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ABSTRACT 

Recent advances in barcoding technologies have significantly enhanced the scalability of single-cell genomic 
experiments. However, large-scale experiments are still rare due to high costs, complex logistics, and labor-
intensive procedures. To facilitate the routine application of the largest scalability, it is critical to simplify the 
production and use of barcoding reagents. Here, we introduce AmpliDrop, a technology that initiates the 
barcoding process using a pool of inexpensive single-copy barcodes and integrates barcode multiplicity 
generation with tagging of cellular content into a single reaction driven by DNA polymerase during library 
preparation. The barcoding reactions are compartmentalized using an electronic pipette or a robotic or 
standalone liquid handling system. These innovations eliminate the need for barcoded beads and complex 
combinatorial indexing workflows and provide flexibility for a wide range of scales and tube formats, as well as 
compatibility with automation. We show that AmpliDrop is capable of capturing transcriptomes and chromatin 
accessibility, and it can also be adapted for user-customized applications, including antibody-based protein 
detection, bacterial or viral DNA detection, and CRISPR perturbations without dual guide RNA-expression 
vectors. We validated AmpliDrop by investigating the influence of short-term static culturing on cell 
composition in human forebrain organoids, revealing metabolic reprogramming in lineage progenitors. 
 
INTRODUCTION 
 
Cataloging the vast diversity of cell identities and states in the 
human body and model organisms is a paramount scientific 
endeavor, foundational for understanding development, 
homeostasis, aging, and disease 1. A variety of single-cell 
genomic approaches, including single-cell RNA sequencing 
(scRNA-seq), have recently made this pursuit achievable, 
marking a new era in basic research with the promise to soon 
extend this unprecedented depth of high-content phenotypic 
characterization into translational and clinical applications 2–5. 
Over the past decade, the landscape of scRNA-seq 
technological innovation has rapidly evolved, and the many 
options currently available can be classified into three groups 
based on the underlying barcoding principle.  

The first group applies bulk-like RNA-seq strategies to 
individually sorted cells in microwells (microliter-scale spaces), 

tagging the transcriptomic content from each cell with a 
distinct library index in every microwell 6–12. These methods 
process cells one by one, which largely limits scalability to no 
more than a few hundreds of cells in an experiment due to 
complex logistics and high costs. Still, these methods provide 
the highest sensitivity (gene capture) 6–12. 

The second group achieves significantly higher scalability 
at a lower cost per cell by attaching millions of copies of a 
unique molecular identifier—a barcode—to a micron-sized 
bead and pairing beads with cells in thousands of nanoliter-
scale spaces 13–20. These microscopic spaces can be created 
using water-in-oil droplets in an emulsion using a microfluidics 
instrument or an adapted vortexer in a templated 
emulsification; nanowells on multiwell plates; or a hydrogel, 
which exploits long polymers to limit diffusion in a tube 
without using physical barriers to separate the cells 13–20. 
Notably, all bead-based methods, except for 5’ versions, rely 
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on reverse transcriptase as the barcoding enzyme, adding 
barcodes by priming the synthesis of first-strand cDNA with a 
bead-attached barcoded oligo-dT oligomer 13–20.  

The third group of scRNA-seq methods further decreases 
costs per cell and can scale up to a million cells by exploiting 
the cells themselves as the compartmentalized spaces for the 
barcoding reactions 21,22. In these methods, cells are fixed and 
permeabilized and undergo three to four rounds of splitting 
and pooling on a 96-well plate, with ligase used as the 
barcoding enzyme, joining a well-specific index to first-strand 
cDNA in each split round 21,22. This process of combinatorial 
indexing randomizes the indexing at the cell level by providing 
a unique concatenation of three to four indexes to  the 
transcriptomic content of each cell 21,22. For scaling to a million 
cells, combinatorial indexing on a 96-well plate is more user-
friendly than preparing an equivalent number of libraries using 
a typical bead-based method. However, combinatorial 
indexing can be tedious when processing multiple sets of a 
million cells, and it can become impractical or less cost-
effective when processing only a few thousand cells. 

Overall, there are three major deterrents to the 
popularization of large-scale scRNA-seq, aside from significant 
data analysis challenges 23,24: workflow complexity; 
inconvenient logistics; and, most importantly, high costs, since 
the limited gains in cost efficiency per cell can be offset by the 
opportunity to process more cells—Jevons Paradox.  

Here, we report AmpliDrop, an innovative yet simple 
barcoding technology that skips the need for a combinatorial 
indexing scheme to achieve the largest scalability at a low cost 
per cell and the need for beads to introduce barcode 
multiplicity within a droplet. To achieve this, AmpliDrop 
introduces thermostable DNA polymerase as the third 
barcoding enzyme in single-cell experiments, enabling the 
generation of barcode multiplicity from a pool with millions of 
unique single-molecule barcodes during, rather than before, 
library preparation, unlike previous methods. Additionally, 
AmpliDrop offers flexibility through the use of a conventional 
electronic pipette or a typical robotic or standalone liquid 
handling system for the compartmentalization of the barcode 
multiplicity and barcoding reactions. These adaptations 
reduce the cost of barcodes to a negligible amount (a few 
cents per library), bring the cost of the barcoding reaction 
down to that of a PCR reaction, and allow flexibility for a broad 
range of reaction sizes—from a single library in a PCR tube to 
96 independent libraries on a multiwell plate, with total 
throughputs spanning from a thousand to up to five million 
cells if the reactions are fully loaded, respectively.  
 
RESULTS 
 
Technology overview  
The key elements of AmpliDrop applied to a 3’ scRNA-seq 
protocol are summarized in Extended Data Fig. 1a. The initial 
steps involve preparing the cells for subsequent in-cell 

enzymatic reactions. This preparation includes mild fixation to 
anchor RNA within cells and cell membrane permeabilization 
to allow reagent entry during the in-cell reactions.  

The first in-cell reaction is reverse transcription (RT), 
where cells are incubated with reserve transcriptase and 
bead-free oligo-dT oligomers to synthesize first-strand cDNA 
(Fig. 1a, RT Step). The second in-cell reaction is RNA:cDNA 
tagmentation, where cells are incubated with Tn5 
transposomes to fragment RNA:cDNA hybrids and introduce 
barcoding (BC’ing)-compatible sequences into the 
fragmented cDNA ends (Fig. 1a, Tagmentation). At this stage, 
cDNA-transposed cells are ready for encapsulation, lysis, and 
barcoding (Extended Data Fig. 1b, Part 1, Bulk Reactions).  

Next, a user-determined number of cDNA-transposed 
cells is encapsulated within droplets alongside PCR and 
barcoding reagents. These reagents include a pool of millions 
of unique single-copy barcodes, universal primers for their 
amplification, and a thermostable DNA polymerase. 
Encapsulation is achieved by mixing the cells and PCR and 
barcoding reagents with an emulsifying solution, using an 
electronic pipette or a robotic or standalone liquid handling 
system (for the largest scales). This process generates a highly 
thermostable emulsion (Extended Fig. 1b, Part 2, Single-Cell 
Reactions). The emulsion is then transferred to a 
thermocycler, where each encapsulated single-copy barcode 
is clonally amplified while the cells are lysed, releasing their 
transcriptomic content within the droplets (Fig. 1a, Barcode 
Amplification). In the same reaction, the already amplified 
barcodes are incorporated into cDNA by overlap extension, 
relying on the DNA polymerase again and the BC’ing-
compatible sequences introduced by design at the 3’ end of 
the amplified barcodes and by random tagmentation at the 5’ 
end of cDNA (Fig. 1a, Overlap Extension). 

The workflow ends with steps of droplet dissolution, 
barcoded cDNA pooling, and library indexing and amplification 
from the 5’ barcode side and the 3’ oligo-dT side, resulting in a 
3’ scRNA-seq library (Fig. 1a, Library Amplification and Library 
Sequencing, and Extended Data Fig. 1b, Part 3, Library 
Preparation).  

 
Technology validation 
To successfully work, AmpliDrop must minimize collisions—
i.e., encapsulating two or more cells within the same droplet. 
We have optimized the mixing conditions to generate more 
than 800,000 cell-encapsulating-ready droplets in a 200 µL 
emulsion (Fig. 1b), which ensures at least 60 droplets per cell 
with loads lower than 15,000 cells (a high droplet-to-cell ratio).  

To evaluate and validate these conditions, we performed 
a barnyard experiment using human 293T and mouse NIH3T3 
cells pre-mixed at a 1:1 ratio. In a PCR-tube strip, using an 8-
channel electronic pipette, we simultaneously prepared five 
libraries with inputs of 1,250, 3,120, 6,250, 12,500, and 15,600 
cells. After sequencing, we recovered 75.28±1.19% of the 
cells (932, 2,362, 4,624, 9,355, and 10,916), largely preserving 
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Fig. 1. AmpliDrop barcoding applied to a 3’ scRNA-seq workflow. a, AmpliDrop library construction: Illumina Read 1 (R1) captures 
cDNA, Illumina Index 1 read (I1) captures the library index, and Illumina I2 read captures the cellular barcode. (Drawing) A unique single-
molecule barcode is clonally amplified—i.e., within the droplet—and used to tag cDNA by overlap extension. b, ImageJ-based droplet 
number distribution in a 200 µL emulsion according to size, excluding n < 10 microns droplets (green line, left y-axis) and their estimated 
volume (red line, right y-axis) with data split in 10-micron bins (n = 6 microscopy images, n = 802 droplets). Included also, distribution 
of cell-containing droplets of any size (blue line, left y-axis; n = 142 microscopy images, n = 200 droplets). (Inset) Representative 
microscopy image depicting six droplets, including an estimated 54-micron droplet containing a DAPI-stained nucleus (arrowhead). 
Scale bar: 50 microns. Extrapolating the quantifications to the full emulsion, we estimated the generation of n = 804,548 droplets with 
a diameter larger than 20 microns, which should represent 99.5% of all the droplet-encapsulated cells and 98.07% of the total aqueous 
solution. c, Histogram shows human 293T and mouse NIH3T3 cell counts in five 200 µL emulsions (n = 5 libraries) pre and post 
encapsulation, pre-mixed at a 1:1 ratio. Pre-encapsulation counts (inputs) were estimated using the automated Countess Cell Counter 
(grey bars, same number for both species). Post-encapsulation counts (outputs) were estimated from the sequencing data according to 
read mapping behaviors (human in blue; mouse in red): 932, 2,362, 4,624, 9,355, and 10,916 cells. d, Scatter plot of transcript counts 
(x-axis) and gene counts (y-axis) by species in the 9,355-cell library (sequencing depth, n = 10,240 mean reads per cell). e-f, Scatter plots 
of transcript counts by species (human in x-axis and mouse in y-axis) in the 9,355-cell library with a 200 µL emulsion (in e) and the 6,542-
cell library with a 1 mL emulsion (in f) (sequencing depth, n = 14,566 mean reads per cell). Cells color-coded by read mapping behavior 
(those separated from the axes were considered as human-mouse cell collisions in green). (tSNE plots) t-SNE plot insets in the scatter 
plots show color-coded cells by species based on gene expression. t-SNE plots on the right show expression levels (log2 scale) for the 
indicated genes (in e). Human-mouse cell collisions were inferred by their separate clustering behavior. g, (Top) Proof-of-concept 96 
parallel 200 µL AmpliDrop reactions using 293T and NIH3T3 cells, pre-mixed at a 1:0.1 ratio, and encapsulated using a 96-multi-channel 
head (n = 81,645 cells, sequencing depth, n = 6,190 mean reads per cell). Cell identities and human-mouse cell collisions were color-
coded based on human-mouse read behaviors. (Bottom) Expression levels for representative genes (log2 scale). h, AmpliDrop 3’ scRNA-
seq analysis of 72 libraries and almost six hundred thousand cells. Cells were dissociated from a variety of human forebrain organoids 
(see Methods). Large UMAP plot shows data projected from 50,000 sketched cells (Seurat v5). Small plots show count densities for the 
indicated genes. Cell annotations typically associated with the indicated genes have also been included.  
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the 1:1 parity between species (Fig. 1c). Plots depicting ranked 
barcodes show a profile with the expected sudden drop in 
transcriptomic content, suggesting cell integrity with a high 
signal-to-noise ratio, or a robust cell-to-non-cell separation 
(Extended Data Fig. 2a). Most reads in the libraries, 
83.32±5.07%, belong to cells, primarily mapping to the 
human or mouse genomes and transcriptomes at 
84.78±0.15% and 74.22±0.31%, respectively. Moreover, 
using the 9,355-cell library as an example, we confirmed 
similar relationships between species in an analysis of gene 
capture by sequencing depth (Fig. 1d and Extended Data Fig. 
2b). We also observed the anticipated segregation by species 
in a t-distributed stochastic neighbor embedding (t-SNE) plot 
(Fig. 1e, inset).  

