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Abstract

Weeds significantly impact agricultural production, and traditional weed control methods
often harm soil health and the environment. This study aims to develop deep learning-
based segmentation models in identifying weeds in potato fields captured by Unmanned
Aerial Vehicle (UAV) orthophotos and to explore the effects of weeds on potato yield. UAVs
were used to collect RGB data from potato fields, flying at an altitude of 10m, with Real-
ESRGAN Super-Resolution (SR) enhancing image resolution. We applied the Segment
Anything Model (SAM) to do semi-automatic annotation, followed by training the YOLOv8
and MASK-RCNN models for segmentation. Also we used ANOVA and linear regression to
analyze the effects of weeds and nitrogen fertilizer on yield. Results showed that the
detection accuracy mAP50 scores for YOLOv8 and Mask R-CNN were 0.902 and 0.920,
respectively, with the Real-ESRGAN-enhanced model achieving 0.909. When multiple weed
types were present, accuracy decreased to 0.86. The linear regression model, incorporating
plant and weed coverage areas, explained 41.2% of yield variation (R? = 0.412, p-value =
0.01). Both YOLOv8 and Mask R-CNN achieved high accuracy, with YOLOv8 converging
faster. Real-ESRGAN reconstruction slightly improved accuracy. Different nitrogen
fertilizer treatments had no significant effect on yield, while weed control treatments
significantly impacted yield, showing the importance of precise weed mapping.. This study
provides insights into weed segmentation and contributes to environmentally friendly
precision weed control.

Keywords: Weed Segmentation, YOLOv8, Mask R-CNN, Real-ESRGAN, Super-Resolution,
Segment Anything Model
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1 Introduction

Weeds proliferate in farmlands, gardens, and other human-managed environments,
competing with crops for light, water, nutrients, and space. Due to their rapid growth and
reproduction, weeds are challenging to eradicate and necessitate continuous management
and control measures. Certain weed species threaten local ecosystems, invade and degrade
natural environments, and negatively impact local plant populations and biodiversity
(Kumar Rai and Singh, 2020). To manage weeds, farmers must invest additional labor, time,
and resources in herbicides and mechanical weeding equipment. This increases crop
production costs and may introduce harmful chemicals to the environment, causing long-
term ecological impacts.

Precision weeding effectively reduces competition between crops and weeds, ensuring
crops receive sufficient water, light, and nutrients (Riemens et al., 2022). This promotes
healthy crop growth, increases yields, and improves crop quality while reducing labor and
energy consumption, thereby lowering production costs. Minimizing chemical herbicide
use helps protect farmland and surrounding environments, reduces pollution of water, soil,
and air, and maintains field biodiversity and ecological balance, promoting the health and
sustainability of agricultural ecosystems (Storkey and Westbury, 2007). Precision weeding
employs various strategies and technologies to achieve effective weed management with
minimal environmental impact and production costs (Shaner and Beckie, 2014). Advances
in technology, such as artificial intelligence, machine learning, and machine vision, will
enable more precise, efficient, and environmentally friendly weed control in the future.

Image segmentation divides an image into parts for easier analysis, using methods like
thresholding, K-means clustering, edge detection, region growing, and deep learning with
CNNs (Goyal and Punam, 2022). These techniques aid in object recognition, classification,
and tracking. Image classification has advanced from simple color- and texture-based
methods to deep learning models. Machine learning introduced feature-based classifiers
like support vector machines (Chapelle et al., 1999). Recently, deep learning, especially
CNNs, has transformed image classification, achieving high accuracy by learning features
from data (Albelwi and Mahmood, 2016).

For instance, deep learning models have been increased utilized for weed detection, a
major breakthrough in deep learning for weed detection has been the development of
sophisticated architectures such as U-Net, Mask R-CNN, and YOLO (Guo et al., 2023). U-Net
is a fully convolutional network (FCN) that is particularly effective for pixel-level
classification tasks and is well suited for segmenting weeds from background and crops
(Cui et al., 2024). Mask R-CNN extends the Faster R-CNN model by adding a branch that
predicts segmentation masks, providing accurate localization and classification of weeds
(He etal, 2017). YOLO is known for its real-time object detection capabilities, which
balances speed and accuracy, making it ideal for applications that require immediate
decision making (Redmon et al., 2016). For example, YOLOVS5 is used to quickly detect
maize seedlings in UAV images (Lu et al,, 2024), the YOLOv5 model is deployed on NVIDIA
Jetson nano and NVIDIA Jetson Orin devices to achieve real-time detection of crops
(Nnadozie et al.,, 2024), and the YOLOWeeds ground image weed detection model
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developed based on YOLO (Dang et al., 2023). These applications have demonstrated the
feasibility of YOLO for drone weed detection.

In the instance segmentation task of apple orchards, YOLOv8 demonstrated superior
performance to Mask R-CNN, specifically, YOLOv8 achieved 92.9% precision and 97%
recall in a single-class segmentation task, while Mask R-CNN achieved 84.7% precision and
88% recall (Sapkota et al., 2024). However, there has been no research comparing the
capabilities of Mask R-CNN and YOLOvVS8 in segmenting weeds in UAV images. Li et al.
trained a model based on a public weed dataset using eight popular segmentation
algorithms, including Faster R-CNN, YOLOv3, YOLOv4, SSD, CenterNet, RetinaNet,
EfficientDet, and YOLOX, achieving a maximum mAP of 79.63% (Li et al., 2022). Shahi et al.
used UNet to train a segmentation model on the CoFly-WeedDB dataset based on UAV
images of 5-meter flight height, with an accuracy of 88.20% (Shahi et al., 2023). Genze et al.
released a manually annotated and expert-curated dataset of drone images, although the
dataset used expensive cameras and had a GSD of 1mm, the UAV images were not corrected
and were affected by motion blur, and their results showed that a UNet-like architecture
with a ResNet-34 feature extractor achieved an F1 score of over 89% on the test set (Genze
et al.,, 2022). However, most of these studies used UNet, but UNet requires high-resolution
images, and the performance is limited in complex field environments and low-resolution
images. The limitation of low resolution of UAV images is often only solved by reducing the
flight altitude or by using more expensive cameras some studies.

