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Abstract

Cotton fiber development entails complex genome-wide gene regulatory networks (GRN) that
remain mostly unexplored. Here we present integrative analyses of fiber GRNs using public
RNA-seq datasets, integrated with multi-omics genomic, transcriptomic, and cistromic data. We
detail the fiber co-expression dynamics and regulatory connections, validating findings with
external datasets and transcription factor (TF) binding site data. We elucidate previously
uncharacterized TFs that regulate genes involved in fiber-related functions and cellulose
synthesis, and identify the regulatory role of two homoeologous G2-like transcription factors on
fiber length. Analysis of duplicated gene expression and network relationships in allopolyploid
cotton, which has two co-resident genomes (A, D), revealed novel aspects of asymmetric
subgenomic developmental contributions. Whereas D-based homoeolog pairs drive higher
overall gene expression from the D subgenome, TFs from the A subgenome play a preferential
regulatory role in the fiber gene regulatory network. Following allopolyploid formation, it
appears that the trans-regulatory roles of TFs diversified more rapidly between homoeologs than
did the cis-regulatory elements of their target genes. Our approach underscores the utility of
network analysis for detection of master regulators and provides fresh perspectives on fiber
development and polyploid functional genomics, through the lens of co-expression and GRN

dynamics.

Keywords: Upland cotton, fiber development, gene regulatory network (GRN), transcription
factors, GhMYS]

Introduction

Cotton ranks among the world’s most important agricultural plants, supplying most of our
natural textile fibers. The remarkable cotton “fibers”, which are extensively elongated and
naturally twisting single cells originating from the ovule epidermis, undergo a complex
developmental program, entailing five sequential yet overlapping stages: initiation, elongation,
transition, secondary cell wall (SCW) thickening, and maturation (Haigler et al. 2012). These
complex, coordinated stages are crucial for fiber production, as initiation determines the number
of epidermal cells that develop into fibers, while elongation and SCW thickening determine the

final length and strength of each fiber (Yang et al. 2014). Given the importance of these stages,
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the past two decades have witnessed considerable progress towards elucidating the principal
pathways and genes orchestrating fiber initiation and elongation, mostly focusing on the

regulatory role of transcription factors (TF) (Huang et al. 2021).

The initiation of cotton fibers shares a similar mechanism with the development of Arabidopsis
leaf trichome, regulated by the intricate MYB-bHLH-WDR (MBW) transcriptional complex
(Wang et al. 2019; Zhang et al. 2019; Wen et al. 2023). A specific MIXTA-like MYB TF,
GhMYB25-like, serves as a pivotal switch in this context, with suppression leading to abnormal
fiber cell initiation and fiberless seeds (Walford et al. 2011). The elongation phase of cotton fiber
development is distinctive among plant cells, involving special factors and mechanisms that
confer extraordinary fiber length and growth rate. Many TFs, including HD-ZIP, TCP, WRKY,
and ARF, are integral to modulating this phase (Wen et al. 2022). Notably, the cotton HD-ZIP
family TF GhHOX3 promotes fiber elongation by upregulating transcription of the cell wall
loosening protein genes GhRDLI and GhEXPAI (Shan et al. 2014), while a fiber-preferential
WRKY TF GhWRKY'16 directly activates the transcription of GAHOX3, a MYB family TF
(GhMYB109), and a cellulose synthase gene (GhCesA6D-D11) (Wang et al. 2021b). TEOSINTE
BRANCHED, CYCLOIDEA AND PCF 14 (GhTCP14) mediates cotton fiber elongation by
directly activating the expression of auxin-responsive gene Ghl4A3 and auxin transporter genes
GhPIN2 and GhAUXI1 (Wang et al. 2013). Beyond their involvement in elongation, GhHOX3,
GhTCP14, and GhWRKY16 have also been confirmed to positively regulate fiber initiation (Qin
et al. 2022; Wen et al. 2023). Transitioning from elongation to SCW thickening, several TFs,
such as GhF'SNI (Zhang et al. 2018) and five MYB family TF (GhAMYBI (Yadav et al. 2017),
GhMYBLI (Sun et al. 2015), GhMYB7 (Huang et al. 2016), GhMYB46 D9, and GhMYB46 D13
(Huang et al. 2019) have been reported to positively regulate SCW thickening. GATCP4 and a
Class I KNOX TF (GhKNL]I) function both in fiber elongation and SCW thickening; however,
interestingly, GhKNL1 represses genes promoting elongation and SCW cellulose deposition,
whereas GhTCP4 coordinates the suppression of fiber elongation through its interaction with
GhHOX3 to activate SCW synthesis (Cao et al. 2020; Wang et al. 2022). These results
underscore the nuanced regulatory roles of TFs and intricate dynamics across different stages.
Despite extensive research into TF-mediated regulatory networks of cotton fiber development,

these studies have been primarily conducted in a gene-by-gene fashion, leaving relatively
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92  unexplored a more comprehensive understanding of the dynamic interactions among networks of

93  genes governing fiber development.

94  Organ development in plants is intricate, depending on the precise timing and spatial regulation
95  of gene expression, a process captured by complex gene regulatory networks (GRNs) (Haque et
96 al. 2019; Jones and Vandepoele 2020; Vandepoele and Kaufmann 2023). These networks
97  represent the full suite of interactions between TFs and their target genes, where TFs bind to
98 specific DNA sequences known as TF binding sites (TFBSs) and regulate the transcription of
99  downstream targets. Central to GRNs are hub TFs, which, due to their large number of target
100 and/or regulating genes, are crucial for the integration and dissemination of regulatory signals
101  across the network (Barabasi and Oltvai 2004; Levine and Davidson 2005). Identifying hub
102  genes in plant GRNs offers a clear roadmap for pinpointing master regulators and unraveling
103 interconnections essential for biological processes and developmental programs (Gaudinier and
104  Brady 2016; Haque et al. 2019; Jones and Vandepoele 2020). These network components, when
105 modulated, can enhance plant productivity or resilience, often yielding more significant
106 influence over complex phenotypes than manipulating individual genes alone (Springer et al.
107  2019). Therefore, the construction and mining of GRNs is key for increasing the predictive

108 power of genome engineering approaches aimed at agronomic traits for crop improvement.

109  GRN construction methods can be broadly categorized into two main approaches differentiated
110 by the source of information utilized: data-driven methods and prior knowledge-based methods.
111  Data-driven methods leverage high-throughput experimental techniques to unveil physical

112  interactions between TFs and their target genes. These techniques includes: (1) Chromatin

113  immunoprecipitation sequencing (ChIP-seq) (Furey 2012) which identifies genomic sites bound
114 by a given TF in vivo; (2) DNA-affinity purification sequencing (DAP-seq) (O’Malley et al.

115  2016) captures DNA bound by the in vitro expressed TF; and (3) yeast one-hybrid assay (Taylor-
116  Teeples et al. 2015), which identifies physical interactions between TFs and their potential DNA
117  binding sites. Additionally, chromatin accessibility assays (Song and Crawford 2010;

118  Buenrostro et al. 2015; Zhao et al. 2020), including DNase-I hypersensitive site sequencing

119  (DNase-seq), assay for transposase-accessible chromatin with sequencing (ATAC-seq), and

120  MNase hypersensitive sequencing (MH-seq), have also been applied to characterize cis-

121 regulatory elements as potential transcription factor binding sites (TFBSs) at a genome-wide
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122 scale, thereby revealing regulatory relationships between TFs and target genes. Despite the

123  substantial increase in information about regulatory sequences and interactions offered by these
124  assays, inherent technical challenges and cost still pose limitations for studying large numbers of
125  TFs (Kulkarni and Vandepoele 2020). Consequently, only a few plant species, such as

126  Arabidopsis and maize, have constructed GRNs based on large-scale experimental data of

127  regulatory interactions (Taylor-Teeples et al. 2015; Gaudinier et al. 2018; Tu et al. 2020; Tang et
128  al. 2021).

129  In contrast to data-driven methods, prior knowledge-based methods for GRN construction
130 integrate existing biological knowledge, drawing from scientific literature, known biological
131  pathways, functional gene ontology categories, and various knowledge databases of gene-to-gene

132 relationships (Linde et al. 2015). For instance, resources like PlantTFDB (https://planttfdb.gao-

133  lab.org/) and PlantRegMap (https://plantregmap.gao-lab.org/) serve as integrated platforms for
134  plant regulatory data and analysis, which systematically screens for functional TFBSs and

135 regulatory interactions in plants. PlantRegMap, in particular, curates additional functional and
136  evolutionary annotations, such as expression profiles and multiple-species comparisons, along
137  with corresponding literature references, resulting in generation of regulatory maps for the main
138 lineages of angiosperms, effectively representing their preliminary GRNs (Tian et al. 2020a).
139  However, these general GRNs do not account for differences in gene regulation relationships

140  across different tissues, developmental stages, or conditions.

141  Integration methods often combine both data-driven and prior knowledge-based approaches,

142  leveraging expression data underlying specific states to refine GRNSs built based on existing

143  knowledge, or vice versa. Computational algorithms that infer GRNs from gene expression data
144  include correlation and information theory-based methods, probabilistic graphical models, and
145  machine learning (Haque et al. 2019). Correlations and mutual information methods assume that
146  co-expression is an indicator of coregulation and deterministically controlled by upstream

147  regulators. Probabilistic graphical models consider gene expression as random variables with a
148  certain probability distribution over different tissues and conditions. Machine learning

149  algorithms, such as ensemble decision trees and support vector machines, are trained on

150 expression data to predict regulatory relationships between genes. In recent years, these inference

151  methods have been employed to construct GRNs and identify important genes and regulatory
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152  relationship involved in plant growth and developmental processes, such as photomorphogenesis
153  in Arabidopsis (Balcerowicz et al. 2021), abiotic and disease responses in wheat (Ramirez-

154  Gonzalez et al. 2018), nitrogen-deficiency responses in rice (Ueda et al. 2020), as well as Kranz
155  anatomy development in maize and rice (Chang et al. 2019). More recently, as demonstrated for
156  spike phenotypic traits in wheat and flowering time regulation in maize (Chen et al. 2023; Han et
157 al. 2023), GRN inference has been improved by integrating heterogeneous -omics and functional
158  validation data for a more comprehensive understanding of the biomolecular networks. Despite
159 the critical importance of cotton fiber development to its success as a major crop species, a

160 comprehensive GRN that unravels the intricate molecular mechanisms underlying fiber traits is

161  still lacking.

162  In this study, we employed three distinct inference methods to construct GRNs utilizing

163  transcriptome data from 401 samples. Notably, we validated the robustness and efficacy of

164  resulting GRNs through rigorous integration with prior knowledge-based regulatory maps, DAP-
165 seq data, and additional transcriptomic datasets from gene perturbation experiments. Through
166 this integrative analysis, we identified novel transcription factors crucial for orchestrating fiber
167  development. We further validated the functional significance of a homoeologous pair of top-
168  ranked G2-like TF genes (GhMYSI A10 and GhMYSI DI10) in the GRN, revealing their

169  potential regulatory mechanisms in fiber development.

170  An additional important dimension of our study is that it addresses the fate of duplicated GRN's
171  in an allopolyploid plant, that is, one that contains two co-resident genomes. Gossypium hirsutum
172  contains the descendant genomes of both its A-genome and D-genome ancestors (each n=13),
173  and thus has an AD-genome with an additive (n=26) chromosome number. This evolutionary
174  history raises the possibilities of revealing the fate of duplicated GRN dynamics following

175  allopolyploid evolution, a prominent process in plant evolution (Hu et al. 2021; Viot and Wendel
176  2023). Here, we elucidate subgenomic control over fiber expression at both the genic co-

177  expression and GRN levels, providing insights into the regulatory landscape of fiber

178  development in an allopolyploid contect. Finally, we provide an integrative network resource and
179  demonstrate its utility in enhancing our understanding of cotton fiber development, thereby

180 facilitating targeted interventions to modulate fiber traits.
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181 Results

182 A fiber gene expression atlas of the Upland cotton G. hirsutum

183  We compiled a dataset of 473 Upland cotton (G. hirsutum) fiber transcriptomes from 12 RNA-
184  seq studies (Tuttle et al. 2015; Zhang et al. 2015, 2021a; Hinchliffe et al. 2016; Lu et al. 2017;
185 Baoetal. 2019; Hu et al. 2019; Sun et al. 2019a; Huang et al. 2020; Li et al. 2020; He et al.