Regarding collisions, as expected, the fraction of 
estimated droplets with a mouse and human cell peaked with 
the largest outputs: 2.9% and 4.1%, equivalent to 5.8% and 
8.2% collision rates, for the 9,355- and 10,916-cell libraries, 
respectively (Fig. 1e, 9,355-cell analysis). Importantly, these 
rates can be reduced without changing throughput by 
increasing the volume of the emulsion. In a 1 mL emulsion, for 
example, the inferred human-mouse cell collisions can be as 
low as 0.29% with an output of 6,542 mixed cells (Fig. 1f). 
Notably, the cost difference in PCR reagents between a 200 µL 
and 1 mL emulsion is less than $10, while the cell capacity is 
increased fivefold without changing the properties of the 
emulsion (i.e., same droplet-to-cell ratio and same droplet-to-
barcode ratio). Throughput can also be increased by mixing 
multiple emulsions in parallel. For instance, mixing eight 200 
µL emulsions in an 8-tube PCR strip using an 8-channel 
electronic pipette has a combined capacity for up to 80,000 
cells: 8x10,000-cell emulsions. Likewise, simultaneously 
mixing ninety-six 200 µL emulsions using a 96-channel head 
on a 96-well plate has a combined capacity for close to a 
million cells: 96x10,000-cell emulsion (Fig. 1g,h and Extended 
Data Fig. 2c,d). Throughput can be further increased by 
simultaneously mixing ninety-six 1 mL emulsions in a 96-deep-
well plate, with a combined capacity to process close to 5 
million cells while still preserving the same encapsulating and 
barcoding properties as in a single 200 µL or 1 mL emulsion in 
96 wells (Extended Data Fig. 2e). Data from many libraries can 
be then combined for an integrated analysis of a large number 
of cells (e.g., Fig. 1h and Extended Data Fig. 3 show an analysis 
of 577,743 cells from 72 libraries). 
 
Inferring multi-barcoded cells 
A challenge with encapsulation by pipette-mixing is achieving 
a one-to-one barcode-to-cell ratio. This requires using a low 
barcode-to-droplet ratio, which comes with the tradeoff of 
generating a high number of cell dropouts—droplets 
containing cells without a barcode. For example, according to 
a Poisson distribution 25, a barcode-to-droplet ratio of 0.01 
should result in less than 1% multi-barcoded droplets but over 
99% cell dropouts (Extended Data Fig. 4a).  

To keep cell dropouts below 10%, we developed 
conditions that achieve an average barcode-to-droplet ratio of 
approximately three and created tools to computationally 
reconstruct multi-barcoded instances from the sequencing 
data (Extended Data Fig. 4a, line 3). In the aforementioned 
barnyard experiment with outputs of 932, 2,362, 4,624, 9,355, 
and 10,916 cells (Fig. 1c), these conditions resulted in an 
average barcode-to-droplet ratio of 3.22±0.32, with an 
estimate of 70% multi-barcoded cells and only 30% of cells 
with a single barcode (Extended Data Fig. 4b).  

Reconstructing multi-barcoded cells requires an 
algorithm to match the transcriptomic partitions derived from 
the same cell based on read similarities. However, this process 
is challenging due to the sparsity of the scRNA-seq data and 
the expected abundance of cells with a similar transcriptome 
in any given cell mixture. To address these two issues, we 
leverage two features generating similarities among same-cell 
partitions. 

The first feature is the diversity of 5’ ends generated by 
random Tn5 transpositions across the pool of cDNA molecules 
during in-cell tagmentation. We have termed the sequences 
at the transposition sites as ‘virtual unique molecular 
identifiers’ or vUMIs (Fig. 1a, tagmentation). The second 
feature is the possibility to generate some copies of the cDNA 
pool prior to barcoding. These copies can be generated by 
adding low amounts of poly-dT and BC’ing-compatible 
primers to the mix of PCR and barcoding reagents before 
encapsulation. Different copies of the same cDNA molecule 
(i.e., identical vUMI) can be then captured by the different 
barcodes within the same droplet. At a droplet scale, this 
should result in a distinctive vUMI pattern that could be used 
as a proxy of droplet origin. Notably, comparing vUMI and real 
UMI counts in pseudo-bulk analyses of the same data (the real 
UMIs were introduced in the oligo-dT primers) reveal a high 
correlation between both, thus suggesting that amplifying 
cDNA before barcoding does not generate obvious biases 
(Extended Data Fig. 4c).  

To infer multi-barcoded cells, we have adapted an 
algorithm developed to identify multi-barcoded cells in 
scATAC-seq experiments 26,27, combining the reads from the 
barcodes that may capture transcriptomic signal from the 
same cell, while collapsing those reads with identical vUMI to 
eliminate potential pre-barcoding PCR duplicates from 
downstream analyses. We refer to the process of inferring a 
cell as ‘barcode merging’. The results, as shown in Figure 1, 
suggest the accuracy of the merging process. For example, the 
percentage of inferred human-mouse cell collisions remain 
relatively consistent pre- and post-merging: 4.47% and 3.40% 
(t-SNE-based) for the output of 9,355 cells, respectively (Fig. 
1e and Extended Data Fig. 4d). We note that the slight 
increase in the pre-merging collision rate is likely due to the 
higher probability that collisions occur in larger droplets, which 
also contain a higher relative number of single-copy barcodes. 
Supporting this, the estimated collision rate in the 9,355-cell 
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experiment is more than threefold higher in droplets with 
multiplicity of seven or more barcodes compared to those 
droplets with a barcode multiplicity of six or less.  

Other results in Figure 1 further support the accuracy of 
the barcode merging process. Specifically, the estimates of cell 

recoveries fall within the range observed with microfluid-
based methods and largely preserve the 1:1 ratio between 
species (Fig. 1c). Additionally, collisions show high sensitivity to 
the volume of the emulsion, as expected from an accurate 
merging process (Fig. 1c,f). Despite these observations, we 

 
 

Fig. 2. Reconstruction of multi-barcoded cell identities. a, (Left) UMAP plot of AmpliDrop 3’ scRNA-seq data based on human breast 
cancer MCF-7, ovarian cancer A2780, kidney 293T, and colorectal cancer HCT-116 cells, pre-mixed at a ratio of 10,000:500:150:50 (total, 
n = 7,891 cells; sequencing depth, n = 14,090 mean reads per cell). (Insets) Zoomed in images of the two smallest clusters. (Right) Stacked 
histograms show estimated cell proportions by predicted cell identity and output of cells. Cell identities were inferred based on markers 
validated in single-line experiments. A zoomed in version (scale: 80%-100%) is included for a better visualization. Stacked bars from 
Countess-based inputs (“ground truth”) have also been included. b, AmpliDrop 3’ scRNA-seq analysis (UMAP plots) based on drug-
sensitive A2780 and drug-tolerant A2780cis cells, pre-mixed at a 1:1 ratio (top panels; n = 5,887 cells; sequencing depth, n = 12,542) and 
in silico mixed cells from independent A2780 and A2780cis libraries (bottom panels; n = 6,149 cells; sequencing depth, n = 11,608 mean 
reads per cell). In the pre-mixed sample (top panels), cell identities and A2780/A2780cis cell collisions (color-coded in grey) were inferred 
with markers from the in-silico mix (shown in the bottom panels). Left panels show plots with merged barcodes and right panels show 
plots with unmerged barcodes. c, (Left) Histograms of multimodal AmpliDrop 3’ and gRNA scRNA-seq data based on the gRNA-
transduced K562 line (CRISPRi) show cell counts by the frequency of the gRNA sequence across the cell population (between one and 
three, top graph) or by the number of gRNA sequences per cell (between one and three, bottom graph). (Right) Scatter plots show cells 
by their amounts of gRNA counts (x-axis) and transcriptomic counts (y-axis), color-coded by the presence (blue) or absence (grey) of a 
high-confident gRNA sequence (left) or combined (right). Total, n= 1,340 gRNA-positive cells. Sequencing depth, n = 9,847 mean reads 
per cell (transcriptomic library) and 19,680,862 reads (gRNA library). d, AmpliDrop 3’ scRNA-seq analysis of Jurkat cells (n = 1,770) at 
high and subsampled sequencing depths (n = 97,340 mean reads per cell or ‘ground truth’, gradually subsampled to less than 0.1%). 
Panels (Left to right): cell counts, mean reads per cell, ranked barcodes by transcript counts, gene (circles) and transcript (diamonds) 
counts, and fraction of reads on cells. Results color-coded by similarity in cell-count estimates to ground truth, as follows: ground truth 
in purple, within 90% range in green, outside the 90% range in red, and transiting between within and outside range in yellow.  
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aimed to further validate the precision of the merging process 
by testing it with more challenging sample types. 

First, we mixed four cell lines from the same species, 
human MCF-7, A2780, 293T, and HCT-116 cells, at ratios of 
10,000:500:150:50, respectively, and compared the 
estimated and expected cell recoveries for four different 
outputs: 972, 2,539, 4,624, and 7,891 cells. Data visualization 
using uniform manifold approximation and projection 
(UMAP) revealed the expected four clusters in each case, 
which were annotated based on cell-line-specific markers 
identified in single-line libraries (Fig. 2a, plot, and Extended Fig. 
4e). In support of accurate merging, the proportions of cells in 
each cluster largely matched the expected ratios across 
libraries, including for the cell line present at the lowest 
abundance (Fig. 2a, staggered plot).  

Second, we mixed two cell cultures of the same human 
cell line in two distinct cell states: one culture (A2780 cells) 
exhibiting high sensitivity to the anti-cancer drug cisplatin, and 
the other culture representing a drug-tolerant subpopulation 
(A2780cis cells), generated after repeated exposure and 
recovery from the drug 28. UMAP visualization shows clear 
segregation of the two cell states, based on expected markers 
28, and nearly identical cell proportions pre- and post-merging: 
43.88% and 43.19% for A2780, and 52.45% and 52.56% for 
A2780cis, respectively (Fig. 2b). The estimated collisions rates 
were also similar, 4.28% and 3.67%, with the pre-merging ratio 
slightly higher than post-merging ratio, as is also observed in 
the barnyard experiment (Fig. 1e and Extended Data Fig. 4d). 

Third, we assessed the accuracy of the merging process 
using a culture of lymphoblast K562 cells transduced with a 
library of 12,318-guide (g)RNAs at a multiplicity of infection 
(MOI) lower than 0.1 to limit the number of cells with more 
than one gRNA sequence. These sequences were inserted into 
the genome and used as an orthogonal molecular identifier 
(see Methods). During cell encapsulation, we included BC’ing-
compatible primers against the gRNA flanking regions in the 
lentiviral construct. Thus, in every inferred multi-barcoded cell, 
all barcodes should capture the same amplified gRNA 
sequence if the merging process were accurate, since gRNA 
reads are excluded from the merging process.  

As expected, data analysis reveal that most gRNA 
sequences can be found only once across the full set of 
inferred cells due to the high complexity of the gRNA library 
(Fig. 2c, left top panel). Also as expected, most inferred gRNA-
positive cells contain only one high-confident gRNA sequence 
(Fig. 2c, left bottom panel). As an aside, we note that 
incorporating a gRNA readout into the AmpliDrop workflow 
did not impact the efficiency of the transcriptomic capture 
(Fig. 2c, scatter plots). About the accuracy of the merging 
process, we focused on the 3,159 barcodes assigned to the 
1,838 inferred multi-barcoded cells with gRNA counts above 
the lowest 10th percentile, avoiding ambiguities associated 
with low gRNA detection. Remarkably, all but one of the 3,159 
barcodes (0.032%) were correctly assigned to a multi-

barcoded cell where all barcodes capture the same gRNA 
sequence, representing 858 cells out of the total of 859 that 
were inferred. According to this estimate, only one out of 859 
multi-barcoded cells would be incorrectly merged (0.116% 
error rate), which is lower than the estimated collision rate for 
a sample with a similar cell number. We note that the other 
barcode incorrectly merged in the same multi-barcoded cell 
was missed due to insufficient gRNA counts (below the 10th 
percentile, further in support of its incorrect merging.  