Real-World Enhanced Super-Resolution Generative Adversarial Network (Real-ESRGAN) is
an advanced image super-resolution technology based on deep learning, designed to
enhance low-resolution images by improving their details to high-resolution quality (Wang
et al, 2021). As an extension of ESRGAN, Real-ESRGAN is specifically optimized for real-
world super-resolution tasks, capable of handling low-quality inputs, including
compression artifacts, blur, and noise, to produce visually satisfying high-resolution images
(Zhu et al,, 2023). Their image enhancing techniques bring new possibilities of detecting
small weeds from UAV image mosaic cover large fields. Yet, the feasibility of using the
enhanced images in weed detection is still under explored. In addition, the enhance images
might enable more precise and automated image annotations, and thus the deep leaning
based image superesolution methods should be adapted to weed annotation and weed
detection applications.

Here, our research question was can the image super resolution techniques improve the
training data annotation and further improve the accuracy of deep learning models for
weed segmentation? We hypothesize that Real-ESRGAN can help us improve the resolution
of UAVs and thereby enable the SAM to realize semi-automatic annotation. The main
objectives of the study are to: 1) Compare the weed segmentation performance of Mask R-
CNN and YOLOvS8, compare the performance of the YOLOv8 model in the presence of
multiple types of weeds; 2) Evaluate the effects of super-resolution reconstruction after
Real ESRGAN on the model performance of SAM semi-automatic annotation, as well as
Mask RCNN and yolo on weed detection; and 3) verify the feasibility of applying the model
for evaluating weed effects on potato yield.
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2 Methodology

2.1 Experiment Site

The experimental site is located at the Agricultural Management Experiment Station of the
Technical University of Munich in Diirnast, Freising, Germany ( 48°24' N, 11°42" E, altitude
485 m). The area of GHL is 570 mZ, which we divided into 20 small areas of 3m X 6m. Each
plot is planted with 4 rows of potatoes, the row spacing is 0.75m, the seeding density is
0.384 kg/m?, and the potato variety is Simonetta. On May 31, 2023, we carried out potato
sowing in the GHL field, carried out fertilization treatment on June 6, carried out
corresponding chemical weeding treatment on June 14, and carried out mechanical
weeding treatment on July 12. The nitrogen fertilizer treatments include 75kg/ha and
150kg/ha. Weed treatments included controlled, chemical, robotic, and mechanical, with
three replicates for each weed treatment.
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Figure 1: Experiment site and field othomosaic

2.2 UAV Images Collection

For UAV image collection, Ground Control Points (GCPs) are deployed at the four corners of
the farmland. A ppm10xx GNSS Sensor (ppm GmbH, Penzberg, Germany) was used to
obtain position and used for georeferencing. The drone used in this experiment is D]I
Phantom 4 RTK (DJI, Shenzhen, China), The flight height was 10 m above ground level, and
the flight speed was 2 m/s. The ground sampling distance (GSD) is 0.27 cm/pixel. The
actual pixels of the camera are 20MP, the aperture size is F2.8 - F11, the autofocus range is
from 1 m to infinity, and the shutter speed is set to 1/500s. The size of each image is 5472 x
3648 pixels, and the DPI of the images is 72 pixels/inch. UAV data collection was conducted
weekly throughout the growing season.
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2.3 Data Preprocessing

The images collected by the drone will be stitched into an orthomosaic by Agisoft
Metashape (Agisoft LLC, St. Petersburg, Russia), in which geometric distortions have been
corrected and the images have been color balanced. The excess portion of the orthomosaic
is clipped and then further cropped into a small image size of 640x640 pixels to prevent
exceeding the graphics card’s video memory during training.

2.4 Image Annotation

All labels in this study were generated by AnyLabeling. AnyLabeling combines the features
of two labeling tools, Labellmg and Labelme. With the Al support of YOLO and Segment
Anything Model (SAM) (Kirillov et al., 2023), it can help us semi-automate labeling. This
study used the CPU version of AnyLabeling to label UAV images and used SAM for auxiliary
labeling. All potato plants and weed outlines in the image are surrounded by polygons. In
this study, with the assistance of SAM, 130 images in the training set were annotated,
including 659 potatoes and 934 weeds, for a total of 1593 instances. There are 20 images in
the validation set labeled, including 82 potatoes and 138 weeds, for a total of 220 images.
The annotation file format generated by AnyLabeling is json and can be used to train the
Mask R-CNN model, while the annotation file required for YOLO model training is in txt file
format. The annotation files in json format are converted into YOLO format by Labelme’s
python conversion script.

2.5 Data Augmentation

Due to the limited clarity of drone images, we used the Real-ESRGAN model to enhance our
drone images and improve the annotation quality of the dataset. In this study, the
resolution of the original image was increased by two times, but the size of the image was
kept unchanged. In YOLOv8 we use the default data enhancement parameters.