186  2021) (Supplementary Table S1). These samples spanned key fiber developmental stages from 0
187  to 30 days post-anthesis (dpa), including fiber initiation, elongation, transition, and secondary
188  cell wall (SCW) synthesis (Figure 1A, Supplementary Fig. S1). To ensure specificity to fiber
189  cells, 12 samples from 0 to 3 dpa obtained from whole ovules were excluded. After quality

190 screening based on a unique mapping rate higher than 70% and outlier removal through principal
191  component analysis (PCA), a final set of 413 high-quality samples was obtained with Q20 above
192 93.09% (Supplementary Table S2). Further refinement using principal component analysis

193 (PCA) and t-distributed stochastic neighbor embedding (t-SNE) led to the removal of another 12
194  outlier samples, resulting in a final dataset of 401 samples (Supplementary Fig. S2,

195  Supplementary Table S2).

196  Based on the standardized gene expression by TPM (transcripts per million), both PCA t-SNE
197  identified two distinct clusters of fiber samples: one comprising 329 samples from 5 to 15 dpa
198  and another with 57 samples from 19 to 30 dpa, while 15 samples from 18 dpa exhibited an
199 intermediate distribution (Figure 1B, C). This observation indicates the pronounced

200 transcriptional distinction of the fiber cell from about 19 dpa as it becomes intensely committed
201  to SCW synthesis. Categorization of the three earlier stages was less clear, likely due to genetic
202  variation and variation in growing conditions or collection techniques across studies. Notably,
203  the inclusion of natural green-fiber cotton varieties highlights developmental differences that can
204  distinguish accessions. That is, among the 15 samples representing 18 dpa fiber, the 12 samples
205  derived from white-fiber producing accessions clustered with the 5 to 15 dpa samples (circa 50
206  on PCl), whereas the 3 green-fiber (variety Xincai 7) samples clustered with the 19 to 30 dpa
207  samples, suggesting that the green-fiber accessions transition to SCW synthesis sooner than the
208  white-fiber accessions represented here and underscoring the potential for temporal differences

209  in development among cotton varieties.
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210 To ensure the reliability of this dataset, we examined expression patterns of 192 fiber-related
211 genes known for their roles in cotton and/or Arabidopsis trichome development (Supplementary
212  Table S3). These genes were classified into three groups based on their average TPM values per
213  dpa (Supplementary Fig. S3). Group I, comprising 93 genes, displayed high expression levels
214  early during fiber elongation, featuring well-known elongation-associated genes like GAMYB25
215 (Machado et al. 2009), GhMYB25-like (Walford et al. 2011), GhTCP4 (Cao et al. 2020),

216  GhPIN3a (Zeng et al. 2019), GRHOX3 (Shan et al. 2014), GhHD1 (Walford et al. 2012),

217  GhCaM7 (Tang et al. 2014), GhWRKY16 (Wang et al. 2021b), and GhBZRI (Zhou et al. 2015).
218  Group II, containing 29 genes exhibiting higher expression during SCW synthesis at later time
219  points, included established SCW genes such as GhBZR3 (Shi et al. 2022), GhKNLI (Gong et al.
220  2014), GWSWEETI12 (Sun et al. 2019b), GhFSN1 (Zhang et al. 2018), and GAMYB46 D13

221  (Huang et al. 2019). Group III comprised 70 genes with expression profiles peaking at various
222  time points between 5 and 30 DPA. The expression patterns observed here closely align with
223  previous reports (Supplementary Table S3); that is, 77% (105 out of 136) of the genes surveyed
224 exhibited the expected expression profiles, providing robust validation of our gene expression
225  atlas. The few inconsistencies observed were primarily attributed to missing data (i.e., lack of
226 later time point data or large gaps between time points) in earlier studies. For example, several
227  genes (including GhGA20ox1 (Xiao et al. 2010), GhTUA9 (Li et al. 2007), GhMYB212 (Sun et
228  al. 2019b), GhACOI (Wei et al. 2022), GhMAHI (Ma et al. 2022), GhMYB5_A12 (Wang et al.
229  2021a), and GACPC (Liu et al. 2015)), which were previously compared only between 5 and 15
230  dpa, exhibited continuous expression changes in 5 to 30 dpa based on our comprehensive

231  expression profiles. Additionally, our dataset revealed that several well-known fiber initiation
232  genes, including GhiMYB25 (Machado et al. 2009), GhPIN6 (Zhang et al. 2017b), GhPIN3a

233 (Zengetal. 2019), GhBZR3 (Shi et al. 2022), and GASWEET12 (Sun et al. 2019b), exhibited
234 high expression levels in later stages of development that were not previously examined. This
235  suggests that these genes may have regulatory roles beyond fiber initiation, highlighting insights

236  enabled by our comprehensive data analysis.

237  Co-expression gene network analysis reveals fiber developmental dynamics

238  To explore the transcriptional dynamics of cotton fiber development, we employed weighted co-

239  expression gene network analysis (WGCNA) on fiber-expressed genes. Opting for a filtering
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240  criteria of TPM>0 in 30% of the samples (see Methods and Supplementary Fig. S4), we

241  identified and included 57,151 genes for further analysis, representing 76.3% of the total genome
242  expressed in fibers, consistent with previous reports (Hovav et al. 2008a; Yoo and Wendel 2014;
243  Gallagher et al. 2020). The subsequent WGCNA analysis categorized 34,075 genes into 20 co-
244  expression modules, varying in size from 109 to 7,360 module gene members (Supplementary
245  Fig. S5). The seven largest modules, ME1 (turquoise), ME2 (blue), ME3 (brown), ME4 (tan),
246  MES5 (green), MEG6 (black), and ME7 (red), collectively accounted for 87.7% (29,884 genes) of
247  all co-expressed genes. The remaining 23,076 genes, which could not be assigned to any

248  modules, were grouped into a grey module, indicating no discernible co-expression relationships.

249  To examine phenotypic associations, we correlated module eigengenes (MEs) with fiber

250  development for 14 time points between 5 and 30 dpa (inclusive; Figure 2A). Pearson correlation
251  analysis showed significant associations with fiber development for the majority of modules,

252  treating the time points as a binary categorical variable (Figure 2A) or a numeric variable (DPA;
253  Supplementary Fig. S5B). ANOVA of MEs revealed significant developmental changes for

254  seventeen modules, excluding ME6, ME17, and ME20 (MEs ~ DPA, ANOVA P <0.05) (Figure
255  2B).

256  Notably, the green module displayed the highest correlations with DPA (» = 0.80, P = 2e-91),
257  exhibiting a gradually increasing expression profile along fiber development. This module

258  consists 0f 4015 genes and 223 TFs, and it was enriched with GO terms related to cell wall

259  development, such as plant-type secondary cell wall biogenesis, cell wall polysaccharide

260  biosynthetic process, hemicellulose metabolic process, tube morphogenesis, and cell wall

261  macromolecule biosynthetic process (Figure 2D). Conversely, the brown, blue, and tan modules
262  showed strong negative correlations ( = -0.61~-0.85, P <2e-41), corresponding to decreasing
263  expression along fiber development (Figure 2B-C). The tan module in particular showed

264  significant enrichment of GO terms associated with cotton fiber development, encompassing
265  processes like very long-chain fatty acid metabolism, microtubule organization, cell tip growth,
266  pectin biosynthesis, and polymeric cytoskeletal fiber processes (Figure 2D; Supplementary Fig.
267  S6; Supplementary Table S4).
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268  The turquoise module, the largest with 7360 genes (including 984 TFs), peaked in expression at
269 25 dpa. Significant enrichment with GO terms including core promoter sequence-specific DNA
270  binding, DNA-binding transcription activator activity, and RNA polymerase II-specific were
271  observed. The red module, consisting of 2232 genes (including 50 TFs) and without significant
272  correlation with DPA, were enriched with diverse GO functions (Supplementary Table S4).

273  Exploring the roles of hormone signaling pathways in regulating cotton fiber development

274  (Huang et al. 2021), we observed significant functional enrichment in key modules. The brown
275  module with expression peaking at 5 dpa revealed a strong association with auxin (IAA)-

276  activated signaling pathways (Supplementary Fig. S7A), consistent with the known function of
277  TAA-activated signaling pathways in promoting fiber initiation and elongation. Surprisingly,
278  brassinosteroid (BR)-related signaling pathways, known to regulate fiber initiation and

279  elongation, were enriched in both the tan module (early peaking at 5 dpa) and the turquoise

280 module (late peaking at 25 dpa). This introduces a novel perspective on the impact of BR post-
281  fiber elongation, which has not been reported previously (Supplementary Fig. S7B-C).

282  Additionally, the red and turquoise modules, which exhibited more complex and dynamic gene
283  expression patterns across development, were enriched for BR, jasmonic acid, gibberellin, and
284  ethylene-related signaling pathways (Supplementary Fig. S7C), warranting further investigation
285 into their functional implications. Besides these extensively studied phytohormones, the

286  turquoise module also showed significant enrichment of abscisic acid, cytokinins, and salicylic
287  acid-related signaling pathways (Supplementary Fig. S7D), While these pathways are recognized
288  for their roles in plant growth and development (Santner and Estelle 2009), their specific impact

289  on cotton development remains underexplored.

290 Construction and evaluation of the cotton fiber gene regulatory networks

291  To infer regulatory interactions beyond co-expression relationships between genes, we

292  systematically constructed gene regulatory networks (GRNs) using three distinct inference
293  methods: Corto, GENIE3, and dynGENIE3. Leveraging the 57,151 fiber-expressed genes
294  derived from 401 RNA-seq samples, we evaluated the regulatory relationships between 3,638
295  transcription factors (TFs) and their putative target genes. Both GENIE3 and dynGENIE3

296 inferences were confined to the top one million TF-target interactions (edges) for comparison,
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297  retaining over twice the number of genes (nodes) from the GENIE3 network than from the

298  dynGENIE3 network (54,237 and 25,441, respectively). Although Corto inferred only 232,943
299  TF-target interactions (edges), it retained a comparable number of nodes to GENIE3 (56,052),
300 resulting in the densest and most clustered network topology among the three methods, followed
301 by GENIE3 and then dynGENIE3 (Table 1). Because differences in GRN construction can lead
302 to different inferences, we evaluated GRN quality for each method based on existing and newly

303  generated data, as listed below.

304  We first assessed the ability of each GRN to capture documented TF-target interactions based on
305  systematic literature mining in plants, as assembled into the PlantRegMap (Jin et al. 2015).

306  These known regulatory relationships were projected onto cotton orthologs to generate the

307  cottonRegMap. Among the three GRN methods, GENIE3 outperformed Corto and dynGENIE3,
308 recovering the highest percentage of known interactions (14.98% vs. 14.58% and 13.85%,

309 respectively), although the range among these percentages is relatively small. We also note that
310 these seemingly low percentages of interactions reflect the non-specific nature of cottonRegMap,
311 which involves prior knowledge assembled from various plants and is not specific to cotton

312  fibers. Without a true gold-standard dataset for validation, we employed a permutation test to
313  determine the expected number of interactions captured by chance. Both GENIE3 and Corto

314  captured more interactions than the expected 14.37% of interactions (bootstrapping P < 0.05),
315  demonstrating their utility in capturing biological information for cotton fiber (Figure 3A). For
316  subsequent analyses, we integrated prior biological knowledge by retaining only the regulatory
317  interactions predicted by GENIE3, dynGENIE3, and Corto that were also supported by

318  cottonRegNet. This approach allowed us to retain the relative topological patterns between

319 methods (Table 1). These integrated networks were designated as cGENIE3, cdynGENIE3, and
320  cCorto, respectively.

321  Using a second approach, we assessed the ability of each GRN to recover known fiber-related
322  functional genes and TFs (Supplementary Table S3) previously reported in the literature. We
323  curated 192 fiber-related functional genes, of which the cGENIE3 network contained 155 (80%),
324  the cdynGENIE3 network contained 114 (59%), and the cCorto network contained 91 (47%) of
325  the genes on the list. In terms of the percentage of known genes among total network nodes,

326  cdynGENIE3 exhibited the highest percentage (0.45%, 117 of 25,441), followed by cGENIE3
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327  (0.37%, 155 0f 41,757) and cCorto (0.36%, 91 of 25,245). We extended this to assess whether
328  known TFs were enriched among the highly ranked TF regulators in each GRN. Gene set

329  enrichment analysis (GSEA) showed that the curated TFs were significantly enriched at the top
330 of the cGENIE3 network; specifically, a leading-edge subset comprising 77 TFs was identified
331 as the most significant contributors to this enrichment (Figure 3B, Supplementary Table S5). In
332  contrast, known TFs were not enriched at the top of cdynGENIE3 and were randomly distributed
333  inrank in the cCorto network (Supplementary Fig. S8). These results suggested that cGENIE3
334  has stronger prediction power for key TFs compared to cdynGENIE3 and cCorto.

335  We further validated the GRN-inferred TF-target relationships for two top ranked

336  (homoeologous) TFs using physical evidence from DNA-affinity purification sequencing (DAP-
337  seq), an in vitro genome-wide assay of TF-DNA binding (O’Malley et al. 2016). The

338  homoeologous G2-like TFs GhMYS1 A10 (Gohir.A10G036400) and GhMYSI D10

339  (Gohir.D10G037100) were among the most confident (highest-ranked) regulators in all three
340 networks; therefore, these genes, were independently assayed for genome-wide binding sites
341  using DAP-seq (Figure 3C, Supplementary Table S6). These assays yielded 227,117 and 141,945
342  peaks for GhMYSI A10 and GhMYSI D10, respectively, with approximately 8.27% and 6.73%
343  of the peaks located within 2kb of the transcription start site for 10,132 and 9,363 genes

344  (Supplementary Fig. S9A-D). Among these genes, 7,784 and 6,773 were expressed in fibers and
345  identified as targets for GhAMYSI A10 and GhMYSI D10, respectively (Supplementary Fig. SOF-
346  E). Examination of the overlap in target genes between DAP-seq and each GRN revealed a

347  significant association for both TFs in cGENIE3 (hypergeometric test p-values of 2.24e-08 and
348  3.56e-06) and for GhMYSI D10 only in cdynGENIE3 (p = 0.0471); no significant association
349  was found for the cCorto GRN (Figure 3C, Supplementary Fig. SOF-G). These results were

350 reiterated when we compared DAP-seq for an additional gene (GhBES1.4) with each GRN.

