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ABSTRACT

Recent advances in barcoding technologies have significantly enhanced the scalability of single-cell genomic
experiments. However, large-scale experiments are still rare due to high costs, complex logistics, and labor-
intensive procedures. To facilitate the routine application of the largest scalability, it is critical to simplify the
production and use of barcoding reagents. Here, we introduce AmpliDrop, a technology that initiates the
barcoding process using a pool of inexpensive single-copy barcodes and integrates barcode multiplicity
generation with tagging of cellular content into a single reaction driven by DNA polymerase during library
preparation. The barcoding reactions are compartmentalized using an electronic pipette or a robotic or
standalone liquid handling system. These innovations eliminate the need for barcoded beads and complex
combinatorial indexing workflows and provide flexibility for a wide range of scales and tube formats, as well as
compatibility with automation. We show that AmpliDrop is capable of capturing transcriptomes and chromatin
accessibility, and it can also be adapted for user-customized applications, including antibody-based protein
detection, bacterial or viral DNA detection, and CRISPR perturbations without dual guide RNA-expression
vectors. We validated AmpliDrop by investigating the influence of short-term static culturing on cell
composition in human forebrain organoids, revealing metabolic reprogramming in lineage progenitors.

INTRODUCTION tagging the transcriptomic content from each cell with a

distinct library index in every microwell 22, These methods

Cataloging the vast diversity of cell identities and states in the
human body and model organisms is a paramount scientific
endeavor, foundational for understanding development,
homeostasis, aging, and disease ®. A variety of single-cell
genomic approaches, including single-cell RNA sequencing
(scRNA-seq), have recently made this pursuit achievable,
marking a new era in basic research with the promise to soon
extend this unprecedented depth of high-content phenotypic
characterization into translational and clinical applications .
Over the past decade, the landscape of scRNA-seq
technological innovation has rapidly evolved, and the many
options currently available can be classified into three groups
based on the underlying barcoding principle.

The first group applies bulk-like RNA-seq strategies to
individually sorted cells in microwells (microliter-scale spaces),
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process cells one by one, which largely limits scalability to no
more than a few hundreds of cells in an experiment due to
complex logistics and high costs. Still, these methods provide
the highest sensitivity (gene capture) 22,

The second group achieves significantly higher scalability
at a lower cost per cell by attaching millions of copies of a
unigue molecular identifier—a barcode—to a micron-sized
bead and pairing beads with cells in thousands of nanoliter-
scale spaces %, These microscopic spaces can be created
using water-in-oil droplets in an emulsion using a microfluidics
instrument or an adapted vortexer in a templated
emulsification; nanowells on multiwell plates; or a hydrogel,
which exploits long polymers to limit diffusion in a tube
without using physical barriers to separate the cells %,
Notably, all bead-based methods, except for 5’ versions, rely
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on reverse transcriptase as the barcoding enzyme, adding
barcodes by priming the synthesis of first-strand cDNA with a
bead-attached barcoded oligo-dT oligomer 2%,

The third group of scRNA-seq methods further decreases
costs per cell and can scale up to a million cells by exploiting
the cells themselves as the compartmentalized spaces for the
barcoding reactions 2. In these methods, cells are fixed and
permeabilized and undergo three to four rounds of splitting
and pooling on a 96-well plate, with ligase used as the
barcoding enzyme, joining a well-specific index to first-strand
cDNA in each split round %% This process of combinatorial
indexing randomizes the indexing at the cell level by providing
a unigue concatenation of three to four indexes to the
transcriptomic content of each cell 2%, For scaling to a million
cells, combinatorial indexing on a 96-well plate is more user-
friendly than preparing an equivalent number of libraries using
a typical bead-based method. However, combinatorial
indexing can be tedious when processing multiple sets of a
million cells, and it can become impractical or less cost-
effective when processing only a few thousand cells.

Overall, there are three major deterrents to the
popularization of large-scale scRNA-seq, aside from significant
data analysis challenges 2% workflow complexity;
inconvenient logistics; and, most importantly, high costs, since
the limited gains in cost efficiency per cell can be offset by the
opportunity to process more cells—Jevons Paradox.

Here, we report AmpliDrop, an innovative yet simple
barcoding technology that skips the need for a combinatorial
indexing scheme to achieve the largest scalability at a low cost
per cell and the need for beads to introduce barcode
multiplicity within a droplet. To achieve this, AmpliDrop
introduces thermostable DNA polymerase as the third
barcoding enzyme in single-cell experiments, enabling the
generation of barcode multiplicity from a pool with millions of
unique single-molecule barcodes during, rather than before,
library preparation, unlike previous methods. Additionally,
AmpliDrop offers flexibility through the use of a conventional
electronic pipette or a typical robotic or standalone liquid
handling system for the compartmentalization of the barcode
multiplicity and barcoding reactions. These adaptations
reduce the cost of barcodes to a negligible amount (a few
cents per library), bring the cost of the barcoding reaction
down to that of a PCR reaction, and allow flexibility for a broad
range of reaction sizes—from a single library in a PCR tube to
96 independent libraries on a multiwell plate, with total
throughputs spanning from a thousand to up to five million
cells if the reactions are fully loaded, respectively.

RESULTS
Technology overview
The key elements of AmpliDrop applied to a 3’ scRNA-seq

protocol are summarized in Extended Data Fig. 1a. The initial
steps involve preparing the cells for subsequent in-cell

Garcia-Bassets, Mo, and Xia et al. 2024 (pre-print)

enzymatic reactions. This preparation includes mild fixation to
anchor RNA within cells and cell membrane permeabilization
to allow reagent entry during the in-cell reactions.

The first in-cell reaction is reverse transcription (RT),
where cells are incubated with reserve transcriptase and
bead-free oligo-dT oligomers to synthesize first-strand cDNA
(Fig. 1a, RT Step). The second in-cell reaction is RNA:cDNA
tagmentation, where cells are incubated with Tn5
transposomes to fragment RNA:cDNA hybrids and introduce
barcoding  (BC'ing)-compatible sequences into the
fragmented cDNA ends (Fig. 1a, Tagmentation). At this stage,
cDNA-transposed cells are ready for encapsulation, lysis, and
barcoding (Extended Data Fig. 1b, Part 1, Bulk Reactions).

Next, a user-determined number of cDNA-transposed
cells is encapsulated within droplets alongside PCR and
barcoding reagents. These reagents include a pool of millions
of unique single-copy barcodes, universal primers for their
amplification, and a thermostable DNA polymerase.
Encapsulation is achieved by mixing the cells and PCR and
barcoding reagents with an emulsifying solution, using an
electronic pipette or a robotic or standalone liquid handling
system (for the largest scales). This process generates a highly
thermostable emulsion (Extended Fig. 1b, Part 2, Single-Cell
Reactions). The emulsion is then transferred to a
thermocycler, where each encapsulated single-copy barcode
is clonally amplified while the cells are lysed, releasing their
transcriptomic content within the droplets (Fig. 1a, Barcode
Amplification). In the same reaction, the already amplified
barcodes are incorporated into cDNA by overlap extension,
relying on the DNA polymerase again and the BC'ing-
compatible sequences introduced by design at the 3’ end of
the amplified barcodes and by random tagmentation at the 5’
end of cDNA (Fig. 1a, Overlap Extension).

The workflow ends with steps of droplet dissolution,
barcoded cDNA pooling, and library indexing and amplification
from the 5’ barcode side and the 3’ oligo-dT side, resultingin a
3’ scRNA-seq library (Fig. 1a, Library Amplification and Library
Sequencing, and Extended Data Fig. 1b, Part 3, Library
Preparation).

Technology validation
To successfully work, AmpliDrop must minimize collisions—
i.e., encapsulating two or more cells within the same droplet.
We have optimized the mixing conditions to generate more
than 800,000 cell-encapsulating-ready droplets in a 200 uL
emulsion (Fig. 1b), which ensures at least 60 droplets per cell
with loads lower than 15,000 cells (a high droplet-to-cell ratio).
To evaluate and validate these conditions, we performed
a barnyard experiment using human 293T and mouse NIH3T3
cells pre-mixed at a 1:1 ratio. In a PCR-tube strip, using an 8-
channel electronic pipette, we simultaneously prepared five
libraries with inputs of 1,250, 3,120, 6,250, 12,500, and 15,600
cells. After sequencing, we recovered 75.28+1.19% of the
cells (932, 2,362, 4,624, 9,355, and 10,916), largely preserving
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Fig. 1. AmpliDrop barcoding applied to a 3’ scRNA-seq workflow. a, AmpliDrop library construction: lllumina Read 1 (R1) captures
cDNA, lllumina Index 1 read (11) captures the library index, and lllumina 12 read captures the cellular barcode. (Drawing) A unique single-
molecule barcode is clonally amplified—i.e., within the droplet—and used to tag cDNA by overlap extension. b, ImageJ-based droplet
number distribution in a 200 uL emulsion according to size, excluding n < 10 microns droplets (green line, left y-axis) and their estimated
volume (red line, right y-axis) with data split in 10-micron bins (n = 6 microscopy images, n = 802 droplets). Included also, distribution
of cell-containing droplets of any size (blue line, left y-axis; n = 142 microscopy images, n = 200 droplets). (Inset) Representative
microscopy image depicting six droplets, including an estimated 54-micron droplet containing a DAPI-stained nucleus (arrowhead).
Scale bar: 50 microns. Extrapolating the quantifications to the full emulsion, we estimated the generation of n = 804,548 droplets with
a diameter larger than 20 microns, which should represent 99.5% of all the droplet-encapsulated cells and 98.07% of the total aqueous
solution. ¢, Histogram shows human 293T and mouse NIH3T3 cell counts in five 200 ulL emulsions (n = 5 libraries) pre and post
encapsulation, pre-mixed at a 1:1 ratio. Pre-encapsulation counts (inputs) were estimated using the automated Countess Cell Counter
(grey bars, same number for both species). Post-encapsulation counts (outputs) were estimated from the sequencing data according to
read mapping behaviors (human in blue; mouse in red): 932, 2,362, 4,624, 9,355, and 10,916 cells. d, Scatter plot of transcript counts
(x-axis) and gene counts (y-axis) by species in the 9,355-cell library (sequencing depth, n = 10,240 mean reads per cell). e-f, Scatter plots
of transcript counts by species (human in x-axis and mouse in y-axis) in the 9,355-cell library with a 200 uL emulsion (in e) and the 6,542-
cell library with a 1 mL emulsion (in f) (sequencing depth, n = 14,566 mean reads per cell). Cells color-coded by read mapping behavior
(those separated from the axes were considered as human-mouse cell collisions in green). (tSNE plots) t-SNE plot insets in the scatter
plots show color-coded cells by species based on gene expression. t-SNE plots on the right show expression levels (log2 scale) for the
indicated genes (in e). Human-mouse cell collisions were inferred by their separate clustering behavior. g, (Top) Proof-of-concept 96
parallel 200 uL AmpliDrop reactions using 293T and NIH3T3 cells, pre-mixed at a 1:0.1 ratio, and encapsulated using a 96-multi-channel
head (n = 81,645 cells, sequencing depth, n = 6,190 mean reads per cell). Cell identities and human-mouse cell collisions were color-
coded based on human-mouse read behaviors. (Bottom) Expression levels for representative genes (log2 scale). h, AmpliDrop 3’ scRNA-
seq analysis of 72 libraries and almost six hundred thousand cells. Cells were dissociated from a variety of human forebrain organoids
(see Methods). Large UMAP plot shows data projected from 50,000 sketched cells (Seurat v5). Small plots show count densities for the
indicated genes. Cell annotations typically associated with the indicated genes have also been included.
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the 1:1 parity between species (Fig. 1c). Plots depicting ranked
barcodes show a profile with the expected sudden drop in
transcriptomic content, suggesting cell integrity with a high
signal-to-noise ratio, or a robust cell-to-non-cell separation
(Extended Data Fig. 2a). Most reads in the libraries,
83.3215.07%, belong to cells, primarily mapping to the
human or mouse genomes and transcriptomes at
84.78+0.15% and 74.22+0.31%, respectively. Moreover,
using the 9,355-cell library as an example, we confirmed
similar relationships between species in an analysis of gene
capture by sequencing depth (Fig. 1d and Extended Data Fig.
2b). We also observed the anticipated segregation by species
in a t-distributed stochastic neighbor embedding (t-SNE) plot
(Fig. 1e, inset).

