 **Summary**

16 Monitoring neutrophil gene expression is a powerful tool for understanding disease mechanisms,
17 developing new diagnostics, therapies and optimizing clinical trials. Neutrophils are sensitive to the
18 processing, storage and transportation steps that are involved in clinical sample analysis. This study is
19 the first to evaluate the capabilities of technologies from 10X Genomics, PARSE Biosciences, and HIVE
20 (Honeycomb Biotechnologies) to generate high-quality RNA data from human blood-derived
21 neutrophils. Our comparative analysis shows that all methods produced high quality data,
22 importantly capturing the transcriptomes of neutrophils. 10X FLEX cell populations in particular
23 showed a close concordance with the flow cytometry data. Here, we establish a reliable single-cell
24 RNA sequencing workflow for neutrophils in clinical trials: we offer guidelines on sample collection
25 to preserve RNA quality and demonstrate how each method performs in capturing sensitive cell
26 populations in clinical practice.

27

28 **Key words:** Neutrophils, single cell RNA-seq, transcriptome, biomarker

29

30 **Introduction**

31 Neutrophils are innate immune effector cells that comprise approximately 60% of leukocytes in
32 circulation. They mediate the body's first response to invading microorganisms through
33 degranulation, phagocytosis and the production of Neutrophil Extracellular Traps
34 (NETs)(Papayannopoulos, 2018). Neutrophil dysregulation, particularly NET formation, is strongly
35 implicated in human diseases ranging from sepsis, autoimmunity to cancer metastasis and
36 inflammatory diseases (Papayannopoulos, 2018). In the clinic, neutrophils and neutrophil expression
37 signatures are increasingly being used as biomarkers. Notably, the neutrophil-to-lymphocytes ratio,
38 when combined with tumor mutation burden, is being used to forecast the effectiveness of immune
39 checkpoint inhibitors in cancer treatment (Salcher et al., 2022; Valero et al., 2021). Additionally,
40 biomarkers derived from neutrophils are being investigated for their potential to predict major
41 adverse cardiac events (Yiu et al., 2023).

42

43 Single cell sequencing has helped to improve our understanding of the different transcriptional states
44 of neutrophils, and suggested a future role for the neutrophil gene expression signatures as clinical
45 biomarkers. Four distinct and stable transcriptomic states observed during the maturation and
46 activation of neutrophils have been described: Nh0, Nh1, Nh2 and Nh3 (Wigerblad et al., 2022)
47 suggesting that a deeper understanding of these transcriptomes could provide disease biomarkers.
48 Expanding on this (Montaldo et al., 2022) have described the transcriptome of neutrophils in a
49 steady state and upon stress using both bulk RNA-seq approach and scRNA-seq on live cells using 10X
50 3 prime library methods that were modified to capture neutrophils. Here they describe how the
51 different activation status of neutrophils are predictive biomarkers for organ transplant success
52 (Montaldo et al., 2022). A recent study has highlighted how there is a high level of transcriptional
53 heterogeneity in neutrophils isolated from different cancer types. Originally, high levels of invading
54 neutrophils were thought to be a poor prognostic indicator. However, more recent findings suggest

55 that neutrophils with an antigen presenting transcriptional program are associated with a positive
56 outcome in most cancers (Wu et al., 2024b). Understanding of neutrophil biology and phenotypes
57 will help develop biomarkers for identifying patients that may experience cytokine release syndrome
58 in response to T-cell engaging therapies, for example T-cell bispecifics (Leclercq et al., 2022). Taken
59 together, these papers suggest a future requirement for profiling neutrophils in clinical samples.

60

61 Neutrophils contain lower RNA levels than other cell types in the blood (Wigerblad et al., 2022).
62 Classical methods using gel emulsion beads (e.g. 10X) have proved challenging to capture neutrophils
63 and granulocytes (Salcher et al., 2022). Indeed, without modification, 10X 3 prime transcriptomic
64 methods are unable to capture the transcriptomic profiles of neutrophils. However, several groups
65 have demonstrated that generating neutrophil scRNA-seq data is technically feasible, even if there is
66 a high percentage of loss. (Wigerblad et al., 2022) detailed a method where addition of an RNase
67 inhibitor and modifications to the bioinformatic pipeline was sufficient to capture the transcriptome
68 of neutrophils. As part of earlier work looking at neutrophils in whole blood, we showed that the
69 microwell based scRNA-seq BD Rhapsody effectively captured the transcriptome from neutrophils.
70 The percentage of neutrophils retrieved from samples was comparable to results from flow
71 cytometry using CD16, CD11b and CD62L as markers (Leclercq et al., 2022). A direct comparison
72 between the BD Rhapsody and 10X 3 prime suggested that RNA capture is significantly more
73 sensitive in the microwell based method, leading to more sensitive detection of cells with a low RNA
74 content (Salcher et al., 2024).

75

76 Single cell RNA-seq is a powerful tool in drug discovery. However, its potential for use with clinical
77 samples is limited by the requirement to use fresh cells. For PBMCs, protocols have been developed
78 whereby cell separations can be performed at the clinical sites and then cells cryopreserved and
79 banked for later analysis at a central testing facility (van der Wijst et al., 2018). However, for more

80 sensitive cell types such as neutrophils, this is not possible, as a high proportion of these cells die and
81 the remaining cells are morphologically and functionally altered in the freeze-thaw process
82 (Braudeau et al., 2021; de Ruiter et al., 2018; Verschoor et al., 2018). For these cell types, the single
83 cell analysis must be performed at the clinical site, which reduces the number of clinical sites that are
84 able to collect samples for scRNA-seq analysis. Taken together the biological importance, sensitive
85 nature of neutrophils in combination with the complexity of global clinical trial settings call for an
86 easy-to-use stabilization protocol for subsequent single cell RNAseq.

87

88 We selected three new technologies to compare: Evercode from PARSE technologies, 10X Genomics
89 FLEX solution, and the Honeycomb Technologies HIVE device. The selection criteria was based on the
90 ability to stabilize cells rapidly prior to library prep, the requirement to process large number of cells
91 and a commercially available product that can be distributed easily to clinical sites. PARSE
92 technologies scRNA-seq works on a principle of combinatorial barcoding, where fixed cells are given
93 a sample barcode with the reverse transcription step, samples are then pooled and split before a
94 further three successive barcoding steps, including the addition of a unique molecular barcode
95 (Rosenberg et al., 2018). This approach allows for up to 96 multiplexed samples, and has been
96 reported to detect more genes expressed at low levels than the 10X 3 prime library prep (Xie et al.,
97 2020). The HIVE device works on the principle that cells are distributed into nano-wells and
98 stabilized. The samples can be stored at -80°C prior to the library preparation steps. The HIVE device
99 has successfully been used to isolate neutrophils from RBC-depleted donor samples (Sheerin et al.,
100 2023). In the 10X RNA Flex fixed and permeabilized cells are incubated with a set of 18,532 probes
101 covering the entire transcriptome prior to library preparation steps. The use of probe hybridization
102 allows for the capture of smaller fragments of RNA which are found in formalin fixed, paraffin
103 embedded tissue. This method has been successfully used on FFPE tissues and xenograft models
104 (Llora-Batlle et al., 2024; Wang et al., 2023).

105

106 Neutrophils are reported to have a short half-life *ex vivo* and the methods of isolation can lead to
107 activation or apoptosis. Therefore, we used the findings of previous studies on neutrophil isolation to
108 define the conditions for this study. Previous reports have demonstrated that neutrophils suitable for
109 functional characterization can be isolated from blood stored at room temperature or at 4°C for 24
110 hours, or up to 72 hours when stored at 37°C (Bonilla et al., 2020; Li et al., 2024; Wood et al., 1999).
111 Incubators for sample storage are not always be available at clinical sites, therefore we opted to look
112 at the impact of storage at 4°C for 24 hours. Currently, there is little information exploring the effect
113 of time from blood draw to analysis or fixation on neutrophil transcriptome stability. This work aims
114 to evaluate the new generation of fixed single cell technologies to determine their suitability for 1)
115 measuring the neutrophil transcriptome and 2) their potential for implementation in clinical trials
116 which require minimal sample processing and sample stabilization.

117

118 **Results**

119 ***Study design***

120 To compare the different technologies, blood was drawn from healthy donors and then divided into
121 different aliquots which were tested using 10X Flex, PARSE, and 10X 3 prime chemistries (Figure 1A).
122 An aliquot for each donor was run on the flow cytometer to characterize cells into the major cell
123 types to compare with the results from the scRNA-seq clustering. We evaluated the HIVE devices in a
124 separate experiment using the same format: The blood samples were profiled using HIVE, 10X 3
125 prime and flow cytometry in parallel (Figure 1B). In order to compare directly across the technologies
126 we limited our analysis to the 18,532 genes captured in the 10X RNA FLEX probe set. We used our
127 established BESCA pipeline (Madler et al., 2021). The knee plots (Supplementary Figure 1) reveal a
128 clear separation between cells and empty droplets for PBMC isolation, aiding in cutoff determination.
129 However, RBC-depleted samples lack this distinct separation due to low gene expression in
130 granulocytes. To ensure inclusion of neutrophils, we applied a minimum threshold of 200 genes and
131 200 UMIs across all samples.