Finally, we evaluated the robustness of the merging 
process across a broad range of sequencing depths using a 
deeply sequenced AmpliDrop library prepared from Jurkat 
cells (1,770 cells; 97,340 mean reads per cell). We iteratively 
subsampled the reads from a 100% to as low as 0.0977% and 
subsequently merged the data on each subsampled dataset. 
The cell estimates, which serve as a proxy for correct merging, 
remained largely consistent until the average reads per cell 
dropped to 1,400, a point significantly lower than the typical 
sequencing depth reported in the scRNA-seq literature (Fig. 
2d).  

Together, these results support the robustness of our 
barcode merging strategy in inferring multi-barcoded cells, 
even with shallow sequencing depths and homogenous cell 
mixtures. 
 
Technology benchmark 
To benchmark AmpliDrop, we compared AmpliDrop and 10X 
Genomics v3.1 technologies using a dissociated sample of 7-
month-old neural organoids. To grow these organoids, we 
followed a semi-guided protocol known for introducing rich 
diversity of cell identities and transitioning cell states 29,30, 
recapitulating early developmental stages of the human brain 
cortex 29,31. We dissociated the organoids and split the cells 
into two aliquots, each processed with AmpliDrop and 10X 3’ 
scRNA-seq technologies. After sequencing the four libraries in 
the same lane of a flow cell, we downsampled the data to 
standardize the average number of reads per cell to 35,443 
and the number of cells to 7,000. Following data integration, 
we annotated fifteen cell type or states based on well-known 
brain cell markers (Fig. 3a and Extended Data Fig. 5a). 

Comparative analysis of cell identities and cell proportions 
shows high consistency between replicates and technologies 
across libraries. For instance (Fig. 3b), we detected virtually 
identical number of radial glia (RG) cells in the four libraries: 
1,107-1,024 (10X) and 1,052-1,196 (AmpliDrop). Similar 
consistency was observed with replicative progenitors (514-
572 and 542-585), mitotic progenitors (268-271 and 249-267), 
non-telencephalon neurons (168-160 and 168-153), and the 
small population of ependymal cells (67-58 and 53-56 cells). 
Some inconsistencies were observed between replicates in 
the smallest cell populations; however, these were not more 
prevalent in one technology over the other. This variability can 
partly be attributed to the challenge of capturing the diversity 
of a rich cellular mix in every subset of 7,000 cells. For example, 
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while the number of NEFL-expressing neurons annotated with 
AmpliDrop was relatively consistent between replicates (66-
57), the 10X replicates showed greater variation (62-100). 
Conversely, the number of choroid plexus cells was more 

consistent with 10X (47-49) than AmpliDrop (29-52). Two 
reproducible technology-associated differences were 
observed: a 1.68-fold enrichment in glutamatergic neurons in 
the 10X libraries relative to the AmpliDrop libraries, and a 2.09-

 
 

Fig. 3. AmpliDrop 3’ scRNA-seq benchmarking. a, Comparative analysis between AmpliDrop and 10X Genomics v3.1 3’ scRNA-seq 
methods (two replicates each) using the same pool of dissociated human brain cells from 7-month-old cortical organoids. (Left) UMAP 
plots show integrated data from the four libraries standardized at n = 7,000 cells and n = 35,443 mean reads per cell (total, n = 28,000 
cells) with data split by replicate and technology. Manual annotation based on well-established markers. (Right) UMAP plots of 
independently processed AmpliDrop (top) and 10X Genomics (bottom) data with annotations transferred from the full integration on 
the left. b, Cell count estimates color-coded by technical replicate and technology from the data shown in a. The arrows highlight 
consistent differences between technologies. c, UMAP plot of integrated PBMC AmpliDrop 3’ scRNA-seq data based on n = 47,855 cells 
(sequencing depth, n = 14,280 mean reads per cell). d, (Left panel) Comparative analysis of PBMC AmpliDrop 3’ scRNA-seq results based 
on n = 8 tests (total, n = 13,171 cells; sequencing depth, n = 8,571 mean reads per cell) to assess the technology robustness using a 
difficult sample type (outputs ranging between n = 869 and n = 3,014 cells): fresh versus cryopreserved, different operators, technical 
replicates, and different blood draws. (Top right) Stacked histograms show cell proportions by condition. (Bottom right) Scatter plots 
show gene-by-gene pseudo-bulk counts, as indicated conditions, with Pearson correlations. e, Multimodal cell-surface 
immunophenotypic and transcriptomic readouts (AmpliDrop CITE-seq) using TotalSeq-C TBNK-stained PBMCs (total, n = 15,195 cells; 
sequencing depth, n = 8,699 mean reads per cell). UMAP plots compare expression (log2 scale) and ADT (antigen-derived tag) counts 
(top cells based on the highest counts in black). as indicated. The bottom panels represent the same data (re-integrated) but pre-barcode 
merging. 
 
Technology becnhmar 
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fold relative enrichment in GABAergic interneurons in the 
AmpliDrop libraries relative to the 10X libraries (Fig. 3b, 
arrows).  

Taken together, this side-by-side comparative analysis 
reveals that AmpliDrop and 10X methodologies capture 
similar cell diversity, both in terms of cell identities and cell 
proportions, with exception of two cell subtypes. Previous 
studies have also reported differences in cell proportions 
between single-cell technologies, suggesting that single-cell 
methods do not universally capture the same relative number 
of cells 32. Additionally, differential expression analysis shows 
that the 10X libraries are enriched in ribosomal and metabolic 
genes compared to the AmpliDrop libraries (Extended Data 
Fig. 5b,c, adjusted p-value < 10e-32 and Log2FoldChange > 
|2|). This finding aligns with previous reports indicating that 
10X libraries disproportionally capture these gene classes 
compared to intrinsically nuclear-enriched methods, such as 
those based on combinatorial indexing, relying on fixed and 
permeabilized cells 32,33, like AmpliDrop. 

To characterize cell diversity in a sample with well-
established cell types, we prepared AmpliDrop libraries from 
47,855 peripheral blood mononuclear cells (PBMCs), known 
for their low RNA content. We identified the expected 
repertoire of immune cells and cell states, including classical 
and non-classical monocytes, T and natural killer (NK) cells, B 
memory and naïve cells, mucosal-associated invariant T 
(MAIT), regulatory T cells, as well as rare cell populations, 
including hematopoietic stem and progenitor cells (HSPC), 
plasmacytoid dendritic cells (pDC), and plasmablasts (Fig. 3c 
and Extended Data Fig. 6a). We next applied unsupervised 
label transferring from a popular reference cell atlas  to 
compare the cell annotations in our dataset with those from a 
publicly available experiment based on combinatorial 
indexing 34. This analysis shows that AmpliDrop and 
combinatorial indexing capture similar cell identities, although 
comparing cell proportions in this case would not be 
warranted since the PBMC samples derived from different 
donors (Extended Data Fig. 6b). We note that using 
combinatorial indexing to benchmark AmpliDrop is 
particularly impractical due to the need to accumulate enough 
number of samples to process a full 96-well plate.  

To assess the robustness and reproducibility of the 
AmpliDrop data, we also used PBMCs due to their well-known 
fragility, comparing libraries prepared by different operators 
from the same or different blood draws from the same donor, 
as well as fresh versus cryopreserved cells, and performed 
technical replication. After data integration in a single UMAP 
plot (n = 15,151 cells), we observed the anticipated immune 
cell populations (Fig. 3d, UMAP, and Extended Data Fig. 7a). 
The libraries demonstrate consistency across replicates, 
operators, blood preparations, and fresh versus 
cryopreserved conditions (Extended Data Fig. 7b). In 
additional pseudo-bulk gene-by-gene analyses, technical 
replicates exhibit a correlation of r2 = 0.9910, fresh versus 

cryopreserved samples exhibit a correlation of r2 = 0.9776, and 
differences between operators exhibit a correlation of r2 = 
0.9875 using fresh cells and 0.9691 using cryopreserved cells 
(Fig. 3d, scatter plots). Cell proportions also showed relatively 
similar estimates, although we expect some variation due to 
the small size of the libraries, which ranged between 869 and 
3,014 cells (Fig. 3d, staggered bars). 

As an alternative strategy to benchmark the accuracy of 
AmpliDrop in separating cell identities, we tested the 
technology for CITE-seq (cellular indexing of transcriptomes 
and epitopes by sequencing) 35. CITE-seq captures multimodal 
readouts, allowing comparison of cell identities and clustering 
behaviors using both transcriptomic and cell-surface 
immunophenotypic information. We stained a batch of 
PBMCs with a commercial cocktail of antibodies that react 
against nine immune-cell-surface antigens: CD19, CD3, CD16, 
CD4, CD11c, CD56, CD14, CD8, and CD45 (TotalSeq-C TBNK 
Cocktail). Each antibody is conjugated to a polyA-attached 
probe containing an identifier sequence compatible with 
AmpliDrop barcoding. After sequencing, probe-associated 
reads were excluded from the transcriptomic-based merging 
process and the subsequent steps of cell clustering and cell 
annotation (n = 19,958 cells; Extended Data Fig. 8a). Notably, 
probe capturing did not appear to affect the capture of the 
transcriptomic readout (Extended Data Fig. 8b). Comparing 
the transcriptomic and immunophenotypic readouts (both 
pre and post merging), we observed remarkably similar 
results, supporting data quality and, again, a robust process of 
barcode merging (Fig. 3e). 
 
Technology versatility  
The value of any single-cell barcoding technology is enhanced 
with its versatility across different modalities and applications 
36. We have demonstrated that AmpliDrop can capture 3’ 
transcripts (Fig. 1), including in conjunction with genome-
integrated gRNA sequences as part of a Perturb-seq lentiviral 
construct (Fig. 2c) and antibody-conjugated DNA probes (Fig. 
3e). Next, we aimed to validate whether AmpliDrop could also 
capture other layers of cellular information.  

The strong preference of the AmpliDrop 3’ scRNA-seq 
workflow to capture 3’ transcript ends results from adapter 
primers annealing to the 3’ end of the TruSeq-oligo-dT 
sequence during library amplification (Fig. 1a). Oligo-dT 
primers generally prime RT from terminal poly-A sequences in 
mRNA, except in those cases where oligo-dT primers anneal 
to intronic poly-A sequences in pre-mRNA. To more evenly 
incorporate non-3’-transcriptomic regions into the library, we 
added a second Tn5 activity to the tagmentation reaction, 
Tn5-ME-B, using primers that anneal to the second 
transposed sequence during library amplification (Fig. 4a, 
scheme, library 1). When applied to Jurkat cells, double 
Tn5A/B transposition increased the transcriptomic signal 
across gene bodies in normalized read density meta-profiles 
(Fig. 4a and Expanded Data Fig. 9a, reaction 1). The signal,  
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 and r2 =  color-coded by species based on the highest read abundance (with n = 126 Escherichia coli and n = 54 Staphylococcus epidermis 
barcodes). Note: Reads with 0 counts were manually added to the log-scale plot. f, Histograms show the fraction of reads mapping to 
the Escherichia coli (top plot) and Staphylococcus epidermis (middle plot) genomes and the total number (bottom plot) by barcode (n = 
180). Barcodes were sorted by the number of reads mapped to the Escherichia coli genome in all panels (decreasing left to right). 
 