Regarding collisions, as expected, the fraction of
estimated droplets with a mouse and human cell peaked with
the largest outputs: 2.9% and 4.1%, equivalent to 5.8% and
8.2% collision rates, for the 9,355- and 10,916-cell libraries,
respectively (Fig. 1e, 9,355-cell analysis). Importantly, these
rates can be reduced without changing throughput by
increasing the volume of the emulsion. In a 1 mL emulsion, for
example, the inferred human-mouse cell collisions can be as
low as 0.29% with an output of 6,542 mixed cells (Fig. 1f).
Notably, the cost difference in PCR reagents between a 200 pL
and 1 mL emulsion is less than $10, while the cell capacity is
increased fivefold without changing the properties of the
emulsion (i.e., same droplet-to-cell ratio and same droplet-to-
barcode ratio). Throughput can also be increased by mixing
multiple emulsions in parallel. For instance, mixing eight 200
pL emulsions in an 8-tube PCR strip using an 8-channel
electronic pipette has a combined capacity for up to 80,000
cells: 8x10,000-cell emulsions. Likewise, simultaneously
mixing ninety-six 200 uL emulsions using a 96-channel head
on a 96-well plate has a combined capacity for close to a
million cells: 96x10,000-cell emulsion (Fig. 1g,h and Extended
Data Fig. 2c,d). Throughput can be further increased by
simultaneously mixing ninety-six 1 mLemulsions in a 96-deep-
well plate, with a combined capacity to process close to 5
million cells while still preserving the same encapsulating and
barcoding properties as in a single 200 pL or 1 mL emulsion in
96 wells (Extended Data Fig. 2e). Data from many libraries can
be then combined for an integrated analysis of a large number
of cells (e.g., Fig. 1h and Extended Data Fig. 3 show an analysis
of 577,743 cells from 72 libraries).

Inferring multi-barcoded cells

A challenge with encapsulation by pipette-mixing is achieving
a one-to-one barcode-to-cell ratio. This requires using a low
barcode-to-droplet ratio, which comes with the tradeoff of
generating a high number of cell dropouts—droplets
containing cells without a barcode. For example, according to
a Poisson distribution %, a barcode-to-droplet ratio of 0.01
should result in less than 1% multi-barcoded droplets but over
99% cell dropouts (Extended Data Fig. 4a).
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To keep cell dropouts below 10%, we developed
conditions that achieve an average barcode-to-droplet ratio of
approximately three and created tools to computationally
reconstruct multi-barcoded instances from the sequencing
data (Extended Data Fig. 43, line 3). In the aforementioned
barnyard experiment with outputs of 932, 2,362, 4,624, 9,355,
and 10,916 cells (Fig. 1c), these conditions resulted in an
average barcode-to-droplet ratio of 3.22+0.32, with an
estimate of 70% multi-barcoded cells and only 30% of cells
with a single barcode (Extended Data Fig. 4b).

Reconstructing multi-barcoded cells requires an
algorithm to match the transcriptomic partitions derived from
the same cell based on read similarities. However, this process
is challenging due to the sparsity of the scRNA-seq data and
the expected abundance of cells with a similar transcriptome
in any given cell mixture. To address these two issues, we
leverage two features generating similarities among same-cell
partitions.

The first feature is the diversity of 5’ ends generated by
random Tn5 transpositions across the pool of cDNA molecules
during in-cell tagmentation. We have termed the sequences
at the transposition sites as ‘virtual unique molecular
identifiers’ or vUMIs (Fig. 1a, tagmentation). The second
feature is the possibility to generate some copies of the cDNA
pool prior to barcoding. These copies can be generated by
adding low amounts of poly-dT and BCing-compatible
primers to the mix of PCR and barcoding reagents before
encapsulation. Different copies of the same cDNA molecule
(i.e., identical vUMI) can be then captured by the different
barcodes within the same droplet. At a droplet scale, this
should result in a distinctive vUMI pattern that could be used
as a proxy of droplet origin. Notably, comparing vUMI and real
UMI counts in pseudo-bulk analyses of the same data (the real
UMIs were introduced in the oligo-dT primers) reveal a high
correlation between both, thus suggesting that amplifying
cDNA before barcoding does not generate obvious biases
(Extended Data Fig. 4c).

To infer multi-barcoded cells, we have adapted an
algorithm developed to identify multi-barcoded cells in
ScATAC-seq experiments %%, combining the reads from the
barcodes that may capture transcriptomic signal from the
same cell, while collapsing those reads with identical vUMI to
eliminate potential pre-barcoding PCR duplicates from
downstream analyses. We refer to the process of inferring a
cell as ‘barcode merging’. The results, as shown in Figure 1,
suggest the accuracy of the merging process. For example, the
percentage of inferred human-mouse cell collisions remain
relatively consistent pre- and post-merging: 4.47% and 3.40%
(t-SNE-based) for the output of 9,355 cells, respectively (Fig.
le and Extended Data Fig. 4d). We note that the slight
increase in the pre-merging collision rate is likely due to the
higher probability that collisions occur in larger droplets, which
also contain a higher relative number of single-copy barcodes.
Supporting this, the estimated collision rate in the 9,355-cell


https://doi.org/10.1101/2024.08.13.607508
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.08.13.607508; this version posted August 13, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC-ND 4.0 International license.

MCF7 (breast cancer) i
A2780 (ovarian cancer) Observed gjlséAmf iDrop) b Cisplatin-sensitive, A2780 @ Cisplatin-resistant, A2780cis
293T (kidney) N AT ((E:érdg%%g) A2780:A2780cis collisions
® HCT-116 (colon cancer) \\ | / / Coll Barcodes
7,891 cells 100% n=5,887 n=31,719
Inferred Inferred
o 90% o 3,088 o 16,672
o
% 50% = ® 2,583 = ® 13,700
3 K 216 E 1347
t-SNE 1 t-SNE 1
fffff ]
0% {80% .
UMAP 1
C RS foatenc . Ero, Smoi. o, smmo
% WA pogul ohe gRNA counts in cell (log10)
©® gRNA-positive cells Cells Barcodes
n=6,149 n = 33,488
=) l et Ea | abel Label
i | 8 o o e3280 o 18,639
"X 2x 3x B z Woe289 2 o 14,849
RNA sequences £ - 2
g erggl? 2 t-SNE 1 t-SNE 1
100% s 1. -
@D il e
ot s
50% i 1)
| ® gRNA-negative cells o0 B oo s “
0%
d Ground truth  Subsampled data, color-coded by similarity g Within @ Outside o Shifting between
(all reads) in cell estimates to ground truth: ™ 90%range ~ 90%range ~ within and outside range
5k — 1m0 1e6 11.5k o 88%
£ 8 . /97,340 = e = o5 < Transcripts | 8
g u g 3939 S *\4\3\\ 0 Genes S v
8 « § 01 B 1e3 -c":
3 3 43 | 5 o
® 2’ P 2 1e2 = 80%
£ 7| 00000es’ 3 £ e <
= L oo N
qu 1k OO0 TV S - L% 76%
TR0 1% [100% 1 RO (1000 N 1

[100% A
Read subsampling Read subsampling Ranked (merged) barcodes Read subsampling

Read subsampling

Fig. 2. Reconstruction of multi-barcoded cell identities. a, (Left) UMAP plot of AmpliDrop 3’ scRNA-seq data based on human breast
cancer MCF-7, ovarian cancer A2780, kidney 293T, and colorectal cancer HCT-116 cells, pre-mixed at a ratio of 10,000:500:150:50 (total,
n =7,891 cells; sequencing depth, n = 14,090 mean reads per cell). (Insets) Zoomed in images of the two smallest clusters. (Right) Stacked
histograms show estimated cell proportions by predicted cell identity and output of cells. Cell identities were inferred based on markers
validated in single-line experiments. A zoomed in version (scale: 80%-100%) is included for a better visualization. Stacked bars from
Countess-based inputs (“ground truth”) have also been included. b, AmpliDrop 3’ scRNA-seq analysis (UMAP plots) based on drug-
sensitive A2780 and drug-tolerant A2780cis cells, pre-mixed at a 1:1 ratio (top panels; n = 5,887 cells; sequencing depth, n = 12,542) and
in silico mixed cells from independent A2780 and A2780cis libraries (bottom panels; n = 6,149 cells; sequencing depth, n = 11,608 mean
reads per cell). In the pre-mixed sample (top panels), cell identities and A2780/A2780cis cell collisions (color-coded in grey) were inferred
with markers from the in-silico mix (shown in the bottom panels). Left panels show plots with merged barcodes and right panels show
plots with unmerged barcodes. ¢, (Left) Histograms of multimodal AmpliDrop 3’ and gRNA scRNA-seq data based on the gRNA-
transduced K562 line (CRISPRi) show cell counts by the frequency of the gRNA sequence across the cell population (between one and
three, top graph) or by the number of gRNA sequences per cell (between one and three, bottom graph). (Right) Scatter plots show cells
by their amounts of gRNA counts (x-axis) and transcriptomic counts (y-axis), color-coded by the presence (blue) or absence (grey) of a
high-confident gRNA sequence (left) or combined (right). Total, n= 1,340 gRNA-positive cells. Sequencing depth, n = 9,847 mean reads
per cell (transcriptomic library) and 19,680,862 reads (gRNA library). d, AmpliDrop 3’ scRNA-seq analysis of Jurkat cells (n = 1,770) at
high and subsampled sequencing depths (n = 97,340 mean reads per cell or ‘ground truth’, gradually subsampled to less than 0.1%).
Panels (Left to right): cell counts, mean reads per cell, ranked barcodes by transcript counts, gene (circles) and transcript (diamonds)
counts, and fraction of reads on cells. Results color-coded by similarity in cell-count estimates to ground truth, as follows: ground truth
in purple, within 90% range in green, outside the 90% range in red, and transiting between within and outside range in yellow.

experiment is more than threefold higher in droplets with
multiplicity of seven or more barcodes compared to those
droplets with a barcode multiplicity of six or less.

Other results in Figure 1 further support the accuracy of
the barcode merging process. Specifically, the estimates of cell

recoveries fall within the range observed with microfluid-
based methods and largely preserve the 1:1 ratio between
species (Fig. 1c). Additionally, collisions show high sensitivity to
the volume of the emulsion, as expected from an accurate
merging process (Fig. 1c,f). Despite these observations, we

Garcia-Bassets, Mo, and Xia et al. 2024 (pre-print) 5


https://doi.org/10.1101/2024.08.13.607508
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.08.13.607508; this version posted August 13, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

aimed to further validate the precision of the merging process
by testing it with more challenging sample types.

First, we mixed four cell lines from the same species,
human MCF-7, A2780, 293T, and HCT-116 cells, at ratios of
10,000:500:150:50, respectively, and compared the
estimated and expected cell recoveries for four different
outputs: 972, 2,539, 4,624, and 7,891 cells. Data visualization
using uniform manifold approximation and projection
(UMAP) revealed the expected four clusters in each case,
which were annotated based on cell-line-specific markers
identified in single-line libraries (Fig. 2a, plot, and Extended Fig.
4e). In support of accurate merging, the proportions of cells in
each cluster largely matched the expected ratios across
libraries, including for the cell line present at the lowest
abundance (Fig. 2a, staggered plot).

