

1 **Full Title: Exploring adaptive introgression in modern**
2 **human circadian rhythm genes**

3 **Short Title: Archaic introgression in circadian rhythm genes**

4

5 Christopher Kendall^{1*}, Amin Nooranikhojasteh², Guilherme Debortoli³, Vinicius Cauê Furlan
6 Roberto^{4,5}, Marla Mendes^{4,5}, David Samson^{3,6}, Esteban Parra³, Bence Viola¹, Michael A.
7 Schillaci⁷

8

9 1. Department of Anthropology, University of Toronto, Toronto, Ontario, Canada.
10 2. Epigenome Lab, Princess Margaret Cancer Centre, University Health Network, Toronto,
11 Ontario, Canada.
12 3. Department of Anthropology, University of Toronto Mississauga, Mississauga, Ontario,
13 Canada.
14 4. The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario,
15 Canada.
16 5. Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto,
17 Ontario, Canada
18 6. Sleep and Human Evolution Lab, University of Toronto Mississauga, Mississauga,
19 Ontario, Canada.
20 7. Department of Anthropology, University of Toronto Scarborough, Scarborough, Ontario,
21 Canada.
22

23 * Corresponding author

24 Email: chris.kendall@mail.utoronto.ca (CK)

25

26

27 Abstract

28

29 Interbreeding between modern humans and archaic hominins, including Neanderthals and
30 Denisovans, occurred as modern humans migrated outside of Africa. Here, we report on
31 evidence of introgression from archaic hominins within genomic regions associated with
32 circadian rhythm and chronotype using 76 worldwide modern human populations from the
33 Human Genome Diversity Project and 1000 Genomes Project. We calculated the extent of
34 regions indicative of adaptive introgression across the autosomes and identified regions that are
35 suggested to be under positive selection. We tested for evidence of a latitudinal cline within 36
36 core haplotypes along with presenting the likely archaic donor for each of these haplotypes. We
37 identified 265 independent segments that overlap genes described as having a circadian rhythm
38 component or contain variants and segments previously identified as being associated with
39 circadian rhythm or chronotype. Within these segments we found 1,729 archaically derived
40 variants with allele frequencies of at least 40% intersecting 303 genes and intergenic segments.
41 Seventeen of these segments show evidence of positive selection, three of which are found
42 within our core haplotypes. We found that many of our genes are associated with the immune
43 system or gastrointestinal function. Additionally, variants associated with complex traits such as
44 schizophrenia and bipolar disorder are present within our adaptively introgressed regions. Lastly,
45 genes and markers associated with sleep and chronotype phenotypes and serotonin pathways
46 were also found in our adaptive introgression results, potentially signalling selection on genes
47 related to seasonal light variation as modern humans migrated into new environments after
48 leaving Africa.

49

50 **Author summary**

51

52 As modern humans migrated out of Africa, they encountered archaic hominins, the Neanderthals
53 and Denisovans, and interbred with them. Signatures of these admixture events can be found in
54 populations across the world. The result of these admixture events has shaped modern human
55 evolution regarding high altitude adaptation, immune function, and skin and hair colour, to name
56 a few. However, much of this information has been gathered with a focus on Eurasian
57 populations using the 1000 Genomes Project samples. Here, we take advantage of newly
58 published resources from 76 worldwide modern human populations to investigate how strongly a
59 role admixture played on modern human circadian rhythm genes. Circadian rhythms have been
60 tied to sleep-wake regulation, immune function, and digestive health. We find evidence for
61 adaptive introgression in over 300 genes and intergenic segments. Many of these genes, like
62 *AMIGO2*, are associated with complex traits such as schizophrenia and bipolar disorder or with
63 immune system function, like *JAK1*. Some of these traits have been previously described before
64 regarding archaic admixture. Interestingly, many of these associated traits are influenced by
65 circadian rhythm oscillations, providing a new perspective on interpreting these findings.

66

67 **Introduction**

68

69 A little over a decade ago, human evolutionary history was completely reshaped by the discovery
70 that anatomically modern humans interbred with our archaic cousins, the Neanderthals [1], and
71 their enigmatic sister species, the Denisovans [2]. These were not isolated events, and evidence
72 has been uncovered that there were several admixture events occurring sporadically over
73 thousands of years and across diverse geographic areas [3-9]. Signatures of these events are left
74 in our genome with estimates that every non-African alive today has on average just below 2%
75 of their DNA shared with Neanderthals [10]. Denisovan signatures in modern humans are
76 generally lower, on average below 1% [11-12]. However, some Oceanic populations have been
77 noted to have nearly 5% of their DNA composed of Denisovan-introgressed regions [2, 8, 13].

78

79 A number of these archaic introgressed regions are believed to have been adaptive and have been
80 brought to elevated frequencies in modern human populations. Several of the most notable
81 examples are variants within the *EPAS1* gene in Tibetan populations that confer adaptation to
82 high altitude environments derived from Denisovans [14], immunity and HLA-controlling
83 regions likely giving rise to disease resistance to modern humans as they expanded into new
84 territories after leaving Africa [15-18], and the various skin, hair, and keratin linked regions
85 introgressed from Neanderthals that have been highlighted in a number of studies [4, 19-21].
86 While these are often referenced, there are many other introgressed loci that have been
87 associated with traits such as type 2 diabetes risk [22], height, likelihood of being a smoker,
88 mood [20], and mental health [23], to name a few.

89

90 Recently, the discovery of introgressed variants within genes involved in circadian rhythm and
91 chronotype expression has become a new area of focus [20-21, 24-26]. Single nucleotide
92 polymorphisms (SNPs) identified to be associated with chronotype, daytime napping,
93 narcolepsy, lethargy, willingness to get up in the morning, sleep duration, and insomnia have
94 been suggested to be the product of introgression from Neanderthals [20]. In a meta-analysis
95 using previously published genome wide association study (GWAS) data identifying archaic
96 introgressed loci, modern human genetic variants associated with being a morning person were
97 shown to be shared with the Altai Neanderthal [21]. Further, analysis of GWAS data from
98 several biobanks found positive association with archaically identified SNPs related to sleep
99 traits such as narcolepsy, daytime napping, sleep duration, willingness to get up in the morning,
100 and chronotype [25]. In a recent analysis using a combination of previously published variants
101 identified as being archaically-introgressed into modern humans, it was found that modern
102 humans and archaic hominins differed in their circadian rhythm genes, including alternative
103 splicing events and regulatory divergence [26]. Additionally, the authors noted that over 3,800
104 variants were associated with regulation on circadian genes, these variants are more likely to be
105 expression quantitative trait loci (eQTL) for circadian rhythm genes than by chance, and that 47
106 circadian genes show evidence of adaptive introgression [26]. Lastly, the authors of that study
107 state that introgressed variants are associated with having a morningness chronotype and that
108 some introgressed variants are distributed across a latitudinal cline [26].

109

110 The circadian rhythm is the cyclic oscillator of a 24-hour period, which has remained relatively
111 conserved across most of the animal kingdom [27] and has been proposed to be a core controller
112 of sleep and wake cycles [28-32]. To do this, the suprachiasmatic nucleus, located in the

113 hypothalamus, uses external light stimuli to reset itself along a day-night cycle [31]. Output from
114 the suprachiasmatic nucleus goes to the ventral subparaventricular zone and regulates this
115 information into daily cycles of wakefulness and sleep [27, 31], that then falls across the natural
116 24-hour circadian rhythm. In addition to controlling sleep and wake cycles, several review
117 articles have highlighted the link between circadian rhythm and gastrointestinal processes [33-
118 34] and immune function [35-37].

119

120 The preference for how late someone stays awake is influenced by chronotype, that is, morning
121 people who tend to go to bed and rise earlier, and those who show an evening preference and go
122 to bed and rise later [32, 38]. Three different GWAS datasets have independently identified four
123 genes that support associations with chronotype, *PER2*, *RGS16*, *FBXL13*, and *AK5* [32].
124 Additional studies increased the number of chronotype-linked variants which were associated
125 with previously unidentified genes, such as *PER1*, *CRY1*, and *ARNTL* [39]. Links between
126 daytime light exposure and chronotype expression in modern humans have also been suggested
127 on candidate gene *ARL14EP* [40].

128

129 For this study we used the gnomAD 1000 Genomes Project (1KGP) and Human Genome
130 Diversity Project (HGDP) phased callset [41] to identify regions of archaic introgression from an
131 expanded worldwide population dataset (n=76 populations). Specifically, we used SPrime [7] to
132 identify genomic regions in these populations with an interest in markers associated with
133 circadian rhythm and chronotype phenotypic expression that are the result of introgression from
134 archaic hominins into modern humans. To explore if any of these regions would contain

135 signatures of adaptive introgression on genes showing circadian rhythm patterns, we extracted
136 the modern human genes from the Circadian Genome Database (CGDB) [42]. We also included
137 in our analysis data from 4 previous studies that discussed chronotype and archaic introgression,
138 and lastly, included regions from the NHGRI-EBI GWAS Catalogue [43] that were associated
139 with circadian rhythm, chronotype, and sleep to identify regions of adaptive introgression
140 associated with these phenotypes found in our dataset. We highlight more than 1,700 variants at
141 elevated frequencies in our dataset that fall within 265 independent, genome-wide windows in
142 non-African populations. Our research hypothesised that like prior studies [26], circadian rhythm
143 and/or chronotype loci at levels suggestive of adaptive introgression will have phenotypic
144 expressions largely driven by latitude, which we investigated using genome wide data. We
145 utilised the four high coverage archaic genomes from the Altai Denisovan [2], Altai Neanderthal
146 [3], Vindija Neanderthal [44], and the Chagyrskaya Neanderthal [45] for our analyses to
147 determine if sample-specific signatures could be identified and in an attempt to gauge which
148 archaic group was the likely donor population to core haplotypes found in our data.

149

150 Prior data has illustrated latitudinal clines with a genetic basis [46-47] and some of these are also
151 detected within archaically derived segments [24, 26]. For this study, we predict that the
152 frequency of circadian rhythm and chronotype-related archaic variants will vary with latitude,
153 with higher latitudes experiencing more extreme seasonal variations in daylight exhibiting a
154 greater frequency of introgressed variants associated with morningness chronotype and enhanced
155 light sensitivity. Given the geographic distribution of Neanderthals and Denisovans [2, 48-50]
156 we further hypothesise that archaic hominins, who inhabited higher latitudes, contributed a
157 greater number of circadian rhythm and chronotype-related genetic variants to modern humans

158 as humans left Africa. This prediction is grounded in the need for adaptations to significant
159 seasonal light variations in these regions. Additionally, we predict that these archaic groups will
160 be associated with a higher prevalence of variants that enhance serotonin synthesis, such as
161 within the *DDC* gene [51], supporting adaptations to extreme seasonal variations in light.
162 Variants associated with higher serotonin synthesis will likely correlate with phenotypic traits
163 such as increased wakefulness during daylight hours and potentially reduced REM sleep.
164 Accordingly, these variants are predicted to be more pronounced in these populations as this
165 adaptation might help mitigate seasonal affective disorder (SAD) and maintain stable circadian
166 rhythms despite fluctuating daylight hours.

167

168 **Results**

169

170 **Introgression**

171

172 Our analysis was able to recover a large number of variants reported in prior studies, showing the
173 effectiveness of our pipeline (S1 Text). From the Dannemann and Kelso (2017) paper [20]
174 reporting archaic SNPs found in modern humans, 1,787 variants were recovered in our dataset,
175 while from Dannemann et al. (2022) [25], 1,415 SNPs were identified as archaically-introgressed
176 in our dataset. We were able to extract 4,255 variants from the genomic windows associated with
177 archaic introgression reported in McArthur et al. (2021) [21]. Lastly, from the data reported in
178 Velazquez-Arcelay et al. (2023) [26] providing archaic-derived circadian and chronotype loci,

179 we were able to recover 9,605 variants in our dataset. In short, our pipeline was successful at
180 recovering previously reported instances of introgression associated with circadian rhythm and
181 chronotype. We were also able to recover previously documented introgression patterns,
182 including both the Chagyrskaya and Vindija Neanderthals being more closely related to the
183 introgressed Neanderthal DNA in modern humans [44-45], and higher levels of Denisovan
184 ancestry in Oceanic populations relative to other modern human groups [2] (Fig 1). Next, we
185 recovered 64,834 putative archaic variants overlapping the genes listed in the CGDB [42]. Our
186 analysis of the GWAS data [43] for chronotype and sleep-associated traits yielded a very small
187 number of archaically derived hits, with only 71 markers found in our results.

188

189 Fig 1. Archaic variant recovery.

190

191 Putative archaic variants recovered in our pipeline. Colours denote map_arch labelling [52] and
192 are representing the percentage of total recovered variants for the (A) Altai Neanderthal, (B)
193 Chagyrskaya Neanderthal, (C) Vindija Neanderthal, and (D) Denisovan. The plot was generated
194 using the ggplot2 package [53] package in R v4.1.2 [54].

195

196 We were first interested in the identification of regions of the modern human genome associated
197 with circadian rhythm and chronotype with atypically high archaic allele frequencies. We
198 identified 265 independent, non-overlapping segments in our 62 non-African populations (S1
199 Table), where each segment overlaps at least one variant or window associated with circadian
200 rhythm or chronotype, or overlaps the genes listed in the CGDB [42], and the archaic variant has

201 an allele frequency $\geq 40\%$ in at least one population within our analysis. Within the Americas,
202 there are 127 segments that pass these criteria, 123 in East Asia, 44 in Europe, 12 in the Middle
203 East, 88 in Oceania, and 16 in South Asia (S1 Table). Within these segments, we noted 1,094
204 independent variants combined between all populations. When we filtered these regions to
205 include only variants that are the maximum archaic allele frequency in their segment, we found
206 there are 209 genes and intergenic regions within 131 independent segments (S2 Table). S2
207 Table also includes the population intersection results and gene information for the circadian
208 rhythm or chronotype associated variant per population-specific segment. In S3 Table we expand
209 upon the contents of S2 Table and include all variants with archaic allele frequencies $\geq 40\%$,
210 including those that may not be the maximum archaic allele in their respective segment. S3 Table
211 highlights a total of 1,729 variants that are found within 303 genes and intergenic regions.

212

213 **Core haplotypes and evidence of positive selection**

214

215 After generating our core haplotypes (Materials and Methods), we were left with 36 regions of
216 interest for further exploration (S4 Table). Twenty-four (~67%) of these regions fall within genes
217 while the remaining 12 (~33%) are intergenic (S4 Table). After running RAiSD [55], 17 of these
218 regions show evidence of positive selection (S4 Table). However, only three of these regions,
219 *CCR9* in the Indian Telugu in the U.K. (ITU) population, the larger *CEACAM1-LIPE-AS1* cluster
220 in the Papuans, and *JAK1* in the Melanesians showed signatures of positive selection within the
221 core haplotype. The remaining 14 haplotypes had positive selection signatures that fell within the
222 introgressed population-specific segment, but outside of the core haplotype (S4 Table). After

223 filtering for haplotypes of interest (see S1 Text), *CCR9* has 59 haplotypes, *CEACAM1-LIPE-ASI*
224 has 63 haplotypes, and *JAK1* has 68 haplotypes in their core regions, respectively. Haplotype
225 networks and ancestral recombination graphs (see S1 Text) for *CCR9*, *CEACAM1-LIPE-ASI*,
226 and *JAK1* are shown in Figs 2 and 3. The output window from RAiSD [55] where positive
227 selection was detected can be seen in S4 Table for core haplotypes where selection exists, while
228 the contour plots [52] for the three main core haplotypes are shown in Fig 4. Additionally, we
229 identified the most probable archaic donor for each of the 36 core haplotypes, which is provided
230 in S4 Table.

231

232 Fig 2. Haplotype networks of main core haplotypes.

233

234 Haplotype networks for (A) *CCR9*, (B) *CEACAM1-LIPE-ASI*, and (C) *JAK1*, our three core
235 haplotypes with evidence of positive selection within their core region. Red boxes highlight the
236 location of archaic haplotypes. The number of mutations along each edge between nodes is
237 shown in brackets. Plots were generated using PopArt v1.7 [56].

238

239 Fig 3. Ancestral recombination graphs of main core haplotypes.

240

241 Ancestral recombination graphs for variants within core haplotypes with evidence of positive
242 selection that are matches to the archaic allele and show patterns associated with archaic
243 ancestry. These patterns include origins at least 1,000,000 years ago and long, non-recombining

244 branches with recent expansion within modern human populations associated with derived
245 mutations. (A) rs71327015 inside of the *CCR9* core haplotype in South Asian populations and
246 (B) rs377425962 inside of the *JAK1* core haplotype within Oceanic populations, respectively.
247 (C) rs184528844 inside of the *CEACAM1-LIPE-ASI* core haplotype in Oceanic groups, which
248 shows an archaic-like branching event despite emergence after the split of archaic hominins and
249 modern humans. Analysis and graphs were generated using Relate v1.2.1 [57].

