

1 Unraveling lncRNA Diversity at a Single Cell Resolution and in a Spatial 2 Context across Different Cancer Types

3 P. Prakrithi^{1,2,3,4}, Tuan Vo^{2,4}, Hani Vu^{2,4}, Zherui Xiong⁴, Loan Nguyen⁵, Andrew
4 Newman^{2,4}, Vicki Whitehall⁴, Jazmina L. Gonzalez Cruz⁶, Ishaan Gupta^{3*}, Quan
5 Nguyen^{2,4*}

6 Long non-coding RNAs (lncRNAs) play pivotal roles in gene regulation and disease, including
7 cancer. Overcoming the limitations of lncRNA analysis with bulk data, we analyzed single-cell
8 and spatial transcriptomics data to uncover 354937 novel lncRNAs and their functions across
9 13 cancer types. LncRNA functions were assessed by identifying their cell-type specificity and
10 distinct spatial distributions across different tissue regions. First, lncRNAs were
11 computationally validated by comparing to existing databases, and experimentally validated
12 using spatial long read sequencing methods. Further, genome-wide computation of spatial-
13 autocorrelation identified coexpression of lncRNAs with cancer-associated protein coding
14 genes across the tissue. Additionally, genomic co-localization of lncRNAs with regulatory
15 features and disease-associated genetic variants suggest possible functional association. The
16 identified lncRNAs were analyzed for responses to immunotherapy and prognostic value,
17 revealing cancer-outcome associated lncRNAs. We have made this novel resource available as
18 an open website 'SPanC-Lnc' hosted on AWS cloud to serve as a pan-cancer atlas of single cell-
19 and spatially-resolved lncRNAs. These can complement established biomarkers because they
20 reflect the unique characteristics of specific cell populations within tumors, offering new
21 insights into disease progression and treatment response.

22
23 Long non-coding RNAs (lncRNAs) constitute the
24 vast majority of the permissively transcribed
25 genome. Despite this, the majority of our knowledge
26 about transcriptional events is limited to the 1-2% of
27 the genome that encodes proteins¹. With
28 advancements in high throughput technologies and
29 several key studies, it has become increasingly
30 apparent that lncRNAs are of functional relevance,
31 contributing to diseases like cancer where they are
32 often misregulated².

33 LncRNAs are involved in several functions at
34 epigenetic levels including DNA methylation,

35 histone modification and chromatin remodeling³.
36 These mechanisms influence and control the
37 expression of certain factors regulating disease
38 progression such as genes pivotal to DNA repair,
39 apoptosis, autophagy, transcription, cell-cycle
40 regulators and signaling pathways³.
41 LncRNAs can also hybridize with pre-mRNAs,
42 blocking the recognition of splice sites by
43 spliceosomes, thereby modulating their alternative
44 splicing to produce alternate transcripts⁴.
45 Cytoplasmic lncRNAs typically function as
46 microRNA (miRNA) sponges, modulating the
47 expression levels of nearby miRNAs⁴.

48
49
50 ¹ University of Queensland - IIT Delhi Research Academy (UQIDRA), Hauz Khas, New Delhi 110016, India. ² Institute of Molecular
51 Biosciences, University of Queensland, St. Lucia, QLD 4072, Australia. ³ Indian Institute of Technology Delhi, Department of
52 Biochemical Engineering and Biotechnology, Hauz Khas, New Delhi 110016, India. ⁴ QIMR Berghofer Medical Research Institute. ⁵
53 Frazer Institute, The University of Queensland, Brisbane, Queensland, Australia

54 Moreover, lncRNAs can bind to proteins, thereby
55 affecting their localization, activity and protein-
56 protein interaction⁵. For example, lncRNA KILR
57 sequesters RPA1 and inhibits its movement to sites
58 of double strand breaks⁶. Despite being mostly non-
59 coding, putative small open reading frames in a
60 subset of lncRNAs can be translated into a
61 polypeptide. For instance, Wang et al.⁷ have
62 identified that LINC00908 encodes a differentially
63 expressed polypeptide in triple-negative breast
64 cancer (TNBC), named as the endogenously
65 expressed polypeptide ASRPS. ASRPS directly
66 binds to the coiled-coil domain (CCD) of STAT3
67 thus inhibiting STAT3 phosphorylation, leading to a
68 decrease in expression of the vascular endothelial
69 growth factor (VEGF) and inhibition of tumor
70 angiogenesis in breast cancer^{7,8}.

71 lncRNAs can play dual roles as either oncogenes or
72 as tumor suppressors. For example, *HOTAIR* is
73 involved in tumorigenicity in pancreatic cancer and
74 can also cause proliferation and metastasis in
75 colorectal cancer⁹. It is also associated with poor
76 prognosis in several cancers. The lncRNA *PCA3* is
77 the only FDA-approved lncRNA biomarker and is
78 used in diagnosing prostate cancers^{10,11} (as of
79 October 2023). lncRNAs like *NORAD* and *PANDA*
80 can suppress transcription factors, thereby inhibiting
81 the expression of targeted genes. *NORAD*, for
82 instance, binds and chelates the calcium-binding
83 protein S100P, thus inhibiting its metastasis-
84 promoting signaling network¹². Conversely, *PANDA*
85 is involved in the DNA-damage response by
86 interacting with the nuclear transcription factor Y
87 subunit A (NF-YA) potentially preventing it from
88 activating apoptotic gene expression¹³. Similar
89 mechanisms have also been observed for other
90 lncRNAs⁶.

91 lncRNAs serve as a valuable class of molecular
92 targets for disease identification. However, their
93 detection has been constrained by factors such as
94 their low abundance, cell-type-specific expression
95 patterns, and the reliance of existing computational
96 tools on prior annotations¹⁴. Previous studies on
97 lncRNAs have predominantly relied on bulk RNA-
98 seq data, which unfortunately results in the loss of
99 cell-type information and tissue spatial context
100 during sample preparation. However, understanding
101 the spatial context of gene or lncRNA expression is
102 important for elucidating the transcriptional
103 regulation in both developmental and diseased states.

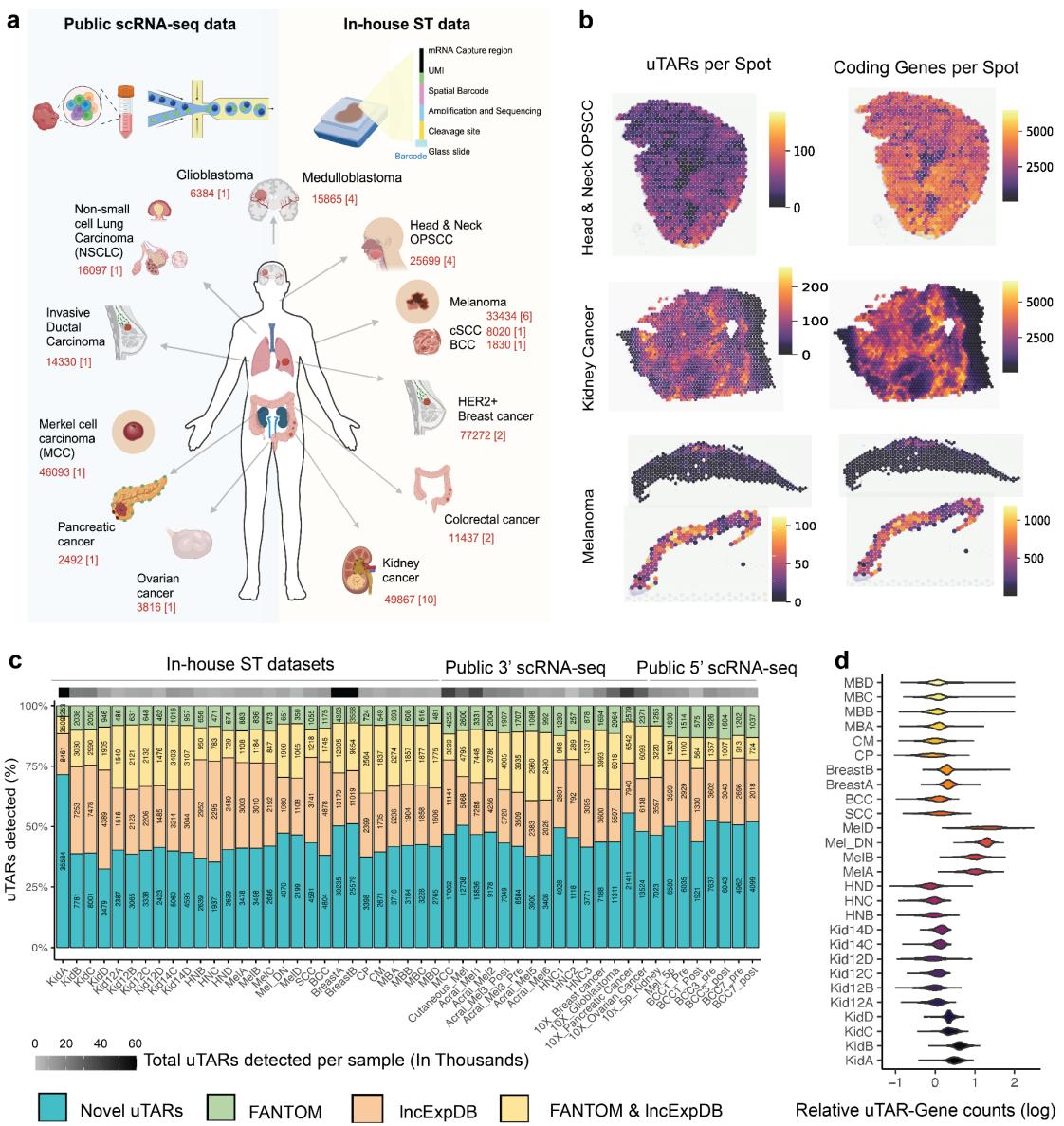
104 It provides valuable insights into a transcript's
105 location within a tissue, its neighboring cells,
106 colocalizing transcripts or proteins and their
107 interacting partners, thereby enhancing our
108 comprehension of biological processes. Hence, bulk
109 RNA-seq imposes limitations on our ability to fully
110 delineate the functional consequences of each
111 lncRNA.