351  GhBESI.4 is a known core TF in the BR signaling pathway that positively regulates fiber

352  elongation (Liu et al. 2023), yet it was ranked eighteenth by different GRN methods. Using a
353  published DAP-seq dataset for GhBESI.4 (Liu et al. 2023), we found significant overlaps

354  between the 1214 fiber-expressed target genes of GhBES1.4 inferred by DAP-seq

355  (Supplementary Fig. S9G) and the cGENIE3 and cdynGENIE3 GRNs, but not the cCorto GRN
356  (Figure 3C).
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357  Our fourth approach utilized published RNA-seq data from TF mutants or transgenic lines to
358 evaluate the accuracy of GRN inferences, by assessing how well the predicted regulatory

359 interactions in the GRNs corresponded to the differentially expressed genes (DEGs) observed in
360 these TF mutants or transgenic lines. Specifically, we identified 3,508 DEGs in GAWRKY16

361 RNAI lines, 1,422 in GhBES1.4 RNAI lines, and 1,790 in GhBES1.4 overexpression lines

362  compared to wild-type plants, most of which (96.2-99.0%) were expressed in the fiber dataset
363  evaluated here (Supplementary Fig. SIOA-C). These DEGs likely represent downstream targets
364  of the TFs perturbed in each respective experiment, and are thus useful to validate our GRN

365  predictions. For GAWRKY16, which is a WRKY TF known for promoting fiber initiation and
366  elongation (Wang et al. 2021b), we found significant overlap between the 3,472 DEGs identified
367  from the RNAI line comparison and the GhWRKY I 6-target relationships found in the cGENIE3
368  GRN (hypergeometric test p = 3.90e-06; Figure 4C); in contrast, cCorto and cdynGENIE3

369 inferred only two and zero DEG targets, respectively. Conversely, the 1,477 DEGs detected in
370 the GhBESI.4 exhibited significant overlap with the GhBES].4-targets only recovered for the
371  cdynGENIE3 GRN (p = 0.005751457). Notably, no significant overlap was found between the
372  DEGs from the GhBES1.4 RNAI lines and any of the networks (Figure 3C). Combined with the
373  DAP-seq evaluation, these results suggest that both GENIE3 and dynGENIE3 outperform Corto
374  in predicting regulatory targets for specific TFs, notwithstanding the inherent variance depending

375  on the TF and experimental context.

376  Our final assessment correlated the trait fiber length with key fiber TFs inferred by the GRNs.
377  Using the top 77 TFs ranked by each GRN method, Pearson correlation analysis between their
378  expression levels in 15 DPA fiber and mature fiber length revealed the highest phenotypic

379  correlations were found with TFs implicated in the cGENIE3 network, followed by

380 cdynGENIE3 and then cCorto (Figure 3D, Supplementary Table S5, 7-8). All networks showed
381  significantly higher correlations with phenotype than did all 3638 TFs expressed in fibers (Figure
382 3D).

383  Performance evaluation of GRN inferences in the case of cotton cellulose synthesis

384  In this case study, we evaluated three GRN methods by focusing on their ability to predict

385  regulatory relationships involved in cellulose synthesis in cotton fiber, aiming to further validate
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386 their predictive power and highlight novel findings. Cotton fiber is composed primarily of

387  cellulose, accounting for over 90% of its composition at maturity (Haigler et al. 2012).

388  Performing a genome-wide analysis of the cellulose synthase (CesA) gene family, we identified
389 27 CesA genes in the G. hirsutum genome and divided them into six classes, consistent with the
390 previous reports (Supplementary Fig. S11) (Zhang et al. 2021c; Wen et al. 2022). Thirteen

391  GhCesAs were highly expressed during fiber elongation via primary cell wall (PCW) synthesis,
392  and seven were linked to SCW formation after 15 dpa. The remaining seven GhCesAs genes
393  exhibit relatively low expression levels throughout fiber development and were considered of

394  unknown function (Figure 4A).

395 Inspecting the GRN-inferred TF-target relationships involving the fiber development related

396  GhCesAs, we next compared how well each GRN method represents these genes and known

397  regulator relationships (Figure 4B). The cGENIE3 network effectively identified all 20 GhCesAs
398  as targets and predicted 71 regulatory TFs (Supplementary Fig. S12), resulting in the largest

399  cellulose synthesis subnetwork (Figure 4C). In contrast, cdynGENIE3 identified only 13

400  GhCesAs regulated by 43 TFs, notably missing all of the SCW GhCesAs (Figure 4B). Likewise,
401  cCorto identified even fewer (11) GhCesAs, again missing all SCW GhCesAs, and finding only 8
402  TFs as regulators (Figure 4B; Supplementary Fig. S13-14). In addition to predicting the greatest
403  number of relationships, cGENIE3 also recovered regulatory relationships verified by prior

404  studies, whereas cdynGENIE3 and cCorto did not. For example, the NAC TFs family genes

405  GhFSNI_Al2 and GhFSNI D12 were predicted by cGENIE3 to regulate GhCesA4 and

406  GhCesA7, consistent with their differential expression patterns in GhFSNI overexpression lines
407  compared to the wild-type cotton plants that suggest the same regulatory relationship (Zhang et
408  al. 2018). Likewise, GAWRKY16 D06 was a predicted regulator of GhCesA7 D7, aligning with
409 its known role in regulating GhCesAs during fiber initiation and elongation (Wang et al. 2021b)
410  (Figure 4C). GO enrichment results showed that the 71 regulatory TFs predicted by cGENIE3
411  were significantly enriched in plant-type cell wall modification, regulation of secondary cell wall
412  biogenesis, and xylem development (Figure 4F). The results collectively suggested that the

413  cGENIE3 network presents a higher predictive power for cellulose synthesis compared to

414  cdynGENIE3 and cCorto.
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415  Closer examination of the cGENIE3 network revealed two distinct yet interconnected network
416  components (Figure 4C). The smaller component I consists of 11 PCW-related GhCesAs (3
417  GhCesAl, 4 GhCesA3, and 4 GhCesA6) and 27 regulatory TFs. Most of these TFs primarily
418  exhibited peak expression early during PCW synthesis, with 3 exceptions that peaked later. The
419  larger component II includes 7 SCW-related GhCesAs (2 GhCesAS8, 3 GhCesA7, and 2

420  GhCesA4) and 38 TFs. Fewer than half of the TFs in this component exhibited concordant

421  expression with their target GhCesAs. Among those disconcordant TFs peaking early during
422  PCW formation, the homoeologous pair of top-ranked G2-like TFs described above,

423  GhMYSI A10 and GhMYSI D10, were identified (Figure 4C and E). Combining trait

424  association results and expression patterns, GhAMYSI A10 and GhMYS1 D10 emerge as potential
425  novel TFs that may positively regulate fiber elongation by promoting PCW formation while
426  inhibiting SCW formation (further explored later; Figure 4C). In addition to more diverse TF
427  expression patterns, component II is enriched for SCW-related genes and is denser and more
428  interconnected than component I, which is enriched for PCW-related genes (Figure 4C-E); this
429  distinction reflects the intricate gene regulatory control underlying the transition from fiber

430  elongation to cell wall thickening. The two components were interconnected through 6 TFs that
431  regulate both PCW-related and SCW-related GhCesAs. These findings underscore the utility of

432  GRN interrogation in characterizing key regulators and functions in cotton fiber development.

433  Regarding At and Dt homoeologous relationships, we identified five TF homoeolog pairs and
434  two GhCesA homoeolog pairs in component I, and six TF homoeolog pairs and two GhCesA
435  homoeolog pairs in component II. These homoeolog pairs present in the same component

436  accounted for 44.4% (8 of 18) GhCesAs and 33.8% (22 of 65) TFs, representing functional

437  conservation or redundant regulatory relationships between homoeologs (Supplementary Table
438  S9). This duplicated nature of allopolyploid gene networks, along with the identification of new

439  master regulators, is discussed next.

440  The allopolyploid nature of cotton fiber GRN

441  Understanding the allopolyploid nature of G. hirsutum (2n=4x = 52; AADD genome) is
442  essential for unraveling the regulatory basis of cotton fiber development. The ascertainment of

443  orthologous-homoeologous relationships among the polyploid A-subgenome (At) and D-

15


https://doi.org/10.1101/2024.08.12.607624
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.08.12.607624; this version posted August 13, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

444 subgenome (Dt) genes and their parental A- and D-genome diploids provides a foundation for
445  understanding the evolutionary dimension of duplicated gene regulation during cotton fiber
446  development. We used 22,889 homoeologous pairs that were previously characterized into
447  single-copy orthologous-homoeolog groups (scOGs; each containing a single representative for
448 At and Dt) (Hu et al. 2023) to evaluate the evolutionary outcomes for genes inherited from
449  parental diploids and maintained in duplicate post allopolyploidization. The remaining genes
450 (13,229 At; 15,895 Dt) were categorized into variable-copy orthologous-homoeolog groups
451  (vcOGs), possibly reflecting genetic variation between parental diploids and/or accrued post
452  allopolyploidy. Against this backdrop, we leveraged the network perspectives of gene

453  expression, co-expression, and regulatory interactions, to assess the contributions of the A-
454  versus D- subgenomes for both scOG and vcOG categorization of homoeologous gene pairs

455  during the dynamic process of fiber development.

456  Proportion of fiber-expressed genes. Of the 57,151 fiber-expressed genes (76.3% of the total
457  genome), the A-subgenome contains fewer fiber-expressed genes compared to the D-subgenome
458 (28,004 At vs 29,147 Dt), although this is a higher percentage of the total number of At genes
459  versus Dt (77.53% vs 75.15%; chi-square test P = 0.008523). These fiber-expressed genes were
460  further categorized into (1) 19,213 paired scOGs where both At and Dt were expressed; (2) 1,597
461  unpaired scOGs where only one homoeolog was expressed in fibers (749 At and 848 Dt); and (3)
462 17,128 vcOG genes (8,042 At and 9,086 Dt) (Table 2: 1&II). Gene expressed in fibers

463  represented a significantly higher proportion of the scOG category versus the vcOG category
464  (87.4% vs. 58.5%, respectively; chi-square test P = 2.2e-16). Between subgenomes, a higher

465  percentage of veOG At genes was expressed in fiber versus veOG Dt genes (60.6% vs 57.2%),
466  while the percentages were comparable for scOGs (87.2% vs 87.7% At and Dt genes,

467  respectively). Thus, the higher percentage of expressed gene content in the A-subgenome was

468  mainly attributable to the higher proportion of vcOGs At genes expressed in fiber.

469  Overall expression levels. Comparing expression levels between A- and D-subgenomes revealed
470  asubtle pattern with slightly higher expression of Dt genes (Figure 5A), consistent with previous
471  reports in cotton fibers (Hovav et al. 2008b; You et al. 2023). This expression imbalance was
472  consistently observed for the scOG gene set, whereas the vsOG gene set exhibited the opposite
473  pattern (i.e., higher expression of At genes; Figure 5A). Notably, paired scOGs exhibited the
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474  highest expression levels for both At and Dt genes (“scOG pair”: mean TPM of At 18.53 and Dt
475  19.96), followed by vcOG genes (“vcOG”, At 15.98 and Dt 14.07), and then singleton scOGs
476  with only one homoeolog expressed exhibiting the lowest expression levels (“scOG unpair”: At

477  1.42 and Dt 1.00).

478  Homoeolog expression bias (HEB). Analysis of HEB, where homoeolog expression statistically
479  varies between duplicates, revealed 8,981 A-biased and 9,153 D-biased pairs among the 19,213
480  scOG homoeolog pairs, numbers that are not statistically different (P =0.3451), and aligning
481  with previous results (Zhang et al. 2015). Intriguingly, A-biased pairs displayed higher

482  expression levels and larger variation across samples compared to D-biased pairs (Figure 5B).
483  However, D-biased pairs exhibited significantly more expression differences than the A-biased
484  pairs (i.e., Dt-At > At-Dt; Supplementary Fig. S15). This resulted in an overall higher gene

485  expression of scOGs in the D subgenome than the A subgenome, despite the presence of more

486  A-biased versus D-biased pairs.

487  Co-expression modular HEB. The co-expression gene network analysis clustered 25,751 fiber-
488  expressed genes (12,816 At and 12,935 Dt genes) into 20 co-expression modules. Approximately
489  48.8% of module member genes were paired in modules as homoeologous pairs (6,280 pairs;
490  Table 2: III), indicating substantial functional conservation. The remaining 51.2% of module

491  genes were present in different modules for At and Dt, suggesting functional divergence in terms
492  of co-expression patterns (Supplementary Table S10). Proportions of homoeologous TF pairs in
493  the same module were significantly higher than other homoeologous gene pairs (53.0% vs

494  48.8%; chi-square test P = 2.2e-16), indicating a higher level of functional conservation between
495  TF homoeologs (Table 2: III; Table S10). Investigating modular HEB for the homoeologous

496  pairs within the same module revealed an absence of significant imbalance of HEB toward either
497  subgenome (Supplementary Table S11). This observation is consistent with the overall pattern of
498 19,213 scOG pairs. The expression level differences between At and Dt genes across modules
499  (Figure 5C) can be mostly attributed to the expression differences between A-biased and D-

500 biased pairs (Figure 5D; Supplementary Fig. S16). Notably, within the tan module corresponding
501 to fiber elongation, a significantly higher |At-Dt| difference was observed in D-biased then A-
502  biased pairs, implying that the D subgenome might exert a greater effect on fiber elongation than

503 the A subgenome.
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504  Subgenomic asymmetry in fiber GRN. Taking the cGENIE3 network as an example, we

505 evaluated the subgenomic contributions to regulatory nodes and edges within the inferred

506 regulatory network. For nodes (Table 2: IV), a higher percentage of At genes was recovered in
507  the network compared to the Dt genes (57.0% vs 54.6%; chi-square test P = 0.0005271), and this
508 biased pattern was mainly caused by the target genes (TGs: 56.7% vs. 54.3%; chi-square test P =
509  0.0004837), particularly the scOG ones (39.6% vs. 35.6%; chi-square test P = 1.757e-06). The
510  proportion of TFs with both At and Dt homoeologs present in GRN was significantly higher than
511  that of target genes (“TFs in scOG pair” 88.1% vs “TGs in scOG pair” 77.9%; chi-square test P =
512  2.2e-16). Depending on whether the TF-TG regulatory links were inferred within or between
513  subgenomes, network edges were classified into four categories: two intra-subgenome classes
514  within either subgenome (38,704 At-At and 35,997 Dt-Dt) and two inter-subgenome classes

515 (40,116 At-Dt and 35,032Dt-At) (Table 2: V). The observed ratio of these four edge classes

516  (1.10:1.03:1.15:1.00) significantly deviated from expected proportions assuming full network
517  connectivity from TF to TG nodes (1.01:1.03:1.04:1.00; chi-square test, P <2.2e-16). The intra-
518 subgenome At-At and inter-subgenome At-Dt edges were observed more frequently than

519  expected, indicating a biased regulatory role of At TFs compared to Dt TFs in the fiber gene

520 regulatory network (GRN) (Table 2: V). Finally, we assessed the extent of functional

521  conservation between homoeologs in the GRN, differentiating their roles as TFs or TGs. We

522  observed a significantly higher proportion (15.8%) of edges targeting paired TG homoeologs
523 (i.e., regulatory role as TFs targeting conserved cis binding sites) compared to the proportion
524  (6.4%) of edges regulated by paired TF homoeologs (i.e., TGs being regulated by conserved

525  trans TF proteins) (Table 2: V; Supplementary Table S12). This suggests that functional

526  divergence between homoeologs in the GRN is more likely to occur in #rans rather than in cis.