Second, we mixed two cell cultures of the same human
cell line in two distinct cell states: one culture (A2780 cells)
exhibiting high sensitivity to the anti-cancer drug cisplatin, and
the other culture representing a drug-tolerant subpopulation
(A2780cis cells), generated after repeated exposure and
recovery from the drug 2. UMAP visualization shows clear
segregation of the two cell states, based on expected markers
2 and nearly identical cell proportions pre- and post-merging:
43.88% and 43.19% for A2780, and 52.45% and 52.56% for
A2780cis, respectively (Fig. 2b). The estimated collisions rates
were also similar, 4.28% and 3.67%, with the pre-merging ratio
slightly higher than post-merging ratio, as is also observed in
the barnyard experiment (Fig. 1e and Extended Data Fig. 4d).

Third, we assessed the accuracy of the merging process
using a culture of lymphoblast K562 cells transduced with a
library of 12,318-guide (g)RNAs at a multiplicity of infection
(MOI) lower than 0.1 to limit the number of cells with more
than one gRNA sequence. These sequences were inserted into
the genome and used as an orthogonal molecular identifier
(see Methods). During cell encapsulation, we included BC'ing-
compatible primers against the gRNA flanking regions in the
lentiviral construct. Thus, in every inferred multi-barcoded cell,
all barcodes should capture the same amplified gRNA
sequence if the merging process were accurate, since gRNA
reads are excluded from the merging process.

As expected, data analysis reveal that most gRNA
sequences can be found only once across the full set of
inferred cells due to the high complexity of the gRNA library
(Fig. 2¢, left top panel). Also as expected, most inferred gRNA-
positive cells contain only one high-confident gRNA sequence
(Fig. 2c, left bottom panel). As an aside, we note that
incorporating a gRNA readout into the AmpliDrop workflow
did not impact the efficiency of the transcriptomic capture
(Fig. 2c, scatter plots). About the accuracy of the merging
process, we focused on the 3,159 barcodes assigned to the
1,838 inferred multi-barcoded cells with gRNA counts above
the lowest 10 percentile, avoiding ambiguities associated
with low gRNA detection. Remarkably, all but one of the 3,159
barcodes (0.032%) were correctly assigned to a multi-
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barcoded cell where all barcodes capture the same gRNA
sequence, representing 858 cells out of the total of 859 that
were inferred. According to this estimate, only one out of 859
multi-barcoded cells would be incorrectly merged (0.116%
error rate), which is lower than the estimated collision rate for
a sample with a similar cell number. We note that the other
barcode incorrectly merged in the same multi-barcoded cell
was missed due to insufficient gRNA counts (below the 10
percentile, further in support of its incorrect merging.

Finally, we evaluated the robustness of the merging
process across a broad range of sequencing depths using a
deeply sequenced AmpliDrop library prepared from Jurkat
cells (1,770 cells; 97,340 mean reads per cell). We iteratively
subsampled the reads from a 100% to as low as 0.0977% and
subsequently merged the data on each subsampled dataset.
The cell estimates, which serve as a proxy for correct merging,
remained largely consistent until the average reads per cell
dropped to 1,400, a point significantly lower than the typical
sequencing depth reported in the scRNA-seq literature (Fig.
2d).

Together, these results support the robustness of our
barcode merging strategy in inferring multi-barcoded cells,
even with shallow sequencing depths and homogenous cell
mixtures.

Technology benchmark
To benchmark AmpliDrop, we compared AmpliDrop and 10X
Genomics v3.1 technologies using a dissociated sample of 7-
month-old neural organoids. To grow these organoids, we
followed a semi-guided protocol known for introducing rich
diversity of cell identities and transitioning cell states 2%,
recapitulating early developmental stages of the human brain
cortex 231, We dissociated the organoids and split the cells
into two aliquots, each processed with AmpliDrop and 10X 3’
scRNA-seq technologies. After sequencing the four libraries in
the same lane of a flow cell, we downsampled the data to
standardize the average number of reads per cell to 35,443
and the number of cells to 7,000. Following data integration,
we annotated fifteen cell type or states based on well-known
brain cell markers (Fig. 3a and Extended Data Fig. 5a).
Comparative analysis of cell identities and cell proportions
shows high consistency between replicates and technologies
across libraries. For instance (Fig. 3b), we detected virtually
identical number of radial glia (RG) cells in the four libraries:
1,107-1,024 (10X) and 1,052-1,196 (AmpliDrop). Similar
consistency was observed with replicative progenitors (514-
572 and 542-585), mitotic progenitors (268-271 and 249-267),
non-telencephalon neurons (168-160 and 168-153), and the
small population of ependymal cells (67-58 and 53-56 cells).
Some inconsistencies were observed between replicates in
the smallest cell populations; however, these were not more
prevalent in one technology over the other. This variability can
partly be attributed to the challenge of capturing the diversity
of arich cellular mix in every subset of 7,000 cells. For example,
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Fig. 3. AmpliDrop 3’ scRNA-seq benchmarking. a, Comparative analysis between AmpliDrop and 10X Genomics v3.1 3’ scRNA-seq
methods (two replicates each) using the same pool of dissociated human brain cells from 7-month-old cortical organoids. (Left) UMAP
plots show integrated data from the four libraries standardized at n = 7,000 cells and n = 35,443 mean reads per cell (total, n = 28,000
cells) with data split by replicate and technology. Manual annotation based on well-established markers. (Right) UMAP plots of
independently processed AmpliDrop (top) and 10X Genomics (bottom) data with annotations transferred from the full integration on
the left. b, Cell count estimates color-coded by technical replicate and technology from the data shown in a. The arrows highlight
consistent differences between technologies. ¢, UMAP plot of integrated PBMC AmpliDrop 3’ scRNA-seq data based on n = 47,855 cells
(sequencing depth, n = 14,280 mean reads per cell). d, (Left panel) Comparative analysis of PBMC AmpliDrop 3’ scRNA-seq results based
on n = 8 tests (total, n = 13,171 cells; sequencing depth, n = 8,571 mean reads per cell) to assess the technology robustness using a
difficult sample type (outputs ranging between n = 869 and n = 3,014 cells): fresh versus cryopreserved, different operators, technical
replicates, and different blood draws. (Top right) Stacked histograms show cell proportions by condition. (Bottom right) Scatter plots
show gene-by-gene pseudo-bulk counts, as indicated conditions, with Pearson correlations. e, Multimodal cell-surface
immunophenotypic and transcriptomic readouts (AmpliDrop CITE-seq) using TotalSeq-C TBNK-stained PBMCs (total, n = 15,195 cells;
sequencing depth, n = 8,699 mean reads per cell). UMAP plots compare expression (log2 scale) and ADT (antigen-derived tag) counts
(top cells based on the highest counts in black). as indicated. The bottom panels represent the same data (re-integrated) but pre-barcode
merging.

while the number of NEFL-expressing neurons annotated with
AmpliDrop was relatively consistent between replicates (66-

57), the 10X replicates showed greater variation (62-100).
Conversely, the number of choroid plexus cells was more

consistent with 10X (47-49) than AmpliDrop (29-52). Two
reproducible  technology-associated  differences were
observed: a 1.68-fold enrichment in glutamatergic neurons in
the 10X libraries relative to the AmpliDrop libraries, and a 2.09-
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fold relative enrichment in GABAergic interneurons in the
AmpliDrop libraries relative to the 10X libraries (Fig. 3b,
arrows).

Taken together, this side-by-side comparative analysis
reveals that AmpliDrop and 10X methodologies capture
similar cell diversity, both in terms of cell identities and cell
proportions, with exception of two cell subtypes. Previous
studies have also reported differences in cell proportions
between single-cell technologies, suggesting that single-cell
methods do not universally capture the same relative number
of cells 3. Additionally, differential expression analysis shows
that the 10X libraries are enriched in ribosomal and metabolic
genes compared to the AmpliDrop libraries (Extended Data
Fig. 5b,c, adjusted p-value < 10e-32 and Log2FoldChange >
|2]). This finding aligns with previous reports indicating that
10X libraries disproportionally capture these gene classes
compared to intrinsically nuclear-enriched methods, such as
those based on combinatorial indexing, relying on fixed and
permeabilized cells 323, like AmpliDrop.

To characterize cell diversity in a sample with well-
established cell types, we prepared AmpliDrop libraries from
47,855 peripheral blood mononuclear cells (PBMCs), known
for their low RNA content. We identified the expected
repertoire of immune cells and cell states, including classical
and non-classical monocytes, T and natural killer (NK) cells, B
memory and naive cells, mucosal-associated invariant T
(MAIT), regulatory T cells, as well as rare cell populations,
including hematopoietic stem and progenitor cells (HSPC),
plasmacytoid dendritic cells (pDC), and plasmabilasts (Fig. 3¢
and Extended Data Fig. 6a). We next applied unsupervised
label transferring from a popular reference cell atlas to
compare the cell annotations in our dataset with those from a
publicly available experiment based on combinatorial
indexing 3. This analysis shows that AmpliDrop and
combinatorial indexing capture similar cell identities, although
comparing cell proportions in this case would not be
warranted since the PBMC samples derived from different
donors (Extended Data Fig. 6b). We note that using
combinatorial indexing to benchmark AmpliDrop is
particularly impractical due to the need to accumulate enough
number of samples to process a full 96-well plate.

To assess the robustness and reproducibility of the
AmpliDrop data, we also used PBMCs due to their well-known
fragility, comparing libraries prepared by different operators
from the same or different blood draws from the same donor,
as well as fresh versus cryopreserved cells, and performed
technical replication. After data integration in a single UMAP
plot (n = 15,151 cells), we observed the anticipated immune
cell populations (Fig. 3d, UMAP, and Extended Data Fig. 7a).
The libraries demonstrate consistency across replicates,
operators, blood preparations, and fresh versus
cryopreserved conditions (Extended Data Fig. 7b). In
additional pseudo-bulk gene-by-gene analyses, technical
replicates exhibit a correlation of r* = 0.9910, fresh versus
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cryopreserved samples exhibit a correlation of r?=0.9776, and
differences between operators exhibit a correlation of r* =
0.9875 using fresh cells and 0.9691 using cryopreserved cells
(Fig. 3d, scatter plots). Cell proportions also showed relatively
similar estimates, although we expect some variation due to
the small size of the libraries, which ranged between 869 and
3,014 cells (Fig. 3d, staggered bars).

As an alternative strategy to benchmark the accuracy of
AmpliDrop in separating cell identities, we tested the
technology for CITE-seq (cellular indexing of transcriptomes
and epitopes by sequencing) *. CITE-seq captures multimodal
readouts, allowing comparison of cell identities and clustering
behaviors using both transcriptomic and cell-surface
immunophenotypic information. We stained a batch of
PBMCs with a commercial cocktail of antibodies that react
against nine immune-cell-surface antigens: CD19, CD3, CD16,
CD4, CD11c, CD56, CD14, CD8, and CD45 (TotalSeq-C TBNK
Cocktail). Each antibody is conjugated to a polyA-attached
probe containing an identifier sequence compatible with
AmpliDrop barcoding. After sequencing, probe-associated
reads were excluded from the transcriptomic-based merging
process and the subsequent steps of cell clustering and cell
annotation (n = 19,958 cells; Extended Data Fig. 8a). Notably,
probe capturing did not appear to affect the capture of the
transcriptomic readout (Extended Data Fig. 8b). Comparing
the transcriptomic and immunophenotypic readouts (both
pre and post merging), we observed remarkably similar
results, supporting data quality and, again, a robust process of
barcode merging (Fig. 3e).

Technology versatility

The value of any single-cell barcoding technology is enhanced
with its versatility across different modalities and applications
% We have demonstrated that AmpliDrop can capture 3’
transcripts (Fig. 1), including in conjunction with genome-
integrated gRNA sequences as part of a Perturb-seq lentiviral
construct (Fig. 2c) and antibody-conjugated DNA probes (Fig.
3e). Next, we aimed to validate whether AmpliDrop could also
capture other layers of cellular information.