112 Thanks to advanced sequencing technologies such as
113 single-cell sequencing (scRNA-seq) and spatial
114 transcriptomics (ST), researchers can now
115 investigate transcript expression at the single-cell
116 level while preserving spatial information. The 10x
117 Visium technology allows the capture of the polyA
118 tails of transcripts. Up to 40% of lncRNAs are
119 polyadenylated and an additional 40% of them are
120 bimorphic¹⁵. Thus, using this protocol, such
121 transcripts could be captured and analyzed. Recent
122 studies using scRNA-seq for breast cancer samples
123^{16,17} have evaluated the annotated lncRNAs at a
124 single-cell level. Other studies claiming to have
125 analyzed the 'spatial transcriptome' of lncRNAs
126 have typically examined lncRNA expression across
127 different bulk tissues, rather than capturing the
128 nuanced expression patterns of lncRNAs within a
129 tissue section^{18,19}. Unfortunately, these studies also
130 lack the capacity to explore novel unannotated
131 lncRNAs. Several methods for novel transcript
132 identification have been established^{20,21}. Applying
133 these methods to ST and scRNA-seq data would not
134 only facilitate the expansion of annotations but also
135 unveil additional layers of information regarding
136 lncRNAs, including cell-type specificity and spatial
137 context. Although these technologies have not yet
138 addressed the identification of non-polyadenylated
139 lncRNAs or the entire spectrum of rare lncRNAs,
140 creating a repository of potential lncRNAs detected
141 through cutting-edge spatial transcriptomics
142 technologies would establish a robust foundation.
143 Such a resource would serve as a pivotal reference
144 point for further investigation and development
145 within the scientific community.

146 In this study, we combined large datasets from the
147 recent spatially-resolved RNA sequencing modality
148 10x Visium and single-cell resolution scRNA-seq by
149 10x Chromium to discover lncRNAs in tissues from
150 13 different cancer types. We demonstrate new types
151 of analyses that can be performed on such data to
152 identify the potential functions of lncRNAs. While

153 previous pan-cancer studies have examined
 154 clinically relevant lncRNAs^{22–24}, this study
 155 represents the first effort to analyze novel potential
 156 lncRNAs incorporating spatial context and cell-type
 157 information in cancer research. The annotations and
 158 lncRNA expression data of each tissue have been

159 made accessible through the interactive website
 160 ‘SPanC-Lnc’: Spatial and Single Cell Pan-Cancer
 161 Atlas of lncRNAs. Researchers and clinicians can
 162 leverage these resources to gain deeper insights into
 163 the roles of lncRNAs in cancer biology and to
 164 identify potential biomarkers and therapeutic targets.



165
 166 **Fig. 1 | Pan-cancer identification of novel lncRNAs from spatial and single-cell data.** **a**, Different cancer types used from public
 167 scRNA-seq and in-house spatial transcriptomics datasets. Numbers highlighted in red indicate the number of unannotated
 168 Transcriptionally Active Regions (uTARs) detected for each cancer type, followed by the number of samples analyzed within square
 169 brackets. **b**, uTAR counts overlaid on the tissue for representative samples as compared to the protein-coding gene counts. **c**, Breakdown
 170 of known and novel uTARs identified per cancer sample. The blue region indicates novel uTARs and green, orange and yellow indicate
 171 an overlap with public datasets (FANTOM, LncExpDB and both respectively). Bar labels and the grey scale bar on top show the number
 172 of uTARs found from each source. **d**, Gene-uTAR expression ratio, (i.e., number of genes vs. number of uTARs), per spot across the
 173 ST samples. A higher value indicates a higher number of uTARs detected per spot with respect to the number of genes.

174 RESULTS

175 Identification of potential lncRNAs in spatial and 176 single cell datasets

177 Samples from 36 in-house ST (new or previously
178 published) and scRNA-seq datasets across 13 cancer
179 types were analyzed for potential novel lncRNAs
180 (**Fig. 1a**). The cumulative expression of all
181 unannotated Transcriptionally Active Regions
182 (uTARs) detected in each sample was projected on
183 the corresponding tissues and compared with that of
184 the cumulative coding gene expression. Three
185 representative examples for different cancer types
186 are displayed in **Fig. 1b**. uTAR and coding gene
187 expression for the remaining samples are also shown
188 in **Supplementary Fig. 1 and 2** respectively. The
189 expression of several previously identified cancer-
190 specific lncRNAs was also visualized
191 (**Supplementary Fig. 3**). It is worth noting that while
192 lncRNAs like *MALAT1* and *NORAD* were
193 abundantly expressed across the tissue sections in
194 various samples (**Supplementary Fig. 3a**), others
195 displayed a higher degree of tissue specificity. For
196 instance, both *PICSAR* and *LINC00520*, known to be
197 squamous cell carcinomas-specific²⁵, were markedly
198 more expressed in cutaneous Squamous Cell
199 Carcinoma (SCC) and Head and Neck
200 Oropharyngeal SCCs (H&N OPSCC) compared to
201 the other cancer types. In contrast, while *PICSAR* and
202 *LINC00520* were either absent or expressed at lower
203 levels in breast and colorectal cancer, *TINCR* (breast
204 cancer specific^{26,27}) was highly expressed in the
205 breast cancer samples, (**Supplementary Fig. 3b**).
206 Similarly, *KCNQIOT* (colorectal cancer-
207 specific^{28,29}) showed higher expression levels in
208 colorectal cancer samples compared to the lncRNAs
209 specific to the other cancer types. The datasets used
210 and the number of uTARs identified are summarized
211 in **Fig. 1c**. The numbers vary depending on the
212 cancer type and coverage. For example, a higher
213 number of uTARs were found in the breast cancer
214 (~45,000-60,000), one of the kidney cancer samples
215 (namely KidA) (~45,000) and in the NSCLC samples
216 (162,588, not displayed in figure due to high
217 coverage and hence very high uTARs detected)
218 while around 15,000-25,000 were detected in the
219 other cancer samples. Overall, more uTARs were
220 detected with scRNA-seq compared to ST, as
221 scRNAseq generally captures a higher number of

222 cells. In most cases, approximately 40-60% of the
223 identified uTARs overlapped with lncRNAs
224 cataloged in two selected lncRNA public databases
225 such as FANTOM, LncExpDB (**Fig. 1c**) and
226 NONCODE (**Supplementary Fig. 4**). The
227 remaining transcripts were likely novel discoveries
228 (**Fig. 1c**). These results suggest the reliability of our
229 lncRNA detection method utilizing spatial data and
230 suggest that the novel uTARs identified merit further
231 investigation. 210 uTARs were expressed on a pan-
232 cancer level (i.e., expressed in at least one sample per
233 cancer type used in the study), while others exhibited
234 specificity to particular cancer types
235 (**Supplementary Fig. 5a, 5b**). The relative uTAR-
236 gene counts for each tissue at single Visium spot-
237 level resolution was calculated as the total number of
238 uTARs divided by the total number of genes detected
239 per spot (**Fig. 1d**). A higher value indicates a higher
240 number of total uTARs detected per Visium spot
241 with respect to the number of genes. We observed a
242 higher mean uTAR-gene count ratio value in the
243 Melanoma samples, indicating a higher proportion of
244 uTARs per spot relative to coding genes (**Fig. 1d**).
245 However, this could be due to the lower sample
246 quality (i.e. < 200 median genes per spot). The
247 consistency of detection across different sequencing
248 platforms (Spatial Transcriptomics, 3' and 5'
249 scRNA-seq) for Melanoma samples was also
250 analyzed. About 1,205 uTARs were detected in
251 melanoma samples across all the three different
252 platforms (**Supplementary Fig. 5c**). Since the
253 uTARs analyzed in this study span various cancer
254 types and tissues, we designate them with a
255 nomenclature of "cuTAR" (cancer-associated
256 uTAR), followed by a unique numerical identifier as
257 used in the SPanC-Lnc database. We then
258 investigated some of these potential disease-
259 associated candidates.

260 Classification and transcriptome-wide analysis of 261 functional implications

262 Analysis of the sequences confirmed that 95.7% of
263 the total uTARs lack coding potential. A sample
264 level distribution is shown in **Fig. 2a**. Moreover,
265 92.1% of them were longer than 200 bp, suggesting
266 that the majority of uTARs are most likely to be
267 'long' ncRNAs³⁰. The lncRNAs with a coding
268 potential might indicate their role in encoding
269 functional micropeptides, as opposed to necessarily

270 being protein-coding transcripts^{31,32}. Since the
271 uTARs are only estimated transcript boundaries
272 using data captured from either the 3'/5' ends, the
273 calculated coding potentials may not be as accurate
274 as using the full-length sequence, but could be still
275 be reflective of their coding potential. Based on their
276 overlap with enhancers from the EnhancerAtlas³³
277 and TSS data from FANTOM, the uTARs were
278 classified as enhancer-associated (e-lncRNAs) and
279 promoter-associated (p-lncRNAs). The majority
280 were e-lncRNAs (87%), followed by intergenic
281 lncRNAs (6.9%) and p-lncRNAs (5.3%) (**Fig. 2b**).
282 When a lncRNA overlaps with such cis-regulatory
283 elements, it suggests that the lncRNA may be
284 involved in regulating its associated gene/transcript.
285 Various metrics can help infer the functional
286 significance of a sequence. One such metric is the
287 conservation score, where highly evolutionarily
288 conserved sequences tend to be associated with
289 common essential functions across organisms, while
290 less conserved sequences may exhibit specific
291 functions in an organism. Another metric is the
292 minimum free energy (MFE), which reflects the
293 potential functionality of transcripts. Lower MFE
294 values suggest transcripts with more stable
295 secondary structures, making them more likely to be
296 functional. The conservation and MFE of the uTAR
297 sequences for H&N sample C (HNC) were
298 calculated. Most top uTAR candidates have
299 conservation scores lower than a housekeeping gene
300 *GAPDH* and a known lncRNA *HOTAIR* (**Fig. 2c**),
301 while cuTAR100897 had a similar conservation
302 score as the latter (**Fig. 2c**). However, this uTAR had
303 sequences multimapping with other regions of the
304 genome, which could possibly explain the high
305 conservation score and must be carefully evaluated
306 for downstream analysis.