250

251 Fig 4. Archaic donor population of main core haplotypes.

252

253 Contour plots based on the match/mismatch ratios of each putative archaic segment genome
254 wide after filtering for authentic segments. The location of the segment containing the gene is
255 identified by a white crosshair. Heatmap is coloured by the density of segments from both the
256 Neanderthal and Denisovan samples at each match/mismatch ratio, with the archaic donor
257 population being the archaic sample with the highest match/mismatch ratio. (A) *CCR9*'s segment
258 is most like the Vindija Neanderthal, (B) *CEACAM1-LIPE-ASI* is of Neanderthal affinity
259 generally, and (C) *JAK1* is most similar to the Denisovan. Plots were based upon the scripts
260 provided by Zhou and Browning (2021) [52] using the kde2d function from the MASS library
261 [58] in R [54].

262

263 **SNP annotations**

264

265 We wanted to explore in more detail potential associations of the archaic variants provided in S3
266 Table to better understand the implications of our results. To do this we used the NHGRI-EBI
267 GWAS Catalogue [43] and downloaded the association table results and matched the target
268 SNPs within our identified regions against those found in the catalogue. In total, we identified 37
269 putative archaic SNPs that were found at frequencies $\geq 40\%$ in our results and had genome-wide
270 significant p-values in the GWAS catalogue. These variants are provided in S5 Table. We
271 expanded our annotation analysis to include variant matches that may not reach genome-wide
272 significant thresholds by exploring variants in our data that matched results found in SNPnexus
273 [59-60] and the Variant Effect Predictor (VEP) [61]. These results are included in S6 Table.

274

275 **Discussion**

276 **No evidence of latitude cline within core haplotypes**

277

278 Several prior studies have provided evidence that circadian rhythm or chronotype associated
279 genes and variants will often exhibit a latitudinal cline. Specifically, phenotypes related to
280 chronotype based on latitude have been identified in modern human populations [46-47] and
281 have also been described in regions introgressed from archaic populations [24, 26]. The link
282 between latitude and circadian rhythm has been established in plants, animals, and insects to
283 varying degrees [62-64]. Considering these claims, we tested if any evidence of a latitudinal
284 cline could be found in our core haplotypes that displayed evidence of positive selection (S4
285 Table). We extracted the maximum archaic allele frequency from each population-specific

286 segment intersecting our core haplotypes and plotted them based on longitude and latitude.
287 Interestingly, and contrary to our prediction, we found no clear evidence of a latitude cline (Fig
288 5; S7 Table; S1-30 Figs). Four of these core haplotypes (*CEACAM1-LIPE-AS1*, *LINC01107*-
289 *LINC01937*, *ROR2*, *TLR1*) have significant p-values ($p \leq 0.05$) when testing for the relationship
290 between maximum archaic allele frequency and latitude, but the relationship is not very strong
291 with r^2 values of 0.063541, 0.058346, 0.067914, and 0.23862, respectively (S7 Table). Most of
292 the relationships are also counter to our hypothesis, where higher latitude groups, such as the
293 British from England and Scotland (GBR) and Finnish in Finland (FIN) have lower allele
294 frequencies than many populations from middle and low latitude regions (S7 Table). Only six
295 core haplotypes (*CCR9*, *ENSG00000286749*, *LINC01107-LINC01937*, *RN7SL423P*-
296 *ENSG00000232337*, *ROR2*, and *TLR1*) show positive relationships between maximum archaic
297 allele frequencies and latitude (S2, S4, S8, S10-S11, S15 Figs), however, the *CCR9*,
298 *ENSG00000286749*, *LINC01107-LINC01937*, and *RN7SL423P-ENSG00000232337*
299 relationships are not significant (S7 Table). Further, our haplotype networks and ancestral
300 recombination graphs also support this with no clear latitude signature displayed for our core
301 haplotypes with evidence of positive selection within their core region (Figs 2-3; S31, S33, S35
302 Figs).

303

304 Despite a lack of a clear latitudinal pattern, we found evidence of geographic grouping of some
305 core haplotypes. For instance, the *CEACAM1-LIPE-AS1* and *JAK1* frequency maps show a clear
306 bias towards Oceania, with allele frequencies being greater than 40%, while these frequencies
307 are nearly, or entirely, absent in the rest of our populations (Figs 5A-5B). Similar patterning can
308 be seen in the *AMIGO2* frequency map, where elevated allele frequencies are isolated to Asia

309 and Oceania (Fig 5C). We document high frequencies within Oceanic and South Asian
310 populations in the *CCR9* frequency map, which also has some moderately elevated allele
311 frequencies within Europe and some parts of the Americas (Fig 5D), and a South Asia to Europe
312 band of high-frequency alleles in *RN7SL423P-ENSG00000232337* (Fig 5E). Some of these
313 patterns are made very clear in our haplotype networks, where, for example in the *CCR9*
314 network, geographic pockets of haplotypes are noted (Fig 2A). Within this haplotype network,
315 most of the African haplotypes are separated from the other haplotypes, indicative of separate
316 evolutionary histories within these putatively introgressed, high frequency regions. Much of the
317 clustering is based on previously described levels of allele sharing between archaic populations
318 and modern humans. In the *CEACAMI-LIPE-ASI* network (Fig 2B), contrasting to *CCR9*, the
319 archaic haplotype shares an African haplotype, and is only one mutation away from two other
320 African haplotypes. This may suggest that the archaic haplotype in this segment was derived
321 from modern humans first, a recently discussed hypothesis in other genomic regions [10]. We
322 would not expect to see many of these described groupings if circadian patterns related to
323 latitude were solely controlling expression of these phenotypes. Lastly, our ancestral
324 recombination graphs also support our inference, with edges and nodes shared between
325 populations with strongly different latitudes (S31, S33, S35 Figs).

326

327 Fig 5. Frequency maps of core haplotypes with evidence of positive selection.

328

329 Frequency distribution maps generated by extracting the maximum archaic allele frequency from
330 each core haplotype that had evidence of positive selection generally within its putatively

331 derived segment. Here we display a subset of these with interesting geographic patterns. Both
332 (A) *CEACAM1-LIPE-ASI* and (B) *JAK1* are nearly exclusively found in Oceanic populations.
333 (C) *AMIGO2* and (D) *CCR9* exhibit higher frequencies within Asia and Oceania. (E)
334 *RN7SL423P-ENSG00000232337* shows a band across South Asia into Europe of high-frequency
335 variants. Our analysis displays no clear latitudinal cline within our core haplotypes with evidence
336 of positive selection. Plots were generated with the rnaturalearth [65], sf [66-67], and ggplot2
337 [53] packages in R [54].

338

339 **Serotonin associated genes with evidence of adaptive introgression**

340

341 We found mixed results supporting the hypothesis that archaic populations contributed
342 serotonin-associated variants to modern humans due to differing exposure to seasonal light
343 variation, and further, that these variants will likely have higher instances of chronotype, mood,
344 and sleep associated phenotypes. We downloaded from GeneCards [68] 375 genes that were
345 associated with serotonin and intersected these against our list of 303 genes overlapping variants
346 with archaic allele frequencies $\geq 40\%$ (S3 Table). Four genes and intergenic regions, *CHST11*,
347 *ENSG00000276064-HTR1B*, *MECOM*, and *TBC1D1* that have been previously linked with
348 serotonin also have signatures of adaptive introgression in modern humans within our dataset (S3
349 Table). One of these genes, *CHST11*, is one of our core haplotypes without evidence of positive
350 selection (S4 Table). Within these genes, there is no signature found regarding chronotype or
351 sleep phenotypes according to our annotation results (S8 Table). However, *CHST11* has been
352 associated with schizophrenia and bipolar disorder [69], celiac disease [70], and red blood cell

353 levels [71]. In patients with schizophrenia and bipolar disorder, reduced serotonin levels were
354 seen in both disorders [72-73], further, altered circadian rhythms are believed to play a role in
355 schizophrenia and bipolar disorder development [74]. Circadian rhythms and serotonin levels
356 have both been discussed in relation to gut health [33-34, 75] and in patients with celiac disease,
357 elevated levels of serotonin were described [76]. Additionally, celiac disease has been associated
358 with mood disorders [77]. Prior studies demonstrated that serotonin-deficient mice had reduced
359 red blood cell counts and an anaemia phenotype [78], that human red blood cells were likely
360 influenced by circadian rhythms as they reacted to environmental stimuli [79], and lastly,
361 patients with depression showed lower levels of red blood cell counts and higher instances of
362 anaemia [80].

363

364 We also found evidence of two genes in our dataset within the Gene Ontology (GO) Catalogue
365 [81-82] that have been described regarding serotonin (S8 Table). *ABCC4* is involved in platelet
366 degranulation (GO:0002576; Reactome:R-HSA-114608), while the variant rs12209650 is
367 intergenic between *ENSG00000276064* and *HTR1B*, where *HTR1B* has been found to enable
368 serotonin receptor activity (GO:0004993; GO_REF:0000033) and binding (GO:0051378;
369 GO_REF:0000107) [83]. *HTR1B* is also involved in the adenylate cyclase-inhibiting serotonin
370 receptor signalling pathway (GO:0007198; GO_REF:0000033) [83] and negative regulation of
371 serotonin secretion (GO:0014063) (S8 Table). Taken together, our results show that 83% of the
372 serotonin genes we found in our results are likely adaptively introgressed and being the
373 maximum archaic allele within their respective segment (S2 Table), highlighting the importance
374 of serotonin and its links to circadian rhythms within modern humans. Therefore, while overt
375 contributions to sleep and wake cycles because of archaic admixture are not found in genes

376 linked with serotonin in our adaptive introgression results reported here, underlying mechanisms
377 due to archaic admixture related to mood disorders and biological processes that are impacted by
378 both circadian rhythm oscillations and serotonin levels are evident in our results. However, we
379 also note extensive evidence of genes associated with immune function within our results,
380 making it unclear if the association with serotonin is the driving selection event in these regions
381 (see Gene association and function), or a combination of other processes.

382

383 **Significant GWAS associations**

384

385 Two SNPs within our core haplotypes have significant GWAS associations. The *DNAAF10* core
386 haplotype is found in the CDX at chr2:68342443-68503920 and did not display any signals of
387 positive selection (S4 Table). The intronic variant rs6757906 has previously been linked with
388 systolic blood pressure readings [84] (S5 Table) and is found within a gene described in the
389 CGDB [42] as having a circadian component (S2 Table). While rs6757906 was found in
390 frequencies over 60% in the Lahu population, it is seen predominantly in populations from the
391 Americas, East Asia, and South Asia at frequencies over 25% (S2 Table). This marker was only
392 seen at high frequencies in the Chagyrskaya dataset (S2 Table) and has the highest match rating
393 to the Chagyrskaya Neanderthal within the core haplotype (S4 Table). Within the CHB
394 population, the intronic variant rs66819621 overlaps a gene listed in the CGDB [42] and is
395 within the same segment as the *TLR1* core haplotype (S4 Table). The variant is found in
396 frequencies over 54% in the CHB population from the 1KGP but has worldwide allele
397 frequencies over 15% in many 1KGP and HGDP populations (S2 Table). The archaic donor

398 population for this region is non-specific as all three Neanderthal samples have similar
399 match/mismatch ratios (S4 Table). This variant has been previously associated with allergic
400 rhinitis by a study examining data from the UK Biobank [85] (S5 Table).

401

402 We identified three SNPs in our analysis that were also found at genome-wide significance in
403 GWAS studies focused on chronotype. The intronic variant rs72799142 is found in *LINC01470*
404 at elevated frequencies in the Brahui, Kalash, Makrani, and Sindhi populations (S2 Table). While
405 this variant has not been reported in prior analyses specifically discussing adaptive introgression
406 and chronotype phenotypes, the haplotypes presented in Jagoda *et al.* (2018) [86] do overlap
407 with rs72799142. Prior GWAS analysis linked this marker with being a morning person [39] (S5
408 Table). The variant rs723427 is found in the *LINC01933-ENSG00000286749* intergenic region
409 within the Surui at an allele frequency of 43.75% (S2 Table) and is also associated with being a
410 morning person according to GWAS analysis [39] (S5 Table). McArthur *et al.* (2021) [21]
411 previously identified a haplotype that overlapped rs723427 while Velazquez-Arcelay and
412 colleagues (2023) [26] identified this SNP as a non-circadian variant. On the segment
413 chr7:50426534-5089919, the intronic variant rs2190500 intersects *GRB10* in the Tu population.
414 This SNP has also been associated with morningness [87] (S5 Table), has been highlighted
415 previously within a gene published in the CGDB [42], and overlaps the published datasets of
416 many studies examining archaic introgression [7, 21, 26, 86, 88]. We would also like to highlight
417 that we found links between archaically inherited SNPs with genome-wide significant GWAS p-
418 values with a variety of other traits (S5 Table) but are outside of the focus of this paper.

419

420 **Gene association and function**

421 Some of the archaic variants intersecting circadian rhythm genes or showcasing circadian rhythm
422 or chronotype traits have multiple other associated effects. For instance, the segment
423 chr12:27534234-27967385 in the Cambodian population overlaps *MRPS35*, and the missense
424 variant rs1127787 was discussed as being significantly linked with chronotype by Dannemann
425 and Kelso (2017) [20] (S2 Table). However, the results from the GWAS Catalogue [43] show
426 links with blood protein levels [89], mitochondrial DNA copy number [90-91], and type-2
427 diabetes [92] (S5 Table). Our results illustrate clear pleiotropy in a number of these positions
428 (S5, S6 Tables). In this section we discuss briefly a few select association themes that are seen
429 repeatedly throughout our annotation results (S6 Table).

430

431 Several variants in our annotation results are associated with sleep phenotypes. Variants within
432 *ASB13*, *DAPK1*, *MIR378A*, *PPARGC1B*, and *SALL2* have all been previously tied to narcolepsy
433 [93-94] (S6 Table). Within these, there is evidence of regional associations as the genes and trait
434 loci, except *ASB13* found at high frequencies in Oceanic groups, are predominantly found within
435 American populations (S3 Table). One variant, rs144380014 overlapping *PTCH1*, found only in
436 the Melanesians, Papuans, and Naxi, (S3 Table) has associations with obstructive sleep apnea
437 (S6 Table) in American populations [95]. Two genes, *GRB10* and *TLR1*, show evidence of
438 generalised sleep phenotypes [96] (S6 Table), where variants associated with these genes are
439 dispersed more generally throughout our sample populations (S3 Table). Interestingly, both
440 genes have been associated previously with Neanderthal introgression regarding immunity-
441 linked haplotypes [17, 21].

442

443 Links between circadian rhythm oscillations and immune function have been described
444 previously [35-37]. In our analysis, we identified 57 genes with annotations describing immune
445 function (S6 Table), which is over 25% of the genes found in our entire maximum allele
446 frequency dataset (S2 Table). Six of these genes, *CCR9*, *CHST11*, *GLP1R*, *JAK1*, *KCNH7*, and
447 *TLR1* were identified as core haplotypes, where all of them except *CHST11* and *GLP1R* had
448 evidence of positive selection (S4 Table). All these genes have been linked with multiple traits
449 (S6 Table) and have also been described previously in relation to archaic introgression [17, 97-
450 103]. For example, a *CCR9* haplotype introgressed from Neanderthals conferred a susceptibility
451 to severe COVID-19 [104], while *JAK1* has been identified with a host of other immune-
452 response genes due to archaic admixture [105].