2.6 Model Training

2.6.1 Mask R-CNN

Mask R-CNN (Region-based Convolutional Neural Network) (He et al., 2017) is a deep
learning framework for simultaneous object detection and instance segmentation. It
identifies objects in an image, such as weeds and crops, and generates high-precision pixel-
level masks for each object. Mask R-CNN's main components include the backbone network
(e.g., ResNet with FPN) for feature extraction, RPN for generating candidate regions, ROI
Align for adjusting candidate regions to a fixed size, classification and bounding box
regression head for categorizing and refining bounding boxes, and the mask prediction
head for generating segmentation masks (He et al., 2017). This framework excels in object
detection and instance segmentation, making it a powerful tool for various computer vision
applications.

The Mask R-CNN model in this study was trained based on Detection2, the operating
system is Ubuntu 22.04.4 LTS, and the GPU used is RTX3070Ti (Nvidia, California, United
States). The first step is to install Anaconda and create a Python virtual environment for
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training the model. The Python version of the virtual environment used in this study is
3.8.18. Then install the packages and GPU environment required by Detection2 in the
virtual environment, such as the 545.29.06 GPU driver, 11.8 version of CUDA, 8.7 version of
CuDNN, 2.2.1 version of PyTorch, 1.24.3 version of numpy, 10.2.0 Version of Pillow, 0.17.1
version of torchvision, 4.9.0 version of cv2, etc. Due to compatibility issues, be very careful
with the version of the installation package. The second step is to prepare the data set. We
prepared a training set containing 130 images and a validation set of 20 images and
converted the data set into the COCO format required by Detectron2. Each image has a
corresponding annotation file, including a polygon mask and category labels. Before
training, register the dataset into Detectron2. Then configure the parameters of the Mask
R-CNN model, train and evaluate the model.

2.6.2 YOLOvV8

YOLOVS8 (You Only Look Once version 8) represents a significant advancement in the field
of object detection and segmentation, building upon the efficient, real-time performance
characteristics of its predecessors. This framework integrates segmentation capabilities
directly into the YOLO architecture, enabling simultaneous object detection and instance
segmentation. YOLOv8 retains the core principle of the YOLO series: processing images in a
single forward pass through the network, which ensures high-speed performance (Adarsh
etal,, 2020). However, it introduces several enhancements to improve accuracy and
segmentation quality. YOLOv8 extends the traditional YOLO detection head to include a
segmentation branch, which predicts segmentation masks along with bounding boxes and
class probabilities (Terven et al., 2023). This allows for precise pixel-level delineation of
objects within the image. The backbone network in YOLOvVS, often based on advanced
architectures like CSPDarknet (Bochkovskiy et al., 2020) or custom-designed variants,
extracts richer and more detailed features from input images. This improves the model's
ability to identify and segment objects with greater accuracy. YOLOv8 employs specialized
loss functions that balance the accuracy of object detection and the quality of segmentation
masks, this ensures that both tasks are optimized simultaneously, leading to better overall
performance (Sapkota et al., 2024). Despite its enhanced capabilities, YOLOv8 maintains
the real-time processing speed characteristic of the YOLO family. This makes it suitable for
applications requiring fast and accurate segmentation, such as autonomous driving, video
surveillance, and precision agriculture (Terven et al.,, 2023).

The operating system for training the YOLOv8 model is Windows 11, the GPU is 3070Ti, the
driver version is 552.22, the CUDA version is 12.3, the python version is 3.11, and the
PyTorch version is 2.2.1. The first step is to use Anaconda to create a virtual environment
required for training the model and install the dependencies and libraries for YOLOv8. The
second step involves preparing the dataset like Mask R-CNN, but with labels in the YOLO
format. In this format, class represents the object class index (starting from 0), and
x_center, y_center, width, and height repr4esent the object’s center coordinates and
dimensions. These values are normalized relative to the image size (ranging from 0 to 1).
The third step creates a configuration file to specify the location of the data set and other
parameters. Furthermore, we use the pre-trained YOLOv8 model as a base and then fine-
tune it. Finally, the trained model is used for inference and evaluation.
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2.7 Model Evaluation

The evaluation of the model is based on the mean average precision (mAP) metric, mAP is a
metric used to evaluate the performance of object detection models. It comprehensively
considers the accuracy and precision of the model in detecting objects and is widely used in
various detection tasks in the field of computer vision, such as target detection and
instance segmentation. The mAP is calculated as the average of the precision-recall curve,
where the precision is the ratio of the number of true positive predictions to the total
number of predictions, and the recall is the ratio of the number of true positive predictions
to the total number of ground truth objects. The Precision-Recall curve refers to the curve
obtained by plotting Precision and Recall under different thresholds. The horizontal axis is
Recall, and the vertical axis is Precision. AP is obtained by calculating the area under the
Precision-Recall curve. The mAP is the average of the AP values of all classes. The formula
for calculating Precision, Recall, AP, and mAP is as follows:

Precision = TP/(TP + FP) (1)
Recall =TP/(TP + FN) (2)
1
AP =j p (r)dr (3)
0
1 n
mAP = Z; AP, (4)

Where TP is the number of true positive predictions, FP is the number of false positive
predictions, FN is the number of false negative predictions, p(r) is the precision value at
recall r, n is the number of classes, and APi is the average precision of class i.

In addition, semantic segmentation is commonly evaluated using the Intersection over
Union (IoU) metric. loU is calculated as the ratio of the intersection area of the predicted
mask and the ground truth mask to the union area of the two masks. The formula for
calculating IoU is as follows:

_ Area(Predicted N GroundTruth)
~ Area(Predicted U GroundTruth)

(5)

Mean IoU (mloU) is the average of the IoU values of all classes. The formula for calculating
mloU is as follows:

n
1
mloU = EZIOUL- (6)
i=1

Where n is the number of classes, [oUi is the IoU of class i.