The strong preference of the AmpliDrop 3’ scRNA-seq
workflow to capture 3’ transcript ends results from adapter
primers annealing to the 3’ end of the TruSeg-oligo-dT
sequence during library amplification (Fig. 1a). Oligo-dT
primers generally prime RT from terminal poly-A sequencesin
MRNA, except in those cases where oligo-dT primers anneal
to intronic poly-A sequences in pre-mRNA. To more evenly
incorporate non-3’-transcriptomic regions into the library, we
added a second Tn5 activity to the tagmentation reaction,
Tn5-ME-B, using primers that anneal to the second
transposed sequence during library amplification (Fig. 4a,
scheme, library 1). When applied to Jurkat cells, double
Tn5A/B transposition increased the transcriptomic signal
across gene bodies in normalized read density meta-profiles
(Fig. 4a and Expanded Data Fig. 93, reaction 1). The signal,
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Fig. 4. AmpliDrop barcoding applied to full-length scRNA-seq, snATAC-seq, and microbial scGenome-seq. a, (Left) Scheme represents
AmpliDrop single (3°) and double (full-length) transpositions scRNA-seq strategies. (Center) Meta-profiles of AmpliDrop signal in Jurkat
cells across normalized gene bodies, matching the numbers in the scheme. TruSeq (top) and NextSeq (bottom) libraries shown. For
reference, the grey dotted line represents 10X 3’ scRNA-seq data (10k_hgmm_3p_nextgem_Chromium_X_Hu); the black dotted line
indicates the submit of the AmpliDrop 3’ scRNA-seq signal in the TruSeq library. (Right) Read density across the ACTB locus, matching
the numbers in the scheme. b,c, snATAC-seq comparative analysis with AmpliDrop PBMC data in b (total, n = 733 cells; sequencing
depth, n = 9,533 mean reads per cell) and 10X Genomics PBMC data in c (total, n = 880 cells; sequencing depth, n = 8,718 median
fragments per cell). The 10X Genomics data was previously generated and publicly available (atac_pbmc_1k_v1). Panels (clockwise): t-
SNE plots with major PBMC annotations; t-SNE plots depict chromatin accessibility at the indicated promoter regions (blue gradients)
and predicted enrichment of the indicated motifs in open chromatin regions (violet to brown gradients),; tracks of pseudo-bulk read
density by cell annotations across four representative loci, color-coded as in the t-SNE plot, and meta-profiles of snATAC-seq signal at
and around TSS (1 kb on each side). d, Microbial scGenome-seq data: ranked barcode plots of AmpliDrop data from a mix of Escherichia
coli and Staphylococcus epidermis cells with all or reference-mapped-only reads, as indicated (total estimated genome-capturing
barcodes, n = 180). e, Scatter plot of reference-mapped read counts separated by barcode (each datapoint) and color-coded by species
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based on the highest read abundance (with n = 126 Escherichia coli and n = 54 Staphylococcus epidermis barcodes). Note: Reads with 0
counts were manually added to the log-scale plot. f, Histograms show the fraction of reads mapping to the Escherichia coli (top plot)
and Staphylococcus epidermis (middle plot) genomes and the total number (bottom plot) by barcode (n = 180). Barcodes were sorted by
the number of reads mapped to the Escherichia coli genome in all panels (decreasing left to right).

however, remains partially biased towards the 3’ transcript
end, suggesting that the RT reaction does not extend to the 5’
end in most transcripts. To confirm this hypothesis, a TruSeg-
TSO primer (TruSeg-rGrGrG) was used to capture the 5
transcript end. While the 5’ end of some genes, such as ACTB,
was covered by this strategy, on a genome-wide scale, the
shape of the meta-profile remained largely unchanged, thus,
confirming anincomplete RT reaction for most transcripts (Fig.
4a and Expanded Data Fig. 9a, reaction 2). To increase the
completeness of the RT reaction, we added random hexamers
(R6) in combination with or without the TruSeg-oligo-dT
primer during the RT reaction, which facilitated the coverage
across gene bodies (Fig.4a and Expanded Data Fig. 93,
reactions 3 and 4, respectively). Together, these results reveal
that AmpliDrop can successfully add barcodes with double
Tn5A/B transpositions, enhancing coverage across transcripts
(full-length).

Using double Tn5A/B transpositions should also enable
the capture of chromatin accessibility when following a single-
nuclei (sn)ATAC-seq workflow 3”38, Notably, we observed no
evidence of open chromatin signal crossover in double
Tn5A/B-based scRNA-seq read density profiles (Fig. 4a, ACTB,
and Extended Data Fig. 9a). To capture chromatin
accessibility, therefore, we modified the library preparation,
skipping the fixation and RT steps, isolating nuclei instead of
permeabilizing cells, and amplifying and indexing the library
with Nextera primers. To validate this protocol, we prepared
four barnyard experiments based on human HCT-116 cells
and mouse embryonic stem cells (mESCs) pre-mixed at a 1:1
ratio, estimating outputs of 505, 1,407, 4,312, and 12,298
nuclei. Multiple lines of evidence support the quality of the
AmpliDrop scATAC-seq data, including (Extended Data Fig.
10): (i) a high similarity of read density profiles between
pseudo-bulk and bulk data derived from our scATAC-seq and
publicly available ATAC-seq data, respectively; (ii) similarity of
collision rate estimates between AmpliDrop scATAC-seq and
3’ scRNA-seq data; (iii) the observation of a sudden drop in the
cell-to-non-cell transition in ranked barcode plots; (iv) the
observation of a meta-profile of read density showing the
highest read accumulation upstream of the transcriptional
stat site (TSS) 3% (v) the observation of a meta-profile of
fragment size distribution that resembles a nucleosomal-like
pattern of genomic DNA fragmentation, and (vi) the complete
segregation of the human and mouse cells in t-SNE plots.

Next, to compare AmpliDrop and 10X snATAC-seq data,
we generated an AmpliDrop snATAC-seq library from 733
PBMC nuclei extracted from a cryopreserved vial and
compared its chromatin accessibility patterns and motif
enrichment with a publicly available 10X snATAC-seq
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experiment based on 880 PBMC nuclei. Both were sequenced
at a similar depth: approximately 42,500 and 40,700 average
reads per cell, respectively. This comparative analysis shows
similarities between the two methods, including comparable
segregation of cell types in t-SNE plots, similar chromatin
accessibility and motif enrichment across the promoters of
immune cell markers, consistent read density accumulation
upstream of TSS, and similar fragment size distribution with a
nucleosomal-like pattern, among other key performance
features (Fig. 4b,c and Extended Data Fig. 11).

We also applied double Tn5A/B transpositions to capture
other sources of genomic information. In particular, the
application of single-cell technology to microbial cell mixtures
represents a promising advance in single-cell genomics “*,
To interrogate the capture of microbial genomes with the
AmpliDrop barcoding method—termed microbial scGenome-
seq, we used a mix of gram-negative cells (Escherichia coli) and
gram-positive cells (Staphylococcus epidermis) as starting
material and prepared libraries following an snATAC-seq
protocol with some adjustments primarily affecting the
permeabilization step of bacterial cells (see Methods). A
ranked barcode plot shows the expected signal drop,
distinguishing cell-containing from empty droplets (Fig. 4d).
Supporting single-cell behavior, most reads in the same
barcode map either to the Escherichia coli or Staphylococcus
epidermis genome, with an average coverage by barcode of
2.37% (126 barcodes) and 1.40% (54 barcodes), respectively
(Fig. 4e,f). Aggregating all the reads from the barcodes by
species (‘metacells’), we estimated a genome coverage of
90.68% and 30.05%, respectively (Fig. 4e), suggesting that
AmpliDrop is capable of inferring pseudo-genomes in
bacterial cell mixtures.

Discovery potential
Finally, we aimed to validate AmpliDrop in addressing a
biological question. Neural organoids are self-organizing
multicellular structures used for modeling brain development
and neurological disorders *. However, it is often overlooked
that these structures are fragile, susceptible to alterations
caused by user handling, manipulation, and culturing *>~*8, We
used AmpliDrop to determine whether procedures included
in some protocols, such as moving the organoids from the
culturing plate to a secondary site for testing, keeping them
outside the incubator during a testing period, or keeping them
at least for short-term without shaking (static) during culturing
can change cellular composition.

We split a pool of 7-month-old human induced
pluripotent stem cell (hiPSC)-derived forebrain organoids into
three groups. The first group remained in the incubator
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throughput the test. The second group was carefully
transferred by aspiration to a secondary surface using a wide-
orifice 1-mL tip pipette and returned to the culturing plate
afterwards (Fig. 5a, transferred-only). The third group was
processed as the organoids in the second group but was
subjected to deformative compression to mimic an accidental
damage during the transfer (Fig. 5a, transferred and
damaged, and Fig. 5b, drawing). Once in the incubator, the
two sets of manipulated organoids were maintained without
orbital shaking to avoid disaggregation due to a potential
higher fragility caused by their manipulation (especially with
the third group). Two days later, the three sets were
dissociated and processed for 3’ scRNA-seq.

Notably, analysis of cell densities across the UMAP plot
based on the integrated data (n = 46,647 cells) suggests
significant changes in cell composition in the two groups of
manipulated organoids (Extended Data Fig. 12a). Using a
panel of brain cell markers, we concluded that these
alterations mostly affected two subpopulations of radial glia
(RG), clusters 5 and 6, characterized by the expression of the
non-neuronal marker VIM, and advanced RG markers, such as
BCAN and PTN (Fig. 5b, UMAP plot). Remarkably, the size of
these two clusters increased by more than threefold and
ninefold, respectively, compared to the non-manipulated set
(Fig. 5b, graphs). We note that while cluster 5 shows a more
classical RG-like identity, characterized by the expression of
PTPRZ1, cluster 6 shows a more specialized identity,
characterized by expression of a ventricular zone (VZ) glia
marker, IGFBP5. Both clusters also show evidence of a distinct
metabolic state, characterized by the increased expression of
the mechano-sensing long non-coding (nc)RNA NEAT1 %%, but
not others mechano-sensing genes (such as TRPM3, TRPCI,
TRPV4, or YAPI1), and also the increased expression of
glycolytic markers (such as PGK1 and HK2) and hypoxia and
cell stress genes (such as high HSPA5, HSP90B1, XBP1, and
P4HB expression). Both clusters, furthermore, are
characterized by low expression of mitochondrial genes (e.g.,
MT-CO2), without evident signs of mitochondrial or oxidative
stress or apoptosis (low levels of BCL2, BAX, SOD1, CASP8, and
CASP9 expression) (Fig. 5c and Extended Data Fig. 12b).

In support of a distinct metabolic state for cells in clusters
5 and 6, analysis using a granular functional filtering approach,
Gruffi *°, to locate cells enriched in genes associated with
glycolysis and cell stress confirms that the two sets of
manipulated organoids are enriched in glycolysis and cell
stress gene ontologies by 3.11-fold and 2.97-fold, respectively
(Fig. 5d, top). Gruffi-positive cells are mostly enriched in
clusters 5 and 6 and, to a lesser extent, in cluster 7—a cluster
that we annotated as ependymal cells due to selective
expression of the ependymal marker TTC6 (Fig. 5d, bottom).

Similar metabolically distinct cells have been recently
reported in the inner core of organoids, annotated as apical-
like RG (aRG-like cells) °*. In agreement, we confirmed that the
same glycolytic and hypoxia-related genes enriched in clusters
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5 and 6 were enriched in previously characterized aRG-like
cells, which also show low mitochondrial gene expression (Fig.
5e and Extended Data Fig. 12c). Thus, we annotated cluster 5
as aRG-like cells and cluster 6 as tRG-like cells, the latter known
to be a further differentiated RG subtype characterized by high
CRYAB expression (as also observed in cluster 6; Fig. 5f, CRYAB)
that ultimately evolves into ependymal and other glial cells >2.
Inthe UMAP plot, cluster 6 cells are located adjacent to cluster
7 cells, which we annotated as ependymal cells (Fig. 5f, CRYAB
and TTC6, and Extended Data Fig. 13).

