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Abstract  33 

Cotton fiber development entails complex genome-wide gene regulatory networks (GRN) that 34 

remain mostly unexplored. Here we present integrative analyses of fiber GRNs using public 35 

RNA-seq datasets, integrated with multi-omics genomic, transcriptomic, and cistromic data. We 36 

detail the fiber co-expression dynamics and regulatory connections, validating findings with 37 

external datasets and transcription factor (TF) binding site data. We elucidate previously 38 

uncharacterized TFs that regulate genes involved in fiber-related functions and cellulose 39 

synthesis, and identify the regulatory role of two homoeologous G2-like transcription factors on 40 

fiber length. Analysis of duplicated gene expression and network relationships in allopolyploid 41 

cotton, which has two co-resident genomes (A, D), revealed novel aspects of asymmetric 42 

subgenomic developmental contributions. Whereas D-based homoeolog pairs drive higher 43 

overall gene expression from the D subgenome, TFs from the A subgenome play a preferential 44 

regulatory role in the fiber gene regulatory network. Following allopolyploid formation, it 45 

appears that the trans-regulatory roles of TFs diversified more rapidly between homoeologs than 46 

did the cis-regulatory elements of their target genes. Our approach underscores the utility of 47 

network analysis for detection of master regulators and provides fresh perspectives on fiber 48 

development and polyploid functional genomics, through the lens of co-expression and GRN 49 

dynamics. 50 

Keywords: Upland cotton, fiber development, gene regulatory network (GRN), transcription 51 

factors, GhMYS1 52 

Introduction 53 

Cotton ranks among the world’s most important agricultural plants, supplying most of our 54 

natural textile fibers. The remarkable cotton “fibers”, which are extensively elongated and 55 

naturally twisting single cells originating from the ovule epidermis, undergo a complex 56 

developmental program, entailing five sequential yet overlapping stages: initiation, elongation, 57 

transition, secondary cell wall (SCW) thickening, and maturation (Haigler et al. 2012). These 58 

complex, coordinated stages are crucial for fiber production, as initiation determines the number 59 

of epidermal cells that develop into fibers, while elongation and SCW thickening determine the 60 

final length and strength of each fiber (Yang et al. 2014). Given the importance of these stages, 61 
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the past two decades have witnessed considerable progress towards elucidating the principal 62 

pathways and genes orchestrating fiber initiation and elongation, mostly focusing on the 63 

regulatory role of transcription factors (TF) (Huang et al. 2021).  64 

The initiation of cotton fibers shares a similar mechanism with the development of Arabidopsis 65 

leaf trichome, regulated by the intricate MYB-bHLH-WDR (MBW) transcriptional complex 66 

(Wang et al. 2019; Zhang et al. 2019; Wen et al. 2023). A specific MIXTA-like MYB TF, 67 

GhMYB25-like, serves as a pivotal switch in this context, with suppression leading to abnormal 68 

fiber cell initiation and fiberless seeds (Walford et al. 2011). The elongation phase of cotton fiber 69 

development is distinctive among plant cells, involving special factors and mechanisms that 70 

confer extraordinary fiber length and growth rate. Many TFs, including HD-ZIP, TCP, WRKY, 71 

and ARF, are integral to modulating this phase (Wen et al. 2022). Notably, the cotton HD-ZIP 72 

family TF GhHOX3 promotes fiber elongation by upregulating transcription of the cell wall 73 

loosening protein genes GhRDL1 and GhEXPA1 (Shan et al. 2014), while a fiber-preferential 74 

WRKY TF GhWRKY16 directly activates the transcription of GhHOX3, a MYB family TF 75 

(GhMYB109), and a cellulose synthase gene (GhCesA6D-D11) (Wang et al. 2021b). TEOSINTE 76 

BRANCHED, CYCLOIDEA AND PCF 14 (GhTCP14) mediates cotton fiber elongation by 77 

directly activating the expression of auxin-responsive gene GhIAA3 and auxin transporter genes 78 

GhPIN2 and GhAUX1 (Wang et al. 2013). Beyond their involvement in elongation, GhHOX3, 79 

GhTCP14, and GhWRKY16 have also been confirmed to positively regulate fiber initiation (Qin 80 

et al. 2022; Wen et al. 2023). Transitioning from elongation to SCW thickening, several TFs, 81 

such as GhFSN1 (Zhang et al. 2018) and five MYB family TF (GhMYB1 (Yadav et al. 2017), 82 

GhMYBL1 (Sun et al. 2015), GhMYB7 (Huang et al. 2016), GhMYB46_D9, and GhMYB46_D13 83 

(Huang et al. 2019) have been reported to positively regulate SCW thickening. GhTCP4 and a 84 

Class II KNOX TF (GhKNL1) function both in fiber elongation and SCW thickening; however, 85 

interestingly, GhKNL1 represses genes promoting elongation and SCW cellulose deposition, 86 

whereas GhTCP4 coordinates the suppression of fiber elongation through its interaction with 87 

GhHOX3 to activate SCW synthesis (Cao et al. 2020; Wang et al. 2022). These results 88 

underscore the nuanced regulatory roles of TFs and intricate dynamics across different stages. 89 

Despite extensive research into TF-mediated regulatory networks of cotton fiber development, 90 

these studies have been primarily conducted in a gene-by-gene fashion, leaving relatively 91 
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unexplored a more comprehensive understanding of the dynamic interactions among networks of 92 

genes governing fiber development. 93 

Organ development in plants is intricate, depending on the precise timing and spatial regulation 94 

of gene expression, a process captured by complex gene regulatory networks (GRNs) (Haque et 95 

al. 2019; Jones and Vandepoele 2020; Vandepoele and Kaufmann 2023). These networks 96 

represent the full suite of interactions between TFs and their target genes, where TFs bind to 97 

specific DNA sequences known as TF binding sites (TFBSs) and regulate the transcription of 98 

downstream targets. Central to GRNs are hub TFs, which, due to their large number of target 99 

and/or regulating genes, are crucial for the integration and dissemination of regulatory signals 100 

across the network (Barabási and Oltvai 2004; Levine and Davidson 2005). Identifying hub 101 

genes in plant GRNs offers a clear roadmap for pinpointing master regulators and unraveling 102 

interconnections essential for biological processes and developmental programs (Gaudinier and 103 

Brady 2016; Haque et al. 2019; Jones and Vandepoele 2020). These network components, when 104 

modulated, can enhance plant productivity or resilience, often yielding more significant 105 

influence over complex phenotypes than manipulating individual genes alone (Springer et al. 106 

2019). Therefore, the construction and mining of GRNs is key for increasing the predictive 107 

power of genome engineering approaches aimed at agronomic traits for crop improvement. 108 

GRN construction methods can be broadly categorized into two main approaches differentiated 109 

by the source of information utilized: data-driven methods and prior knowledge-based methods. 110 

Data-driven methods leverage high-throughput experimental techniques to unveil physical 111 

interactions between TFs and their target genes. These techniques includes: (1) Chromatin 112 

immunoprecipitation sequencing (ChIP-seq) (Furey 2012) which identifies genomic sites bound 113 

by a given TF in vivo; (2) DNA-affinity purification sequencing (DAP-seq) (O’Malley et al. 114 

2016) captures DNA bound by the in vitro expressed TF; and (3) yeast one-hybrid assay (Taylor-115 

Teeples et al. 2015), which identifies physical interactions between TFs and their potential DNA 116 

binding sites.  Additionally, chromatin accessibility assays (Song and Crawford 2010; 117 

Buenrostro et al. 2015; Zhao et al. 2020), including DNase-I hypersensitive site sequencing 118 

(DNase-seq), assay for transposase-accessible chromatin with sequencing (ATAC-seq), and 119 

MNase hypersensitive sequencing (MH-seq), have also been applied to characterize cis-120 

regulatory elements as potential transcription factor binding sites (TFBSs) at a genome-wide 121 
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scale, thereby revealing regulatory relationships between TFs and target genes. Despite the 122 

substantial increase in information about regulatory sequences and interactions offered by these 123 

assays, inherent technical challenges and cost still pose limitations for studying large numbers of 124 

TFs (Kulkarni and Vandepoele 2020). Consequently, only a few plant species, such as 125 

Arabidopsis and maize, have constructed GRNs based on large-scale experimental data of 126 

regulatory interactions (Taylor-Teeples et al. 2015; Gaudinier et al. 2018; Tu et al. 2020; Tang et 127 

al. 2021).  128 

In contrast to data-driven methods, prior knowledge-based methods for GRN construction 129 

integrate existing biological knowledge, drawing from scientific literature, known biological 130 

pathways, functional gene ontology categories, and various knowledge databases of gene-to-gene 131 

relationships (Linde et al. 2015). For instance, resources like PlantTFDB (https://planttfdb.gao-132 

lab.org/) and PlantRegMap (https://plantregmap.gao-lab.org/) serve as integrated platforms for 133 

plant regulatory data and analysis, which systematically screens for functional TFBSs and 134 

regulatory interactions in plants. PlantRegMap, in particular, curates additional functional and 135 

evolutionary annotations, such as expression profiles and multiple-species comparisons, along 136 

with corresponding literature references, resulting in generation of regulatory maps for the main 137 

lineages of angiosperms, effectively representing their preliminary GRNs (Tian et al. 2020a). 138 

However, these general GRNs do not account for differences in gene regulation relationships 139 

across different tissues, developmental stages, or conditions.  140 

Integration methods often combine both data-driven and prior knowledge-based approaches, 141 

leveraging expression data underlying specific states to refine GRNs built based on existing 142 

knowledge, or vice versa. Computational algorithms that infer GRNs from gene expression data 143 

include correlation and information theory-based methods, probabilistic graphical models, and 144 

machine learning (Haque et al. 2019). Correlations and mutual information methods assume that 145 

co-expression is an indicator of coregulation and deterministically controlled by upstream 146 

regulators. Probabilistic graphical models consider gene expression as random variables with a 147 

certain probability distribution over different tissues and conditions. Machine learning 148 

algorithms, such as ensemble decision trees and support vector machines, are trained on 149 

expression data to predict regulatory relationships between genes. In recent years, these inference 150 

methods have been employed to construct GRNs and identify important genes and regulatory 151 
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relationship involved in plant growth and developmental processes, such as photomorphogenesis 152 

in Arabidopsis (Balcerowicz et al. 2021), abiotic and disease responses in wheat (Ramírez-153 

González et al. 2018), nitrogen-deficiency responses in rice (Ueda et al. 2020), as well as Kranz 154 

anatomy development in maize and rice (Chang et al. 2019). More recently, as demonstrated for 155 

spike phenotypic traits in wheat and flowering time regulation in maize (Chen et al. 2023; Han et 156 

al. 2023), GRN inference has been improved by integrating heterogeneous -omics and functional 157 

validation data for a more comprehensive understanding of the biomolecular networks. Despite 158 

the critical importance of cotton fiber development to its success as a major crop species, a 159 

comprehensive GRN that unravels the intricate molecular mechanisms underlying fiber traits is 160 

still lacking. 161 

In this study, we employed three distinct inference methods to construct GRNs utilizing 162 

transcriptome data from 401 samples. Notably, we validated the robustness and efficacy of 163 

resulting GRNs through rigorous integration with prior knowledge-based regulatory maps, DAP-164 

seq data, and additional transcriptomic datasets from gene perturbation experiments. Through 165 

this integrative analysis, we identified novel transcription factors crucial for orchestrating fiber 166 

development. We further validated the functional significance of a homoeologous pair of top-167 

ranked G2-like TF genes (GhMYS1_A10 and GhMYS1_D10) in the GRN, revealing their 168 

potential regulatory mechanisms in fiber development.  169 

An additional important dimension of our study is that it addresses the fate of duplicated GRNs 170 

in an allopolyploid plant, that is, one that contains two co-resident genomes. Gossypium hirsutum 171 

contains the descendant genomes of both its A-genome and D-genome ancestors (each n=13), 172 

and thus has an AD-genome with an additive (n=26) chromosome number. This evolutionary 173 

history raises the possibilities of revealing the fate of duplicated GRN dynamics following 174 

allopolyploid evolution, a prominent process in plant evolution (Hu et al. 2021; Viot and Wendel 175 

2023). Here, we elucidate subgenomic control over fiber expression at both the genic co-176 

expression and GRN levels, providing insights into the regulatory landscape of fiber 177 

development in an allopolyploid contect. Finally, we provide an integrative network resource and 178 

demonstrate its utility in enhancing our understanding of cotton fiber development, thereby 179 

facilitating targeted interventions to modulate fiber traits. 180 
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Results 181 

A fiber gene expression atlas of the Upland cotton G. hirsutum  182 

We compiled a dataset of 473 Upland cotton (G. hirsutum) fiber transcriptomes from 12 RNA-183 

seq studies (Tuttle et al. 2015; Zhang et al. 2015, 2021a; Hinchliffe et al. 2016; Lu et al. 2017; 184 

Bao et al. 2019; Hu et al. 2019; Sun et al. 2019a; Huang et al. 2020; Li et al. 2020; He et al. 185 

2021) (Supplementary Table S1). These samples spanned key fiber developmental stages from 0 186 

to 30 days post-anthesis (dpa), including fiber initiation, elongation, transition, and secondary 187 

cell wall (SCW) synthesis (Figure 1A, Supplementary Fig. S1). To ensure specificity to fiber 188 

cells, 12 samples from 0 to 3 dpa obtained from whole ovules were excluded. After quality 189 

screening based on a unique mapping rate higher than 70% and outlier removal through principal 190 

component analysis (PCA), a final set of 413 high-quality samples was obtained with Q20 above 191 

93.09% (Supplementary Table S2). Further refinement using principal component analysis 192 

(PCA) and t-distributed stochastic neighbor embedding (t-SNE) led to the removal of another 12 193 

outlier samples, resulting in a final dataset of 401 samples (Supplementary Fig. S2, 194 

Supplementary Table S2).   195 

Based on the standardized gene expression by TPM (transcripts per million), both PCA t-SNE 196 

identified two distinct clusters of fiber samples: one comprising 329 samples from 5 to 15 dpa 197 

and another with 57 samples from 19 to 30 dpa, while 15 samples from 18 dpa exhibited an 198 

intermediate distribution (Figure 1B, C). This observation indicates the pronounced 199 

transcriptional distinction of the fiber cell from about 19 dpa as it becomes intensely committed 200 

to SCW synthesis. Categorization of the three earlier stages was less clear, likely due to genetic 201 

variation and variation in growing conditions or collection techniques across studies. Notably, 202 

the inclusion of natural green-fiber cotton varieties highlights developmental differences that can 203 

distinguish accessions. That is, among the 15 samples representing 18 dpa fiber, the 12 samples 204 

derived from white-fiber producing accessions clustered with the 5 to 15 dpa samples (circa 50 205 

on PC1), whereas the 3 green-fiber (variety Xincai 7) samples clustered with the 19 to 30 dpa 206 

samples, suggesting that the green-fiber accessions transition to SCW synthesis sooner than the 207 

white-fiber accessions represented here and underscoring the potential for temporal differences 208 

in development among cotton varieties.   209 
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To ensure the reliability of this dataset, we examined expression patterns of 192 fiber-related 210 

genes known for their roles in cotton and/or Arabidopsis trichome development (Supplementary 211 

Table S3). These genes were classified into three groups based on their average TPM values per 212 

dpa (Supplementary Fig. S3). Group I, comprising 93 genes, displayed high expression levels 213 

early during fiber elongation, featuring well-known elongation-associated genes like GhMYB25 214 

(Machado et al. 2009), GhMYB25-like (Walford et al. 2011), GhTCP4 (Cao et al. 2020), 215 

GhPIN3a (Zeng et al. 2019), GhHOX3 (Shan et al. 2014), GhHD1 (Walford et al. 2012), 216 

GhCaM7 (Tang et al. 2014), GhWRKY16 (Wang et al. 2021b), and GhBZR1 (Zhou et al. 2015). 217 

Group II, containing 29 genes exhibiting higher expression during SCW synthesis at later time 218 

points, included established SCW genes such as GhBZR3 (Shi et al. 2022), GhKNL1 (Gong et al. 219 

2014), GhSWEET12 (Sun et al. 2019b), GhFSN1 (Zhang et al. 2018), and GhMYB46_D13 220 

(Huang et al. 2019). Group III comprised 70 genes with expression profiles peaking at various 221 

time points between 5 and 30 DPA. The expression patterns observed here closely align with 222 

previous reports (Supplementary Table S3); that is, 77% (105 out of 136) of the genes surveyed 223 

exhibited the expected expression profiles, providing robust validation of our gene expression 224 

atlas. The few inconsistencies observed were primarily attributed to missing data (i.e., lack of 225 

later time point data or large gaps between time points) in earlier studies. For example, several 226 

genes (including GhGA20ox1 (Xiao et al. 2010), GhTUA9 (Li et al. 2007), GhMYB212 (Sun et 227 

al. 2019b), GhACO1 (Wei et al. 2022), GhMAH1 (Ma et al. 2022), GhMYB5_A12 (Wang et al. 228 

2021a), and GhCPC (Liu et al. 2015)), which were previously compared only between 5 and 15 229 

dpa, exhibited continuous expression changes in 5 to 30 dpa based on our comprehensive 230 

expression profiles. Additionally, our dataset revealed that several well-known fiber initiation 231 

genes, including GhMYB25 (Machado et al. 2009), GhPIN6 (Zhang et al. 2017b), GhPIN3a 232 

(Zeng et al. 2019), GhBZR3 (Shi et al. 2022), and GhSWEET12 (Sun et al. 2019b), exhibited 233 

high expression levels in later stages of development that were not previously examined. This 234 

suggests that these genes may have regulatory roles beyond fiber initiation, highlighting insights 235 

enabled by our comprehensive data analysis. 236 

Co-expression gene network analysis reveals fiber developmental dynamics 237 

To explore the transcriptional dynamics of cotton fiber development, we employed weighted co-238 

expression gene network analysis (WGCNA) on fiber-expressed genes. Opting for a filtering 239 
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criteria of TPM>0 in 30% of the samples (see Methods and Supplementary Fig. S4), we 240 

identified and included 57,151 genes for further analysis, representing 76.3% of the total genome 241 

expressed in fibers, consistent with previous reports (Hovav et al. 2008a; Yoo and Wendel 2014; 242 

Gallagher et al. 2020). The subsequent WGCNA analysis categorized 34,075 genes into 20 co-243 

expression modules, varying in size from 109 to 7,360 module gene members (Supplementary 244 

Fig. S5). The seven largest modules, ME1 (turquoise), ME2 (blue), ME3 (brown), ME4 (tan), 245 

ME5 (green), ME6 (black), and ME7 (red), collectively accounted for 87.7% (29,884 genes) of 246 

all co-expressed genes. The remaining 23,076 genes, which could not be assigned to any 247 

modules, were grouped into a grey module, indicating no discernible co-expression relationships.  248 

To examine phenotypic associations, we correlated module eigengenes (MEs) with fiber 249 

development for 14 time points between 5 and 30 dpa (inclusive; Figure 2A). Pearson correlation 250 

analysis showed significant associations with fiber development for the majority of modules, 251 

treating the time points as a binary categorical variable (Figure 2A) or a numeric variable (DPA; 252 

Supplementary Fig. S5B). ANOVA of MEs revealed significant developmental changes for 253 

seventeen modules, excluding ME6, ME17, and ME20 (MEs ~ DPA, ANOVA P < 0.05) (Figure 254 

2B).  255 

Notably, the green module displayed the highest correlations with DPA (r = 0.80, P = 2e-91), 256 

exhibiting a gradually increasing expression profile along fiber development. This module 257 

consists of 4015 genes and 223 TFs, and it was enriched with GO terms related to cell wall 258 

development, such as plant-type secondary cell wall biogenesis, cell wall polysaccharide 259 

biosynthetic process, hemicellulose metabolic process, tube morphogenesis, and cell wall 260 

macromolecule biosynthetic process (Figure 2D). Conversely, the brown, blue, and tan modules 261 

showed strong negative correlations (r = -0.61~-0.85, P < 2e-41), corresponding to decreasing 262 

expression along fiber development (Figure 2B-C). The tan module in particular showed 263 

significant enrichment of GO terms associated with cotton fiber development, encompassing 264 

processes like very long-chain fatty acid metabolism, microtubule organization, cell tip growth, 265 

pectin biosynthesis, and polymeric cytoskeletal fiber processes (Figure 2D; Supplementary Fig. 266 

S6; Supplementary Table S4). 267 
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The turquoise module, the largest with 7360 genes (including 984 TFs), peaked in expression at 268 