Pixel Accuracy (PA) is another metric used to evaluate semantic segmentation models,
which calculates the ratio of the number of correctly classified pixels to the total number of
pixels in the image. The formula for calculating Pixel Accuracy is as follows:
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_ Number of Correctly Classified Pixels
B Total Number of Pixels

(7

Class Pixel Accuracy (CPA) is the ratio of the number of correctly classified pixels of a
specific class to the total number of pixels of that class. The formula for calculating CPA is
as follows:

CPA = Number of Correctly Classified Pixels of Class i )
B Total Number of Pixels of Class i

Mean Pixel Accuracy (MPA) is the average of the Pixel Accuracy values of all classes. The
formula for calculating MPA and MCA is as follows:

n
1
MPA = EZ P4 C))
i=1

Where n is the number of classes, PAi is the Pixel Accuracy of class i. Dice Coefficient (DC) is
another metric used to evaluate semantic segmentation models, which calculates the
similarity between the predicted mask and the ground truth mask. The formula for
calculating Dice Coefficient is as follows:

2 * Area(Predicted N GroundTruth)

= 10
Area(Predicted) + Area(GroundTruth) (10)

2.8 Model Application

This study uses a trained crop-weed segmentation model to infer images of field plots. By
applying the shoelace formula to calculate the area of the predicted masks, the crop
coverage rate and weed coverage rate for each plot are determined. The research further
investigates the impact of weed and nitrogen treatments on potato yield.

n-—1

1 1
S = EZ(xinl — Xi41Yi) + > (XnY1 — X1Yn) (11)

i=1

Where S is the area of the polygon, n is the number of vertices, and (x1,y1),(x2,y2),...,(xn,yn)
are the coordinates of the vertices.

This study then used analysis of variance (ANOVA) and linear regression analysis to
explore the effects of weed treatment, nitrogen fertilizer treatment on weed coverage,
potato canopy coverage and final yield.
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3 Results

3.1 UAV Images and Annotation

Figure 1 shows the orthomosaic of the field. As shown in Figure 2, the barrel distortion
caused by the wide-angle lens is eliminated by Agisoft Metashape. In Metashape, lens
distortion from drone imagery is corrected through the use of a camera calibration model
that identifies and rectifies radial and tangential distortions. The process involves
automatic image matching and alignment, application of geometric corrections, and
orthophoto projection to map the corrected images onto a planar coordinate system. This
methodology effectively eliminates lens distortions, resulting in high-precision
orthophotos. Figure 3 shows the labeling results generated by SAM.

Figure 2: Distortion correction. A is the original image, and B is the distortion-corrected
image.

Figure 3: Annotation visualization.

We evaluated the average annotation speed for 10 instances manually and with SAM
assistance. Manual annotation averaged 5.84 seconds per instance, whereas SAM-assisted
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annotation averaged 19.2 seconds per instance. This demonstrates that SAM-assisted
annotation is 3.3 times more efficient than manual annotation

3.2 Data Augmentation and Super-resolution Reconstruction

Figure 4 illustrates the data enhancement techniques used by YOLOvS, simulating images
under various environments. These techniques include Mosaic, RandomAffine, MixUp,
Image Blur, Transform, HSV Color Space Enhancement, Random Horizontal Flip. The
primary purpose of data augmentation is to artificially increase the diversity of the training
dataset, thereby improving the model's robustness to variations in object appearance,
orientation, and environmental conditions. By exposing the model to a wider range of
scenarios, data augmentation helps in reducing overfitting and improving the model's
ability to generalize to new, unseen data.
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Figure 4: Data augmentation example. Includes Mosaic, RandomAffine, MixUp, Image Blur,
Transform, HSV Color Space Enhancement, Random Horizontal Flip.
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Figure 5 presents the UAV images before and after Real-ESRGAN super-resolution
reconstruction. The original resolution in Figure 5A is 640x640 pixels, while Figure 5B,
after 2x super-resolution reconstruction, has a resolution of 1280x1280 pixels, resulting in
clearer object edges.

Figure 5: Real-ESRGAN super-resolution reconstruction. A is the original image, and B is the
super-resolution reconstructed image.

3.3 Training results and inference performance of Mask R-CNN and YOLOv8

3.3.1 Mask R-CNN

Figure 6 illustrates the indicator trends of the Mask R-CNN model. With the total loss
gradually decreases as training progresses (Figure 6A), indicating continuous learning and
optimization, with a general downward trend despite some fluctuations. Figure 6B shows
that the model's accuracy improves with the number of iterations, reflecting enhanced
detection and segmentation capabilities. The upward curve indicates increasing accuracy
and reliability.
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Figure 6: Mask R-CNN results. A is the trend graph of total loss over iterations, B is the trend
graph of accuracy over iterations.

Figure 7 presents the Average Precision (AP) results for the Mask R-CNN model, while
Table 1 details the corresponding AP indicators. Initially, with a smaller number of
iterations (e.g., the first 200), the AP values are relatively low, indicating that the model's
performance has not yet been fully realized. As the iterations increase into the hundreds,
the AP values rise significantly, reflecting the model's improvement through continuous
learning and optimization. Beyond 1000 iterations, most AP values stabilize, and the
model's performance plateaus at a high level, with the rate of improvement slowing down.
Figure 8 demonstrates the inference results of the Mask R-CNN model, which accurately
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detects and segments potatoes and weeds, producing clear and precise segmentation
outcomes.
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Figure 7: Mask R-CNN AP results.
Table 1: Mask R-CNN AP indicators.