527  Consistent patterns were observed in cottonRegNet and other GRNs (Supplementary Table S12).

528  Exploring novel regulators of cotton fiber development by GRN inference.

529  We next utilized the best performing cGENIE3 network to identify inter-connections among
530  previously characterized fiber-related genes. Of the curated list of 192 known fiber-related genes
531  (Supplementary Table S3), 154 were present in the network, with 657 directed network edges
532  pointing to them from various TFs. This yielded a seeded network termed kGRN, comprising
533 432 nodes and 657 edges (Figure 6A, Supplementary Table S13).
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534  Within the kGRN, ten known fiber-related genes function as TFs, regulating other known genes.
535  Eight of these TFs, GhTCP14, GhMYB46 D13, GhARF2b, GhFSNI _A12, GhWRKY16, GhGT2,
536  and a homoeologous pair of GAMYB30, have been functionally validated in fiber development
537  (Supplementary Table S14) (Wang et al. 2013, 2021b; Zhang et al. 2018, 2021b; Huang et al.
538  2019; Tian et al. 2022; Wu et al. 2023). GAMYB7 A12 and GhJMJ12 D12, identified in

539 previous GWAS studies, were significantly associated with fiber strength and/or length (Wang et
540 al. 2017; Liu et al. 2020). Among the remaining 187 TFs with unknown roles in cotton fibers, 97
541  have Arabidopsis orthologs with proven roles in cell wall development or involvement in

542  signaling pathways regulating cotton fiber elongation (Supplementary Table S15), suggesting

543  them as potential candidates for future molecular validation.

544 By integrating network clustering results with co-expression module annotation, the kKGRN was
545  partitioned into three subnetworks (Figure 6A). Subnetwork I, forming a loosely connected

546  periphery on the left, prominently featured co-expressed TFs and target genes from the turquoise
547  module. The target genes of these turquoise module TFs were identified across multiple co-

548  expression modules, suggesting a broad spectrum of regulatory effects amplified by the

549  fluctuating gene expression patterns spanning from 5 to 30 dpa, potentially involving various

550  signaling pathways acting at the inter-modular level (Figure 2A).

551  Subnetwork II, situated on the right periphery, consists of most of the well-characterized TFs
552  from the brown module, orchestrating key aspects of fiber initiation, including GhHOX3,

553  GhHDI, GhMYB25-like, and GhWD40 (Figure 6B). Of particular interest is GhHOX3,

554  simultaneously regulated by both the brown and tan module TFs (Figure 6B), aligning with its
555  multifaceted role in fiber initiation and elongation functions, respectively (Shan et al. 2014; Qin

556 etal. 2022).

557  Subnetwork III, centrally located and densely interconnected, weaves together regulatory

558 relationships between TFs and known function target genes in the green, yellow, and blue

559  modules. Among the hub TFs regulating numerous target genes, two, GhFSNI_A12 (Zhang et al.
560 2018) and GAMYB30 (Wu et al. 2023), have been previously characterized. GhFSNI _A12,

561 encoding a NAC TF, acts as a positive regulator of fiber SCW thickening by activating a series
562  of known SCW-related genes (Zhang et al. 2018). GhAMYB30, among the latest characterized
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members of cotton MYB TFs, was found to regulate cotton fiber development by inhibiting the
expression of GhMYB46, which was also verified in kKGRN (Supplementary Fig. S17) (Wu et al.
2023). Other uncharacterized hub TFs also include GAMYB73 and a homoeologous pair of
GhMYBG60, offering promising candidates given the well-documented roles of MYB TFs in fiber

initiation, elongation, and SCW synthesis.

Focusing on the top hub TFs in kGRN subnetwork III, GAMYSI A10 and GhMYSI D10 (Figure
6C), represent a homoeologous pair of G2-like TF MYS1 (MYB-SHAQKYF I). These TFs have
known functions in Arabidopsis wax biosynthesis and drought tolerance (Liu et al. 2022).
Among the 26 targets of GhMYSI A10 and 21 targets of GhAMYSI D10, 18 target genes were
commonly regulated by both, indicating substantial redundancy between homoeologous genes.
Among their common targets are several known functional genes including GhPIN3a, GbTCP,
GhFSNI A12, GhCesA8 D10, and GhCesA8 A10 (Figure 6C). In conclusion, known functional
genes and their upstream TFs reflect a complex GRN of fiber elongation and SCW synthesis and

also helped us identify nine highly connected TFs as candidate regulators of fiber elongation.

Functional validation of GhMYS1 reveals its positive role in fiber elongation

Based on the top rankings of GhMYSIA10 and GhMYSID10 in fiber GRNs and their significant
trait associations, we selected this homoeologous pair of TFs for functional analysis (Figure 6
and Table S5-6). Comparative expression analysis showed significant upregulation of these
genes at 15 dpa in cultivated versus wild cotton and in elite long-fiber versus short-fiber cotton
accessions (Figure 7A and B), indicating a potential link with domestication and breeding
improvements. Given the 97.29% similarity in the coding regions of GhMYSI A10 and
GhMYSI D10, VIGS primers were designed to simultaneously silence both genes. VIGS-
mediated silencing successfully reduced the expression of both GAMYS!I genes (Figure 7C),
resulting in significantly shorter fibers in pCLCrVA: GhMYSI (23.8 mm) compared to
pCLCrVA:00 control plants (28.5 mm; P =0.001352) (Figure 7D-E).

The joint analysis of DAP-seq results and cGENIE3 predictions identified five genes regulated
by GhMYS1 A10 and four genes regulated by GhMYS1 D10. Among these, GhPIN3a and
GhWLIMa were common targets regulated by both (Supplementary Table S16). GATBL7,
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591  GhVINI, and GhCesA7 D05 were exclusively targeted by GhMYS1 A10, while GaMYB2, and
592  GbAAR3 was only regulated by GhMYS1 D10 (Supplementary Table S16). Interestingly,

593  GaMYB2 and three genes including GhTBL7, GhVINI, and GhCesA7 D05 were target genes of
594 GhMYS1 A10 and GhMYSI1 D10, respectively, in at least one method of the DAP-seq and
595  cGENIE3. To verify these regulatory relationships, we conducted Dual-luciferase reporter assay
596 (LUC) using the promoter sequences of GhPIN3, GhTBL7, GaMYB2, and GhCesA7 D05. The
597  LUC results showed that GhMYS1 A10 could activate GhPIN3a while repressing GhMYB2,
598  GhTBL7,and GhCesA7 D035, even though GhMYB2 was only predicted by GRN (Figure 7F).
599  Consistent with the joint prediction, GhMYS1 D10 activated the expression of GhPIN3a and
600 GhMYB2 (Figure 7G). However, despite GRN and DAP-seq predictions identifing GhTBL7 and
601  GhCesA7 D05 as target genes of GhMYS1 D10, respectively, the LUC experiment did not
602  confirm these regulatory relationships, indicating potential false positives (Figure 7G,

603  Supplementary Table S16). The common and discordant regulation of target genes by

604  GhMYSI AI10and GhMYSI D10 highlights both functional redundancy and differentiation of
605  these homoeologs during fiber development. These findings suggest that GhAMYS! is a novel
606 transcription factor regulating fiber development, potentially by modulating auxin and positively
607  regulating fiber elongation by suppressing the expression of secondary wall formation-related

608  genes.

609 Discussion

610 Leveraging GRN inferences for cotton fiber development study

611  Over the last two decades, conventional molecular genetic analyses have elucidated nearly 200
612  genes that are important for cotton fiber development, providing valuable insights into the

613  genetic regulation of this process (Huang et al. 2021; Wen et al. 2023). However, previous

614  efforts have often focused on individual genes and limited gene-to-gene inter-connections,

615  resulting in simplified, linear, or limited local networks that fail to capture the complexity of the
616  comprehensive genome-wide GRN governing fiber development. This limitation hinders the full
617  exploration and discovery of the intricate biological networks governing cotton fiber

618  development.
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619  To address this challenge, we leveraged large-scale transcriptome datasets and a wealth of

620 functional gene resources to construct comprehensive genome-wide GRNs for cotton fiber

621  development. We rigorously compared and validated three distinct GRN inference methods

622  against prior knowledge-based regulatory maps, known fiber-related functional genes, DAP-seq
623  data, RNA-seq data from gene perturbation experiments, and phenotypic correlation analyses.
624  This integrative approach demonstrated a carefully crafted, step-by-step process of network

625  evaluation and optimization.

626  An important consideration in our study was the selection of gene expression thresholds for

627  network construction. Conventional approaches often use generic cutoffs (e.g., greater than 1
628 RPKM/TPM) (Zhou et al. 2020; Chen et al. 2023), which are prone to exclude transcriptional
629  factors (TFs) and other functional genes with low transcript abundance (Ghaemmaghami et al.
630  2003; Vaquerizas et al. 2009). In our study, we screened various thresholding options and set the
631 final cutoff at TPM greater than 0 in 30% of samples (see Method or Supplementary Fig. S4),
632  which retained 76.3% of total genes and 72.2% of TFs, ensuring the inclusion of 98.3% of

633  known functional genes crucial for network construction. This approach enabled us to capture a
634  diverse range of genes dynamically expressed across different stages of fiber development, such
635 as GhHDI (Walford et al. 2012), GhMYB25-like (Walford et al. 2011), GhWD40 (Tian et al.
636  2020b), facilitating the identification of the modules related to fiber initiation, even in the

637  absence of fiber samples from 0-4 DPA (Figure 2C, Figure 6B).

638 GENIE3, an ensemble machine-learning algorithm based on random forests, has demonstrated
639  superior performance in the DREAM4 and DREAMS GRN reconstruction challenges (Huynh-
640 Thu et al. 2010; Marbach et al. 2012). It has been extensively employed to understand the

641 transcriptional regulation mechanism of plant traits in Arabidopsis, rice, wheat, and maize

642 (Walley et al. 2016; Ezer et al. 2017; Huang et al. 2018; Ramirez-Gonzélez et al. 2018; Shibata
643 etal. 2018; Harrington et al. 2020; Ueda et al. 2020). Given that the fiber transcriptome data in
644  this study consists of 14 time points, dynGENIE3, an adaptation of the original GENIE3 for time
645  series data (Huynh-Thu and Geurts 2018; Balcerowicz et al. 2021), was also used for GRN

646  construction. Additionally, we included another method, Corto (Mercatelli et al. 2020), due to its

647  resemblance to the well-established ARACNe algorithm, which was among the early
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648  demonstrated GRN applications known for its ability to infer direct regulatory interactions by

649  eliminating indirect effects (Margolin et al. 2006).

650 To obtain an approximate “gold standard” for evaluating the performance of GRN predictions,
651  we leveraged the prior knowledge of Arabidopsis regulatory interactions (AtRegMap) to

652  assemble a cottonRegMap through orthologous relationships (Wu et al. 2021). Although the
653  limited availability of fiber cistrome data (i.e., TF ChIP-seq or DAP-seq) hinders constructing
654  GRNs directly from empirical evidences of TF-target relationships, we integrated DAP-seq

655  results and transcriptomic data from perturbation experiments for key TFs such as GABES1.4
656  (Liuetal. 2023), GhWRKY16 (Wang et al. 2021b), GhMYS1 A10, and GhMYSI D10 to

657  reinforced the reliability of our GRN predictions. In addition to validating the capture of known
658  regulatory relationships, we also considered the inclusion and network centrality of known fiber
659  functional genes, concluding that GENIE3 exhibited the strongest predictive power for known
660 regulatory relationships and key TFs. Notably, these evaluation approaches were applied with
661  appropriate statistical tests (e.g., permutation tests), considering the different network sizes

662  resulting from the three GRN inference methods (with node numbers of 54,237, 25,441, and
663 56,052 inferred by GENIE3, dynGENIE3, and Corto, respectively).

664  To exemplify insights gained from this integrative approach, we focussed on the

665 developmentally important process of cellulose synthesis. Although the number of regulator and
666  GhCesAs genes captured in networks differed across methods (Table 1 and Figure 5A),

667 cGENIE3 captured the most functionally relevant regulatory relationships in CesA biosynthesis
668  networks. For example, GhFSNI A12’s negative role in suppressing fiber elongation by

669  promoting secondary cell wall (SCW) biosynthesis (Zhang et al. 2018) was evident in its

670  regulation of several GhCesA genes involved in SCW formation, including GhCesA8 D10,

671  GhCesA07 D5, and GhCesA4_DO07(Figure 4C). Similarly, GRHOX3 DI12’s involvement in fiber
672 initiation and elongation (Shan et al. 2014; Qin et al. 2022) was supported by its regulation of
673  GhCesA genes involved in primary cell wall (PCW) synthesis, such as GhCes46 _A06 and

674  GhCesAl DO05-1(Figure 4C). Notably, homologous genes of SND2 and SND4, key NAC TFs of
675  SCW synthesis in Arabidopsis (Taylor-Teeples et al. 2015; Zhong et al. 2021), were also

676  identified as key regulators targeting multiple SCW-related cellulose (Figure 4C). Furthermore,
677  novel regulatory relationships uncovered by cGENIE3, such as GhMYS1_A10’s regulation on
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678 GhCesA7 D5, were experimentally validated through LUC experiments (Figure 4C, Figure 6C
679  and Figure 7F). These findings underscore the potential of GRN to elucidate molecular

680 mechanisms underlying key TF-gene interactions in fiber development.