25 dpa. Significant enrichment with GO terms including core promoter sequence-specific DNA 269 

binding, DNA-binding transcription activator activity, and RNA polymerase II-specific were 270 

observed. The red module, consisting of 2232 genes (including 50 TFs) and without significant 271 

correlation with DPA, were enriched with diverse GO functions (Supplementary Table S4). 272 

Exploring the roles of hormone signaling pathways in regulating cotton fiber development 273 

(Huang et al. 2021), we observed significant functional enrichment in key modules. The brown 274 

module with expression peaking at 5 dpa revealed a strong association with auxin (IAA)-275 

activated signaling pathways (Supplementary Fig. S7A), consistent with the known function of 276 

IAA-activated signaling pathways in promoting fiber initiation and elongation. Surprisingly, 277 

brassinosteroid (BR)-related signaling pathways, known to regulate fiber initiation and 278 

elongation, were enriched in both the tan module (early peaking at 5 dpa) and the turquoise 279 

module (late peaking at 25 dpa). This introduces a novel perspective on the impact of BR post-280 

fiber elongation, which has not been reported previously (Supplementary Fig. S7B-C). 281 

Additionally, the red and turquoise modules, which exhibited more complex and dynamic gene 282 

expression patterns across development, were enriched for BR, jasmonic acid, gibberellin, and 283 

ethylene-related signaling pathways (Supplementary Fig. S7C), warranting further investigation 284 

into their functional implications. Besides these extensively studied phytohormones, the 285 

turquoise module also showed significant enrichment of abscisic acid, cytokinins, and salicylic 286 

acid-related signaling pathways (Supplementary Fig. S7D), While these pathways are recognized 287 

for their roles in plant growth and development (Santner and Estelle 2009), their specific impact 288 

on cotton development remains underexplored.  289 

Construction and evaluation of the cotton fiber gene regulatory networks 290 

To infer regulatory interactions beyond co-expression relationships between genes, we 291 

systematically constructed gene regulatory networks (GRNs) using three distinct inference 292 

methods: Corto, GENIE3, and dynGENIE3. Leveraging the 57,151 fiber-expressed genes 293 

derived from 401 RNA-seq samples, we evaluated the regulatory relationships between 3,638 294 

transcription factors (TFs) and their putative target genes. Both GENIE3 and dynGENIE3 295 

inferences were confined to the top one million TF-target interactions (edges) for comparison, 296 
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retaining over twice the number of genes (nodes) from the GENIE3 network than from the 297 

dynGENIE3 network (54,237 and 25,441, respectively). Although Corto inferred only 232,943 298 

TF-target interactions (edges), it retained a comparable number of nodes to GENIE3 (56,052), 299 

resulting in the densest and most clustered network topology among the three methods, followed 300 

by GENIE3 and then dynGENIE3 (Table 1). Because differences in GRN construction can lead 301 

to different inferences, we evaluated GRN quality for each method based on existing and newly 302 

generated data, as listed below. 303 

We first assessed the ability of each GRN to capture documented TF-target interactions based on 304 

systematic literature mining in plants, as assembled into the PlantRegMap (Jin et al. 2015). 305 

These known regulatory relationships were projected onto cotton orthologs to generate the 306 

cottonRegMap. Among the three GRN methods, GENIE3 outperformed Corto and dynGENIE3, 307 

recovering the highest percentage of known interactions (14.98% vs. 14.58% and 13.85%, 308 

respectively), although the range among these percentages is relatively small. We also note that 309 

these seemingly low percentages of interactions reflect the non-specific nature of cottonRegMap, 310 

which involves prior knowledge assembled from various plants and is not specific to cotton 311 

fibers. Without a true gold-standard dataset for validation, we employed a permutation test to 312 

determine the expected number of interactions captured by chance. Both GENIE3 and Corto 313 

captured more interactions than the expected 14.37% of interactions (bootstrapping P < 0.05), 314 

demonstrating their utility in capturing biological information for cotton fiber (Figure 3A). For 315 

subsequent analyses, we integrated prior biological knowledge by retaining only the regulatory 316 

interactions predicted by GENIE3, dynGENIE3, and Corto that were also supported by 317 

cottonRegNet. This approach allowed us to retain the relative topological patterns between 318 

methods (Table 1). These integrated networks were designated as cGENIE3, cdynGENIE3, and 319 

cCorto, respectively. 320 

Using a second approach, we assessed the ability of each GRN to recover known fiber-related 321 

functional genes and TFs (Supplementary Table S3) previously reported in the literature. We 322 

curated 192 fiber-related functional genes, of which the cGENIE3 network contained 155 (80%), 323 

the cdynGENIE3 network contained 114 (59%), and the cCorto network contained 91 (47%) of 324 

the genes on the list. In terms of the percentage of known genes among total network nodes, 325 

cdynGENIE3 exhibited the highest percentage (0.45%, 117 of 25,441), followed by cGENIE3 326 
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(0.37%, 155 of 41,757) and cCorto (0.36%, 91 of 25,245). We extended this to assess whether 327 

known TFs were enriched among the highly ranked TF regulators in each GRN. Gene set 328 

enrichment analysis (GSEA) showed that the curated TFs were significantly enriched at the top 329 

of the cGENIE3 network; specifically, a leading-edge subset comprising 77 TFs was identified 330 

as the most significant contributors to this enrichment (Figure 3B, Supplementary Table S5). In 331 

contrast, known TFs were not enriched at the top of cdynGENIE3 and were randomly distributed 332 

in rank in the cCorto network (Supplementary Fig. S8). These results suggested that cGENIE3 333 

has stronger prediction power for key TFs compared to cdynGENIE3 and cCorto. 334 

We further validated the GRN-inferred TF-target relationships for two top ranked 335 

(homoeologous) TFs using physical evidence from DNA-affinity purification sequencing (DAP-336 

seq), an in vitro genome-wide assay of TF-DNA binding (O’Malley et al. 2016). The 337 

homoeologous G2-like TFs GhMYS1_A10 (Gohir.A10G036400) and GhMYS1_D10 338 

(Gohir.D10G037100) were among the most confident (highest-ranked) regulators in all three 339 

networks; therefore, these genes, were independently assayed for genome-wide binding sites 340 

using DAP-seq (Figure 3C, Supplementary Table S6). These assays yielded 227,117 and 141,945 341 

peaks for GhMYS1_A10 and GhMYS1_D10, respectively, with approximately 8.27% and 6.73% 342 

of the peaks located within 2kb of the transcription start site for 10,132 and 9,363 genes 343 

(Supplementary Fig. S9A-D). Among these genes, 7,784 and 6,773 were expressed in fibers and 344 

identified as targets for GhMYS1_A10 and GhMYS1_D10, respectively (Supplementary Fig. S9F-345 

E). Examination of the overlap in target genes between DAP-seq and each GRN revealed a 346 

significant association for both TFs in cGENIE3 (hypergeometric test p-values of 2.24e-08 and 347 

3.56e-06) and for GhMYS1_D10 only in cdynGENIE3 (p = 0.0471); no significant association 348 

was found for the cCorto GRN (Figure 3C, Supplementary Fig. S9F-G). These results were 349 

reiterated when we compared DAP-seq for an additional gene (GhBES1.4) with each GRN. 350 

GhBES1.4 is a known core TF in the BR signaling pathway that positively regulates fiber 351 

elongation (Liu et al. 2023), yet it was ranked eighteenth by different GRN methods. Using a 352 

published DAP-seq dataset for GhBES1.4 (Liu et al. 2023), we found significant overlaps 353 

between the 1214 fiber-expressed target genes of GhBES1.4 inferred by DAP-seq 354 

(Supplementary Fig. S9G) and the cGENIE3 and cdynGENIE3 GRNs, but not the cCorto GRN 355 

(Figure 3C).  356 
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Our fourth approach utilized published RNA-seq data from TF mutants or transgenic lines to 357 

evaluate the accuracy of GRN inferences, by assessing how well the predicted regulatory 358 

interactions in the GRNs corresponded to the differentially expressed genes (DEGs) observed in 359 

these TF mutants or transgenic lines. Specifically, we identified 3,508 DEGs in GhWRKY16 360 

RNAi lines, 1,422 in GhBES1.4 RNAi lines, and 1,790 in GhBES1.4 overexpression lines 361 

compared to wild-type plants, most of which (96.2-99.0%) were expressed in the fiber dataset 362 

evaluated here (Supplementary Fig. S10A-C). These DEGs likely represent downstream targets 363 

of the TFs perturbed in each respective experiment, and are thus useful to validate our GRN 364 

predictions. For GhWRKY16, which is a WRKY TF known for promoting fiber initiation and 365 

elongation (Wang et al. 2021b), we found significant overlap between the 3,472 DEGs identified 366 

from the RNAi line comparison and the GhWRKY16-target relationships found in the cGENIE3 367 

GRN (hypergeometric test p = 3.90e-06; Figure 4C); in contrast, cCorto and cdynGENIE3 368 

inferred only two and zero DEG targets, respectively. Conversely, the 1,477 DEGs detected in 369 

the GhBES1.4 exhibited significant overlap with the GhBES1.4-targets only recovered for the 370 

cdynGENIE3 GRN (p = 0.005751457). Notably, no significant overlap was found between the 371 

DEGs from the GhBES1.4 RNAi lines and any of the networks (Figure 3C). Combined with the 372 

DAP-seq evaluation, these results suggest that both GENIE3 and dynGENIE3 outperform Corto 373 

in predicting regulatory targets for specific TFs, notwithstanding the inherent variance depending 374 

on the TF and experimental context. 375 

Our final assessment correlated the trait fiber length with key fiber TFs inferred by the GRNs. 376 

Using the top 77 TFs ranked by each GRN method, Pearson correlation analysis between their 377 

expression levels in 15 DPA fiber and mature fiber length revealed the highest phenotypic 378 

correlations were found with TFs implicated in the cGENIE3 network, followed by 379 

cdynGENIE3 and then cCorto (Figure 3D, Supplementary Table S5, 7-8). All networks showed 380 

significantly higher correlations with phenotype than did all 3638 TFs expressed in fibers (Figure 381 

3D).  382 

Performance evaluation of GRN inferences in the case of cotton cellulose synthesis 383 

In this case study, we evaluated three GRN methods by focusing on their ability to predict 384 

regulatory relationships involved in cellulose synthesis in cotton fiber, aiming to further validate 385 
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their predictive power and highlight novel findings. Cotton fiber is composed primarily of 386 

cellulose, accounting for over 90% of its composition at maturity (Haigler et al. 2012). 387 

Performing a genome-wide analysis of the cellulose synthase (CesA) gene family, we identified 388 

27 CesA genes in the G. hirsutum genome and divided them into six classes, consistent with the 389 

previous reports (Supplementary Fig. S11) (Zhang et al. 2021c; Wen et al. 2022). Thirteen 390 

GhCesAs were highly expressed during fiber elongation via primary cell wall (PCW) synthesis, 391 

and seven were linked to SCW formation after 15 dpa. The remaining seven GhCesAs genes 392 

exhibit relatively low expression levels throughout fiber development and were considered of 393 

unknown function (Figure 4A).  394 

Inspecting the GRN-inferred TF-target relationships involving the fiber development related 395 

GhCesAs, we next compared how well each GRN method represents these genes and known 396 

regulator relationships (Figure 4B). The cGENIE3 network effectively identified all 20 GhCesAs 397 

as targets and predicted 71 regulatory TFs (Supplementary Fig. S12), resulting in the largest 398 

cellulose synthesis subnetwork (Figure 4C). In contrast, cdynGENIE3 identified only 13 399 

GhCesAs regulated by 43 TFs, notably missing all of the SCW GhCesAs (Figure 4B). Likewise, 400 

cCorto identified even fewer (11) GhCesAs, again missing all SCW GhCesAs, and finding only 8 401 

TFs as regulators (Figure 4B; Supplementary Fig. S13-14). In addition to predicting the greatest 402 

number of relationships, cGENIE3 also recovered regulatory relationships verified by prior 403 

studies, whereas cdynGENIE3 and cCorto did not. For example, the NAC TFs family genes 404 

GhFSN1_A12 and GhFSN1_D12 were predicted by cGENIE3 to regulate GhCesA4 and 405 

GhCesA7, consistent with their differential expression patterns in GhFSN1 overexpression lines 406 

compared to the wild-type cotton plants that suggest the same regulatory relationship (Zhang et 407 

al. 2018). Likewise, GhWRKY16_D06 was a predicted regulator of GhCesA7_D7, aligning with 408 

its known role in regulating GhCesAs during fiber initiation and elongation (Wang et al. 2021b) 409 

(Figure 4C). GO enrichment results showed that the 71 regulatory TFs predicted by cGENIE3 410 

were significantly enriched in plant-type cell wall modification, regulation of secondary cell wall 411 

biogenesis, and xylem development (Figure 4F). The results collectively suggested that the 412 

cGENIE3 network presents a higher predictive power for cellulose synthesis compared to 413 

cdynGENIE3 and cCorto. 414 
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Closer examination of the cGENIE3 network revealed two distinct yet interconnected network 415 

components (Figure 4C). The smaller component I consists of 11 PCW-related GhCesAs (3 416 

GhCesA1, 4 GhCesA3, and 4 GhCesA6) and 27 regulatory TFs. Most of these TFs primarily 417 

exhibited peak expression early during PCW synthesis, with 3 exceptions that peaked later. The 418 

larger component II includes 7 SCW-related GhCesAs (2 GhCesA8, 3 GhCesA7, and 2 419 

GhCesA4) and 38 TFs. Fewer than half of the TFs in this component exhibited concordant 420 

expression with their target GhCesAs. Among those disconcordant TFs peaking early during 421 

PCW formation, the homoeologous pair of top-ranked G2-like TFs described above, 422 

GhMYS1_A10 and GhMYS1_D10, were identified (Figure 4C and E). Combining trait 423 

association results and expression patterns, GhMYS1_A10 and GhMYS1_D10 emerge as potential 424 

novel TFs that may positively regulate fiber elongation by promoting PCW formation while 425 

inhibiting SCW formation (further explored later; Figure 4C). In addition to more diverse TF 426 

expression patterns, component II is enriched for SCW-related genes and is denser and more 427 

interconnected than component I, which is enriched for PCW-related genes (Figure 4C-E); this 428 

distinction reflects the intricate gene regulatory control underlying the transition from fiber 429 

elongation to cell wall thickening. The two components were interconnected through 6 TFs that 430 

regulate both PCW-related and SCW-related GhCesAs. These findings underscore the utility of 431 

GRN interrogation in characterizing key regulators and functions in cotton fiber development. 432 

Regarding At and Dt homoeologous relationships, we identified five TF homoeolog pairs and 433 

two GhCesA homoeolog pairs in component I, and six TF homoeolog pairs and two GhCesA 434 

homoeolog pairs in component II. These homoeolog pairs present in the same component 435 

accounted for 44.4% (8 of 18) GhCesAs and 33.8% (22 of 65) TFs, representing functional 436 

conservation or redundant regulatory relationships between homoeologs (Supplementary Table 437 

S9). This duplicated nature of allopolyploid gene networks, along with the identification of new 438 

master regulators, is discussed next. 439 

The allopolyploid nature of cotton fiber GRN 440 

Understanding the allopolyploid nature of G. hirsutum (2n= 4x = 52; AADD genome) is 441 

essential for unraveling the regulatory basis of cotton fiber development. The ascertainment of 442 

orthologous-homoeologous relationships among the polyploid A-subgenome (At) and D-443 
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subgenome (Dt) genes and their parental A- and D-genome diploids provides a foundation for 444 

understanding the evolutionary dimension of duplicated gene regulation during cotton fiber 445 

development. We used 22,889 homoeologous pairs that were previously characterized into 446 

single-copy orthologous-homoeolog groups (scOGs; each containing a single representative for 447 

At and Dt) (Hu et al. 2023) to evaluate the evolutionary outcomes for genes inherited from 448 

parental diploids and maintained in duplicate post allopolyploidization. The remaining genes 449 

(13,229 At; 15,895 Dt) were categorized into variable-copy orthologous-homoeolog groups 450 

(vcOGs), possibly reflecting genetic variation between parental diploids and/or accrued post 451 

allopolyploidy. Against this backdrop, we leveraged the network perspectives of gene 452 

expression, co-expression, and regulatory interactions, to assess the contributions of the A- 453 

versus D- subgenomes for both scOG and vcOG categorization of homoeologous gene pairs 454 

during the dynamic process of fiber development. 455 

Proportion of fiber-expressed genes. Of the 57,151 fiber-expressed genes (76.3% of the total 456 

genome), the A-subgenome contains fewer fiber-expressed genes compared to the D-subgenome 457 

(28,004 At vs 29,147 Dt), although this is a higher percentage of the total number of At genes 458 

versus Dt (77.53% vs 75.15%; chi-square test P = 0.008523). These fiber-expressed genes were 459 

further categorized into (1) 19,213 paired scOGs where both At and Dt were expressed; (2) 1,597 460 

unpaired scOGs where only one homoeolog was expressed in fibers (749 At and 848 Dt); and (3) 461 

17,128 vcOG genes (8,042 At and 9,086 Dt) (Table 2: I&II). Gene expressed in fibers 462 

represented a significantly higher proportion of the scOG category versus the vcOG category 463 

(87.4% vs. 58.5%, respectively; chi-square test P = 2.2e-16). Between subgenomes, a higher 464 

percentage of vcOG At genes was expressed in fiber versus vcOG Dt genes (60.6% vs 57.2%), 465 

while the percentages were comparable for scOGs (87.2% vs 87.7% At and Dt genes, 466 

respectively). Thus, the higher percentage of expressed gene content in the A-subgenome was 467 

mainly attributable to the higher proportion of vcOGs At genes expressed in fiber. 468 

Overall expression levels. Comparing expression levels between A- and D-subgenomes revealed 469 

a subtle pattern with slightly higher expression of Dt genes (Figure 5A), consistent with previous 470 

reports in cotton fibers (Hovav et al. 2008b; You et al. 2023). This expression imbalance was 471 

consistently observed for the scOG gene set, whereas the vsOG gene set exhibited the opposite 472 

pattern (i.e., higher expression of At genes; Figure 5A). Notably, paired scOGs exhibited the 473 
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highest expression levels for both At and Dt genes (“scOG pair”: mean TPM of At 18.53 and Dt 474 

19.96), followed by vcOG genes (“vcOG”, At 15.98 and Dt 14.07), and then singleton scOGs 475 

with only one homoeolog expressed exhibiting the lowest expression levels (“scOG unpair”: At 476 

1.42 and Dt 1.00). 477 

Homoeolog expression bias (HEB). Analysis of HEB, where homoeolog expression statistically 478 

varies between duplicates, revealed 8,981 A-biased and 9,153 D-biased pairs among the 19,213 479 

scOG homoeolog pairs, numbers that are not statistically different (P = 0.3451), and aligning 480 

with previous results (Zhang et al. 2015). Intriguingly, A-biased pairs displayed higher 481 

expression levels and larger variation across samples compared to D-biased pairs (Figure 5B). 482 

However, D-biased pairs exhibited significantly more expression differences than the A-biased 483 

pairs (i.e., Dt-At > At-Dt; Supplementary Fig. S15). This resulted in an overall higher gene 484 

expression of scOGs in the D subgenome than the A subgenome, despite the presence of more 485 

A-biased versus D-biased pairs. 486 

Co-expression modular HEB. The co-expression gene network analysis clustered 25,751 fiber-487 

expressed genes (12,816 At and 12,935 Dt genes) into 20 co-expression modules. Approximately 488 

48.8% of module member genes were paired in modules as homoeologous pairs (6,280 pairs; 489 

Table 2: III), indicating substantial functional conservation. The remaining 51.2% of module 490 

genes were present in different modules for At and Dt, suggesting functional divergence in terms 491 

of co-expression patterns (Supplementary Table S10). Proportions of homoeologous TF pairs in 492 

the same module were significantly higher than other homoeologous gene pairs (53.0% vs 493 

48.8%; chi-square test P = 2.2e-16), indicating a higher level of functional conservation between 494 

TF homoeologs (Table 2: III; Table S10). Investigating modular HEB for the homoeologous 495 

pairs within the same module revealed an absence of significant imbalance of HEB toward either 496 

subgenome (Supplementary Table S11). This observation is consistent with the overall pattern of 497 

19,213 scOG pairs. The expression level differences between At and Dt genes across modules 498 

(Figure 5C) can be mostly attributed to the expression differences between A-biased and D-499 

biased pairs (Figure 5D; Supplementary Fig. S16). Notably, within the tan module corresponding 500 

to fiber elongation, a significantly higher |At-Dt| difference was observed in D-biased then A-501 

biased pairs, implying that the D subgenome might exert a greater effect on fiber elongation than 502 

the A subgenome. 503 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 13, 2024. ; https://doi.org/10.1101/2024.08.12.607624doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.12.607624
http://creativecommons.org/licenses/by-nd/4.0/