Indicators Description

bbox/AP Average accuracy of bounding boxes.

segm/AP average accuracy of segmentation.

bbox/AP- Average accuracy for bounding box detection of potatoes.
potato

bbox/AP-weed Average accuracy of bounding box detection of weeds.

segm/AP- Average accuracy for segmenting and detecting potatoes.
potato

segm/AP- Average accuracy of segmentation detection of weeds.
weed

bbox/AP50  The average accuracy of the bounding box when the intersection-over-
union ratio (IoU) is 50%.
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Indicators Description
bbox/AP75  The average accuracy of the bounding box when the intersection and
union ratio is 75%.
segm/AP50  The average segmentation accuracy when the intersection and union
ratio is 50%.
segm/AP75  The average segmentation accuracy when the intersection and union
ratio is 75%.

Figure 8: Mask R-CNN Inference example.

3.3.2 YOLOv8

Figure 9 illustrates the indicator trend changes of the YOLOv8 models. These figures
display the overall trends of the loss function and evaluation metrics during training and
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validation. The curves reveal performance improvements across different iterations.
Generally, the loss function curve exhibits a downward trend, while the evaluation metrics
show an upward trend, indicating continuous optimization and performance enhancement.

Train/seg_loss: Shows the trend of segmentation loss, with the curve stabilizing from high
to low, indicating segmentation task optimization.

Val/seg_loss: Reflects the segmentation loss trend on the validation set, decreasing and
tending to stabilize.

Metrics/precision (M): Shows the trend of segmentation accuracy, increasing with
iterations and stabilizing.

Metrics/recall (M): Displays the trend of segmentation recall, also increasing with
iterations and stabilizing.

Metrics/mAP50 (M): Demonstrates the change in mean average precision (mAP) at an IoU
threshold of 50%, with curves rising rapidly and stabilizing.

Metrics/mAP50-95 (M): Indicates the change in mean average precision (mAP) at multiple
IoU thresholds (50%-95%), with curves rising rapidly and stabilizing.

These trends collectively indicate the model's consistent optimization and improved
performance across training and validation phases.
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Figure 9: YOLOvS results of Original, Super-resolution reconstructed (SR), and Super-
resolution reconstructed and multiple weed categories (SR and MW). A. Training and
Validation loss, B. Accuracy metrics

Figure 10 A (1) shows the precision-recall of potatoes, which shows that the precision of
potatoes was very high, reached 0.983, the precision-recall of weeds was 0.821, which was
lower than that of potatoes. The average precision (mAP@0.5) of all categories is 0.902.

Figure 10 B (1) shows the precision-recall of potatoes is 0.986. The precision-recall of
weeds is 0.832, which is higher than the precision of weeds in Part A. The average precision
(mAP@0.5) of all categories, which is 0.909, slightly higher than Part A.
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Figure 10 C (1) shows the precision-recall of potatoes is 0.986, which is consistent with
Part B. The precision-recall of long weeds is 0.811. The precision-recall of other weeds is
0.782. The average precision (mAP@0.5) of all categories is 0.860, lower than A and B.
Figure 10 C (2) shows that the three models detect about the similar number of potato
instances, but model A detects significantly more weed instances.
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Figure 10: YOLOvV8 PR and labels results. A. Original, B. Super-resolution reconstructed, C.
Super-resolution reconstructed and multiple weed categories. (1) is the PR curve of the model.
(2) is the label results of the model.

Figure 11 shows the segmentation results of the YOLOv8 model. Original Model: PA:
0.9989, CPA: 0.5271, MPA: 0.5150, MIOU: 0.5150, Mean Dice: 0.5298. The original model
shows a high PA but lower performance in CPA, MPA, MIOU, and Mean Dice compared to
PA. Super-resolution (SR) Model: PA: 0.9990, CPA: 0.5250, MPA: 0.5116, MIOU: 0.5116,
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Mean Dice: 0.5234. This model has slightly improved PA but a small decline in CPA, MPA,
MIOU, and Mean Dice compared to the original model. Super-resolution with Multiple
Weed Categories (SR and MW) Model: PA: 0.9985, CPA: 0.5122, MPA: 0.5089, MIOU:
0.5089, Mean Dice: 0.5185, This model shows a slight reduction in PA, CPA, MPA, MIOU,
and Mean Dice compared to the other two models. Pixel Accuracy (PA) is very high across
all models, indicating that most pixels are correctly classified. Class Pixel Accuracy (CPA),
Mean Pixel Accuracy (MPA), Mean Intersection over Union (MIOU), and Mean Dice show
more variability, indicating that while pixel classification is generally accurate, the detailed
performance across different classes and segmentation overlap can vary. The Super-
resolution (SR) model has a slight advantage in PA but doesn’t significantly improve other
metrics compared to the original model. The SR and MW model shows a slight decrease in
performance across all metrics, suggesting that incorporating multiple weed categories
may introduce complexity that affects overall segmentation accuracy.

YOLOv8 Segmentation Results

1ot 0.9989 0.9990 0.9985 - PA
- = CPA

. MPA
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o
o
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Figure 11: YOLOv8 segmentation results of original model, super-resolution reconstructed
model (SR), and super-resolution reconstructed and multiple weed categories model (SR and
MW).

Figure 12 shows the inference results of the YOLOv8 models. The models can accurately
detect and segment potatoes and weeds in the image, and the segmentation results are
clear and accurate. The models can also detect multiple weed categories, which can help
farmers identify different types of weeds and take targeted measures to control them.
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Figure 12: YOLOV8 Inference example. A. Raw image, B. Original, C. Super-resolution
reconstructed, D. Super-resolution reconstructed and multiple weed categories.