453

454 The connection between circadian rhythm and mental health disorders such as schizophrenia and
455 bipolar disorder have been discussed before [74, 106]. Previous research found enrichment for
456 schizophrenia-associated loci in Neanderthal-introgressed regions [23], however, this association
457 has been contested when two recent studies described they found no such connection [21, 25].
458 Our results highlight 46 genes and two intergenic regions that have associations with
459 schizophrenia (S6 Table). Five of these genes are found in our core haplotypes, and include
460 *AMIGO2*, *CHST11*, *DNM1L*, *ENSG00000257643*, and *TSPAN11*, of which, only *AMIGO2*
461 shows evidence of positive selection (S4 Table). Our maximum archaic alleles in *AMIGO2*
462 (rs142658135), *DNM1L* (rs190280601), and *TSPAN11* (rs2241322 and rs76693329) have been
463 associated with schizophrenia and bipolar disorder [69] (S6 Table). We found that four genes in
464 our analysis were linked with depression (*GAD1*, *COX6CP1*, *ENSG00000275666*, and *KCNQ1*)

465 [107-108], although none of these were core haplotypes. We also detect instances of other
466 complex traits within our analysis, that include, but are not limited to, multiple sclerosis,
467 Parkinson's disease, amyotrophic lateral sclerosis (ALS/Lou Gehrig's Disease), and Alzheimer's
468 (S6 Table). However, discussions regarding these are outside of the scope of this paper. Despite
469 some contention previously regarding the archaically derived nature of some complex traits as
470 noted above, our results show clear elevated allele frequencies at variants associated with these
471 traits across multiple loci (S6 Table), where further research may clarify the extent of these
472 connections.

473

474 **Limitations**

475

476 Our study has several limitations. First, is that SPrime's accuracy drops when a population has
477 less than 15 samples for analysis [7]. This is unfortunately the case for many of the populations
478 within the HGDP sample set. A consequence of this is that some of our windows may represent
479 false positives. Additionally, due to the small sample size, elevated allele frequencies at many
480 variants within these populations are seen, where other geographically similar populations with
481 adequate sample sizes, such as in the 1KGP populations, do not show such high frequencies. We
482 detected several introgressed variants that are either at, or nearly at, fixation (allele frequencies =
483 100%) in our dataset (S2 Table). For example, rs16822674 (overlapping *U3*) and rs17051049
484 (overlapping intergenic region *GAPDHP56-ENSG00000280059*) in the Surui are both fixed (S2
485 Table). However, these variants are also seen in populations with sample sizes over 15 and at
486 allele frequencies greater than the typical introgressed archaic background frequencies [109]

487 suggesting that the introgressed segment is correct. Further, these regions also passed our filters
488 regarding authenticating segments and reducing instances of false positives (Materials and
489 methods). It is possible that in some populations with small effective population sizes, such as
490 the Surui, the effect of drift has driven archaic alleles to very high frequencies. Overall, it is
491 important to be cautious about the interpretation of the archaic allele frequencies of some of the
492 HGDP samples due to their very small sample sizes. A second limitation is SPrime's masking of
493 modern human segments found in an African reference panel [7], which has been shown to limit
494 the detection power of archaic sequences in populations outside of the reference [88]. Therefore,
495 we may be removing variants that may have passed our filters due to being shared with our
496 reference population, the Yoruba in Ibadan, Nigeria (YRI). An extension of this is our filtering
497 thresholds were quite stringent. Since we were looking for signatures of adaptive introgression,
498 all the variants discussed here are common (40% or greater allele frequency), which means most
499 archaic alleles will fail this filtration step. On the one hand, we can clearly exhibit instances of
500 adaptive introgression regarding circadian rhythm and chronotype-associated variants in modern
501 humans due to admixture with archaic hominins, on the other hand, we also removed many other
502 very interesting segments worth exploring that may have elevated allele frequencies relative to
503 typical archaically-introgressed levels. Future analysis should explore these limitations to help
504 resolve some of the questions our results leave. These include utilising adequate sample sizes
505 from more diverse human populations, exploring the effects of software on the recovery of
506 segments with signals of adaptive introgression, investigating in detail serotonin and complex
507 trait relationships in modern humans due to archaic introgression, deeper research into latitude
508 clines in archaically derived regions, and lastly, examining variants with differing frequency
509 cutoffs to see if other interesting patterns may emerge.

510

511 **Conclusions**

512

513 Our paper has documented over 300 genes and intergenic segments that fall within 265
514 independent windows within global non-African populations. Many of these gene and intergenic
515 segments have been described in prior studies discussing either adaptive introgression into
516 modern humans from archaic populations or in relation to circadian rhythm and chronotype
517 phenotypes in modern humans due to archaic introgression, confirming our results. We were able
518 to expand on these previous analyses by investigating the extent of adaptive introgression within
519 circadian rhythm- and chronotype-associated genomic regions within 76 worldwide populations,
520 where previous studies have focused mostly on Eurasian populations from the 1KGP. Many of
521 our reported genes show well documented signatures of introgression from archaic samples into
522 modern humans, including an abundance of immunity-associated loci, complex traits including
523 schizophrenia and bipolar disorder, and sleep associated phenotypes. Our results show clear
524 pleiotropy, and we report in some instances the first time these regions have been described in
525 relation with circadian rhythms and archaic introgression. Within these regions, we identified
526 over 1,700 variants that have allele frequencies of at least 40%, and are directly matched to an
527 archaic allele, of which, 37 genome-wide significant SNPs based on GWAS analysis were found
528 in our dataset. Three of these GWAS variants were found to influence chronotype and the
529 likelihood of being a morning person. In addition to these, we note that many of these significant
530 variants were found to influence health-specific phenotypes.

531

532 We explored in detail 36 regions that we consider to be core haplotypes based on the highest
533 allele frequency variants within these introgressed regions matching archaic alleles, having allele
534 frequencies greater than or equal to 40%, and directly matching or falling within a region
535 previously described as being associated with circadian rhythm or chronotype. From these, we
536 found that 17 of these segments displayed evidence of positive selection within modern human
537 populations, with three of these segments having evidence of positive selection in windows
538 within 5% of the maximum archaic allele frequency variant, providing leverage to the idea that
539 these specific regions were direct targets of adaptive introgression. We did not find definitive
540 evidence of latitude-based clines within our core haplotype regions, instead finding clearer
541 signals that these regions cluster more closely based on geographic similarities and previously
542 described archaic ancestry patterns.

543

544 This study significantly advances our understanding of how archaic introgression has influenced
545 modern human circadian rhythms and sleep patterns. By identifying a broad array of introgressed
546 genes and intergenic segments linked to circadian functions across diverse global populations,
547 we provide new insights into the evolutionary pressures that shaped these traits. The clear
548 evidence of positive selection in several of these regions underscores their adaptive value. Yet,
549 this work also suggests future, hypothesis driven work is needed to disentangle the role clinal
550 adaptation has played in the evolution of circadian rhythms in the human lineage. This research
551 paves the way for future studies to explore the intricate connections between circadian rhythms,
552 mental health, and immune function, potentially leading to innovative approaches in
553 chronomedicine and personalised healthcare.

554

555 Materials and methods

556

557 Modern human, Neanderthal, and Denisovan VCF files

558

559 Our modern human samples came from the previously published, phased gnomAD 1KGP +
560 HGDP callset [41]. This unique dataset compiles the high-resolution data from the Human
561 Genome Diversity Project (n=51 populations) and 1000 Genomes Project (n=25 populations) all
562 mapped to GRCh38 (hg38) coordinates. Following the SPrime protocol [52], we used the YRI
563 population from the 1KGP (n=108) as the outgroup for our analyses and combined them with
564 each target population. We removed any non-biallelic SNPs using BCFtools v1.13 [110]. We
565 updated all known variant IDs using the dbSNP database [111] annotation files for matching
566 abilities in downstream analyses. Any variants with blank IDs were manually tagged with the
567 chromosome:position:reference_alternative naming convention (i.e. chr1:15364:G_A). The
568 archaic VCFs and their associated mask files were downloaded from the hosting sites listed in
569 their publications. Duplicated variants were removed using PLINK2 [112].

570

571 Introgression identification and matching to archaic sequences

572

573 To identify variants that are likely due to admixture between archaic hominins and modern
574 humans, we used SPrime [7] with all recommended settings according to the original paper.

575 SPrime is an archaic-reference-free software that uses a scoring parameter to identify segments
576 in modern humans considered to be introgressed from archaic hominins. These segments are kept
577 by the software if they are above the recommended scoring threshold of 150,000 [7]. Because the
578 modern human genomes are mapped to hg38 coordinates and the Neanderthal and Denisovan
579 genomes are mapped to GRCh37 (hg19), we lifted over the SPrime output files using the UCSC
580 LiftOver Linux executable [113] to hg19. To ensure that the LiftOver [113] had not mapped any
581 variants incorrectly, we discarded any variants that had jumped chromosomes. We used a
582 secondary software, map_arch [52], to match our results to the archaic alleles. This software
583 takes the SPrime output file, an archaic VCF, and the associated archaic mask file to create a
584 new file showcasing whether the modern human variant identified by SPrime matches,
585 mismatches, or is not comparable with the archaic genome of interest. Next, we used BCFtools
586 [110] to generate allele frequencies for each of the modern human populations and merged these
587 with our output using the dplyr package [114] in R [54]. We extracted the putatively introgressed
588 segments identified in our analysis from each population, combined them together with
589 populations from the same region according to the gnomAD sample metatable, and reduced them
590 to the minimum number of non-overlapping segments using the GenomicRanges package v3.19
591 [115] in R [54].

592

593 **Chronotype and circadian rhythm datasets**

594

595 We were interested in identifying if regions associated with circadian rhythm and chronotype in
596 modern humans had any signatures of introgression from archaic hominins. Our analysis focused

597 on compiling genes and variants linked with circadian rhythm or chronotype expression from
598 previously reported datasets to test for these signatures. The CGDB contains over 70,000
599 circadian related genes identified in eukaryotic organisms [42]. We downloaded the genes found
600 on modern human autosomes (n=1,236) from the CGDB [42] along with variants and
601 introgressed segments published by Dannemann & Kelso (2017) [20], McArthur et al. (2021)
602 [21], Dannemann et al. (2022) [25], and Velazquez-Arcelay et al. (2023) [26], all of which
603 connected with circadian rhythms and chronotype expression because of archaic introgression.
604 Additionally, we extracted all hits from the NHGRI-EBI GWAS Catalogue [43] associated with
605 chronotype, circadian rhythm, or sleep phenotypes that had reached genome-wide significant p-
606 values of $p=5\times10^{-8}$ or less. Since some studies will report windows suggestive of introgressed
607 haplotypes, and others focus on just reporting variants, we opted to normalise our analysis by
608 extracting either previously reported variants or variants found within previously described
609 windows. Additionally, since some studies used in our analyses use different genome builds
610 (hg19 vs. hg38), we report all our results in hg19 format to match that of the archaic samples.
611 We extracted these variants from our results by matching the variant rsIDs using the dplyr
612 package [114] in R [54].

613

614 **Adaptive introgression, core haplotypes, and candidates of positive
615 selection**

616

617 We were interested in identifying if any archaic variants present in the modern human genome
618 were brought to elevated frequencies due to adaptive introgression, focusing on circadian rhythm

619 or chronotype-associated genes. SPrime is sensitive enough to detect adaptive introgression in
620 the human genome [7]. To test for this, we followed Browning and colleagues (2018)
621 recommendations of selecting identified archaic segments that have 30 or more markers in the
622 identified segment and have a match/mismatch ratio (number of matches divided by the total
623 number of matches and mismatches) of >50% for the Neanderthals and >40% for the Denisovan
624 [7]. After filtering out segments that failed this step, we used SnpEff [116] to annotate our VCFs
625 and then merged this information with our population files using the rsIDs. Next, we used
626 BEDTools [117] to intersect our population files with every other population to identify regional
627 signatures and repeated this for each population for each archaic.

628

629 Browning and colleagues (2018) [7] identified two highly probable regions of adaptive
630 introgression per population by first removing all variants with frequencies below 30% followed
631 by additionally removing variants with allele frequencies 20% or more below the maximum
632 allele frequency per segment. We applied a similar methodology, but wanted to identify possible
633 targets of adaptive introgression in each modern human autosome that were related to circadian
634 rhythm or chronotype. For each modern human population, we took our intersected population
635 file and removed any putative archaic variants with allele frequencies below 40%. Next, we
636 identified the archaic variant with the maximum archaic allele frequency per segment. Following
637 this we then removed all variants with archaic allele frequencies more than 5% below the
638 maximum archaic allele frequency directly upstream and downstream of that variant. We
639 repeated this analysis for all variants that were both the maximum frequency archaic variant in
640 their respective segment, had an allele frequency of at least 0.40, matched the archaic allele, and
641 were either previously linked with circadian rhythm or chronotype expression or overlapped

642 segments suggesting these signatures. This allowed us to identify what we believe are core
643 haplotypes introgressed from archaic populations. Due to oftentimes small sample size and the
644 effects of drift, we focused our analysis of the core haplotypes from the 1KGP populations only,
645 along with the Papuan and Melanesian samples from the HGDP, to test for signatures of
646 Denisovan ancestry. To give additional weight to our analysis, we also used RAiSD [55] with
647 standard input parameters to detect evidence of positive selection within the population-specific
648 segment containing a core haplotype. Variants determined to be in positive selection were those
649 at the top 0.5% threshold for that chromosome, as suggested by the RAiSD documentation [55].

650

651 **Archaic donor populations**

652

653 The ratio of the number of matches and mismatches can be compared to identify whether
654 introgressed segments are from Neanderthals or Denisovans [7, 52]. We tested for this by taking
655 segments with 30 or more variants where segments that are believed to be of Neanderthal affinity
656 will have match/mismatch ratios greater than 60% to a Neanderthal sample coinciding with a
657 match/mismatch ratio below 40% for the Denisovan [7]. Similarly, segments likely of Denisovan
658 origin will have a match/mismatch ratio more than 40% to the Denisovan and below 30% with
659 the Neanderthals [7]. We first excluded segments that did not pass our adaptive introgression
660 thresholds for each population relative to each archaic sample, and then identified which of these
661 segments are clearly introgressed from one archaic sample relative to the others. When a
662 segment passed the donor thresholds and had a segment match/mismatch ratio more than 5%
663 higher relative to the other three archaic samples, we inferred that the putative archaic donor is

664 closest to that archaic population. If the match/mismatch ratio is within 5% relative to the other
665 archaic samples, we consider that to be inconclusive and is of archaic affinity generally. We
666 applied these calculations to our core haplotypes. To visualise these affinities, we generated
667 contour plots based on the scripts provided by Zhou and Browning (2021) [52] in R [54] using
668 the kde2d function from MASS [58] for core haplotypes with evidence of positive selection.

669

670 **Gene and Variant Phenotype Associations**

671

672 For all genes described in our results we attempted to attribute a phenotypic association. Variant
673 analysis was done using the GRCh37 search in SNPnexus [59-60] and in VEP for the GRCh37
674 Release 112 [61]. Gene ontology information was compiled from the GO Consortium data [81-
675 82] on genes downloaded from BioMart in the GRCh37 Release 112 [61].

676
677
678
679
680
681

682 **References**

683 1. Green RE, Krause J, Briggs AW, Marcic T, Stenzel U, Kircher M, et al. A draft sequence
684 of the Neandertal genome. *Science*. 2010; 328(5979): 710-722. doi:
685 10.1126/science.1188021

686 2. Reich D, Green RE, Kircher M, Krause J, Patterson N, Durand EY, et al. Genetic history
687 of an archaic hominin group from Denisova Cave in Siberia. *Nature*. 2010; 468(7327):
688 1053-1060. doi: 10.1038/nature09710

689 3. Prüfer K, Racimo F, Patterson N, Jay F, Sankararaman S, Sawyer S, et al. The complete
690 genome sequence of a Neanderthal from the Altai Mountains. *Nature*. 2014; 505(7481).
691 43-49. doi: 10.1038/nature12886.