Since the two sets of manipulated organoids were
maintained outside the incubator for approximately 90
minutes (the time to take pictures pre- and post-manipulation
and to transfer the organoids one by one from the culturing
plates to the mental surface and back), we hypothesized that
being outside the incubator, not the actual handling of the
organoids, may have induced the observed changes in cell
composition and metabolic state. To tests this, we conducted
a second experiment with a set of 6-month-old organoids but,
this time, the non-manipulated group was also kept outside
the incubator as the other two groups (n = 48,239 cells after
data integration). Still, we observed an increase in Gruffi-
positive cells in the two manipulated conditions compared to
the non- manipulated set: 7.44-fold and 4.81-fold,
respectively (Fig. 5g and Expanded Data Fig. 14).

Next, we interrogated whether skipping orbital shaking
after the manipulations might have been the underlying cause
of the differences in aRG-like and tRG-like subpopulations. To
test this possibility, we conducted a third experiment in which
non-manipulated, younger organoids (2-month-old, which
are richer in RG populations, were split into two groups, one
group was maintained in the incubator without orbital
shaking (static) for 3 days prior to scRNA-seq profiling, as in the
previous two experiments, whereas the other group was
maintained under orbital shaking for the same period.
Remarkably, we observed an increase in Gruffi-positive cells in
the absence of motion that mostly coincided with the NEAT1-
positive subpopulation and primarily affected the central
areas in the UMAP plot (clusters 4 and 12), where aRG-like and
tRG-cells locate in the other two experiments, although in this
case, cell proportions remained mostly unchanged (Fig. 5h
and Extended Data Fig. 15).

Together, these analyses suggest that short-term
culturing of the organoids without motion can change the
metabolic state in some RG subpopulations, when damaging
the organoids or maintaining them outside the incubator for
90 minutes, had not obvious effects. We cannot exclude the
possibility, however, that the manipulations exacerbated the
effects of culturing organoids without motion.

DISCUSSION
We have developed AmpliDrop to address the need for

greater scalability, simplified workflows, and streamlined
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Fig. 5. Influence of experimental factors on cell composition in human forebrain organoids: physical damage induced by transfer to
a secondary site for potential experimentation (transferred-only and transferred-and-damaged to mimic an accidental
deformation), time outside the incubator, and constant orbital shaking versus short-term static growth. a, Representative EVOS
images show n = 7 seven-month-old forebrain organoids before and after manipulation. Scale bar: 1 mm. b, (Top left) Schematic
representation of the three tested conditions. (Bottom left) AmpliDrop 3’ scRNA-seq analysis (UMAP plot) after integrating results from
the three tested conditions, color-coded by inferred cell annotations (total, n = 46,647 cells; sequencing depth, n = 7,859 mean reads
per cell). (Top right) Stacked histograms show cell proportions by test and cell type. (Bottom right) Cell proportions relative to the non-
manipulated condition (log2 scale) show clusters 5 and 6 as the two most affected cell types/states. ¢, Expression levels (log2 scale) of
glycolytic and stress/hypoxia-related genes on the UMAP plot shown in b. The dotted lines delineate the location of clusters 5 and 6,
except for the mitochondrial gene, MT-CO2. d, (Left plot) Distribution of Gruffi-positive cells across the UMAP plot shown in b. (Top

right) Histograms show counts of Gruffi-positive cells by condition. Numbers represent fold differences relative to the non-perturbed
tests. (Top bottom) Histograms
(see next page)
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show counts of Gruffi-positive cells by cell type or state, color-coded as in b. e, Relative expression of genes distinctively expressed in
clusters 5 and 6, including RG or glia markers, in the cell types annotated by Uzquiano et al., 2022 in their organoid data, visualized
using the Single Cell Portal from the Broad Institute. f, Expression levels (log2 scale) of RG and glial markers on the UMAP plot shown
in b, associated cell identities also indicated. g, (Top left) UMAP plot shows integrated AmpliDrop 3’ scRNA-seq data based on 6-month-
old forebrain organoids in the indicated conditions, color-coded by clusters (total, n = 48,239 cells; sequencing depth, n = 9,760 mean
reads per cell). (Top and bottom right) Distribution of Gruffi-positive cells by condition and cluster. (Bottom left) Expression NEAT1
levels (log2 scale) and Gruffi-positive cells across the UMAP plot. h, AmpliDrop 3’ scRNA-seq analysis of 2-month-old forebrain
organoids grown in a static culture or orbital shaking for 3 days before cell dissociation. Panels organized as in g, color-coded by clusters

(total, n = 45,858, sequencing depth, n = 17,209 mean reads per cell).

logistics in single-cell genomic experiments. The core feature
underlying these improvements is the generation of barcode
multiplicity during, rather than before, library preparation,
eliminating the need for costly barcoded beads 2 to isolate
the copies of every unique barcode alongside cells and tedious
combinatorial indexing schemes % to achieve large
scalability. By generating barcode multiplicity during library
preparation, furthermore, the source of barcodes (single-copy
molecules) is largely negligible in a reaction while the cost of
their amplification does not add any extra cost to the step of
tagging (a PCR reaction). Importantly, the same pool of single-
copy barcodes can be used for any number of libraries and
throughputs, which simplifies the workflow. Additionally,
using conventional multi-channel pipetting systems for
encapsulating the barcoding reactions eases the logistics.
Conveniently, furthermore, these systems (either electronic
pipettes or automatic liquid handlers) are laboratory tools not
exclusive for AmpliDrop use, in contrast to microfluidics
devices or special vortexers used by other technologies.

Versatility without the need to substantially change the
design of the barcoding step or reagents is another distinctive
AmpliDrop feature. For example, most current single-cell
barcoding methods require dual gRNA expression vectors to
capture the gRNA sequence in a CRISPR perturbation
experiment. With AmpliDrop, gRNA sequences can be
captured directly by PCR from the gRNA-carrying DNA
construct using user-customized primers added to the mix of
reagents before encapsulation. The same principle can be
applied to capture viral sequences (in infected cells) or
bacterial or fungal sequences (inside single cells).

Regarding the versatility for using different tube formats,
the most similar technology to AmpliDrop would be PIP-seq %°.
However, there are some key differences between AmpliDrop
and PIP-seq. In AmpliDrop, the barcode is the least expensive
reagent, while in PIP-seq, bead-attached barcodes should
carry a substantial manufacturing cost. AmpliDrop is
compatible with robotic liquid handlers, facilitating
automation, while this possibility is unclear for PIP-seq. It is
also unclear the upper scalability limit for PIP-seq, although it
is commercialized for a million-cell throughputs. While we
have not generated 5-million-cell libraries with AmpliDrop due
to excessive sequencing costs associated with this test, the 96-
deep-well scalability is based on the same principle as those
applied in a single PCR or 1.5 mL tube.
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Another advantage provided by AmpliDrop is the
generation of independent libraries on multiwell plates, unlike
combinatorial indexing methods that generate a single multi-
indexed library. This is relevant for the largest scalabilities. For
example, for a CRISPR perturbation experiment at scale,
AmpliDrop would generate ninety-six 50,000-cell libraries in a
single 96-deep-weel plate (a total of 5 million cells). to enable
the perturbation of all human genes with three distinct gRNAs
for each gene (a total of 60,000 perturbations), aiming for 30
cells per gRNA sequence. Each library can be then sequenced
separately until a number of sufficient hits is reached,
facilitating the control of sequencing costs and data analysis.
With combinatorial indexing, for example, twenty 96-well
plates will be needed to process 5 million cells (or 4 set of 96-
well plates for each group of a million cells), making more
difficult the control of sequencing costs and data analysis, in
addition to much more complex to process.

Proof-of-concept validation for AmpliDrop would not be
complete without an example of its utility in addressing a
biological question. We have focused on evaluating the
susceptibility of neural organoids to alterations in cell
composition induced by user manipulation. Neural organoids,
which are valuable in vitro cell models for studying brain
development and neurological disorders *, are also
extraordinarily fragile “™%8. This fragility makes them
particularly vulnerable to handling and manipulation,
potentially leading to confounding effects that can complicate
data interpretation.

Supporting this vulnerability, previous studies have
reported that mechanical forces generated during shaking—a
common method for culturing these structures—can impact
organoid structure and cell composition “¢. Additionally, the
speed of orbital shaking has been shown to influence both
gross morphology and the microarchitecture of neural
organoids “8. Conversely, it has been suggested that growing
organoids under static conditions may lead to limited fluid
dynamics of nutrients, negatively affecting the biology of these
structures *’. Consequently, it remains unclear whether
shaking or static growth represents a better system for
modeling in vivo biology.

In this study, we examined the effects of various
experimental procedures on cell composition in human
forebrain organoids. After testing multiple hypotheses, our
findings suggest that short-term static culturing, which is also
used to generate assembloids 3, can increase the proportion
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of certain progenitor subpopulations, aRG and tRG, and/or
enhance their glycolytic metabolism.

Currently, there is an ongoing debate in the neural
organoid field regarding whether the expression of glycolytic
markers in cell progenitors is a genuine characteristic of early
brain development °**3>* or an artifact resulting from in vitro
culture conditions, such as low oxygenation and poor nutrient
access at the core of the organoid (where these cells locate).
In the second case, these conditions may impair normal
differentiation and should be, in a way, avoided >*>752,

Whether the effects observed in this study represent
artifacts or true developmental properties—or a combination
of both—remains unsolved. However, we find particularly
interesting that previous studies suggest that shifting from
aerobic glycolysis to mitochondrial oxidative phosphorylation
(the opposite direction of the metabolic change that we would
be observing, i.e., high expression of glycolytic genes and low
expression of mitochondrial genes) is essential for neuronal
differentiation, and that signs of cell stress would represent a
homeostatic state in the early human brain 5*®*, In fact,
INcRNA NEAT1, which we find highly expressed in glycolytic
aRG and tRG, is a major RNA moiety and scaffold of
paraspeckles, and these structures serve as sensors of stress
signals to allow cellular adaptation ® and modulate
differentiation and metabolism %7,

Thus, the question, remains whether replicating
developmental biology be more accurate with orbital shaking
or short-term static growth, i.e., with less or more glycolytic
aRG and tRG. We speculate that during development,
ventricular layer cells like aRG and tRG might act as sensors
that use oxygen and nutrient levels as proxies for neocortex
thickness (Extended Data Fig. 13). Given these cells’ potential
to generate neuronal and glial populations in a time-controlled
manner during development, a thin neocortex could signal
differentiation into neuronal cell types early in development,
while a thicker neocortex could signal differentiation into glial
cell types later in development. We believe this metabolic
property warrants further investigation.

In summary, this study based on organoids demonstrates
that AmpliDrop can identify and characterize cell composition,

as we have also recently reported in a study using assembloids
69
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METHODS

Cell line culture

Human A2780 cells (ovarian, adenocarcinoma) and the
cisplatin-resistant derivative A2780cis subclone were
purchased from Sigma-Aldrich (Cat#93112519 and
Cat##93112517) and cultured in RPMI-1640 Medium,
GlutaMAX Supplement (ThermoFisher, Cat#61870036)
supplemented with 10% fetal bovine serum (FBS, Omega
Scientific, Cat#FB-11). Human MCF7 cells (breast,
adenocarcinoma) were purchased from ATCC (Cat#HTB-22)
and cultured in DMEM/F12 (ThermoFisher, Cat#11320033)
supplemented with 10% fetal bovine serum (FBS, Omega
Scientific, Cat#FB-11). The rest of cell lines were all also
purchased from ATCC: human 293T cells (kidney, embryo,
Cat#CRL-3216), human HCT-116 cells (colorectal, carcinoma;
Cat#CCL-247), Jurkat cells (T lymphoblast, acute T cell
leukemia; Cat#TIB-152), mouse NIH3T3 cells (fibroblast,
embryo, Cat#CRL-1658). Mouse mESCs were a previously
reported 3!, All cells were grown in an incubator at 5% CO,
and 37°C, supplemented with penicillin-streptomycin
(ThermoFisher, Cat#15140122), and sub-cultured as
recommended by ATCC.