681 Novel TFs regulating fiber development

682  GRNs are invaluable tools for predicting the function of TFs. By utilizing the seeded network
683  kGRN of known fiber genes constructed by cGENIE3, we not only confirmed eight previously
684  known TFs (GhTCP14, GhMYB46 D13, GhARF2b, GhFSNI_A12, GhWRKY16, GhGT2, a

685  homoeologous pair of GERMYB30) (Wang et al. 2013, 2021b; Zhang et al. 2018, 2021b; Huang et
686  al. 2019; Tian et al. 2022; Wu et al. 2023), but also identified 185 novel TFs regulating known
687  fiber genes (Figure 5A, Supplementary Table S15). Included were a pair of GhMYS1 TFs,

688 GhMYS1 A10,and GhMYS1 D10, that are predicted to regulate 26 and 21 known genes,

689  respectively, and which are ranked highly by prediction scores across all three GRN inference
690 methods, suggesting their important role in fiber development (Supplementary Table S6). This
691  hypothesis is supported by the significant association between fiber traits and gene expression
692  (Supplementary Table S5), where the expression level of this gene pair at 15 dpa fiber is

693  markedly higher in domesticated and elite varieties compared to wild and short-fibered varieties
694  (Figure 7A-B). Experimental validation revealed that silencing GAMYSI A10 and GhMYSI D10
695  simultaneously led to a significant reduction in cotton fiber length, underscoring their role in

696 fiber elongation during domestication and breeding processes.

697  Previous research indicated that MYS1 affects cuticular wax content by down-regulating genes
698 related to wax biosynthesis when overexpressed in Arabidopsis, leading to increased contents of
699  primary alcohols, alkanes, and total wax (Liu et al. 2022). With very long-chain fatty acids

700 (VLCFAs) serving as the precursors for wax biosynthesis (Kunst and Samuels 2009) and acting
701  upstream of the ethylene signaling pathway (Huang et al. 2021; Wen et al. 2023), we speculate
702  that MYS1's role in fiber development involves mediating VLCFA content. Although no

703  significant changes in the content of VLCFAs were detected in the MYS1 overexpression

704  transgenic Arabidopsis, MY S1 was co-expressed with several 3-ketoacyl-CoA synthases (KCSs)
705 involved in VLCFA biosynthesis (Liu et al. 2022). Our cGENIE3 results showed that

706  GhMYSI Al10and GhMYSI DI0 simultaneously regulate VLCFA biosynthesis-related genes
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707  GhKCS13 (Shi et al. 2022) and GhRKCS10 (Yang et al. 2023) (Figure 6C), suggesting that
708  GhMYSI may affect fiber elongation by regulating VLCFA biosynthesis.

709  Auxin plays a well-documented positive role in fiber initiation and elongation (Huang et al.

710 2021; Wen et al. 2023). GhPIN3a, an auxin efflux carrier, mediates fiber initiation by

711  establishing hormone gradients in ovule epidermal cells and fibroblast cells (Zhang et al. 2017a;
712 Zeng et al. 2019). Both GRN and DAP-seq results indicated that GAMYSI A10 and

713  GhMYSI D10 regulate GhPIN3, a regulatory relationship further validated by LUC assays

714  (Figure 5C and Figure 7F-G). Additionally, GRN identified four GhCesAs related to secondary
715  wall formation, including GhCesA7 A05, GhCesA7 D05, GhCesA8 A10, and GhCesA8 D10,
716  which were regulated by GhMYSI A10 and/or GhMYS1 D10 (Figure 5C). DAP-seq and LUC
717  experiments confirmed the negative regulatory relationship between GhMYS1A4 and

718  GhCesA7 D05 (Figure 5C and Figure 7E).

719  Overall, our study validates that GAMYSI A10 and GhMYSI D10 positively regulate fiber

720  elongation by controlling auxin transport and VLCFA synthesis while inhibiting SCW formation.
721  GRN and DAP-seq results indicate that these TFs regulate numerous genes involved in fiber

722 development (Figure 5C and Supplementary Table S5), suggesting a more complex regulation
723  than previously anticipated. Beyond GhMYS1 A10 and GhMYS1 D10, further exploration of
724 other top-ranking regulators identified by GRN could provide valuable insights for improving
725  fiber quality.

726  Asymmetric subgenome contribution to fiber gene expression and network properties

727  Previous cotton research suggested that the D subgenome exhibits dominant expression (i.e.

728  imbalance of more D-biases than A-biases) and therefore may play a more important role overall
729  than the A subgenome during fiber development and in response to domestication selection

730 (Wanget al. 2017; Ma et al. 2018; Li et al. 2020; You et al. 2023). We note that differences in
731  accessions used, fiber stage, sample numbers and calculation methods among studies have led to
732 varying reports of homoeolog expression bias (HEB), including imbalance favoring D-biased
733  homoeolog pairs (Hovav et al. 2008b; Pei et al. 2022; You et al. 2023) and imbalance (Yoo and
734  Wendel 2014; Zhang et al. 2015; Mei et al. 2021). Against this backdrop of variation, our study
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735  found no significant imbalance between A- and D- biased homoeolog expression based on 401

736  high-quality transcriptome datasets (Supplementary Table S11 and Figure SA-B).

737  Beyond the perspective offered by biased homoeolog expression, our analysis explored the

738  nuances of asymmetric duplicated gene expression. Notable findings include a higher number of
739 At than Dt fiber-expressed genes a slightly higher overall transcript abundance of Dt than At

740  genes; and more highly expressed A-biased homoeologous pairs but with lower expression

741  differences (i.e., |At-Dt|) compared to the D-biased homoeologous pairs (Supplementary Table
742  S11 and Figure 5). These subtle and nuanced features and their connections prompted us to

743  speculate that it is the larger expression differences in D-biased homoeologous pairs that

744  contribute to the higher overall transcript abundance of Dt genes, thus leading to the D

745  subgenome exhibiting a disproportionate expression level, which has not been shown in previous
746  studies. These nuanced features enrich our understanding of subgenome contributions to gene

747  expression.

748 A particularly important methodological consideration is that the analysis of duplicated gene
749  expression, in cotton and other allopolyploid systems (Grover et al. 2012; Bird et al. 2021;

750  Birchler and Yang 2022), typically encompasses single-copy homoeologous gene pairs (or sets,
751  scOGs) derived from the inference of homoeologous relationships. In cotton, even with high-
752  quality genomes and using the latest approaches to orthology inference, such as pSONIC

753  (Conover et al. 2021) and GENESPACE (Lovell et al. 2022), the inferred proportion of single-
754  copy homoeolog groups range from 52% to 73% of the total genomic genic content, meaning
755  that a substantial proportion of genes are missing from analyses of duplicated gene expression
756  patterns. Here we specifically included these variable-copy gene groups (vcOGs) to examine
757  subgenomic contributions and detect previously overlooked patterns. For example, we found that
758  the average expression level of vcOGs in the A subgenome is significantly higher than that in the
759 D subgenome, contrary to the results of scOG (Figure 5A). This finding highlights the

760  importance of considering veOGs in addition to scOGs when studying gene expression in

761  polyploid systems. It is likely that epigenetic modifications, including DNA methylation and
762  histone modifications, which affect gene expression in polyploid plants (Song and Chen 2015),

763  might also be explored for vcOGs to further our understanding of subgenomic contributions to
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764  allopolyploid gene expression. This comprehensive approach will provide a more detailed

765  picture of how gene expression is regulated in polyploid systems.

766  Perhaps more important than the genic perspective, with respect to the genomic duplication that
767  accompanies allopolyploidy, is that provided by gene co-expression network and regulatory

768  network analyses. These analyses permit the exploration of the joint as well as separate

769  contributions of the A- and D- subgenomes to fiber development, from the standpoint of a more
770  biologically realistic network perspective. Co-expression relationships are often inferred to

771 reflect genes with similar or biologically associated functions (Rhee and Mutwil 2014). Our

772 study shows that scOGs present in the same module account for 48.8% of network genes (Table
773  2:1II), which is higher than the proportions reported for other studies of cotton (Gallagher et al.
774 2020; Jareczek et al. 2023) and wheat (37.4%) (Ramirez-Gonzalez et al. 2018). For example, in
775  two previous studies of fiber co-expression gene network construction based on 24 wild and

776  domesticated fiber samples, the proportion of scOGs present in the same module was 20.2-36.1%
777  in G. hirsutum and 23.5% in Gossypium. barbadense (G. barbadense), suggesting that the

778  majority of homoeologous gene pairs are in separate modules in the polyploid network

779  (Gallagher et al. 2020; Jareczek et al. 2023). This discrepancy can likely be attributed to the

780  different RNA-seq samples used. Compared to these earlier studies, our inclusion of more RNA-
781  seq samples, primarily from G. hirsutum cultivars, could have resulted in a more connected and
782  denser fiber network due to the effect of domestication, as previously suggested in cotton (Bao et
783  al. 2019; Gallagher et al. 2020) and in other plants (Alonge et al. 2020; Groen et al. 2020).

784  Consequently, we inferred more homoeolog pairs into the same modules, estimating a higher
785  level of functional conservation or closer functional association of homoeologs. Additionally,
786  our larger sample size reduces noise in module assignment, as variable data are more prone to
787  placing homoeologs into different modules. Beyond the overall network structure, our results
788  revealed modular-level features specific to associated functions. For example, the tan and green
789  modules, which were highly expressed during the fiber elongation and SCW thickening stages,
790 showed obvious D and A subgenome biases, respectively. These results further enriched our
791  understanding of the contributions of different subgenomes to fiber development, providing

792  insights that could not be discerned from a single-gene perspective.
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793  Compared to co-expression relationships, TF-TG regulatory relationships inferred by GRNs

794  allow for an examination of subgenomic contributions, including intra-subgenomic interactions
795  (At-At and Dt-Dt) and inter-subgenomic interactions (At-Dt and Dt-At) as previously proposed
796  (Hu and Wendel 2019). This aspect has been explored using three-dimensional genomic

797  interaction (Hi-C) and expression quantitative trait locus (eQTL) methods (Li et al. 2020; Wang
798 etal. 2018). Wang et al. (2018) characterized 3D genome architectures, revealing that inter-

799  subgenomic interactions (At-Dt) accounted for approximately half of all interactions in tetraploid
800  cottons (45.5% in G. hirsutum and 47.1% in G. barbadense), indicating an equivalent amount of
801 inter- and intra-subgenomic interactions, consistent with our findings. Further, Li et al. (2020)
802  used eQTL analysis on 15 dpa fiber transcriptomes from 251 G. hirsutum accessions, identifying
803 15,330 eQTLs associated with 9,282 genes. They found that the proportion of inter-subgenomic
804  eQTLs was higher in the A subgenome (52.6%) than in the D subgenome (46.5%), suggesting a
805  more prominent regulatory role of At regulators on Dt genes, consistent with our findings.

806  However, they also observed that 44.3% of eGenes in the A-subgenome are regulated by eQTLs
807  in the D-subgenome, whereas only 23.4% of eGenes in the D-subgenome have eQTL regulation
808  in the A-subgenome. This highlights unequal transcriptional regulation patterns between the two
809  subgenomes. An expanded study by You et al. (2023) using fiber transcriptomes from 376 G.
810  hirsutum accessions across five time points identified 53,854 cis-eQTLs and 23,811 trans-

811 eQTLs, revealing genetic variants associated with gene expression during fiber development.
812  This larger dataset offers a promising avenue to further delineate inter- and intra-subgenomic
813  regulatory effects and compare them with GRN results. As neither Hi-C nor eQTL analyses

814  directly refined the interaction relationships between TFs and TGs, further analysis integrating
815 eQTL and Hi-C data is needed to obtain TF-TG regulatory relationships and compare them with
816  GRN-based regulatory relationships.

817  One question of broad interest regarding the functional genomics of allopolyploids is the extent
818  to which duplicated TFs and TGs are functionally conserved in a GRN. A key result emerging
819 from the present work is that the proportion of TG homoeologs simultaneously regulated by any
820  given TF is significantly higher than the proportion of TF homoeologs co-regulating any given
821  downstream genes (e.g., 15.8% vs. 6.4% in cGENIE3; Table 2: V and Supplemental Table S12).

822  This indicates a higher level of conservation in TG promoter cis-regulatory sites than in TF trans
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823  functions. In other words, the trans-regulatory roles of TFs diversify faster between homoeologs
824  than does the cis landscape of their TG binding sites. This finding is consistent with the

825  experimentally validated notion that trans-regulatory mutations have a larger target size

826  compared to cis-regulatory mutations in yeast (Siddiq and Wittkopp 2022), hence evolving

827  faster. Further experimental studies in cotton are needed to explore the functional and phenotypic
828  implications of these regulatory variants. For example, in the homoeologous pair of GAMYS1
829  genes, DAP-seq results demonstrated both functional conservation and divergence regarding a
830 few target genes with known fiber-related functions. One caveat is that our VIGS experiments
831 can only simultaneously silence both copies due to high sequence identity. Future directions

832  include perturbation experiments targeting individual homoeologs to examine the phenotypic

833  outcomes of disrupting network interactions.