692 4. Vernot B, Akey JM. Resurrecting surviving Neandertal lineages from modern human
693 genomes. *Science*. 2014; 343(6174). 1017-1021. doi: 10.1126/science.1245938

694 5. Vernot B, Akey JM. Complex history of admixture between modern humans and
695 Neandertals. *Am J Hum Genet*. 2015; 96(3). 448-453. doi: 10.1016/j.ajhg.2015.01.006

696 6. Kuhlwilm M, Gronau I, Hubisz MJ, de Filippo C, Prado-Martinez J, Kircher M, et al.
697 Ancient gene flow from early modern humans into Eastern Neanderthals. *Nature*. 2016;
698 530(7591). 429-433. doi: 10.1038/nature16544

699 7. Browning SR, Browning BL, Zhou Y, Tucci S, Akey JM. Analysis of human sequence
700 data reveals two pulses of archaic Denisovan admixture. *Cell*. 2018; 173(1). 53-61. doi:
701 10.1016/j.cell.2018.02.031

702 8. Jacobs GS, Hudjashov G, Saag L, Kusuma P, Darusallam C, Lawson DJ, et al. Multiple
703 deeply divergent Denisovan ancestries in Papuans. *Cell*. 2019; 177(4). 1010-1021. doi:
704 10.1016/j.cell.2019.02.035

705 9. Villanea FA, Schraiber JG. Multiple episodes of interbreeding between Neanderthals and
706 modern humans. *Nat Ecol Evol*. 2019; 3(1). 39-44. doi: 10.1038/s41559-018-0735-8

707 10. Li L, Comi TJ, Bierman RF, Akey JM. Recurrent gene flow between Neanderthals and
708 modern humans over the past 200,000 years. *Science*. 2024; 385(6705). eadi1768. doi:
709 10.1126/science.ad1768

710 11. Qin P, Stoneking M. Denisovan ancestry in East Eurasian and Native American
711 Populations. *Mol Biol Evol*. 2015; 32(10). 2665-2674. doi: 10.1093/molbev/msv141

712 12. Sankararaman S, Mallick S, Patterson N, Reich D. The combined landscape of Denisovan
713 and Neanderthal ancestry in present-day humans. *Curr Biol*. 2016; 26(9). 1241-1247. doi:
714 10.1016/j.cub.2016.03.037

715 13. Skov L, Hui R, Shchur V, Hobolth A, Scally A, Schierup MH, et al. Detecting archaic
716 introgression using an unadmixed outgroup. *PLoS Genet*. 2018; 14(9). e1007641. doi:
717 10.1371/journal.pgen.1007641

718 14. Huerta-Sánchez E, Jin X, Asan, Bianba Z, Peter BM, Vinckenbosch N, et al. Altitude
719 adaptation in Tibetans caused by introgression of Denisovan-like DNA. *Nature*. 2014;
720 512(7513). 194-197. doi: 10.1038/nature13408

721 15. Abi-Rached L, Jobin MJ, Kulkarni S, McWhinnie A, Dalva K, Gragert L, et al. The
722 shaping of modern human immune systems by multiregional admixture with archaic
723 humans. *Science*. 2011; 334(6052). 89-94. doi: 10.1126/science.1209202

724 16. Racimo F, Sankararaman S, Nielsen R, Huerta-Sánchez E. Evidence for archaic adaptive
725 introgression in humans. *Nat Rev Genet*. 2015; 16(6). 359-371. doi: 10.1038/nrg3936

726 17. Dannemann M, Andrés AM, Kelso J. Introgression of Neandertal- and Denisovan-like
727 haplotypes contributes to adaptive variation in human toll-like receptors. *Am J Hum
728 Genet*. 2016; 98(1). 22-33. doi: 10.1016/j.ajhg.2015.11.015

729 18. Vespasiani DM, Jacobs GS, Cook LE, Brucato N, Leavesley M, Kinipi C, et al.
730 Denisovan introgression has shaped the immune system of present-day Papuans. *PLoS*
731 *Genet.* 2022; 18(12). e1010470. doi: 10.1371/journal.pgen.1010470

732 19. Sankararaman S, Mallick S, Dannemann M, Prüfer K, Kelso J, Pääbo S, et al. The
733 genomic landscape of Neanderthal ancestry in present-day humans. *Nature*. 2014;
734 507(7492). 354-357. doi: 10.1038/nature12961

735 20. Dannemann M, Kelso J. The contribution of Neanderthals to phenotypic variation in
736 modern humans. *Am J Hum Genet.* 2017; 101(4). 578-589. doi:
737 10.1016/j.ajhg.2017.09.010

738 21. McArthur E, Rinker DC, Capra JA. Quantifying the contribution of Neanderthal
739 introgression to the heritability of complex traits. *Nat Commun.* 2021; 12(1). 4481. doi:
740 10.1038/s41467-021-24582-y

741 22. The SIGMA Type 2 Diabetes Consortium; Williams AL, Jacobs SB, Moreno-Macías H,
742 Huerta-Chagoya A, Churchhouse C, et al. Sequence variants in SLC16A11 are a common
743 risk factor for type 2 diabetes in Mexico. *Nature*. 2013; 506(7486). 97-101. doi:
744 10.1038/nature12828

745 23. Srinivasan S, Bettella F, Mattingsdal M, Wang Y, Witoelar A, Schork AJ, et al. Genetic
746 markers of human evolution are enriched in schizophrenia. *Biol Psychiat.* 2016; 80(4).
747 284-292. doi: 10.1016/j.biopsych.2015.10.009

748 24. Putilov AA, Dorokhov VB, Puchkova AN, Arsenyev GN, Sveshnikov DS. Genetic-based
749 signatures of the latitudinal differences in chronotype. *Biol Rhythm Res.* 2019; 50(2).
750 255-271. doi: 10.1080/09291016.2018.1465249

751 25. Dannemann M, Milaneschi Y, Yermakovich D, Stiglbauer V, Kariis HM, Krebs K, et al.
752 Neanderthal introgression partitions the genetic landscape of neuropsychiatric disorders
753 and associated behavioral phenotypes. *Transl Psychiatry*. 2022; 12(1). 433. doi:
754 10.1038/s41398-022-02196-2

755 26. Velazquez-Arcelay K, Colbran LL, McArthur E, Brand CM, Rinker DC, Siemann JK,
756 McMahon DG, & Capra JA. Archaic introgression shaped human circadian traits.
757 *Genome Biol Evol*. 2023; 15(12). evad203. doi: 10.1101/2023.02.03.527061

758 27. Archer SN, Oster H. How sleep and wakefulness influence circadian rhythmicity: effects
759 of insufficient and mistimed sleep on the animal and human transcriptome. *J Sleep Res*.
760 2015; 24(5). 476-493. doi: 10.1111/jsr.12307

761 28. Moore RY, Eichler VB. Loss of a circadian adrenal corticosterone rhythm following
762 suprachiasmatic lesions in the rat. *Brain Res*. 1972; 42(1). 201-206. doi: 10.1016/0006-
763 8993(72)90054-6

764 29. Dijk DJ, Czeisler CA. Contribution of the circadian pacemaker and the sleep homeostasis
765 to sleep propensity, sleep structure, electroencephalographic slow waves, and sleep
766 spindle activity in humans. *J Neurosci*. 1995; 15(5). 3526-2538. doi:
767 10.1523/jneurosci.15-05-03526.1995

768 30. Achermann P, Borbély AA. Mathematical models of sleep regulation. *Front Biosci*
769 (Landmark Ed). 2003; 8(6). 683-693. doi: <https://doi.org/10.2741/1064>

770 31. Saper CB, Scammell TE, Lu J. Hypothalamic regulation of sleep and circadian rhythms.
771 *Nature*. 2005; 437(7063). 1257-1263. doi: 10.1038/nature04284

772 32. Kalmbach DA, Schneider LD, Cheung J, Bertrand SJ, Kariharan T, Pack A, et al. Genetic
773 basis of chronotype in humans: insights from three landmark GWAS. *Sleep*. 2017; 40(2).
774 1-10 (zsw048). doi: 10.1093/sleep/zsw048

775 33. Voigt RM, Forsyth CB, Keshavarzian A. Circadian rhythms: a regulator of
776 gastrointestinal health and dysfunction. *Expert Rev Gastroenterol Hepatol*. 2019; 13(5).
777 411-424. doi: 10.1080/17474124.2019.1595588

778 34. Segers A, Depoortere I. Circadian clocks in the digestive system. *Nat Rev Gastroenterol
779 Hepatol*. 2021; 18(4). 239-251. doi: 10.1038/s41575-020-00401-5

780 35. Scheiermann C, Kunisaki Y, Frenette PS. Circadian control of the immune system. *Nat
781 Rev Immunol*. 2013; 13(3). 190-198. doi: 10.1038/nri3386

782 36. Haspel JA, Anafi R, Brown MK, Cermakian N, Depner C, Desplats P, et al. Perfect
783 timing: circadian rhythms, sleep, and immunity – an NIH workshop summary. *JCI
784 Insight*. 2020; 5(1). e131487. doi: 10.1172/jci.insight.131487

785 37. Zeng Y, Guo Z, Wu M, Chen F, Chen L. Circadian rhythm regulates the function of
786 immune cells and participates in the development of tumours. *Cell Death Discov*. 2024;
787 10(1). 199. doi: 10.1038/s41420-024-01960-1

788 38. Roenneberg T, Kuehnle T, Juda M, Kantermann T, Allebrandt K, Gordijn M, et al.
789 Epidemiology of the human circadian clock. *Sleep Med Rev*. 2007; 11(6). 429-438. doi:
790 10.1016/j.smrv.2007.07.005

791 39. Jones SE, Lane JM, Wood AR, van Hees VT, Tyrrell J, Beaumont RN, et al. Genome-
792 wide association analyses of chronotype in 697,828 individuals provides insights into
793 circadian rhythms. *Nat Commun*. 2019; 10(1). 343. doi: 10.1038/s41467-018-08259-7

794 40. Burns AC, Phillips AJK, Rutter MK, Saxena R, Cain SW, Lane JM. Genome-wide gene
795 by environment study of time spent in daylight and chronotype identifies emerging
796 genetic architecture underlying light sensitivity. *Sleep*. 2023; 46(3). zsac287. doi:
797 10.1093/sleep/zsac287

798 41. Koenig Z, Yohannes MT, Nkambule LL, Zhao, X., Goodrich JK, Kim HA, et al. A
799 harmonized public resource of deeply sequenced diverse human genomes. *Genome Res.*
800 2024; 34(5). 796-809. doi: 10.1101/2023.01.23.525248

801 42. Li S, Shui K, Zhang Y, Lv Y, Deng W, Ullah S, et al. CGDB: a database of circadian
802 genes in eukaryotes. *Nucleic Acids Res.* 2017; 45(D1). D397-D403. doi:
803 10.1093/nar/gkw1028

804 43. Sollis E, Mosaku A, Abid A, Buniello A, Cerezo M, Gil L, et al. The NHGRI-EBI
805 GWAS Catalog: knowledgebase and deposition resource. *Nucleic Acids Res.* 2023;
806 51(D1). D977-D985. doi: 10.1093/nar/gkac1010

807 44. Prüfer K, de Filippo C, Grote S, Mafessoni F, Korlević P, Hajdinjak M, et al. A high-
808 coverage Neandertal genome from Vindija Cave in Croatia. *Science*. 2017;
809 358(6363):655-658. doi: 10.1126/science.aoa1887

810 45. Mafessoni F, Grote S, de Filippo C, Slon V, Kolobova KA, Viola B, et al. A high-
811 coverage Neandertal genome from Chagyrskaya Cave. *Proc Natl Acad Sci U S A*. 2020;
812 117(26). 15132-15136. doi: 10.1073/pnas.2004944117

813 46. Leocadio-Miguel MA, Louzada FM, Duarte LL, Peixoto Areas R, Alam M, Ventura
814 Freire M, et al. Latitudinal cline of chronotype. *Sci Rep*. 2017; 7(1). 5437. doi:
815 10.1038/s41598-017-05797-w

816 47. Randler C, Rahafar A. Latitude effects morningness-eveningness: evidence for the
817 environment hypothesis based on a systematic review. *Sci Rep.* 2017; 7. 39976. doi:
818 10.1038/srep39976

819 48. Chen F, Welker F, Shen C-C, Bailey SE, Bergmann I, Davis S, et al. A late Middle
820 Pleistocene Denisovan mandible from the Tibetan Plateau. *Nature.* 2019; 569(7756). 409-
821 412. doi: 10.1038/s41586-019-1139-x

822 49. Demeter F, Zanolli C, Westaway KE, Joannes-Boyau R, Duringer P, Morley MM, et al.
823 A Middle Pleistocene Denisovan molar from the Annamite Chain of northern Laos. *Nat
824 Commun.* 2022; 13(1). 2557. doi: 10.1038/s41467-022-29923-z

825 50. Yaworsky PM, Nielsen ES, Nielsen TK. The Neanderthal niche space of Western Eurasia
826 145 ka to 30 ka ago. *Sci Rep.* 2024; 14(1). 7788. doi: 10.1038/s41598-024-57490-4

827 51. Bertoldi M. Mammalian Dopa decarboxylase: structure, catalytic activity and inhibition.
828 *Arch Biochem Biophys.* 2014; 546. 1-7. doi: 10.1016/j.abb.2013.12.020

829 52. Zhou Y, Browning SR. Protocol for detecting introgressed archaic variants with SPrime.
830 *STAR Protoc.* 2021; 2(2). 100550. doi: 10.1016/j.xpro.2021.100550

831 53. Wickham, H. *ggplot2: Elegant graphics for data analysis.* Springer-Verlag New York;
832 2016.

833 54. R Core Team. *R: A language and environment for statistical computing. Version 4.1.2*
834 [software]. 2023. Available from: <https://www.R-project.org>

835 55. Alachiotis N, Pavlidis P. RAiSD detects positive selection based on multiple signatures
836 of a selective sweep and SNP vectors. *Commun Biol.* 2018; 1:79. doi: 10.1038/s42003-
837 018-0085-8

838 56. Leigh JW, Bryant D. PopART: full-feature software for haplotype network construction.
839 Methods Ecol Evol. 2015; 6(9). 1110-1116. doi: 10.1111/2041-210X.12410

840 57. Speidel L, Forest M, Shi S, Myers SR. A method for genome-wide genealogy estimation
841 for thousands of samples. Nat Genet. 2019; 51(9). 1321-1329. doi: 10.1038/s41588-019-
842 0484-x

843 58. Venables WN, Ripley BD. Modern applied statistics with S, 4th ed. Springer, New York;
844 2002.

845 59. Chelala C, Khan A, Lemoine NR. SNPnexus: a web database for functional annotation of
846 newly discovered and public domain single nucleotide polymorphisms. Bioinformatics.
847 2009; 25(5). 655-661. doi: 10.1093/bioinformatics/btn653

848 60. Oscanoa J, Sivapalan L, Gadaleta E, Dayem Ullah AZ, Lemoine NR, Chelala C.
849 SNPnexus: a web server for functional annotation of human genome sequence variation
850 (2020 update). Nucleic Acids Res. 2020; 48(W1). W185-W192. doi:
851 10.1093/nar/gkaa420

852 61. Harrison PW, Amode MR, Austine-Orimoloye O, Azov AG, Barba M, Barnes I, et al.
853 Ensembl 2024. Nucleic Acids Res. 2024; 52(D1). D891-D899. doi:
854 10.1093/nar/gkad1049

855 62. Hut RA, Paolucci S, Dor R, Kyriacou CP, Daan S. Latitudinal clines: an evolutionary
856 view on biological rhythms. Proc Biol Sci. 2013; 280(1765). 20130433. doi:
857 10.1098/rspb.2013.0433

858 63. Bertolini E, Schubert FK, Zanini D, Sehadová H, Helfrich-Förster C, Menegazzi P. Life
859 at high latitudes does not require circadian behavioural rhythmicity under constant
860 darkness. Curr Biol. 2019; 29(22). 3928-3926.e3. doi: 10.1016/j.cub.2019.09.032

861 64. Muranaka T, Ito S, Kudoh H, Oyama T. Circadian-period variation underlies the local
862 adaptation of photoperiodism in the short-day plant *Lemna aequinoctialis*. iScience.
863 2022; 25(7). 104634. doi: 10.1016/j.isci.2022.104634

864 65. Massicotte P, South A. rnaturalearth. Version 1.0.1.9000 [software]. 2024. Available
865 from: <https://docs.ropensci.org/rnaturalearth/>

866 66. Pebesma E. Simple features for R: standardized support for spatial vector data. The R
867 Journal. 2018; 10(1). 439-446. doi: 10.32614/RJ-2018-009

868 67. Pebesma R, Bivand R. Spatial data science: With applications in R. 1st ed. Chapman and
869 Hall/CRC; 2023. doi: 10.1201/9780429459016

870 68. Stelzer G, Rosen N, Plaschkes I, Zimmerman S, Twik M, Fishilevich S, et al. The
871 GeneCards suite: from gene data mining to disease genome sequence analyses. Curr
872 Protoc Bioinformatics. 2016; 54. 1.30.1-1.30.33. doi: 10.1002/cpbi.5

873 69. Miller CL, Murakami P, Ruczinski I, Ross RG, Sinkus M, Sullivan B, et al. Two complex
874 genotypes relevant to the kynurenone pathway and melanotropin function show
875 association with schizophrenia and bipolar disorder. Schizophr Res. 2009; 113(2-3). 259-
876 267. doi: 10.1016/j.schres.2009.05.014

877 70. Trynka G, Zhernakova A, Romanos J, Franke L, Hunt KA, Turner G, et al. Coeliac
878 disease-associated risk variants in TNFAIP3 and REL implicate altered NF-κappaB
879 signalling. Gut. 2009; 58(8). 1078-1083. doi: 10.1136/gut.2008.169052