18 

 

Subgenomic asymmetry in fiber GRN. Taking the cGENIE3 network as an example, we 504 

evaluated the subgenomic contributions to regulatory nodes and edges within the inferred 505 

regulatory network. For nodes (Table 2: IV), a higher percentage of At genes was recovered in 506 

the network compared to the Dt genes (57.0% vs 54.6%; chi-square test P = 0.0005271), and this 507 

biased pattern was mainly caused by the target genes (TGs: 56.7% vs. 54.3%; chi-square test P = 508 

0.0004837), particularly the scOG ones (39.6% vs. 35.6%; chi-square test P = 1.757e-06). The 509 

proportion of TFs with both At and Dt homoeologs present in GRN was significantly higher than 510 

that of target genes (“TFs in scOG pair” 88.1% vs “TGs in scOG pair” 77.9%; chi-square test P = 511 

2.2e-16). Depending on whether the TF-TG regulatory links were inferred within or between 512 

subgenomes, network edges were classified into four categories: two intra-subgenome classes 513 

within either subgenome (38,704 At-At and 35,997 Dt-Dt) and two inter-subgenome classes 514 

(40,116 At-Dt and 35,032Dt-At) (Table 2: V). The observed ratio of these four edge classes 515 

(1.10:1.03:1.15:1.00) significantly deviated from expected proportions assuming full network 516 

connectivity from TF to TG nodes (1.01:1.03:1.04:1.00; chi-square test, P < 2.2e-16). The intra-517 

subgenome At-At and inter-subgenome At-Dt edges were observed more frequently than 518 

expected, indicating a biased regulatory role of At TFs compared to Dt TFs in the fiber gene 519 

regulatory network (GRN) (Table 2: V). Finally, we assessed the extent of functional 520 

conservation between homoeologs in the GRN, differentiating their roles as TFs or TGs. We 521 

observed a significantly higher proportion (15.8%) of edges targeting paired TG homoeologs 522 

(i.e., regulatory role as TFs targeting conserved cis binding sites) compared to the proportion 523 

(6.4%) of edges regulated by paired TF homoeologs (i.e., TGs being regulated by conserved 524 

trans TF proteins) (Table 2: V; Supplementary Table S12). This suggests that functional 525 

divergence between homoeologs in the GRN is more likely to occur in trans rather than in cis. 526 

Consistent patterns were observed in cottonRegNet and other GRNs (Supplementary Table S12). 527 

Exploring novel regulators of cotton fiber development by GRN inference. 528 

We next utilized the best performing cGENIE3 network to identify inter-connections among 529 

previously characterized fiber-related genes. Of the curated list of 192 known fiber-related genes 530 

(Supplementary Table S3), 154 were present in the network, with 657 directed network edges 531 

pointing to them from various TFs. This yielded a seeded network termed kGRN, comprising 532 

432 nodes and 657 edges (Figure 6A, Supplementary Table S13). 533 
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Within the kGRN, ten known fiber-related genes function as TFs, regulating other known genes. 534 

Eight of these TFs, GhTCP14, GhMYB46_D13, GhARF2b, GhFSN1_A12, GhWRKY16, GhGT2, 535 

and a homoeologous pair of GhMYB30, have been functionally validated in fiber development 536 

(Supplementary Table S14) (Wang et al. 2013, 2021b; Zhang et al. 2018, 2021b; Huang et al. 537 

2019; Tian et al. 2022; Wu et al. 2023). GhMYB7_A12 and GhJMJ12_D12, identified in 538 

previous GWAS studies, were significantly associated with fiber strength and/or length (Wang et 539 

al. 2017; Liu et al. 2020). Among the remaining 187 TFs with unknown roles in cotton fibers, 97 540 

have Arabidopsis orthologs with proven roles in cell wall development or involvement in 541 

signaling pathways regulating cotton fiber elongation (Supplementary Table S15), suggesting 542 

them as potential candidates for future molecular validation. 543 

By integrating network clustering results with co-expression module annotation, the kGRN was 544 

partitioned into three subnetworks (Figure 6A). Subnetwork I, forming a loosely connected 545 

periphery on the left, prominently featured co-expressed TFs and target genes from the turquoise 546 

module. The target genes of these turquoise module TFs were identified across multiple co-547 

expression modules, suggesting a broad spectrum of regulatory effects amplified by the 548 

fluctuating gene expression patterns spanning from 5 to 30 dpa, potentially involving various 549 

signaling pathways acting at the inter-modular level (Figure 2A).  550 

Subnetwork II, situated on the right periphery, consists of most of the well-characterized TFs 551 

from the brown module, orchestrating key aspects of fiber initiation, including GhHOX3, 552 

GhHD1, GhMYB25-like, and GhWD40 (Figure 6B). Of particular interest is GhHOX3, 553 

simultaneously regulated by both the brown and tan module TFs (Figure 6B), aligning with its 554 

multifaceted role in fiber initiation and elongation functions, respectively (Shan et al. 2014; Qin 555 

et al. 2022).  556 

Subnetwork III, centrally located and densely interconnected, weaves together regulatory 557 

relationships between TFs and known function target genes in the green, yellow, and blue 558 

modules. Among the hub TFs regulating numerous target genes, two, GhFSN1_A12 (Zhang et al. 559 

2018) and GhMYB30 (Wu et al. 2023), have been previously characterized. GhFSN1_A12, 560 

encoding a NAC TF, acts as a positive regulator of fiber SCW thickening by activating a series 561 

of known SCW-related genes (Zhang et al. 2018). GhMYB30, among the latest characterized 562 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 13, 2024. ; https://doi.org/10.1101/2024.08.12.607624doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.12.607624
http://creativecommons.org/licenses/by-nd/4.0/


20 

 

members of cotton MYB TFs, was found to regulate cotton fiber development by inhibiting the 563 

expression of GhMYB46, which was also verified in kGRN (Supplementary Fig. S17) (Wu et al. 564 

2023). Other uncharacterized hub TFs also include GhMYB73 and a homoeologous pair of 565 

GhMYB60, offering promising candidates given the well-documented roles of MYB TFs in fiber 566 

initiation, elongation, and SCW synthesis. 567 

Focusing on the top hub TFs in kGRN subnetwork III, GhMYS1_A10 and GhMYS1_D10 (Figure 568 

6C), represent a homoeologous pair of G2-like TF MYS1 (MYB-SHAQKYF 1). These TFs have 569 

known functions in Arabidopsis wax biosynthesis and drought tolerance (Liu et al. 2022). 570 

Among the 26 targets of GhMYS1_A10 and 21 targets of GhMYS1_D10, 18 target genes were 571 

commonly regulated by both, indicating substantial redundancy between homoeologous genes. 572 

Among their common targets are several known functional genes including GhPIN3a, GbTCP, 573 

GhFSN1_A12, GhCesA8_D10, and GhCesA8_A10 (Figure 6C). In conclusion, known functional 574 

genes and their upstream TFs reflect a complex GRN of fiber elongation and SCW synthesis and 575 

also helped us identify nine highly connected TFs as candidate regulators of fiber elongation. 576 

Functional validation of GhMYS1 reveals its positive role in fiber elongation 577 

Based on the top rankings of GhMYS1A10 and GhMYS1D10 in fiber GRNs and their significant 578 

trait associations, we selected this homoeologous pair of TFs for functional analysis (Figure 6 579 

and Table S5-6). Comparative expression analysis showed significant upregulation of these 580 

genes at 15 dpa in cultivated versus wild cotton and in elite long-fiber versus short-fiber cotton 581 

accessions (Figure 7A and B), indicating a potential link with domestication and breeding 582 

improvements. Given the 97.29% similarity in the coding regions of GhMYS1_A10 and 583 

GhMYS1_D10, VIGS primers were designed to simultaneously silence both genes. VIGS-584 

mediated silencing successfully reduced the expression of both GhMYS1 genes (Figure 7C), 585 

resulting in significantly shorter fibers in pCLCrVA: GhMYS1 (23.8 mm) compared to 586 

pCLCrVA:00 control plants (28.5 mm; P =0.001352) (Figure 7D-E).  587 

The joint analysis of DAP-seq results and cGENIE3 predictions identified five genes regulated 588 

by GhMYS1_A10 and four genes regulated by GhMYS1_D10. Among these, GhPIN3a and 589 

GhWLIMa were common targets regulated by both (Supplementary Table S16). GhTBL7, 590 
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GhVIN1, and GhCesA7_D05 were exclusively targeted by GhMYS1_A10, while GaMYB2, and 591 

GbAAR3 was only regulated by GhMYS1_D10 (Supplementary Table S16).  Interestingly, 592 

GaMYB2 and three genes including GhTBL7, GhVIN1, and GhCesA7_D05 were target genes of 593 

GhMYS1_A10 and GhMYS1_D10, respectively, in at least one method of the DAP-seq and 594 

cGENIE3. To verify these regulatory relationships, we conducted Dual-luciferase reporter assay 595 

(LUC) using the promoter sequences of GhPIN3, GhTBL7, GaMYB2, and GhCesA7_D05. The 596 

LUC results showed that GhMYS1_A10 could activate GhPIN3a while repressing GhMYB2, 597 

GhTBL7, and GhCesA7_D05, even though GhMYB2 was only predicted by GRN (Figure 7F). 598 

Consistent with the joint prediction, GhMYS1_D10 activated the expression of GhPIN3a and 599 

GhMYB2 (Figure 7G). However, despite GRN and DAP-seq predictions identifing GhTBL7 and 600 

GhCesA7_D05 as target genes of GhMYS1_D10, respectively, the LUC experiment did not 601 

confirm these regulatory relationships, indicating potential false positives (Figure 7G, 602 

Supplementary Table S16). The common and discordant regulation of target genes by 603 

GhMYS1_A10 and GhMYS1_D10 highlights both functional redundancy and differentiation of 604 

these homoeologs during fiber development. These findings suggest that GhMYS1 is a novel 605 

transcription factor regulating fiber development, potentially by modulating auxin and positively 606 

regulating fiber elongation by suppressing the expression of secondary wall formation-related 607 

genes. 608 

Discussion 609 

Leveraging GRN inferences for cotton fiber development study 610 

Over the last two decades, conventional molecular genetic analyses have elucidated nearly 200 611 

genes that are important for cotton fiber development, providing valuable insights into the 612 

genetic regulation of this process (Huang et al. 2021; Wen et al. 2023). However, previous 613 

efforts have often focused on individual genes and limited gene-to-gene inter-connections, 614 

resulting in simplified, linear, or limited local networks that fail to capture the complexity of the 615 

comprehensive genome-wide GRN governing fiber development. This limitation hinders the full 616 

exploration and discovery of the intricate biological networks governing cotton fiber 617 

development.  618 
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To address this challenge, we leveraged large-scale transcriptome datasets and a wealth of 619 

functional gene resources to construct comprehensive genome-wide GRNs for cotton fiber 620 

development. We rigorously compared and validated three distinct GRN inference methods 621 

against prior knowledge-based regulatory maps, known fiber-related functional genes, DAP-seq 622 

data, RNA-seq data from gene perturbation experiments, and phenotypic correlation analyses. 623 

This integrative approach demonstrated a carefully crafted, step-by-step process of network 624 

evaluation and optimization.  625 

An important consideration in our study was the selection of gene expression thresholds for 626 

network construction. Conventional approaches often use generic cutoffs (e.g., greater than 1 627 

RPKM/TPM) (Zhou et al. 2020; Chen et al. 2023), which are prone to exclude transcriptional 628 

factors (TFs) and other functional genes with low transcript abundance (Ghaemmaghami et al. 629 

2003; Vaquerizas et al. 2009). In our study, we screened various thresholding options and set the 630 

final cutoff at TPM greater than 0 in 30% of samples (see Method or Supplementary Fig. S4), 631 

which retained 76.3% of total genes and 72.2% of TFs, ensuring the inclusion of 98.3% of 632 

known functional genes crucial for network construction. This approach enabled us to capture a 633 

diverse range of genes dynamically expressed across different stages of fiber development, such 634 

as GhHD1 (Walford et al. 2012), GhMYB25-like (Walford et al. 2011), GhWD40 (Tian et al. 635 

2020b), facilitating the identification of the modules related to fiber initiation, even in the 636 

absence of fiber samples from 0-4 DPA (Figure 2C, Figure 6B).  637 

GENIE3, an ensemble machine-learning algorithm based on random forests, has demonstrated 638 

superior performance in the DREAM4 and DREAM5 GRN reconstruction challenges (Huynh-639 

Thu et al. 2010; Marbach et al. 2012). It has been extensively employed to understand the 640 

transcriptional regulation mechanism of plant traits in Arabidopsis, rice, wheat, and maize 641 

(Walley et al. 2016; Ezer et al. 2017; Huang et al. 2018; Ramírez-González et al. 2018; Shibata 642 

et al. 2018; Harrington et al. 2020; Ueda et al. 2020). Given that the fiber transcriptome data in 643 

this study consists of 14 time points, dynGENIE3, an adaptation of the original GENIE3 for time 644 

series data (Huynh-Thu and Geurts 2018; Balcerowicz et al. 2021), was also used for GRN 645 

construction. Additionally, we included another method, Corto (Mercatelli et al. 2020), due to its 646 

resemblance to the well-established ARACNe algorithm, which was among the early 647 
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demonstrated GRN applications known for its ability to infer direct regulatory interactions by 648 

eliminating indirect effects (Margolin et al. 2006). 649 

To obtain an approximate “gold standard” for evaluating the performance of GRN predictions, 650 

we leveraged the prior knowledge of Arabidopsis regulatory interactions (AtRegMap) to 651 

assemble a cottonRegMap through orthologous relationships (Wu et al. 2021). Although the 652 

limited availability of fiber cistrome data (i.e., TF ChIP-seq or DAP-seq) hinders constructing 653 

GRNs directly from empirical evidences of TF-target relationships, we integrated DAP-seq 654 

results and transcriptomic data from perturbation experiments for key TFs such as GhBES1.4 655 

(Liu et al. 2023), GhWRKY16 (Wang et al. 2021b), GhMYS1_A10, and GhMYS1_D10 to 656 

reinforced the reliability of our GRN predictions. In addition to validating the capture of known 657 

regulatory relationships, we also considered the inclusion and network centrality of known fiber 658 

functional genes, concluding that GENIE3 exhibited the strongest predictive power for known 659 

regulatory relationships and key TFs. Notably, these evaluation approaches were applied with 660 

appropriate statistical tests (e.g., permutation tests), considering the different network sizes 661 

resulting from the three GRN inference methods (with node numbers of 54,237, 25,441, and 662 

56,052 inferred by GENIE3, dynGENIE3, and Corto, respectively).    663 

To exemplify insights gained from this integrative approach, we focussed on the 664 

developmentally important process of cellulose synthesis. Although the number of regulator and 665 

GhCesAs genes captured in networks differed across methods (Table 1 and Figure 5A), 666 

cGENIE3 captured the most functionally relevant regulatory relationships in CesA biosynthesis 667 

networks. For example, GhFSN1_A12’s negative role in suppressing fiber elongation by 668 

promoting secondary cell wall (SCW) biosynthesis (Zhang et al. 2018) was evident in its 669 

regulation of several GhCesA genes involved in SCW formation, including GhCesA8_D10, 670 

GhCesA07_D5, and GhCesA4_D07(Figure 4C). Similarly, GhHOX3_D12’s involvement in fiber 671 

initiation and elongation (Shan et al. 2014; Qin et al. 2022) was supported by its regulation of 672 

GhCesA genes involved in primary cell wall (PCW) synthesis, such as GhCesA6_A06 and 673 

GhCesA1_D05-1(Figure 4C). Notably, homologous genes of SND2 and SND4, key NAC TFs of 674 

SCW synthesis in Arabidopsis (Taylor-Teeples et al. 2015; Zhong et al. 2021), were also 675 

identified as key regulators targeting multiple SCW-related cellulose (Figure 4C). Furthermore, 676 

novel regulatory relationships uncovered by cGENIE3, such as GhMYS1_A10’s regulation on 677 
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GhCesA7_D5, were experimentally validated through LUC experiments (Figure 4C, Figure 6C 678 

and Figure 7F). These findings underscore the potential of GRN to elucidate molecular 679 

mechanisms underlying key TF-gene interactions in fiber development. 680 

Novel TFs regulating fiber development 681 

GRNs are invaluable tools for predicting the function of TFs. By utilizing the seeded network 682 

kGRN of known fiber genes constructed by cGENIE3, we not only confirmed eight previously 683 

known TFs (GhTCP14, GhMYB46_D13, GhARF2b, GhFSN1_A12, GhWRKY16, GhGT2, a 684 

homoeologous pair of GhMYB30) (Wang et al. 2013, 2021b; Zhang et al. 2018, 2021b; Huang et 685 

al. 2019; Tian et al. 2022; Wu et al. 2023), but also identified 185 novel TFs regulating known 686 

fiber genes (Figure 5A, Supplementary Table S15). Included were a pair of GhMYS1 TFs, 687 

GhMYS1_A10, and GhMYS1_D10, that are predicted to regulate 26 and 21 known genes, 688 

respectively, and which are ranked highly by prediction scores across all three GRN inference 689 

methods, suggesting their important role in fiber development (Supplementary Table S6). This 690 

hypothesis is supported by the significant association between fiber traits and gene expression 691 

(Supplementary Table S5), where the expression level of this gene pair at 15 dpa fiber is 692 

markedly higher in domesticated and elite varieties compared to wild and short-fibered varieties 693 

(Figure 7A-B). Experimental validation revealed that silencing GhMYS1_A10 and GhMYS1_D10 694 

simultaneously led to a significant reduction in cotton fiber length, underscoring their role in 695 

fiber elongation during domestication and breeding processes.  696 

Previous research indicated that MYS1 affects cuticular wax content by down-regulating genes 697 

related to wax biosynthesis when overexpressed in Arabidopsis, leading to increased contents of 698 

primary alcohols, alkanes, and total wax (Liu et al. 2022). With very long-chain fatty acids 699 

(VLCFAs) serving as the precursors for wax biosynthesis (Kunst and Samuels 2009) and acting 700 

upstream of the ethylene signaling pathway (Huang et al. 2021; Wen et al. 2023), we speculate 701 

that MYS1's role in fiber development involves mediating VLCFA content. Although no 702 

significant changes in the content of VLCFAs were detected in the MYS1 overexpression 703 

transgenic Arabidopsis, MYS1 was co-expressed with several 3-ketoacyl-CoA synthases (KCSs) 704 

involved in VLCFA biosynthesis (Liu et al. 2022). Our cGENIE3 results showed that 705 

GhMYS1_A10 and GhMYS1_D10 simultaneously regulate VLCFA biosynthesis-related genes 706 
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GhKCS13 (Shi et al. 2022) and GhKCS10 (Yang et al. 2023) (Figure 6C), suggesting that 707 

GhMYS1 may affect fiber elongation by regulating VLCFA biosynthesis. 708 

Auxin plays a well-documented positive role in fiber initiation and elongation (Huang et al. 709 

2021; Wen et al. 2023). GhPIN3a, an auxin efflux carrier, mediates fiber initiation by 710 

establishing hormone gradients in ovule epidermal cells and fibroblast cells (Zhang et al. 2017a; 711 

Zeng et al. 2019). Both GRN and DAP-seq results indicated that GhMYS1_A10 and 712 

GhMYS1_D10 regulate GhPIN3, a regulatory relationship further validated by LUC assays 713 

(Figure 5C and Figure 7F-G). Additionally, GRN identified four GhCesAs related to secondary 714 

wall formation, including GhCesA7_A05, GhCesA7_D05, GhCesA8_A10, and GhCesA8_D10, 715 

which were regulated by GhMYS1_A10 and/or GhMYS1_D10 (Figure 5C). DAP-seq and LUC 716 

experiments confirmed the negative regulatory relationship between GhMYS1A and 717 

GhCesA7_D05 (Figure 5C and Figure 7E).  718 

Overall, our study validates that GhMYS1_A10 and GhMYS1_D10 positively regulate fiber 719 

elongation by controlling auxin transport and VLCFA synthesis while inhibiting SCW formation. 720 

GRN and DAP-seq results indicate that these TFs regulate numerous genes involved in fiber 721 

development (Figure 5C and Supplementary Table S5), suggesting a more complex regulation 722 

than previously anticipated. Beyond GhMYS1_A10 and GhMYS1_D10, further exploration of 723 

other top-ranking regulators identified by GRN could provide valuable insights for improving 724 

fiber quality.  725 

Asymmetric subgenome contribution to fiber gene expression and network properties 726 