 

 
 

Fig. 4. AmpliDrop barcoding applied to full-length scRNA-seq, snATAC-seq, and microbial scGenome-seq. a, (Left) Scheme represents 
AmpliDrop single (3’) and double (full-length) transpositions scRNA-seq strategies. (Center) Meta-profiles of AmpliDrop signal in Jurkat 
cells across normalized gene bodies, matching the numbers in the scheme. TruSeq (top) and NextSeq (bottom) libraries shown. For 
reference, the grey dotted line represents 10X 3’ scRNA-seq data (10k_hgmm_3p_nextgem_Chromium_X_Hu); the black dotted line 
indicates the submit of the AmpliDrop 3’ scRNA-seq signal in the TruSeq library. (Right) Read density across the ACTB locus, matching 
the numbers in the scheme. b,c, snATAC-seq comparative analysis with AmpliDrop PBMC data in b (total, n = 733 cells; sequencing 
depth, n = 9,533 mean reads per cell) and 10X Genomics PBMC data in c (total, n = 880 cells; sequencing depth, n = 8,718 median 
fragments per cell). The 10X Genomics data was previously generated and publicly available (atac_pbmc_1k_v1). Panels (clockwise): t-
SNE plots with major PBMC annotations; t-SNE plots depict chromatin accessibility at the indicated promoter regions (blue gradients) 
and predicted enrichment of the indicated motifs in open chromatin regions (violet to brown gradients); tracks of pseudo-bulk read 
density by cell annotations across four representative loci, color-coded as in the t-SNE plot, and meta-profiles of snATAC-seq signal at 
and around TSS (1 kb on each side). d, Microbial scGenome-seq data: ranked barcode plots of AmpliDrop data from a mix of Escherichia 
coli and Staphylococcus epidermis cells with all or reference-mapped-only reads, as indicated (total estimated genome-capturing 
barcodes, n = 180). e, Scatter plot of reference-mapped read counts separated by barcode (each datapoint) and color-coded by species  
(see next page) 
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however, remains partially biased towards the 3’ transcript 
end, suggesting that the RT reaction does not extend to the 5’ 
end in most transcripts. To confirm this hypothesis, a TruSeq-
TSO primer (TruSeq-rGrGrG) was used to capture the 5’ 
transcript end. While the 5’ end of some genes, such as ACTB, 
was covered by this strategy, on a genome-wide scale, the 
shape of the meta-profile remained largely unchanged, thus, 
confirming an incomplete RT reaction for most transcripts (Fig. 
4a and Expanded Data Fig. 9a, reaction 2). To increase the 
completeness of the RT reaction, we added random hexamers 
(R6) in combination with or without the TruSeq-oligo-dT 
primer during the RT reaction, which facilitated the coverage 
across gene bodies (Fig.4a and Expanded Data Fig. 9a, 
reactions 3 and 4, respectively). Together, these results reveal 
that AmpliDrop can successfully add barcodes with double 
Tn5A/B transpositions, enhancing coverage across transcripts 
(full-length).  

Using double Tn5A/B transpositions should also enable 
the capture of chromatin accessibility when following a single-
nuclei (sn)ATAC-seq workflow 37,38. Notably, we observed no 
evidence of open chromatin signal crossover in double 
Tn5A/B-based scRNA-seq read density profiles (Fig. 4a, ACTB, 
and Extended Data Fig. 9a). To capture chromatin 
accessibility, therefore, we modified the library preparation, 
skipping the fixation and RT steps, isolating nuclei instead of 
permeabilizing cells, and amplifying and indexing the library 
with Nextera primers. To validate this protocol, we prepared 
four barnyard experiments based on human HCT-116 cells 
and mouse embryonic stem cells (mESCs) pre-mixed at a 1:1 
ratio, estimating outputs of 505, 1,407, 4,312, and 12,298 
nuclei. Multiple lines of evidence support the quality of the 
AmpliDrop scATAC-seq data, including (Extended Data Fig. 
10): (i) a high similarity of read density profiles between 
pseudo-bulk and bulk data derived from our scATAC-seq and 
publicly available ATAC-seq data, respectively; (ii) similarity of 
collision rate estimates between AmpliDrop scATAC-seq and 
3’ scRNA-seq data; (iii) the observation of a sudden drop in the 
cell-to-non-cell transition in ranked barcode plots; (iv) the 
observation of a meta-profile of read density showing the 
highest read accumulation upstream of the transcriptional 
stat site (TSS) 39; (v) the observation of a meta-profile of 
fragment size distribution that resembles a nucleosomal-like 
pattern of genomic DNA fragmentation, and (vi) the complete 
segregation of the human and mouse cells in t-SNE plots.  

Next, to compare AmpliDrop and 10X snATAC-seq data, 
we generated an AmpliDrop snATAC-seq library from 733 
PBMC nuclei extracted from a cryopreserved vial and 
compared its chromatin accessibility patterns and motif 
enrichment with a publicly available 10X snATAC-seq 

experiment based on 880 PBMC nuclei. Both were sequenced 
at a similar depth: approximately 42,500 and 40,700 average 
reads per cell, respectively. This comparative analysis shows 
similarities between the two methods, including comparable 
segregation of cell types in t-SNE plots, similar chromatin 
accessibility and motif enrichment across the promoters of 
immune cell markers, consistent read density accumulation 
upstream of TSS, and similar fragment size distribution with a 
nucleosomal-like pattern, among other key performance 
features (Fig. 4b,c and Extended Data Fig. 11). 

We also applied double Tn5A/B transpositions to capture 
other sources of genomic information. In particular, the 
application of single-cell technology to microbial cell mixtures 
represents a promising advance in single-cell genomics 40–43. 
To interrogate the capture of microbial genomes with the 
AmpliDrop barcoding method—termed microbial scGenome-
seq, we used a mix of gram-negative cells (Escherichia coli) and 
gram-positive cells (Staphylococcus epidermis) as starting 
material and prepared libraries following an snATAC-seq 
protocol with some adjustments primarily affecting the 
permeabilization step of bacterial cells (see Methods). A 
ranked barcode plot shows the expected signal drop, 
distinguishing cell-containing from empty droplets (Fig. 4d). 
Supporting single-cell behavior, most reads in the same 
barcode map either to the Escherichia coli or Staphylococcus 
epidermis genome, with an average coverage by barcode of 
2.37% (126 barcodes) and 1.40% (54 barcodes), respectively 
(Fig. 4e,f). Aggregating all the reads from the barcodes by 
species (‘metacells’), we estimated a genome coverage of 
90.68% and 30.05%, respectively (Fig. 4e), suggesting that 
AmpliDrop is capable of inferring pseudo-genomes in 
bacterial cell mixtures. 
 
Discovery potential 
Finally, we aimed to validate AmpliDrop in addressing a 
biological question. Neural organoids are self-organizing 
multicellular structures used for modeling brain development 
and neurological disorders 44. However, it is often overlooked 
that these structures are fragile, susceptible to alterations 
caused by user handling, manipulation, and culturing 45–48. We 
used AmpliDrop to determine whether procedures included 
in some protocols, such as moving the organoids from the 
culturing plate to a secondary site for testing, keeping them 
outside the incubator during a testing period, or keeping them 
at least for short-term without shaking (static) during culturing 
can change cellular composition. 

We split a pool of 7-month-old human induced 
pluripotent stem cell (hiPSC)-derived forebrain organoids into 
three groups. The first group remained in the incubator 

based on the highest read abundance (with n = 126 Escherichia coli and n = 54 Staphylococcus epidermis barcodes). Note: Reads with 0 
counts were manually added to the log-scale plot. f, Histograms show the fraction of reads mapping to the Escherichia coli (top plot) 
and Staphylococcus epidermis (middle plot) genomes and the total number (bottom plot) by barcode (n = 180). Barcodes were sorted by 
the number of reads mapped to the Escherichia coli genome in all panels (decreasing left to right). 
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throughput the test. The second group was carefully 
transferred by aspiration to a secondary surface using a wide-
orifice 1-mL tip pipette and returned to the culturing plate 
afterwards (Fig. 5a, transferred-only). The third group was 
processed as the organoids in the second group but was 
subjected to deformative compression to mimic an accidental 
damage during the transfer (Fig. 5a, transferred and 
damaged, and Fig. 5b, drawing). Once in the incubator, the 
two sets of manipulated organoids were maintained without 
orbital shaking to avoid disaggregation due to a potential 
higher fragility caused by their manipulation (especially with 
the third group). Two days later, the three sets were 
dissociated and processed for 3’ scRNA-seq.  

Notably, analysis of cell densities across the UMAP plot 
based on the integrated data (n = 46,647 cells) suggests 
significant changes in cell composition in the two groups of 
manipulated organoids (Extended Data Fig. 12a). Using a 
panel of brain cell markers, we concluded that these 
alterations mostly affected two subpopulations of radial glia 
(RG), clusters 5 and 6, characterized by the expression of the 
non-neuronal marker VIM, and advanced RG markers, such as 
BCAN and PTN (Fig. 5b, UMAP plot). Remarkably, the size of 
these two clusters increased by more than threefold and 
ninefold, respectively, compared to the non-manipulated set 
(Fig. 5b, graphs). We note that while cluster 5 shows a more 
classical RG-like identity, characterized by the expression of 
PTPRZ1, cluster 6 shows a more specialized identity, 
characterized by expression of a ventricular zone (VZ) glia 
marker, IGFBP5.  Both clusters also show evidence of a distinct 
metabolic state, characterized by the increased expression of 
the mechano-sensing long non-coding (nc)RNA NEAT1 49, but 
not others mechano-sensing genes (such as TRPM3, TRPC1, 
TRPV4, or YAP1), and also the increased expression of 
glycolytic markers (such as PGK1 and HK2) and hypoxia and 
cell stress genes (such as high HSPA5, HSP90B1, XBP1, and 
P4HB expression). Both clusters, furthermore, are 
characterized by low expression of mitochondrial genes (e.g., 
MT-CO2), without evident signs of mitochondrial or oxidative 
stress or apoptosis (low levels of BCL2, BAX, SOD1, CASP8, and 
CASP9 expression) (Fig. 5c and Extended Data Fig. 12b).  

In support of a distinct metabolic state for cells in clusters 
5 and 6, analysis using a granular functional filtering approach, 
Gruffi 50, to locate cells enriched in genes associated with 
glycolysis and cell stress confirms that the two sets of 
manipulated organoids are enriched in glycolysis and cell 
stress gene ontologies by 3.11-fold and 2.97-fold, respectively 
(Fig. 5d, top). Gruffi-positive cells are mostly enriched in 
clusters 5 and 6 and, to a lesser extent, in cluster 7—a cluster 
that we annotated as ependymal cells due to selective 
expression of the ependymal marker TTC6 (Fig. 5d, bottom).   

Similar metabolically distinct cells have been recently 
reported in the inner core of organoids, annotated as apical-
like RG (aRG-like cells) 51. In agreement, we confirmed that the 
same glycolytic and hypoxia-related genes enriched in clusters 

5 and 6 were enriched in previously characterized aRG-like 
cells, which also show low mitochondrial gene expression (Fig. 
5e and Extended Data Fig. 12c). Thus, we annotated cluster 5 
as aRG-like cells and cluster 6 as tRG-like cells, the latter known 
to be a further differentiated RG subtype characterized by high 
CRYAB expression (as also observed in cluster 6; Fig. 5f, CRYAB) 
that ultimately evolves into ependymal and other glial cells 52. 
In the UMAP plot, cluster 6 cells are located adjacent to cluster 
7 cells, which we annotated as ependymal cells (Fig. 5f, CRYAB 
and TTC6, and Extended Data Fig. 13). 

Since the two sets of manipulated organoids were 
maintained outside the incubator for approximately 90 
minutes (the time to take pictures pre- and post-manipulation 
and to transfer the organoids one by one from the culturing 
plates to the mental surface and back), we hypothesized that 
being outside the incubator, not the actual handling of the 
organoids, may have induced the observed changes in cell 
composition and metabolic state. To tests this, we conducted 
a second experiment with a set of 6-month-old organoids but, 
this time, the non-manipulated group was also kept outside 
the incubator as the other two groups (n = 48,239 cells after 
data integration). Still, we observed an increase in Gruffi-
positive cells in the two manipulated conditions compared to 
the non- manipulated set: 7.44-fold and 4.81-fold, 
respectively (Fig. 5g and Expanded Data Fig. 14). 

Next, we interrogated whether skipping orbital shaking 
after the manipulations might have been the underlying cause 
of the differences in aRG-like and tRG-like subpopulations. To 
test this possibility, we conducted a third experiment in which 
non-manipulated, younger organoids (2-month-old, which 
are richer in RG populations, were split into two groups, one 
group was maintained in the incubator without orbital 
shaking (static) for 3 days prior to scRNA-seq profiling, as in the 
previous two experiments, whereas the other group was 
maintained under orbital shaking for the same period. 
Remarkably, we observed an increase in Gruffi-positive cells in 
the absence of motion that mostly coincided with the NEAT1-
positive subpopulation and primarily affected the central 
areas in the UMAP plot (clusters 4 and 12), where aRG-like and 
tRG-cells locate in the other two experiments, although in this 
case, cell proportions remained mostly unchanged (Fig. 5h 
and Extended Data Fig. 15). 

Together, these analyses suggest that short-term 
culturing of the organoids without motion can change the 
metabolic state in some RG subpopulations, when damaging 
the organoids or maintaining them outside the incubator for 
90 minutes, had not obvious effects. We cannot exclude the 
possibility, however, that the manipulations exacerbated the 
effects of culturing organoids without motion. 