3.4 Application of the YOLO Model

Figure 13 shows the original YOLO model used to segment the potato and weed coverage
area of each plot. Table 2 is a summary of the field experiment data, including plot number,
weed treatment, nitrogen fertilizer treatment, potato coverage area, weed coverage area,
and potato yield.

Table2: Overview of the field experiment results.

Plot Weed Nitrogen(kg  Potato Weed Yield(dt(100kg)/ha)
control N/ha) area(pixels) area(pixels)
control 150 177768 50526 393.889
chemical 150 336231 27083 452

mechanical 150 263423 16239 514.556
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Plot Weed Nitrogen(kg  Potato Weed Yield(dt(100kg)/ha)
control N/ha) area(pixels) area(pixels)

4 mechanical 150 193646 9700 470.778
5 chemical 150 124780 16728 475

6 control 150 164923 42855 379.778
7 chemical 150 114664 12414 432.667
8 mechanical 150 267976 7870 415.333
9 control 150 133814 40910 396.667
10  mechanical 150 172552 31091 400.333
11  control 75 199114 109455 308.111
12  chemical 75 158497 29433 422.667
13 mechanical 75 127801 16753 436.556
14  mechanical 75 137742 16546 463

15 chemical 75 155804 20801 393.333
16  control 75 104856 21742 314.333
17  chemical 75 88812 18659 434

18 mechanical 75 97838 8106 383

19  control 75 88116 24061 384.333
20  mechanical 75 103884 18199 502.444

3.4.1 Effects of Weed Control and Nitrogen Level on Yield

Figure 14 shows the potato yield under different weed control and nitrogen levels. The
yield of potatoes under different treatments is different. The yield of potatoes under
mechanical weed control is higher than that under chemical weed control and the control
group with 75 kg N/ha. The yield of potatoes under chemical weed control is higher than
that under mechanical and the control group with 150 kg N/ha.

Table 3 shows the results of the ANOVA with the interaction between weed control and
nitrogen. Weed control had a significant effect on the yield of potatoes, while the nitrogen
level had no significant effect on the yield of potatoes. The interaction between weed
control and nitrogen has no significant effect on the yield of potatoes. This means that their
effects on yield appear to be independent, rather than interacting.

Interestingly, the yield of chemical treatment was significantly higher than control
treatment (p = 0.0312, Table 4), the yield of mechanical treatment was also significantly
higher than control treatment(p = 0.0033), but the yield difference between chemical
treatment and mechanical treatment was not significant (p = 0.7177). Both chemical and
mechanical treatments significantly increased potato yield compared with the control
treatment, while the yield difference between chemical treatment and mechanical
treatment was not significant.


https://doi.org/10.1101/2024.08.13.607729
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.08.13.607729; this version posted August 16, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

Table3: ANOVA with interaction between Weed and Nitrogen.

sum_sq df F PR(>F)
C(Weed_control) 27282.954337 2.0 8955096 0.003129
C(Nitrogen) 4182.526109 1.0 2.745665 0.119750
C(Weed_control):C(Nitrogen) 2312.431081 2.0 0.759010 0.486454
Residual 21326.480339 14.0
Table4: Turkey HSD test.
groupl group?2 meandiff p-adj lower upper  reject

chemical control 55.7162 0.0312 4.4562 106.9761 True
chemical mechanical -16.5797 0.7177 -67.8396 34.6802 False
control mechanical -72.2959 0.0033 -123.5559 -21.0359 True

3.4.2 Relationship between Potato and Weed Cover Area and Yield

Figure 15 shows the correlation matrix of the potato and weed coverage area and yield.
There is a positive correlation between potato area and yield, meaning that the larger the
potato planting area, the higher the yield. There is a negative correlation between weed
area and yield, meaning that the larger the weed-infested area, the lower the yield. Table 5
and Figure 16 shows the results of the linear regression model with 'Potato area’ and
'Weed area’ as predictors for "Yield’. The R-squared of the model is 0.412, indicating that
the model can explain about 41.2% of the variations in yield. The coefficient of Intercept is
421.1414, which represents the expected yield baseline in the absence of potato area and
weed area. The coefficient of potato area is 0.0002, which means that for every additional
pixel of potato plants, potato yield will increase by 0.02 kg/ha; while the coefficient of weed
area is -0.0015, which means that for every additional weed pixel, yield will decrease by
0.15 kg/ha. Additionally, the model validity test yields an F statistic of 5.967 with an
associated p-value of 0.0109, demonstrating that the model is statistically significant
overall..

Table5: Linear regression model with 'Potato area’ and 'Weed area’ as predictors for "Yield'.

coef std err t P>|t] [0.025,0.975]
Intercept 421.1414 27.649 15.231 0.000 [362.806,479.477]
Potatoarea 0.0002  0.000 1.508 0.150 [-9.25e-05,0.001]
Weed area -0.0015 0.000 -3.292 0.004 [-0.002,-0.001]
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Figure 13: YOLOv8 application. YOLOv8 model extracts the coverage area of potatoes and
weeds in each plot.
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Figure 14: Potato yield under different treatments.
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Figure 16: Multiple Linear Regression: Potato Area and Weed Area vs Yield
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4 Discussion

4.1 Comparison between Mask R-CNN and YOLOvS8

Kauer conducted a comprehensive comparison of various object detection and instance
segmentation algorithms, including the YOLO series and Mask R-CNN, and YOLOv5
surpassed Mask R-CNN in terms of accuracy, speed, and computational efficiency for the
segmentation task on the COCO dataset (Kaur and Singh, 2023).