880 71. Yang Q, Kathiresan S, Lin J-P, Tofler GH, O'Donnell CJ. Genome-wide association and
881 linkage analysis of hemostatic factors and hematological phenotypes in the Framingham
882 Heart Study. BMC Med Genet. 2007; 8 Suppl 1(Suppl 1). S12. doi: 10.1186/1471-2350-
883 8-s1-s12

884 72. Oquendo MA, Hastings RS, Huang Y-Y, Simpson N, Ogden RT, Hu X-Z, et al. Brain
885 serotonin transporter binding in depressed patients with bipolar disorder using positron
886 emission tomography. *Arch Gen Psychiatry*. 2007; 64(2). 201-208. doi:
887 10.1001/archpsyc.64.2.201

888 73. Cheah S-Y, Lawford BR, Young RM, Morris CP, Voisey J. mRNA expression and DNA
889 methylation analysis of serotonin receptor 2A (HTR2A) in the human schizophrenic
890 brain. *Genes (Basel)*. 2017; 8(1). 14. doi: 10.3390/genes8010014

891 74. Walker II WH, Walton JC, DeVries AC, Nelson RJ. Circadian rhythm disruption and
892 mental health. *Transl Psychiatry*. 2020; 10(1). 28. doi: 10.1038/s41398-020-0694-0

893 75. Dehhaghi M, Panahi HKS, Guillemin GJ. Microorganisms, tryptophan metabolism, and
894 kynurenone pathways: a complex interconnected loop influencing human health status. *Int
895 J Tryptophan Res.* 2019; 12. 1178646919852996. doi: 10.1177/1178646919852996

896 76. Coleman NS, Foley S, Dunlop SP, Wheatcroft J, Blackshaw E, Perkins AC, et al.
897 Abnormalities of serotonin metabolism and their relation to symptoms in untreated celiac
898 disease. *Clin Gastroenterol Hepatol.* 2006; 4(7). 874-871. doi: 10.1016/j.cgh.2006.04.017

899 77. Alkhiari R. Psychiatric and neurological manifestations of celiac disease in adults.
900 *Cureus*. 2023; 15(3). e35712. doi: 10.7759/cureus.35712

901 78. Amireault P, Hatia S, Bayard E, Bernex F, Collet C, Callebert, J, et al. Ineffective
902 erythropoiesis with reduced red blood cell survival in serotonin-deficient mice. *Proc Natl
903 Acad Sci U S A.* 2011; 108(32). 13141-13146. doi: 10.1073/pnas.1103964108

904 79. O'Neill JS, Reddy AB. Circadian clocks in human red blood cells. *Nature*. 2011;
905 469(7331). 498-503. doi: 10.1038/nature09702

906 80. Wysokiński A, Szczepocka E. Red blood cells parameters in patients with acute
907 schizophrenia, unipolar depression, and bipolar disorder. *Psychiatr Danub.* 2018; 30(3).
908 323-330. doi: 10.24869/psyd.2018.323

909 81. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, et al. Gene ontology:
910 tool for the unification of biology. *The Gene Ontology Consortium.* *Nat Genet.* 2000;
911 25(1). 25-29. doi: 10.1038/75556

912 82. Gene Ontology Consortium; Aleksander SA, Balhoff J, Carbon S, Cherry JM, Drabkin,
913 HJ, et al. The Gene Ontology knowledgebase in 2023. *Genetics.* 2023; 224(1). iyad031.
914 doi: 10.1093/genetics/iyad031

915 83. Hamblin MW, Metcalf MA, McGuffin RW, Karpells S. Molecular cloning and functional
916 characterization of a human 5-HT1B serotonin receptor: a homologue of the rat 5-HT1B
917 receptor with F-HT1D-like pharmacological specificity. *Biochem Biophys Res Commun.*
918 1992; 184(2). 752-759. doi: 10.1016/0006-291X(92)90654-4

919 84. Kichaev G, Bhatia G, Loh P-R, Gazal S, Burch K, Freund MK, et al. Leveraging
920 polygenic functional enrichment to improve GWAS power. *Am J Hum Genet.* 2019;
921 104(1). 65-75. doi: 10.1016/j.ajhg.2018.11.008

922 85. Johansson Å, Rask-Andersen M, Karlsson T, Weronica EE. Genome-wide association
923 analysis of 350 000 caucasians from the UK Biobank identifies novel loci for asthma, hay
924 fever and eczema. *Hum Mol Genet.* 2019; 28(23). 4022-4041. doi: 10.1093/hmg/ddz175

925 86. Jagoda E, Lawson DJ, Wall JD, Lamber D, Muller C, Westaway M, et al. Disentangling
926 immediate adaptive introgression from selection on standing introgressed variation in
927 humans. *Mol Biol Evol.* 2018; 35(3). 623-630. doi: 10.1093/molbev/msx314

928 87. Jansen PR, Watanabe K, Stringer S, Skene N, Bryois J, Hammerschlag AR, et al.
929 Genome-wide analysis of insomnia in 1,331,010 individuals identifies new risk loci and
930 functional pathways. *Nat Genet.* 2019; 51(3). 394-403. doi: 10.1038/s41588-018-0333-3

931 88. Chen L, Wolf AB, Fu W, Li L, Akey JM. Identifying and interpreting apparent
932 Neanderthal ancestry in African individuals. *Cell.* 2020; 180(4). 677-687. doi:
933 10.1016/j.cell.2020.01.012

934 89. Suhre K. Genetic associations with ratios between protein levels detect new pQTLs and
935 reveal protein-protein interactions. *Cell Genom.* 2024; 4(3). 100506. doi:
936 10.1016/j.xgen.2024.100506

937 90. Chong M, Mohammadi-Shemirani P, Perrot N, Nelson W, Morton R, Narula S, et al.
938 GWAS and ExWAS of blood mitochondrial DNA copy number identifies 71 loci and
939 highlights a potential causal role in dementia. *Elife.* 2022; 11. e70382. doi:
940 10.7554/elife.70382

941 91. Gupta R, Kanai M, Durham TJ, Tsuo K, McCoy JG, Kotrys AV, et al. Nuclear genetic
942 control of mtDNA copy number and heteroplasmy in humans. *Nature.* 2023; 620(7975).
943 839-848. doi: 10.1038/s41586-023-06426-5

944 92. Mahajan A, Wessel J, Willems SM, Zhao W, Robertson NR, Chu AY, et al. Refining the
945 accuracy of validated target identification through coding variant fine-mapping in type 2
946 diabetes. *Nat Genet.* 2018; 50(4). 559-571. doi: 10.1038/s41588-018-0084-1

947 93. Hallmayer J, Faraco J, Lin L, Hesselson S, Winkelmann J, Kawashima M, et al.
948 Narcolepsy is strongly associated with the T-cell receptor alpha locus. *Nat Genet.* 2009;
949 41(6). 708-711. doi: 10.1038/ng.372

950 94. Shimada M, Miyagawa T, Kawashima M, Tanaka S, Honda Y, Honda M, et al. An
951 approach based on a genome-wide association study reveals candidate loci for
952 narcolepsy. *Hum Genet*. 2010; 128(4). 433-441. doi: 10.1007/s00439-010-0862-z

953 95. Larkin EK, Patel SR, Goodloe RJ, Li Y, Zhu X, Gray-McGuire C, et al. A candidate gene
954 study of obstructive sleep apnea in European Americans and African Americans. *Am J*
955 *Respir Crit Care Med*. 2010; 182(7). 947-953. doi: 10.1164/rccm.201002-0192oc

956 96. Gottlieb DJ, O'Connor GT, Wilk JB. Genome-wide association of sleep and circadian
957 phenotypes. *BMC Med Genet*. 2007; 8(Suppl 1). S9. doi: 10.1186/1471-2350-8-s1-s9

958 97. Dannemann M, Prüfer K, Kelso J. Functional implications of Neanderthal introgression
959 in modern humans. *Genome Biol*. 2017; 18(1). 61. doi: 10.1186/s13059-017-1181-7

960 98. Enard D, Petrov DA. Evidence that RNA viruses drove adaptive introgression between
961 Neanderthals and modern humans. *Cell*. 2018; 175(2). 360-371. doi:
962 10.1016/j.cell.2018.08.034

963 99. Silvert M, Quintana-Murci L, Rotival M. Impact and evolutionary determinants of
964 Neanderthal introgression on transcriptional and post-transcriptional regulation. *Am J*
965 *Hum Genet*. 2019; 104(6). 1241-1250. doi: 10.1016/j.ajhg.2019.04.016

966 100. Jagoda E, Xue JR, Reilly SK, Dannemann M, Racimo F, Huerta-Sánchez E, et al.
967 Detection of Neanderthal adaptively introgressed genetic variants that modulate reporter
968 gene expression in human immune cells. *Mol Biol Evol*. 2022; 39(1). msab304. doi:
969 10.1093/molbev/msab304

970 101. Koller D, Wendt FR, Pathak GA, De Lillo A, De Angelis F, Cabrera-Mendoza B,
971 et al. Denisovan and Neanderthal archaic introgression differentially impacted the

972 genetics of complex traits in modern populations. *BMC Biol.* 2022; 20(1). 249. doi:
973 10.1186/s12915-022-01449-2

974 102. Gao Y, Yang X, Chen H, Tan X, Yang Z, Deng L, et al. A pangenome reference
975 of 36 Chinese populations. *Nature.* 2023; 619(7968). 112-121. doi: 10.1038/s41586-023-
976 06173-7

977 103. Rong S, Neil CR, Welch A, Duan C, Maguire S, Meremikwu IC, et al. Large-
978 scale functional screen identifies genetic variants with splicing effects in modern and
979 archaic humans. *Proc Natl Acad Sci U S A.* 2023; 120(21). e2218308120. doi:
980 10.1073/pnas.2218308120

981 104. Zeberg H, Pääbo S. The major genetic risk factor for severe COVID-19 is
982 inherited from Neanderthals. *Nature.* 2020; 587(7835). 610-612. doi: 10.1038/s41586-
983 020-2818-3

984 105. Gouy A, Excoffier L. Polygenic patterns of adaptive introgression in modern
985 humans are mainly shaped by response to pathogens. *Mol Biol Evol.* 2020; 37(5). 1420-
986 1433. doi: 10.1093/molbev/msz306

987 106. Forni D, Pozzoli U, Cagliani R, Tresoldi C, Menozzi G, Riva S, et al. Genetic
988 adaptation of the human circadian clock to day-length latitudinal variations and relevance
989 for affective disorders. *Genome Biol.* 2014; 15(10). 499. doi: 10.1186/s13059-014-0499-
990 7

991 107. Lappalainen J, Sanacora G, Kranzler HR, Malison R, Hibbard ES, Price LH, et al.
992 Mutation screen of the glutamate decarboxylase-67 gene and haplotype association to
993 unipolar depression. *Am J Med Genet B Neuropsychiatr Genet.* 2004; 124B(1). 81-86.
994 doi: 10.1002/ajmg.b.20055

995 108. Utge S, Soronen P, Partonen T, Loukola A, Kronholm E, Pirkola S, et al. A
996 population-based association study of candidate genes for depression and sleep
997 disturbance. *Am J Med Genet B Neuropsychiatr Genet.* 2010; 153B(2). 468-476. doi:
998 10.1002/ajmg.b.31002

999 109. McCoy R, Wakefield J, Akey JM. Impacts of Neanderthal-introgressed sequences
1000 on the landscape of human gene expression. *Cell.* 2017; 168(5). 916-927.e12. doi:
1001 10.1016/j.cell.2017.01.038

1002 110. Danecek P, Bonfield JK, Liddle J, Marshall J, Ohan V, Pollard MO, et al. Twelve
1003 years of SAMtools and BCFtools. *GigaScience.* 2021; 10(2), 1-4. doi:
1004 10.1093/gigascience/giab008

1005 111. Sherry ST, Ward MH, Kholodov M, Baker J, Phan L, Smigielski EM, et al.
1006 dbSNP: The NCBI database of genetic variation. *Nucleic Acids Res.* 2006; 29(1). 308-
1007 311. doi: 10.1093/nar/29.1.308

1008 112. Chang CC, Chow CC, Tellier LC, Vattikuti S, Purcell SM, Lee JJ. Second-
1009 generation PLINK: rising to the challenge of larger and richer datasets. *GigaScience.*
1010 2015; 4(7). 1-16. doi: 10.1186/s13742-015-0047-8

1011 113. Hinrichs AS, Karolchik D, Baertsch R, Barber GP, Bejerano G, Clawson H, et al.
1012 The UCSC Genome Browser database: update 2006. *Nucleic Acids Res.* 2006; 34(1).
1013 D590-D598. doi: 10.1093/nar/gkj144

1014 114. Wickham H, François R, Henry L, Müller K, Vaughan D. dplyr: A grammar of
1015 data manipulation. Version 1.1.4. [software]. 2023. Available from: <https://cran.r-project.org/web/packages/dplyr/index.html>

1017 115. Lawrence M, Huber W, Pagès H, Aboyoun P, Carlson M, Gentleman R, et al.
1018 Software for computing and annotating genomic ranges. PLoS Comput Biol. 2013; 9(8).
1019 e1003118. doi: 10.1371/journal.pcbi.1003118
1020 116. Cingolani P, Platts A, Wang LL, Coon M, Nguyen T, Wang L, et al. A program
1021 for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff:
1022 SNPs in the genome of *Drosophila melanogaster* strain w¹¹¹⁸; iso-2; iso-3. Fly (Austin).
1023 2012; 6(2). 80-92. doi: 10.4161/fly.19695
1024 117. Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing
1025 genomic features. Bioinformatics. 2010; 26(6). 841-842. doi:
1026 10.1093/bioinformatics/btq033
1027 118. Hammer Ø, Harper DAT, Ryan PD. PAST: Paleontological statistics software
1028 package for education and data analysis. Palaeontol Electronica. 2001; 4(1):1-9.
1029

1030 **Supporting information**

1031 **S1 Text. Supporting information and methodology.** A description of the number of recovered
1032 variants in our pipeline from previously published results reporting adaptive introgression in
1033 modern humans due to archaic admixture. Methodological outlines for our haplotype networks
1034 and ancestral recombination graphs are also included. (DOCX)
1035 **S1 Table. Introgressed segments.** Segments represent putatively introgressed regions identified
1036 by SPrime [7] that have been merged into non-overlapping windows between geographically

1037 similar populations. Geographic regions were defined by the gnomAD metatable. Coordinates
1038 are sorted in genomic order and in hg19 format. (XLSX)

1039 **S2 Table. Maximum archaic frequency variants per segment.** Archaic segments that contain
1040 variants where any of the following are true: matches a previously reported circadian rhythm
1041 variant, is found within previously identified regions in other prior studies discussing archaic
1042 introgression and circadian rhythm, or overlaps a region from the CGDB database. Variants in
1043 these segments are the maximum archaic allele frequency within their segments, have $\geq 40\%$
1044 allele frequency within at least one population, and directly match the archaic allele. The
1045 segments are sorted in chromosomal order and include intersection and gene annotation results.
1046 Each archaic sample has its own tab for simplicity due to the size of the table and to show
1047 differences in the introgressing segments. Coordinates are in hg19 format. (XLSX)

1048 **S3 Table. High frequency archaic variants.** Archaic segments that contain variants where any
1049 of the following are true: matches a previously reported archaic-circadian rhythm variant, is
1050 found within previously identified regions in other prior studies discussing archaic introgression,
1051 and circadian rhythm, or overlaps a region from the CGDB database. Variants in these segments
1052 are also $\geq 40\%$ allele frequency within at least one population and directly match the archaic
1053 allele. Note that these are different from S2 Table in that these variants not necessarily the
1054 maximum archaic allele in their segments. The segments are sorted in chromosomal order and
1055 include intersection and gene annotation results. Each archaic sample has its own tab for
1056 simplicity due to the size of the table and to show differences in the introgressing segments.
1057 Coordinates are in hg19 format. (XLSX)

1058 **S4 Table. List of core haplotypes.** The core haplotypes were generated by identifying variants
1059 that had archaic allele frequencies $\geq 40\%$, were the maximum archaic allele frequency variant in

1060 their segment and had associations with circadian rhythm and/or chronotype. We generated
1061 windows around the main variant with a 5% allele frequency threshold directly upstream and
1062 downstream of the variant to create the core. Evidence of positive selection was generated using
1063 RAiSD [55]. Blue highlighting shows positive selection was detected within the segment
1064 identified by SPrime [7] but outside of the core, while green shows positive selection directly
1065 within the core. Coordinates are in hg19 format. (XLSX)