307 Gene expression can be influenced by genetic
308 variants, with tens of thousands of variants identified
309 to date that are associated with altered gene
310 expression across tissues or cell-types³⁴. The overlap
311 of these variants, such as Expression Quantitative
312 Trait Loci (eQTLs) or those identified in genome-
313 wide association studies (GWAS), with non-coding
314 transcripts could suggest potential tissue-specific or
315 disease-associated gene regulation of these
316 lncRNAs. Analysis of uTARs overlapping with
317 eQTLs from the GTEx project³⁵ showed that the
318 majority of the lncRNAs from the in-house ST

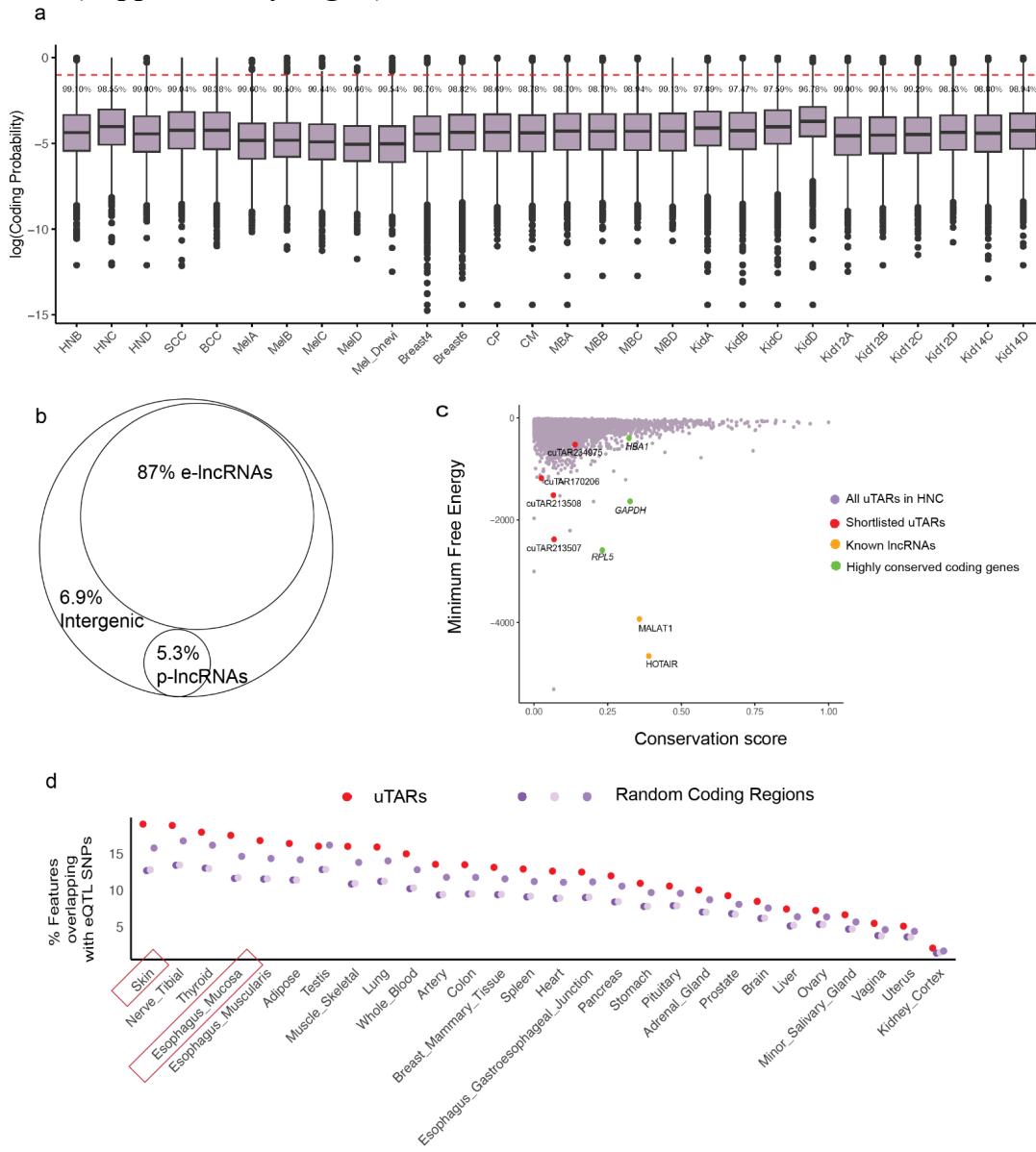
319 datasets, mostly comprising cutaneous and OPSCC
320 datasets, were enriched for eQTLs that are involved
321 in gene expression regulation in skin (20% of the
322 uTARs) and esophageal mucosa (19%), which is the
323 closest tissue to the oropharyngeal mucosa, as
324 compared to randomly sampled coding regions
325 (highlighted in red boxes) (**Fig. 2d**). Three sets of an
326 equal number of random coding regions were
327 considered and the overlap of eQTLs were
328 calculated. There was a significant lower overlap
329 with three sets of randomly chosen coding regions
330 (Adjusted *p*-value = 7.85e⁻²⁹ from Fisher's exact test)
331 (**Fig. 2d**). The eQTLs overlapped with both the pan-
332 cancer uTARs and the cancer-specific uTARs were
333 identified using window sizes of 10kb, 50kb and
334 100kb. The genes associated with these colocalized
335 regions were then queried in enrichR for enriched
336 pathways, GO terms, cell-types and tissues which are
337 computed using Fisher exact test³⁶. It was observed
338 that for the uTARs specific to given cancers, the
339 eQTL-associated genes were enriched in their
340 respective GTEx tissues and cell-types. For example,
341 uTARs specific to brain tumors were enriched for
342 eQTLs associated with the "Brain- Cerebellum
343 Female" category (**Supplementary Fig. 6**). For the
344 pan-cancer uTARs, while a 10kb window of co-
345 localized eQTLs did not yield many cancer-
346 associated terms, a 100kb window size revealed
347 pathways involved in several cancers
348 (**Supplementary Fig. 7**). Additionally,
349 approximately 10-15% uTARs overlapped with
350 cancer associated GWAS SNPs (**Supplementary
351 Fig. 8**), suggesting the potential value of further
352 detailed analysis. These findings collectively point
353 towards genetic-level regulation.

354 **Identification of lncRNAs enriched in 355 cancer regions within the tissue**

356 Next we asked if the uTAR expression was restricted
357 specifically to the tumor area within the biopsies.
358 The cancerous regions of each tissue were identified
359 from the histological annotations by a pathologist
360 (**Fig. 3a**). Top cuTAR candidates for each cancer
361 type were shortlisted based on their detection across
362 various datasets and higher expression in the
363 annotated cancerous regions. The percentage of spots
364 in the cancerous *v.s.* Normal regions expressing the
365 selected uTARs were calculated (**Fig. 3b**). Expression of these top cuTAR candidates was

367 detected across many cancer types from The Cancer
368 Genome Atlas (TCGA)³⁷ bulk RNA-seq samples.
369 Some uTARs showed higher expression in the two
370 OPSCC samples used, consistent with the
371 observation that all these candidates are tumor-
372 specific in the H&N ST data (**Fig. 3b**). Among the
373 uTARs differentially expressed across these two
374 annotated clusters (**Supplementary Fig. 9**), visual

375 examination of gene expression overlaid on the
376 tissues reveal some uTARs with higher expression in
377 the tumor regions as (shown in **Fig. 3a** and **Fig. 3c**).
378 Not only cancer region specificity, but also sub-clone
379 specificity was observed. The tumor sub-clones were
380 identified using CopyKAT³⁸ (**Supplementary Fig.**
381 **10**).



383 **Fig. 2 | Analysis of sequence features and co-localization with functional SNPs.** **a**, Analysis of coding potential of the identified
384 uTARs. Box plots display log coding probability values for each cancer. The red dashed line indicates the log coding probability cut-
385 off. Percentage values show the proportion of non-coding transcripts based on this cut-off. Sequences with a predicted coding potential
386 below the standard cut-off for humans, 0.364, were determined to be non-coding. **b**, Classification of lncRNAs based on their overlap
387 with regulatory features as enhancer-associated lncRNAs (e-lncRNAs), promoter-associated lncRNAs (p-lncRNAs) and intergenic
388 lncRNAs **c**, Conservation and Minimum Free Energy (MFE) calculations as a measure of stability. **d**, Overlap of uTARs and randomly
389 chosen regions from coding genes with tissue-specific eQTLs.

390 Confirmation of lncRNAs using long-read 391 sequencing for spatial transcriptomics 392 samples

393 Since the 10X Visium protocol captures only the 3'
394 ends of the fragmented transcripts, the actual
395 transcripts are likely longer than the cuTAR
396 boundaries detected. This gap was addressed by
397 employing Oxford Nanopore Technology (ONT)
398 long read sequencing methods and HiFi long read
399 sequencing with PacBio's SMRT sequencing to
400 capture full length sequences of lncRNA transcripts
401 present in 10X Visium libraries and corroborate the
402 uTAR signals detected by the standard 10X Visium
403 sequencing. We found the signals detected to be
404 consistent across different technologies, suggesting
405 that these lncRNAs are likely to be genuine signals
406 rather than artifacts from the TAR-Seq pipeline.
407

408 Samples from OPSCC, SCC, BCC human cancer
409 Visium samples and PDX mouse Visium samples
410 were used for the ONT experiment. Specifically,
411 from OPSCC (HNC), we obtained 20 million ONT
412 reads, with 3422 spatial barcodes identified by our
413 customized scNanoGPS pipeline, allowing us to map
414 to 1029 Visium spots across the tissue. We
415 successfully recovered 87% of the 20 million reads,
416 identifying approximately 960 lncRNAs present in at
417 least three spatial spots overlapping the tissue. This
418 accounts for 31.7% of those detected using the 10X
419 Visium platform (**Supplementary Table 1**), thus
420 validating the results obtained from the 10X Illumina
421 data. Similar spatial patterns were observed (**Fig.**
422 **3d**), with up to 38% of spots showing expression in
423 both the technologies and up to 86% for coding
424 genes. Interestingly, 166 novel uTARs that were not
425 detected with the short-read data were identified by
426 applying the TAR-Seq pipeline directly on the
427 Nanopore BAM files in addition to the signals
428 confirmed earlier by using the TAR annotations
429 generated using the 10X Visium data. The
430 consistency of expression patterns for coding genes
431 were also checked (**Supplementary Fig. 11**). There
432 was a significant overlap of expressing spots across
433 both the platforms for some uTARs
434 (**Supplementary Fig. 12a**). The same analysis was
435 performed for cutaneous SCC, BCC (Basal cell
436 carcinoma) (**Supplementary Fig. 12 b, c**) and
437 medulloblastoma samples. This experiment not only
438 validated the computationally identified lncRNA