In our study the accuracy of YOLOv8 and Mask R-CNN is very close, but YOLOv8 converges
faster than Mask R-CNN, which can be attributed to several factors intricately related to the
world of neural network architectures and training methods.

YOLOVS8 is a more concise approach to object detection, using a single neural network to
predict bounding boxes and class probabilities directly from the full image in a single
evaluation (Hussain, 2023) This design is in stark contrast to the more complex structure
of Mask R-CNN, which involves multiple stages and thus requires more computation per
iteration (He et al., 2017). The world of single-shot detection methods, exemplified by
YOLOVS, allows for faster processing times, and thus faster convergence.

The backbone network in YOLOv8 is generally redesigned to be more efficient and
lightweight than the backbone network in Mask R-CNN (Hussain, 2023). This efficiency is
critical in the rigors of training, where computational resources and time are paramount.
By leveraging advanced feature extraction techniques and an optimized network
architecture, YOLOv8 reduces the number of parameters and computational overhead,
resulting in faster convergence.

In addition, the training strategy employed by YOLOVS is carefully designed to outperform
traditional methods. Techniques such as mosaic augmentation combine multiple images
into one, providing ever-changing training data in each batch (Jocher et al. 2023). The
model utilizes refined loss functions, such as IoU-based losses, to improve localization
accuracy and stability (Su et al.,, 2024). Adaptive learning rate strategies, including dynamic
adjustments, warm-up, and decay schemes, facilitate faster convergence and prevent
overshooting (Ramos et al., 2024). Additionally, regularization techniques like dropout and
batch normalization mitigate overfitting, while anchor box optimization enhances
bounding box prediction accuracy (Garbin et al., 2020). YOLOvVS8 also benefits from transfer
learning by employing pretrained weights, which accelerates training and improves
performance on specialized datasets. These approach enriches the diversity of the training
dataset, enhancing the model’s generalization ability and accelerating its learning process.
On the other hand, Mask R-CNN’s approach may not benefit to the same extent from such
complex augmentation strategies.

The loss functions used in YOLOvVS8 are generally more direct and computationally efficient
(Zhan et al., 2022).These functions are designed to provide clearer gradients for
optimization, making it easier to navigate the complex loss landscape. In contrast, Mask R-
CNN employs multiple loss components (for bounding boxes, class labels, and masks),
which complicates the optimization process and slows down convergence (He etal., 2017).
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In essence, the faster convergence of YOLOv8 is not just the result of one factor, but a
combination of network architecture and training strategies, which are intertwined to form
an efficient and powerful system. The redesigned structure, innovative augmentation
techniques, and simplified loss functions all make YOLOv8 an important method in
scenarios where fast training is critical.

4.2 Effect of Super-Resolution Reconstruction on the YOLOv8

Super-resolution techniques typically enhance image details such as textures and edges,
which are not particularly crucial for object detection tasks where YOLOv8 relies more on
macro features like shape, contours, and color distribution. Additionally, the increased
image resolution resulting from SR reconstruction imposes a heavier computational
burden during training. The larger input size significantly increases the computation
required for convolution operations, leading to extended training times and potentially
affecting the model's training efficiency. In the studies conducted by Shahi et al., 2023 and
Genze et al.,, 2022 the challenge of low-resolution UAV images was addressed by lowering
the flight altitude to 5 meters and investing in high-resolution cameras. However, drones
cannot execute automatic flight plans effectively at such a low altitude, making it difficult to
create orthomosaics and eliminate image distortion. Furthermore, high-resolution cameras
are prohibitively expensive, limiting their practicality for widespread use.

Our study explored an alternative approach using super-resolution (SR) reconstruction
technology to enhance the training set for YOLOvS8. Contrary to expectations, the accuracy
of YOLOv8 did not improve significantly with SR reconstruction. This may be attributed to
the introduction of artifacts or noise by the super-resolution algorithm, as noted by Wang
et al., (2021). These artificial details can confuse the model, hindering its ability to learn
effective features and negatively impacting accuracy.

YOLOvV8 is meticulously optimized for standard image resolutions. To fully leverage the
benefits of super-resolution images, different network structures or parameter tuning may
be necessary. Without re-optimization for SR images, the model may fail to capitalize on the
enhanced features.

This study reveals the limitations of SR reconstruction in improving YOLOv8's performance
for weed segmentation in UAV images. Future work could focus on developing SR
algorithms that minimize artifacts or exploring other image enhancement techniques.
Additionally, fine-tuning the network architecture and parameters for SR images could
further investigate the potential benefits. Conclusively, while SR reconstruction presents an
innovative approach to overcoming resolution challenges, its current application in
YOLOvVS8 for UAV-based weed segmentation requires further refinement to realize its full
potential.

4.3 Performance of YOLOVS in the Presence of Multiple Types of Weeds

[t is common that different species weeds grow in the same field, thus it is critical to
detecting multiple weed species.As expected, the segmentation model of YOLOv8 has a
decreased accuracy in the presence of multiple types of weeds, which may be attributed to
fact that weed species may have a high degree of visual similarity, especially in features
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such as shape, color, and texture (Genze et al., 2022). This similarity can make it difficult for
the model to distinguish between different types of weeds, resulting in decreased accuracy
in classification and segmentation.