132

133 ***Comparing the quality of scRNA-seq from the different methods***

134 We compared the quality of the scRNA-seq data using the following parameters: UMI counts, the
135 number of genes detected and the percentage of mitochondrial genes (Figure 2A). These parameters
136 are used to discriminate low quality cells where the cells are stressed, or cell leakage occurring
137 during processing (Ilicic et al., 2016). Across all of the scRNA-seq technologies the mitochondrial gene
138 expression levels were low, between 0-8%, with PARSE showing the lowest levels of mitochondrial
139 gene expression, followed by 10X RNA FLEX. 10X 3 prime samples and HIVE which used non-fixed
140 cells as input both had higher levels of mitochondrial genes detected. For all the novel
141 methodologies, the number of genes detected and the number of UMIs were lower in the RBC
142 depleted samples compared to the PBMC samples (Figure 2B & C, Supplementary Figure 2). For the

143 RBC depleted samples, we observed a bimodal distribution in the violin plots. This was due to two
144 populations of cells with different overall gene expression levels: the PBMC population with high
145 gene expression and the granulocytes with low levels of genes expressed per cell and lower mRNA
146 levels in general (Wigerblad et al., 2022).

147

148 Next, we examined the dynamic range of 10X Flex, Parse, and HIVE alongside the 10X 3 prime
149 technology. To do this we examined the expression of genes that have been classified with high
150 (B2M), high-medium (ACTB), low-medium (CTCF) and low expressed (PGK1). In 10X Flex, HIVE and
151 10X 3 prime we observed that the majority of the cells were expressing high levels of B2M and ACTB,
152 with the number of cells expressing PGK1 and CTCF reducing and the magnitude of expression also
153 decreasing (Supplementary Figures 3 &4). For the PARSE PBMC samples, the number of counts per
154 cell were comparable with the 10X 3 prime and 10X Flex samples. However, the PARSE samples still
155 showed lower expression of B2M and ACTB, and higher levels of the lower expressed genes PGK1
156 and CTCF. From this data, we conclude that the PARSE samples show a different dynamic range to
157 the 10X data and HIVE data with a greater representation of genes with lower levels of expression.

158

159 ***scRNA-seq Clustering***

160 We combined the data from the different technologies for clustering purposes and observed that the
161 cells clustered based on the technology used (Figure 3A). Within the technology-specific clusters we
162 observed that the cells separated into clusters based on the cell separation method used (PBMC
163 versus RBC depletion) (Figure 3A), and finally the cells clustered into different cell types (Figure 3A).
164 We observed that the neutrophils clusters in all technologies were associated with lower n_counts
165 and UMI counts which is in line with the low levels of RNA and gene expression in this cell population
166 (Figure 3B). The 10X 3 prime and HIVE clusters showed higher percentage mitochondrial gene
167 expression (Figure 1A and 3B). Looking at the cell type clustering for each individual technology
168 (Figure 3A & Supplementary Figure 5), we see that the major cell types can be identified clearly in the

169 four different technologies, however neutrophil clusters were absent in the 10x 3 prime. The cell
170 types separated into more defined clusters for both the 10X technologies. In all technologies, we
171 also observed artifact clusters, which are composed of empty droplets due to the lower cutoffs used,
172 doublets or cell types that cannot be assigned to any group. The throughput of the PARSE and 10X
173 FLEX technologies was much higher than the 10X 3 prime and HIVE technologies. We did observe a
174 high level of doublets in the 10X Flex RBC-depleted samples (~20%) compared to the other
175 technologies. However, we could easily identify the doublets and could remove them from the
176 analysis (Figure 3A & Supplementary Figure 3C).

177

178 ***Percentage cell populations determined by scRNA-seq compared to flow cytometry***

179 In order to determine how well the fixed cell scRNA-seq technologies captured neutrophils we
180 compared the percentage neutrophils from each technology with the percentage neutrophils
181 determined by flow cytometry on the same sample. Please note that for the 10X RNA FLEX, 10X 3
182 prime and PARSE blood for the same 3 donors was tested. For the HIVE evaluation, blood from a
183 different three was tested. We profiled an aliquot from each blood sample by flow cytometry to
184 identify different cell types. 10X FLEX, PARSE and HIVE all successfully isolated neutrophils from the
185 red blood cell depleted samples. The percentage of neutrophil populations using FLEX were the
186 closest to those determined by flow cytometry (Table 2, Figure 3C, Supplementary Tables 1, 2, 3, 4, 5
187 & 6; Supplementary Figure 6). FLEX and PARSE also compared favorably with flow cytometry results
188 for the isolation of T-cells, B-cells, Monocytes, Natural Killer cells. Indeed, the performance was
189 comparable on the PBMC isolations with the 10x 3 prime methods and flow cytometry
190 (Supplementary Tables 1, 2, 3, 4, 5 & 6).

191

192 ***Identification of neutrophil populations***

193 We looked at the clustering within the granulocyte clusters for the different technologies to
194 determine if different populations of neutrophils could be identified. Unsupervised clustering

195 demonstrated that two different populations of neutrophils can be defined in the FLEX (Cluster 46)
196 and PARSE (Cluster 43) data (Figure 3D), these clusters have elevated expression of LTF and BPI
197 compared to the other granulocyte clusters. A second group consisting of clusters 3 (10X Flex), 10
198 and 13 (HIVE) is characterized by expression of only FCGR3B, CSF3R and S100A8, the canonical
199 markers for neutrophils found in the blood (Figure 3D). A population expressing Basophil markers
200 (FCER1A, HDC and MS4A2) was defined only in the FLEX data set (Cluster 39) (Figure 3D&E). We were
201 unable to identify Eosinophils in any of the data sets.

202

203 ***Time course for optimum sampling of neutrophils***

204 Neutrophils are a particularly sensitive cell type with a reported short half-life *In Vivo* and *In Vitro*
205 (Lahoz-Beneytez et al., 2016; Scheel-Toellner et al., 2004). In order to determine the maximum time
206 that samples could be stored prior to processing, we tested cells at different time points after blood
207 draw (immediate processing, 2, 4, 6, 8 and 24 hours after blood draw), prior to fixing and measuring
208 transcriptome by 10X Flex. After the cell isolation steps we performed a cell count prior to
209 stabilization (data not shown). We observed little overall cell death or decrease in cell count over the
210 24 hours after the blood draw. In concordance with this, the general quality of the scRNA-seq data
211 was unchanged across the time course. There was little increase in expression of mitochondrial
212 genes, with all samples having expression levels of <1% for mitochondrial genes, number of counts or
213 UMI counts across the time course (Supplementary Figure 7A, B &C). There were also no differences
214 in the % cell types over time since blood draw as determined the scRNA-seq (Supplementary Figure
215 7D, E & F), indicating that there is no apoptosis of specific cell types taking place over the 24 hours.
216 We compared the transcriptional profile of neutrophils at different time intervals after the blood
217 draw and we did observe that the number of genes differentially regulated compared to the 0h time
218 point started to significantly increase 4 hours post blood draw, with the number of genes up and
219 down regulated increasing at each time point (Figure 4A & B). The most significantly changed
220 pathway was associated with cell stress defined as Stress MP5 by (Gavish et al., 2023). In our results,

221 we observed that stress signatures were upregulated in all time points 2 hours after blood draw,
222 showing the importance of prompt sample processing (Figure 4C). This data is concordance with the
223 previous report by (Connelly et al., 2022) which found that markers of neutrophil activation,
224 apoptosis and degranulation 4 hours post blood draw. Therefore, despite live, functionally active
225 neutrophils being present in blood samples 24 hours post blood draw, the transcriptome of
226 neutrophils is significantly changed after 4 hours post blood draw. Our results indicate that
227 immediate fixation of neutrophils is required if the transcriptome is being analyzed.

228

229 **Conclusions**

230 The recent advances in fixed cell scRNA-seq allowing the rapid stabilization and storage of cells prior
231 to library prep will enable the wider implementation of scRNA seq analysis in clinical trials. 10X FLEX,
232 PARSE and HIVE protocols would support a model where cells are stabilized at the clinical site
233 allowing storage and transport to the analytical labs where library prep and sequencing can take
234 place. Practically, the HIVE devices presents a straightforward protocol for use at a clinical site, with
235 the cells simply pipetted into the device after the cell separation step. We also found that cells stored
236 in HIVE devices at -80C for up to 3 weeks showed good quality data comparable to cells processed
237 immediately (data not shown). For Flex, the samples need to be centrifuged after the cell separation
238 and then resuspended in paraformaldehyde. Since these experiments were completed, 10X have
239 modified their protocols allowing whole blood to be stabilized with paraformaldehyde, then stored
240 and transported at -80°C. This would allow the cell separation and analysis to be performed at the
241 analytical site, presenting a simple procedure for cell stabilization at the clinical site. The PARSE
242 Technologies protocol for fixation of cells requires several consecutive centrifugation steps, making it
243 the protocol that requires the longest hands on time for the fixation steps and practically the hardest
244 to perform at a clinical site.