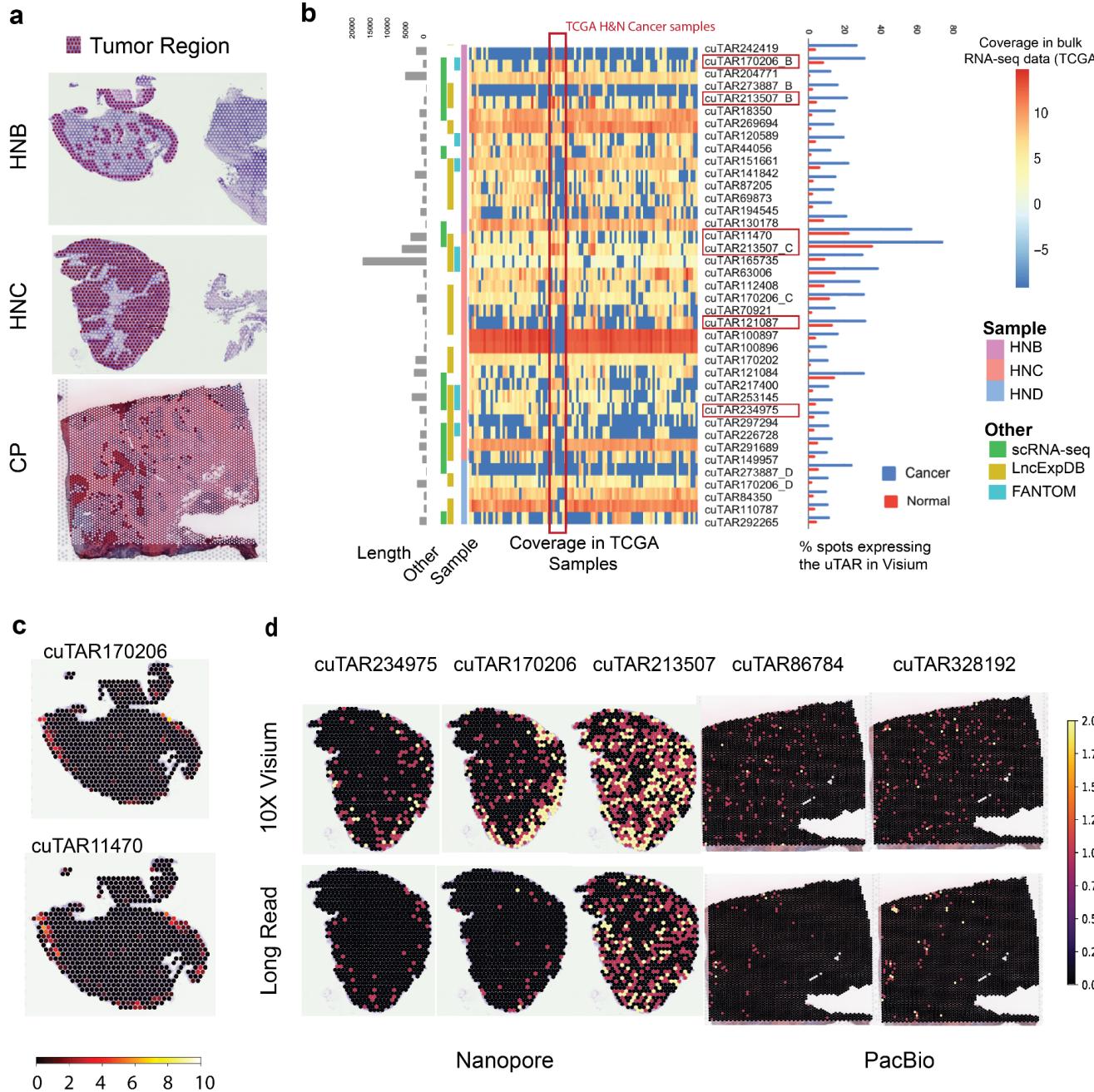
439 signals but also could be useful to analyze lncRNA
440 isoforms and their spatial context in the future
441 analyses.

442 For the HiFi long read sequencing with PacBio's
443 SMRT sequencing run with cDNA of colorectal
444 cancer samples from the 10X Visium experiment, we
445 generated approximately one million reads. By
446 aligning the reads and tagging them with spatial
447 barcode information, we found up to 1500 lncRNAs
448 per sample, which accounted for 17% of those
449 detected with 10X Visium (**Supplementary Fig. 13**)
450 thereby confirming the findings of the 10X Visium
451 Illumina data. We then examined specific cuTARs
452 and found up to 30% of the spots showed significant
453 consistency in expression for the same set of spots
454 across both the platforms for two colorectal cancer
455 specific uTARs (**Fig. 3d**) (cuTAR86784: 19%, p-
456 value: 0.011; cuTAR114310: 29%, p-value: 0.014).
457 Overall, we found the HiFi yield was better than that
458 of ONT considering the number of reads captured
459 and processed.

460 Experimental detection of lncRNA using 461 quantitative reverse transcription PCR

462 We further experimentally validated and quantified
463 the cuTAR models that were based on short and long
464 read sequencing platforms. With specific primers
465 targeting each of the selected uTARs, we found
466 cuTARs in the H&N-C and -B (HNC and HNB)
467 samples, while a few other cuTARs were tested for
468 the other SCC, BCC and colorectal cancer samples
469 (**Supplementary Fig. 14**). All the lncRNAs were
470 detected except for cuTAR121087 whose detection
471 seemed to be very low although high expression was
472 detected with Visium for the HNC sample
473 (**Supplementary Fig. 14**). Both the primers
474 designed for just cuTAR100897 showed off-target
475 regions on UCSC-BLAT and *In-silico* PCR which
476 could attribute to the higher expression detected, for
477 with ONT sequencing also showed many multi-
478 mapping reads and hence was excluded in the
479 analysis. All these experiments help accurately
480 identify high confidence lncRNAs. Considering gene
481 expression levels, we found a generally consistent
482 trend observed with the 10X Visium data
483 (**Supplementary Fig. 14**).

484



485
486 **Fig. 3 | Identification of tumor region specific uTARs and validation with long read sequencing technologies.** **a**, Tumor regions
487 (dark shaded) in the Head and Neck cancer samples B (top) and Colorectal cancer Primary tumor CP (middle). **b**, (From left to right)
488 uTAR lengths, overlap of uTARs with that from scRNA-seq data and with lncRNAs from public databases, expression of uTARs in
489 bulk RNA-seq samples from TCGA (normalized bigWig coverage), and quantification of the uTARs in the cancerous and normal
490 regions of Head and Neck cancer samples. The overlapping uTARs across samples are indicated by the sample suffix (_B, _C and _D)
491 The highlighted uTARs with red boxes indicate the ones with higher expression in the tumor region than the normal region, some of
492 which are shown in panel **c**. These show relatively higher expression in the analyzed H&N cancer samples from TCGA highlighted
493 using the vertical red box **c**, Expression of exemplar cancer region-specific uTARs projected on the tissues. **d**, Validation of some uTARs
494 with long read sequencing ONT and SMART-Seq for Head and Neck and Colorectal cancer samples, respectively.

495 **Inferring potential functions by spatial co-
496 expression analysis of lncRNAs with cancer-
497 associated genes**

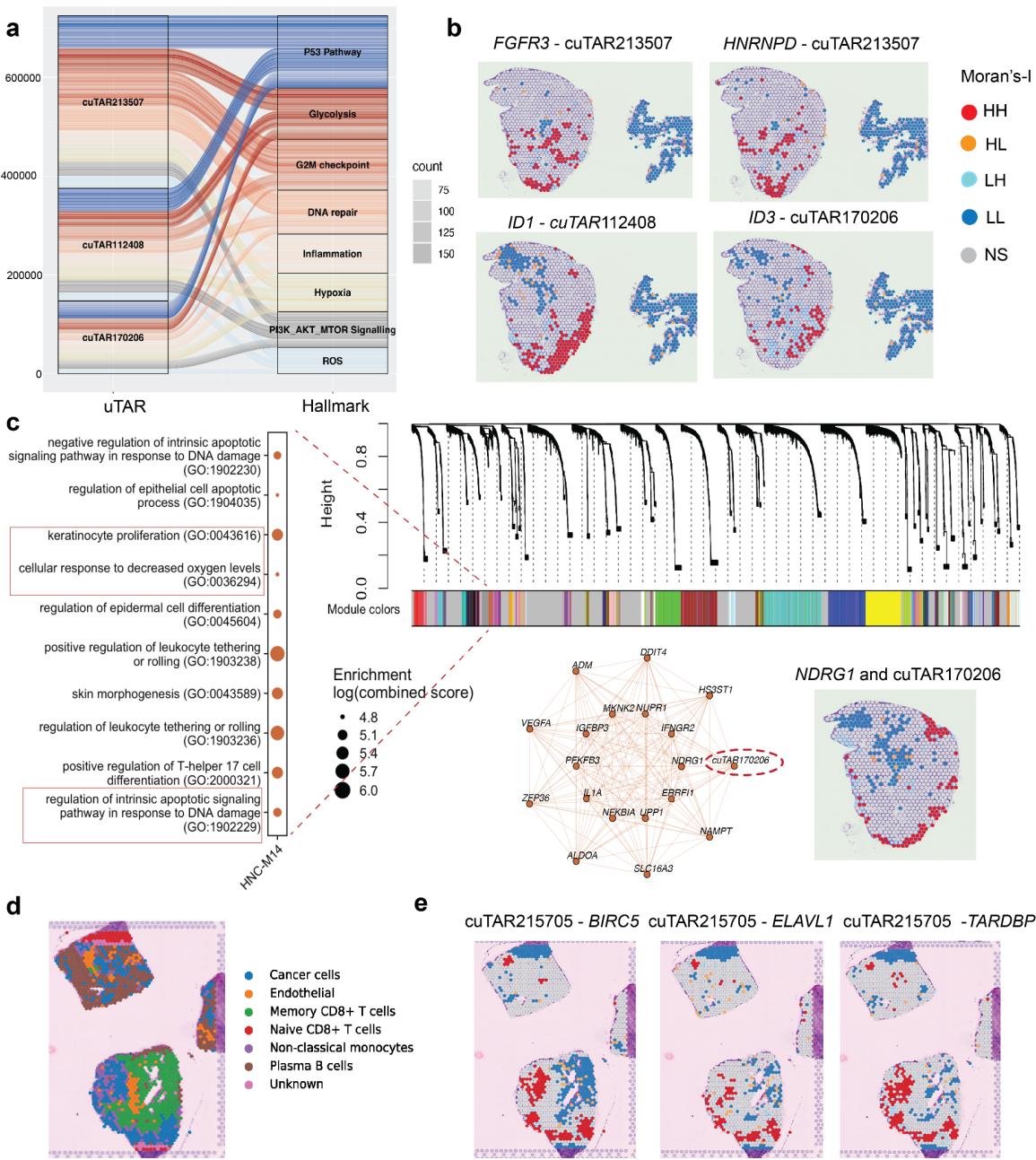
498 Transcripts that are expressed together tend to
499 function together. To identify the cuTAR-gene pairs
500 co-expressed in space, we first identified spatially-
501 variable uTARs, those that were most likely to
502 change with pathological heterogeneity across the
503 tissue (**Supplementary Fig. 16**). For data-driven
504 detection of functional uTARs, we used Bivariate
505 Moran's Index to screen for gene-pairs between the
506 spatially-variable uTARs and cancer-hallmark
507 genes. Our spatial co-expression approach suggests
508 possible co-regulation gene networks between
509 unknown uTARs and known cancer-associated
510 genes. The top three uTARs with more than 50 high-
511 high (HH) spots showing co-expression with a
512 greater number of cancer-relevant genes compared to
513 the other uTARs in the H&N sample C (HNC) are
514 shown in **Fig. 4a**. Some uTARs were co-expressed
515 with many genes involved in cancer associated
516 pathways, especially the P53 pathway and G2M
517 checkpoint (**Fig. 4a**), while in kidney cancer high co-
518 expression was observed with genes involved in P53
519 pathway and Epithelial-mesenchymal transition
520 (EMT) (**Supplementary Fig. 17**). Examples of
521 spatially co-expressed uTARs and coding genes in
522 the H&N sample are shown in **Fig. 4b**. For example,
523 cuTAR213507 (chr4:182814299-182820899 (+))
524 was co-expressed with the mRNA of *FGFR3*, a gene
525 upregulated in H&N cancers, also on chromosome 4
526 (chr4:1793293-1808867-+). 24 other cancer-relevant
527 genes located on the same chromosome with this top
528 spatially autocorrelated cuTAR, suggesting strong
529 evidence for a cancer-associated cuTAR. Moreover,
530 this cuTAR contains a GWAS SNP rs1516535, an
531 intron variant mapping to *TENM3*. *TENM3* is
532 upregulated in several cancers compared to normal
533 tissues, particularly in H&N SCCs, pancreatic
534 adenocarcinoma, thymoma, and neuroblastoma³⁹. It
535 also serves as an integration site for the Human
536 Papilloma Virus (HPV), causing cervical and a high
537 proportion of Oropharyngeal cancers⁴⁰. It is worth
538 mentioning that the OPSCC samples utilized in this
539 study were HPV-16⁺. Fusions of *TENM3* gene have
540 been reported to induce cell proliferation⁴¹.
541 Using co-expression network analyses with
542 hdWGCNA, we identified that cuTAR170206
543 formed part of a co-expression module with genes
544 enriched for various cancer hallmarks. Additionally,