1066 **S5 Table. Genome-wide significant variants within GWAS analyses.** Archaic segments
1067 containing significant GWAS associated variants where the archaic allele is $\geq 40\%$ allele
1068 frequency in at least one population. The segments are sorted in chromosomal order and
1069 coordinates are in hg19 format. GWAS data obtained from NHGRI-EBI GWAS Catalogue [43].
1070 (XLSX)

1071 **S6 Table. Variant annotations.** Variant annotation results combined from SNPnexus [59-60]
1072 and VEP [61]. The table is sorted in alphabetical order based on gene name and the coordinates
1073 are in hg19 format. PubMed ID (or reference) to the study is provided where possible based on
1074 the downloaded data, a "0" indicates no reference was given from either source. (XLSX)

1075 **S7 Table. Latitude cline.** Examination of latitudinal cline within core haplotypes. Population-
1076 specific regions, and associated maximum archaic allele frequencies, were extracted from each
1077 population based on the whole segment listed in S3 Table. Latitudes were obtained from the
1078 gnomAD sample metatable. Not all populations have putatively introgressed segments
1079 overlapping core haplotypes, as these populations have segments that match the African
1080 outgroup alleles (the YRI). These are denoted with a 0 for their allele frequencies. The allele
1081 frequencies are taken from the samples before filtering for authentic segments (see Materials and

1082 methods). Correlation statistics were done using PAST [118] and are reported using absolute
1083 latitude, where negatives were removed and input as a positive number. (XLSX)

1084 **S8 Table. Gene ontology (GO) data.** GO data for genes within our results downloaded from
1085 BioMart [61]. The table is in alphabetical order based on the gene name. Missing data based on
1086 the downloaded information will contain a "-" in the column. (XLSX)

1087 **S1 Fig. *AMIGO2* linear regression graph.** Comparison of maximum archaic allele frequency
1088 (x-axis) against absolute latitude (y-axis) for the *AMIGO2* core haplotype. There was no
1089 significant relationship ($p=0.13896$) with a low coefficient of determination ($r^2 = 0.029348$). The
1090 line of best fit is sloped negatively. The plot and summary statistics were generated using PAST
1091 [118]. (TIF)

1092 **S2 Fig. *CCR9* linear regression graph.** Comparison of maximum archaic allele frequency (x-
1093 axis) against absolute latitude (y-axis) for the *CCR9* core haplotype. There was no significant
1094 relationship ($p=0.10945$) with a low coefficient of determination ($r^2 = 0.034256$). The line of best
1095 fit is sloped positively. The plot and summary statistics were generated using PAST [118]. (TIF)

1096 **S3 Fig. *CEACAM1-LIPE-AS1* linear regression graph.** Comparison of maximum archaic
1097 allele frequency (x-axis) against absolute latitude (y-axis) for the *CEACAM1-LIPE-AS1* core
1098 haplotype. There was a significant relationship ($p=0.028042$) with a low coefficient of
1099 determination ($r^2 = 0.063541$). The line of best fit is sloped negatively. The plot and summary
1100 statistics were generated using PAST [118]. (TIF)

1101 **S4 Fig. *ENSG00000286749* linear regression graph.** Comparison of maximum archaic allele
1102 frequency (x-axis) against absolute latitude (y-axis) for the *ENSG00000286749* core haplotype.
1103 There was no significant relationship ($p=0.29001$) with a low coefficient of determination ($r^2 =$

1104 0.015117). The line of best is sloped positively. The plot and summary statistics were generated
1105 using PAST [118]. (TIF)

1106 **S5 Fig. ENSG00000279193-ENSG00000276122 linear regression graph.** Comparison of
1107 maximum archaic allele frequency (x-axis) against absolute latitude (y-axis) for the
1108 *ENSG00000279193-ENSG00000276122* core haplotype. There was no significant relationship
1109 ($p=0.16315$) with a low coefficient of determination ($r^2 = 0.026111$). The line of best is sloped
1110 negatively. The plot and summary statistics were generated using PAST [118]. (TIF)

1111 **S6 Fig. JAK1 linear regression graph.** Comparison of maximum archaic allele frequency (x-
1112 axis) against absolute latitude (y-axis) for the *JAK1* core haplotype. There was no significant
1113 relationship ($p=0.06091$) with a low coefficient of determination ($r^2 = 0.046662$). The line of best
1114 is sloped negatively. The plot and summary statistics were generated using PAST [118]. (TIF)

1115 **S7 Fig. KCNH7 linear regression graph.** Comparison of maximum archaic allele frequency (x-
1116 axis) against absolute latitude (y-axis) for the *KCNH7* core haplotype. There was no significant
1117 relationship ($p=0.31644$) with a low coefficient of determination ($r^2 = 0.013561$). The line of best
1118 is sloped negatively. The plot and summary statistics were generated using PAST [118]. (TIF)

1119 **S8 Fig. LINC01107-LINC01937 linear regression graph.** Comparison of maximum archaic
1120 allele frequency (x-axis) against absolute latitude (y-axis) for the *LINC01107-LINC01937* core
1121 haplotype. There was a significant relationship ($p=0.035543$) with a low coefficient of
1122 determination ($r^2 = 0.058346$). The line of best is sloped positively. The plot and summary
1123 statistics were generated using PAST [118]. (TIF)

1124 **S9 Fig. MIER3 linear regression graph.** Comparison of maximum archaic allele frequency (x-
1125 axis) against absolute latitude (y-axis) for the *MIER3* core haplotype. There was no significant

1126 relationship ($p=0.075055$) with a low coefficient of determination ($r^2 = 0.042196$). The line of
1127 best is sloped negatively. The plot and summary statistics were generated using PAST [118].
1128 (TIF)

1129 **S10 Fig. *RN7SL423P-ENSG00000232337* linear regression graph.** Comparison of maximum
1130 archaic allele frequency (x-axis) against absolute latitude (y-axis) for the *RN7SL423P-*
1131 *RNSG00000232337* core haplotype. There was no significant relationship ($p=0.098013$) with a
1132 low coefficient of determination ($r^2 = 0.036559$). The line of best is sloped positively. The plot
1133 and summary statistics were generated using PAST [118]. (TIF)

1134 **S11 Fig. *ROR2* linear regression graph.** Comparison of maximum archaic allele frequency (x-
1135 axis) against absolute latitude (y-axis) for the *ROR2* core haplotype. There was a significant
1136 relationship ($p=0.022986$) with a low coefficient of determination ($r^2 = 0.067914$). The line of
1137 best is sloped positively. The plot and summary statistics were generated using PAST [118].
1138 (TIF)

1139 **S12 Fig. *RPSAP11-ENSG00000261572* linear regression graph.** Comparison of maximum
1140 archaic allele frequency (x-axis) against absolute latitude (y-axis) for the *RPSAP11-*
1141 *ENSG00000261572* core haplotype. There was no significant relationship ($p=0.84219$) with a
1142 low coefficient of determination ($r^2 = 0.0005391$). The line of best is sloped negatively. The plot
1143 and summary statistics were generated using PAST [118]. (TIF)

1144 **S13 Fig. *SUSD1* linear regression graph.** Comparison of maximum archaic allele frequency (x-
1145 axis) against absolute latitude (y-axis) for the *SUSD1* core haplotype. There was no significant
1146 relationship ($p=0.4878$) with a low coefficient of determination ($r^2 = 0.00652766$). The line of

1147 best is sloped negatively. The plot and summary statistics were generated using PAST [118].

1148 (TIF)

1149 **S14 Fig. *TIAM2* linear regression graph.** Comparison of maximum archaic allele frequency (x-
1150 axis) against absolute latitude (y-axis) for the *TIAM2* core haplotype. There was no significant
1151 relationship ($p=0.59898$) with a low coefficient of determination ($r^2 = 0.0037553$). The line of
1152 best is sloped negatively. The plot and summary statistics were generated using PAST [118].

1153 (TIF)

1154 **S15 Fig. *TLR1* linear regression graph.** Comparison of maximum archaic allele frequency (x-
1155 axis) against absolute latitude (y-axis) for the *TLR1* core haplotype. There was a significant
1156 relationship ($p=0.00000758$) with a low coefficient of determination ($r^2 = 0.23862$). The line of
1157 best is sloped positively. The plot and summary statistics were generated using PAST [118].

1158 (TIF)

1159 **S16 Fig. *AMIGO2* maximum archaic allele frequency map.** The maximum archaic allele
1160 frequency of each population in our analysis for *AMIGO2* plotted using rnaturalearth [65], sf
1161 [66-67], and ggplot2 [53] in R [54].

1162 **S17 Fig. *CCR9* maximum archaic allele frequency map.** The maximum archaic allele
1163 frequency of each population in our analysis for *CCR9* plotted using rnaturalearth [65], sf [66-
1164 67], and ggplot2 [53] in R [54].

1165 **S18 Fig. *CEACAM1-LIPE-AS1* maximum archaic allele frequency map.** The maximum
1166 archaic allele frequency of each population in our analysis for *CEACAM1-LIPE-* plotted using
1167 rnaturalearth [65], sf [66-67], and ggplot2 [53] in R [54].

1168 **S19 Fig. *ENSG00000286749* maximum archaic allele frequency map.** The maximum archaic
1169 allele frequency of each population in our analysis for *ENSG00000286749* plotted using
1170 rnaturalearth [65], sf [66-67], and ggplot2 [53] in R [54].

1171 **S20 Fig. *ENSG00000279193-ENSG00000276122* maximum archaic allele frequency map.**
1172 The maximum archaic allele frequency of each population in our analysis for
1173 *ENSG00000279193-ENSG00000276122* plotted using rnaturalearth [65], sf [66-67], and ggplot2
1174 [53] in R [54].

1175 **S21 Fig. *JAK1* maximum archaic allele frequency map.** The maximum archaic allele
1176 frequency of each population in our analysis for *JAK1* plotted using rnaturalearth [65], sf [66-
1177 67], and ggplot2 [53] in R [54].

1178 **S22 Fig. *KCNH7* maximum archaic allele frequency map.** The maximum archaic allele
1179 frequency of each population in our analysis for *KCNH7* plotted using rnaturalearth [65], sf [66-
1180 67], and ggplot2 [53] in R [54].

1181 **S23 Fig. *LINC01107-LINC01937* maximum archaic allele frequency map.** The maximum
1182 archaic allele frequency of each population in our analysis for *LINC01107-LINC01937* plotted
1183 using rnaturalearth [65], sf [66-67], and ggplot2 [53] in R [54].

1184 **S24 Fig. *MIER3* maximum archaic allele frequency map.** The maximum archaic allele
1185 frequency of each population in our analysis for *MIER3* plotted using rnaturalearth [65], sf [66-
1186 67], and ggplot2 [53] in R [54].

1187 **S25 Fig. *RN7SL432P-ENSG00000232337* maximum archaic allele frequency map.** The
1188 maximum archaic allele frequency of each population in our analysis for *RN7SL432P-*
1189 *ENSG00000232337* plotted using rnaturalearth [65], sf [66-67], and ggplot2 [53] in R [54].

1190 **S26 Fig. *ROR2* maximum archaic allele frequency map.** The maximum archaic allele
1191 frequency of each population in our analysis for *ROR2* plotted using rnaturalearth [65], sf [66-
1192 67], and ggplot2 [53] in R [54].

1193 **S27 Fig. *RPSAP11-ENSG00000261572* maximum archaic allele frequency map.** The
1194 maximum archaic allele frequency of each population in our analysis for *RPSAP11-*
1195 *ENSG00000261572* plotted using rnaturalearth [65], sf [66-67], and ggplot2 [53] in R [54].

1196 **S28 Fig. *SUSD1* maximum archaic allele frequency map.** The maximum archaic allele
1197 frequency of each population in our analysis for *SUSD1* plotted using rnaturalearth [65], sf [66-
1198 67], and ggplot2 [53] in R [54].

1199 **S29 Fig. *TIAM2* maximum archaic allele frequency map.** The maximum archaic allele
1200 frequency of each population in our analysis for *TIAM2* plotted using rnaturalearth [65], sf [66-
1201 67], and ggplot2 [53] in R [54].

1202 **S30 Fig. *TLR1* maximum archaic allele frequency map.** The maximum archaic allele
1203 frequency of each population in our analysis for *TLR1* plotted using rnaturalearth [65], sf [66-
1204 67], and ggplot2 [53] in R [54].

1205 **S31 Fig. *CEACAM1-LIPE-AS1* global ancestral recombination graph.** Ancestral
1206 recombination graph for rs184528844 inside of *CEACAM1-LIPE-AS1* for the Oceanic
1207 populations plotted against all non-African populations from the 1KGP with the YRI as a proxy
1208 for sub-Saharan African populations. The plot was generated using Relate [57]. (TIF)

1209 **S32 Fig. *CEACAM1-LIPE-AS1* regional ancestral recombination graph.** Ancestral
1210 recombination graph for rs184528844 inside of *CEACAM1-LIPE-AS1* for the Oceanic
1211 populations plotted against just the YRI. The plot was generated using Relate [57]. (TIF)

1212 **S33 Fig. *CCR9* global ancestral recombination graph.** Ancestral recombination graph for
1213 rs71327015 inside of *CCR9* for the South Asian populations plotted against all non-African
1214 populations from the 1KGP with the YRI as a proxy for sub-Saharan African populations. The
1215 plot was generated using Relate [57]. (TIF)

1216 **S34 Fig. *CCR9* regional ancestral recombination graph.** Ancestral recombination graph for
1217 rs71327015 inside of *CCR9* for the South Asian populations plotted against just the YRI. The
1218 plot was generated using Relate [57]. (TIF)

1219 **S35 Fig. *JAK1* global ancestral recombination graph.** Ancestral recombination graph for
1220 rs377425962 inside of *JAK1* for the Oceanic populations plotted against all non-African
1221 populations from the 1KGP with the YRI as a proxy for sub-Saharan African populations. The
1222 plot was generated using Relate [57]. (TIF)

1223 **S36 Fig. *JAK1* regional ancestral recombination graph.** Ancestral recombination graph for
1224 rs377425962 inside of *JAK1* for the South Asian populations plotted against just the YRI. The
1225 plot was generated using Relate [57]. (TIF)