 
DISCUSSION 

 
We have developed AmpliDrop to address the need for 
greater scalability, simplified workflows, and streamlined  
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 show counts of Gruffi-positive cells by cell type or state, color-coded as in b. e, Relative expression of genes distinctively expressed in 
clusters 5 and 6, including RG or glia markers, in the cell types annotated by Uzquiano et al., 2022 in their organoid data, visualized 
using the Single Cell Portal from the Broad Institute. f, Expression levels (log2 scale) of RG and glial markers on the UMAP plot shown 
in b, associated cell identities also indicated. g, (Top left) UMAP plot shows integrated AmpliDrop 3’ scRNA-seq data based on 6-month-
old forebrain organoids in the indicated conditions, color-coded by clusters (total, n = 48,239 cells; sequencing depth, n = 9,760 mean 
reads per cell). (Top and bottom right) Distribution of Gruffi-positive cells by condition and cluster. (Bottom left) Expression NEAT1 
levels (log2 scale) and Gruffi-positive cells across the UMAP plot. h, AmpliDrop 3’ scRNA-seq analysis of 2-month-old forebrain 
organoids grown in a static culture or orbital shaking for 3 days before cell dissociation. Panels organized as in g, color-coded by clusters 
(total, n = 45,858; sequencing depth, n = 17,209 mean reads per cell).   
 
 

 
 
Fig. 5. Influence of experimental factors on cell composition in human forebrain organoids: physical damage induced by transfer to 
a secondary site for potential experimentation (transferred-only and transferred-and-damaged to mimic an accidental 
deformation), time outside the incubator, and constant orbital shaking versus short-term static growth. a, Representative EVOS 
images show n = 7 seven-month-old forebrain organoids before and after manipulation. Scale bar: 1 mm. b, (Top left) Schematic 
representation of the three tested conditions. (Bottom left) AmpliDrop 3’ scRNA-seq analysis (UMAP plot) after integrating results from 
the three tested conditions, color-coded by inferred cell annotations (total, n = 46,647 cells; sequencing depth, n = 7,859 mean reads 
per cell). (Top right) Stacked histograms show cell proportions by test and cell type. (Bottom right) Cell proportions relative to the non-
manipulated condition (log2 scale) show clusters 5 and 6 as the two most affected cell types/states. c, Expression levels (log2 scale) of 
glycolytic and stress/hypoxia-related genes on the UMAP plot shown in b. The dotted lines delineate the location of clusters 5 and 6, 
except for the mitochondrial gene, MT-CO2. d, (Left plot) Distribution of Gruffi-positive cells across the UMAP plot shown in b. (Top 
right) Histograms show counts of Gruffi-positive cells by condition. Numbers represent fold differences relative to the non-perturbed 
tests. (Top bottom) Histograms  
(see next page) 
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logistics in single-cell genomic experiments. The core feature 
underlying these improvements is the generation of barcode 
multiplicity during, rather than before, library preparation, 
eliminating the need for costly barcoded beads 13–20 to isolate 
the copies of every unique barcode alongside cells and tedious 
combinatorial indexing schemes 21,22 to achieve large 
scalability. By generating barcode multiplicity during library 
preparation, furthermore, the source of barcodes (single-copy 
molecules) is largely negligible in a reaction while the cost of 
their amplification does not add any extra cost to the step of 
tagging (a PCR reaction). Importantly, the same pool of single-
copy barcodes can be used for any number of libraries and 
throughputs, which simplifies the workflow. Additionally, 
using conventional multi-channel pipetting systems for 
encapsulating the barcoding reactions eases the logistics. 
Conveniently, furthermore, these systems (either electronic 
pipettes or automatic liquid handlers) are laboratory tools not 
exclusive for AmpliDrop use, in contrast to microfluidics 
devices or special vortexers used by other technologies.  

Versatility without the need to substantially change the 
design of the barcoding step or reagents is another distinctive 
AmpliDrop feature. For example, most current single-cell 
barcoding methods require dual gRNA expression vectors to 
capture the gRNA sequence in a CRISPR perturbation 
experiment. With AmpliDrop, gRNA sequences can be 
captured directly by PCR from the gRNA-carrying DNA 
construct using user-customized primers added to the mix of 
reagents before encapsulation. The same principle can be 
applied to capture viral sequences (in infected cells) or 
bacterial or fungal sequences (inside single cells).  

Regarding the versatility for using different tube formats, 
the most similar technology to AmpliDrop would be PIP-seq 20. 
However, there are some key differences between AmpliDrop 
and PIP-seq. In AmpliDrop, the barcode is the least expensive 
reagent, while in PIP-seq, bead-attached barcodes should 
carry a substantial manufacturing cost. AmpliDrop is 
compatible with robotic liquid handlers, facilitating 
automation, while this possibility is unclear for PIP-seq. It is 
also unclear the upper scalability limit for PIP-seq, although it 
is commercialized for a million-cell throughputs. While we 
have not generated 5-million-cell libraries with AmpliDrop due 
to excessive sequencing costs associated with this test, the 96-
deep-well scalability is based on the same principle as those 
applied in a single PCR or 1.5 mL tube.  

Another advantage provided by AmpliDrop is the 
generation of independent libraries on multiwell plates, unlike 
combinatorial indexing methods that generate a single multi-
indexed library. This is relevant for the largest scalabilities. For 
example, for a CRISPR perturbation experiment at scale, 
AmpliDrop would generate ninety-six 50,000-cell libraries in a 
single 96-deep-weel plate (a total of 5 million cells). to enable 
the perturbation of all human genes with three distinct gRNAs 
for each gene (a total of 60,000 perturbations), aiming for 30 
cells per gRNA sequence. Each library can be then sequenced 
separately until a number of sufficient hits is reached, 
facilitating the control of sequencing costs and data analysis. 
With combinatorial indexing, for example, twenty 96-well 
plates will be needed to process 5 million cells (or 4 set of 96-
well plates for each group of a million cells), making more 
difficult the control of sequencing costs and data analysis, in 
addition to much more complex to process.  

Proof-of-concept validation for AmpliDrop would not be 
complete without an example of its utility in addressing a 
biological question. We have focused on evaluating the 
susceptibility of neural organoids to alterations in cell 
composition induced by user manipulation. Neural organoids, 
which are valuable in vitro cell models for studying brain 
development and neurological disorders 44, are also 
extraordinarily fragile 45–48. This fragility makes them 
particularly vulnerable to handling and manipulation, 
potentially leading to confounding effects that can complicate 
data interpretation.  

Supporting this vulnerability, previous studies have 
reported that mechanical forces generated during shaking—a 
common method for culturing these structures—can impact 
organoid structure and cell composition 46. Additionally, the 
speed of orbital shaking has been shown to influence both 
gross morphology and the microarchitecture of neural 
organoids 48. Conversely, it has been suggested that growing 
organoids under static conditions may lead to limited fluid 
dynamics of nutrients, negatively affecting the biology of these 
structures 47. Consequently, it remains unclear whether 
shaking or static growth represents a better system for 
modeling in vivo biology.  

In this study, we examined the effects of various 
experimental procedures on cell composition in human 
forebrain organoids. After testing multiple hypotheses, our 
findings suggest that short-term static culturing, which is also 
used to generate assembloids 63, can increase the proportion 

show counts of Gruffi-positive cells by cell type or state, color-coded as in b. e, Relative expression of genes distinctively expressed in 
clusters 5 and 6, including RG or glia markers, in the cell types annotated by Uzquiano et al., 2022 in their organoid data, visualized 
using the Single Cell Portal from the Broad Institute. f, Expression levels (log2 scale) of RG and glial markers on the UMAP plot shown 
in b, associated cell identities also indicated. g, (Top left) UMAP plot shows integrated AmpliDrop 3’ scRNA-seq data based on 6-month-
old forebrain organoids in the indicated conditions, color-coded by clusters (total, n = 48,239 cells; sequencing depth, n = 9,760 mean 
reads per cell). (Top and bottom right) Distribution of Gruffi-positive cells by condition and cluster. (Bottom left) Expression NEAT1 
levels (log2 scale) and Gruffi-positive cells across the UMAP plot. h, AmpliDrop 3’ scRNA-seq analysis of 2-month-old forebrain 
organoids grown in a static culture or orbital shaking for 3 days before cell dissociation. Panels organized as in g, color-coded by clusters 
(total, n = 45,858; sequencing depth, n = 17,209 mean reads per cell).   
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of certain progenitor subpopulations, aRG and tRG, and/or 
enhance their glycolytic metabolism.  

Currently, there is an ongoing debate in the neural 
organoid field regarding whether the expression of glycolytic 
markers in cell progenitors is a genuine characteristic of early 
brain development 51,53,54 or an artifact resulting from in vitro 
culture conditions, such as low oxygenation and poor nutrient 
access at the core of the organoid (where these cells locate). 
In the second case, these conditions may impair normal 
differentiation and should be, in a way, avoided 50,55–62. 

Whether the effects observed in this study represent 
artifacts or true developmental properties—or a combination 
of both—remains unsolved. However, we find particularly 
interesting that previous studies suggest that shifting from 
aerobic glycolysis to mitochondrial oxidative phosphorylation 
(the opposite direction of the metabolic change that we would 
be observing, i.e., high expression of glycolytic genes and low 
expression of mitochondrial genes) is essential for neuronal 
differentiation, and that signs of cell stress would represent a 
homeostatic state in the early human brain 54,64. In fact, 
lncRNA NEAT1, which we find highly expressed in glycolytic 
aRG and tRG, is a major RNA moiety and scaffold of 
paraspeckles, and these structures serve as sensors of stress 
signals to allow cellular adaptation 65 and modulate 
differentiation and metabolism 66–68.  

Thus, the question, remains whether replicating 
developmental biology be more accurate with orbital shaking 
or short-term static growth, i.e., with less or more glycolytic 
aRG and tRG. We speculate that during development, 
ventricular layer cells like aRG and tRG might act as sensors 
that use oxygen and nutrient levels as proxies for neocortex 
thickness (Extended Data Fig. 13). Given these cells’ potential 
to generate neuronal and glial populations in a time-controlled 
manner during development, a thin neocortex could signal 
differentiation into neuronal cell types early in development, 
while a thicker neocortex could signal differentiation into glial 
cell types later in development. We believe this metabolic 
property warrants further investigation. 

In summary, this study based on organoids demonstrates 
that AmpliDrop can identify and characterize cell composition, 
as we have also recently reported in a study using assembloids 
69. 
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METHODS 
 
Cell line culture 
Human A2780 cells (ovarian, adenocarcinoma) and the 
cisplatin-resistant derivative A2780cis subclone were 
purchased from Sigma-Aldrich (Cat#93112519 and 
Cat#93112517) and cultured in RPMI-1640 Medium, 
GlutaMAX Supplement (ThermoFisher, Cat#61870036) 
supplemented with 10% fetal bovine serum (FBS, Omega 
Scientific, Cat#FB-11). Human MCF7 cells (breast, 
adenocarcinoma) were purchased from ATCC (Cat#HTB-22) 
and cultured in DMEM/F12 (ThermoFisher, Cat#11320033) 
supplemented with 10% fetal bovine serum (FBS, Omega 
Scientific, Cat#FB-11). The rest of cell lines were all also 
purchased from ATCC: human 293T cells (kidney, embryo, 
Cat#CRL-3216), human HCT-116 cells (colorectal, carcinoma; 
Cat#CCL-247), Jurkat cells (T lymphoblast, acute T cell 
leukemia; Cat#TIB-152), mouse NIH3T3 cells (fibroblast, 
embryo, Cat#CRL-1658). Mouse mESCs were a previously 
reported 31. All cells were grown in an incubator at 5% CO2 
and 37°C, supplemented with penicillin-streptomycin 
(ThermoFisher, Cat#15140122), and sub-cultured as 
recommended by ATCC.  
 