Organoid culture

The WT83 clone6 of human induced-pluripotent stem cells
(hiPSCs), derived from a typically developing Caucasian male
2971 \were grown on growth factor-reduced Matrigel (BD
Biosciences, Cat#354234), coated 6-cm dishes in mTeSR Plus
(STEMCELL Technologies, Cat#100-0276) without antibiotics.
For propagation, cells were dissociated with Versene
(ThermoFisher, Cat#15040066), 500 uM UltraPure™ EDTA
(ThermoFisher, Cat#15575020), or ReLeSR™ (STEMCELL
Technologies, Cat#100-0483). Cells were tested regularly for
mycoplasma ’2. To generate forebrain organoids, we
followed a semi-guided protocol with a few modifications.
Human iPSCs were grown in mTsER™ Plus (STEMCELL
Technologies, Cat#100-0276) to a confluency of
approximately 70% in a 6-cm plate and dissociated witha 1:1
mix of accutase (ThermoFisher, Cat#A1110501) /DPBS.
Approximately, three million hiPSCs with a viability >95%
were transferred into ultra-low attachment 6-well plates
(Corning, Cat#3471) with mTsER™ Plus media supplemented
with the SMAD inhibitors SB-431542 (Medchem, Cat#
HY10431; 10 um final) and Dorsomorphin (R&D Systems.
Cat# 309310; 1 um final), and the Rho-associated proteinase
kinase (ROCK) inhibitor (RI) Y-27632 (Fisher Scientific, Cat#
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125410; final 5 um). Plates were placed on orbital shaker (95
rpm). Alternatively, hiPSCs were transferred to a well of
AggreWell-800 plate (STEMCELL Technologies, Cat#34811)
pre-coated with Anti-Adherent Solution (STEMCELL
Technologies, Cat#07010) in mTeSR plus supplemented with
RI. The AggreWell in mTsER™ Plus supplemented with Rl and
centrifuged to capture cells in microwells and transferred to
incubator. The following day, embryoid bodies (EB) were
transferred to a well of 6-well plate changing the media to
fresh mTsER™ Plus supplemented with SB and
Dorsomorphin as described above. From here, regular media
and factors changes to complete generation of forebrain
organoids were performed as reported 3°, and maintained in
M2 medium composed of Neurobasal (Life Technologies,
Cat#21103049) supplemented with 1% GlutaMAX (Life
Technologies, Cat#35050061), 1% MEM non-essential amino
acids solution, NEAA (Gibco, Cat#11150-050), and 1x B27
(Life Technologies, Cat#17504044) performing half/medium
changes every two days for the first month or twice a week
after.

Engineering and culturing of the gRNA lentiviral-transduced
human K562 line

Wild-type K562 cells (ATCC, CCL-243) were grown in Roswell
Park Memorial Institute (RPMI) 1640 Medium (Thermo
Fisher, Cat#11875-119,) supplemented with 10% (v/v) fetal
bovine serum and 1% penicillin/streptomycin (Gibco, Cat#
15140122). To construct the CRISPRi-expressing cell line,
wild-type K562 cells were transduced with the dCas9-BFP-
KRAB lentiviral vector (Addgene Cat#85969). Pure polyclonal
populations of CRISPRi-expressing cells were then generated
by sorting the transduced cells on a BD FACS Aria ll
instrument for the top 50% of BFP signal. The CRISPRi-
expressing K562 line was then transduced with a gRNA
lentiviral library containing 12,318 unique gRNA sequences
adapted from hCRISPRi-v2 7. Transductions were performed
at a low multiplicity of infection (MOI < 0.1), using 2 X 108
cells to ensure a representation of at least 500X coverage for
each sgRNA after transduction. Transduced cells were
enriched by treating with 2.5 ug/ml puromycin for 3 days.
Cells were then cultured for 13 days before sequencing.

Commercial and in-house isolated human PBMCs

For Fig. 3c,e, Fig. 4b, Extended Fig. 6, and Extended Fig. 7.,
cryopreserved human PBMCs were purchased from
ALLCELLS (Cat#MNC, 10M). For Fig. 3d and Extended Fig. 7,
peripheral venous blood was drawn from voluntary donor
using EDTA-treated tubes and Lymphoprep™ (STEMCELL®,
Cat. #29283-PIS 1 1 0) and stored at 4°C. Cells were
resuspended in 1x phosphate-buffered saline buffer solution
(1xPBS; Cat. #J61196.AP, Thermo-Fisher Scientific®)
supplemented with 2% bovine serum albumin, BSA
(Miltenyi, Cat#130-091-376), and layered over 1.5 mL
Lymphoprep Density Gradient Medium (Stem Cell
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Technologies, Cat#07801) in a 15 mL conical tube, according
to the manufacturer’s protocol. The solution was centrifuged
at 800xg for 20 min at room temperature without

brake. The mononuclear cell layer at the gradient interface
was collected in a new tube and washed in PBS/2% FBS (10
mL total volume) and centrifuged at 120xg for 10 min at
room temperature without brake. The wash step was
repeated two more times, and the cells were resuspended in
PBS for sequencing library preparation. The cells not used
immediately were cryopreserved in 90% FBS/10% DMSO.

Preparation of single-cell solutions (lines and PBMCs)

The following instructions detail how to dissociate adherent
mammalian cells (optimized for 293T and NIH3T3 cells).
Separately, grow cells in a 6-well plate according to standard
procedures at 50-80% cell confluency (optimal), aiming to
have 0.5-1.0 million cells from each line. Aspirate media and
rinse twice with 1x PBS. Aspirate and discard the remaining
1x PBS. Add 150-300 mL of trypsin (ThermoFisher,
Cat##25200056) and spread uniformly by tilting the plate.
Incubate for 2-3 minutes at 37°C. When cells appear
detached (move when shaking), inactivate trypsin by adding
1.3 mL of media supplemented with FBS. Aspirate and
dispense the solution 5-10 times with a P1000 pipette
against the surface to the plate to fully dissociate cells. Move
cellsto a 1.5 mL tube and centrifuge at 300xg for 5 minutes.
Preferably, use a 4°C refrigerated centrifuges for all the spins.
Resuspend in 1.5 mL 1x PBS, gently pipette up and down for
five times, and spin down at 300xg for 5 minutes. Aspirate
supernatant and gently resuspend in 1 mL of 1x PBS using a
P1000 pipette at least 10 times for full cell dissociation. Take
a 20 pL aliquot and mix with 20 pL of trypan blue (1:1) to
determine cell viability using an automated cell counter,
such as Countess (ThermoFisher), or manually with a
Hemocytometer. Cells should appear isolated and cell
viability should be at least 90% (unless a toxic treatment is
applied to cells). If cells have been properly dissociated and
show high viability, conditions are set to prepare cell
solutions for AmpliDrop library preparation. For frozen
PBMCs, cells were thawed in a 37°C water bath and,
immediately, serially diluted with 1, 2, 4, and 8 mL of RPMI
1640 medium (Thermo-Fisher Scientific, Cat#11875093)
supplemented with 10% fetal bovine serum (FBS; Sigma-
Millipore) in the same 15 mL tube. While increasing the
diluting volume, the tube was gently and manually rotated.
Diluted cells were then centrifugated at 300xg for 5 min and
gently resuspended serially in 1 mL and 9 mL of RPMI/10%
FBS first prior to a new centrifugation. Cell pellets were
gently resuspended in 1mL 1xPBS/0.4% BSA and, after a new
centrifugation, resuspended again in 1mL 1xPBS/0.4% BSA
before applying a 40 L Flowmi Cell Strainer (Sigma
Millipore, Cat#BAH136800040). Finally, cells were counted,
and viability was examined using Countess Ill Automated Cell
Counter (Thermo-Fisher Scientific).
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Preparation of single-cell suspensions (organoids)

For dissociation, 10-15 organoids were transferred into a 15
ml conical tube (BioPioneer, Cat#CNT-15). Media was
aspirated leaving a small volume to avoid drying up.
Organoids were rinsed twice with DPBS at room temp (3mL
and 2mlL), and cell dissociation was induced with 1.5-2 mL of
a mix of StemPro Accutase (Life Technologies,
Cat#A1110501), Papain (Worthington, Cat#LK003176), and
DNAse (Worthington, Cat#LK003170) at a ratio of 2ml
accutase:0.5 ml mix papain/DNAse prepared following
manufacter’s instructions. The mix with organoids was kept
static dissociating in the incubator at 37°C. Every 10 min until
the organoids were dissociated (for a maximum of 50
minutes), organoids were gently but not slowly mixed 10
times with a 1 mL pipette tip/P1000 pipette. The dissociation
was stopped by adding 4 mL of warm M2 media and
pipetting with the P1000 pipette a few times. The solution
was then filtered through a 40 um filter (Falcon,
Cat##352340), placed upside down on top of a 15 mL
Precision™ conical tube (BioPioneer, Cat#CNT-15). The filter
was first prewet with 1 mL of a 1 x DPBS supplemented with
0.1% BSA. Cells were harvested at 200xg for 7 min at room
temperature. The media was aspirated leaving
approximately 30 pL of supernatant. The cell pellets were
resuspended in 0.7-1 mL of pre-chilled 1 x DPBS/0.1% BSA.
From this point, all tips, tubes, and pipettes used were pre-
coated with 1 x DPBS supplemented with 0.1% BSA to avoid
cell loss. Gently, cells were mixed again by pipetting with a
P1000 pipette and 120 pL of the solution was transferred to a
1.5 mL tube to count cells and assess cell viability using the
ChemoMetec Cell Counter. Cell viability was above 90% in all
cases (including for the severely damaged organoids). We
then transferred around 500,000 cells to a new pre-
chilled/pre-coated 1.5 mL tube and cells were centrifugated
at 200xg for 7 min at 4°C, ready for immediate processing
according to the AmpliDrop (or 10X) protocol.

Organoid perturbation tests

We conducted three experiments. In the first experiment,
two sets of 8 to 10 seven-month-old organoids were
transferred from their original well in a six-well plate to a 24-
well plate with a 10- or 25-ml pipette placing one organoid
per well with fresh M2 media. A third set was maintained in
the original plate in the incubator with gentle orbital shaking
(88 rpm), as before separation. Pictures of the isolated
organoids were taken with an EVOS microscope installed
inside the safety hood. After taking the pictures, one set was
returned to the incubator, and the other set was transferred
using a wide-orifice (W-0) 1 mL tip onto a surface that is part
of an in-home-built device that applies sudden compression
to organoids (manuscript in preparation), inside the safety
hood. After compression, the organoids were returned to the
culturing plate by adding a few microliters of media around
the organoids and aspirating with the 1 mL W-O tip again.
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Organoids were never left to dry during this process. Post-
compression, pictures were taken again with the EVOS
microscope. The second set of organoids was processed as
the first set but without mechanical compression.
Afterwards, the cell culturing plate was returned to the
incubator. In contrast to the non-manipulated set (third set),
the other two sets were maintained without orbital shaking
(static culturing) to avoid further damaging to the already
mildly or severely damaged organoids. Two to three days
later, the three sets were dissociated for scRNA-seq as
described in the “Preparation of single-cell suspensions
(organoids)” Methods section.

In the second experiment, three sets of six-month-old
organoids were similarly processed as in the first experiment.
The main difference is that the non-manipulated-organoid
set was maintained outside the incubator as the other two
sets, to eliminate differences caused by having the organoids
outside the incubator (approximately 90 minutes, which
results in media conditions changing as suggested by a
transient media color change during this period). The
organoids were finally dissociated as described in the
“Preparation of single-cell suspensions (organoids)” Methods
section.

In the third experiment, two-month-old organoids
were transferred onto two wells in two different 6-well
plates using a 50 mL pipette to minimize any physical
damage. The plates were returned to the incubator for two
days with one plate maintained under gentle orbital shaking
(88 rpm) while the other plate was maintained in static
culturing. Afterwards, the organoids were dissociated for
scRNA-seq as described in the “Preparation of single-cell
suspensions (organoids)” Methods section.