834  In summary, we constructed comprehensive GRNs using a diverse collection of public RNA-seq
835  datasets for cotton fibers. These rigorously evaluated fiber GRNs enabled us to infer numerous
836  potential regulatory factors controlling fiber development. These include well-studied TFs such
837 as GhTCP14, GhFSNI_Al12, GhWRKY16 D06, and GhMYB30, as well as many TFs with

838  uncharacterized functions. Experimental verification further revealed a key regulatory role of an
839  uncharacterized pair of GAMYSI genes in fiber development. Our study reveals subgenomic

840  asymmetries that either accompanied or evolved subsequent to allopolyploidization, including a
841  global expression difference of D-biased homoeolog pairs that underlies the dominant expression
842  of the D subgenome, and further demonstrated multidimensional characteristic of subgenomic
843  asymmetry from the perspective of co-expression and regulatory networks. These findings

844  elucidate the complex gene regulatory network of cotton fiber development, providing insights
845 into the phenomenon of allopolyploidy and offering a resource for exploring genes related to

846  fiber elongation and enhancing cotton fiber quality through breeding.

847 Methods

848 RNA-Seq data collection and processing

849  Twelve public cotton fiber RNA-seq datasets comprising 473 samples representing 16 time

850  points of Gossypium hirsutum were downloaded from the National Center for Biotechnology
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851 Information (NCBI) SRA depository (Supplementary Table S1). Raw reads were preprocessed
852  using fastp (v0.20.1) (Chen et al. 2018) to remove adapters and low-quality reads. Clean reads
853  were aligned to the reference genome G. hirsutum var. TM-1 UTX v2.1(Chen et al. 2020) using
854  Hisat2 (v2.2.1) with default settings (Kim et al. 2015), and transcript abundances were quantified
855  as transcripts per million (TPM) using StringTie (v2.2.1) (Pertea et al. 2015). Dimensionality
856  reduction and visualization of gene expression profiles were conducted through principal

857  component analysis (PCA) and t-distributed stochastic neighbor embedding (t-SNE) in R v4.0.5
858 (R core Team 2020). The following sample filter criteria were applied to ensure a high-quality
859  dataset: 1) samples were exclusively from fiber tissue, specifically excluding ovular and fibreless
860  mutant samples; 2) samples with a unique mapping rate below 70% were discarded; 3) only

861  uniquely mapped reads were used for TPM calculation; and 4) outlier samples were identified

862 and removed based on PCA and t-SNE.

863  Weighted gene co-expression gene network analysis (WGCNA)

864 A gene co-expression network was constructed using the WGCNA package in R (Langfelder and
865  Horvath 2008) with data from the surviving 401 RNA-seq samples and 57,151 genes. Briefly,
866  the TPM data was used to generate an adjacency matrix based on signed Pearson correlations
867  between all gene pairs powered to an optimized soft thresholding of 28. The adjacency matrix
868  considering gene-to-gene connection strength in isolation was then used to calculate a

869  topological overlap matrix (TOM), which considered each pair of genes in relation to all other
870  genes. Genes with highly similar expression patterns were clustered into co-expression modules,
871  using parameters minModuleSize of 100 and mergeCutHeight of 0.25. Genes belonging to the
872  same co-expression module were assigned the same module color, while genes that cannot be

873  clustered into any of the co-expression modules were labeled grey.

874  Construction of gene regulatory networks (GRNs)

875  Three distinct inference strategies were used to construct fiber gene regulatory networks,
876  including GENIE3 (Huynh-Thu et al. 2010), dynGENIE3 (Huynh-Thu and Geurts 2018), and
877  Corto (Mercatelli et al. 2020). Each method requires both a user-provided list of transcription

878  factors (TFs) and gene expression data to enable inference of directed network connections
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879  (edges) from TFs to target genes. A total of 5,048 TFs were identified from the Gossypium

880  hirsutum var. TM-1 reference genome (Chen et al. 2020) with PlantTFDB (Jin et al. 2017).

881  Among these, 3,638 fiber-expressed TFs were used as the input TFs to predict targets from all
882 57,151 fiber-expressed genes. The resulting TF-target predictions were filtered to retain the top
883  one million connections as output GRNSs for subsequent analyses, consistent with the

884  thresholding applied in previous studies (Ramirez-Gonzalez et al. 2018; Harrington et al. 2020).

885  For Corto, which inferred fewer than one million connections, no filtering was applied.

886  Corto is a correlation-based GRN inference method, implemented as a fast and lightweight R
887  package that resembles the well-established pipeline of ARACNe algorithm (Margolin et al.
888  2006). Given the normalized TPM data as a gene expression matrix and a list of TFs as

889  centroids, Corto infers direct TF-target relationships through optimized pairwise Pearson
890 correlation. Data Processing Inequality (DPI) on correlation triplets and bootstrapping were

891  applied to evaluate the significance of edges, using the parameters nbootstraps=10 and p=0.05.

892  GENIE3 is a machine learning-based approach for GRN inference implemented in R (Huynh-
893  Thuetal. 2010). This method was recognized as the best-performing algorithm in the DREAM4
894  In Silico Multifactorial challenge (Greenfield et al. 2010) and the DREAMS Network Inference
895 challenge (Marbach et al. 2012). GENIE3 utilizes the Random Forests tree ensemble algorithm
896  to solve a regression problem for each gene in the given expression dataset, determining how the
897  expression patterns of input TFs predict the expression of the target gene. The importance

898  measure of a TF in predicting the target gene expression serves as the weight for the TF-target
899 regulatory link. GENIE3 was executed using the same gene expression matrix and TF list as

900 input, with default parameters.

901 Dynamical GENIE3 (dynGENIE3) is an adaptation of the original GENIE3 method that was
902  designed for GRN inference from time series data alone or in conjunction with steady-state data.
903  This semi-parametric model accounts for the dependence between time points by modeling the
904  temporal changes in gene expression with ordinary differential equations (ODEs). In each ODE,
905 the transcription function is learned using a nonparametric Random Forests Model. The fiber
906  gene expression matrix of 57,151 genes and 401 samples was reformatted into two distinct

907  datasets, steady-state and time series, used together as input. The steady-state dataset
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908 encompassed 251 samples of 15 days post anthesis (dpa) fibers from Li et al. (2020), focusing on
909  a cultivar population. The time series dataset was constructed using RNA-seq data sourced from
910  other studies (Supplementary Table S1) with at least 3 time points involved: TPM values at each
911 time point were averaged across these studies to obtain the expression profiles spanning 14 time
912  points; genes with a TPM value of 0 in more than two time points were removed, leading to the
913 final inclusion of 1011 TFs and 24,331 other genes. Using both the steady-state and time series

914  data jointly as input, dynGenie3 was executed with default parameters.

915 Evaluation of GRN inference

916  For the performance evaluation of the GRN inference methods, five independent strategies were

917 employed:

918 1. Homology-based cotton Transcriptional Regulatory Map (cottonRegMap): Serving as a

919  benchmark dataset for validating predicted regulatory links by the above GRN inference

920  methods, this map was constructed by adapting the regulatory prediction approach of

921  PlantRegMap (https://plantregmap.gao-lab.org/) to represent an ensemble list of known

922  regulatory interactions in plants. Briefly, FIMO from the MEME software suite (Bailey et al.
923  2009) was used to scan TF binding sites in the cotton gene promoters (i.e., 2000 bp upstream of
924  the transcriptional start sites) using a significant threshold of p-value <le-5 with Fisher’s exact
925 test. Regulatory interactions between Arabidopsis TFs and cotton gene promoters were assigned
926 if one or more binding sites of a TF were found in the promoter of a gene. Based on the

927  orthologous relationships between 619 Arabidopsis TFs and 2,267 G. hirsutum TFs (1129 from
928  the At subgenome and 1138 from the Dt subgenome), the TF-target relationships were fully

929  projected onto the G. hirsutum genome to form the cottonRegMap, consisting of 53,878,120 TF-

930 target interactions.

931 II. Cotton TFs with confirmed roles in fiber development: A curated set of 54 TFs with known
932  functions in fiber development was compiled (Supplementary Table 3). Gene set enrichment

933  analysis (GSEA) was used to test if these curated TFs were enriched among the highly ranked TF
934  regulators in each GRN.
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935 III. Physical regulatory relationships based on DAP-seq data: To ground truth the predicted

936 interactions by GRN inference, DNA-affinity purification sequencing (DAP-seq) was performed
937  on a pair of homoeologous G2-like TFs, GhMYSI A10 and GhMYSI DI0. These TFs were

938  selected based on their consistently high regulator ranking across different GRN inference

939 methods (see Results section for details). Additionally, published DAP-seq data for an EMS-

940 SUPPRESSORIV(BES1)/BRASSINAZOLE-RESISTANTI (BZR1) family TF GhBES1.4 (Liu et al.
941  2023) was incorporated for validation analysis, which also exhibited high rankings in our GRN
942 inferences. The physical regulatory relationships mapped by DAP-seq were used to validate the
943  GRN prediction by intersecting and significance testing.

944  1V. RNA-seq analysis of mutants or overexpression lines: We utilized RNA-seq data from TF
945  mutant and overexpression lines to assess the function prediction of candidate TFs in fiber

946  development GRNSs. Specifically, RNA-seq datasets for GAWRKY16 (Wang et al. 2021b)

947  GhBESI.4 (Liu et al. 2023) reported from previous studies were downloaded. Differential

948  expression analysis was conducted to compare transgenic lines with wild-type controls. The

949 resulting differentially expressed genes (DEGs) were considered potential targets regulated by
950 respective TFs under perturbation conditions, thereby validating the gene targets predicted by
951  GRN. DEGs were identified using DESeq2 (Love et al. 2014) with criteria set at an absolute fold
952  change >1 and the P-values <0.05 corrected by the Benjamini-Hochberg method (Benjamini and
953  Hochberg 1995).

954 V. Fiber traits phenotypic association with gene expression. Corresponding to the 251 RNA-seq
955  samples from 15 dpa fibers (Li et al. 2020), fiber traits from the same natural population were
956  provided by Professor Maojun Wang of Huazhong Agricultural University. The best linear

957  unbiased predictions (BLUPs) of five fiber traits (fiber length, strength, elongation, uniformity,
958  and micronaire value) across the four environments were estimated using the Ime4 package in R
959  (Bates et al. 2014). Pearson correlation coefficients were estimated between gene expression

960 levels in 15 dpa fibers and phenotypic variation across the population of 251 cultivars.

961 DAP-seq experiments
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962  For the homoeologous TF pair of GAMYSI A10 and GhMYSI D10, DAP-seq experiments were
963 performed following the protocol developed by Bartlett et al (Bartlett et al. 2017). Genomic

964 DNA (gDNA) was extracted from 10 dpa fiber of the G. hirsutum cultivar TM-1 using the

965 CTAB method. The extracted gDNA was fragmented using a Covaris M220 focused-

966  ultrasonicator (Woburn, Massachusetts, USA) to achieve an average fragment size of 200 bp.
967  These gDNA fragments were used to construct an affinity purification library using the

968 NGS0602-MICH TLX DNA-Seq Kit (Bluescape Hebei Biotech Co., Ltd, Baoding, China). The
969 TF coding sequences were cloned into pFN19K HaloTag T7 SP6 Flexi vector. The TNT SP6
970  coupled wheat germ extract system (Promega, Wisconsin, USA) was used to express the HALO-
971  tagged TFs in 50 pL reactions, which were incubated for 2 hours at 37 °C. The expressed

972  proteins were directly captured using Magne HaloTag Beads (Promega) and subsequently

973  incubated with the affinity purification library to isolate the TF-DNA binding complexes. The
974  enriched TF-bound gDNA fragments were then eluted from the HaloTag beads, amplified by
975  PCR, and sequenced on the NovaSeq 6000 platform. Two independent biological replicates were
976  conducted for each TF, along with one negative control using a mock DAP-seq library without
977  adding the expressed protein during the HaloTag beads incubation. The DAP-seq raw data have
978  been deposited in the Genome Sequence Archive in National Genomics Data Center, China

979  National Center for Bioinformation / Beijing Institute of Genomics, Chinese Academy of

980  Sciences (GSA: CRA029084 and CRA029060) that are publicly accessible at

981  https://ngdc.cncb.ac.cn/gsa.

982 DAP-seq data analysis

983 Raw DAP-seq reads were pre-processed by removing reads containing adapters and low-quality
984  reads using fastp (v0.20.1) (Chen et al. 2018). Clean reads were aligned to the G. hirsutum

985 reference genome using Bowtie 2 (v2.4.5) (Langmead and Salzberg 2012). To identify DAP-seq
986  peaks, MACS2 (v2.2.7.1) peak calling was performed with default parameters (Zhang et al.

987  2008). Identified peaks from two biological/technical duplicated samples were merged using
988 IDR (v2.0.4.2) to assess the reliability of peak identification (Li et al. 2011). The ChIPseeker R
989  package (v1.40.0) was used for peak annotation in relation to adjacent genes (Yu et al. 2015).
990  Genes with significant peaks (g-value <0.05) within 2000 bp upstream of the transcription start

991  site (TSS) were considered as target genes of the in vitro expressed TFs.
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992  Functional enrichment analysis

993  Gene functions were annotated based on the eggNOG databases (Huerta-Cepas et al. 2019).
994  Gene Ontology (GO) enrichment analyses were performed using the ClusterProfiler R package
995  (v3.18.1) (Yuetal. 2012). Only GO terms with P-values below 0.05 were considered as

996  significantly enriched. GO enrichment results were visualized using aPEAR (v1.0.0)

997  (Kerseviciute and Gordevicius 2023) in R.

998  Dual-luciferase (LUC) reporter assay

999  The 2000 bp promoters of GWMYB2, GhTBL4, GhTBL7, GhCesA7 D05, and GhPIN3a were
1000 cloned using primers listed in Supplementary Table S17 and inserted into the pGreenlI 0800-
1001  LUC vector. The full-length coding sequences of GhMYSI A10 and GhMYSI D10 were cloned
1002 into the pGreenll 62-SK vector. Resulting plasmids were transduced into Agrobacterium
1003  tumefaciens strain GV3101, and the LUC reporter assay was performed as previously described
1004  (Xie et al. 2017). The pGreen II 0800-LUC and pGreenll 62-SK were used as internal controls.
1005  After injecting a mixture of the fusion constructs of pGreenll 62-SK and pGreenll 0800-LUC in
1006 a 1:1 ratio into tobacco leaves for 3 days, quantitative analysis of luciferase activity was
1007  performed using a Dual-Luciferase Reporter Assay System (E1910, Promega, USA), following

1008  the manufacturer's instructions. All experiments were performed in three independent replicates.