245

246 Our experiments indicate that all three of the technologies produce high scRNA-seq quality data,
247 with low levels of mitochondrial gene expression. FLEX and PARSE, which use fixed cells, have lower
248 levels of mitochondrial gene expression than 10X 3 prime and HIVE that use live or frozen cells as
249 input. This may be due to the release of cytoplasmic RNA on fixation or permeabilization of the cell
250 (De Simone et al., 2024). Interestingly, for PARSE data we observed a different dynamic range than
251 observed for the other technologies. Here we observed that the fully combinatorial barcoding
252 approach (Rosenberg et al., 2018) led to greater sensitivity of detection of genes with lower
253 expression levels. Interestingly, for approaches where combinatorial barcoding techniques were
254 combined with droplet based fluidic systems for scRNA-seq have been reported to have lower
255 sensitivity of detection for genes that have a low level of gene expression in comparison to 10X 3

256 prime, this maybe due to the combinatorial barcoding being performed inside the droplet, as
257 opposed to within the fixed cell (PARSE) (Datlinger et al., 2021; Wu et al., 2024a). All three fixed
258 scRNA-seq methods successfully captured neutrophils from RBC depleted samples. Our analysis
259 suggested that 10x FLEX captured the different white blood cell components in the red blood cell
260 depleted samples to a similar percentage as flow cytometry. HIVE and PARSE, while capturing
261 neutrophil profiles did not compare as favorably with the flow cytometry results. For cell type
262 assignment in general, we observed the closest alignment with flow cytometry using FLEX, which
263 performed well across all cell types. PARSE and HIVE both had greater deviation from the cell type
264 proportions estimated by flow cytometry. Although technical optimization of the methods and
265 bioinformatic pipeline may improve the cell assignment, these results are in alignment with a
266 previously published study on PBMC which showed that cell type calling for FLEX was closely aligned
267 with CyTOF for the same sample, whereas greater differences were observed with PARSE and HIVE
268 (De Simone et al., 2024).

269
270 Unsupervised clustering of the granulocyte cells across all the methods tested defined two distinct
271 groups of neutrophils. The first subtype, expressing BPI and LTF was detected in the FLEX and PARSE
272 data aligns with immature neutrophils: LTF in particular has been shown to be highly expressed at
273 earlier time points in neutrophil differentiation (Grieshaber-Bouyer et al., 2021). A neutrophil type
274 was observed in all three technologies and is characterized by expression of FCGR3B, CSF3R and
275 S100A8 markers of mature neutrophils (Grieshaber-Bouyer et al., 2021). In the FLEX data only, we
276 were able to identify a population of basophils, a rare and sensitive cell type that is <1% of cells in
277 peripheral blood (Min et al., 2012). The cell type was not detected by the other technologies. Taken
278 together, we could only differentiate all three different cell types detected in the 10X FLEX data. FLEX
279 has previously been shown to have more stable gene expression and improved variance compared to
280 HIVE and PARSE (De Simone et al., 2024), we propose that this may play a role in detecting these rare
281 cell types.

282 This work compared three novel methods to determine if scRNA-seq could be implemented at
283 clinical sites for profiling neutrophils. All three methods produced high quality data and were able to
284 capture neutrophils from peripheral blood samples. However, for clinical samples we determined
285 that FLEX had the best performance, with the proportions of neutrophils captured in blood samples
286 comparable to those observed by flow cytometry and the workflow being the most amenable to
287 sample collection at the clinical site. Additionally using FLEX, we were able to define two distinct
288 populations of neutrophils: immature neutrophils and those expressing canonical neutrophil
289 markers. We recommend that the time between blood draw and fixation is limited to 2 hours, as
290 after this time we observe an increase in differential gene expression regulation associated with
291 stress. To our knowledge, this is the first study to present a route to scRNA-seq implementation in
292 clinical trials and a powerful tool for biomarker development and understanding of neutrophil
293 biology.

294

295 **Acknowledgements**

296 We would like to acknowledge the Flow 360 Labs team at Roche for their support in Flow cytometry
297 data acquisition.

298

299 **Author Contributions**

300 **KH:** Experimental design, Data Analysis and Interpretation, Manuscript Preparation. **KS:**
301 Experimental design, Data Analysis and Interpretation, Manuscript Preparation **SD:** Experimental
302 Design, Experimental Execution, Manuscript Preparation **FK:** Experimental Design, Experimental
303 Execution, Manuscript Preparation **NG:** Experimental Design, Experimental Execution **LJ:**
304 Experimental Execution, Data Analysis and Interpretation, Manuscript Preparation **DM:** Data Analysis
305 and Interpretation, Manuscript Preparation **PK:** Data Analysis and Interpretation, Manuscript
306 Preparation. **MM:** Experimental design, Manuscript Preparation **TB:** Experimental Design, Manuscript
307 Preparation **AG:** Manuscript Preparation **JDZ:** Data Analysis and Interpretation **MS:** Manuscript
308 preparation **EB:** Experimental Design, Experimental Execution, Data Analysis and Interpretation,
309 Manuscript Preparation.

310

311 **Declaration of Interest:** The authors declare no competing interests

312

313 **Declaration of AI and AI Assisted Technology:** During the preparation of this work the authors did
314 not use any AI or AI assisted technology.

315

316 **Supplemental Information titles and legends**

317

318 **Supplementary Table 1:** Comparison of the technologies used in this study

319

320 **Supplementary Table 2:** Cell population comparison. Table shows the mean % neutrophils of the

321 three donors tested determined by cell type analysis. For each technology there is a Mean absolute

322 error (MAE) and Root mean squared error (RMSE) which shows the difference between the flow

323 cytometry values and the scRNA-seq derived results.

324

325 **Supplementary Table 3:** Donor 1 cell population comparison for Flow cytometry, 10X 3 prime

326 transcriptome, 10X FLEX, PARSE for PBMC isolation and RBC depletion

327

328 **Supplementary Table 4:** Donor 2 cell population comparison for Flow cytometry, 10X 3 prime

329 transcriptome, 10X FLEX, PARSE for PBMC isolation and RBC depletion

330

331 **Supplementary Table 5:** Donor 3 cell population comparison for Flow cytometry, 10X 3 prime

332 transcriptome, 10X FLEX, PARSE for PBMC isolation and RBC depletion

333

334 **Supplementary Table 6:** Donor 4 cell population comparison for Flow cytometry, 10X 3 prime

335 transcriptome and HIVE for PBMC isolation and RBC depletion

336

337 **Supplementary Table 7:** Donor 5 cell population comparison for Flow cytometry, 10X 3 prime

338 transcriptome and HIVE for PBMC isolation and RBC depletion

339

340 **Supplementary Table 8:** Donor 6 cell population comparison for Flow cytometry, 10X 3 prime

341 transcriptome and HIVE for PBMC isolation and RBC depletion

342

343 **Supplementary Table 9:** Flow cytometry antibodies

344

345 **Supplementary Figure 1:** Knee plots for PARSE, FLEX and HIVE data for number of genes expressed

346 per cell and UMI counts per cell for (A) PBMC and (B) RBC depleted samples.

347 **Supplementary Figure 2:** Violin plots showing the (A) mitochondrial gene expression levels (B)
348 n_counts and (C) UMI counts for 10x 3 prime, 10X FLEX and PARSE for PBMC samples.

349
350 **Supplementary Figure 3:** A comparison of the dynamic range for the 10X 3prime, 10X FLEX and
351 PARSE for 4 different genes that represent highly expressed (B2M), medium high expression (ACTB),
352 medium low (PGK1) and low (CTCF) expression. These graphs show the expression in the RBC
353 depleted samples.

354
355 **Supplementary Figure 4:** A comparison of the dynamic range for the 4 different technologies using 4
356 different genes that represent highly expressed (B2M), medium high expression (ACTB), medium low
357 (PGK1) and low (CTCF) expression. These graphs show the expression of the PBMC samples.

358
359 **Supplementary Figure 5:** UMAPs cell separations for cell type for each individual technology: 10X 3
360 prime, 10X FLEX, HIVE and PARSE.

361
362 **Supplementary Figure 6:** Bar graphs showing the % neutrophils determined by each technology
363 compared to the flow cytometry result. Each graph displays the data for a single donor.

364
365 **Supplementary Figure 7:** Violin plots showing the mitochondrial gene expression levels, n_counts
366 and UMI counts for samples taken 2, 4, 6, 8 and 24 after blood draw. The data was generated using
367 10X FLEX and each donor is shown individually: A) donor 1, (B) donor 2, (C) donor 3. The % cell type
368 for the time course is shown in (D) donor 1 (E) donor 2 and (F) donor 3.

369

370 **Figure legends**

371 **Figure 1:** Diagram showing the experimental design to test the four different technologies. (A) PARSE,
372 10x FLEX, 10x 3 prime and flow cytometry were tested on the same three blood samples, and (B)
373 HIVE was tested on a different set of blood samples from three different donors at a different date.
374 The samples were also profiled using flow cytometry.

375
376 **Figure 2:** Violin plots showing the (A) mitochondrial gene expression levels (B) n_counts and (c) UMI
377 counts for 10x 3 prime, 10X FLEX, PARSE and HIVE for RBC depleted samples.

378
379 **Figure 3:** UMAPs cell separations with color coding denoting (A) technology, cell separation used and
380 % different cell types. (B) The quality control parameters are shown on UMAPs color coded by UMI
381 counts, n_counts and mitochondrial gene expression. (C) Box plots showing the % of B cells, T cells,
382 neutrophils, monocytes and NK cells determined by flow cytometry, FLEX and PARSE or flow
383 cytometry and HIVE. (D) UMAP of the granulocyte clusters coloured by technology, unsupervised
384 clustering of granulocytes. (E) Dot plot showing the expression of the top 5 marker genes per cluster,
385 for those clusters with >100 cells.

386

387 **Figure 4:** Transcriptional profile of neutrophils after blood draw (A) Graph showing the number of
388 genes differentially regulated (up or down) in neutrophil pseudobulks at 2h, 4h, 6h, 8h or 24h after
389 blood draw compared to the sample processed immediately after blood draw (0h). The data shows
390 results for the 3 donors (n=3) for each time point. (B) Volcano plots for the neutrophil pseudobulk
391 showing magnitude of the genes up or down regulated compared to 0h for each time point tested.
392 (C) Pathway enrichment for cell stress for neutrophil pseudobulks over the time course.