545 it was found to be highly co-expressed with *NDRG1*
546 (**Fig. 4c**), which is known to be downregulated in
547 metastatic OPSCC tumors⁴². In this particular case,
548 *NDRG1* was seen to be expressed only in the
549 periphery and not in the core of the tumor (**Fig. 4c**).
550 This gene has been shown to have pleiotropic
551 functions, acting as tumor promoters in some cancers
552 while acting as a tumor suppressor in others⁴³. This
553 modulation in function could potentially be
554 attributed to its association with interacting
555 lncRNAs.

556 **Inferring functions by machine learning
557 prediction of interaction with RBPs and
558 colocalization**

559 LncRNAs interact with RNA binding proteins
560 (RBPs) to regulate mRNA and protein localization
561 and functions⁴⁴. Several machine learning models
562 that have been trained on known lncRNA-RBP
563 interactions can help predict new interactions. We
564 applied HLPI-Ensemble⁴⁵ to predict the interaction
565 of the shortlisted uTARs with RNA binding proteins
566 (RBPs). An interesting association for
567 cuTAR215705 was observed in our in-house ST
568 breast cancer tissues. The cell-types inferred from
569 scType are shown (**Fig. 4d**). cuTAR215705 was
570 predicted to interact with RNA-binding proteins
571 (RBPs), particularly HuR (ELAVL1) and TARDBP.
572 Moreover, it was found to be a component of the
573 same co-expression module identified through
574 hdWGCNA, which is enriched for TGF-**β** negative
575 regulation and positive regulation of protein
576 localization (**Supplementary Fig. 18a**), similar to
577 TARDBP. Additionally, it shares this module with
578 the gene BIRC5, which has recently been reported to
579 interact with ELAVL1. Previous reports indicate that
580 recombinant ELAVL1 is linked to the upregulation
581 of BIRC5 expression, while its silencing correlates
582 with the downregulation of both BIRC5 mRNA and
583 protein, accompanied by increased apoptosis.
584 Survival analyses demonstrated that increased *TTP*
585 (ZFP36) and low *BIRC5* expression predicted an
586 overall better prognosis compared to dysregulated
587 *TTP* and high *BIRC5*⁴⁶. Similar trends are observed
588 in the breast cancer data. cuTAR215705 co-localizes
589 with *BIRC5* and *ELAVL1* in the tumor cells (**Fig. 4e**).
590 However, little co-localization was observed with
591 *TTP*. The co-localization was significant in the tumor
592 region of the tissue and the absence of both the

593 cuTAR and the two aforementioned genes (*BIRC5* and *ELAVL1*) was observed in Memory CD8⁺ T cells
 594 (Supplementary Fig. 18b).
 595



596
 597
Fig. 4 | Spatial co-expression of uTARs with cancer relevant genes. **a**, Top uTARs in Head and neck cancer (sample C) with high
 598 spatial autocorrelation (HH: both features expressed in a given spot) with different cancer-relevant gene sets. **b**, Spatial correlation of
 599 expression with genes (LH/HL: Either the gene or cuTAR is expressed, LL: Both features not expressed, NS: No significant
 600 autocorrelation). **c**, WGCNA analysis shows 32 genes displaying high coexpression with cuTAR170206 (circled in red) that forms part
 601 of the same regulatory module which includes genes like NDRG1, the downregulation of which is associated with metastasis in OPSCC
 602 and other genes involved in DNA repair, hypoxia response and negative regulation of apoptosis (associated GO terms highlighted in red
 603 boxes). **d**, Cell-type annotations of a breast cancer tissue. **e**, Co-expression of cuTAR215705 with the mRNA encoding the RNA-binding
 604 protein *ELAVL1* and its interacting partner *BIRC5* and the mRNA encoding *TARDBP5* in breast cancer.
 605

606 Identification of cell-type specific lncRNAs 607 (cuTARs) associated with response to 608 cancer therapy

609 Thousands of uTARs identified in ST were
610 consistently detected using melanoma scRNA-seq
611 data as highlighted in **Supplementary Fig. 5**. This
612 consistency suggests the reproducibility and validity
613 of the identified uTARs. While Visium ST provides
614 spatially resolved expression data, it lacks the
615 cellular resolution provided by scRNA-seq. At single
616 cell resolution, scRNA-seq enables the identification
617 of individual cell-types and states, allowing for a
618 more detailed characterization of cellular
619 heterogeneity than in the Visium data. Integrating
620 scRNA-seq data with ST allows assignment of
621 spatially resolved lncRNA expression patterns to
622 specific cell-types and subpopulations identified
623 through scRNA-seq.

624 Case study 1: Cell-type specific lncRNAs in Acral 625 Melanoma and their associations with response to 626 anti-PD1 immunotherapy

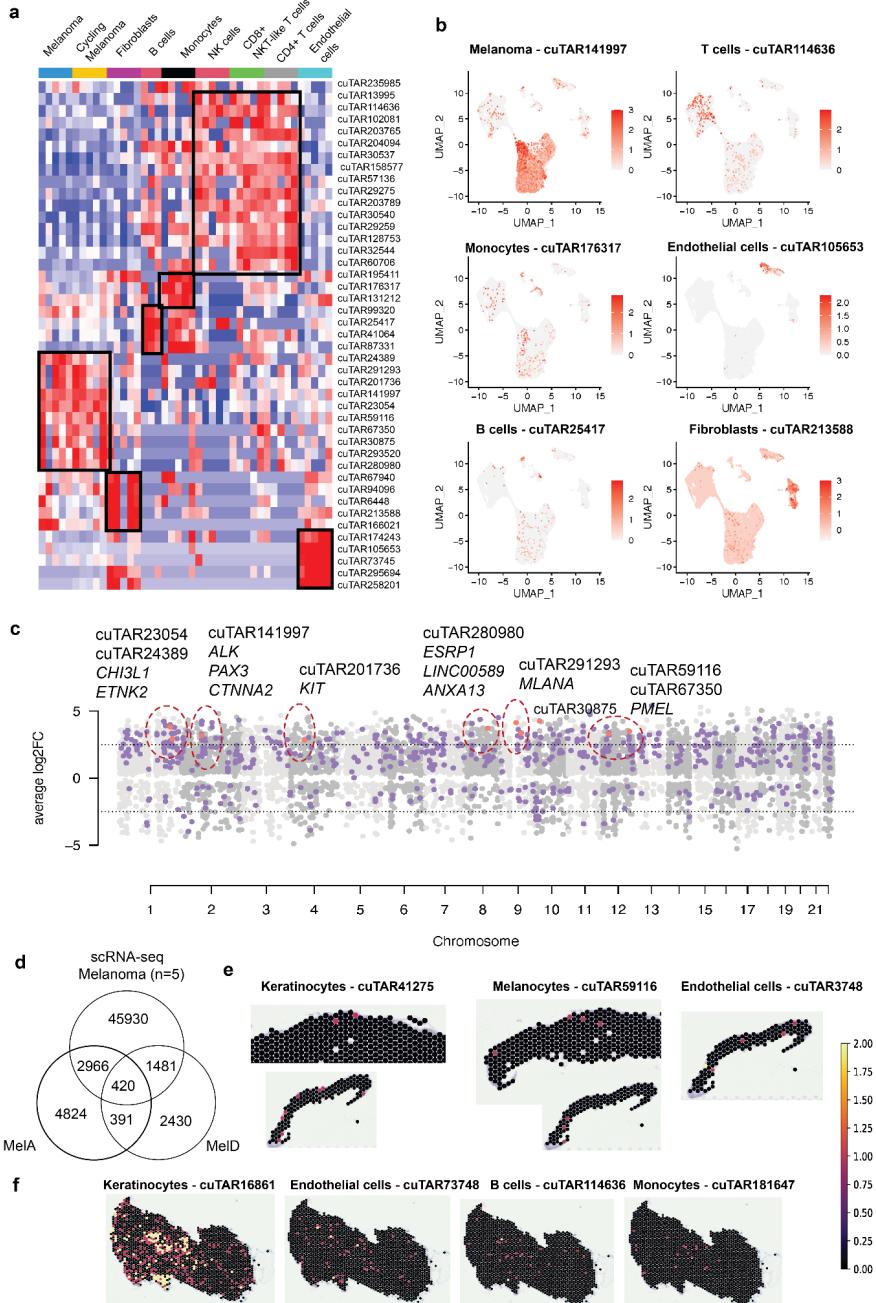
627 LncRNAs are generally specific to different cell-
628 types and could play a role in treatment responses.
629 To demonstrate this, a public scRNA-seq Acral
630 Melanoma dataset was analyzed to identify cell-type
631 specific lncRNAs and to analyze their response to
632 anti-PD1 immunotherapy (**Supplementary Fig. 19**).
633 The samples were integrated, and the clusters were
634 given cell-type identities based on marker gene
635 expressions (**Supplementary Figures 20, 21**). The
636 lncRNAs differentially expressed in each cell-type
637 were identified with edgeR (**Fig. 5a**) and expression
638 of a subset were overlaid on the UMAP (**Fig. 5b**).
639 The uTARs upregulated in the tumor cells show co-
640 expression with respective proximal protein-coding
641 genes associated with melanoma (**Fig. 5c**). For
642 example, we observed the co-upregulation of uTARs
643 with pigmentation genes *PMEL* (cuTAR67350) and
644 *MLANA* (cuTAR293520)⁴⁷. Additionally,
645 cuTAR280980 exhibited co-expression with *ESRP1*,
646 encoding a master splicing regulator in EMT⁴⁸, and
647 an annotated lncRNA, *LINC00589* (also known as
648 *TSLNC8*), implicated in diverse roles across different
649 cancer types. In hepatocellular carcinoma, non-small
650 cell lung cancer, and glioma, *LINC00589* inhibits
651 proliferation, invasion, and metastasis⁴⁹. While, in
652 pancreatic cancer, *LINC00589* serves as an oncogene
653 by stabilizing *CTNNB1* and is clinically valuable