1009  Virus-induced gene silencing (VIGS) of GAMYS1

1010  The cotton leaf crumple virus (CLCrV)-based vectors were used to perform VIGS assays (Gu et
1011  al. 2014). To simultaneously silence both GAMYSI A10 and GhMYSI D10, a 300 bp coding
1012  sequence conserved between homoeologs was designed and inserted into the pCLCrV-A vector
1013  to generate the pCLCrV: GhMYSI construct. The positive recombinant plasmid of pCLCrV:
1014  GhMYSI and pCLCrV:00 was subsequently transferred into Agrobacterium tumefaciens strain
1015 LBA4404 by electroporation. Primers used in vector constructions were listed in Supplementary
1016  Table S16. The auxiliary vector pPCLCrVB was used to facilitate the intercellular movement of
1017  CLCrV DNA. After cultivating Agrobacterium colonies containing pCLCrVB, pCLCrV:

1018  GhMYSI, and pCLCrV: 00 vectors on a shaker at 28 °C for 24 h, Agrobacterium cells were
1019  collected by centrifugation and resuspended in solution (10 mM MgCl2, 10 mM MES, and 200
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1020 mM acetosyringone) to achieve OD600 = 1.2. The 4. tumefaciens strains containing pCLCrV:
1021  GhMYSI and pCLCrV: 00 were mixed with pCLCrVB in equal proportions. The resulting

1022  mixture was then injected into the cotyledons of 10-day-old seedlings of G. hirsutum variety
1023  TM-1 using a 1 ml headless syringe. After 24 h of incubation in darkness at 24°C, all plants were
1024  transferred to a constant temperature lightroom for cultivation (25°C, 16 hours/day, 8

1025  hours/night). Five plants were injected for each vector, consisting of three biological replicates.
1026  The expression of GAMYSI was examined in 15 dap fiber of pCLCrV: GhMYS1 and pCLCrV:
1027 00 cotton plants through RT-qPCR to determine the silencing efficacy.

1028  Genomic single-copy orthologous-homoeolog groups (scOGs) gene identification

1029  scOGs analysis was carried out by pSONIC software which uses MCScanX and OrthoFinder to
1030 infer species pairwise collinearity blocks and identify a high-confidence set of singleton

1031  orthologs, respectively (Conover et al. 2021). A total of 22,889 pairs of homologous genes were
1032  characterized into scOGs. The remaining 13,229 and 15,895 genes without unique

1033  correspondence in At and Dt were named variable copy ortholog groups (vcOGs).

1034  Subgenomic expression and homoeolog expression bias (HEB) analysis

1035  Because not all of the 45,778 genes placed in scOGs were among the 57,151 fiber-expressed
1036  genes, some scOGs were represented in expression data by only the At or Dt homoeolog.

1037  Consequently, we further categorized the 22,889 scOGs as either “paired” or “unpaired” based
1038  on whether both homoeologs were expressed (scOG paired) or if only one homoeolog was
1039  expressed (scOG unpaired). To analyze the expression levels of genes contained within the
1040  expressed OGs (vcOGs, scOG paired, and scOG unpaired genes) between the two subgenomes,
1041  we compared the average TPM values of 57,151 expressed genes across 401 samples using a
1042  two-sided Wilcoxon signed-rank test. For HEB analysis, if the TPM between scOGs in one
1043  sample exhibited a more than 2-fold change, the gene pair was identified as a biased

1044  homoeologous gene pair in that sample. We utilized a chi-square test and corrected the P value
1045  using the Benjamini-Hochberg method to compare the expression bias in 401 samples between

1046  the At and Dt subgenomes. When the number of samples with an A or D subgenome bias
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1047  exceeded the number of samples with a D or A subgenome bias, and FDR < 0.05, we considered

1048 that there was an A or D subgenome bias.
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1062  Figure Legends

1063  Figure 1. Cotton fiber transcriptomic datasets for this study. (A) Timeline displaying the
1064  stages represented by the 12 studies used to generate a dataset of 401 fiber RNA-seq samples for
1065 an in-depth exploration of cotton fiber development. Fiber elongation, transition, and SCW
1066  synthesis stages are indicated by red, blue, and green bars, respectively, and each line represents
1067  one existing dataset. This color scheme is applied consistently across all figures here. (B)

1068  Principal component analysis (PCA) of 57,151 gene expression profiles. PC1 and PC2 captured
1069  16.8% and 11.5% of variance, respectively. (C) T-distributed stochastic neighbor embedding (t-
1070  SNE) was also employed for dimension reduction and visualization of the fiber expression

1071  landscape.

1072  Figure 2. Phenotypic and functional associations of co-expression gene modules during
1073  fiber development. (A) For the 20 co-expression gene modules identified by weighted gene co-

1074  expression network analysis (WGCNA), heatmap represents Pearson correlation coefficients and
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P-values (cell color and text, respectively) between the module eigengenes (MEs, by row) and
fiber developmental stages treated as the binary categorical variable (by column). (B) ANOVA
of MEs (by column) by fiber developmental stages treated as a numeric variable (MEs, by row).
Heatmap cell color and text represent Pearson correlation coefficients and P-values, respectively.
(C) Heatmap of z-score normalized MEs for the seven largest modules across fourteen fiber
developmental time points. (D) Gene Ontology (GO) enrichment analysis of the seven largest
modules, displaying the top two most significant interconnected GO clusters terms each.

Different colors represent corresponding modules.

Figure 3. Evaluation of fiber GRN inferences. (A) Histogram presents the bootstrap
distribution (n=1000) of cottonRegMap TF-target relationships as captured by chance. Red, blue,
and green lines represent the cottonRegMap TF-target relationships inferred by GENIE3,
dynGENIE3, and Corto, respectively. Both GENIE3 and Corto inferred significantly more
interactions outside the bootstrap distribution. (B) GSEA of known functional TFs among TFs
rankings inferred by cGENEI3. The enrichment score reflects the degree of over-representation
of a set of 54 known functional TFs at the top of the ranked TFs identified by cGENIE3. The red
dashed line indicates that these known functional TFs were significantly enriched at the top 77
ranking TFs. (C) Heatmap of overlapping target genes between empirical evidence (columns)
and GRN inferences (rows). WRKY 16, with GRN inferences for cGENIE3, cdynGENIE3, and
cCorto. Each cell represents the number of overlaps and the significance of the corresponding
hypergeometric test. DAP-seq results of GAMYSI A10, GhMYSI D10, and GhDESI.4 as well as
RNA-seq results of GADES1.4 and GhWRKY16 were shown. (D) The correlation between
expression variation of 77 hub TFs and fiber length was significantly higher than that of 3,638
TFs expressed in fibers. Five different percentages ranks were divided according to the

correlation between TF and fiber length, where 0% to 100% represent increasing correlation.

Figure 4. GRN performance in cotton cellulose synthesis. (A) Categorization of GhCesAs
based on gene expression patterns during cotton fiber development. Heatmap presents TPM
expression levels in the long-fiber variety JO2 and the short-fiber cotton variety ZRI015. Three
hierarchical clusters correspond to PCW-related, SCW-related, and unknown GhCesAs. (B) The
number of CesA genes, regulator transcription factors (TFs), and regulatory relationships

identified by cGENIE3, cdynGENIE3, and cCorto. (C) Cellulose synthesis-related subnetwork
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1105 inferred by cGENIE3. Square and round nodes represent GhCesAs and TFs, respectively, which
1106  are connected by directed edges indicating the TF-target relationships inferred. Red and blue
1107  node colors represent the categorization of PCW-related and SCW-related genes based on

1108  expression patterns during fiber development, respectively. Two network components were

1109  detected corresponding to PCW (left) and SCW (right), which were co-regulated by six TFs in
1110  the middle. (D) Ranking GhCesAs by in-degree (i.e., number of incoming linking) from all TFs
1111  inferred by cGENIE3. (E) Ranking cellulose synthesis related TFs by out-degree (i.e., number of
1112  outward links) to target GhCesAs. (F) Enriched GO terms associated with the 71 TFs inferred by
1113  c¢GENIE3.

1114  Figure 5. Expression level analysis of homoeologous gene pairs. (A) Gene expression levels
1115 compared between At and Dt homoeologs for all 57,151 fiber-expressed genes (“all genes”),
1116 22,889 homoeologous pairs characterized into single-copy ortho-homoeolog groups (“scOGs”),
1117  the remaining 13,229 At and 15,895 Dt genes uncategorized (“vcOGs”), 19,213 scOGs with both
1118  Atand Dt expressed in fiber (“scOGs pair”), and 17,028 scOGs with only one homoeolog

1119  expressed in fibers (“scOGs unpair”). (B) Gene expression levels compared for scOGs pairs
1120  exhibiting homoeolog expression bias (HEB). (C) Absolute expression differences compared
1121  between A-biased and D-biased scOGs. (C) Expression comparisons for scOGs present within
1122  the same co-expression modules identified by WGCNA. (D) Absolute expression differences
1123  compared between A-biased and D-biased scOGs in co-expression modules. Statistical

1124  significance was determined using a two-sided Wilcoxon rank-sum test. ***P<(0.001.

1125  Figure 6. GRN built based on known function genes and their directly regulated TF in
1126  fiber. (A) GRN of known functional genes and their regulated TFs. Known functional genes and
1127  TFs are shown as circles and rhombus, respectively. Different colors indicate the modules where
1128  genes and TFs are located in the co-expression network. (B) Novel TFs in brown module

1129  regulate GWHOX3, GhHD1, GhMYB25-like, and GhWD40 involved in fiber initiation. (C)

1130  Network of known functional genes regulated by GhMYSI A10 and GhMYSI DI0.

1131  Figure 7 GhMYS]1 positively regulates fiber elongation. (A) Expression pattern analysis of
1132 GhMYSI A10 and GhMYSI D10 in wild and domestication cotton accession from 5 to 25 days
1133  post-anthesis (dpa). (B) Expression pattern analysis of GhMYSI A10 and GhMYSI D10 in long-
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1134  fiber (J02) and short-fiber (ZRI105) varieties from 5 to 25 dpa. (C) Relative expression levels
1135 measured by qRT-PCR showed reduced GAMYS| expression in 10 dpa fibers from pCLCrVA:
1136  GhMYSI cotton plants relative to pCLCrVA: 00 plants. (D) Significantly shorter mature fiber
1137  length in pCLCrVA: GhMYSI versus pCLCrVA: 00 plants. (E) Phenotype of mature fibers in
1138 pCLCrVA: 00 and pCLCrVA: GhMYS1 plants. bar = 1 cm. (F-G) Transient dual-luciferase
1139  (LUC) reporter assay testing interactions between GhiMYSI A10 (F) and GhAMYSI D10 (G), and
1140  the promoters of GhPIN3a, GhCesA7 D05, GhTBL7, and GhMYB2. Expression of Renilla

1141 luciferase (REN) was used as an internal control. Values given are mean + SD (n = 4). Relative
1142  LUC activity obtained with the empty plasmid (none) was set to 1. Statistically significant

1143  differences between groups as determined by Student’s t-test. *P< 0.05 and **P< 0.01.

1144  Tables

1145 Table 1. Fiber gene regulatory networks constructed.

1146  Table 2. Subgenomic contribution to fiber-expressed genes.

1147

1148  Supplementary data

1149  Supplementary Figure S1. Number of RNA-seq samples representing each time point before
1150  (left) and after (right) quality control.

1151  Supplementary Figure S2. Dimensionality reduction and visualization of gene expression
1152  profiles for the 413 public RNA-seq samples passing quality control before removing 12 outlier
1153  samples.

1154  Supplementary Figure S3. Expression analysis of 192 fiber-related functional genes clustered
1155 into three groups

1156  Supplementary Figure S4. Criterion testing for filtering fiber-expressed genes.

1157  Supplementary Figure S5. Weighted gene co-expression network analysis of 57,151 fiber-
1158  expressed genes.

1159  Supplementary Figure S6. Enriched GO terms of the seven largest modules as illustrated by an
1160  UpSet plot.

1161  Supplementary Figure S7. Plant hormone-related GO pathways enriched in the brown (A), tan
1162  (B), turquoise (C), and red (D) modules.
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1163  Supplementary Figure S8. GSEA shows enrichment of known functional TFs in TFs identified
1164 by cdynGENIE3(A), and cCorto(B).

1165  Supplementary Figure S9. Evaluation of GRN inferences by DAP-seq.

1166  Supplementary Figure S10. Evaluation of GRN inferences by RNA-seq.

1167  Supplementary Figure S11. Genome-wide characterization of CesA coding genes in G.

1168  hirsutum.

1169  Supplementary Figure S12. Expression pattern analysis of TFs regulating cellulose synthase
1170  identified by cGENIE3 in long fiber and short fiber cotton varieties.

1171  Supplementary Figure S13. cdynGENIE3 predicted GRN for cotton cellulose synthesis.

1172 Supplementary Figure S14. cCorto predicted GRN for cotton cellulose synthesis.

1173  Supplementary Figure S15. Absolute expression differences compared between A-biased and
1174  D-biased scOGs.

1175  Supplementary Figure S16. Gene expression levels compared for scOGs pairs exhibiting
1176  homoeolog expression bias (HEB) in co-expression modules.