393 **References**

- 394 Bonilla, M.C., Fingerhut, L., Alfonso-Castro, A., Mergani, A., Schwennen, C., von Kockritz-Blickwede,
395 M., and de Buhr, N. (2020). How Long Does a Neutrophil Live?-The Effect of 24 h Whole Blood
396 Storage on Neutrophil Functions in Pigs. *Biomedicines* **8**.
- 397 Braudeau, C., Salabert-Le Guen, N., Chevreuil, J., Rimbert, M., Martin, J.C., and Josien, R. (2021). An
398 easy and reliable whole blood freezing method for flow cytometry immuno-phenotyping and
399 functional analyses. *Cytometry B Clin Cytom* **100**, 652-665.
- 400 Connelly, A.N., Huijbregts, R.P.H., Pal, H.C., Kuznetsova, V., Davis, M.D., Ong, K.L., Fay, C.X., Greene,
401 M.E., Overton, E.T., and Hel, Z. (2022). Optimization of methods for the accurate characterization of
402 whole blood neutrophils. *Sci Rep* **12**, 3667.
- 403 Datlinger, P., Rendeiro, A.F., Boenke, T., Senekowitsch, M., Krausgruber, T., Barreca, D., and Bock, C.
404 (2021). Ultra-high-throughput single-cell RNA sequencing and perturbation screening with
405 combinatorial fluidic indexing. *Nat Methods* **18**, 635-642.
- 406 de Ruiter, K., van Staveren, S., Hilvering, B., Knol, E., Vrisekoop, N., Koenderman, L., and
407 Yazdanbakhsh, M. (2018). A field-applicable method for flow cytometric analysis of granulocyte
408 activation: Cryopreservation of fixed granulocytes. *Cytometry A* **93**, 540-547.
- 409 De Simone, M., Hoover, J., Lau, J., Bennet, H., Wu, B., Chen, C., Menon, H., Au-Yeung, A., Lear, S.,
410 Vaidya, S., et al. (2024). Comparative Analysis of Commercial Single-Cell RNA Sequencing
411 Technologies. *bioRxiv*, 2024.2006.2018.599579.
- 412 Gavish, A., Tyler, M., Greenwald, A.C., Hoefflin, R., Simkin, D., Tschernichovsky, R., Galili Darnell, N.,
413 Somech, E., Barbolin, C., Antman, T., et al. (2023). Hallmarks of transcriptional intratumour
414 heterogeneity across a thousand tumours. *Nature* **618**, 598-606.
- 415 Grieshaber-Bouyer, R., Radtke, F.A., Cunin, P., Stifano, G., Levescot, A., Vijaykumar, B., Nelson-
416 Maney, N., Blaustein, R.B., Monach, P.A., Nigrovic, P.A., et al. (2021). The neutrotime transcriptional
417 signature defines a single continuum of neutrophils across biological compartments. *Nat Commun*
418 **12**, 2856.
- 419 Ilicic, T., Kim, J.K., Kolodziejczyk, A.A., Bagger, F.O., McCarthy, D.J., Marioni, J.C., and Teichmann, S.A.
420 (2016). Classification of low quality cells from single-cell RNA-seq data. *Genome Biol* **17**, 29.
- 421 Lahoz-Beneytez, J., Elemans, M., Zhang, Y., Ahmed, R., Salam, A., Block, M., Niederalt, C., Asquith, B.,
422 and Macallan, D. (2016). Human neutrophil kinetics: modeling of stable isotope labeling data
423 supports short blood neutrophil half-lives. *Blood* **127**, 3431-3438.
- 424 Leclercq, G., Servera, L.A., Danilin, S., Challier, J., Steinhoff, N., Bossen, C., Odermatt, A., Nicolini, V.,
425 Umana, P., Klein, C., et al. (2022). Dissecting the mechanism of cytokine release induced by T-cell
426 engagers highlights the contribution of neutrophils. *Oncoimmunology* **11**, 2039432.
- 427 Li, C., Farooqui, M., Yada, R.C., Cai, J.B., Huttenlocher, A., and Beebe, D.J. (2024). The effect of whole
428 blood logistics on neutrophil non-specific activation and kinetics ex vivo. *Sci Rep* **14**, 2543.
- 429 Llora-Batlle, O., Farcas, A., Fransen, D., Floc'h, N., Talbot, S., Schwiening, A., Bojko, L., Calver, J.,
430 Josipovic, N., Lashuk, K., et al. (2024). 10x Genomics Gene Expression Flex is a powerful tool for
431 single-cell transcriptomics of xenograft models. *bioRxiv*, 2024.2001.2025.577066.
- 432 Madler, S.C., Julien-Laferriere, A., Wyss, L., Phan, M., Sonrel, A., Kang, A.S.W., Ulrich, E., Schmucki, R.,
433 Zhang, J.D., Ebeling, M., et al. (2021). Besca, a single-cell transcriptomics analysis toolkit to accelerate
434 translational research. *NAR Genom Bioinform* **3**, lqab102.
- 435 Min, B., Brown, M.A., and Legros, G. (2012). Understanding the roles of basophils: breaking dawn.
436 *Immunology* **135**, 192-197.
- 437 Montaldo, E., Lusito, E., Bianchessi, V., Caronni, N., Scala, S., Basso-Ricci, L., Cantaffa, C., Masserdotti,
438 A., Barilaro, M., Barresi, S., et al. (2022). Cellular and transcriptional dynamics of human neutrophils
439 at steady state and upon stress. *Nat Immunol* **23**, 1470-1483.
- 440 Papayannopoulos, V. (2018). Neutrophil extracellular traps in immunity and disease. *Nat Rev
441 Immunol* **18**, 134-147.

- 442 Rosenberg, A.B., Roco, C.M., Muscat, R.A., Kuchina, A., Sample, P., Yao, Z., Graybuck, L.T., Peeler, D.J.,
443 Mukherjee, S., Chen, W., *et al.* (2018). Single-cell profiling of the developing mouse brain and spinal
444 cord with split-pool barcoding. *Science* **360**, 176-182.
- 445 Salcher, S., Heidegger, I., Untergasser, G., Fotakis, G., Scheiber, A., Martowicz, A., Noureen, A.,
446 Krogsdam, A., Schatz, C., Schafer, G., *et al.* (2024). Comparative analysis of 10X Chromium vs. BD
447 Rhapsody whole transcriptome single-cell sequencing technologies in complex human tissues.
448 *Heliyon* **10**, e28358.
- 449 Salcher, S., Sturm, G., Horvath, L., Untergasser, G., Kuempers, C., Fotakis, G., Panizzolo, E., Martowicz,
450 A., Trebo, M., Pall, G., *et al.* (2022). High-resolution single-cell atlas reveals diversity and plasticity of
451 tissue-resident neutrophils in non-small cell lung cancer. *Cancer Cell* **40**, 1503-1520 e1508.
- 452 Scheel-Toellner, D., Wang, K., Craddock, R., Webb, P.R., McGettrick, H.M., Assi, L.K., Parkes, N.,
453 Clough, L.E., Gulbins, E., Salmon, M., *et al.* (2004). Reactive oxygen species limit neutrophil life span
454 by activating death receptor signaling. *Blood* **104**, 2557-2564.
- 455 Sheerin, D., Phan, T.K., Eriksson, E.M., Consortium, C.P., and Coussens, A.K. (2023). Distinct and
456 synergistic immunological responses to SARS-CoV-2 and *Mycobacterium tuberculosis* during co-infection identified by single-cell-RNA-seq. *medRxiv*, 2023.2005.2024.23290499.
- 457 Valero, C., Lee, M., Hoen, D., Weiss, K., Kelly, D.W., Adusumilli, P.S., Paik, P.K., Plitas, G., Ladanyi, M.,
458 Postow, M.A., *et al.* (2021). Pretreatment neutrophil-to-lymphocyte ratio and mutational burden as
459 biomarkers of tumor response to immune checkpoint inhibitors. *Nat Commun* **12**, 729.
- 460 van der Wijst, M.G.P., Brugge, H., de Vries, D.H., Deelen, P., Swertz, M.A., LifeLines Cohort, S.,
461 Consortium, B., and Franke, L. (2018). Single-cell RNA sequencing identifies celltype-specific cis-eQTLs
462 and co-expression QTLs. *Nat Genet* **50**, 493-497.
- 463 Verschoor, C.P., Kohli, V., and Balion, C. (2018). A comprehensive assessment of immunophenotyping
464 performed in cryopreserved peripheral whole blood. *Cytometry B Clin Cytom* **94**, 662-670.
- 465 Wang, T., Harvey, K., Morlanes, J.E., Kiedik, B., Al-Eryani, G., Greenwald, A., Kalavros, N., Dezem, F.S.,
466 Ma, Y., Pita-Juarez, Y.H., *et al.* (2023). snPATHO-seq: unlocking the pathology archives. *bioRxiv*,
467 2023.2012.2007.570700.
- 468 Wigerblad, G., Cao, Q., Brooks, S., Naz, F., Gadkari, M., Jiang, K., Gupta, S., O'Neil, L., Dell'Orso, S.,
469 Kaplan, M.J., *et al.* (2022). Single-Cell Analysis Reveals the Range of Transcriptional States of
470 Circulating Human Neutrophils. *J Immunol* **209**, 772-782.
- 471 Wood, B.L., Andrews, J., Miller, S., and Sabath, D.E. (1999). Refrigerated storage improves the
472 stability of the complete blood cell count and automated differential. *Am J Clin Pathol* **112**, 687-695.
- 473 Wu, B., Bennett, H.M., Ye, X., Sridhar, A., Eidenschenk, C., Everett, C., Nazarova, E.V., Chen, H.-H.,
474 Kim, I.K., Deangelis, M., *et al.* (2024a). Overloading And unpacKing (OAK) - droplet-based
475 combinatorial indexing for ultra-high throughput single-cell multiomic profiling. *bioRxiv*,
476 2024.2001.2023.576918.
- 477 Wu, Y., Ma, J., Yang, X., Nan, F., Zhang, T., Ji, S., Rao, D., Feng, H., Gao, K., Gu, X., *et al.* (2024b).
478 Neutrophil profiling illuminates anti-tumor antigen-presenting potency. *Cell*.
- 479 Xie, X., Shi, Q., Wu, P., Zhang, X., Kambara, H., Su, J., Yu, H., Park, S.Y., Guo, R., Ren, Q., *et al.* (2020).
480 Single-cell transcriptome profiling reveals neutrophil heterogeneity in homeostasis and infection. *Nat
481 Immunol* **21**, 1119-1133.
- 482 Yiu, J.Y.T., Hally, K.E., Larsen, P.D., and Holley, A.S. (2023). Neutrophil-Enriched Biomarkers and Long-
483 Term Prognosis in Acute Coronary Syndrome: a Systematic Review and Meta-analysis. *J Cardiovasc
484 Transl Res.*
- 485
- 486