654 as an independent prognostic factor for
655 discriminating trastuzumab responders⁴⁹.
656 *LINC00589* is also co-expressed with *ANXA1*,
657 known to be upregulated in invasive melanomas⁵⁰.
658 This suggests that these uTARs could be part of
659 regulatory modules influencing tumor progression.

660 Up to 48.5% of lncRNAs from our in-house ST
661 melanoma samples overlapped with the scRNA-seq
662 melanoma data from five samples (**Fig. 5d**). The
663 expression of some of these overlapping uTARs
664 across the datasets that show cell-type specific
665 expression in the scRNA-seq melanoma samples
666 were overlaid on the in-house ST melanoma tissues
667 (**Figures 5e, f**).

668 Random sampling and pseudo-bulking were
669 performed on the scRNA-seq expression data pre and
670 post anti-PD1 immunotherapy for the one sample
671 that was available to identify lncRNAs potentially
672 changing upon treatment. As a positive control,
673 marker genes for melanoma were also visualized.
674 Melanoma markers were upregulated in both cycling
675 and non-cycling melanocytes (**Supplementary Fig.**
676 **22a**) and the proliferation markers were upregulated
677 only in the non-cycling melanocytes
678 (**Supplementary Fig. 22b**). A number of uTARs
679 were upregulated pre-treatment as compared to the
680 same sample post treatment. For example, two
681 lncRNAs (cuTAR288960 (chr9:22406449-
682 22434299(+)) and cuTAR288950 (chr9:22363449-
683 22389099(+))) were downregulated post-treatment
684 in the melanocytes (**Figures 6a, b**). These overlap
685 with lncRNA annotations from other databases
686 HSALNG0070406 (LncBook) and
687 HSALNG0022615 (LncBook) respectively. Both of
688 these are e-lncRNAs, overlapping with enhancers
689 active in melanoma. 79 SNPs from GWASs
690 associated with risk of keratinocyte cancer, BCC and
691 other non-melanoma skin cancer are colocalized
692 with these transcripts. On the other hand, two novel
693 unreported potential lncRNAs cuTAR275551
694 (chr8:29578049-29579549(-)) and cuTAR94762
695 (chr15:80009299-80012299 (+)) were upregulated
696 post-treatment in tumor cells (**Figures 6a, b**). The
697 latter was co-localized with an eQTL SNP
698 rs35541517 that affects the expression of *RASGRF1*
699 in skin. *RASGRF1* gene fusions have been previously
700 reported in melanoma and other cancers to induce
701 cellular transformation and promote tumorigenesis,

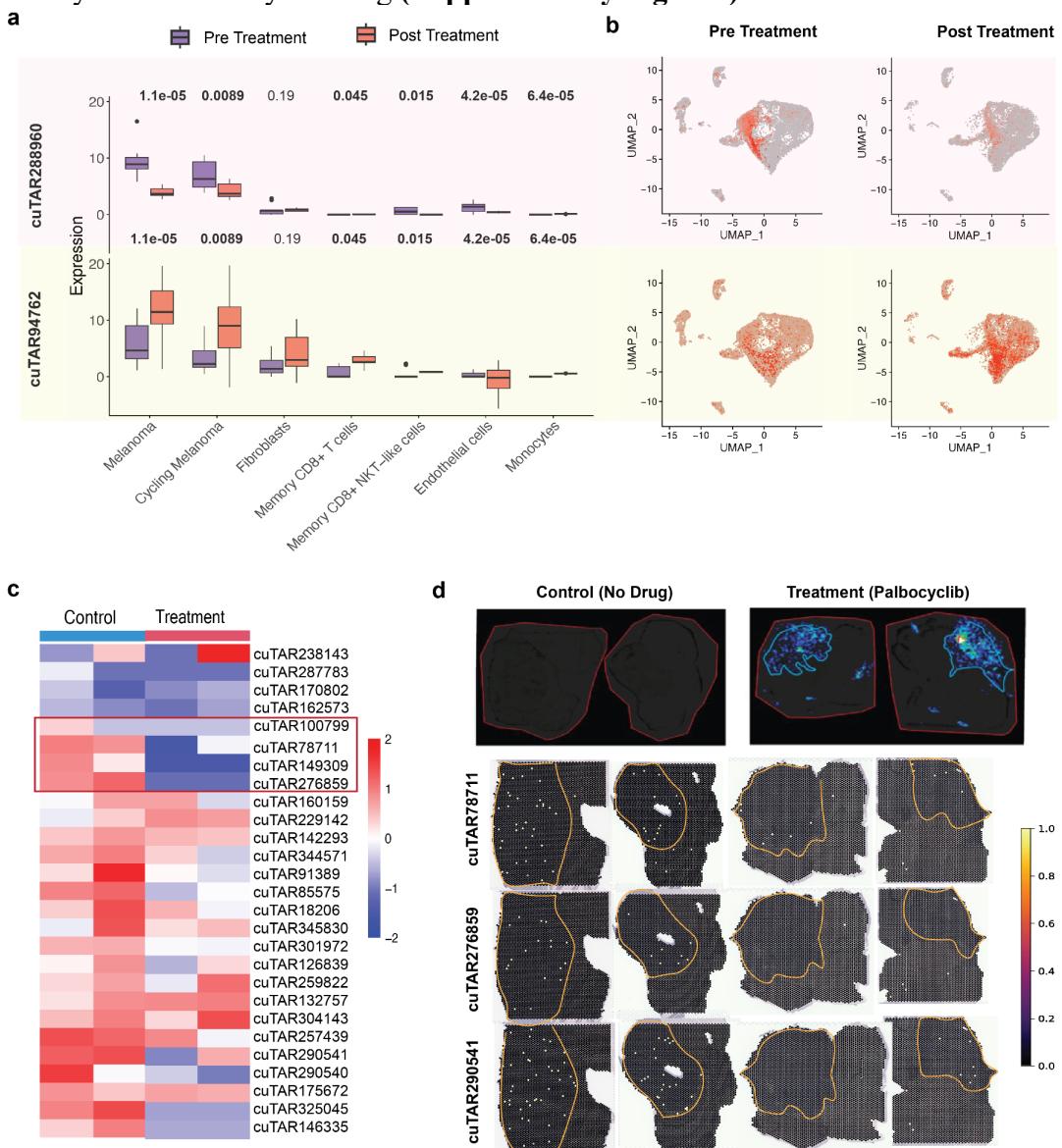
702 through activating the RAS signaling pathway⁵¹. LncRNA expression can be altered upon treatment and can
 703 therefore be used as markers of response. These changes in expression may also indicate that they may be playing
 704 a role in regulating oncogenesis, tumor suppression or immune resistance, given that the patient from whom this
 705 sample was collected was a poor responder and could be used as markers to indicate the same.



706
 707 **Fig. 5 | Cell-type specific expression of lncRNAs.** **a**, Cell-type specific uTARs (highlighted with black boxes) in scRNA-seq Acral
 708 Melanoma samples. **b**, Expression of some cell-type specific uTARs projected on the UMAP. **c**, Expression trends as compared to
 709 coding genes. Tumor-specific uTARs and proximal cancer-associated coding genes are highlighted in red circles. **d**, Cell-type specific
 710 lncRNAs identified in the scRNA-seq data that overlap with in-house ST data. **e, f**, Expression of cell-type specific uTARs in 10X
 711 Visium Melanoma samples (Samples MelA and MelD respectively).

712 Case study 2: Response to Palbociclib in Medulloblastoma PDOX models

713 Patient-derived orthotopic xenograft (PDOX) mouse models of human tumors are useful preclinical models to
714 study tumors or drug effects. Treated and untreated samples from human medulloblastoma PDOX mouse models
715 were generated as described previously⁵². These samples were analyzed for lncRNAs and those significantly
716 differentially expressed between the treated and untreated groups were identified. Some uTARs that were
717 expressed in the untreated human tumor region were downregulated or unexpressed in the Palbociclib treated
718 human tumor regions (**Figures 6c, d**). A similar trend was also observed with ONT experiments (**Supplementary**
719 **Fig. 23b**) and with protein-coding oncogenes like *FOXM1*, *PLK1*, *E2F1* and *GLI2*⁵³ which are oncogenes and/or
720 involved in pathways modulated by the drug (**Supplementary Fig. 23c**).