1226

1227

1228

1229

1230

1231

1232

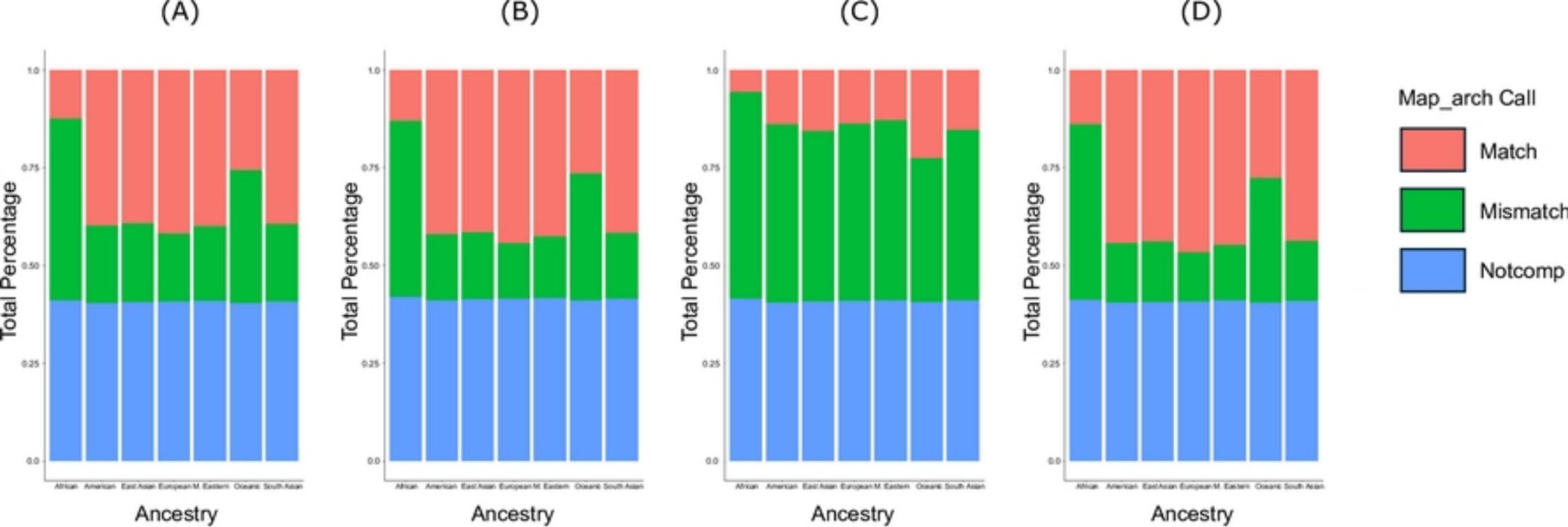


Fig1

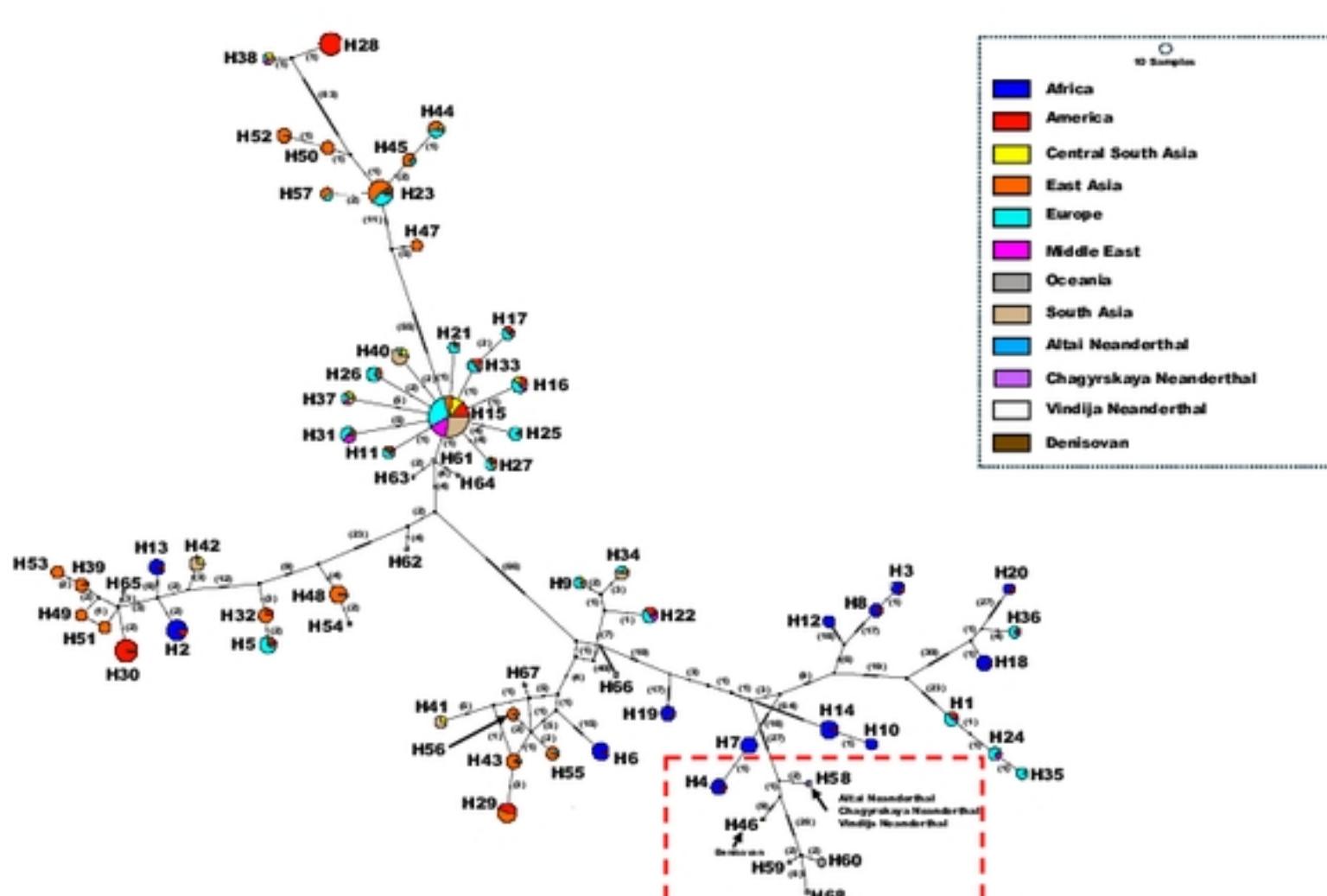
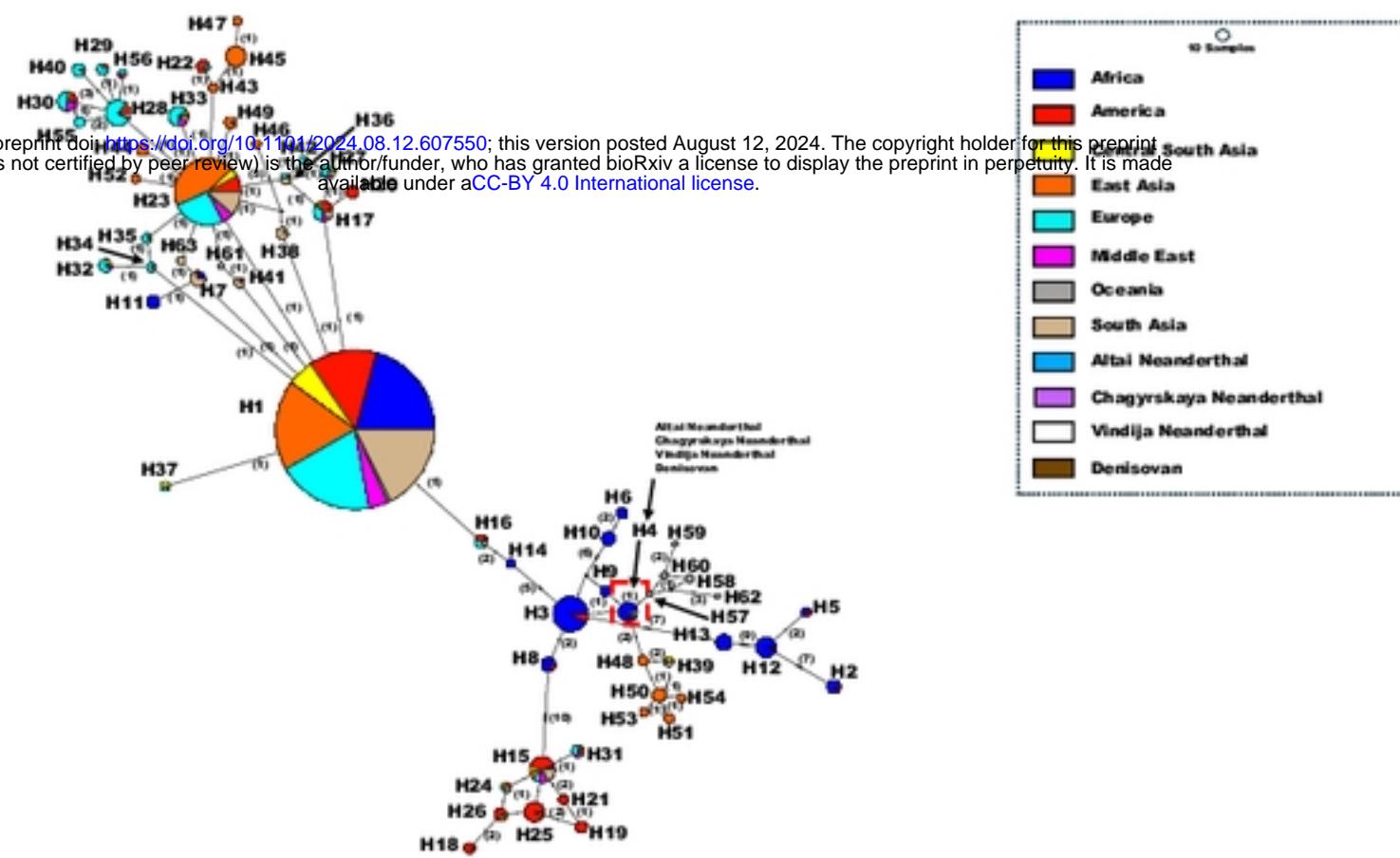
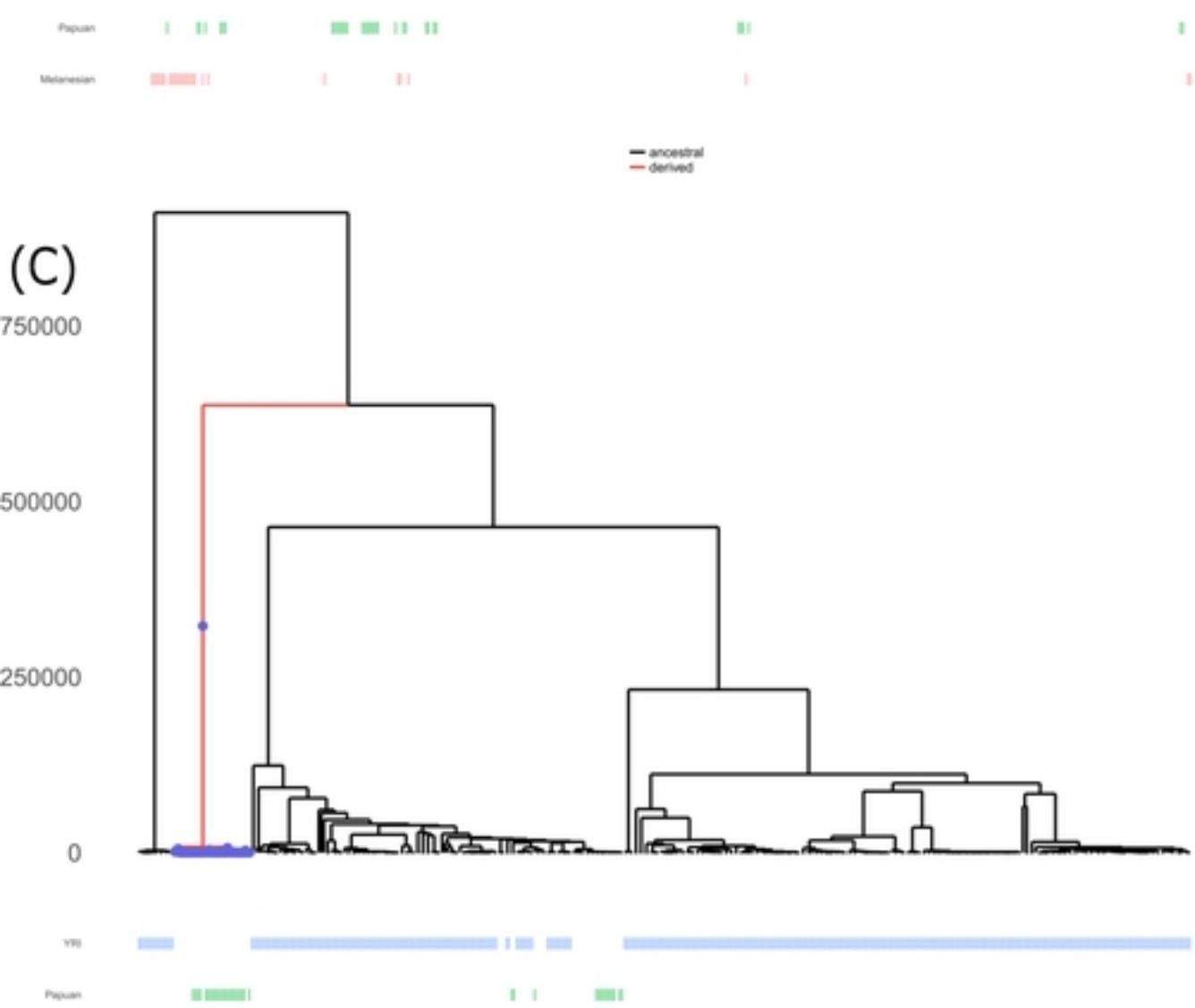
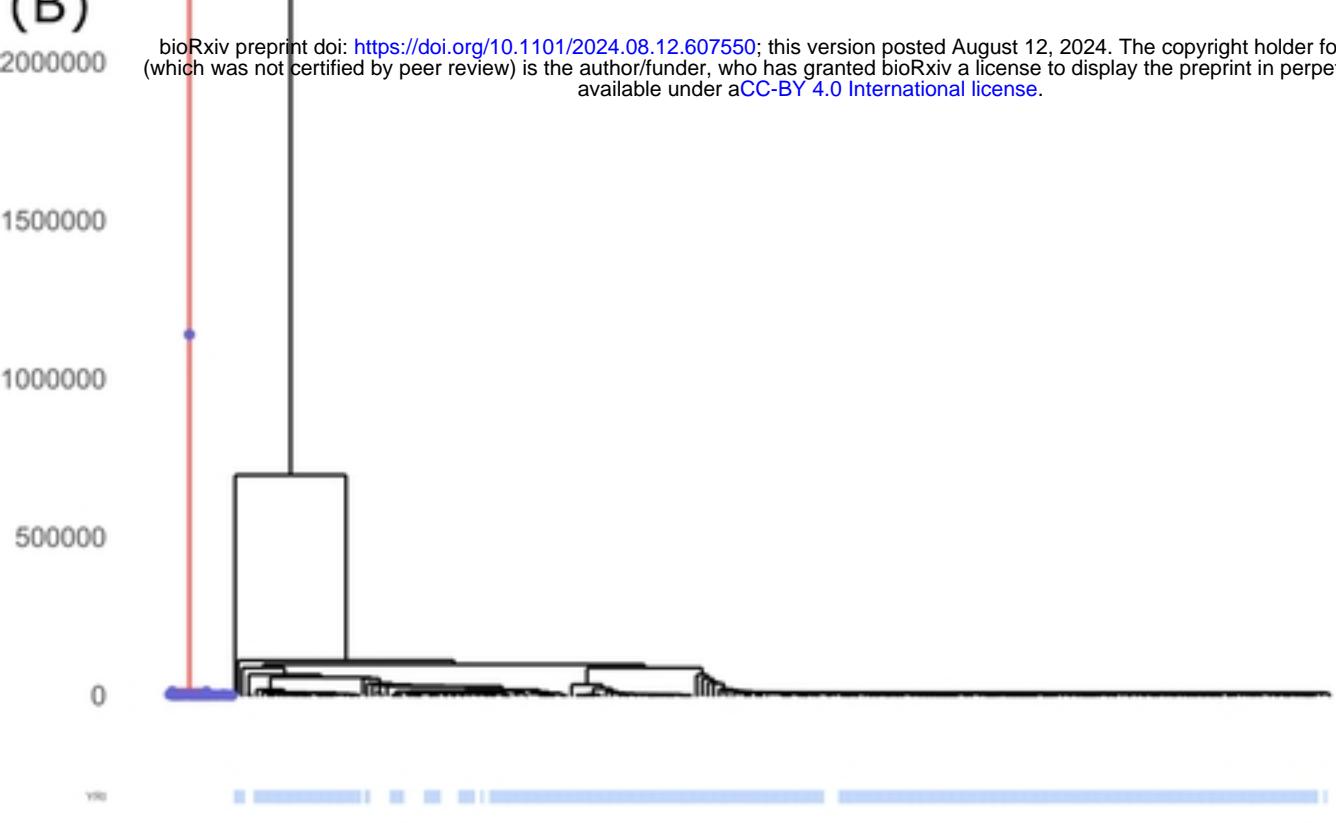
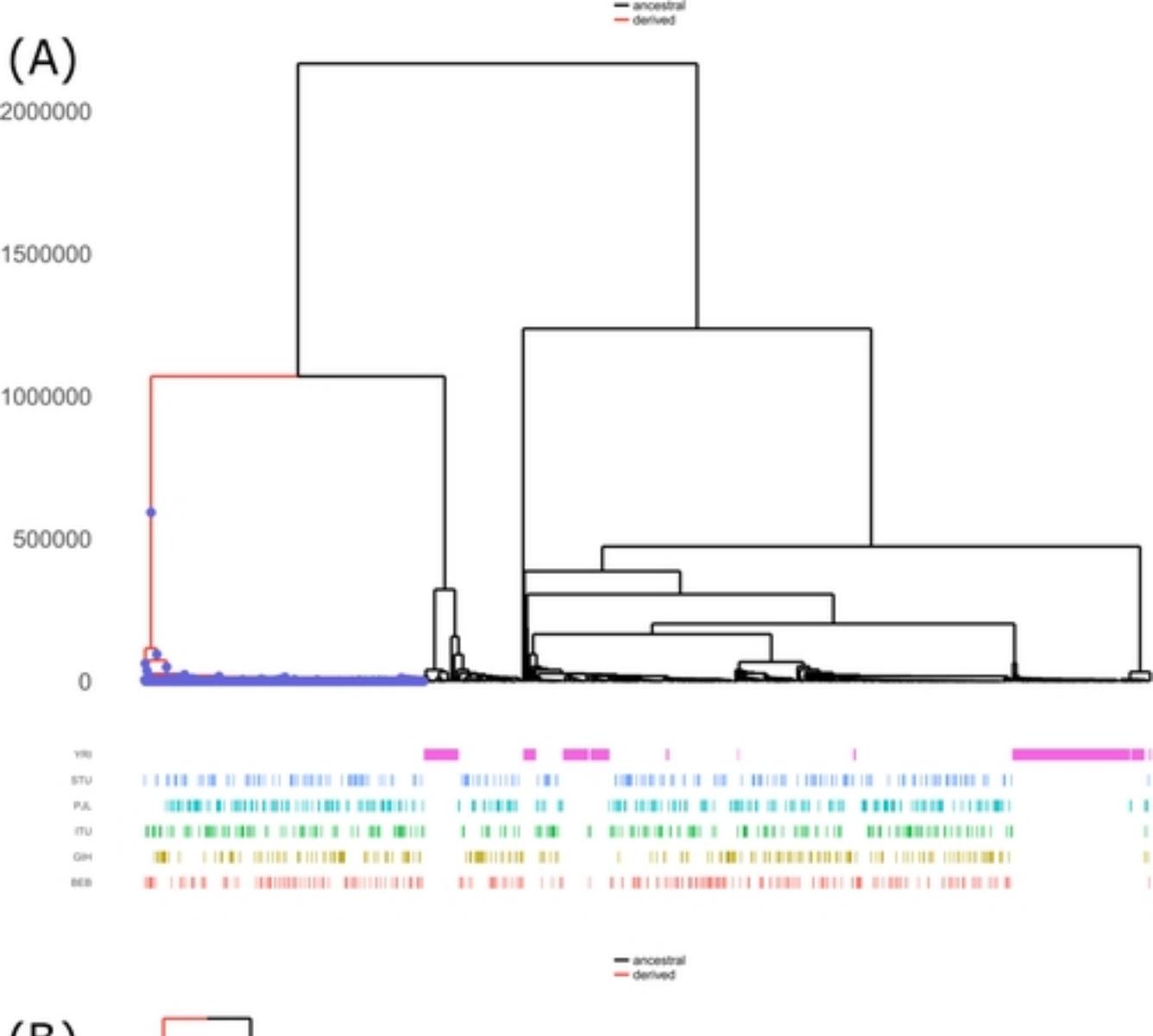
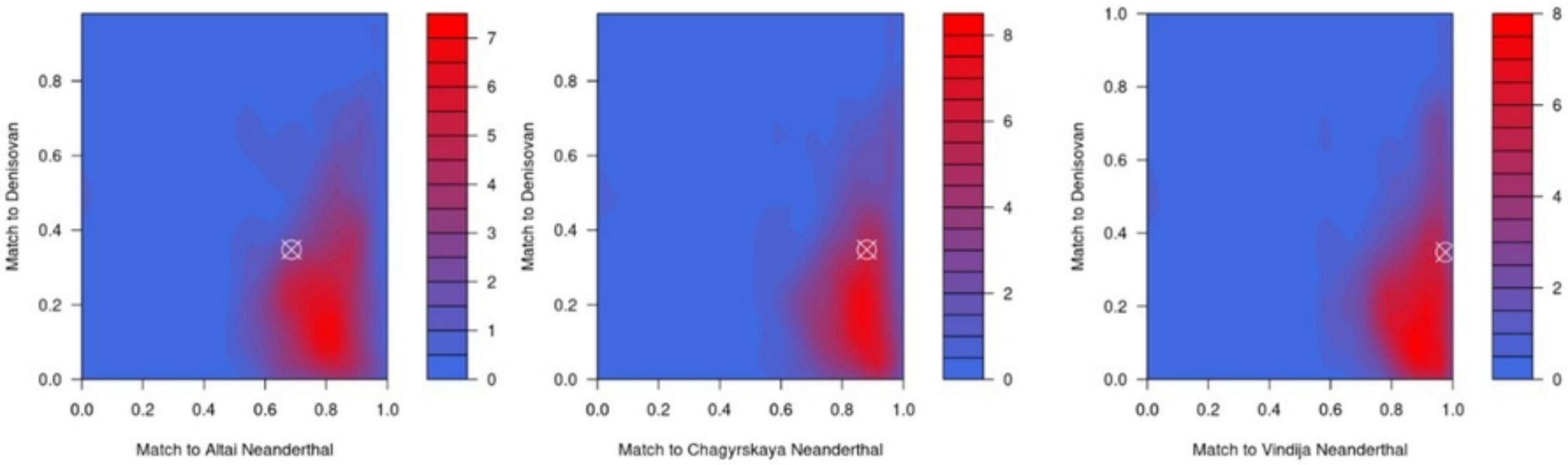
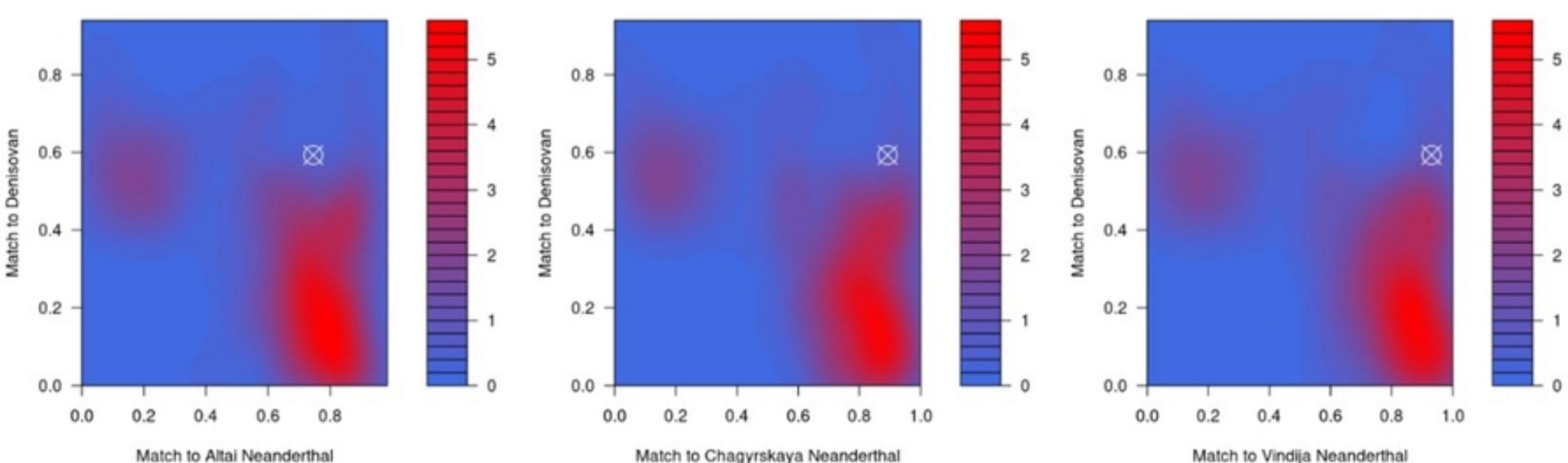