487

488 STAR Methods

489 Key resources table

REAGENT or RESOURCE	SOURCE	IDENTIFIER
Antibodies		
CD3, BUV805 intracellular	BD Bioscience	AB_28701 83
CD4 BUV737 intracellular	BD Bioscience	AB_28700 79
CD14 BUV563 surface	BD Bioscience	AB_28708 60
CD8 BUV496 surface	BD Bioscience	AB_28707 59
CD45 BUV395 surface	BD Bioscience	AB_28695 19
HLA-DR BV785 surface	Biolegend	AB_25634 61
CD56 BV750 surface	BD Bioscience	AB_28718 24
CD11c BV711 surface	BD Bioscience	AB_27380 19
CD19 BV650 surface	Biolegend	AB_25642 55
CD25 BV605 surface	BD Bioscience	AB_27401 27
CD123 BV421 surface	Biolegend	AB_10962 571
CD45RA PerCP-Cy5.5 surface	Biolegend	AB_89335 7
CD15 Pe-Cy7 surface	BD Bioscience	AB_10563 901
CD20 Pe-Cy5 surface	Biolegend	AB_31425 6
CD193 PE-CF594	BD Bioscience	AB_27376 60
FOXP3 PE intracellular	Biolegend	AB_49298 6
CCR7 APC-Cy7 surface	Biolegend	AB_10916 390
CD16 APC surface	Biolegend	AB_31421 2
human IgG	Jackson ImmunoResearch, West Grove, Pennsylvania	AB_23370 43
Biological samples		
Six healthy volunteer donor blood samples	Roche medical centre	
Chemicals, peptides, and recombinant proteins		
Phosphate buffered saline (PBS)	ThermoFisher, Massachusetts	Catalogue # 10010023

2% FBS	VWR International, Pennsylvania	89510-194
True Stain Monocyte Blocker	Biolegend	426101
Fixable Green Dead Cell Stain	ThermoFischer Scientific, Waltham, Massachusetts	L23101
Critical commercial assays		
Next GEM Single Cell 3D Reagent Kits v3.1	10x Genomics, Pleasanton California	PN-1000121
Chromium Next GEM Chip G Single Cell Kit, 16 rxns	10x Genomics, Pleasanton California	PN-1000127
Single Index Kit T Set A, 96 rxns	10x Genomics, Pleasanton California	PN-1000213
Chromium Next GEM Single Cell Fixed RNA Sample Preparation Kit	10x Genomics, Pleasanton California	PN-1000414
Chromium Fixed RNA Kit, Human Transcriptome,	10x Genomics, Pleasanton California	PN-1000476
Chromium Next GEM Chip Q Single Cell Kit	10x Genomics, Pleasanton California	PN-1000422
Dual Index Kit TS Set A 96 rxns	10x Genomics, Pleasanton California	PN-1000251
HIVE collectors	Honeycomb	
HIVE scRNAseq v1 Sample Capture Kit	Honeycomb	
Parse Evercode cell fixation v2	Parse biosciences	
Evercode™ WT Mini v2 kit	Parse biosciences	
Deposited data		
Software and algorithms		
Scanpy	https://scanpy.readthedocs.io/en/stable/generated/scanpy.tl.score_genes.html	SCR_018139
Besca	https://github.com/bedapub/besca/blob/master/besca/databases/genesets/CellNames_scseqCMs6_sigs.gmt	
Uniform Manifold Approximation and Projection (UMAP) algorithm)	https://github.com/lmcinnes/umap	SCR_018217
Leiden algorithm	https://github.com/vtraag/leidenalg	
Msigdb	https://www.gsea-msigdb.org/gsea/msigdb/human/collections.jsp	SCR_016863
Limma	http://bioinf.wehi.edu.au/limma/	SCR_010943
Reactome pathways	https://reactome.org	SCR_003485

cellranger 6.0.2 mkfastq	https://www.10xgenomics.com/support/software/cell-ranger/latest/analysis/inputs/cr-mkfastq	SCR_0173 44
bcl-convert 3.8.4	https://emea.support.illumina.com/sequencing/sequencing_software/bcl-convert/downloads.html	
split-pipe v1.0.5p: available to PARSE ¹ customers on request	https://support.parsebiosciences.com/hc/en-us/articles/20403758539924-How-Do-I-Access-the-Parse-Biosciences-Pipeline	
cellranger ¹	https://www.10xgenomics.com/support/software/cell-ranger/latest/release-notes/cr-release-notes	SCR_0173 44
Other		
10mL EDTA KCL blood collection tubes		18103
Ficoll	GE healthcare	
SepMate-50 tubes	Stemcell technologies	85450
50 ml Falcon tube		
EasySep™ RBC Depletion Reagent	Stemcell technologies	18170
EasySep Easy Eights magnet	Stemcell technologies	18103
S1 Reagent Kit v1.5 (100 cycles)	Illumina	2002831 9
Fixable Green Dead Cell Stain	ThermoFischer Scientific	L23101
50% Brilliant Stain Buffer	BD Biosciences	659611

490

491 **Resource availability**

492 **Lead contact**

493

494 Further information and requests for resources and reagents should be directed to and will
495 be fulfilled by the lead contact, Emma Bell (emma.bell@roche.com)

496

497 **Materials availability**

498

499 All of the materials used in this study were commercially available

500

501 **Data and code availability**

502

- All data reported in this paper will be shared by the lead contact upon request.
- This paper does not report original code
- Any additional information required to reanalyze the data reported in this work
505 paper is available from the lead contact upon request

506

507 **Experimental model and study participant details**

508
509 Whole blood was drawn from 6 healthy human donors. We do not have any information on
510 the sex, gender, ancestry, age, race or ethnicity. These factors are not anticipated to affect
511 the findings of the study which is to compare methods of scRNA-seq as we are not looking at
512 biological variation.

513

514 **Method details**

515 *Samples*

516 Whole blood from healthy donors was drawn into 10mL EDTA KCL or sodium Heparin tubes.
517 For the technology comparison experiments, the blood was divided into 2 ml aliquots, then
518 processed immediately for PBMC isolation or red blood cell removal. In order to determine
519 the time limit for processing and fixing samples after the blood draw we set up a time
520 course. 10 ml of blood was drawn from three donors, a 2 ml aliquot was processed
521 immediately, then subsequent aliquots were processed (RBC depletion) 2, 6, 8 and 24 hours
522 after the original blood draw. In the interim, the sample was stored at 4°C.

523 *PBMC Isolation*

524 PBMC were isolated from whole blood using Ficoll (GE healthcare, Illinois) separation
525 according to manufacturer's instructions. Briefly 15 ml Ficoll was added to SepMate tubes
526 (Stemcell technologies, Vancouver, Canada). Blood was diluted 1:1 with phosphate buffered
527 saline (PBS) (ThermoFischer, Massachusetts) + 2% FBS (VWR International, Pennsylvania).
528 The diluted blood was then added to the SepMate tube. Tubes were then sealed and
529 centrifuged at 1200xg for 10 mins at room temperature. The top layer of cells, containing
530 enriched mononuclear cells was decanted into a new 50 ml Falcon tube. The isolated cells
531 were then washed three times with PBS+2%FBS.

532 *RBC Removal*

533 RBCs were removed from blood samples using the EasySep™ RBC Depletion Reagent
534 (Stemcell technologies) and the associated EasySep Easy Eight magnet, according to the
535 manufacturer's instructions. Briefly, 5mls of whole blood was diluted with PBS-2%FBS
536 solution. The EDTA and RBC depletion solution were added to the samples prior to gently
537 pipette mixing. The samples were transferred to the magnet and left for 5 mins. The
538 supernatant was transferred to a new 14ml tube and the process repeated at least 3 times,
539 or until no RBCs were visibly remaining.