AmpliDrop 3’ scRNA-seq

After automated cell counting and viability assessment using
a Countess 3 Automated Cell Counter system
(ThermofFisher), dissociated cells (typically, >90-95% viable) in
0.1% BSA-supplemented 1x DPBS buffer solution at this stage
were processed with AmpliDrop 3’ scRNA-seq kits following
the manufacturer’s recommendations (Cat#100050, 100051,
100052; Universal Sequencing Technology Corp.). Libraries
were subject to quality control, sizing, and quantification
using Agilent 4150 TapeStation system with High Sensitivity
D1000 ScreenTape and Reagents. Libraries were sequenced
on an lllumina NextSeq 500/550 instrument using a
HighOutput kit (75 cycles) or on a NovaSeq 6000 or NovaSeq
X instrument using a $4 kit (either PE50 or PE100) following
the sequencing conditions: at least 51 cycles for Read1 + 8
cycles for Index1 + 20 cycles for Index2. In NovaSeq, we used
101x10x24x101 (PE100) or 51x10x24x51 (PE50)
configurations used routinely in the Sequencing Core where
we submit our samples with other customers. We noticed
approximately only 5% lower reads per cell with the PE50
configuration compared to the PE100 configuration. In
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general, we processed only R1, 11, and 12, but when using
oligo-dT primers with UMI, we also used R2 to capture the
UMI sequence (10bp). Libraries were typically sequencing at
a sequencing depth between 8,000 and 12,500 average
reads per cell, unless otherwise indicated.

Benchmarking AmpliDrop with 10X Genomics v.3.1
technology

Dissociated cells were split into two aliquots. One aliquot was
immediately processed for 3’ scRNA-seq using the Chromium
Controller system (10X Genomics) with a target recovery of
10,000 cells with the Next GEM Single Cell 3’ Reagent Kits
v3.1 (Cat#1000268, 10X Genomics) and the other aliquot was
also processed for 3’ scRNA-seq analysis by a second
operator with AmpliDrop 3’ scRNA-seq (Cat#100050,
100051, 100052; Universal Sequencing Technology Corp.). In
both cases, we followed the manufacturer’s
recommendation for library preparation. Libraries were
sequenced in the same lane at a 1:1 ratio with a S4 kit in
NovaSeq. The AmpliDrop library was generated with UMIs
incorporated into the oligo-dT primer, which added
sequencing diversity in Read2 (10 bp), where the 10X library
captures the insert. In Read1, the 10X library has sequence
diversity provided by the UMI sequence (28 bp), where the
AmpliDrop library has the insert.

For data comparison, the reads were down sampled to the
same value as in the sample with the lowest reads among alll
samples, which was about 248.1 million. For the cells calling,
we enforced to call 7,000 cells for each sample.

AmpliDrop CITE-seq

PBMCs were stained with TotalSeq—A Human TBNK
Cocktail (BioLengend, Cat#399901). One million PBMCs
(typically > 95% viable) were resuspended in 45 L cell
staining buffer (BioLegend, Cat#420201), and 5 uL of
Human TruStain FcX Fc Blocking reagent (BioLengend,
Cat##422301) was added and incubated for 10 min at 4°C.
TotalSeq antibody cocktail was reconstituted according to
the manufacturer’s protocol and added to the blocked
PBMC suspension and incubate for 30 min at 4°C. Cells
were washed in 3 mL of cell staining buffer and centrifuged
at 500xg for 5 min at 4°C three times. Cells were
resuspended in 500 pL of cell staining buffer and filtered
with 40 um Flowmi cell strainer (Sigma,
Cat#BAH136800040), and cell concentration and viability
(typically > 90%) were recorded. The stained PBMC were
immediately used as the input for AmpliDrop.

AmpliDrop gRNA-seq (targeted AmpliDrop, Perturb-seq-
compatible method)

To capture gRNA sequences, we followed the AmpliDrop 3’
scRNA-seq protocol with the following modifications. PCR
primers were designed against the mouse U6 promoter and
the gRNA backbone to amplify the protospacer sequence,
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targeting the amplicon size of approximately 140 bp. These
primers were included in immediately before encapsulation
at a final concentration of 50 nM. After the droplet breaking
and the cleanup steps, half of the reaction was amplified with
the Truseq index and P5 primer (3’ scRNA-seq), and the
remaining half was amplified with Nextera index and P5
primer (gRNA sequencing). We sequenced the gRNA library
with a NextSeq kit (150 cycles) as follows: R1, 70 cycles, R2,
70 cycles, I1, 8 cycles, and 12, 20 cycles.

AmpliDrop FullHlength scRNA-seq options

To explore full-length AmpliDrop options, we followed the 3’
scRNA-seq protocol with the following modifications. One
million cells were used. We performed RT in the presence of
switch oligo (TR2SW), or random hexamers (ProvTailedR6)
with TruSeq sequences. Tagmentation was conducted with a
mix of Tn5-A/B.

AmpliDrop snATAC-seq

For snATAC-seq, we followed the AmpliDrop 3’ scRNA-seq
protocol with the following modifications. Skipping the
fixation step, cells were lysed in a modified permeabilization
buffer (3.5 pl Permeabilizer in 100 pl Buffer P) and incubated
on ice for 3-5 minutes, depending on the cell types (generally
5 min for cell lines, 3 min for PBMC) and 50,000 nuclei were
used for tagmentation at 37°C for 60 min with a mix of Tn5-
A/B. The cleanup step after the barcoding reaction was
performed with 1.4x SPRI beads, and the Nextera index and
P5 primer were used for the final ATAC library. The final
cleanup was done with 1.2x SPRI beads.

Microbial scGenome-seq

Escherichia coli DH10b And Staphylococcus epidermis FDA
strain PCI 1200 (purchased from ATCC, Cat#12228) were
grown in LB media at 37°C shacking at 200rpm. To capture
bacterial sequences, we followed the AmpliDrop 3’ scRNA-
seq protocol with the following modifications. E.coli BL21
(DE3) cells and S.epidermis cells were harvested at a late log
phase, and 25 million cells (estimated by flow cytometry)
from each culture were mixed at a 1:1 ratio. The mixed
solution was washed once in 1 mL 1x PBS with 1 mg/mL
probumin BSA (EMD Millipore, Cat#82-045-1), collected by
centrifugation at 15,000xg for 5 min, resuspended in 50 plL of
1x PBS and fixed (AmpliDrop protocol). Following one round
of wash as described above, the fixed cells were resuspended
in 50 pL 1x PBS with 0.04% Tween-20 and incubated on ice
for 3 min. Cells were then washed two times as above and
incubated in 50 pL 20 mM Tris (pH8.0) containing 10 pg
lysozyme (Thermo Fisher, Cat#90082) and 4 ug lysostaphin
(Sigma-Aldrich, Cat#L7386-1MG) at 37°C for 30 min. The
permeabilized cells were then washed two times as above,
counted by flow cytometry, and 3 million cells were
incubated in with tagmentation solution (AmpliDrop kit)
containing double Tn5-A/B transposomes at 37°C for 60 min.
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The tagmented cells were washed twice and counted as
above, and 2,000 cells were resuspended in 60 L of the
barcoding reagents (AmpliDrop kit). The barcoded products
were recovered, amplified, and cleaned as in the 3’-scRNA-
seq workflow. Libraries were sequenced on an lllumina
MiSeq instrument using a Reagent Kit v3 (Cat##15043894,
Cat##15043893, 150 cycles).

Data analysis of gRNA sequences

When capturing PCR-amplified gRNA sequences incorporated
into the AmpliDrop workflow, we generated a paired-end
library to fully cover the gRNA design cassette with the gRNA
sequences been flanking with the fixed lengths of sequences
in R1 and R2. We detected gRNA sequences by matching the
designed flanking sequences to the sequences showing in R1
and R2, with maximum of 3 hamming mismatches on each
flanking side. We then counted any gRNA in each cellular
barcode and filtered out the background noise with the gRNA
less than 200 reads support or 2% of all detected gRNAs. The
final gRNA counting table includes the detected gRNA
sequence, the read supports, the percentage of this gRNA
reads in all gRNA reads detected in the giving cell, and the
unmerged and merged barcode sequences.

Data analysis of CITE-seq DNA sequences
Antibody-conjugated probes were detected in the fastq files
that contained cDNA reads. Briefly, we removed and saved
the reads with their barcode information from fastq files if
their sequences included any designed antibody-conjugated
probe with exactly matching. We processed those fastq files
without antibody probe reads with our pipeline so that the
barcodes were appropriately merged and called cells. For
each cellular barcode, we then counted the read numbers
for each designed antibody probe from the file we saved as
described above.

Data analysis of AmpliDrop bacterial mock cell mixtures
We created the paired-end libraries for AmpliDrop bacterial
mock cell mixtures. After demultiplexing, we mapped the
paired-end reads with their barcode information to the
reference genomes we used with bwa mem (0.7.17-r1188).
We then parsed the bam files so that we could count the
reads mapped the bacteria species within the giving barcode,
and sorted based on the barcode ranks for all mapped reads.
We plotted mapped reads with ranks, and we roughly
considered the point that caused plot starting quickly
dropping as the cell/non-cell boundary.

Data processing for fastq subsampling

The deeply sequenced library from Jurkat cells was
subsampled to 75%, 50%, 25%, 12.5%, 6.25%, 3.125%,
1.5625%, 0.7812%, 0.3906%, 0.1953%, and 0.0977%,
respectively by randomly selecting reads from the original
fastq file set.
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Generation of gene body percentile plots

We generated gene body percentage plots by sending the
de-dupped bam files to the public tool of RSeQC (5.0.2) with
the appropriate annotation (in .bed) file.

AmpliDrop 3’ scRNA-seq data analysis

Sequencing data was processed using the AmpliDrop analysis
software v1.0. Briefly, the software converts bcl sequencing
files into fasq files using the lllumina tool bcl2fastq
v2.20.0.422. Next, 8-nucleotide lllumina indexes (in 11) and 6-
nucleotide AmpliDrop indexes (in 12) were error corrected for
demultiplexing and separating reads for every library. RNA
reads (R2) were trimmed with the adapter and poly-A
sequences at the 3’ in the read using cutadapt v2.5. The bam
contains the alignments with the paired end reads and
contain the customized bam tag of the barcode for the
aligned read. Reads were then aligned to the reference
genome with STAR v2.7.10b in solo mode, ignoring
mitochondria reads or those with a map score (MAPQ) lower
than 30, and removing duplicates. Reads from merged
barcodes were aggregated and those with identical vUMI
were collapsed, eliminating potential PCR duplicates from
downstream analyses. Fastq files with merged barcodes
were then used as input files for count matrix generation
using either Cell Ranger v5.0.1 (10X Genomics) for
benchmarking purposes or Kallisto-bustools (kb). The first has
been optimized for processing data from the Chromium
platform, providing a solution that includes barcode
processing, read alignment (using the STAR aligner), and
quality-control metric, as well as the generation of popular
output files, including the count matrix file in several formats.
It is a very user-friendly tool. The second is an open-source
option, which is more computationally efficient and fast, with
pseudo-aligns reads to produce a barcode, UMI, set (BUS)
file, then converted into a cell-by-gene count matrix ”’. In all
options, we included introns to quantify genes and UMIs.
When merging was skipped, fastq files were processed
skipping the merging step.

Cell Ranger analysis for 10X 3’ scRNA-seq data

For the analysis of 10X 3’ scRNA-seq data, we used Cell
Ranger v5.0.1 software (10X Genomics) following the
developer’s instructions, selecting the option to include
intronic reads —include-introns.