Organoid culture 
The WT83 clone6 of human induced-pluripotent stem cells 
(hiPSCs), derived from a typically developing Caucasian male 
29,71, were grown on growth factor-reduced Matrigel (BD 
Biosciences, Cat#354234), coated 6-cm dishes in mTeSR Plus 
(STEMCELL Technologies, Cat#100-0276) without antibiotics. 
For propagation, cells were dissociated with Versene 
(ThermoFisher, Cat#15040066), 500 µM UltraPureTM EDTA 
(ThermoFisher, Cat#15575020), or ReLeSRTM (STEMCELL 
Technologies, Cat#100-0483). Cells were tested regularly for 
mycoplasma 72. To generate forebrain organoids, we 
followed a semi-guided protocol with a few modifications. 
Human iPSCs were grown in mTsERTM Plus (STEMCELL 
Technologies, Cat#100-0276) to a confluency of 
approximately 70% in a 6-cm plate and dissociated with a 1:1 
mix of accutase (ThermoFisher, Cat#A1110501) /DPBS. 
Approximately, three million hiPSCs with a viability >95% 
were transferred into ultra-low attachment 6-well plates 
(Corning, Cat#3471) with mTsERTM Plus media supplemented 
with the SMAD inhibitors SB-431542 (Medchem, Cat# 
HY10431; 10 µm final) and Dorsomorphin (R&D Systems. 
Cat# 309310; 1 µm final), and the Rho-associated proteinase 
kinase (ROCK) inhibitor (RI) Y-27632 (Fisher Scientific, Cat# 

125410; final 5 µm). Plates were placed on orbital shaker (95 
rpm). Alternatively, hiPSCs were transferred to a well of 
AggreWell-800 plate (STEMCELL Technologies, Cat#34811) 
pre-coated with Anti-Adherent Solution (STEMCELL 
Technologies, Cat#07010) in mTeSR plus supplemented with 
RI. The AggreWell in mTsERTM Plus supplemented with RI and 
centrifuged to capture cells in microwells and transferred to 
incubator.  The following day, embryoid bodies (EB) were 
transferred to a well of 6-well plate changing the media to 
fresh mTsERTM Plus supplemented with SB and 
Dorsomorphin as described above. From here, regular media 
and factors changes to complete generation of forebrain 
organoids were performed as reported 30, and maintained in 
M2 medium composed of Neurobasal (Life Technologies, 
Cat#21103049) supplemented with 1% GlutaMAX (Life 
Technologies, Cat#35050061), 1% MEM non-essential amino 
acids solution, NEAA (Gibco, Cat#11150-050), and 1x B27 
(Life Technologies, Cat#17504044) performing half/medium 
changes every two days for the first month or twice a week 
after. 
 
Engineering and culturing of the gRNA lentiviral-transduced 
human K562 line 
Wild-type K562 cells (ATCC, CCL-243) were grown in Roswell 
Park Memorial Institute (RPMI) 1640 Medium (Thermo 
Fisher, Cat#11875-119,) supplemented with 10% (v/v) fetal 
bovine serum and 1% penicillin/streptomycin (Gibco, Cat# 
15140122). To construct the CRISPRi-expressing cell line, 
wild-type K562 cells were transduced with the dCas9-BFP-
KRAB lentiviral vector (Addgene Cat#85969). Pure polyclonal 
populations of CRISPRi-expressing cells were then generated 
by sorting the transduced cells on a BD FACS Aria II 
instrument for the top 50% of BFP signal. The CRISPRi-
expressing K562 line was then transduced with a gRNA 
lentiviral library containing 12,318 unique gRNA sequences 
adapted from hCRISPRi-v2 73. Transductions were performed 
at a low multiplicity of infection (MOI < 0.1), using 2 × 108 
cells to ensure a representation of at least 500× coverage for 
each sgRNA after transduction. Transduced cells were 
enriched by treating with 2.5 µg/ml puromycin for 3 days. 
Cells were then cultured for 13 days before sequencing.  
 
Commercial and in-house isolated human PBMCs 
For Fig. 3c,e, Fig. 4b, Extended Fig. 6, and Extended Fig. 7., 
cryopreserved human PBMCs were purchased from 
ALLCELLS (Cat#MNC, 10M). For Fig. 3d and Extended Fig. 7, 
peripheral venous blood was drawn from voluntary donor 
using EDTA-treated tubes and LymphoprepTM (STEMCELL®, 
Cat. #29283-PIS 1 1 0) and stored at 4°C. Cells were 
resuspended in 1x phosphate-buffered saline buffer solution 
(1xPBS; Cat. #J61196.AP, Thermo-Fisher Scientific®) 
supplemented with 2% bovine serum albumin, BSA 
(Miltenyi, Cat#130-091-376), and layered over 1.5 mL 
Lymphoprep Density Gradient Medium (Stem Cell 
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Technologies, Cat#07801) in a 15 mL conical tube, according 
to the manufacturer’s protocol.  The solution was centrifuged 
at 800xg for 20 min at room temperature without 
brake.  The mononuclear cell layer at the gradient interface 
was collected in a new tube and washed in PBS/2% FBS (10 
mL total volume) and centrifuged at 120xg for 10 min at 
room temperature without brake.  The wash step was 
repeated two more times, and the cells were resuspended in 
PBS for sequencing library preparation.  The cells not used 
immediately were cryopreserved in 90% FBS/10% DMSO. 

 
Preparation of single-cell solutions (lines and PBMCs) 
The following instructions detail how to dissociate adherent 
mammalian cells (optimized for 293T and NIH3T3 cells). 
Separately, grow cells in a 6-well plate according to standard 
procedures at 50-80% cell confluency (optimal), aiming to 
have 0.5-1.0 million cells from each line. Aspirate media and 
rinse twice with 1x PBS. Aspirate and discard the remaining 
1x PBS. Add 150-300 mL of trypsin (ThermoFisher, 
Cat#25200056) and spread uniformly by tilting the plate. 
Incubate for 2-3 minutes at 37°C. When cells appear 
detached (move when shaking), inactivate trypsin by adding 
1.3 mL of media supplemented with FBS. Aspirate and 
dispense the solution 5-10 times with a P1000 pipette 
against the surface to the plate to fully dissociate cells. Move 
cells to a 1.5 mL tube and centrifuge at 300xg for 5 minutes. 
Preferably, use a 4°C refrigerated centrifuges for all the spins. 
Resuspend in 1.5 mL 1x PBS, gently pipette up and down for 
five times, and spin down at 300xg for 5 minutes. Aspirate 
supernatant and gently resuspend in 1 mL of 1x PBS using a 
P1000 pipette at least 10 times for full cell dissociation. Take 
a 20 µL aliquot and mix with 20 µL of trypan blue (1:1) to 
determine cell viability using an automated cell counter, 
such as Countess (ThermoFisher), or manually with a 
Hemocytometer. Cells should appear isolated and cell 
viability should be at least 90% (unless a toxic treatment is 
applied to cells). If cells have been properly dissociated and 
show high viability, conditions are set to prepare cell 
solutions for AmpliDrop library preparation. For frozen 
PBMCs, cells were thawed in a 37°C water bath and, 
immediately, serially diluted with 1, 2, 4, and 8 mL of RPMI 
1640 medium (Thermo-Fisher Scientific, Cat#11875093) 
supplemented with 10% fetal bovine serum (FBS; Sigma-
Millipore) in the same 15 mL tube. While increasing the 
diluting volume, the tube was gently and manually rotated. 
Diluted cells were then centrifugated at 300xg for 5 min and 
gently resuspended serially in 1 mL and 9 mL of RPMI/10% 
FBS first prior to a new centrifugation. Cell pellets were 
gently resuspended in 1mL 1xPBS/0.4% BSA and, after a new 
centrifugation, resuspended again in 1mL 1xPBS/0.4% BSA 
before applying a 40 µL Flowmi Cell Strainer (Sigma 
Millipore, Cat#BAH136800040). Finally, cells were counted, 
and viability was examined using Countess III Automated Cell 
Counter (Thermo-Fisher Scientific). 

Preparation of single-cell suspensions (organoids) 
For dissociation, 10-15 organoids were transferred into a 15 
ml conical tube (BioPioneer, Cat#CNT-15). Media was 
aspirated leaving a small volume to avoid drying up. 
Organoids were rinsed twice with DPBS at room temp (3mL 
and 2mL), and cell dissociation was induced with 1.5-2 mL of 
a mix of StemPro Accutase (Life Technologies, 
Cat#A1110501), Papain (Worthington, Cat#LK003176), and 
DNAse (Worthington, Cat#LK003170) at a ratio of 2ml 
accutase:0.5 ml mix papain/DNAse prepared following 
manufacter’s instructions. The mix with organoids was kept 
static dissociating in the incubator at 37°C. Every 10 min until 
the organoids were dissociated (for a maximum of 50 
minutes), organoids were gently but not slowly mixed 10 
times with a 1 mL pipette tip/P1000 pipette. The dissociation 
was stopped by adding 4 mL of warm M2 media and 
pipetting with the P1000 pipette a few times. The solution 
was then filtered through a 40 µm filter (Falcon, 
Cat#352340), placed upside down on top of a 15 mL 
PrecisionTM conical tube (BioPioneer, Cat#CNT-15). The filter 
was first prewet with 1 mL of a 1 x DPBS supplemented with 
0.1% BSA. Cells were harvested at 200xg for 7 min at room 
temperature. The media was aspirated leaving 
approximately 30 µL of supernatant. The cell pellets were 
resuspended in 0.7-1 mL of pre-chilled 1 x DPBS/0.1% BSA. 
From this point, all tips, tubes, and pipettes used were pre-
coated with 1 x DPBS supplemented with 0.1% BSA to avoid 
cell loss. Gently, cells were mixed again by pipetting with a 
P1000 pipette and 120 µL of the solution was transferred to a 
1.5 mL tube to count cells and assess cell viability using the 
ChemoMetec Cell Counter. Cell viability was above 90% in all 
cases (including for the severely damaged organoids). We 
then transferred around 500,000 cells to a new pre-
chilled/pre-coated 1.5 mL tube and cells were centrifugated 
at 200xg for 7 min at 4°C, ready for immediate processing 
according to the AmpliDrop (or 10X) protocol. 
 
Organoid perturbation tests  
We conducted three experiments. In the first experiment, 
two sets of 8 to 10 seven-month-old organoids were 
transferred from their original well in a six-well plate to a 24-
well plate with a 10- or 25-ml pipette placing one organoid 
per well with fresh M2 media. A third set was maintained in 
the original plate in the incubator with gentle orbital shaking 
(88 rpm), as before separation. Pictures of the isolated 
organoids were taken with an EVOS microscope installed 
inside the safety hood. After taking the pictures, one set was 
returned to the incubator, and the other set was transferred 
using a wide-orifice (W-O) 1 mL tip onto a surface that is part 
of an in-home-built device that applies sudden compression 
to organoids (manuscript in preparation), inside the safety 
hood. After compression, the organoids were returned to the 
culturing plate by adding a few microliters of media around 
the organoids and aspirating with the 1 mL W-O tip again. 
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Organoids were never left to dry during this process. Post-
compression, pictures were taken again with the EVOS 
microscope. The second set of organoids was processed as 
the first set but without mechanical compression. 
Afterwards, the cell culturing plate was returned to the 
incubator. In contrast to the non-manipulated set (third set), 
the other two sets were maintained without orbital shaking 
(static culturing) to avoid further damaging to the already 
mildly or severely damaged organoids. Two to three days 
later, the three sets were dissociated for scRNA-seq as 
described in the “Preparation of single-cell suspensions 
(organoids)” Methods section. 

In the second experiment, three sets of six-month-old 
organoids were similarly processed as in the first experiment. 
The main difference is that the non-manipulated-organoid 
set was maintained outside the incubator as the other two 
sets, to eliminate differences caused by having the organoids 
outside the incubator (approximately 90 minutes, which 
results in media conditions changing as suggested by a 
transient media color change during this period). The 
organoids were finally dissociated as described in the 
“Preparation of single-cell suspensions (organoids)” Methods 
section. 

In the third experiment, two-month-old organoids 
were transferred onto two wells in two different 6-well 
plates using a 50 mL pipette to minimize any physical 
damage. The plates were returned to the incubator for two 
days with one plate maintained under gentle orbital shaking 
(88 rpm) while the other plate was maintained in static 
culturing.  Afterwards, the organoids were dissociated for 
scRNA-seq as described in the “Preparation of single-cell 
suspensions (organoids)” Methods section. 
 