Previous cotton research suggested that the D subgenome exhibits dominant expression (i.e. 727 

imbalance of more D-biases than A-biases) and therefore may play a more important role overall 728 

than the A subgenome during fiber development and in response to domestication selection 729 

(Wang et al. 2017; Ma et al. 2018; Li et al. 2020; You et al. 2023). We note that differences in 730 

accessions used, fiber stage, sample numbers and calculation methods among studies have led to 731 

varying reports of homoeolog expression bias (HEB), including imbalance favoring D-biased 732 

homoeolog pairs (Hovav et al. 2008b; Pei et al. 2022; You et al. 2023) and imbalance (Yoo and 733 

Wendel 2014; Zhang et al. 2015; Mei et al. 2021). Against this backdrop of variation, our study 734 
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found no significant imbalance between A- and D- biased homoeolog expression based on 401 735 

high-quality transcriptome datasets (Supplementary Table S11 and Figure 5A-B). 736 

Beyond the perspective offered by biased homoeolog expression, our analysis explored the 737 

nuances of asymmetric duplicated gene expression. Notable findings include a higher number of 738 

At than Dt fiber-expressed genes a slightly higher overall transcript abundance of Dt than At 739 

genes; and more highly expressed A-biased homoeologous pairs but with lower expression 740 

differences (i.e., |At-Dt|) compared to the D-biased homoeologous pairs (Supplementary Table 741 

S11 and Figure 5). These subtle and nuanced features and their connections prompted us to 742 

speculate that it is the larger expression differences in D-biased homoeologous pairs that 743 

contribute to the higher overall transcript abundance of Dt genes, thus leading to the D 744 

subgenome exhibiting a disproportionate expression level, which has not been shown in previous 745 

studies. These nuanced features enrich our understanding of subgenome contributions to gene 746 

expression.  747 

 A particularly important methodological consideration is that the analysis of duplicated gene 748 

expression, in cotton and other allopolyploid systems (Grover et al. 2012; Bird et al. 2021; 749 

Birchler and Yang 2022), typically encompasses single-copy homoeologous gene pairs (or sets, 750 

scOGs) derived from the inference of homoeologous relationships. In cotton, even with high-751 

quality genomes and using the latest approaches to orthology inference, such as pSONIC 752 

(Conover et al. 2021) and GENESPACE (Lovell et al. 2022), the inferred proportion of single-753 

copy homoeolog groups range from 52% to 73% of the total genomic genic content, meaning 754 

that a substantial proportion of genes are missing from analyses of duplicated gene expression 755 

patterns. Here we specifically included these variable-copy gene groups (vcOGs) to examine 756 

subgenomic contributions and detect previously overlooked patterns. For example, we found that 757 

the average expression level of vcOGs in the A subgenome is significantly higher than that in the 758 

D subgenome, contrary to the results of scOG (Figure 5A). This finding highlights the 759 

importance of considering vcOGs in addition to scOGs when studying gene expression in 760 

polyploid systems. It is likely that epigenetic modifications, including DNA methylation and 761 

histone modifications, which affect gene expression in polyploid plants (Song and Chen 2015), 762 

might also be explored for vcOGs to further our understanding of subgenomic contributions to 763 
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allopolyploid gene expression. This comprehensive approach will provide a more detailed 764 

picture of how gene expression is regulated in polyploid systems.  765 

Perhaps more important than the genic perspective, with respect to the genomic duplication that 766 

accompanies allopolyploidy, is that provided by gene co-expression network and regulatory 767 

network analyses. These analyses permit the exploration of the joint as well as separate 768 

contributions of the A- and D- subgenomes to fiber development, from the standpoint of a more 769 

biologically realistic network perspective. Co-expression relationships are often inferred to 770 

reflect genes with similar or biologically associated functions (Rhee and Mutwil 2014). Our 771 

study shows that scOGs present in the same module account for 48.8% of network genes (Table 772 

2: III), which is higher than the proportions reported for other studies of cotton (Gallagher et al. 773 

2020; Jareczek et al. 2023) and wheat (37.4%) (Ramírez-González et al. 2018). For example, in 774 

two previous studies of fiber co-expression gene network construction based on 24 wild and 775 

domesticated fiber samples, the proportion of scOGs present in the same module was 20.2-36.1% 776 

in G. hirsutum and 23.5% in Gossypium. barbadense (G. barbadense), suggesting that the 777 

majority of homoeologous gene pairs are in separate modules in the polyploid network 778 

(Gallagher et al. 2020; Jareczek et al. 2023). This discrepancy can likely be attributed to the 779 

different RNA-seq samples used. Compared to these earlier studies, our inclusion of more RNA-780 

seq samples, primarily from G. hirsutum cultivars, could have resulted in a more connected and 781 

denser fiber network due to the effect of domestication, as previously suggested in cotton (Bao et 782 

al. 2019; Gallagher et al. 2020) and in other plants (Alonge et al. 2020; Groen et al. 2020). 783 

Consequently, we inferred more homoeolog pairs into the same modules, estimating a higher 784 

level of functional conservation or closer functional association of homoeologs. Additionally, 785 

our larger sample size reduces noise in module assignment, as variable data are more prone to 786 

placing homoeologs into different modules. Beyond the overall network structure, our results 787 

revealed modular-level features specific to associated functions. For example, the tan and green 788 

modules, which were highly expressed during the fiber elongation and SCW thickening stages, 789 

showed obvious D and A subgenome biases, respectively. These results further enriched our 790 

understanding of the contributions of different subgenomes to fiber development, providing 791 

insights that could not be discerned from a single-gene perspective.  792 
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Compared to co-expression relationships, TF-TG regulatory relationships inferred by GRNs 793 

allow for an examination of subgenomic contributions, including intra-subgenomic interactions 794 

(At-At and Dt-Dt) and inter-subgenomic interactions (At-Dt and Dt-At) as previously proposed 795 

(Hu and Wendel 2019). This aspect has been explored using three-dimensional genomic 796 

interaction (Hi-C) and expression quantitative trait locus (eQTL) methods (Li et al. 2020; Wang 797 

et al. 2018). Wang et al. (2018) characterized 3D genome architectures, revealing that inter-798 

subgenomic interactions (At-Dt) accounted for approximately half of all interactions in tetraploid 799 

cottons (45.5% in G. hirsutum and 47.1% in G. barbadense), indicating an equivalent amount of 800 

inter- and intra-subgenomic interactions, consistent with our findings. Further, Li et al. (2020) 801 

used eQTL analysis on 15 dpa fiber transcriptomes from 251 G. hirsutum accessions, identifying 802 

15,330 eQTLs associated with 9,282 genes. They found that the proportion of inter-subgenomic 803 

eQTLs was higher in the A subgenome (52.6%) than in the D subgenome (46.5%), suggesting a 804 

more prominent regulatory role of At regulators on Dt genes, consistent with our findings. 805 

However, they also observed that 44.3% of eGenes in the A-subgenome are regulated by eQTLs 806 

in the D-subgenome, whereas only 23.4% of eGenes in the D-subgenome have eQTL regulation 807 

in the A-subgenome. This highlights unequal transcriptional regulation patterns between the two 808 

subgenomes. An expanded study by You et al. (2023) using fiber transcriptomes from 376 G. 809 

hirsutum accessions across five time points identified 53,854 cis-eQTLs and 23,811 trans-810 

eQTLs, revealing genetic variants associated with gene expression during fiber development. 811 

This larger dataset offers a promising avenue to further delineate inter- and intra-subgenomic 812 

regulatory effects and compare them with GRN results. As neither Hi-C nor eQTL analyses 813 

directly refined the interaction relationships between TFs and TGs, further analysis integrating 814 

eQTL and Hi-C data is needed to obtain TF-TG regulatory relationships and compare them with 815 

GRN-based regulatory relationships. 816 

One question of broad interest regarding the functional genomics of allopolyploids is the extent 817 

to which duplicated TFs and TGs are functionally conserved in a GRN. A key result emerging 818 

from the present work is that the proportion of TG homoeologs simultaneously regulated by any 819 

given TF is significantly higher than the proportion of TF homoeologs co-regulating any given 820 

downstream genes (e.g., 15.8% vs. 6.4% in cGENIE3; Table 2: V and Supplemental Table S12). 821 

This indicates a higher level of conservation in TG promoter cis-regulatory sites than in TF trans 822 
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functions. In other words, the trans-regulatory roles of TFs diversify faster between homoeologs 823 

than does the cis landscape of their TG binding sites. This finding is consistent with the 824 

experimentally validated notion that trans-regulatory mutations have a larger target size 825 

compared to cis-regulatory mutations in yeast (Siddiq and Wittkopp 2022), hence evolving 826 

faster. Further experimental studies in cotton are needed to explore the functional and phenotypic 827 

implications of these regulatory variants. For example, in the homoeologous pair of GhMYS1 828 

genes, DAP-seq results demonstrated both functional conservation and divergence regarding a 829 

few target genes with known fiber-related functions. One caveat is that our VIGS experiments 830 

can only simultaneously silence both copies due to high sequence identity. Future directions 831 

include perturbation experiments targeting individual homoeologs to examine the phenotypic 832 

outcomes of disrupting network interactions. 833 

In summary, we constructed comprehensive GRNs using a diverse collection of public RNA-seq 834 

datasets for cotton fibers. These rigorously evaluated fiber GRNs enabled us to infer numerous 835 

potential regulatory factors controlling fiber development. These include well-studied TFs such 836 

as GhTCP14, GhFSN1_A12, GhWRKY16_D06, and GhMYB30, as well as many TFs with 837 

uncharacterized functions. Experimental verification further revealed a key regulatory role of an 838 

uncharacterized pair of GhMYS1 genes in fiber development. Our study reveals subgenomic 839 

asymmetries that either accompanied or evolved subsequent to allopolyploidization, including a 840 

global expression difference of D-biased homoeolog pairs that underlies the dominant expression 841 

of the D subgenome, and further demonstrated multidimensional characteristic of subgenomic 842 

asymmetry from the perspective of co-expression and regulatory networks. These findings 843 

elucidate the complex gene regulatory network of cotton fiber development, providing insights 844 

into the phenomenon of allopolyploidy and offering a resource for exploring genes related to 845 

fiber elongation and enhancing cotton fiber quality through breeding. 846 

Methods 847 

RNA-Seq data collection and processing 848 

Twelve public cotton fiber RNA-seq datasets comprising 473 samples representing 16 time 849 

points of Gossypium hirsutum were downloaded from the National Center for Biotechnology 850 
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Information (NCBI) SRA depository (Supplementary Table S1). Raw reads were preprocessed 851 

using fastp (v0.20.1) (Chen et al. 2018) to remove adapters and low-quality reads. Clean reads 852 

were aligned to the reference genome G. hirsutum var. TM-1 UTX_v2.1(Chen et al. 2020) using 853 

Hisat2 (v2.2.1) with default settings (Kim et al. 2015), and transcript abundances were quantified 854 

as transcripts per million (TPM) using StringTie (v2.2.1) (Pertea et al. 2015). Dimensionality 855 

reduction and visualization of gene expression profiles were conducted through principal 856 

component analysis (PCA) and t-distributed stochastic neighbor embedding (t-SNE) in R v4.0.5 857 

(R core Team 2020). The following sample filter criteria were applied to ensure a high-quality 858 

dataset: 1) samples were exclusively from fiber tissue, specifically excluding ovular and fibreless 859 

mutant samples; 2) samples with a unique mapping rate below 70% were discarded; 3) only 860 

uniquely mapped reads were used for TPM calculation; and 4) outlier samples were identified 861 

and removed based on PCA and t-SNE.   862 

Weighted gene co-expression gene network analysis (WGCNA) 863 

A gene co-expression network was constructed using the WGCNA package in R (Langfelder and 864 

Horvath 2008) with data from the surviving 401 RNA-seq samples and 57,151 genes. Briefly, 865 

the TPM data was used to generate an adjacency matrix based on signed Pearson correlations 866 

between all gene pairs powered to an optimized soft thresholding of 28. The adjacency matrix 867 

considering gene-to-gene connection strength in isolation was then used to calculate a 868 

topological overlap matrix (TOM), which considered each pair of genes in relation to all other 869 

genes. Genes with highly similar expression patterns were clustered into co-expression modules, 870 

using parameters minModuleSize of 100 and mergeCutHeight of 0.25. Genes belonging to the 871 

same co-expression module were assigned the same module color, while genes that cannot be 872 

clustered into any of the co-expression modules were labeled grey. 873 

Construction of gene regulatory networks (GRNs)  874 

Three distinct inference strategies were used to construct fiber gene regulatory networks, 875 

including GENIE3 (Huynh-Thu et al. 2010), dynGENIE3 (Huynh-Thu and Geurts 2018), and 876 

Corto (Mercatelli et al. 2020). Each method requires both a user-provided list of transcription 877 

factors (TFs) and gene expression data to enable inference of directed network connections 878 
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(edges) from TFs to target genes. A total of 5,048 TFs were identified from the Gossypium 879 

hirsutum var. TM-1 reference genome (Chen et al. 2020) with PlantTFDB (Jin et al. 2017). 880 

Among these, 3,638 fiber-expressed TFs were used as the input TFs to predict targets from all 881 

57,151 fiber-expressed genes. The resulting TF-target predictions were filtered to retain the top 882 

one million connections as output GRNs for subsequent analyses, consistent with the 883 

thresholding applied in previous studies (Ramírez-González et al. 2018; Harrington et al. 2020). 884 

For Corto, which inferred fewer than one million connections, no filtering was applied.  885 

Corto is a correlation-based GRN inference method, implemented as a fast and lightweight R 886 

package that resembles the well-established pipeline of ARACNe algorithm (Margolin et al. 887 

2006). Given the normalized TPM data as a gene expression matrix and a list of TFs as 888 

centroids, Corto infers direct TF-target relationships through optimized pairwise Pearson 889 

correlation. Data Processing Inequality (DPI) on correlation triplets and bootstrapping were 890 

applied to evaluate the significance of edges, using the parameters nbootstraps=10 and p=0.05. 891 

GENIE3 is a machine learning-based approach for GRN inference implemented in R (Huynh-892 

Thu et al. 2010). This method was recognized as the best-performing algorithm in the DREAM4 893 

In Silico Multifactorial challenge (Greenfield et al. 2010) and the DREAM5 Network Inference 894 

challenge (Marbach et al. 2012). GENIE3 utilizes the Random Forests tree ensemble algorithm 895 

to solve a regression problem for each gene in the given expression dataset, determining how the 896 

expression patterns of input TFs predict the expression of the target gene. The importance 897 

measure of a TF in predicting the target gene expression serves as the weight for the TF-target 898 

regulatory link. GENIE3 was executed using the same gene expression matrix and TF list as 899 

input, with default parameters. 900 

Dynamical GENIE3 (dynGENIE3) is an adaptation of the original GENIE3 method that was 901 

designed for GRN inference from time series data alone or in conjunction with steady-state data. 902 

This semi-parametric model accounts for the dependence between time points by modeling the 903 

temporal changes in gene expression with ordinary differential equations (ODEs). In each ODE, 904 

the transcription function is learned using a nonparametric Random Forests Model. The fiber 905 

gene expression matrix of 57,151 genes and 401 samples was reformatted into two distinct 906 

datasets, steady-state and time series, used together as input. The steady-state dataset 907 
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encompassed 251 samples of 15 days post anthesis (dpa) fibers from Li et al. (2020), focusing on 908 

a cultivar population. The time series dataset was constructed using RNA-seq data sourced from 909 

other studies (Supplementary Table S1) with at least 3 time points involved: TPM values at each 910 

time point were averaged across these studies to obtain the expression profiles spanning 14 time 911 

points; genes with a TPM value of 0 in more than two time points were removed, leading to the 912 

final inclusion of 1011 TFs and 24,331 other genes. Using both the steady-state and time series 913 

data jointly as input, dynGenie3 was executed with default parameters. 914 

Evaluation of GRN inference  915 

For the performance evaluation of the GRN inference methods, five independent strategies were 916 

employed:   917 

I. Homology-based cotton Transcriptional Regulatory Map (cottonRegMap): Serving as a 918 

benchmark dataset for validating predicted regulatory links by the above GRN inference 919 

methods, this map was constructed by adapting the regulatory prediction approach of 920 

PlantRegMap (https://plantregmap.gao-lab.org/) to represent an ensemble list of known 921 

regulatory interactions in plants. Briefly, FIMO from the MEME software suite (Bailey et al. 922 

2009) was used to scan TF binding sites in the cotton gene promoters (i.e., 2000 bp upstream of 923 

the transcriptional start sites) using a significant threshold of p-value <1e-5 with Fisher’s exact 924 

test. Regulatory interactions between Arabidopsis TFs and cotton gene promoters were assigned 925 

if one or more binding sites of a TF were found in the promoter of a gene. Based on the 926 

orthologous relationships between 619 Arabidopsis TFs and 2,267 G. hirsutum TFs (1129 from 927 

the At subgenome and 1138 from the Dt subgenome), the TF-target relationships were fully 928 

projected onto the G. hirsutum genome to form the cottonRegMap, consisting of 53,878,120 TF-929 

target interactions. 930 

II. Cotton TFs with confirmed roles in fiber development: A curated set of 54 TFs with known 931 

functions in fiber development was compiled (Supplementary Table 3). Gene set enrichment 932 

analysis (GSEA) was used to test if these curated TFs were enriched among the highly ranked TF 933 

regulators in each GRN. 934 
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III. Physical regulatory relationships based on DAP-seq data: To ground truth the predicted 935 

interactions by GRN inference, DNA-affinity purification sequencing (DAP-seq) was performed 936 

on a pair of homoeologous G2-like TFs, GhMYS1_A10 and GhMYS1_D10. These TFs were 937 

selected based on their consistently high regulator ranking across different GRN inference 938 

methods (see Results section for details). Additionally, published DAP-seq data for an EMS-939 

SUPPRESSOR1v(BES1)/BRASSINAZOLE-RESISTANT1 (BZR1) family TF GhBES1.4 (Liu et al. 940 

2023) was incorporated for validation analysis, which also exhibited high rankings in our GRN 941 

inferences. The physical regulatory relationships mapped by DAP-seq were used to validate the 942 

GRN prediction by intersecting and significance testing.   943 

IV. RNA-seq analysis of mutants or overexpression lines: We utilized RNA-seq data from TF 944 

mutant and overexpression lines to assess the function prediction of candidate TFs in fiber 945 

development GRNs. Specifically, RNA-seq datasets for GhWRKY16 (Wang et al. 2021b) 946 

GhBES1.4 (Liu et al. 2023) reported from previous studies were downloaded.  Differential 947 

expression analysis was conducted to compare transgenic lines with wild-type controls. The 948 

resulting differentially expressed genes (DEGs) were considered potential targets regulated by 949 

respective TFs under perturbation conditions, thereby validating the gene targets predicted by 950 

GRN. DEGs were identified using DESeq2 (Love et al. 2014) with criteria set at an absolute fold 951 

change >1 and the P-values <0.05 corrected by the Benjamini-Hochberg method (Benjamini and 952 

Hochberg 1995). 953 

V. Fiber traits phenotypic association with gene expression. Corresponding to the 251 RNA-seq 954 

samples from 15 dpa fibers (Li et al. 2020), fiber traits from the same natural population were 955 

provided by Professor Maojun Wang of Huazhong Agricultural University. The best linear 956 

unbiased predictions (BLUPs) of five fiber traits (fiber length, strength, elongation, uniformity, 957 

and micronaire value) across the four environments were estimated using the lme4 package in R 958 

(Bates et al. 2014). Pearson correlation coefficients were estimated between gene expression 959 

levels in 15 dpa fibers and phenotypic variation across the population of 251 cultivars. 960 

DAP-seq experiments 961 
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For the homoeologous TF pair of GhMYS1_A10 and GhMYS1_D10, DAP-seq experiments were 962 

performed following the protocol developed by Bartlett et al (Bartlett et al. 2017). Genomic 963 

DNA (gDNA) was extracted from 10 dpa fiber of the G. hirsutum cultivar TM-1 using the 964 

CTAB method. The extracted gDNA was fragmented using a Covaris M220 focused-965 

ultrasonicator (Woburn, Massachusetts, USA) to achieve an average fragment size of 200 bp. 966 

These gDNA fragments were used to construct an affinity purification library using the 967 

NGS0602-MICH TLX DNA-Seq Kit (Bluescape Hebei Biotech Co., Ltd, Baoding, China). The 968 