540 *Cell counting and viability*

541 After the cell isolations and before fixation or library preparation, the cell viability and
542 number were measured using a Cellaca Cellcounter (Nexcelom Bioscience, Massachusetts).
543 The viability of all samples was high and ranged between 100-96% viability. The number of
544 cells required as input for each different technology is summarized in Table 1. For the library
545 preps for fixed cells, the cell number and viability were counted before fixation and then the
546 fixed cells were counted prior to library prep. For PBMC samples between 250 000- 400 000

547 cells were fixed per sample, and for the RBC depleted samples 500 000- 850 000 cells per
548 sample were fixed.

549 *10x 3' transcriptome*

550
551 An input of 8000 live cells per sample were used for the 10X 3 prime libraries. The libraries
552 were prepared using the Next GEM Single Cell 3 μ Reagent Kits v3.1. This involves GEM
553 generation on the Chromium instrument, where gel beads were mixed with the live cells and
554 partitioned using oil droplets, resulting in droplets containing a single cell and a gel bead
555 containing barcodes and primers. After barcoding, samples were transferred to a PCR
556 machine for the reverse transcriptase step. Full length, barcoded cDNA from poly adenylated
557 mRNA is then purified using magnetic beads, before PCR amplification. After fragmentation
558 and size selection, P5 and P7 illumina adapters alongside sample barcodes were added to
559 create the final libraries. For sequencing, we targeted 50,000 reads per cell. Therefore, we
560 sequenced the samples on a single NovaSeq S1 flow cell.

561

562 *10x FLEX*

563 Live cells were fixed using the Chromium Next GEM Single Cell Fixed RNA Sample
564 Preparation Kit (10X Genomics) according to the manufacturer's instructions. For PBMC
565 samples between 250 000 - 400 000 cells were fixed per sample, and for the RBC depleted
566 samples 500 000- 850 000 cells per sample were fixed. Briefly, cells were centrifuged and
567 supernatant removed. Cells were resuspended in the kit supplied fixation buffer, then
568 incubated for 16 hours at 4°C. The cells were centrifuged and supernatant removed before
569 resuspension in the Quenching buffer. The cells were washed, counted and the number of
570 cells adjusted to that of the lowest sample. The Chromium Next GEM Single Cell Fixed RNA
571 Sample Preparation Kit and Chromium Fixed RNA Kit, Human Transcriptome, Chromium Next
572 GEM Chip Q Single Cell Kit were used according to manufacturer's instructions.

573

574 In summary, samples were incubated with the human transcriptome probes to allow
575 hybridization for 16 hours at 42°C. The samples were then washed and transferred to the
576 Chromium X instrument for GEM generation, during this stage the cell is partitioned into an
577 oil droplet containing a 10x barcoded gel bead, so that cell specific barcodes and UMIs are
578 added to the hybridized probes. The probes are then extended and then PCR amplified prior
579 to the addition of P5 and P7 illumina adapters and sample index barcodes. The samples were
580 sequenced on a Novaseq 6000 to a depth of at least 15 000 reads per cell using an SP -
581 100cycles v1.5 reagent kit.

582

583 *HIVE*

584 Eight HIVE collectors were loaded with freshly isolated cells. HIVE collectors contain more
585 than 65,000 60 μ m-wide picowells that are pre-loaded with barcoded 3' transcript capture
586 beads. Each collector was loaded by centrifugation with a total of 15,000 cells according to
587 HIVE scRNAseq v1 Sample Capture Kit User Protocol (Revision A). Once loaded, 3 HIVE
588 devices were incubated for 30 minutes at room temperature before direct processing, and
589 the remaining HIVE devices were frozen at -20°C for later processing after 1 week or 3 weeks
590 of storage. Upon thawing the HIVE devices were equilibrated for 60 minutes at room
591 temperature before processing. All Hive devices, whether processed directly or after storage
592 at -20°C were processed the same way and according to the manufacturer's instructions.

593
594 Briefly, the cells were lysed and hybridized to beads in the HIVE collectors. Beads were
595 recovered by centrifugation into a bead collector and transferred to a filter plate set on a
596 vacuum manifold allowing beads washing and buffer exchanges by aspiration. After the first
597 strand synthesis (45 min at 37°C), 1X NaOH was added and beads washed 3 times before the
598 2nd strand synthesis (37°C for 30 min). Samples were washed and transferred to a deep well
599 plate for whole transcriptome PCR amplification. After a double-sided SPRI clean-up,
600 samples were indexed by PCR and a final SPRI was performed. Libraries size was checked the
601 bioanalyzer on high sensitivity DNA chips (Agilent), concentration determined on Qubit 3.0
602 using the dsDNA High sensitivity kit and sequenced on the Novaseq 6000 with a S1 -
603 100cycles v1.5 reagent kit, using HIVE custom primers and 25-8-8-50 sequencing cycles.
604

605 *PARSE Evercode*

606 Live cells were fixed using the Evercode Cell Fixation v2 kit (Parse Biosciences, Washington).
607 For PBMC samples between 250 000- 400 000 cells were fixed per sample, and for the RBC
608 depleted samples 500 000- 850 000 cells per sample were fixed according to the
609 manufacturer's instructions. Cells were spun down at 200 x g at 4°C for 10 mins before
610 resuspension in a prefixation buffer. The cells suspension was then passed through a 40 µm
611 strainer to remove cell clumps. A fixation additive was then added to the suspension and the
612 sample was placed on ice for 10 mins, before the addition of a permeabilizing solution and a
613 further 3 minute incubation on ice. A neutralization buffer was added before a further
614 centrifugation step for 10 minutes, 200 x g at 4°C. The supernatant was removed and cells
615 were resuspended in Cell Buffer and DMSO added to the samples. The fixed cells were then
616 processed using the Evercode™ WT Mini v2 kit according to the manufacturer's instructions.
617 This protocol uses successive pooling and barcode steps. In the first step, well barcodes are
618 added and reverse transcription of mRNA takes place within the cell. After this step the
619 samples are then pooled and redistributed and further barcodes ligated a further two times.
620 In the third step UMI's are added to the cDNA. In the last step, cells are lysed, the cDNA
621 isolated and sequencing adapters and sub-library barcodes added by PCR. The resulting
622 libraries were sequenced on the Nova-seq 6000 using an S1 flow cell and S1 Reagent Kit v1.5
623 (100 cycles) with PE 74bp_6 index_86bp reads

624

625 *Flow Cytometry*

626 250 000 live cells were stained for flow cytometry, cells were centrifuged at 320 x g for 5
627 mins at 4°C. The supernatant was removed and cells resuspended in 50µL of blocking
628 solution containing 1:100 dilution of human IgG (Jackson ImmunoResearch, West Grove,
629 Pennsylvania), 1:50 dilution True Stain Monocyte Blocker (Biolegend, California) and 1:800
630 dilution of Fixable Green Dead Cell Stain (ThermoFischer Scientific, Waltham, Massachusetts)
631 in PBS. The samples were incubated at 4°C for 20 minutes. The samples were centrifuged at
632 320 x g and washed with FACS buffer (PBS supplemented with 2% FCS and 2mM EDTA). The
633 cells were resuspended in 50µL of a solution containing a panel of antibodies for the
634 following surface markers: CD14, CD8, CD45, HLA-DR, CD56, CD11c, CD19, CD25, CD123,
635 CD45RA, LD, CD15, CD20, CD193, CCR7 and CD16. The mix was prepared in a buffer
636 containing 50% FACS buffer and 50% Brilliant Stain Buffer (BD Biosciences, Franklin lakes,

637 New Jersey). The antibodies (previously titrated) are summarized in Table 3. The cells were
638 then incubated for 20 mins at 4°C. Then centrifuged and washed with FACS buffer before
639 incubating for 30 mins with Foxp3 Fixation/Permeabilization working solution
640 (Thermofischer Scientific) at room temperature in the dark. The cells were washed in
641 permeabilization buffer, before the addition of the intracellular antibodies: CD3, CD4 and
642 FOXP3 prepared in permeabilization buffer / Brilliant Stain Buffer (1:1 vol/vol) (details in
643 Supplementary Table 3) and incubated for 30 mins at room temperature. The samples were
644 further centrifuged at 620 x g and resuspended in FACS buffer before running on a
645 FACSymphony™ A5 Cell Analyzer (BD Bioscience).

646
647

648 Quantification and statistical analysis

649
650 *Bioinformatic Analysis*

651 In total, we sequence 29 samples for the technology comparison, six using Parse, six using
652 10X Flex, six using 10X 3', eight using HIVE, and three using 10X 3' from the HIVE donors. The
653 reads from all technologies were mapped to the human genome (hg38) and we created one
654 gene-by-cell count matrix per sample. FASTQ files from Parse were generated using *bcl-*
655 *convert 3.8.4* and the *split-pipe v1.0.5p* was utilized to generate the count matrices. FASTQ
656 files from 10X Flex were generated using 10X Genomics *cellranger 6.0.2 mkfastq* and
657 *cellranger 7.1.0 multi* was utilized to generate the count matrices. FASTQ files from 10X 3'
658 were generated using 10X Genomics *cellranger 6.0.2 mkfastq* and *cellranger 6.0.2 count* was
659 utilized to generate the count matrices. FASTQ files from HIVE were generated using Bcl2fastq
660 for demultiplexing and BeeNet (Honeycomb) for data pre-processing to generate the count
661 matrices.