AmpliDrop data integration using Seurat

In R Studio (v2023.03.0+386), we used the Seurat packages
v4.1.13% and v.5.0.1 % for data integration. We recommend
reading about the impact of data package selection in sScCRNA-
seq 2. Briefly, Seurat objects were created using the
CreateSeuratObject() function from

filtered feature bc_matrix files without applying filters other
than min.cell = 3 and min.features = 200 to assess the quality
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of the AmpliDrop barcoding technology without
computational aids. Moreover, in contrast to 10X technology,
AmpliDrop is not characterized by an excess of mitochondrial
and ribosomal signal capture and is less likely to introduce
poor quality cells (so-called ‘dead’ cells) into the analysis,
making this filtering much less necessary than with 10X
technology. Next, the data was normalized with the
NormalizeData() function using the LogNormalize method
with a scale factor of 10,000. For PCA, we used gene
expression variation detected with the
FindVariableFeatures() function and the vst method, limiting
to nfeatures = 2000. Then, the data was scaled up using the
ScaleData() function for all.genes. We created a Seurat object
for every sample. For integration, we used the
FindIntegrationAnchors() and IntegrateData() functions with
20 dimensions. For multi-dimensional reduction and
clustering, we used the ScaleData(), RunPCA(), RunUMAP(),
FindNeighbors(), and FindClusters() functions with npcs = 30,
reduction = “pca”, dims = 1:20, and a resolution = 0.5. To
identify markers, we used the FindAllMarkers() function with
logfc.threshold = 0.25. Data visualization was based on the
ggplot2 v.3.5.1 library using the DimPlot() function.
Projections were exported into csv files to import them into
Excel v.16.84 (Microsoft).

Comparative analysis between AmpliDrop snATAC-seq and
10X Genomics snATAC-seq data

10X Genomics data was obtained from the 10X Genomics
website https://www.10xgenomics.com/datasets/1-k-
peripheral-blood-mononuclear-cells-pbm-cs-from-a-healthy-
donor-v-1-0-1-1-standard-1-2-0 (atac_pbmc_1k v1 dataset)
and visualized using cellranger-atac-1.2.0 software.

Generation of read density tracks

Homer v4.11.1 tools ”° were used to generate the tracks.
First, bam files were converted to sam files using samtools
v1.9 using the option “-G 1024” to use only unique reads at
pseudo-bulk level. The sam files were processed with the
makeTagDirectory() function to create tags for every
chromosome and with makeUCSCfile() function to create
BedGraph files. BedGraph files were then convefrted into the
BigWig format using the bedGraphToBigWig v4 package in
the collection of UCSC tools. BigWig files are suitable for
uploading into the UCSC genome browser.

Droplet quantifications by imaging

Three replicate emulsions (n = 3 experiments) were
generated in 200 uL volumes in different days with an excess
of DAPI-stained cells. Conditions fully replicated a standard
AmpliDrop reaction except for the number of cells, which
was much higher than usual to facilitate the finding of cell-
encapsulating droplets under the microscope. A total of 142
images were taken from these emulsions using a 20x optical
objective with 1.5x digital amplification (Keyance microscope,
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model: BZ-X710). The pictures were taken by moving the
sample randomly until a cell-encapsulating droplet was
detected by the operator. The picture was opened later with
Imagel) v1.54d software and the diameter of the cell-
encapsulating droplet was measured. A total of n = 200 cell-
encapsulating droplets were detected and measured (blue
line in Fig. 1b). An image from a Neubauer chamber
(hemocytometer) taken with the same settings was used as
reference for calibration of the Image) software. In addition,
a total of n = 6 images were used for diameter quantification
of all droplets, excluding those with a diameter of 10 microns
or smaller. We note that, in the n = 142 images containing
cell-encapsulating droplets, no cell was detected in a droplet
with a diameter smaller than 10 microns, and only one cell
was detected in a droplet with a diameter between 10 and
20 microns, while n = 199 cells were found in droplets of 20
microns or larger. These droplets represent 98.07% of the
aqueous phase in the emulsion. In the six images used for
diameter quantification of all droplets, we measured n = 802
droplets (green line in Fig. 1b). The measurements were also
used to infer volumes (red line in Fig. 1b). We note that the
actual measurements might not exactly represent the actual
diameter of the droplets since the emulsions were placed in
between two large coverslips under the microscope for
proper focus and flattening of the solution. Nonetheless, the
purpose of collecting these data was not to quantify the
diameter of the droplets with precision, but to compare
those with cell-encapsulating properties and those without
cells, and to roughly estimate the number of droplets in an
emulsion.

Granular functional filtering (Gruffi) analysis

In R Studio (v2023.03.0+386) within a Seurat environment
(v5.1.0), Gruffy analysis was performed using the Gruffi
package v.0.7.4 >° available at https://github.com/jn-
goe/gruffi. We used the same parameters used for the
generation of Seurat objects (nPCs = 30, dimensions = 1:20,
reduction = “umap”). GO categories from
hsapiens_gene_ensembl: GO:0006096 # Glycolysis;
G0:0034976 # ER-stress; and GO:0042063 # Gliogenesis,
negative filtering. Gruffi thresholds were selected using Shiny
with a 90% quantile and proposed thresholds. Gruffi
annotations (stressed and nostressed) were exported
matching cellular barcodes and used as labels in projections
plotted in Excel v.16.84 (Microsoft) obtained from Seurat-
generated UMAP plots.

Label transferring by reference mapping

In R Studio (v2023.03.0+386) within a Seurat environment
(v5.1.0), reference mapping was performed according to
https://satijalab.org/seurat/articles/multimodal _reference
mapping.html and using the reference atlas from
https://atlas.fredhutch.org/data/nygc/multimodal/pbmc m
ultimodal.h5seurat **. The AmpliDrop query was uploaded as
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a filtered-feature_bc_mitrix.h5 format from aggregated
libraries. Parse Biosciences PBMC scRNA-seq data gene
matrix dataset was obtained as described in
https://support.parsebiosciences.com/hc/en-
us/articles/360053078092-Seurat-Tutorial-65k-PBMCs from
the resources.parsebiosciences.com/downloads site
generated from a healthy donor (67,000 cells). Seurat objects
were created with min.cells = 3 and min.features = 200, and
SCTransform normalization. No further filtering was applied
to fairly compare technologies without computational aid.
The anchors were defined using the SCT normalization
method and the spca reference.reduction argument with 50
dimensions. MapQuery used ADT as predicted_ADT and the
reduction model wnn.umap. Image outputs were generated
for predicted.celltype.l1 and predicted.celltype.|2
annotations. Outputs were generated with the DimPlot()
function from the ggplot2 v.3.5.1 library.

Manual labeling based on literature-supported gene
markers

Manual cell annotations were performed using literature-
searched markers and combining Seurat-defined clusters
(generally at 0.5 resolution) accumulating most of the signal.
When one cluster accumulated most of the expression signal
of a marker, the cluster was labeled with the identity of the
cells distinctively expressing the marker, based on the
literature. When two or more clusters accumulated most of
the expression signal of a marker, the clusters were
combined to generate a larger cluster that was labeled with
the identity of the cells distinctively expressing the marker,
based on the literature. Cell line markers in mock mixtures
were defined based on the literature or the AmpliDrop 3’
scRNA-seq analysis of the individual line: ESR1, GREB1, BCL2
for MICF7 cells 8% NRXN1, ASXL3, NLGN4X, and COL11A1 for
A2780 cells and EPHA2 for A2780cis cells 28; EREG, CD44,
PCDH?7 for HCT-116, and XIST, AKT3, CDHZ for 293T cells.
PBMC markers were defined based on the literature: PTPRC
for all PBMCs; CD247 for all T and NK subtypes; SLC8A1 for
monocytes and cDCs; AFF3 for B cells and the pDC and cDC
populations; MS4A1 for B cells; BANK1 for B intermediate
cells; SSPN for B memory cells; COL19A1 for B naive cells;
JCHAIN for plasmablast; SLC4A10 for MAIT; RTKNZ2 for Treg
cells; VCAN for CD14 classical monocytes; TCF7L2 for CD16
non-classical monocytes; NEGR1 for cDCm pDC, and HSPC
populations; CLNK for cDC1; NKAINZ2 for HSPC; UGCG for
pDC; RBMS3 for pDC and Treg cells; LDB2 and NCAM1 for
NK_CD56bright cells; GNLY for NK cells; CCL5 for CD8 TCM
and proliferating NK cells; IL7R for CD8 TCM and others;
TSHZ2 for CD4 TCM and dividing, naive, and dnT subtypes;
MKI67 for dividing populations of any type. Organoid
markers included: DCX and INA for neuronal cells; STMNZ for
differentiated neurons; MEIS2 for telencephalon cells; RSPO2
for diencephalon cells; LHX1 and LHX5 for non-telencephalon
cells; VIM for non-neuronal cells; NEUROD2 and BCL11B for
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glutamatergic neurons (telencephalon); EOMES for
glutamatergic IPCs; HES6 for IPCs; DLX6-AS1 and GAD2 for
GABAergic interneurons; ERBB4 for migrating GABAergic
interneurons; NEFL for early neurons; RELN for Cajal Retzius
neurons; ROBO1 for some GABAergic subtype; SOX2 for
progenitors; MKI67 for dividing cells; EGFR for Pre-OPC;
TTYH1, SFRP1, and GLI3 for RG; THSD4 for late RG; IGFBP5 for
ependymal and other ventricular cells; TTC6 for ependymal
cells; TTR and HTR2C for choroid plexus subtypes; PCDH15
for oligodendrocytic lineage; GFAP for astrocytic lineage; and
CLU and BCAN for astroglia.

Gene expression analysis using the Single Cell Portal (Broad
Institute)

To generate dot plots with gene expression values from 23-
days, 1-month, 2-month, 3-month, and 6-month cortical
organoids >, we used the Cortical Organoids Atlas in the
Single Cell Portal maintained by the Broad Institute available
at

https://singlecell.broadinstitute.org/single cell/study/SCP17
56/cortical-organoids-atlas. The genes included in the figures
were all added to the search function in the Portal and the
tab for Dot plot was used for visualization with default
settings, without additional filtering. The Clustering option
was changed to visualize the scRNA-seq data for each cell
culturing time point using CellType for Annotation.

Pseudo-bulk differential gene expression

In R Studio (v2023.03.0+386) within a Seurat environment
(v5.1.0), differential gene expression was generated using the
DESeq?2 package (v.1.42.1) and a pseudo-bulk approach,
which has been reported as more robust than single-cell-
based approaches 8!. The following labels were added to the
Seurat object using the AddMetaData() function: AmpliDrop
3’ scRNA-seq libraries R1 and R2 and 10X 3’ scRNA-seq
libraries R1 and R2, and processed using pseudo-bulk signal
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with the AggregateExpression() using the labels to compare
AmpliDrop R1+R2 and 10X R1+R2 based on countsSRNA.
Filters: rowSums(counts(dds)) >=10. Results were exported
into csv file and imported for plotting using the
EnhancedVolcano package (v.1.20.0), being color-coded in
red and grey using pCutoff = 10e-32 and FCcutoff = |2].

DAVID GO analysis

Gene ontology (GO) analysis was performed using DAVID
tools available at https://david.ncifcrf.gov/tools.jsp and
supported by the DAVID Bioinformatics Team (LHRI/ADRD at
Frederick National Laboratory) and funded by the National
cancer Institute. Gene symbols were obtained from the csv
output of the differential gene expression analysis comparing
10X and AmpliDrop libraries after sorting the data by padj
and log2FoldChange to identify the genes with pCutoff < 10e-
32 and FCcutoff > | 2.0, which were pasted separately (from
the AmpliDrop and 10X lists) into the Enter Gene List
window. The identifier selected was
OFFICIAL_GENE_SYMBOL, the species selected was Homo
Sapiens, and the list type selected was Gene List. The DAVID
tool used was the Functional Annotation Tool and the
Functional Annotation Chart using only symbols assigned to
Homo sapiens. Results were then exported as a csv file and
processed with Excel v.16.84 (Microsoft) by sorting the
results by Category and FDR. The top twenty terms with the
lowest FDR were selected within the GOTERM categories
(GOTERM_MF_DIRECT, GOTERM_CC_DIRECT, and
GOTERM_BP_DIRECT). The selected terms were plotted with
Excel.

Figures preparation

The figures were generated with PowerPoint v16.84.1
(Mlicrosoft) and the art was created using Biorender.com
licensed to I.G.B.
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