TF coding sequences were cloned into pFN19K HaloTag T7 SP6 Flexi vector. The TNT SP6 969 

coupled wheat germ extract system (Promega, Wisconsin, USA) was used to express the HALO-970 

tagged TFs in 50 µL reactions, which were incubated for 2 hours at 37 °C. The expressed 971 

proteins were directly captured using Magne HaloTag Beads (Promega) and subsequently 972 

incubated with the affinity purification library to isolate the TF-DNA binding complexes. The 973 

enriched TF-bound gDNA fragments were then eluted from the HaloTag beads, amplified by 974 

PCR, and sequenced on the NovaSeq 6000 platform. Two independent biological replicates were 975 

conducted for each TF, along with one negative control using a mock DAP-seq library without 976 

adding the expressed protein during the HaloTag beads incubation. The DAP-seq raw data have 977 

been deposited in the Genome Sequence Archive in National Genomics Data Center, China 978 

National Center for Bioinformation / Beijing Institute of Genomics, Chinese Academy of 979 

Sciences (GSA: CRA029084 and CRA029060) that are publicly accessible at 980 

https://ngdc.cncb.ac.cn/gsa. 981 

DAP-seq data analysis 982 

Raw DAP-seq reads were pre-processed by removing reads containing adapters and low-quality 983 

reads using fastp (v0.20.1) (Chen et al. 2018). Clean reads were aligned to the G. hirsutum 984 

reference genome using Bowtie 2 (v2.4.5) (Langmead and Salzberg 2012). To identify DAP-seq 985 

peaks, MACS2 (v2.2.7.1) peak calling was performed with default parameters (Zhang et al. 986 

2008). Identified peaks from two biological/technical duplicated samples were merged using 987 

IDR (v2.0.4.2) to assess the reliability of peak identification (Li et al. 2011). The ChIPseeker R 988 

package (v1.40.0) was used for peak annotation in relation to adjacent genes (Yu et al. 2015). 989 

Genes with significant peaks (q-value <0.05) within 2000 bp upstream of the transcription start 990 

site (TSS) were considered as target genes of the in vitro expressed TFs.   991 
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Functional enrichment analysis 992 

Gene functions were annotated based on the eggNOG databases (Huerta-Cepas et al. 2019). 993 

Gene Ontology (GO) enrichment analyses were performed using the ClusterProfiler R package 994 

(v3.18.1) (Yu et al. 2012). Only GO terms with P-values below 0.05 were considered as 995 

significantly enriched. GO enrichment results were visualized using aPEAR (v1.0.0) 996 

(Kerseviciute and Gordevicius 2023) in R. 997 

Dual-luciferase (LUC) reporter assay 998 

The 2000 bp promoters of GhMYB2, GhTBL4, GhTBL7, GhCesA7_D05, and GhPIN3a were 999 

cloned using primers listed in Supplementary Table S17 and inserted into the pGreenII 0800-1000 

LUC vector. The full-length coding sequences of GhMYS1_A10 and GhMYS1_D10 were cloned 1001 

into the pGreenII 62-SK vector. Resulting plasmids were transduced into Agrobacterium 1002 

tumefaciens strain GV3101, and the LUC reporter assay was performed as previously described 1003 

(Xie et al. 2017). The pGreen II 0800-LUC and pGreenII 62-SK were used as internal controls. 1004 

After injecting a mixture of the fusion constructs of pGreenII 62-SK and pGreenII 0800-LUC in 1005 

a 1:1 ratio into tobacco leaves for 3 days, quantitative analysis of luciferase activity was 1006 

performed using a Dual-Luciferase Reporter Assay System (E1910, Promega, USA), following 1007 

the manufacturer's instructions. All experiments were performed in three independent replicates. 1008 

Virus-induced gene silencing (VIGS) of GhMYS1 1009 

The cotton leaf crumple virus (CLCrV)-based vectors were used to perform VIGS assays (Gu et 1010 

al. 2014). To simultaneously silence both GhMYS1_A10 and GhMYS1_D10, a 300 bp coding 1011 

sequence conserved between homoeologs was designed and inserted into the pCLCrV-A vector 1012 

to generate the pCLCrV: GhMYS1 construct. The positive recombinant plasmid of pCLCrV: 1013 

GhMYS1 and pCLCrV:00 was subsequently transferred into Agrobacterium tumefaciens strain 1014 

LBA4404 by electroporation. Primers used in vector constructions were listed in Supplementary 1015 

Table S16. The auxiliary vector pCLCrVB was used to facilitate the intercellular movement of 1016 

CLCrV DNA. After cultivating Agrobacterium colonies containing pCLCrVB, pCLCrV: 1017 

GhMYS1, and pCLCrV: 00 vectors on a shaker at 28 °C for 24 h, Agrobacterium cells were 1018 

collected by centrifugation and resuspended in solution (10 mM MgCl2, 10 mM MES, and 200 1019 
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mM acetosyringone) to achieve OD600 = 1.2. The A. tumefaciens strains containing pCLCrV: 1020 

GhMYS1 and pCLCrV: 00 were mixed with pCLCrVB in equal proportions. The resulting 1021 

mixture was then injected into the cotyledons of 10-day-old seedlings of G. hirsutum variety 1022 

TM-1 using a 1 ml headless syringe. After 24 h of incubation in darkness at 24°C, all plants were 1023 

transferred to a constant temperature lightroom for cultivation (25°C, 16 hours/day, 8 1024 

hours/night). Five plants were injected for each vector, consisting of three biological replicates. 1025 

The expression of GhMYS1 was examined in 15 dap fiber of pCLCrV: GhMYS1 and pCLCrV: 1026 

00 cotton plants through RT-qPCR to determine the silencing efficacy.   1027 

Genomic single-copy orthologous-homoeolog groups (scOGs) gene identification 1028 

scOGs analysis was carried out by pSONIC software which uses MCScanX and OrthoFinder to 1029 

infer species pairwise collinearity blocks and identify a high-confidence set of singleton 1030 

orthologs, respectively (Conover et al. 2021). A total of 22,889 pairs of homologous genes were 1031 

characterized into scOGs. The remaining 13,229 and 15,895 genes without unique 1032 

correspondence in At and Dt were named variable copy ortholog groups (vcOGs). 1033 

Subgenomic expression and homoeolog expression bias (HEB) analysis  1034 

Because not all of the 45,778 genes placed in scOGs were among the 57,151 fiber-expressed 1035 

genes, some scOGs were represented in expression data by only the At or Dt homoeolog. 1036 

Consequently, we further categorized the 22,889 scOGs as either “paired” or “unpaired” based 1037 

on whether both homoeologs were expressed (scOG paired) or if only one homoeolog was 1038 

expressed (scOG unpaired). To analyze the expression levels of genes contained within the 1039 

expressed OGs (vcOGs, scOG paired, and scOG unpaired genes) between the two subgenomes, 1040 

we compared the average TPM values of 57,151 expressed genes across 401 samples using a 1041 

two-sided Wilcoxon signed-rank test. For HEB analysis, if the TPM between scOGs in one 1042 

sample exhibited a more than 2-fold change, the gene pair was identified as a biased 1043 

homoeologous gene pair in that sample. We utilized a chi-square test and corrected the P value 1044 

using the Benjamini-Hochberg method to compare the expression bias in 401 samples between 1045 

the At and Dt subgenomes. When the number of samples with an A or D subgenome bias 1046 
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exceeded the number of samples with a D or A subgenome bias, and FDR ≤ 0.05, we considered 1047 

that there was an A or D subgenome bias. 1048 
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Figure Legends 1062 

Figure 1. Cotton fiber transcriptomic datasets for this study. (A) Timeline displaying the 1063 

stages represented by the 12 studies used to generate a dataset of 401 fiber RNA-seq samples for 1064 

an in-depth exploration of cotton fiber development. Fiber elongation, transition, and SCW 1065 

synthesis stages are indicated by red, blue, and green bars, respectively, and each line represents 1066 

one existing dataset. This color scheme is applied consistently across all figures here. (B) 1067 

Principal component analysis (PCA) of 57,151 gene expression profiles. PC1 and PC2 captured 1068 

16.8% and 11.5% of variance, respectively. (C) T-distributed stochastic neighbor embedding (t-1069 

SNE) was also employed for dimension reduction and visualization of the fiber expression 1070 

landscape. 1071 

Figure 2. Phenotypic and functional associations of co-expression gene modules during 1072 

fiber development. (A) For the 20 co-expression gene modules identified by weighted gene co-1073 

expression network analysis (WGCNA), heatmap represents Pearson correlation coefficients and 1074 
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P-values (cell color and text, respectively) between the module eigengenes (MEs, by row) and 1075 

fiber developmental stages treated as the binary categorical variable (by column). (B) ANOVA 1076 

of MEs (by column) by fiber developmental stages treated as a numeric variable (MEs, by row). 1077 

Heatmap cell color and text represent Pearson correlation coefficients and P-values, respectively. 1078 

(C) Heatmap of z-score normalized MEs for the seven largest modules across fourteen fiber 1079 

developmental time points. (D) Gene Ontology (GO) enrichment analysis of the seven largest 1080 

modules, displaying the top two most significant interconnected GO clusters terms each. 1081 

Different colors represent corresponding modules. 1082 

Figure 3. Evaluation of fiber GRN inferences. (A) Histogram presents the bootstrap 1083 

distribution (n=1000) of cottonRegMap TF-target relationships as captured by chance. Red, blue, 1084 

and green lines represent the cottonRegMap TF-target relationships inferred by GENIE3, 1085 

dynGENIE3, and Corto, respectively. Both GENIE3 and Corto inferred significantly more 1086 

interactions outside the bootstrap distribution. (B) GSEA of known functional TFs among TFs 1087 

rankings inferred by cGENEI3. The enrichment score reflects the degree of over-representation 1088 

of a set of 54 known functional TFs at the top of the ranked TFs identified by cGENIE3. The red 1089 

dashed line indicates that these known functional TFs were significantly enriched at the top 77 1090 

ranking TFs. (C) Heatmap of overlapping target genes between empirical evidence (columns) 1091 

and GRN inferences (rows). WRKY16, with GRN inferences for cGENIE3, cdynGENIE3, and 1092 

cCorto. Each cell represents the number of overlaps and the significance of the corresponding 1093 

hypergeometric test. DAP-seq results of GhMYS1_A10, GhMYS1_D10, and GhDES1.4 as well as 1094 

RNA-seq results of GhDES1.4 and GhWRKY16 were shown. (D) The correlation between 1095 

expression variation of 77 hub TFs and fiber length was significantly higher than that of 3,638 1096 

TFs expressed in fibers. Five different percentages ranks were divided according to the 1097 

correlation between TF and fiber length, where 0% to 100% represent increasing correlation. 1098 

Figure 4. GRN performance in cotton cellulose synthesis. (A) Categorization of GhCesAs 1099 

based on gene expression patterns during cotton fiber development. Heatmap presents TPM 1100 

expression levels in the long-fiber variety J02 and the short-fiber cotton variety ZRI015. Three 1101 

hierarchical clusters correspond to PCW-related, SCW-related, and unknown GhCesAs. (B) The 1102 

number of CesA genes, regulator transcription factors (TFs), and regulatory relationships 1103 

identified by cGENIE3, cdynGENIE3, and cCorto. (C) Cellulose synthesis-related subnetwork 1104 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 13, 2024. ; https://doi.org/10.1101/2024.08.12.607624doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.12.607624
http://creativecommons.org/licenses/by-nd/4.0/


39 

 

inferred by cGENIE3. Square and round nodes represent GhCesAs and TFs, respectively, which 1105 

are connected by directed edges indicating the TF-target relationships inferred. Red and blue 1106 

node colors represent the categorization of PCW-related and SCW-related genes based on 1107 

expression patterns during fiber development, respectively. Two network components were 1108 

detected corresponding to PCW (left) and SCW (right), which were co-regulated by six TFs in 1109 

the middle. (D) Ranking GhCesAs by in-degree (i.e., number of incoming linking) from all TFs 1110 

inferred by cGENIE3. (E) Ranking cellulose synthesis related TFs by out-degree (i.e., number of 1111 

outward links) to target GhCesAs. (F) Enriched GO terms associated with the 71 TFs inferred by 1112 

cGENIE3. 1113 

Figure 5.  Expression level analysis of homoeologous gene pairs. (A) Gene expression levels 1114 

compared between At and Dt homoeologs for all 57,151 fiber-expressed genes (“all genes”), 1115 

22,889 homoeologous pairs characterized into single-copy ortho-homoeolog groups (“scOGs”), 1116 

the remaining 13,229 At and 15,895 Dt genes uncategorized (“vcOGs”), 19,213 scOGs with both 1117 

At and Dt expressed in fiber (“scOGs pair”), and 17,028 scOGs with only one homoeolog 1118 

expressed in fibers (“scOGs unpair”). (B) Gene expression levels compared for scOGs pairs 1119 

exhibiting homoeolog expression bias (HEB). (C) Absolute expression differences compared 1120 

between A-biased and D-biased scOGs. (C) Expression comparisons for scOGs present within 1121 

the same co-expression modules identified by WGCNA. (D) Absolute expression differences 1122 

compared between A-biased and D-biased scOGs in co-expression modules. Statistical 1123 

significance was determined using a two-sided Wilcoxon rank-sum test. ***P< 0.001. 1124 

Figure 6. GRN built based on known function genes and their directly regulated TF in 1125 

fiber. (A) GRN of known functional genes and their regulated TFs. Known functional genes and 1126 

TFs are shown as circles and rhombus, respectively. Different colors indicate the modules where 1127 

genes and TFs are located in the co-expression network. (B) Novel TFs in brown module 1128 

regulate GhHOX3, GhHD1, GhMYB25-like, and GhWD40 involved in fiber initiation. (C) 1129 

Network of known functional genes regulated by GhMYS1_A10 and GhMYS1_D10. 1130 

Figure 7 GhMYS1 positively regulates fiber elongation. (A)  Expression pattern analysis of 1131 

GhMYS1_A10 and GhMYS1_D10 in wild and domestication cotton accession from 5 to 25 days 1132 

post-anthesis (dpa). (B) Expression pattern analysis of GhMYS1_A10 and GhMYS1_D10 in long-1133 
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fiber (J02) and short-fiber (ZRI105) varieties from 5 to 25 dpa. (C) Relative expression levels 1134 

measured by qRT-PCR showed reduced GhMYS1 expression in 10 dpa fibers from pCLCrVA: 1135 

GhMYS1 cotton plants relative to pCLCrVA: 00 plants. (D) Significantly shorter mature fiber 1136 

length in pCLCrVA: GhMYS1 versus pCLCrVA: 00 plants. (E) Phenotype of mature fibers in 1137 

pCLCrVA: 00 and pCLCrVA: GhMYS1 plants. bar = 1 cm. (F-G) Transient dual-luciferase 1138 

(LUC) reporter assay testing interactions between GhMYS1_A10 (F) and GhMYS1_D10 (G), and 1139 

the promoters of GhPIN3a, GhCesA7_D05, GhTBL7, and GhMYB2. Expression of Renilla 1140 

luciferase (REN) was used as an internal control. Values given are mean ± SD (n = 4). Relative 1141 

LUC activity obtained with the empty plasmid (none) was set to 1. Statistically significant 1142 

differences between groups as determined by Student’s t-test. *P< 0.05 and **P< 0.01. 1143 

Tables 1144 

Table 1. Fiber gene regulatory networks constructed. 1145 

Table 2. Subgenomic contribution to fiber-expressed genes. 1146 

 1147 

Supplementary data 1148 

Supplementary Figure S1. Number of RNA-seq samples representing each time point before 1149 

(left) and after (right) quality control. 1150 

Supplementary Figure S2. Dimensionality reduction and visualization of gene expression 1151 

profiles for the 413 public RNA-seq samples passing quality control before removing 12 outlier 1152 

samples. 1153 

Supplementary Figure S3. Expression analysis of 192 fiber-related functional genes clustered 1154 

into three groups 1155 

Supplementary Figure S4. Criterion testing for filtering fiber-expressed genes. 1156 

Supplementary Figure S5. Weighted gene co-expression network analysis of 57,151 fiber-1157 

expressed genes. 1158 

Supplementary Figure S6. Enriched GO terms of the seven largest modules as illustrated by an 1159 

UpSet plot. 1160 

Supplementary Figure S7. Plant hormone-related GO pathways enriched in the brown (A), tan 1161 

(B), turquoise (C), and red (D) modules. 1162 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 13, 2024. ; https://doi.org/10.1101/2024.08.12.607624doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.12.607624
http://creativecommons.org/licenses/by-nd/4.0/


41 

 

Supplementary Figure S8. GSEA shows enrichment of known functional TFs in TFs identified 1163 

by cdynGENIE3(A), and cCorto(B). 1164 

Supplementary Figure S9.  Evaluation of GRN inferences by DAP-seq.  1165 

Supplementary Figure S10. Evaluation of GRN inferences by RNA-seq.  1166 

Supplementary Figure S11. Genome-wide characterization of CesA coding genes in G. 1167 

hirsutum. 1168 

Supplementary Figure S12. Expression pattern analysis of TFs regulating cellulose synthase 1169 

identified by cGENIE3 in long fiber and short fiber cotton varieties. 1170 

Supplementary Figure S13. cdynGENIE3 predicted GRN for cotton cellulose synthesis. 1171 

Supplementary Figure S14. cCorto predicted GRN for cotton cellulose synthesis. 1172 

Supplementary Figure S15. Absolute expression differences compared between A-biased and 1173 

D-biased scOGs. 1174 

Supplementary Figure S16. Gene expression levels compared for scOGs pairs exhibiting 1175 

homoeolog expression bias (HEB) in co-expression modules. 1176 

Supplementary Figure S17. GRN of known functional genes regulated by GhMYB30_A07 and 1177 

GhMYB30_D07. 1178 

 1179 

Supplementary Table S1. RNA-seq datasets from 12 studies were used in this study. 1180 

Supplementary Table S2. Summary statistics of 413 RNA-seq samples passing quality filters. 1181 

Supplementary Table S3. A curated list of 192 fiber-related genes with known functions. 1182 

Supplementary Table S4. Significantly enriched GO terms of seven largest co-expression 1183 

modules identified by WGCNA. 1184 

Supplementary Table S5. The association analysis between the five fiber traits and the 1185 

expression in 15 dpa fiber of 77 hub genes identified by cGENIE3. 1186 

Supplementary Table S6. A comprehensive ranking of TFs based on target gene numbers 1187 

among cGENIE3, cCorto, and cdynGENIE3. 1188 

Supplementary Table S7. The association analysis between the five fiber traits and the 1189 

expression in 15 dpa fiber of 77 hub genes identified by cdynGENIE3. 1190 

Supplementary Table S8. The association analysis between the five fiber traits and the 1191 

expression in 15 dpa fiber of 77 hub genes identified by cCorto. 1192 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 13, 2024. ; https://doi.org/10.1101/2024.08.12.607624doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.12.607624
http://creativecommons.org/licenses/by-nd/4.0/


42 

 

Supplementary Table S9. homologous transcription factor and gene pairs in cellulose synthesis-1193 

related subnetwork inferred by cGENIE3. 1194 

Supplementary Table S10. The number of expressed paired and unpaired scOGs in different 1195 

modules. 1196 

Supplementary Table S11. Homoeolog expression bias by module. 1197 

Supplementary Table S12. Estimates of regulatory functional conservation between 1198 

homoeologs in GRNs. 1199 

Supplementary Table S13. The information about 432 nodes and 657 edges in kGRN. 1200 

Supplementary Table S14. The detail of eight known fiber-related TFs in kGRN that directly 1201 

regulate other known genes. 1202 

Supplementary Table S15. Functional information of homologous genes in Arabidopsis 1203 

thaliana of 195 upstream transcription factors in kGRN. 1204 

Supplementary Table S16.  know-function target genes of GhMYS1_A10 and GhMYS1_D10 1205 

identified by cGENIE3 and DAP-seq. 1206 

Supplementary Table S17. The primers used in this study. 1207 

 1208 

References 1209 

Alonge M, Wang X, Benoit M, Soyk S, Pereira L, Zhang L, Suresh H, Ramakrishnan S, 1210 

Maumus F, Ciren D, et al. Major Impacts of Widespread Structural Variation on Gene 1211 

Expression and Crop Improvement in Tomato. Cell. 2020:182(1):145–161.e23. 1212 

https://doi.org/10.1016/j.cell.2020.05.021 1213 

Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, Ren J, Li WW, and Noble 1214 

WS. MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res. 1215 

2009:37(Web Server issue):W202–8. https://doi.org/10.1093/nar/gkp335 1216 

Balcerowicz M, Mahjoub M, Nguyen D, Lan H, Stoeckle D, Conde S, Jaeger KE, Wigge 1217 

PA, and Ezer D. An early-morning gene network controlled by phytochromes and 1218 

cryptochromes regulates photomorphogenesis pathways in Arabidopsis. Mol Plant. 1219 