662 The count matrices were further processed using BESCA (Madler et al., 2021) and Scanpy
663 (Wolf et al., 2018). Low cutoffs for number of genes expressed and number of UMIs per cell
664 were used in order to capture the neutrophils. This method has been used by previous
665 studies (Wauters et al., 2021), as neutrophils typically have a lower levels of gene
666 expression, and generally have low levels of RNA meaning that they would be filtered out
667 using strict thresholds that have been developed for PBMCs. We applied the same cut-offs
668 for number of genes and UMIs detected for all samples in order to achieve high
669 comparability. Cells that expressed at least 200 and not more than 10,000 genes and
670 included at least 200 and not more than 50,000 UMIs were kept for downstream analysis. In
671 addition, we removed cells with high mitochondrial gene expression, for Parse PBMC
672 samples above 1%, Parse RBC depleted samples above 2%, and all other samples above 10%
673 of UMIs mapping to mitochondrial genes. This resulted in 332,783 total cells.

674
675 Normalization was performed for the entire dataset using count depth scaling to 10,000
676 total counts per cell, resulting in the cp10k (counts per 10,000) unit. Count values were log-
677 transformed using natural logarithm: $\ln(cp10k + 1)$. To reduce dataset dimensionality
678 before clustering, the highly variable genes within the dataset were selected. Genes were
679 defined as being highly variable when they have a minimum mean expression of 0.0125, a
680 maximum mean expression of 3 and a minimum dispersion of 0.5. Technical variance was

681 removed by regressing out the effects of count depth and mitochondrial gene content and
682 the gene expression values were scaled to a mean of 0 and variance of 1 with a maximum
683 value of 10. The first 50 principal components were calculated and used as input for
684 calculation of the 10 nearest neighbours. The neighbourhood graph was then embedded
685 into two-dimensional space using the Uniform Manifold Approximation and Projection
686 (UMAP) algorithm) [25] Cell communities are detected using the Leiden algorithm (Traag et
687 al., 2019) at a resolution of 1.

688 We performed cell type annotation for the clustering of cells from each technology
689 individually and mapped it to the entire dataset. We assessed the cell types by calculating
690 signature scores for all signatures provided by Besca
691 (https://github.com/bedapub/besca/blob/master/besca/datasets/genesets/CellNames_scse_qCMs6_sigs.gmt). The score is the average expression of a set of genes subtracted with the
693 average expression of a reference set of genes, calculated by Scanpy's *score_genes* function
694 (https://scanpy.readthedocs.io/en/stable/generated/scanpy.tl.score_genes.html). For the
695 cell type composition comparison we removed clusters of doublets and other artifacts
696 before calculating cell type fractions per sample.

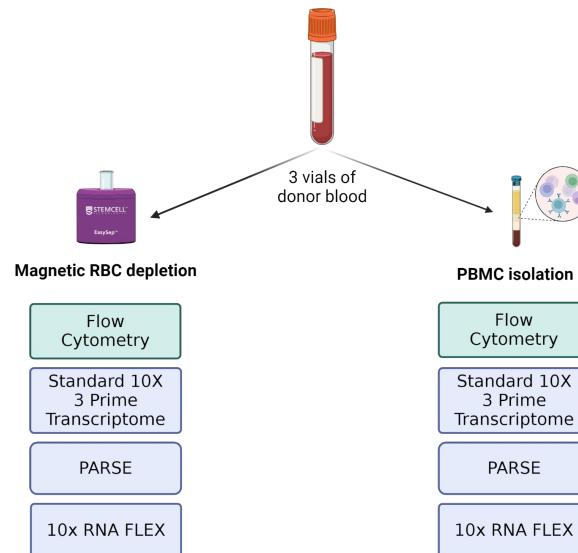
697 For each single cell sequencing technology, we calculated the mean absolute error (MAE)
698 and root mean squared error (RMSE) of the neutrophil abundance compared to the
699 abundance obtained by FACS. For each donor, we averaged the neutrophil abundance from
700 three FACS experiments (technical replicates). Then, for each donor and technology, we
701 determined the absolute difference between the FACS-derived abundance and the
702 sequencing technology- derived abundance. The average of these differences across donors
703 is the mean absolute error (MAE) for each technology. Similarly, we calculated the root
704 mean squared error (RMSE) by first determining the squared differences between the FACS-
705 derived and sequencing technology-derived abundances, then averaging these squared
706 differences, and finally taking the square-root of this average for each technology.

707 For the time course experiment, we sequence 18 samples, all on the 10X Flex technology.
708 The dataset was processed as described above, but different filtering criteria were applied to
709 the cells: number of genes: 200 - 4,000; number of UMI counts 200 - 15,000; maximal
710 mitochondrial fraction 1% (see Suppl. Fig. 7a-c). In order to identify differentially expressed
711 genes in neutrophils over time, we generated a pseudobulk gene-by-sample matrix for the
712 neutrophils identified. We tested each time point (2h, 4h, 6h, 8h, 24h) versus immediate
713 processing (0h) by fitting the model: ~ 0 + Donor + Time point. We filtered genes at a cut-off
714 of average transcripts per million larger than 0.25. 12,726 genes were assessed for
715 differential expression using limma+voom (source: <http://bioinf.wehi.edu.au/limma/>). We
716 chose relaxed cut-offs to allow for high sensitivity to detect changes, fold-change larger than
717 1.5 or less than 0.666 and false discovery rate smaller than 10%. Afterwards we counted the
718 number of up- or down-regulated genes according to these cut-offs. We applied gene set
719 enrichment analysis using Camera (Wu and Smyth, 2012). We used multiple geneset
720 collections, including MSigDB hallmark (source: <https://www.gsea-msigdb.org/gsea/msigdb/human/collections.jsp>), Reactome pathways (source:
721 <https://reactome.org>), and an internally curated set of cancer immuno-therapy (CIT)
723 signatures. The latter includes a Stress MP5 (meta-program 5) signature discovered by
724 (Gavish et al., 2023) which showed highest enrichment.