AmpliDrop 3’ scRNA-seq 
After automated cell counting and viability assessment using 
a Countess 3 Automated Cell Counter system 
(ThermoFisher), dissociated cells (typically, >90-95% viable) in 
0.1% BSA-supplemented 1x DPBS buffer solution at this stage 
were processed with AmpliDrop 3’ scRNA-seq kits following 
the manufacturer’s recommendations (Cat#100050, 100051, 
100052; Universal Sequencing Technology Corp.). Libraries 
were subject to quality control, sizing, and quantification 
using Agilent 4150 TapeStation system with High Sensitivity 
D1000 ScreenTape and Reagents. Libraries were sequenced 
on an Illumina NextSeq 500/550 instrument using a 
HighOutput kit (75 cycles) or on a NovaSeq 6000 or NovaSeq 
X instrument using a S4 kit (either PE50 or PE100) following 
the sequencing conditions: at least 51 cycles for Read1 + 8 
cycles for Index1 + 20 cycles for Index2. In NovaSeq, we used 
101x10x24x101 (PE100) or 51x10x24x51 (PE50) 
configurations used routinely in the Sequencing Core where 
we submit our samples with other customers. We noticed 
approximately only 5% lower reads per cell with the PE50 
configuration compared to the PE100 configuration. In 

general, we processed only R1, I1, and I2, but when using 
oligo-dT primers with UMI, we also used R2 to capture the 
UMI sequence (10bp). Libraries were typically sequencing at 
a sequencing depth between 8,000 and 12,500 average 
reads per cell, unless otherwise indicated. 
 
Benchmarking AmpliDrop with 10X Genomics v.3.1 
technology 
Dissociated cells were split into two aliquots. One aliquot was 
immediately processed for 3’ scRNA-seq using the Chromium 
Controller system (10X Genomics) with a target recovery of 
10,000 cells with the Next GEM Single Cell 3’ Reagent Kits 
v3.1 (Cat#1000268, 10X Genomics) and the other aliquot was 
also processed for 3’ scRNA-seq analysis by a second 
operator with AmpliDrop 3’ scRNA-seq (Cat#100050, 
100051, 100052; Universal Sequencing Technology Corp.). In 
both cases, we followed the manufacturer’s 
recommendation for library preparation. Libraries were 
sequenced in the same lane at a 1:1 ratio with a S4 kit in 
NovaSeq. The AmpliDrop library was generated with UMIs 
incorporated into the oligo-dT primer, which added 
sequencing diversity in Read2 (10 bp), where the 10X library 
captures the insert. In Read1, the 10X library has sequence 
diversity provided by the UMI sequence (28 bp), where the 
AmpliDrop library has the insert. 
For data comparison, the reads were down sampled to the 
same value as in the sample with the lowest reads among all 
samples, which was about 248.1 million. For the cells calling, 
we enforced to call 7,000 cells for each sample. 
 
AmpliDrop CITE-seq 
PBMCs were stained with TotalSeq – A Human TBNK 
Cocktail (BioLengend, Cat#399901). One million PBMCs 
(typically > 95% viable) were resuspended in 45 µL cell 
staining buffer (BioLegend, Cat#420201), and 5 uL of 
Human TruStain FcX Fc Blocking reagent (BioLengend, 
Cat#422301) was added and incubated for 10 min at 4°C. 
TotalSeq antibody cocktail was reconstituted according to 
the manufacturer’s protocol and added to the blocked 
PBMC suspension and incubate for 30 min at 4°C. Cells 
were washed in 3 mL of cell staining buffer and centrifuged 
at 500xg for 5 min at 4°C three times.  Cells were 
resuspended in 500 µL of cell staining buffer and filtered 
with 40 µm Flowmi cell strainer (Sigma, 
Cat#BAH136800040), and cell concentration and viability 
(typically > 90%) were recorded. The stained PBMC were 
immediately used as the input for AmpliDrop. 
 
AmpliDrop gRNA-seq (targeted AmpliDrop, Perturb-seq-
compatible method) 
To capture gRNA sequences, we followed the AmpliDrop 3’ 
scRNA-seq protocol with the following modifications.  PCR 
primers were designed against the mouse U6 promoter and 
the gRNA backbone to amplify the protospacer sequence, 
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targeting the amplicon size of approximately 140 bp.  These 
primers were included in immediately before encapsulation 
at a final concentration of 50 nM.  After the droplet breaking 
and the cleanup steps, half of the reaction was amplified with 
the Truseq index and P5 primer (3’ scRNA-seq), and the 
remaining half was amplified with Nextera index and P5 
primer (gRNA sequencing). We sequenced the gRNA library 
with a NextSeq kit (150 cycles) as follows: R1, 70 cycles, R2, 
70 cycles, I1, 8 cycles, and I2, 20 cycles.  
 
AmpliDrop Full-length scRNA-seq options 
To explore full-length AmpliDrop options, we followed the 3’ 
scRNA-seq protocol with the following modifications. One 
million cells were used. We performed RT in the presence of 
switch oligo (TR2SW), or random hexamers (ProvTailedR6) 
with TruSeq sequences. Tagmentation was conducted with a 
mix of Tn5-A/B. 
 
AmpliDrop snATAC-seq  
For snATAC-seq, we followed the AmpliDrop 3’ scRNA-seq 
protocol with the following modifications. Skipping the 
fixation step, cells were lysed in a modified permeabilization 
buffer (3.5 µl Permeabilizer in 100 µl Buffer P) and incubated 
on ice for 3-5 minutes, depending on the cell types (generally 
5 min for cell lines, 3 min for PBMC) and 50,000 nuclei were 
used for tagmentation at 37°C for 60 min with a mix of Tn5-
A/B. The cleanup step after the barcoding reaction was 
performed with 1.4x SPRI beads, and the Nextera index and 
P5 primer were used for the final ATAC library. The final 
cleanup was done with 1.2x SPRI beads.  
 
Microbial scGenome-seq 
Escherichia coli DH10b And Staphylococcus epidermis FDA 
strain PCI 1200 (purchased from ATCC, Cat#12228) were 
grown in LB media at 37°C shacking at 200rpm. To capture 
bacterial sequences, we followed the AmpliDrop 3’ scRNA-
seq protocol with the following modifications.  E.coli BL21 
(DE3) cells and S.epidermis cells were harvested at a late log 
phase, and 25 million cells (estimated by flow cytometry) 
from each culture were mixed at a 1:1 ratio.  The mixed 
solution was washed once in 1 mL 1x PBS with 1 mg/mL 
probumin BSA (EMD Millipore, Cat#82-045-1), collected by 
centrifugation at 15,000xg for 5 min, resuspended in 50 µL of 
1x PBS and fixed (AmpliDrop protocol).  Following one round 
of wash as described above, the fixed cells were resuspended 
in 50 µL 1x PBS with 0.04% Tween-20 and incubated on ice 
for 3 min. Cells were then washed two times as above and 
incubated in 50 µL 20 mM Tris (pH8.0) containing 10 µg 
lysozyme (Thermo Fisher, Cat#90082) and 4 µg lysostaphin 
(Sigma-Aldrich, Cat#L7386-1MG) at 37°C for 30 min. The 
permeabilized cells were then washed two times as above, 
counted by flow cytometry, and 3 million cells were 
incubated in with tagmentation solution (AmpliDrop kit) 
containing double Tn5-A/B transposomes at 37°C for 60 min. 

The tagmented cells were washed twice and counted as 
above, and 2,000 cells were resuspended in 60 µL of the 
barcoding reagents (AmpliDrop kit). The barcoded products 
were recovered, amplified, and cleaned as in the 3’-scRNA-
seq workflow. Libraries were sequenced on an Illumina 
MiSeq instrument using a Reagent Kit v3 (Cat#15043894, 
Cat#15043893, 150 cycles). 
 
Data analysis of gRNA sequences  
When capturing PCR-amplified gRNA sequences incorporated 
into the AmpliDrop workflow, we generated a paired-end 
library to fully cover the gRNA design cassette with the gRNA 
sequences been flanking with the fixed lengths of sequences 
in R1 and R2. We detected gRNA sequences by matching the 
designed flanking sequences to the sequences showing in R1 
and R2, with maximum of 3 hamming mismatches on each 
flanking side. We then counted any gRNA in each cellular 
barcode and filtered out the background noise with the gRNA 
less than 200 reads support or 2% of all detected gRNAs. The 
final gRNA counting table includes the detected gRNA 
sequence, the read supports, the percentage of this gRNA 
reads in all gRNA reads detected in the giving cell, and the 
unmerged and merged barcode sequences. 
 
Data analysis of CITE-seq DNA sequences  
Antibody-conjugated probes were detected in the fastq files 
that contained cDNA reads. Briefly, we removed and saved 
the reads with their barcode information from fastq files if 
their sequences included any designed antibody-conjugated 
probe with exactly matching. We processed those fastq files 
without antibody probe reads with our pipeline so that the 
barcodes were appropriately merged and called cells. For 
each cellular barcode, we then counted the read numbers 
for each designed antibody probe from the file we saved as 
described above. 
 
Data analysis of AmpliDrop bacterial mock cell mixtures 
We created the paired-end libraries for AmpliDrop bacterial 
mock cell mixtures. After demultiplexing, we mapped the 
paired-end reads with their barcode information to the 
reference genomes we used with bwa mem (0.7.17-r1188). 
We then parsed the bam files so that we could count the 
reads mapped the bacteria species within the giving barcode, 
and sorted based on the barcode ranks for all mapped reads. 
We plotted mapped reads with ranks, and we roughly 
considered the point that caused plot starting quickly 
dropping as the cell/non-cell boundary. 
 
Data processing for fastq subsampling  
The deeply sequenced library from Jurkat cells was 
subsampled to 75%, 50%, 25%, 12.5%, 6.25%, 3.125%, 
1.5625%, 0.7812%, 0.3906%, 0.1953%, and 0.0977%, 
respectively by randomly selecting reads from the original 
fastq file set. 
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Generation of gene body percentile plots 
We generated gene body percentage plots by sending the 
de-dupped bam files to the public tool of RSeQC (5.0.2) with 
the appropriate annotation (in .bed) file. 
 
AmpliDrop 3’ scRNA-seq data analysis 
Sequencing data was processed using the AmpliDrop analysis 
software v1.0. Briefly, the software converts bcl sequencing 
files into fasq files using the Illumina tool bcl2fastq 
v2.20.0.422. Next, 8-nucleotide Illumina indexes (in I1) and 6-
nucleotide AmpliDrop indexes (in I2) were error corrected for 
demultiplexing and separating reads for every library. RNA 
reads (R2) were trimmed with the adapter and poly-A 
sequences at the 3’ in the read using cutadapt v2.5. The bam 
contains the alignments with the paired end reads and 
contain the customized bam tag of the barcode for the 
aligned read. Reads were then aligned to the reference 
genome with STAR v2.7.10b in solo mode, ignoring 
mitochondria reads or those with a map score (MAPQ) lower 
than 30, and removing duplicates. Reads from merged 
barcodes were aggregated and those with identical vUMI 
were collapsed, eliminating potential PCR duplicates from 
downstream analyses. Fastq files with merged barcodes 
were then used as input files for count matrix generation 
using either Cell Ranger v5.0.1 (10X Genomics) for 
benchmarking purposes or Kallisto-bustools (kb). The first has 
been optimized for processing data from the Chromium 
platform, providing a solution that includes barcode 
processing, read alignment (using the STAR aligner), and 
quality-control metric, as well as the generation of popular 
output files, including the count matrix file in several formats. 
It is a very user-friendly tool. The second is an open-source 
option, which is more computationally efficient and fast, with 
pseudo-aligns reads to produce a barcode, UMI, set (BUS) 
file, then converted into a cell-by-gene count matrix 77. In all 
options, we included introns to quantify genes and UMIs. 
When merging was skipped, fastq files were processed 
skipping the merging step. 
 
Cell Ranger analysis for 10X 3’ scRNA-seq data 
For the analysis of 10X 3’ scRNA-seq data, we used Cell 
Ranger v5.0.1 software (10X Genomics) following the 
developer’s instructions, selecting the option to include 
intronic reads --include-introns. 
 