2021:14(6):983–996. https://doi.org/10.1016/j.molp.2021.03.019 1220 

Bao Y, Hu G, Grover CE, Conover J, Yuan D, and Wendel JF. Unraveling cis and trans 1221 

regulatory evolution during cotton domestication. Nat Commun. 2019:10(1):5399. 1222 

https://doi.org/10.1038/s41467-019-13386-w 1223 

Barabási A-L and Oltvai ZN. Network biology: understanding the cell’s functional 1224 

organization. Nat Rev Genet. 2004:5(2):101–113. https://doi.org/10.1038/nrg1272 1225 

Bartlett A, O’Malley RC, Huang S-SC, Galli M, Nery JR, Gallavotti A, and Ecker JR. 1226 

Mapping genome-wide transcription-factor binding sites using DAP-seq. Nat Protoc. 1227 

2017:12(8):1659–1672. https://doi.org/10.1038/nprot.2017.055 1228 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 13, 2024. ; https://doi.org/10.1101/2024.08.12.607624doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.12.607624
http://creativecommons.org/licenses/by-nd/4.0/


43 

 

Bates D, Mächler M, Bolker B, and Walker S. Fitting linear mixed-effects models using lme4. 1229 

arXiv preprint arXiv:14065823. 2014. 1230 

Benjamini Y and Hochberg Y. Controlling the False Discovery Rate: A Practical and Powerful 1231 

Approach to Multiple Testing. Journal of the Royal Statistical Society: Series B 1232 

(Methodological). 1995:57(1):289–300. https://doi.org/10.1111/j.2517-1233 

6161.1995.tb02031.x 1234 

Birchler JA and Yang H. The multiple fates of gene duplications: Deletion, 1235 

hypofunctionalization, subfunctionalization, neofunctionalization, dosage balance 1236 

constraints, and neutral variation. Plant Cell. 2022:34(7):2466–2474. 1237 

https://doi.org/10.1093/plcell/koac076 1238 

Bird KA, Niederhuth CE, Ou S, Gehan M, Pires JC, Xiong Z, VanBuren R, and Edger PP. 1239 

Replaying the evolutionary tape to investigate subgenome dominance in allopolyploid 1240 

Brassica napus. New Phytol. 2021:230(1):354–371. https://doi.org/10.1111/nph.17137 1241 

Buenrostro JD, Wu B, Chang HY, and Greenleaf WJ. ATAC-seq: A Method for Assaying 1242 

Chromatin Accessibility Genome-Wide. Curr Protoc Mol Biol. 2015:109:21.29.1–21.29.9. 1243 

https://doi.org/10.1002/0471142727.mb2129s109 1244 

Cao J-F, Zhao B, Huang C-C, Chen Z-W, Zhao T, Liu H-R, Hu G-J, Shangguan X-X, Shan 1245 

C-M, Wang L-J, et al. The miR319-Targeted GhTCP4 Promotes the Transition from Cell 1246 

Elongation to Wall Thickening in Cotton Fiber. Mol Plant. 2020:13(7):1063–1077. 1247 

https://doi.org/10.1016/j.molp.2020.05.006 1248 

Chang Y-M, Lin H-H, Liu W-Y, Yu C-P, Chen H-J, Wartini PP, Kao Y-Y, Wu Y-H, Lin J-1249 

J, Lu M-YJ, et al. Comparative transcriptomics method to infer gene coexpression 1250 

networks and its applications to maize and rice leaf transcriptomes. Proc Natl Acad Sci U S 1251 

A. 2019:116(8):3091–3099. https://doi.org/10.1073/pnas.1817621116 1252 

Chen S, Zhou Y, Chen Y, and Gu J. fastp: an ultra-fast all-in-one FASTQ preprocessor. 1253 

Bioinformatics. 2018:34(17):i884–i890. https://doi.org/10.1093/bioinformatics/bty560 1254 

Chen Y, Guo Y, Guan P, Wang Y, Wang X, Wang Z, Qin Z, Ma S, Xin M, Hu Z, et al. A 1255 

wheat integrative regulatory network from large-scale complementary functional datasets 1256 

enables trait-associated gene discovery for crop improvement. Mol Plant. 2023:16(2):393–1257 

414. https://doi.org/10.1016/j.molp.2022.12.019 1258 

Chen ZJ, Sreedasyam A, Ando A, Song Q, De Santiago LM, Hulse-Kemp AM, Ding M, Ye 1259 

W, Kirkbride RC, Jenkins J, et al. Genomic diversifications of five Gossypium 1260 

allopolyploid species and their impact on cotton improvement. Nat Genet. 2020:52(5):525–1261 

533. https://doi.org/10.1038/s41588-020-0614-5 1262 

Conover JL, Sharbrough J, and Wendel JF. pSONIC: Ploidy-aware Syntenic Orthologous 1263 

Networks Identified via Collinearity. G3 . 2021. https://doi.org/10.1093/g3journal/jkab170 1264 

Ezer D, Shepherd SJK, Brestovitsky A, Dickinson P, Cortijo S, Charoensawan V, Box MS, 1265 

Biswas S, Jaeger KE, and Wigge PA. The G-Box Transcriptional Regulatory Code in 1266 

Arabidopsis. Plant Physiol. 2017:175(2):628–640. https://doi.org/10.1104/pp.17.01086 1267 

Furey TS. ChIP–seq and beyond: new and improved methodologies to detect and characterize 1268 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 13, 2024. ; https://doi.org/10.1101/2024.08.12.607624doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.12.607624
http://creativecommons.org/licenses/by-nd/4.0/


44 

 

protein–DNA interactions. Nat Rev Genet. 2012:13(12):840–852. 1269 

https://doi.org/10.1038/nrg3306 1270 

Gallagher JP, Grover CE, Hu G, Jareczek JJ, and Wendel JF. Conservation and divergence 1271 

in duplicated fiber coexpression networks accompanying domestication of the polyploid 1272 

Gossypium hirsutum L. G3. 2020:10(8):2879–2892. https://doi.org/10.1534/g3.120.401362 1273 

Gaudinier A and Brady SM. Mapping Transcriptional Networks in Plants: Data-Driven 1274 

Discovery of Novel Biological Mechanisms. Annu Rev Plant Biol. 2016:67:575–594. 1275 

https://doi.org/10.1146/annurev-arplant-043015-112205 1276 

Gaudinier A, Rodriguez-Medina J, Zhang L, Olson A, Liseron-Monfils C, Bågman A-M, 1277 

Foret J, Abbitt S, Tang M, Li B, et al. Transcriptional regulation of nitrogen-associated 1278 

metabolism and growth. Nature. 2018:563(7730):259–264. https://doi.org/10.1038/s41586-1279 

018-0656-3 1280 

Ghaemmaghami S, Huh W-K, Bower K, Howson RW, Belle A, Dephoure N, O’Shea EK, 1281 

and Weissman JS. Global analysis of protein expression in yeast. Nature. 1282 

2003:425(6959):737–741. https://doi.org/10.1038/nature02046 1283 

Gong S-Y, Huang G-Q, Sun X, Qin L-X, Li Y, Zhou L, and Li X-B. Cotton KNL1, encoding 1284 

a class II KNOX transcription factor, is involved in regulation of fibre development. J Exp 1285 

Bot. 2014:65(15):4133–4147. https://doi.org/10.1093/jxb/eru182 1286 

Greenfield A, Madar A, Ostrer H, and Bonneau R. DREAM4: Combining genetic and 1287 

dynamic information to identify biological networks and dynamical models. PLoS One. 1288 

2010:5(10):e13397. https://doi.org/10.1371/journal.pone.0013397 1289 

Groen SC, Ćalić I, Joly-Lopez Z, Platts AE, Choi JY, Natividad M, Dorph K, Mauck WM 1290 

3rd, Bracken B, Cabral CLU, et al. The strength and pattern of natural selection on gene 1291 

expression in rice. Nature. 2020:578(7796):572–576. https://doi.org/10.1038/s41586-020-1292 

1997-2 1293 

Grover CE, Gallagher JP, Szadkowski EP, Yoo MJ, Flagel LE, and Wendel JF. Homoeolog 1294 

expression bias and expression level dominance in allopolyploids. New Phytol. 1295 

2012:196(4):966–971. https://doi.org/10.1111/j.1469-8137.2012.04365.x 1296 

Gu Z, Huang C, Li F, and Zhou X. A versatile system for functional analysis of genes and 1297 

microRNAs in cotton. Plant Biotechnol J. 2014:12(5):638–649. 1298 

https://doi.org/10.1111/pbi.12169 1299 

Haigler CH, Betancur L, Stiff MR, and Tuttle JR. Cotton fiber: a powerful single-cell model 1300 

for cell wall and cellulose research. Front Plant Sci. 2012:3:104. 1301 

https://doi.org/10.3389/fpls.2012.00104 1302 

Han L, Zhong W, Qian J, Jin M, Tian P, Zhu W, Zhang H, Sun Y, Feng J-W, Liu X, et al. 1303 

A multi-omics integrative network map of maize. Nat Genet. 2023:55(1):144–153. 1304 

https://doi.org/10.1038/s41588-022-01262-1 1305 

Hao J, Tu L, Hu H, Tan J, Deng F, Tang W, Nie Y, and Zhang X. GbTCP, a cotton TCP 1306 

transcription factor, confers fibre elongation and root hair development by a complex 1307 

regulating system. J Exp Bot. 2012:63(17):6267–6281. https://doi.org/10.1093/jxb/ers278 1308 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 13, 2024. ; https://doi.org/10.1101/2024.08.12.607624doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.12.607624
http://creativecommons.org/licenses/by-nd/4.0/


45 

 

Haque S, Ahmad JS, Clark NM, Williams CM, and Sozzani R. Computational prediction of 1309 

gene regulatory networks in plant growth and development. Curr Opin Plant Biol. 1310 

2019:47:96–105. https://doi.org/10.1016/j.pbi.2018.10.005 1311 

Harrington SA, Backhaus AE, Singh A, Hassani-Pak K, and Uauy C. The Wheat GENIE3 1312 

Network Provides Biologically-Relevant Information in Polyploid Wheat. G3 . 1313 

2020:10(10):3675–3686. https://doi.org/10.1534/g3.120.401436 1314 

He S, Sun G, Geng X, Gong W, Dai P, Jia Y, Shi W, Pan Z, Wang J, Wang L, et al. The 1315 

genomic basis of geographic differentiation and fiber improvement in cultivated cotton. Nat 1316 

Genet. 2021:53(6):916–924. https://doi.org/10.1038/s41588-021-00844-9 1317 

Hinchliffe DJ, Condon BD, Thyssen G, Naoumkina M, Madison CA, Reynolds M, Delhom 1318 

CD, Fang DD, Li P, and McCarty J. The GhTT2_A07 gene is linked to the brown colour 1319 

and natural flame retardancy phenotypes of Lc1 cotton ( Gossypium hirsutum L.) fibres. J 1320 

Exp Bot. 2016:67(18):5461–5471. https://doi.org/10.1093/jxb/erw312 1321 

Hovav R, Udall JA, Chaudhary B, Hovav E, Flagel L, Hu G, and Wendel JF. The evolution 1322 

of spinnable cotton fiber entailed prolonged development and a novel metabolism. PLoS 1323 

Genet. 2008a:4(2):e25. https://doi.org/10.1371/journal.pgen.0040025 1324 

Hovav R, Udall JA, Chaudhary B, Rapp R, Flagel L, and Wendel JF. Partitioned expression 1325 

of duplicated genes during development and evolution of a single cell in a polyploid plant. 1326 

Proc Natl Acad Sci U S A. 2008b:105(16):6191–6195. 1327 

https://doi.org/10.1073/pnas.0711569105 1328 

Huang G, Huang J-Q, Chen X-Y, and Zhu Y-X. Recent Advances and Future Perspectives in 1329 

Cotton Research. Annu Rev Plant Biol. 2021:72:437–462. https://doi.org/10.1146/annurev-1330 

arplant-080720-113241 1331 

Huang G, Wu Z, Percy RG, Bai M, Li Y, Frelichowski JE, Hu J, Wang K, Yu JZ, and Zhu 1332 

Y. Genome sequence of Gossypium herbaceum and genome updates of Gossypium 1333 

arboreum and Gossypium hirsutum provide insights into cotton A-genome evolution. Nat 1334 

Genet. 2020:52(5):516–524. https://doi.org/10.1038/s41588-020-0607-4 1335 

Huang J, Chen F, Wu S, Li J, and Xu W. Cotton GhMYB7 is predominantly expressed in 1336 

developing fibers and regulates secondary cell wall biosynthesis in transgenic Arabidopsis. 1337 

Sci China Life Sci. 2016:59(2):194–205. https://doi.org/10.1007/s11427-015-4991-4 1338 

Huang J, Guo Y, Sun Q, Zeng W, Li J, Li X, and Xu W. Genome-Wide Identification of 1339 

R2R3-MYB Transcription Factors Regulating Secondary Cell Wall Thickening in Cotton 1340 

Fiber Development. Plant Cell Physiol. 2019:60(3):687–701. 1341 

https://doi.org/10.1093/pcp/pcy238 1342 

Huang J, Zheng J, Yuan H, and McGinnis K. Distinct tissue-specific transcriptional 1343 

regulation revealed by gene regulatory networks in maize. BMC Plant Biol. 2018:18(1):111. 1344 

https://doi.org/10.1186/s12870-018-1329-y 1345 

Huerta-Cepas J, Szklarczyk D, Heller D, Hernández-Plaza A, Forslund SK, Cook H, 1346 

Mende DR, Letunic I, Rattei T, Jensen LJ, et al. eggNOG 5.0: a hierarchical, 1347 

functionally and phylogenetically annotated orthology resource based on 5090 organisms 1348 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 13, 2024. ; https://doi.org/10.1101/2024.08.12.607624doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.12.607624
http://creativecommons.org/licenses/by-nd/4.0/


46 

 

and 2502 viruses. Nucleic Acids Res. 2019:47(D1):D309–D314. 1349 

https://doi.org/10.1093/nar/gky1085 1350 

Hu G, Grover CE, Jareczek J, Yuan D, Dong Y, Miller E, Conover JL, and Wendel JF. 1351 

Evolution and Diversity of the Cotton Genome. . In. Cotton Precision Breeding, M-U- 1352 

Rahman, Y Zafar, and T Zhang, eds. (Springer International Publishing: Cham), pp. 25–78. 1353 

https://doi.org/10.1007/978-3-030-64504-5_2 1354 

Hu G, Grover C, Vera D, Lung P-Y, Girimurugan S, Miller E, Conover J, Ou S, Xiong X, 1355 

Zhu D, et al. Evolutionary dynamics of chromatin structure and duplicate gene expression 1356 

in diploid and allopolyploid cotton. 2023. https://doi.org/10.21203/rs.3.rs-3373364/v1 1357 

Hu G and Wendel JF. Cis–trans controls and regulatory novelty accompanying 1358 

allopolyploidization. New Phytol. 2019:221(4):1691–1700. 1359 

https://doi.org/10.1111/nph.15515 1360 

Hu Y, Chen J, Fang L, Zhang Z, Ma W, Niu Y, Ju L, Deng J, Zhao T, Lian J, et al. 1361 

Gossypium barbadense and Gossypium hirsutum genomes provide insights into the origin 1362 

and evolution of allotetraploid cotton. Nat Genet. 2019:51(4):739–748. 1363 

https://doi.org/10.1038/s41588-019-0371-5 1364 

Huynh-Thu VA and Geurts P. dynGENIE3: dynamical GENIE3 for the inference of gene 1365 

networks from time series expression data. Sci Rep. 2018:8(1):3384. 1366 

https://doi.org/10.1038/s41598-018-21715-0 1367 

Huynh-Thu VA, Irrthum A, Wehenkel L, and Geurts P. Inferring regulatory networks from 1368 

expression data using tree-based methods. PLoS One. 2010:5(9). 1369 

https://doi.org/10.1371/journal.pone.0012776 1370 

Jareczek JJ, Grover CE, Hu G, Xiong X, Arick MA Ii, Peterson DG, and Wendel JF. 1371 

Domestication over Speciation in Allopolyploid Cotton Species: A Stronger Transcriptomic 1372 

Pull. Genes. 2023:14(6). https://doi.org/10.3390/genes14061301 1373 

Jin J, He K, Tang X, Li Z, Lv L, Zhao Y, Luo JC, Gao G. An Arabidopsis transcriptional 1374 

regulatory map reveals distinct functional and evolutionary features of novel transcription 1375 

factors. Mol Biol Evol. 2015: 32(7):1767–1773. https://doi.org/10.1093/molbev/msx245 1376 

Jin J, Tian F, Yang D-C, Meng Y-Q, Kong L, Luo J, and Gao G. PlantTFDB 4.0: toward a 1377 

central hub for transcription factors and regulatory interactions in plants. Nucleic Acids Res. 1378 

2017:45(D1):D1040–D1045. https://doi.org/10.1093/nar/gkw982 1379 

Jones DM and Vandepoele K. Identification and evolution of gene regulatory networks: 1380 

insights from comparative studies in plants. Curr Opin Plant Biol. 2020:54:42–48. 1381 

https://doi.org/10.1016/j.pbi.2019.12.008 1382 

Kerseviciute I and Gordevicius J. aPEAR: an R package for autonomous visualisation of 1383 

pathway enrichment networks. bioRxiv. 2023:2023.03.28.534514. 1384 

https://doi.org/10.1101/2023.03.28.534514 1385 

Kim D, Langmead B, and Salzberg SL. HISAT: a fast spliced aligner with low memory 1386 

requirements. Nat Methods. 2015:12(4):357–360. https://doi.org/10.1038/nmeth.3317 1387 

Kulkarni SR and Vandepoele K. Inference of plant gene regulatory networks using data-driven 1388 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 13, 2024. ; https://doi.org/10.1101/2024.08.12.607624doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.12.607624
http://creativecommons.org/licenses/by-nd/4.0/


47 

 

methods: A practical overview. Biochim Biophys Acta Gene Regul Mech. 1389 

2020:1863(6):194447. https://doi.org/10.1016/j.bbagrm.2019.194447 1390 

Kunst L and Samuels L. Plant cuticles shine: advances in wax biosynthesis and export. Curr 1391 

Opin Plant Biol. 2009:12(6):721–727. https://doi.org/10.1016/j.pbi.2009.09.009 1392 

Langfelder P and Horvath S. WGCNA: an R package for weighted correlation network 1393 

analysis. BMC Bioinformatics. 2008:9:559. https://doi.org/10.1186/1471-2105-9-559 1394 

Langmead B and Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 1395 

2012:9(4):357–359. https://doi.org/10.1038/nmeth.1923 1396 

Levine M and Davidson EH. Gene regulatory networks for development. Proc Natl Acad Sci U 1397 

S A. 2005:102(14):4936–4942. https://doi.org/10.1073/pnas.0408031102 1398 

Li L, Wang X-L, Huang G-Q, and Li X-B. Molecular characterization of cotton GhTUA9 gene 1399 

specifically expressed in fibre and involved in cell elongation. J Exp Bot. 1400 

2007:58(12):3227–3238. https://doi.org/10.1093/jxb/erm167 1401 

Linde J, Schulze S, Henkel SG, and Guthke R. Data- and knowledge-based modeling of gene 1402 

regulatory networks: an update. EXCLI J. 2015:14:346–378. 1403 

https://doi.org/10.17179/excli2015-168 1404 

Li Q, Brown JB, Huang H, and Bickel PJ. Measuring reproducibility of high-throughput 1405 

experiments. The annals of applied. 2011. 1406 

Liu B, Zhu Y, and Zhang T. The R3-MYB gene GhCPC negatively regulates cotton fiber 1407 

elongation. PLoS One. 2015:10(2):e0116272. https://doi.org/10.1371/journal.pone.0116272 1408 

Liu L, Chen G, Li S, Gu Y, Lu L, Qanmber G, Mendu V, Liu Z, Li F, and Yang Z. A 1409 

brassinosteroid transcriptional regulatory network participates in regulating fiber elongation 1410 

in cotton. Plant Physiol. 2023:191(3):1985–2000. https://doi.org/10.1093/plphys/kiac590 1411 

Liu Q, Huang H, Chen Y, Yue Z, Wang Z, Qu T, Xu D, Lü S, and Hu H. Two Arabidopsis 1412 

MYB-SHAQKYF transcription repressors regulate leaf wax biosynthesis via transcriptional 1413 

suppression on DEWAX. New Phytol. 2022:236(6):2115–2130. 1414 

https://doi.org/10.1111/nph.18498 1415 

Liu W, Song C, Ren Z, Zhang Z, Pei X, Liu Y, He K, Zhang F, Zhao J, Zhang J, et al. 1416 