725

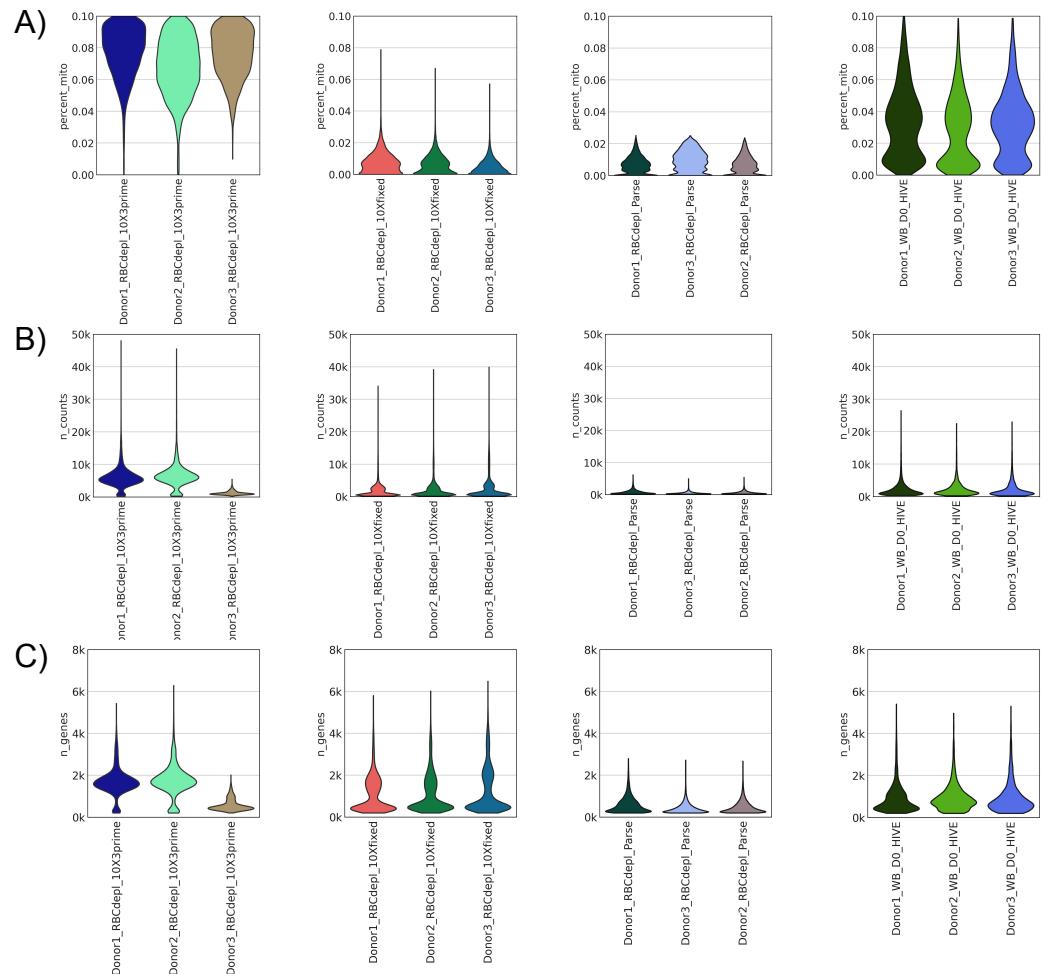
726 **Additional resources**

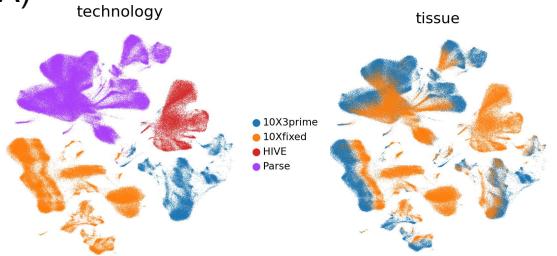
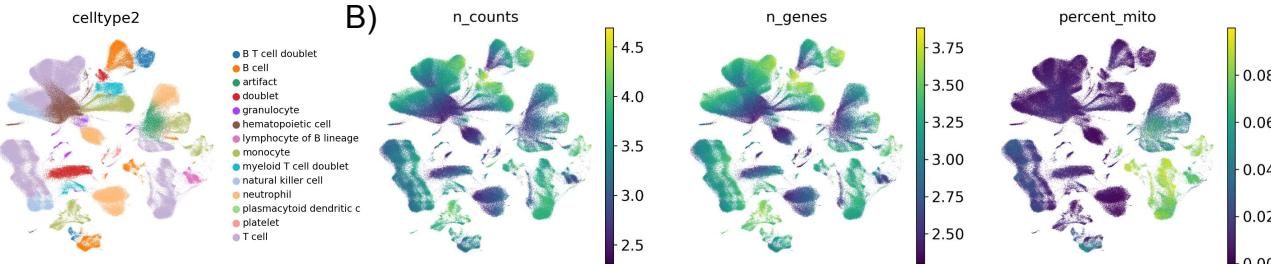
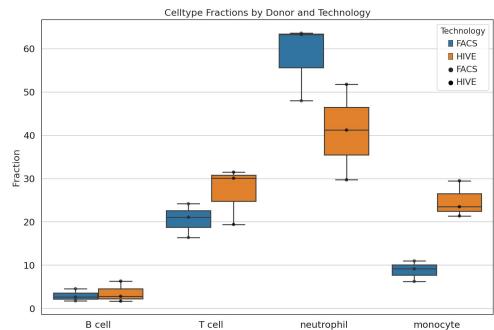
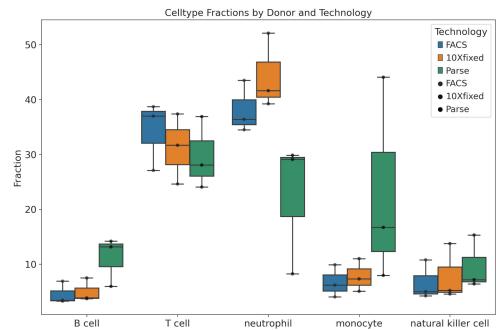
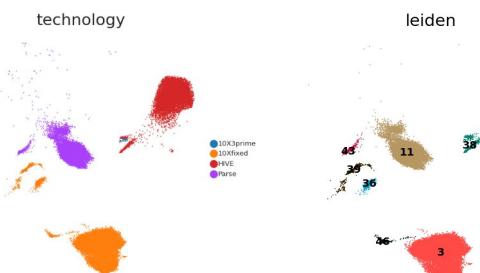
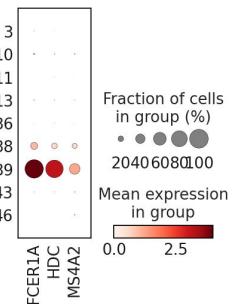
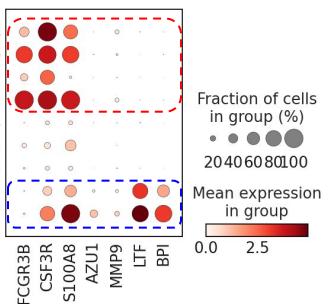
727


728 *References for methods*

729

- 730 Gavish, A., Tyler, M., Greenwald, A.C., Hoefflin, R., Simkin, D., Tschernichovsky, R., Galili
731 Darnell, N., Somech, E., Barbolin, C., Antman, T., *et al.* (2023). Hallmarks of
732 transcriptional intratumour heterogeneity across a thousand tumours. *Nature* *618*, 598-
733 606.
- 734 Madler, S.C., Julien-Laferriere, A., Wyss, L., Phan, M., Sonrel, A., Kang, A.S.W., Ulrich, E.,
735 Schmucki, R., Zhang, J.D., Ebeling, M., *et al.* (2021). Besca, a single-cell transcriptomics
736 analysis toolkit to accelerate translational research. *NAR Genom Bioinform* *3*, lqab102.
- 737 Traag, V.A., Waltman, L., and van Eck, N.J. (2019). From Louvain to Leiden: guaranteeing
738 well-connected communities. *Sci Rep* *9*, 5233.
- 739 Wauters, E., Van Mol, P., Garg, A.D., Jansen, S., Van Herck, Y., Vanderbeke, L., Bassez, A.,
740 Boeckx, B., Malengier-Devlies, B., Timmerman, A., *et al.* (2021). Discriminating mild from
741 critical COVID-19 by innate and adaptive immune single-cell profiling of
742 bronchoalveolar lavages. *Cell Res* *31*, 272-290.
- 743 Wolf, F.A., Angerer, P., and Theis, F.J. (2018). SCANPY: large-scale single-cell gene
744 expression data analysis. *Genome Biol* *19*, 15.
- 745 Wu, D., and Smyth, G.K. (2012). Camera: a competitive gene set test accounting for inter-
746 gene correlation. *Nucleic Acids Res* *40*, e133.
- 747


Figure 1








A)

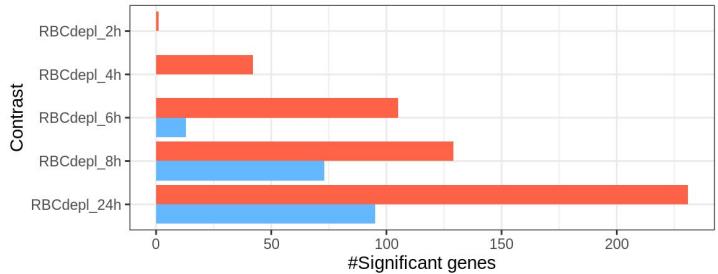

B)

Figure 2

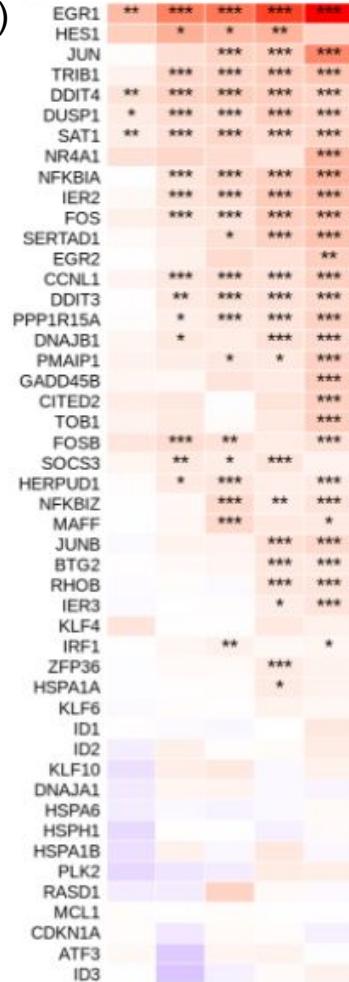
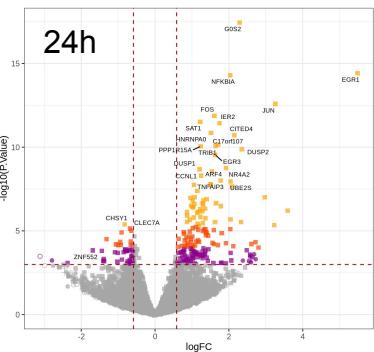
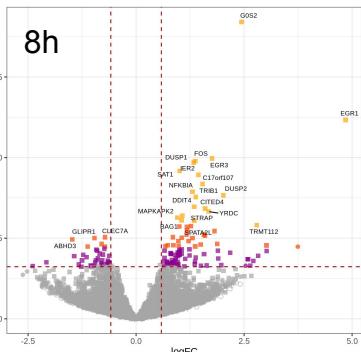
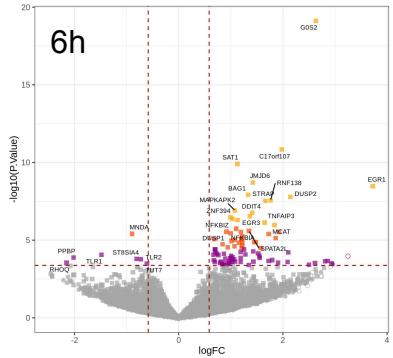
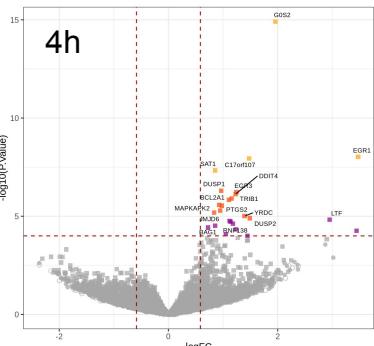
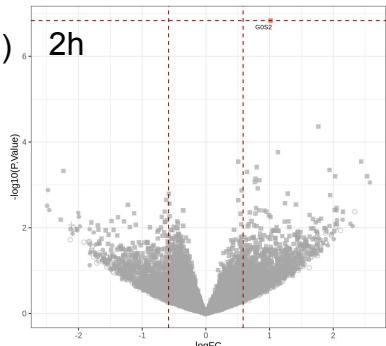

Figure 3**A)****B)****C)****D)****E)**

Figure 4 A)

Direction
Down
Up

C)

B)

Expressed

- + AvgLogTPM < -4
- AvgLogTPM < -2
- AvgLogTPM < 0
- AvgLogTPM > 0

Significant

- 5% FDR
- 1% FDR
- 0.1% FDR
- Not significant