If the types of weeds and scenes in the training data are complex and diverse, it may be
difficult for the model to learn enough features to accurately distinguish each weed.
Complex backgrounds and overlapping plants can also increase the difficulty of the
segmentation task (Shahi et al., 2023). In the training data, the number of samples of
different types of weeds may be unbalanced. Some types of weeds may appear less
frequently, which will cause the model to perform poorly on these rare types because the
model does not have enough opportunities to learn the features of these types during
training.

The segmentation task requires classifying each pixel in the image, which is more fine-
grained than simple object detection. The small parts and complex morphology of the
weeds require the model to have higher resolution and fine feature extraction capabilities,
which increases the difficulty of the task.

It may also be that due to insufficient data augmentation and preprocessing, the model may
not be able to fully learn the diverse features of weeds in different environments and
conditions.

4.4 Effects of Weed Control on Yield

The significant increase in potato yields due to chemical and mechanical weed control is
because weeds compete with crops for water, nutrients and light resources in the soil.
Through chemical treatment, the number of weeds is reduced, so that more resources can
be used by crops, thereby promoting healthy crop growth and increased yields. Weeds are
often hosts for some pests and pathogens (Storkey and Westbury, 2007). Through effective
weed control, the habitat of these harmful organisms can be reduced, the probability of
pests and diseases can be reduced, and the health of crops can be further protected
(Storkey and Westbury, 2007).

In Figure 14, the yield data distribution under chemical weed control is more stable than
that under mechanical weed control, which may be because chemical herbicides can be
widely used on different types of weeds and provide comprehensive and consistent weed
control effects (Kraehmer et al., 2014). Many chemical herbicides have a broad spectrum of
weed control and can effectively control a variety of weed species, while mechanical weed
control is usually more dependent on physical location and accuracy of operation, and the
effect may not be as consistent as chemical methods (Paul et al., 2024). Chemical herbicides
often have a certain residual effect period, which can continuously inhibit the regeneration
and germination of weeds. Mechanical weed control only physically removes existing
weeds and has no lasting control effect on future new weeds. Frequent operation may be
required to maintain weed control effects. The application process of chemical weed
control is relatively simple, mainly relying on spraying equipment. The operation process is
highly standardized, reducing the uncertainty and variability of manual operation.
Mechanical weed control, on the other hand, requires consideration of the operation,
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maintenance and on-site conditions of mechanical equipment. The operation is highly
variable, and the effect is easily affected.

4.5 Limitations and future work

Although the weed segmentation model in this study performs well, there are still many
limitations. For example, deep learning models usually require a large number of high-
quality, accurately annotated datasets for training. Acquiring and annotating this data
(especially pixel-level annotation) requires a lot of manpower and time, which is
particularly difficult for weed segmentation tasks because weeds are numerous and have
different forms. In the future, we will try to use the field image dataset to train the Real-
ESRGAN model specifically for super-resolution reconstruction of field drone images, and
explore whether this model can truly improve the quality of the dataset and help deep
learning research in agriculture.

Weeds and crops may have highly similar visual features, such as color, shape, and texture.
This makes it more difficult for the model to distinguish between the two, resulting in
misclassification and segmentation errors. The farmland environment is complex and
changeable, and different lighting, shadows, soil backgrounds, climatic conditions, etc. will
affect the quality and characteristics of the image. After the model is trained in one
environment, it may be difficult to generalize to other different environments. The training
dataset may have uneven sample distribution problems, and some weed species may
appear less frequently in the dataset, resulting in poor performance of the model on these
weeds. The imbalanced ratio of crops to weeds in the dataset may cause the model to be
more inclined to identify common species, while the recognition effect of rare species is
poor. We will explore the use of more advanced network architectures, loss functions, and
training strategies to improve the accuracy and generalization ability of the model, and
further optimize the model for different environmental conditions and weed species.

Integrating deep learning models into existing agricultural equipment and management
systems may face technical and operational challenges. In particular, it may be difficult to
integrate and maintain deep learning systems in areas with limited resources and
insufficient technical support. In practical applications, problems such as poor data quality,
unstable network connections, and hardware device failures may also be encountered,
which will affect the effectiveness and reliability of deep learning models. We will also
explore the integration of deep learning models with agricultural equipment and
management systems and develop more practical and efficient weed management
solutions. We will consider the development of real-time processing systems and explore
the use of edge computing and [oT technologies to achieve real-time weed detection and
control. Solving these problems requires continuous effort in collecting high quality
training data and annotation, model optimization, computing resources, environmental
adaptability, real-time processing, and interpretability.
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5 Conclusion

In summary, this study verified our hypothesis that super-resolution reconstruction can
help SAM improve the quality of annotation and thus improve the model accuracy by
improving the resolution of the image. The results show that Mask R-CNN and YOLOv8
have excellent weed segmentation effects, but when multiple types of weeds exist, the
accuracy of the model decreases slightly. By comparison, it is found that Mask R-CNN has
higher accuracy, but the YOLOv8 model converges faster. In addition, it also verified that it
is feasible to apply the YOLOv8 segmentation model to yield prediction. Besides, this study
explored the effects of weeds and nitrogen fertilizer on potato yield and the application of
deep learning models in weed segmentation. The main findings showed that different
nitrogen fertilizer treatments did not significantly affect yield, but different weed
treatments did, while there was no significant difference between chemical and mechanical
weeding. The effect of chemical treatment was more consistent, making the yield more
stable.

Future studies should consider larger sample sizes and include more accurate annotation
techniques to further validate these findings. Overall, this study deepens our understanding
of weed segmentation using drone orthomosaic images and deep learning. This study
provides a reference for further development of weed segmentation models and
contributes to the training data pool of drone-based weed images, and thus has great
practical value for precise weed control.
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