721 **Fig. 6 | Response of lncRNAs to drug treatments.** **a**, Expression trends of melanoma-specific uTARs in response to anti-PD1 therapy
722 **b**, and their UMAP projections. **c**, Downregulation of uTARs in Medulloblastoma in response to Palbociclib. Some uTARs showing
723 explicit differences in expression are highlighted with the red box. **d**, Spatial expression of the tumor specific uTARs downregulated
724 post treatment highlighted with a red box in **c**. Red outlines define the tissue borders and yellow outlines highlight the human tumor
725 region.

727 uTARs as prognostic markers

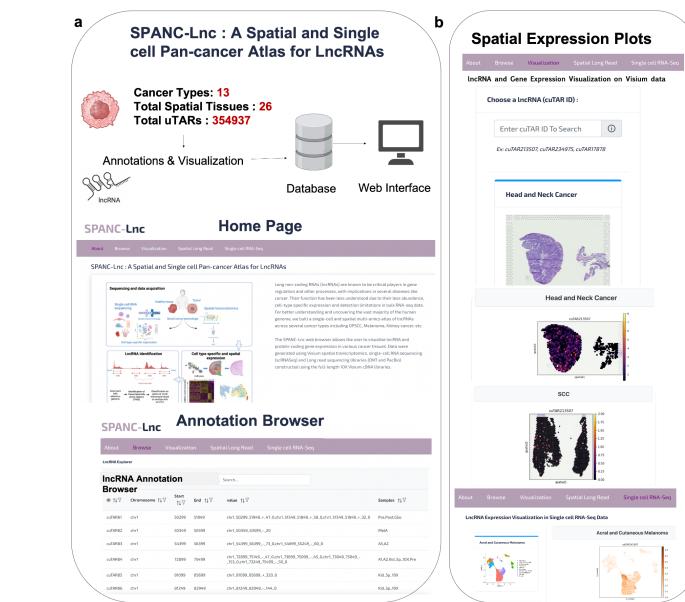
728 LncRNAs could also be used as predictive
729 biomarkers for the prognosis of patients with
730 cancer^{54,55}. Survival analysis was performed by
731 dividing the samples from TCGA (360 melanoma
732 samples) as low and high cuTAR expressing groups
733 to see if any cuTAR could predict survival and thus
734 be used as a prognostic marker. From the TCGA
735 metadata, ‘Days_to_last_follow_up’ (for alive
736 patients) and ‘days_to_death’ (for the deceased)
737 were used to calculate survival probability. Two of
738 the cancer-cell specific uTARs across the melanoma
739 samples, cuTAR67350 and cuTAR293520, showed
740 a significant difference in survival probabilities
741 across the two groups. The low expressing group had
742 a higher survival probability (**Supplementary Fig.**
743 **24**). This suggests that certain spatially resolved cell-
744 type specific lncRNAs might hold predictive value,
745 especially at early stages. For instance, the top
746 informative uTARs in melanoma were found to be of
747 low or no expression in H&N cancer samples from
748 TCGA (**Supplementary Fig. 25**) and *vice versa*.
749 Additionally, within the relevant cancer type,
750 patients were able to be stratified into high and low
751 expressing groups based on the expression of these
752 lncRNAs. Such specificity may not be achieved with
753 lncRNAs identified from bulk data alone.

754 While detailed results for two cancer types were
755 discussed, similar preliminary results for
756 glioblastoma, kidney and breast cancers were found
757 (**Supplementary Fig. 26**). The cuTAR87324,
758 upregulated in the tumor cells of kidney cancer was
759 detected across OPSCC (validated by ONT) and skin
760 cancers although at very low levels (**Supplementary**
761 **Fig. 27**). This could be indicative of its function
762 specific to kidney cancers.

763 A Spatial and Single Cell Pan-cancer Atlas of 764 lncRNAs

765 The findings of this study have been made available
766 through the publicly available website ‘SPanC-Lnc’
767 on AWS cloud (**Fig. 7**). The annotations and
768 expression data can be accessed and visualized
769 interactively. To date, this is the largest resource of
770 pan-cancer annotations of lncRNAs with single cell

771 and spatial context. Resources like FANTOM-CAT,
772 lncExpDB and NONCODE provide lncRNA
773 annotations mostly from bulk RNA-seq data of cell
774 lines and tissues (**Table 1**). A few recent studies have
775 explored the utility of lncRNAs to differentiate tissue
776 specific cell-type populations in breast cancers using
777 single cell RNA-seq technology and highlighted the
778 importance of the need to annotate lncRNAs with
779 more resolution than bulk RNA-seq^{16,17}. Recent
780 studies utilizing ST data have explored the
781 expression of annotated lncRNAs^{55,56}. These studies
782 have incorporated methods designed to capture non-
783 polyadenylated lncRNAs, which are often
784 undetected or poorly detected with Visium.
785 However, this information on a pan-cancer scale for
786 potential novel lncRNAs is not available. This study
787 not only provides coordinates of the identified
788 transcripts, but also provides a comparison of
789 expression across different cancer types and cell-
790 types and analyzes their putative functions.



791 **Fig. 7 | SPanC-Lnc : A Spatial and Single cell Pan-cancer**
792 **Atlas for lncRNAs.** **a**, All the findings of this study are
793 available in the form of a website. The annotation browser
794 enables perusal through lncRNA coordinates, cancer types
795 identified, cell-type specificity, overlapping regulatory
796 elements, etc. **b**, Visualization of the lncRNA expressions on
797 the spatial tissues across multiple cancer types from Visium and
798 Long Read data

803 **Table 1: Comparison of available resources for lncRNA**

Resource	FANTOM CAT	lncExpDB	NONCODE v6	SPanC-Lnc (This study)
No. of lncRNAs reported	199375	101293	173112	353141
Source	Primary cell lines and tissues	Primary cell lines and tissues	lncRNA databases including Ensembl, RefSeq, lncRNADB, LNCipedia, CANTATAdb, GREENC, old versions of NONCODE and literature	Tissues
Condition		Healthy and disease	Human cancers and plant morphology	13 cancer types
Technology	RNA-seq	RNA-seq	RNA-seq, scRNA-seq	scRNA-seq and Spatial Transcriptomics (10X Visium, Nanopore, PacBio)
Organism	Human	Human	Animals and Plants	Human
Citation	Hon <i>et al.</i> ⁵⁶	Li <i>et al.</i> ⁵⁷	Lianhe <i>et al.</i> ⁵⁸	This study

804

805

806 **DISCUSSION**

807 The identification and analysis of potential novel
808 lncRNAs from spatial and single cell datasets has
809 provided us with valuable insights into the vast and
810 complex landscape of gene regulation in cancers.

811 Our study utilized these recent technologies to
812 profile the transcriptomes of cancer tissues,
813 uncovering a diverse repertoire of previously
814 unannotated lncRNAs. Through integrative analysis
815 across multiple cancer types, we identified a subset
816 of lncRNAs exhibiting dynamic expression patterns
817 and tumor-specific spatial distributions, suggesting
818 their potential roles as major regulators in
819 tumorigenesis and cancer progression.

820 At a structural level, lncRNAs could be derived from
821 enhancers, promoters, pseudogenes or transposons.
822 LncRNAs derived from the transcription of active
823 enhancers (e-lncRNAs) are known to participate in
824 many cancer-associated biological processes like
825 angiogenesis, proliferation, invasion, and metastasis

826⁵⁹. For example, e-lncRNA *HCCL5* when activated
827 by ZEB1 promotes the malignant progression of
828 hepatocellular carcinoma⁶⁰. In colorectal cancer, e-
829 lncRNA AC005592.2 promotes tumor progression
830 by regulating *OLFM4*⁶¹, and *LINC01488* has been
831 shown to mediate breast cancer risk by regulating
832 *CCND1* through estrogen signalling pathways only
833 in tumor cells⁶²

834 At the genetic level, disease-associated GWAS SNPs
835 or eQTLs could regulate nearby protein coding genes
836 through altering the levels of co-localizing
837 lncRNAs⁶³. Further studies would be required to test
838 these interactions as in this study we have pointed out
839 preliminary level analysis and results. Furthermore,
840 spatial autocorrelation with coding genes involved in
841 several cancer-related pathways revealed
842 coexpression of these novel lncRNAs in pathways
843 associated with cell cycle, cellular proliferation,
844 immune response, angiogenesis, hypoxia, and
845 metastasis, highlighting their putative involvement

846 in critical biological processes underlying cancer
847 development.

848 Additionally, LncRNAs could also be useful in evo-
849 devo comparative genomics. For example,
850 identifying orthologous LncRNAs across different
851 model organisms and studying them can help
852 understand the functions of the human counterparts
853 in embryonic development or other processes as
854 highlighted in a recent study with gecko
855 embryogenesis LncRNAs of the brain, showing they
856 are most likely functional equivalents to human
857 LncRNAs⁶⁴.

858 While poly-adenylated LncRNAs, the main focus of
859 this study, constitute the majority of ncRNAs, other
860 classes of ncRNAs like circular RNAs
861 (circRNAs)^{65,66}, pre-miRNAs/miRNAs⁶⁷,
862 piRNAs^{68,69}, and non-polyadenylated LncRNAs⁷⁰ are
863 also aberrantly expressed in cancers and gene
864 regulation. Importantly, the identification of these
865 LncRNAs in addition to the novel LncRNA panel put
866 forth in this study would serve as a valuable resource
867 for future investigations, providing a foundation for
868 understanding their mechanistic roles and
869 therapeutic potential in cancer. Single-cell
870 sequencing data helped identify cell-type specific
871 LncRNAs and their response to treatment in the tumor
872 cells. Similar trends of the same LncRNAs identified
873 across more different cancer types, could help
874 confirm the cell-type specificity and could help serve
875 as cell-type markers. Moreover, tumors and tissues
876 often exhibit cellular heterogeneity. LncRNAs
877 identified from scRNA-seq and ST data can be
878 associated with specific subpopulations of cells,
879 including rare cell-types that might be crucial for
880 disease progression or prognosis. Although these
881 may not replace the established protein-coding
882 markers, they could complement them. Deeper
883 analysis could be done by analyzing the survival
884 probabilities coupled with coding genes.
885 Additionally, our findings emphasize the
886 significance of leveraging cutting-edge technologies
887 to unravel the complexity of non-coding RNA
888 landscapes, paving the way for the development of
889 novel diagnostic markers and targeted therapies for
890 diverse cancer types.