Fig2


Fig3

(A)

bioRxiv preprint doi: <https://doi.org/10.1101/2024.08.12.607550>; this version posted August 12, 2024. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

(B)

(C)

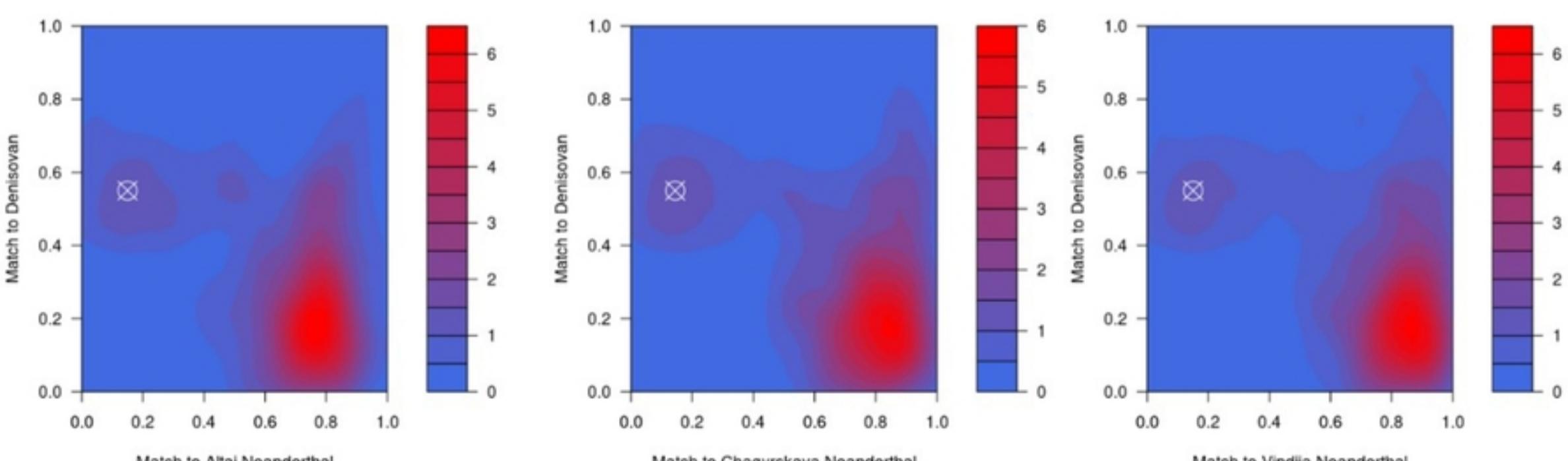
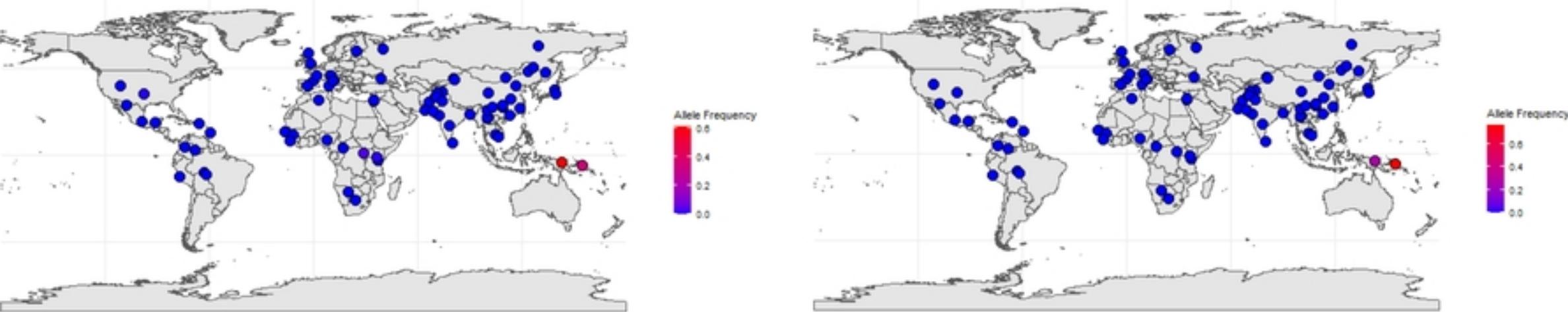
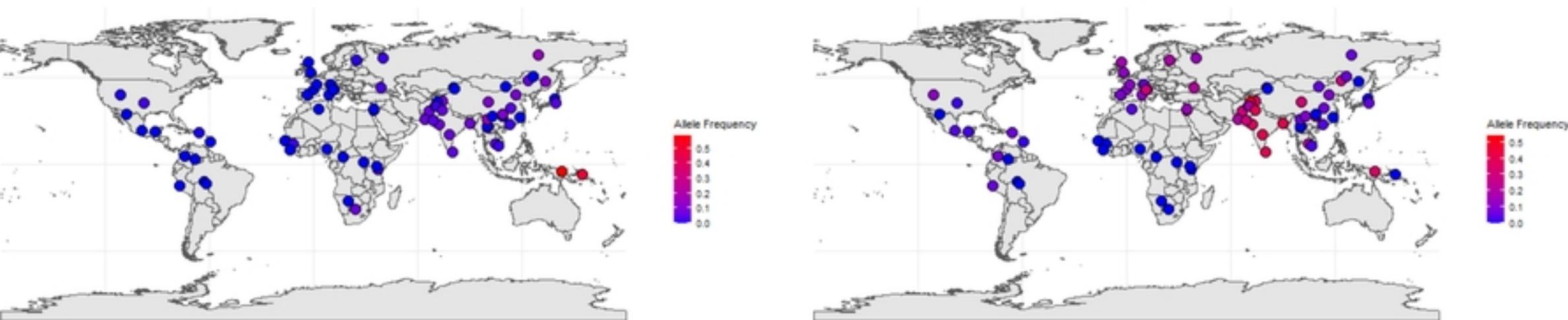
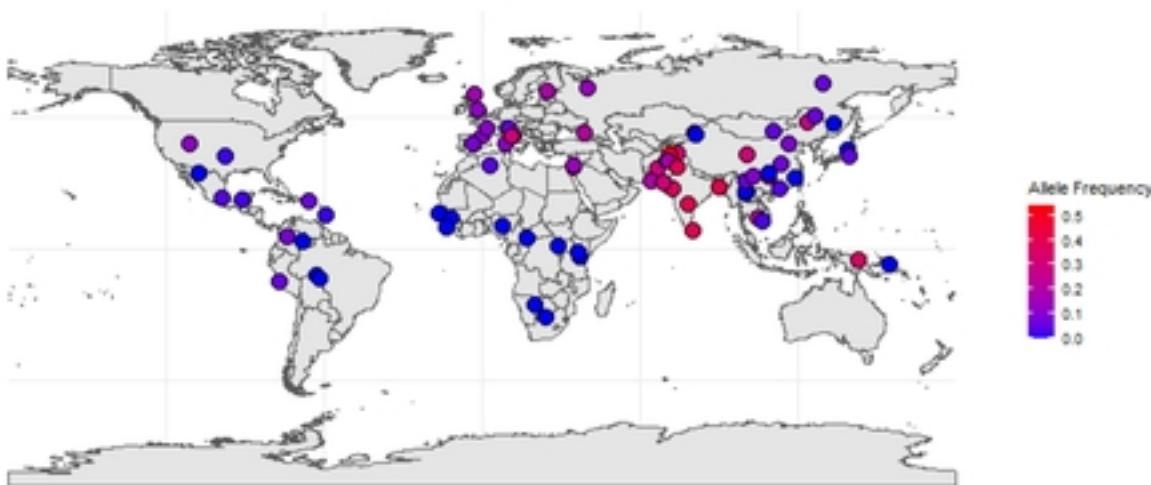




Fig4


(B)

(C)

(D)

(E)

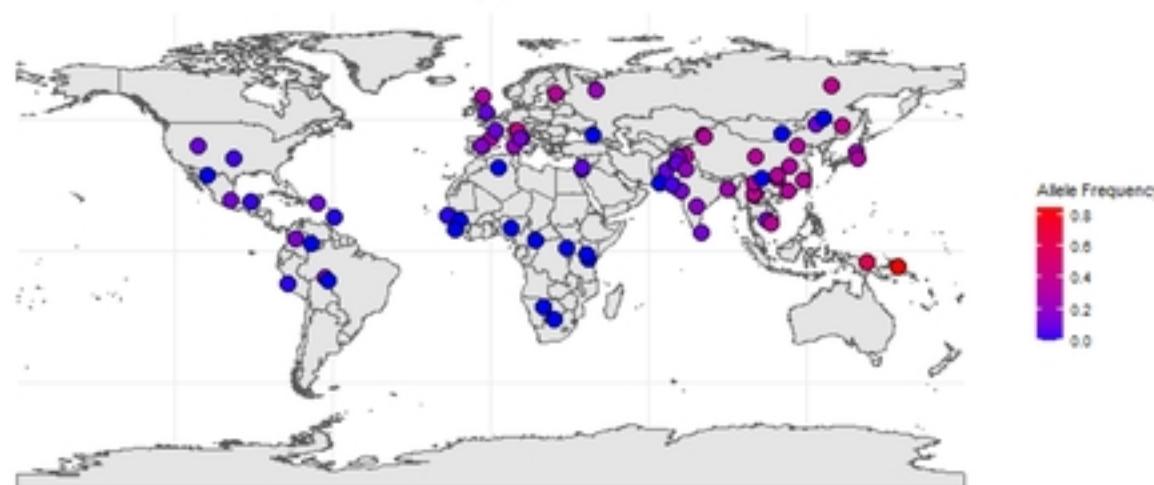


Fig5