Genome-wide association study reveals the genetic basis of fiber quality traits in upland 1417 

cotton (Gossypium hirsutum L.). BMC Plant Biol. 2020:20(1):395. 1418 

https://doi.org/10.1186/s12870-020-02611-0 1419 

Li Z, Wang P, You C, Yu J, Zhang X, Yan F, Ye Z, Shen C, Li B, Guo K, et al. Combined 1420 

GWAS and eQTL analysis uncovers a genetic regulatory network orchestrating the 1421 

initiation of secondary cell wall development in cotton. New Phytol. 2020:226(6):1738–1422 

1752. https://doi.org/10.1111/nph.16468 1423 

Lovell JT, Sreedasyam A, Schranz ME, Wilson M, Carlson JW, Harkess A, Emms D, 1424 

Goodstein DM, and Schmutz J. GENESPACE tracks regions of interest and gene copy 1425 

number variation across multiple genomes. Elife. 2022:11. 1426 

https://doi.org/10.7554/eLife.78526 1427 

Love MI, Huber W, and Anders S. Moderated estimation of fold change and dispersion for 1428 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 13, 2024. ; https://doi.org/10.1101/2024.08.12.607624doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.12.607624
http://creativecommons.org/licenses/by-nd/4.0/


48 

 

RNA-seq data with DESeq2. Genome Biol. 2014:15(12):550. 1429 

https://doi.org/10.1186/s13059-014-0550-8 1430 

Lu Q, Shi Y, Xiao X, Li P, Gong J, Gong W, Liu A, Shang H, Li J, Ge Q, et al. 1431 

Transcriptome Analysis Suggests That Chromosome Introgression Fragments from Sea 1432 

Island Cotton (Gossypium barbadense) Increase Fiber Strength in Upland Cotton 1433 

(Gossypium hirsutum). G3. 2017:7(10):3469–3479. https://doi.org/10.1534/g3.117.300108 1434 

Machado A, Wu Y, Yang Y, Llewellyn DJ, and Dennis ES. The MYB transcription factor 1435 

GhMYB25 regulates early fibre and trichome development. Plant J. 2009:59(1):52–62. 1436 

https://doi.org/10.1111/j.1365-313X.2009.03847.x 1437 

Ma J, Jiang Y, Pei W, Wu M, Ma Q, Liu J, Song J, Jia B, Liu S, Wu J, et al. Expressed 1438 

genes and their new alleles identification during fibre elongation reveal the genetic factors 1439 

underlying improvements of fibre length in cotton. Plant Biotechnol J. 2022:20(10):1940–1440 

1955. https://doi.org/10.1111/pbi.13874 1441 

Marbach D, Costello JC, Küffner R, Vega NM, Prill RJ, Camacho DM, Allison KR, 1442 

DREAM5 Consortium, Kellis M, Collins JJ, et al. Wisdom of crowds for robust gene 1443 

network inference. Nat Methods. 2012:9(8):796–804. https://doi.org/10.1038/nmeth.2016 1444 

Margolin AA, Nemenman I, Basso K, Wiggins C, Stolovitzky G, Dalla Favera R, and 1445 

Califano A. ARACNE: an algorithm for the reconstruction of gene regulatory networks in a 1446 

mammalian cellular context. BMC Bioinformatics. 2006:7 Suppl 1(Suppl 1):S7. 1447 

https://doi.org/10.1186/1471-2105-7-S1-S7 1448 

Ma Z, He S, Wang X, Sun J, Zhang Y, Zhang G, Wu L, Li Z, Liu Z, Sun G, et al. 1449 

Resequencing a core collection of upland cotton identifies genomic variation and loci 1450 

influencing fiber quality and yield. Nat Genet. 2018:50(6):803–813. 1451 

https://doi.org/10.1038/s41588-018-0119-7 1452 

Mei H, Qi B, Han Z, Zhao T, Guo M, Han J, Zhang J, Guan X, Hu Y, Zhang T, et al. 1453 

Subgenome Bias and Temporal Postponement of Gene Expression Contributes to the 1454 

Distinctions of Fiber Quality in Gossypium Species. Front Plant Sci. 2021:12:819679. 1455 

https://doi.org/10.3389/fpls.2021.819679 1456 

Mercatelli D, Lopez-Garcia G, and Giorgi FM. corto: a lightweight R package for gene 1457 

network inference and master regulator analysis. Bioinformatics. 2020:36(12):3916–3917. 1458 

https://doi.org/10.1093/bioinformatics/btaa223 1459 

O’Malley RC, Huang S-SC, Song L, Lewsey MG, Bartlett A, Nery JR, Galli M, Gallavotti 1460 

A, and Ecker JR. Cistrome and Epicistrome Features Shape the Regulatory DNA 1461 

Landscape. Cell. 2016:165(5):1280–1292. https://doi.org/10.1016/j.cell.2016.04.038 1462 

Pei L, Huang X, Liu Z, Tian X, You J, Li J, Fang DD, Lindsey K, Zhu L, Zhang X, et al. 1463 

Dynamic 3D genome architecture of cotton fiber reveals subgenome-coordinated chromatin 1464 

topology for 4-staged single-cell differentiation. Genome Biol. 2022:23(1):45. 1465 

https://doi.org/10.1186/s13059-022-02616-y 1466 

Pertea M, Pertea GM, Antonescu CM, Chang T-C, Mendell JT, and Salzberg SL. StringTie 1467 

enables improved reconstruction of a transcriptome from RNA-seq reads. Nat Biotechnol. 1468 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 13, 2024. ; https://doi.org/10.1101/2024.08.12.607624doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.12.607624
http://creativecommons.org/licenses/by-nd/4.0/


49 

 

2015:33(3):290–295. https://doi.org/10.1038/nbt.3122 1469 

Qin Y, Sun M, Li W, Xu M, Shao L, Liu Y, Zhao G, Liu Z, Xu Z, You J, et al. Single-cell 1470 

RNA-seq reveals fate determination control of an individual fibre cell initiation in cotton 1471 

(Gossypium hirsutum). Plant Biotechnol J. 2022:20(12):2372–2388. 1472 

https://doi.org/10.1111/pbi.13918 1473 

Ramírez-González RH, Borrill P, Lang D, Harrington SA, Brinton J, Venturini L, Davey 1474 

M, Jacobs J, van Ex F, Pasha A, et al. The transcriptional landscape of polyploid wheat. 1475 

Science. 2018:361(6403). https://doi.org/10.1126/science.aar6089 1476 

Rhee SY and Mutwil M. Towards revealing the functions of all genes in plants. Trends Plant 1477 

Sci. 2014:19(4):212–221. https://doi.org/10.1016/j.tplants.2013.10.006 1478 

Santner A and Estelle M. Recent advances and emerging trends in plant hormone signalling. 1479 

Nature. 2009:459(7250):1071–1078. https://doi.org/10.1038/nature08122 1480 

Shan C-M, Shangguan X-X, Zhao B, Zhang X-F, Chao L-M, Yang C-Q, Wang L-J, Zhu H-1481 

Y, Zeng Y-D, Guo W-Z, et al. Control of cotton fibre elongation by a homeodomain 1482 

transcription factor GhHOX3. Nat Commun. 2014:5:5519. 1483 

https://doi.org/10.1038/ncomms6519 1484 

Shibata M, Breuer C, Kawamura A, Clark NM, Rymen B, Braidwood L, Morohashi K, 1485 

Busch W, Benfey PN, Sozzani R, et al. GTL1 and DF1 regulate root hair growth through 1486 

transcriptional repression of ROOT HAIR DEFECTIVE 6-LIKE 4 in Arabidopsis. 1487 

Development. 2018:145(3). https://doi.org/10.1242/dev.159707 1488 

Shi Z, Chen X, Xue H, Jia T, Meng F, Liu Y, Luo X, Xiao G, and Zhu S. GhBZR3 1489 

suppresses cotton fiber elongation by inhibiting very-long-chain fatty acid biosynthesis. 1490 

Plant J. 2022:111(3):785–799. https://doi.org/10.1111/tpj.15852 1491 

Siddiq MA and Wittkopp PJ. Mechanisms of regulatory evolution in yeast. Curr Opin Genet 1492 

Dev. 2022:77:101998. https://doi.org/10.1016/j.gde.2022.101998 1493 

Song L and Crawford GE. DNase-seq: a high-resolution technique for mapping active gene 1494 

regulatory elements across the genome from mammalian cells. Cold Spring Harb Protoc. 1495 

2010:2010(2):db.prot5384. https://doi.org/10.1101/pdb.prot5384 1496 

Song Q and Chen ZJ. Epigenetic and developmental regulation in plant polyploids. Curr Opin 1497 

Plant Biol. 2015:24:101–109. https://doi.org/10.1016/j.pbi.2015.02.007 1498 

Springer N, de León N, and Grotewold E. Challenges of Translating Gene Regulatory 1499 

Information into Agronomic Improvements. Trends Plant Sci. 2019:24(12):1075–1082. 1500 

https://doi.org/10.1016/j.tplants.2019.07.004 1501 

Sun S, Xiong X-P, Zhu Q, Li Y-J, and Sun J. Transcriptome Sequencing and Metabolome 1502 

Analysis Reveal Genes Involved in Pigmentation of Green-Colored Cotton Fibers. Int J Mol 1503 

Sci. 2019a:20(19). https://doi.org/10.3390/ijms20194838 1504 

Sun W, Gao Z, Wang J, Huang Y, Chen Y, Li J, Lv M, Wang J, Luo M, and Zuo K. Cotton 1505 

fiber elongation requires the transcription factor GhMYB212 to regulate sucrose 1506 

transportation into expanding fibers. New Phytol. 2019b:222(2):864–881. 1507 

https://doi.org/10.1111/nph.15620 1508 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 13, 2024. ; https://doi.org/10.1101/2024.08.12.607624doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.12.607624
http://creativecommons.org/licenses/by-nd/4.0/


50 

 

Sun X, Gong S-Y, Nie X-Y, Li Y, Li W, Huang G-Q, and Li X-B. A R2R3-MYB transcription 1509 

factor that is specifically expressed in cotton (Gossypium hirsutum) fibers affects secondary 1510 

cell wall biosynthesis and deposition in transgenic Arabidopsis. Physiol Plant. 1511 

2015:154(3):420–432. https://doi.org/10.1111/ppl.12317 1512 

Tang M, Li B, Zhou X, Bolt T, Li JJ, and Cruz N. A genome‐scale TF–DNA interaction 1513 

network of transcriptional regulation of Arabidopsis primary and specialized metabolism. 1514 

Mol Syst Biol. 2021. 1515 

Tang W, Tu L, Yang X, Tan J, Deng F, Hao J, Guo K, Lindsey K, and Zhang X. The 1516 

calcium sensor GhCaM7 promotes cotton fiber elongation by modulating reactive oxygen 1517 

species (ROS) production. New Phytol. 2014:202(2):509–520. 1518 

https://doi.org/10.1111/nph.12676 1519 

Taylor-Teeples M, Lin L, de Lucas M, Turco G, Toal TW, Gaudinier A, Young NF, 1520 

Trabucco GM, Veling MT, Lamothe R, et al. An Arabidopsis gene regulatory network 1521 

for secondary cell wall synthesis. Nature. 2015:517(7536):571–575. 1522 

https://doi.org/10.1038/nature14099 1523 

Tian F, Yang D-C, Meng Y-Q, Jin J, and Gao G. PlantRegMap: charting functional regulatory 1524 

maps in plants. Nucleic Acids Res. 2020a:48(D1):D1104–D1113. 1525 

https://doi.org/10.1093/nar/gkz1020 1526 

Tian Y, Du J, Wu H, Guan X, Chen W, Hu Y, Fang L, Ding L, Li M, Yang D, et al. The 1527 

transcription factor MML4_D12 regulates fiber development through interplay with the 1528 

WD40-repeat protein WDR in cotton. J Exp Bot. 2020b:71(12):3499–3511. 1529 

https://doi.org/10.1093/jxb/eraa104 1530 

Tian Z, Zhang Y, Zhu L, Jiang B, Wang, H, Gao R, Friml J, Xiao G. Strigolactones act 1531 

downstream of gibberellins to regulate fiber cell elongation and cell wall thickness in cotton 1532 

(Gossypium hirsutum). Plant Cell, 34(12): 4816–4839. 1533 

https://doi.org/10.1093/plcell/koac270 1534 

Tuttle JR, Nah G, Duke MV, Alexander DC, Guan X, Song Q, Chen ZJ, Scheffler BE, and 1535 

Haigler CH. Metabolomic and transcriptomic insights into how cotton fiber transitions to 1536 

secondary wall synthesis, represses lignification, and prolongs elongation. BMC Genomics. 1537 

2015:16:477. https://doi.org/10.1186/s12864-015-1708-9 1538 

Tu X, Mejía-Guerra MK, Valdes Franco JA, Tzeng D, Chu P-Y, Shen W, Wei Y, Dai X, Li 1539 

P, Buckler ES, et al. Reconstructing the maize leaf regulatory network using ChIP-seq data 1540 

of 104 transcription factors. Nat Commun. 2020:11(1):5089. 1541 

https://doi.org/10.1038/s41467-020-18832-8 1542 

Ueda Y, Ohtsuki N, Kadota K, Tezuka A, Nagano AJ, Kadowaki T, Kim Y, Miyao M, and 1543 

Yanagisawa S. Gene regulatory network and its constituent transcription factors that 1544 

control nitrogen-deficiency responses in rice. New Phytol. 2020:227(5):1434–1452. 1545 

https://doi.org/10.1111/nph.16627 1546 

Vandepoele K and Kaufmann K. Characterization of Gene Regulatory Networks in Plants 1547 

Using New Methods and Data Types. Methods Mol Biol. 2023:2698:1–11. 1548 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 13, 2024. ; https://doi.org/10.1101/2024.08.12.607624doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.12.607624
http://creativecommons.org/licenses/by-nd/4.0/


51 

 

https://doi.org/10.1007/978-1-0716-3354-0_1 1549 

Vaquerizas JM, Kummerfeld SK, Teichmann SA, and Luscombe NM. A census of human 1550 

transcription factors: function, expression and evolution. Nat Rev Genet. 2009:10(4):252–1551 

263. https://doi.org/10.1038/nrg2538 1552 

Viot CR and Wendel JF. Evolution of the Cotton Genus, Gossypium, and Its Domestication in 1553 

the Americas. CRC Crit Rev Plant Sci. 2023:42(1):1–33. 1554 

https://doi.org/10.1080/07352689.2022.2156061 1555 

Walford S-A, Wu Y, Llewellyn DJ, and Dennis ES. GhMYB25-like: a key factor in early 1556 

cotton fibre development. Plant J. 2011:65(5):785–797. https://doi.org/10.1111/j.1365-1557 

313X.2010.04464.x 1558 

Walford S-A, Wu Y, Llewellyn DJ, and Dennis ES. Epidermal cell differentiation in cotton 1559 

mediated by the homeodomain leucine zipper gene, GhHD-1. Plant J. 2012:71(3):464–478. 1560 

https://doi.org/10.1111/j.1365-313X.2012.05003.x 1561 

Walley JW, Sartor RC, Shen Z, Schmitz RJ, Wu KJ, Urich MA, Nery JR, Smith LG, 1562 

Schnable JC, Ecker JR, et al. Integration of omic networks in a developmental atlas of 1563 

maize. Science. 2016:353(6301):814–818. https://doi.org/10.1126/science.aag1125 1564 

Wang M, Tu L, Lin M, Lin Z, Wang P, Yang Q, Ye Z, Shen C, Li J, Zhang L, et al. 1565 

Asymmetric subgenome selection and cis-regulatory divergence during cotton 1566 

domestication. Nat Genet. 2017:49(4):579–587. https://doi.org/10.1038/ng.3807 1567 

Wang M, Wang P, Lin M, Ye Z, Li G, Tu L, Shen C, Li J, Yang Q, and Zhang X. 1568 

Evolutionary dynamics of 3D genome architecture following polyploidization in cotton. Nat 1569 

Plants. 2018:4(2):90–97. https://doi.org/10.1038/s41477-017-0096-3 1570 

Wang M-Y, Zhao P-M, Cheng H-Q, Han L-B, Wu X-M, Gao P, Wang H-Y, Yang C-L, 1571 

Zhong N-Q, Zuo J-R, et al. The cotton transcription factor TCP14 functions in auxin-1572 

mediated epidermal cell differentiation and elongation. Plant Physiol. 2013:162(3):1669–1573 

1680. https://doi.org/10.1104/pp.113.215673 1574 

Wang N, Ma Q, Wu M, Pei W, Song J, Jia B, Liu G, Sun H, Zang X, Yu S, et al. Genetic 1575 

variation in MYB5_A12 is associated with fibre initiation and elongation in tetraploid 1576 

cotton. Plant Biotechnol J. 2021a:19(10):1892–1894. https://doi.org/10.1111/pbi.13662 1577 

Wang N-N, Li Y, Chen Y-H, Lu R, Zhou L, Wang Y, Zheng Y, and Li X-B. Phosphorylation 1578 

of WRKY16 by MPK3-1 is essential for its transcriptional activity during fiber initiation 1579 

and elongation in cotton (Gossypium hirsutum). Plant Cell. 2021b:33(8):2736–2752. 1580 

https://doi.org/10.1093/plcell/koab153 1581 

Wang Y, Li Y, Gong S-Y, Qin L-X, Nie X-Y, Liu D, Zheng Y, and Li X-B. GhKNL1 controls 1582 

fiber elongation and secondary cell wall synthesis by repressing its downstream genes in 1583 

cotton (Gossypium hirsutum). J Integr Plant Biol. 2022:64(1):39–55. 1584 

https://doi.org/10.1111/jipb.13192 1585 

Wang Z, Yang Z, and Li F. Updates on molecular mechanisms in the development of branched 1586 

trichome in Arabidopsis and nonbranched in cotton. Plant Biotechnol J. 2019:17(9):1706–1587 

1722. https://doi.org/10.1111/pbi.13167 1588 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 13, 2024. ; https://doi.org/10.1101/2024.08.12.607624doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.12.607624
http://creativecommons.org/licenses/by-nd/4.0/


52 

 

Wei X, Li J, Wang S, Zhao Y, Duan H, and Ge X. Fiber-specific overexpression of GhACO1 1589 

driven by E6 promoter improves cotton fiber quality and yield. Ind Crops Prod. 1590 

2022:185:115134. https://doi.org/10.1016/j.indcrop.2022.115134 1591 

Wen X, Chen Z, Yang Z, Wang M, Jin S, Wang G, Zhang L, Wang L, Li J, Saeed S, et al. 1592 

A comprehensive overview of cotton genomics, biotechnology and molecular biological 1593 

studies. Sci China Life Sci. 2023. https://doi.org/10.1007/s11427-022-2278-0 1594 

Wen X, Zhai Y, Zhang L, Chen Y, Zhu Z, Chen G, Wang K, and Zhu Y. Molecular studies 1595 

of cellulose synthase supercomplex from cotton fiber reveal its unique biochemical 1596 

properties. Sci China Life Sci. 2022:65(9):1776–1793. https://doi.org/10.1007/s11427-022-1597 

2083-9 1598 

Wu A, Lian B, Hao P, Fu X, Zhang M, Lu J, Ma L, Yu S, Wei H, and Wang H. GhMYB30-1599 

GhMUR3 affects fiber elongation and secondary wall thickening in cotton. Plant J. 2023. 1600 

https://doi.org/10.1111/tpj.16523 1601 

Wu T, Goh H, Azodi C, Krishnamoorthi S, Liu M, Urano D. Evolutionarily conserved 1602 

hierarchical gene regulatory networks for plant salt stress response. Nat Plants. 1603 

2021.7(6):787-799. https://doi.org/10.1038/s41477-021-00929-7 1604 

Xiao Y-H, Li D-M, Yin M-H, Li X-B, Zhang M, Wang Y-J, Dong J, Zhao J, Luo M, Luo X-1605 

Y, et al. Gibberellin 20-oxidase promotes initiation and elongation of cotton fibers by 1606 

regulating gibberellin synthesis. J Plant Physiol. 2010:167(10):829–837. 1607 

https://doi.org/10.1016/j.jplph.2010.01.003 1608 

Xie Y, Liu Y, Wang H, Ma X, Wang B, Wu G, and Wang H. Phytochrome-interacting factors 1609 

directly suppress MIR156 expression to enhance shade-avoidance syndrome in Arabidopsis. 1610 