1177  Supplementary Figure S17. GRN of known functional genes regulated by GhMYB30 _A07 and
1178  GhMYB30 _D07.

1179

1180  Supplementary Table S1. RNA-seq datasets from 12 studies were used in this study.

1181  Supplementary Table S2. Summary statistics of 413 RNA-seq samples passing quality filters.
1182  Supplementary Table S3. A curated list of 192 fiber-related genes with known functions.
1183  Supplementary Table S4. Significantly enriched GO terms of seven largest co-expression
1184  modules identified by WGCNA.

1185  Supplementary Table SS. The association analysis between the five fiber traits and the

1186  expression in 15 dpa fiber of 77 hub genes identified by cGENIE3.

1187  Supplementary Table S6. A comprehensive ranking of TFs based on target gene numbers
1188  among cGENIE3, cCorto, and cdynGENIE3.

1189  Supplementary Table S7. The association analysis between the five fiber traits and the

1190 expression in 15 dpa fiber of 77 hub genes identified by cdynGENIE3.

1191  Supplementary Table S8. The association analysis between the five fiber traits and the

1192  expression in 15 dpa fiber of 77 hub genes identified by cCorto.
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1193  Supplementary Table S9. homologous transcription factor and gene pairs in cellulose synthesis-
1194  related subnetwork inferred by cGENIE3.

1195  Supplementary Table S10. The number of expressed paired and unpaired scOGs in different
1196  modules.

1197  Supplementary Table S11. Homoeolog expression bias by module.

1198  Supplementary Table S12. Estimates of regulatory functional conservation between

1199  homoeologs in GRNS.

1200  Supplementary Table S13. The information about 432 nodes and 657 edges in kGRN.

1201  Supplementary Table S14. The detail of eight known fiber-related TFs in kGRN that directly
1202  regulate other known genes.

1203  Supplementary Table S15. Functional information of homologous genes in Arabidopsis

1204  thaliana of 195 upstream transcription factors in kGRN.

1205  Supplementary Table S16. know-function target genes of GhMYS1 A10 and GhMYS1 D10
1206  identified by cGENIE3 and DAP-seq.

1207  Supplementary Table S17. The primers used in this study.
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Figure 1. Cotton fiber transcriptomic datasets for this study. (A) Timeline displaying the
stages represented by the 12 studies used to generate a dataset of 401 fiber RNA-seq samples for
an in-depth exploration of cotton fiber development. Fiber elongation, transition, and SCW
synthesis stages are indicated by red, blue, and green bars, respectively, and each line represents
one existing dataset. This color scheme is applied consistently across all figures here. (B)
Principal component analysis (PCA) of 57,151 gene expression profiles. PC1 and PC2 captured
16.8% and 11.5% of variance, respectively. (C) T-distributed stochastic neighbor embedding (t-
SNE) was also employed for dimension reduction and visualization of the fiber expression

landscape.
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1712  Figure 2. Phenotypic and functional associations of co-expression gene modules during
1713 fiber development. (A) For the 20 co-expression gene modules identified by weighted gene co-
1714  expression network analysis (WGCNA), heatmap represents Pearson correlation coefficients and
1715  P-values (cell color and text, respectively) between the module eigengenes (MEs, by row) and
1716  fiber developmental stages treated as the binary categorical variable (by column). (B) ANOVA
1717  of MEs (by column) by fiber developmental stages treated as a numeric variable (MEs, by row).
1718  Heatmap cell color and text represent Pearson correlation coefficients and P-values, respectively.
1719  (C) Heatmap of z-score normalized MEs for the seven largest modules across fourteen fiber
1720  developmental time points. (D) Gene Ontology (GO) enrichment analysis of the seven largest
1721  modules, displaying the top two most significant interconnected GO clusters terms each.

1722  Different colors represent corresponding modules.
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Figure 3. Evaluation of fiber GRN inferences. (A) Histogram presents the bootstrap
distribution (n=1000) of cottonRegMap TF-target relationships as captured by chance. Red, blue,
and green lines represent the cottonRegMap TF-target relationships inferred by GENIE3,
dynGENIE3, and Corto, respectively. Both GENIE3 and Corto inferred significantly more
interactions outside the bootstrap distribution. (B) GSEA of known functional TFs among TFs
rankings inferred by cGENEI3. The enrichment score reflects the degree of over-representation
of a set of 54 known functional TFs at the top of the ranked TFs identified by cGENIE3. The red
dashed line indicates that these known functional TFs were significantly enriched at the top 77
ranking TFs. (C) Heatmap of overlapping target genes between empirical evidence (columns)
and GRN inferences (rows). WRKY 16, with GRN inferences for cGENIE3, cdynGENIE3, and
cCorto. Each cell represents the number of overlaps and the significance of the corresponding
hypergeometric test. DAP-seq results of GAMYSI A10, GhMYSI D10, and GhDESI.4 and
RNA-seq results of GhDES1.4 and GhWRKY16 were shown. (D) The correlation between
expression variation of 77 hub TFs and fiber length was significantly higher than that of 3,638
TFs expressed in fibers. Five different percentages ranks were divided according to the

correlation between TF and fiber length, where 0% to 100% represent increasing correlation.
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1744  Figure 4. GRN performance in cotton cellulose synthesis. (A) Categorization of GhCesAs
1745  based on gene expression patterns during cotton fiber development. Heatmap presents TPM
1746  expression levels in the long-fiber variety JO2 and the short-fiber cotton variety ZRI015. Three
1747  hierarchical clusters correspond to PCW-related, SCW-related, and unknown GhCesAs. (B) The
1748 number of CesA genes, regulator transcription factors (TFs), and regulatory relationships

1749  identified by cGENIE3, cdynGENIE3, and cCorto. (C) Cellulose synthesis-related subnetwork
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inferred by cGENIE3. Square and round nodes represent GhCesAs and TFs, respectively, which
are connected by directed edges indicating the TF-target relationships inferred. Red and blue
node colors represent the categorization of PCW-related and SCW-related genes based on
expression patterns during fiber development, respectively. Two network components were
detected corresponding to PCW (left) and SCW (right), which were co-regulated by six TFs in
the middle. (D) Ranking GhCesAs by in-degree (i.e., number of incoming linking) from all TFs
inferred by cGENIE3. (E) Ranking cellulose synthesis related TFs by out-degree (i.e., number of
outward links) to target GhCesAs. (F) Enriched GO terms associated with the 71 TFs inferred by
cGENIE3.
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Figure 5. Expression level analysis of homoeologous gene pairs. (A) Gene expression levels
compared between At and Dt homoeologs for all 57,151 fiber-expressed genes (‘““all genes”),
22,889 homoeologous pairs characterized into single-copy ortho-homoeolog groups (“scOGs”),
the remaining 13,229 At and 15,895 Dt genes uncategorized (“vcOGs”), 19,213 scOGs with both
At and Dt expressed in fiber (“scOGs pair”), and 17,028 scOGs with only one homoeolog
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1766  expressed in fibers (“scOGs unpair”). (B) Gene expression levels compared for scOGs pairs
1767  exhibiting homoeolog expression bias (HEB). (C) Absolute expression differences compared
1768  between A-biased and D-biased scOGs. (C) Expression comparisons for scOGs present within
1769  the same co-expression modules identified by WGCNA. (D) Absolute expression differences
1770  compared between A-biased and D-biased scOGs in co-expression modules. Statistical

1771  significance was determined using a two-sided Wilcoxon rank-sum test. ***P<(.001.
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1774  Figure 6. GRN built based on known function genes and their directly regulated TF in
1775 fiber. (A) GRN of known functional genes and their regulated TFs. Known functional genes and
1776  TFs are shown as circles and rhombus, respectively. Different colors indicate the modules where
1777  genes and TFs are located in the co-expression network. (B) Novel TFs in brown module

1778  regulate GhHOX3, GhHD1, GhMYB25-like, and GhWD40 involved in fiber initiation. (C)

1779  Network of known functional genes regulated by GhMYSI A10 and GhMYS1 DI10.
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1781  Figure 7 GhMYS1 positively regulates fiber elongation. (A) Expression pattern analysis of
1782  GhMYSI A10 and GhMYSI D10 in wild and domestication cotton accession from 5 to 25 days
1783  post-anthesis (dpa). (B) Expression pattern analysis of GAMYSI A10 and GhMYSI D10 in long-
1784  fiber (JO2) and short-fiber (ZRI105) varieties from 5 to 25 dpa. (C) Relative expression levels
1785 measured by qRT-PCR showed reduced GhMYS1 expression in 10 dpa fibers from pCLCrVA:
1786  GhMYSI cotton plants relative to pPCLCrVA: 00 plants. (D) Significantly shorter mature fiber
1787  length in pCLCrVA: GhMYSI versus pCLCrVA: 00 plants. (E) Phenotype of mature fibers in
1788 pCLCrVA: 00 and pCLCrVA: GhMYS1 plants. bar = 1 cm. (F-G) Transient dual-luciferase
1789  (LUC) reporter assay testing interactions between GhiMYSI A10 (F) and GhAMYSI D10 (G), and
1790  the promoters of GhPIN3a, GhCesA7 D05, GhTBL7, and GhMYB2. Expression of Renilla

1791  luciferase (REN) was used as an internal control. Values given are mean + SD (n = 4). Relative
1792  LUC activity obtained with the empty plasmid (none) was set to 1. Statistically significant

1793  differences between groups as determined by Student’s t-test. *P< 0.05 and **P< 0.01.
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Table 1. Fiber gene regulatory networks constructed.
GRN CottonRe | GENIE | Corto | dynGE | ¢GENI | c¢Corto | ¢dynG
gNet 3 NIE3 E3 ENIE3
nodes 74,902 54,237 | 56,052 | 25,441 | 41,757 | 25,245 | 25,076
edges 53,878,120 | 1,000,00 | 232,943 | 1,000,0 | 149,849 | 33,956 | 138,639
0 00
TF in At 2,485 1,796 1,723 546 1,577 729 542
network
Dt 2,550 1,829 1,725 527 1,544 723 526
TF as At 1,088 1,780 1,723 546 773 729 248
regulatory
nodes | ¢ | 1,087 1,805 | 1,725 527 763 723 242
Target At 36,118 26,633 | 25,809 | 12,633 | 20.462 | 11,646 | 12,440
genes
Dt 38,784 27,486 | 26,795 | 12,808 | 21,025 | 12,147 | 12,603
known 191 181 185 117 155 91 114
functional
genes
network density [ 0.0096035 | 0.00034 | 0.00007 | 0.00154 | 0.00008 [ 0.00005 | 0.00022
0 4 5 6 3 1
clustering 0.0449141 | 0.03102 | 0.00000 | 0.01221 | 0.00742 | 0.00000 | 0.00218
coefficient 0 0 7 0 0 1
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1803  Table 2. Subgenomic contribution to fiber-expressed genes.

1
Total At Dt Subgenome
contribution
I. All genes in the reference 74,902 36,118 38,784 At <Dt
genome
scOG genes 45,778 22,889 22,889 -
scOG genes 29,124 13,229 15,895 At <Dt
II. Fiber expressed genes 57,151 28,004 29,147
(% of all genes) (76.3%) (77.5%) (75.2%) (At > Dt)
38,426 19,213 19,213
scOG genes: paired -
(83.9%) (83.9%) (83.9%)
1,597 749 848
scOG genes: unpaired At <Dt
(3.5%) (3.3%) (3.7%)
17,128 8,042 9,086 At <Dt
scOG genes
(58.5%) (60.8%) (57.2%) (At > Dt)
I Genes assigned 1o co- 25,751 12,816 12,035
P (At > Dt)
(1) o o
(% of all genes) (34.4%) (35.5%) (33.4%)
homoeologs in the same module | 12,560; 48.8% 6,280 6,280 -
homoeologs NOT in the same 13.191; 51.2% 6,536 6,655 i
module
homoeologs TF in the same 1042; 53.0% 571 591 i
module
homoeologs TF NOT in the 924: 47.0% 448 476 )
same module
know functional gene in the 57 26 26
same module
know functional gene NOT in 66 33 33
the same module
Iv. NO‘:le:t;‘OigENIE"’ 41,757 20,578 21,179
(At > Dt)
(1) 1) 1)
(% of all genes) (55.7%) (57.0%) (54.6%)
regulators (TFs) 1,536 773 763 -
TFs in scOG pair; % scOG pairs| 1,146; 88.1% 573 573 -
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3 i1+ O
TFs NOT in SCQG pair; % scOG 155: 11.9% ]1 74 )
pairs
scOG TF 235 119 116
20,462 21,052
target genes (TGs): 41,514 (At> Dt)
(56.7%) (54.3%)
TGs in scOG pair; % scOG pairs| 23,858; 77.9% 11,929 11,929 -
3 11+ O
TGs NOT in chG pair; % scOG 6.759: 22.1% 3,291 3,468
pairs i
scOG genes; % of all scOG gene 10,897 5,242;39.6% | 5,655;35.4% (At> Dt)
V. Edges in cGENIE3 network 149,849
intra-subgenome 24701 Atto At: Dt to Dt: At> Dt
(average TG number per TF) 38,704 (50.0) | 35,997 (47.2)
inter-subgenome At to Dt: Dt to At At to Dt >
75,148 35,032 (45.9)
(average TG number per TF) 40,116 (51.9) ’ ' Dt to At
2TF: regulatory conservation 15.8% 15.7% 15.8% -
2TG: regulatory conservation 6.4% 6.3% 6.5% -

1804 ! Significantly different contribution between subgenomes was shown when Chi-square test P <
1805 0.05.

1806 % For given TFs (e.g. At TFs), regulatory conservation measures the percentage of their edges
1807  targeting paired At and Dt TGs among all edges. For given TGs, regulatory conservation

1808 measures the percentage of their edges regulated by paired At and Dt TFs. Full conservation is
1809 represented by 1, while no conservation is represented by 0.

1810

1811

1812

65



https://doi.org/10.1101/2024.08.12.607624
http://creativecommons.org/licenses/by-nd/4.0/