AmpliDrop data integration using Seurat  
In R Studio (v2023.03.0+386), we used the Seurat packages 
v4.1.1 34 and v.5.0.1 24 for data integration. We recommend 
reading about the impact of data package selection in scRNA-
seq 78. Briefly, Seurat objects were created using the 
CreateSeuratObject() function from 
filtered_feature_bc_matrix files without applying filters other 
than min.cell = 3 and min.features = 200 to assess the quality 

of the AmpliDrop barcoding technology without 
computational aids. Moreover, in contrast to 10X technology, 
AmpliDrop is not characterized by an excess of mitochondrial 
and ribosomal signal capture and is less likely to introduce 
poor quality cells (so-called ‘dead’ cells) into the analysis, 
making this filtering much less necessary than with 10X 
technology. Next, the data was normalized with the 
NormalizeData() function using the LogNormalize method 
with a scale factor of 10,000. For PCA, we used gene 
expression variation detected with the 
FindVariableFeatures() function and the vst method, limiting 
to nfeatures = 2000. Then, the data was scaled up using the 
ScaleData() function for all.genes. We created a Seurat object 
for every sample. For integration, we used the 
FindIntegrationAnchors() and IntegrateData() functions with 
20 dimensions. For multi-dimensional reduction and 
clustering, we used the ScaleData(), RunPCA(), RunUMAP(), 
FindNeighbors(), and FindClusters() functions with npcs = 30, 
reduction = “pca”, dims = 1:20, and a resolution = 0.5. To 
identify markers, we used the FindAllMarkers() function with 
logfc.threshold = 0.25. Data visualization was based on the 
ggplot2 v.3.5.1 library using the DimPlot() function. 
Projections were exported into csv files to import them into 
Excel v.16.84 (Microsoft). 
 
Comparative analysis between AmpliDrop snATAC-seq and 
10X Genomics snATAC-seq data  
10X Genomics data was obtained from the 10X Genomics 
website https://www.10xgenomics.com/datasets/1-k-
peripheral-blood-mononuclear-cells-pbm-cs-from-a-healthy-
donor-v-1-0-1-1-standard-1-2-0  (atac_pbmc_1k_v1 dataset) 
and visualized using cellranger-atac-1.2.0 software. 
 
Generation of read density tracks  
Homer v4.11.1 tools 79 were used to generate the tracks. 
First, bam files were converted to sam files using samtools 
v1.9 using the option “-G 1024” to use only unique reads at 
pseudo-bulk level. The sam files were processed with the 
makeTagDirectory() function to create tags for every 
chromosome and with makeUCSCfile() function to create 
BedGraph files. BedGraph files were then convefrted into the 
BigWig format using the bedGraphToBigWig v4 package in 
the collection of UCSC tools. BigWig files are suitable for 
uploading into the UCSC genome browser.  
 
Droplet quantifications by imaging 
Three replicate emulsions (n = 3 experiments) were 
generated in 200 uL volumes in different days with an excess 
of DAPI-stained cells. Conditions fully replicated a standard 
AmpliDrop reaction except for the number of cells, which 
was much higher than usual to facilitate the finding of cell-
encapsulating droplets under the microscope. A total of 142 
images were taken from these emulsions using a 20x optical 
objective with 1.5x digital amplification (Keyance microscope, 
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model: BZ-X710). The pictures were taken by moving the 
sample randomly until a cell-encapsulating droplet was 
detected by the operator. The picture was opened later with 
ImageJ v1.54d software and the diameter of the cell-
encapsulating droplet was measured. A total of n = 200 cell-
encapsulating droplets were detected and measured (blue 
line in Fig. 1b). An image from a Neubauer chamber 
(hemocytometer) taken with the same settings was used as 
reference for calibration of the ImageJ software. In addition, 
a total of n = 6 images were used for diameter quantification 
of all droplets, excluding those with a diameter of 10 microns 
or smaller. We note that, in the n = 142 images containing 
cell-encapsulating droplets, no cell was detected in a droplet 
with a diameter smaller than 10 microns, and only one cell 
was detected in a droplet with a diameter between 10 and 
20 microns, while n = 199 cells were found in droplets of 20 
microns or larger. These droplets represent 98.07% of the 
aqueous phase in the emulsion. In the six images used for 
diameter quantification of all droplets, we measured n = 802 
droplets (green line in Fig. 1b). The measurements were also 
used to infer volumes (red line in Fig. 1b). We note that the 
actual measurements might not exactly represent the actual 
diameter of the droplets since the emulsions were placed in 
between two large coverslips under the microscope for 
proper focus and flattening of the solution. Nonetheless, the 
purpose of collecting these data was not to quantify the 
diameter of the droplets with precision, but to compare 
those with cell-encapsulating properties and those without 
cells, and to roughly estimate the number of droplets in an 
emulsion. 
 
Granular functional filtering (Gruffi) analysis 
In R Studio (v2023.03.0+386) within a Seurat environment 
(v5.1.0), Gruffy analysis was performed using the Gruffi 
package v.0.7.4 50 available at https://github.com/jn-
goe/gruffi. We used the same parameters used for the 
generation of Seurat objects (nPCs = 30, dimensions = 1:20, 
reduction = “umap”). GO categories from 
hsapiens_gene_ensembl: GO:0006096 # Glycolysis; 
GO:0034976 # ER-stress; and GO:0042063 # Gliogenesis, 
negative filtering. Gruffi thresholds were selected using Shiny 
with a 90% quantile and proposed thresholds. Gruffi 
annotations (stressed and nostressed) were exported 
matching cellular barcodes and used as labels in projections 
plotted in Excel v.16.84 (Microsoft) obtained from Seurat-
generated UMAP plots. 
 
Label transferring by reference mapping  
In R Studio (v2023.03.0+386) within a Seurat environment 
(v5.1.0), reference mapping was performed according to 
https://satijalab.org/seurat/articles/multimodal_reference_
mapping.html and using the reference atlas from 
https://atlas.fredhutch.org/data/nygc/multimodal/pbmc_m
ultimodal.h5seurat 34. The AmpliDrop query was uploaded as 

a filtered-feature_bc_mtrix.h5 format from aggregated 
libraries. Parse Biosciences PBMC scRNA-seq data gene 
matrix dataset was obtained as described in 
https://support.parsebiosciences.com/hc/en-
us/articles/360053078092-Seurat-Tutorial-65k-PBMCs from 
the resources.parsebiosciences.com/downloads site 
generated from a healthy donor (67,000 cells). Seurat objects 
were created with min.cells = 3 and min.features = 200, and 
SCTransform normalization. No further filtering was applied 
to fairly compare technologies without computational aid. 
The anchors were defined using the SCT normalization 
method and the spca reference.reduction argument with 50 
dimensions. MapQuery used ADT as predicted_ADT and the 
reduction model wnn.umap. Image outputs were generated 
for predicted.celltype.l1 and predicted.celltype.l2 
annotations. Outputs were generated with the DimPlot() 
function from the ggplot2 v.3.5.1 library. 
 
Manual labeling based on literature-supported gene 
markers  
Manual cell annotations were performed using literature-
searched markers and combining Seurat-defined clusters 
(generally at 0.5 resolution) accumulating most of the signal. 
When one cluster accumulated most of the expression signal 
of a marker, the cluster was labeled with the identity of the 
cells distinctively expressing the marker, based on the 
literature. When two or more clusters accumulated most of 
the expression signal of a marker, the clusters were 
combined to generate a larger cluster that was labeled with 
the identity of the cells distinctively expressing the marker, 
based on the literature. Cell line markers in mock mixtures 
were defined based on the literature or the AmpliDrop 3’ 
scRNA-seq analysis of the individual line: ESR1, GREB1, BCL2 
for MCF7 cells 80; NRXN1, ASXL3, NLGN4X, and COL11A1 for 
A2780 cells and EPHA2 for A2780cis cells 28; EREG, CD44, 
PCDH7 for HCT-116, and XIST, AKT3, CDH2 for 293T cells. 
PBMC markers were defined based on the literature: PTPRC 
for all PBMCs; CD247 for all T and NK subtypes; SLC8A1 for 
monocytes and cDCs; AFF3 for B cells and the pDC and cDC 
populations; MS4A1 for B cells; BANK1 for B intermediate 
cells; SSPN for B memory cells; COL19A1 for B naïve cells; 
JCHAIN for plasmablast; SLC4A10 for MAIT; RTKN2 for Treg 
cells; VCAN for CD14 classical monocytes; TCF7L2 for CD16 
non-classical monocytes; NEGR1 for cDCm pDC, and HSPC 
populations; CLNK for cDC1; NKAIN2 for HSPC; UGCG for 
pDC; RBMS3 for pDC and Treg cells; LDB2 and NCAM1 for 
NK_CD56bright cells; GNLY for NK cells; CCL5 for CD8 TCM 
and proliferating NK cells; IL7R for CD8 TCM and others; 
TSHZ2 for CD4 TCM and dividing, naïve, and dnT subtypes; 
MKI67 for dividing populations of any type. Organoid 
markers included: DCX and INA for neuronal cells; STMN2 for 
differentiated neurons; MEIS2 for telencephalon cells; RSPO2 
for diencephalon cells; LHX1 and LHX5 for non-telencephalon 
cells; VIM for non-neuronal cells; NEUROD2 and BCL11B for 
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glutamatergic neurons (telencephalon); EOMES for 
glutamatergic IPCs; HES6 for IPCs; DLX6-AS1 and GAD2 for 
GABAergic interneurons; ERBB4 for migrating GABAergic 
interneurons; NEFL for early neurons; RELN for Cajal Retzius 
neurons; ROBO1 for some GABAergic subtype; SOX2 for 
progenitors; MKI67 for dividing cells; EGFR for Pre-OPC; 
TTYH1, SFRP1, and GLI3 for RG; THSD4 for late RG; IGFBP5 for 
ependymal and other ventricular cells; TTC6 for ependymal 
cells; TTR and HTR2C for choroid plexus subtypes; PCDH15 
for oligodendrocytic lineage; GFAP for astrocytic lineage; and 
CLU and BCAN for astroglia.  
 
Gene expression analysis using the Single Cell Portal (Broad 
Institute) 
To generate dot plots with gene expression values from 23-
days, 1-month, 2-month, 3-month, and 6-month cortical 
organoids 51, we used the Cortical Organoids Atlas in the 
Single Cell Portal maintained by the Broad Institute available 
at 
https://singlecell.broadinstitute.org/single_cell/study/SCP17
56/cortical-organoids-atlas. The genes included in the figures 
were all added to the search function in the Portal and the 
tab for Dot plot was used for visualization with default 
settings, without additional filtering. The Clustering option 
was changed to visualize the scRNA-seq data for each cell 
culturing time point using CellType for Annotation.  
 
Pseudo-bulk differential gene expression 
In R Studio (v2023.03.0+386) within a Seurat environment 
(v5.1.0), differential gene expression was generated using the 
DESeq2 package (v.1.42.1) and a pseudo-bulk approach, 
which has been reported as more robust than single-cell-
based approaches 81. The following labels were added to the 
Seurat object using the AddMetaData() function: AmpliDrop 
3’ scRNA-seq libraries R1 and R2 and 10X 3’ scRNA-seq 
libraries R1 and R2, and processed using pseudo-bulk signal 

with the AggregateExpression() using the labels to compare 
AmpliDrop R1+R2 and 10X R1+R2 based on counts$RNA. 
Filters: rowSums(counts(dds)) >=10. Results were exported 
into csv file and imported for plotting using the 
EnhancedVolcano package (v.1.20.0), being color-coded in 
red and grey using pCutoff = 10e-32 and FCcutoff = |2|. 
 
DAVID GO analysis 
Gene ontology (GO) analysis was performed using DAVID 
tools available at https://david.ncifcrf.gov/tools.jsp and 
supported by the DAVID Bioinformatics Team (LHRI/ADRD at 
Frederick National Laboratory) and funded by the National 
cancer Institute. Gene symbols were obtained from the csv 
output of the differential gene expression analysis comparing 
10X and AmpliDrop libraries after sorting the data by padj 
and log2FoldChange to identify the genes with pCutoff < 10e-
32 and FCcutoff > |2.0|, which were pasted separately (from 
the AmpliDrop and 10X lists) into the Enter Gene List 
window. The identifier selected was 
OFFICIAL_GENE_SYMBOL, the species selected was Homo 
Sapiens, and the list type selected was Gene List. The DAVID 
tool used was the Functional Annotation Tool and the 
Functional Annotation Chart using only symbols assigned to 
Homo sapiens. Results were then exported as a csv file and 
processed with Excel v.16.84 (Microsoft) by sorting the 
results by Category and FDR. The top twenty terms with the 
lowest FDR were selected within the GOTERM categories 
(GOTERM_MF_DIRECT, GOTERM_CC_DIRECT, and 
GOTERM_BP_DIRECT). The selected terms were plotted with 
Excel. 
 
Figures preparation  
The figures were generated with PowerPoint v16.84.1 
(Microsoft) and the art was created using Biorender.com 
licensed to I.G.B.
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