Nat Commun. 2017:8(1):348. https://doi.org/10.1038/s41467-017-00404-y 1611 

Yadav VK, Yadav VK, Pant P, Singh SP, Maurya R, Sable A, and Sawant SV. GhMYB1 1612 

regulates SCW stage-specific expression of theGhGDSLpromoter in the fibres ofGossypium 1613 

hirsutumL. Plant Biotechnol J. 2017:15(9):1163–1174. https://doi.org/10.1111/pbi.12706 1614 

Yang Z, Liu Z, Ge X, Lu L, Qin W, Qanmber G, Liu L, Wang Z, and Li F. Brassinosteroids 1615 

regulate cotton fiber elongation by modulating very-long-chain fatty acid biosynthesis. 1616 

Plant Cell. 2023:35(6):2114–2131. https://doi.org/10.1093/plcell/koad060 1617 

Yang Z, Zhang C, Yang X, Liu K, Wu Z, Zhang X, Zheng W, Xun Q, Liu C, Lu L, et al. 1618 

PAG1, a cotton brassinosteroid catabolism gene, modulates fiber elongation. New Phytol. 1619 

2014:203(2):437–448. https://doi.org/10.1111/nph.12824 1620 

Yoo MJ and Wendel JF. Comparative evolutionary and developmental dynamics of the cotton 1621 

(Gossypium hirsutum) fiber transcriptome. PLoS Genet. 2014:10(1):e1004073. 1622 

https://doi.org/10.1371/journal.pgen.1004073 1623 

You J, Liu Z, Qi Z, Ma Y, Sun M, Su L, Niu H, Peng Y, Luo X, Zhu M, et al. Regulatory 1624 

controls of duplicated gene expression during fiber development in allotetraploid cotton. 1625 

Nat Genet. 2023:55(11):1987–1997. https://doi.org/10.1038/s41588-023-01530-8 1626 

Yu G, Wang L-G, Han Y, and He Q-Y. clusterProfiler: an R package for comparing biological 1627 

themes among gene clusters. OMICS. 2012:16(5):284–287. 1628 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 13, 2024. ; https://doi.org/10.1101/2024.08.12.607624doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.12.607624
http://creativecommons.org/licenses/by-nd/4.0/


53 

 

https://doi.org/10.1089/omi.2011.0118 1629 

Yu G, Wang L-G, and He Q-Y. ChIPseeker: an R/Bioconductor package for ChIP peak 1630 

annotation, comparison and visualization. Bioinformatics. 2015:31(14):2382–2383. 1631 

https://doi.org/10.1093/bioinformatics/btv145 1632 

Zeng J, Zhang M, Hou L, Bai W, Yan X, Hou N, Wang H, Huang J, Zhao J, and Pei Y. 1633 

Cytokinin inhibits cotton fiber initiation by disrupting PIN3a-mediated asymmetric 1634 

accumulation of auxin in the ovule epidermis. J Exp Bot. 2019:70(12):3139–3151. 1635 

https://doi.org/10.1093/jxb/erz162 1636 

Zhang B, Chopra D, Schrader A, and Hülskamp M. Evolutionary comparison of competitive 1637 

protein-complex formation of MYB, bHLH, and WDR proteins in plants. J Exp Bot. 1638 

2019:70(12):3197–3209. https://doi.org/10.1093/jxb/erz155 1639 

Zhang D, Chen C, Wang H, Niu E, Zhao P, Fang S, Zhu G, Shang X, and Guo W. Cotton 1640 

Fiber Development Requires the Pentatricopeptide Repeat Protein GhIm for Splicing of 1641 

Mitochondrial nad7 mRNA. Genetics. 2021a:217(1):1–17. 1642 

https://doi.org/10.1093/genetics/iyaa017 1643 

Zhang J, Huang G-Q, Zou D, Yan J-Q, Li Y, Hu S, and Li X-B. The cotton (Gossypium 1644 

hirsutum ) NAC transcription factor (FSN1) as a positive regulator participates in 1645 

controlling secondary cell wall biosynthesis and modification of fibers. New Phytol. 1646 

2018:217(2):625–640. https://doi.org/10.1111/nph.14864 1647 

Zhang M, Zeng J-Y, Long H, Xiao Y-H, Yan X-Y, and Pei Y. Auxin Regulates Cotton Fiber 1648 

Initiation via GhPIN-Mediated Auxin Transport. Plant Cell Physiol. 2017a:58(2):385–397. 1649 

https://doi.org/10.1093/pcp/pcw203 1650 

Zhang T, Hu Y, Jiang W, Fang L, Guan X, Chen J, Zhang J, Saski CA, Scheffler BE, Stelly 1651 

DM, et al. Sequencing of allotetraploid cotton (Gossypium hirsutum L. acc. TM-1) 1652 

provides a resource for fiber improvement. Nat Biotechnol. 2015:33(5):531–537. 1653 

https://doi.org/10.1038/nbt.3207 1654 

Zhang X, Cao J, Huang C, Zheng Z, Liu X, Shangguan X, Wang L, Zhang Y, and Chen Z. 1655 

Characterization of cotton ARF factors and the role of GhARF2b in fiber development. 1656 

BMC Genomics. 2021b:22(1):202. https://doi.org/10.1186/s12864-021-07504-6 1657 

Zhang X, Xue Y, Guan Z, Zhou C, Nie Y, Men S, Wang Q, Shen C, Zhang D, Jin S, et al. 1658 

Structural insights into homotrimeric assembly of cellulose synthase CesA7 from 1659 

Gossypium hirsutum. Plant Biotechnol J. 2021c:19(8):1579–1587. 1660 

https://doi.org/10.1111/pbi.13571 1661 

Zhang Y, He P, Yang Z, Huang G, Wang L, Pang C, Xiao H, Zhao P, Yu J, and Xiao G. A 1662 

Genome-Scale Analysis of the PIN Gene Family Reveals Its Functions in Cotton Fiber 1663 

Development. Front Plant Sci. 2017b:8:461. https://doi.org/10.3389/fpls.2017.00461 1664 

Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE, Nusbaum C, Myers 1665 

RM, Brown M, Li W, et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 1666 

2008:9(9):R137. https://doi.org/10.1186/gb-2008-9-9-r137 1667 

Zhao H, Zhang W, Zhang T, Lin Y, Hu Y, Fang C, and Jiang J. Genome-wide MNase 1668 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 13, 2024. ; https://doi.org/10.1101/2024.08.12.607624doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.12.607624
http://creativecommons.org/licenses/by-nd/4.0/


54 

 

hypersensitivity assay unveils distinct classes of open chromatin associated with 1669 

H3K27me3 and DNA methylation in Arabidopsis thaliana. Genome Biology. 2020:21(1). 1670 

https://doi.org/10.1186/s13059-020-1927-5 1671 

Zhong R, Lee C, Haghighat M, and Ye Z-H. Xylem vessel-specific SND5 and its homologs 1672 

regulate secondary wall biosynthesis through activating secondary wall NAC binding 1673 

elements. New Phytol. 2021:231(4):1496–1509. https://doi.org/10.1111/nph.17425 1674 

Zhou P, Li Z, Magnusson E, Gomez Cano F, Crisp PA, Noshay JM, Grotewold E, Hirsch 1675 

CN, Briggs SP, and Springer NM. Meta Gene Regulatory Networks in Maize Highlight 1676 

Functionally Relevant Regulatory Interactions. Plant Cell. 2020:32(5):1377–1396. 1677 

https://doi.org/10.1105/tpc.20.00080 1678 

Zhou Y, Zhang Z-T, Li M, Wei X-Z, Li X-J, Li B-Y, and Li X-B. Cotton (Gossypium 1679 

hirsutum) 14-3-3 proteins participate in regulation of fibre initiation and elongation by 1680 

modulating brassinosteroid signalling. Plant Biotechnol J. 2015:13(2):269–280. 1681 

https://doi.org/10.1111/pbi.12275 1682 

 1683 

 1684 

 1685 

 1686 

 1687 

 1688 

 1689 

 1690 

 1691 

 1692 

 1693 

 1694 

 1695 

 1696 

 1697 

 1698 

 1699 

 1700 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 13, 2024. ; https://doi.org/10.1101/2024.08.12.607624doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.12.607624
http://creativecommons.org/licenses/by-nd/4.0/


55 

 

 1701 

Figure 1. Cotton fiber transcriptomic datasets for this study. (A) Timeline displaying the 1702 

stages represented by the 12 studies used to generate a dataset of 401 fiber RNA-seq samples for 1703 

an in-depth exploration of cotton fiber development. Fiber elongation, transition, and SCW 1704 

synthesis stages are indicated by red, blue, and green bars, respectively, and each line represents 1705 

one existing dataset. This color scheme is applied consistently across all figures here. (B) 1706 

Principal component analysis (PCA) of 57,151 gene expression profiles. PC1 and PC2 captured 1707 

16.8% and 11.5% of variance, respectively. (C) T-distributed stochastic neighbor embedding (t-1708 

SNE) was also employed for dimension reduction and visualization of the fiber expression 1709 

landscape. 1710 
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 1711 

Figure 2. Phenotypic and functional associations of co-expression gene modules during 1712 

fiber development. (A) For the 20 co-expression gene modules identified by weighted gene co-1713 

expression network analysis (WGCNA), heatmap represents Pearson correlation coefficients and 1714 

P-values (cell color and text, respectively) between the module eigengenes (MEs, by row) and 1715 

fiber developmental stages treated as the binary categorical variable (by column). (B) ANOVA 1716 

of MEs (by column) by fiber developmental stages treated as a numeric variable (MEs, by row). 1717 

Heatmap cell color and text represent Pearson correlation coefficients and P-values, respectively. 1718 

(C) Heatmap of z-score normalized MEs for the seven largest modules across fourteen fiber 1719 

developmental time points. (D) Gene Ontology (GO) enrichment analysis of the seven largest 1720 

modules, displaying the top two most significant interconnected GO clusters terms each. 1721 

Different colors represent corresponding modules. 1722 

 1723 

 1724 

 1725 
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 1726 

Figure 3. Evaluation of fiber GRN inferences. (A) Histogram presents the bootstrap 1727 

distribution (n=1000) of cottonRegMap TF-target relationships as captured by chance. Red, blue, 1728 

and green lines represent the cottonRegMap TF-target relationships inferred by GENIE3, 1729 

dynGENIE3, and Corto, respectively. Both GENIE3 and Corto inferred significantly more 1730 

interactions outside the bootstrap distribution. (B) GSEA of known functional TFs among TFs 1731 

rankings inferred by cGENEI3. The enrichment score reflects the degree of over-representation 1732 

of a set of 54 known functional TFs at the top of the ranked TFs identified by cGENIE3. The red 1733 

dashed line indicates that these known functional TFs were significantly enriched at the top 77 1734 

ranking TFs. (C) Heatmap of overlapping target genes between empirical evidence (columns) 1735 

and GRN inferences (rows). WRKY16, with GRN inferences for cGENIE3, cdynGENIE3, and 1736 

cCorto. Each cell represents the number of overlaps and the significance of the corresponding 1737 

hypergeometric test. DAP-seq results of GhMYS1_A10, GhMYS1_D10, and GhDES1.4 and 1738 

RNA-seq results of GhDES1.4 and GhWRKY16 were shown. (D) The correlation between 1739 

expression variation of 77 hub TFs and fiber length was significantly higher than that of 3,638 1740 

TFs expressed in fibers. Five different percentages ranks were divided according to the 1741 

correlation between TF and fiber length, where 0% to 100% represent increasing correlation. 1742 
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 1743 

Figure 4. GRN performance in cotton cellulose synthesis. (A) Categorization of GhCesAs 1744 

based on gene expression patterns during cotton fiber development. Heatmap presents TPM 1745 

expression levels in the long-fiber variety J02 and the short-fiber cotton variety ZRI015. Three 1746 

hierarchical clusters correspond to PCW-related, SCW-related, and unknown GhCesAs. (B) The 1747 

number of CesA genes, regulator transcription factors (TFs), and regulatory relationships 1748 

identified by cGENIE3, cdynGENIE3, and cCorto. (C) Cellulose synthesis-related subnetwork 1749 
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inferred by cGENIE3. Square and round nodes represent GhCesAs and TFs, respectively, which 1750 

are connected by directed edges indicating the TF-target relationships inferred. Red and blue 1751 

node colors represent the categorization of PCW-related and SCW-related genes based on 1752 

expression patterns during fiber development, respectively. Two network components were 1753 

detected corresponding to PCW (left) and SCW (right), which were co-regulated by six TFs in 1754 

the middle. (D) Ranking GhCesAs by in-degree (i.e., number of incoming linking) from all TFs 1755 

inferred by cGENIE3. (E) Ranking cellulose synthesis related TFs by out-degree (i.e., number of 1756 

outward links) to target GhCesAs. (F) Enriched GO terms associated with the 71 TFs inferred by 1757 

cGENIE3. 1758 
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 1759 

 1760 

Figure 5.  Expression level analysis of homoeologous gene pairs. (A) Gene expression levels 1761 

compared between At and Dt homoeologs for all 57,151 fiber-expressed genes (“all genes”), 1762 

22,889 homoeologous pairs characterized into single-copy ortho-homoeolog groups (“scOGs”), 1763 

the remaining 13,229 At and 15,895 Dt genes uncategorized (“vcOGs”), 19,213 scOGs with both 1764 

At and Dt expressed in fiber (“scOGs pair”), and 17,028 scOGs with only one homoeolog 1765 
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expressed in fibers (“scOGs unpair”). (B) Gene expression levels compared for scOGs pairs 1766 

exhibiting homoeolog expression bias (HEB). (C) Absolute expression differences compared 1767 

between A-biased and D-biased scOGs. (C) Expression comparisons for scOGs present within 1768 

the same co-expression modules identified by WGCNA. (D) Absolute expression differences 1769 

compared between A-biased and D-biased scOGs in co-expression modules. Statistical 1770 

significance was determined using a two-sided Wilcoxon rank-sum test. ***P< 0.001. 1771 

 1772 

 1773 

Figure 6. GRN built based on known function genes and their directly regulated TF in 1774 

fiber. (A) GRN of known functional genes and their regulated TFs. Known functional genes and 1775 

TFs are shown as circles and rhombus, respectively. Different colors indicate the modules where 1776 

genes and TFs are located in the co-expression network. (B) Novel TFs in brown module 1777 

regulate GhHOX3, GhHD1, GhMYB25-like, and GhWD40 involved in fiber initiation. (C) 1778 

Network of known functional genes regulated by GhMYS1_A10 and GhMYS1_D10.  1779 
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 1780 

Figure 7 GhMYS1 positively regulates fiber elongation. (A) Expression pattern analysis of 1781 

GhMYS1_A10 and GhMYS1_D10 in wild and domestication cotton accession from 5 to 25 days 1782 

post-anthesis (dpa). (B) Expression pattern analysis of GhMYS1_A10 and GhMYS1_D10 in long-1783 

fiber (J02) and short-fiber (ZRI105) varieties from 5 to 25 dpa. (C) Relative expression levels 1784 

measured by qRT-PCR showed reduced GhMYS1 expression in 10 dpa fibers from pCLCrVA: 1785 

GhMYS1 cotton plants relative to pCLCrVA: 00 plants. (D) Significantly shorter mature fiber 1786 

length in pCLCrVA: GhMYS1 versus pCLCrVA: 00 plants. (E) Phenotype of mature fibers in 1787 

pCLCrVA: 00 and pCLCrVA: GhMYS1 plants. bar = 1 cm. (F-G) Transient dual-luciferase 1788 

(LUC) reporter assay testing interactions between GhMYS1_A10 (F) and GhMYS1_D10 (G), and 1789 

the promoters of GhPIN3a, GhCesA7_D05, GhTBL7, and GhMYB2. Expression of Renilla 1790 

luciferase (REN) was used as an internal control. Values given are mean ± SD (n = 4). Relative 1791 

LUC activity obtained with the empty plasmid (none) was set to 1. Statistically significant 1792 

differences between groups as determined by Student’s t-test. *P< 0.05 and **P< 0.01. 1793 
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Table 1. Fiber gene regulatory networks constructed. 1794 

GRN CottonRe

gNet 

GENIE

3 

Corto dynGE

NIE3 

cGENI

E3 

cCorto cdynG

ENIE3 

nodes 74,902 54,237 56,052 25,441 41,757 25,245 25,076 

edges 53,878,120 1,000,00

0 

232,943 1,000,0

00 

149,849 33,956 138,639 

TF in 

network 

At 2,485 1,796 1,723 546 1,577 729 542 

Dt 2,550 1,829 1,725 527 1,544 723 526 

TF as 

regulatory 

nodes 

At 1,088 1,780 1,723 546 773 729 248 

Dt 1,087 1,805 1,725 527 763 723 242 

Target 

genes 

At 36,118 26,633 25,809 12,633 20.462 11,646 12,440 

Dt 38,784 27,486 26,795 12,808 21,025 12,147 12,603 

known 

functional 

genes 

191 181 185 117 155 91 114 

network density 0.0096035 0.00034

0 

0.00007

4 

0.00154

5 

0.00008

6 

0.00005

3 

0.00022

1 

clustering 

coefficient 

0.0449141 0.03102

0 

0.00000

0 

0.01221

7 

0.00742

0 

0.00000

0 

0.00218

1 

 1795 

 1796 

 1797 

 1798 

 1799 

 1800 

 1801 

 1802 
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Table 2. Subgenomic contribution to fiber-expressed genes. 1803 

 Total At Dt 
1Subgenome 

contribution 

I. All genes in the reference 

genome 
74,902 36,118 38,784 At < Dt 

scOG genes 45,778 22,889 22,889 - 

scOG genes 29,124 13,229 15,895 At < Dt 

II. Fiber expressed genes 

(% of all genes) 

57,151 

(76.3%) 

28,004 

(77.5%) 

29,147 

(75.2%) 

 

(At > Dt) 

scOG genes: paired 

38,426 

(83.9%) 

19,213 

(83.9%) 

19,213 

(83.9%) 

- 

scOG genes: unpaired 

1,597 

(3.5%) 

749 

(3.3%) 

848 

(3.7%) 

At < Dt 

scOG genes 

17,128 

(58.5%) 

8,042 

(60.8%) 

9,086 

(57.2%) 

At < Dt 

(At > Dt) 

III. Genes assigned to co-

expression modules 

(% of all genes) 

25,751 

(34.4%) 

12,816 

(35.5%) 

12,935 

(33.4%) 

(At > Dt) 

homoeologs in the same module 12,560; 48.8% 6,280 6,280 - 

homoeologs NOT in the same 

module 
13,191; 51.2% 6,536 6,655 - 

homoeologs TF in the same 

module 
1042; 53.0% 521 521 - 

homoeologs TF NOT in the 

same module 
924; 47.0% 448 476 - 

know functional gene in the 

same module 
52 26 26  

know functional gene NOT in 

the same module 
66 33 33  

IV. Nodes in cGENIE3 

network 

(% of all genes) 

41,757 

(55.7%) 

20,578 

(57.0%) 

21,179 

(54.6%) 

(At > Dt) 

regulators (TFs) 1,536 773 763 - 

TFs in scOG pair; % scOG pairs 1,146; 88.1% 573 573 - 
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TFs NOT in scOG pair; % scOG 

pairs 
155; 11.9% 81 74 - 

scOG TF 235 119 116  

target genes (TGs): 41,514 

20,462 

(56.7%) 

21,052 

(54.3%) 

(At > Dt) 

TGs in scOG pair; % scOG pairs 23,858; 77.9% 11,929 11,929 - 

TGs NOT in scOG pair; % scOG 

pairs 
6,759; 22.1% 3,291 3,468 

 

- 

scOG genes; % of all scOG gene 10,897 5,242; 39.6% 5,655; 35.4% (At > Dt) 

V. Edges in cGENIE3 network 149,849    

intra-subgenome 

(average TG number per TF) 

74,701 
At to At: 

 38,704 (50.0) 

Dt to Dt: 

 35,997 (47.2) 
At > Dt 

inter-subgenome 

(average TG number per TF) 

75,148 

At to Dt: 

40,116 (51.9) 

Dt to At: 

35,032 (45.9) 

At to Dt > 

Dt to At 

2 TF: regulatory conservation 15.8% 15.7% 15.8% - 
2 TG: regulatory conservation 6.4% 6.3% 6.5% - 

1 Significantly different contribution between subgenomes was shown when Chi-square test P < 1804 

0.05. 1805 
2 For given TFs (e.g. At TFs), regulatory conservation measures the percentage of their edges 1806 

targeting paired At and Dt TGs among all edges. For given TGs, regulatory conservation 1807 

measures the percentage of their edges regulated by paired At and Dt TFs. Full conservation is 1808 

represented by 1, while no conservation is represented by 0. 1809 

 1810 

 1811 

 1812 
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