891 **ONLINE METHODS** 892 **Datasets**

893 **Spatial transcriptomics datasets across** 894 **different cancers**

895 In-house and previously published datasets from
896 fresh frozen (FF) tissues of different cancer types
897 (Kidney⁷¹, Skin, SCC, BCC, Head and neck OPSCC,
898 Medulloblastoma⁵², colorectal⁷² and Breast
899 cancers⁷³), clinical FFPE biopsies of melanoma⁷⁴
900 were used in this study. Datasets from the 10X
901 Visium FFPE probe hybridization based capture
902 were used as the control since a predefined set of
903 probes, targeting specific genes is used to capture the
904 transcripts and novel ncRNAs would ideally not be
905 captured, although off-target activity of the probes to
906 LncRNAs has been reported⁷⁵. Previously published
907 in-house melanoma datasets⁷⁴ and other publicly
908 available datasets of ovarian and prostate cancers
909 from the 10X Visium⁷⁵ were used as a control as
910 described in a previous study⁷⁵. The coverage of the
911 samples was an average of 100M reads captured
912 from about 2000 spots while for the in-house kidney
913 and breast cancer datasets it was ranging between
914 100-300M reads. Shown in detail are the results for
915 the in-house spatial head and neck cancer and public
916 melanoma scRNA-seq datasets. Similar analysis was
917 done for all different cancer types.

918 **Single-cell sequencing data**

919 Datasets from 10X Genomics including
920 glioblastoma, breast cancer, ovarian cancer (3'-
921 scRNA-seq), pancreatic and kidney cancer and
922 NSCLC (5' scRNA-seq) were used⁷⁶⁻⁸¹.

923 Other previously published datasets were also used
924 to analyze LncRNA expressions at a cell-type specific
925 level. These included 3'-sequencing datasets of
926 Acral and Cutaneous Melanoma from the study
927 ([PRJNA862451](#))⁸², PBMCs from Merkel cell
928 carcinoma (MCC) (SRR7722937)⁸³, head and neck
929 cancer patients (SRR13418965, SRR13419137,
930 SRR13419168)⁸⁴ and 5'- sequencing datasets of
931 tissue biopsies from patients with basal cell
932 carcinoma (BCC). This included data before and
933 after anti-PD-1 therapy from three patients
934 (SRX5128480, SRX5128482, SRX5128486,
935 SRX5128489, SRX5128506, SRX5128507) out of
936 the 12 patients in the original study ([GSE123814](#))
937⁸⁵.

938 **Detection of potential novel lncRNAs using 939 a HMM based approach**

940 The method described by²¹ was adopted to identify
941 transcriptionally active regions. The pipeline uses an
942 R package GroHMM⁸⁶ that utilizes a two-state
943 hidden Markov model to classify regions in an
944 aligned genome as transcriptionally active or not,
945 based on the read coverage in each bin. The position
946 sorted BAM files generated by the 10X spaceranger
947 pipeline (spaceranger 1.3.0 and 2.0.1 using default
948 parameters) were used as inputs to the pipeline. By
949 default, it splits the genome into non-overlapping
950 bins of 50bp and is called transcriptionally active if
951 atleast three reads are detected in that bin and are
952 labeled as TARs (Transcriptionally Active Regions).
953 TARs found within 500 bp apart are merged into one
954 unit. One of the limitations of this approach is that
955 we might wrongly identify two different but adjacent
956 transcripts as a single transcript. The regions
957 identified are then overlapped with reference gene
958 annotations in a strand-specific manner (reference
959 annotations from Gencode v43 were used). The
960 TARs overlapping with existing gene annotations
961 (even a few base pairs of overlap is considered
962 'annotated' to account for extended gene boundaries)
963 are labeled aTARs (annotated TARs) and the ones
964 falling outside gene boundaries are called uTARs
965 (unannotated TARs). We rule out the unannotated
966 transcripts found on the opposite strand to that of an
967 annotated transcript for this initial phase of the study.
968 A count matrix of the TARs is generated with Drop-
969 Seq tools DigitalExpression function⁸⁷.

970 **Analysis of sequences for coding potential, 971 conservation and stability**

972 To make sure that the identified transcripts are non-
973 coding, the coding potential was analyzed using
974 CPAT⁸⁸. The FASTA sequences of the uTARs were
975 extracted using bedtools getfasta. CPAT was then
976 run using the inbuilt model for the human genome.
977 Human coding probability (HCP) cutoff of 0.364
978 was used as described in the tool's documentation.
979 HCP ≥ 0.364 indicates coding sequence while HCP
980 < 0.364 indicates non-coding sequence⁸⁸.

981 Further, the conservation of the sequences were
982 calculated using the phastCons BigWig files
983 comprising the phastCons scores for multiple
984 alignments of 29 primate/mammalian genome

985 sequences to the human genome GRCh38/hg38 build
986 (Downloaded
987 from
988 <http://hgdownload.cse.ucsc.edu/goldenPath/hg38/phantom/cons30way/hg38.phastCons30way.bw>)⁸⁹. The
989 bedtools bigWigAverageOverBed function was used
990 extract the conservation score for each specified
991 coordinate in a bed file.

992 Minimum free energy (MFE) is another measure for
993 potential functionality. In general, the lower the
994 MFE, the more stable the secondary structure of the
995 transcript is and hence more likely to be functional.
996 MFE was calculated for each uTAR with RNAfold
997 2.6.4⁹⁰ using the default parameters. The most stable
998 secondary structure is predicted.

999 **Classification and potential functional 1000 implications**

1001 The identified uTAR reads were overlapped with
1002 trait-associated SNPs from GWASdb⁹¹ and with
1003 GTEx CAVIAR eQTLs from the UCSC table
1004 browser (downloaded on 17/06/2023)³⁵ with a
1005 window size of 10kb using bedtools to propose
1006 potential genetic level regulation based on co-
1007 localizing features.

1008 The identified uTARs were overlapped with
1009 enhancers from the EnhancerAtlas³³ and TSS data
1010 from FANTOM for window sizes ranging from 1kb-
1011 1Mb. These can also provide important clues about
1012 the regulatory mechanisms and potential functions of
1013 these transcripts, helping to shed light on the
1014 complex regulatory networks that govern gene
1015 expression.

1016 **Identification of cancer-specific lncRNAs**

1017 The tumor regions in each tissue were identified
1018 using annotations by a pathologist and using gene
1019 expression profiles. The loupe browser from 10X
1020 Genomics was used to label the barcodes as
1021 cancerous and normal and the annotations were
1022 exported and used for further analysis. The uTARs
1023 differentially expressed across these two annotated
1024 clusters were identified using Seurat v4.3 processed
1025 using SCTransform (for FindAllMarkers function,
1026 the parameters min.pct was set to 0.1 and
1027 logfc.threshold varied between 0.1-0.25 depending
1028 on the sample analyzed. The percentage of spots in
1029 the cancerous *versus* normal regions expressing the
1030 selected uTARs were also calculated.

1031 Few uTARs from two samples of the Head and Neck 1080
1032 cancer dataset were shortlisted to be the uTARs of 1081
1033 interest that could be the top potential functional 1082
1034 candidates. They were chosen such that (i) they are 1083
1035 detected in all samples (ii) they are longer than 1000 1084
1036 bp (iii) they are novel or represented in public 1085
1037 lncRNA databases (iv) they are differentially 1086
1038 expressed in the cancerous region of the tissue. To be 1087
1039 more confident about the chosen regions, we also 1088
1040 checked their coverages in bulk RNA-seq datasets 1089
1041 from TCGA and the scRNA-seq dataset of HNC and 1090
1042 checked if they were detected. The bigwig RNA-seq 1091
1043 coverage files for 96 random TCGA samples were 1092
1044 downloaded using recount. The uTAR coverages 1093
1045 were extracted from these files using 1094
1046 bigWigAverageOverBed for the specified 1095
1047 boundaries in a .bed file. TMM normalization was 1096
1048 performed on the raw coverage (counts) using 1097
1049 edgeR. By analyzing coverage, gene expression 1098
1050 levels can be inferred. Regions with higher coverage 1099
1051 indicate higher expression levels of the 1100
1052 corresponding uTARs. 1101
1102

1053 **Confirmation of detected signals using 1103 1054 Long-read sequencing 1104 1055 Oxford Nanopore**

1056 Long-read sequencing with Oxford Nanopore 1105
1057 technology was performed using the 10X Visium 1106
1058 biotinylated 3' cDNA libraries to validate the 1107
1059 expression of the identified potential lncRNAs using 1108
1060 PromethION flow cells. SQK-LSK110 and EXP- 1109
1061 NBD kits from ONT was used to generate the 1110
1062 libraries for the Head and Neck sample C (HNC). 1111
1063 Sequence runs were generated using super-accurate 1112
1064 basecalling setting with MinKNOW version 22.12.5 1113
1065 and Guppy version 6.4.6 (flow cell type: FLO- 1114
1066 PRO002). The nanopore run generated ~16 million 1115
1067 reads. To demultiplex the reads based on the spatial 1116
1068 barcode, scNanoGPS was used. Some changes were 1117
1069 made to the default values of the pipeline with 1118
1070 respect to the scan region, which was set to 1500bp 1119
1071 since the 3' adaptors were found as many bases away 1120
1072 due to longer chimeras. The long non-coding RNAs 1121
1073 were then identified using a modified version of the 1122
1074 uTAR pipeline, since scNanoGPS generates 1123
1075 individual alignment files for each spatial barcode 1124
1076 identified, rather than an individual BAM file with 1125
1077 reads tagged with spatial/cell and UMI barcodes. 1126
1078 Featurecounts was used to generate the uTAR 1127
1079 expression matrix. GTF annotations of the uTARs

1031 from the corresponding 10X Visium dataset was also 1080
1032 used to generate the count matrix. The identified 1081
1033 spatial barcodes were matched with those from the 1082
1034 10X Visium barcode list from the tissue_positions_list.csv 1083
1035 in the spaceranger output of the corresponding Visium data 1084
1036 and only those with tissues placed on them were 1085
1037 retained. The coordinates of the matched barcodes were 1086
1038 also extracted from the aforementioned CSV file. The 1087
1039 expression of some potential candidates were 1088
1040 visualized using stlearn⁹² and was compared to that 1089
1041 of the previously generated short-read data. 1090

1042 Further, the experiment was also performed for skin 1091 cancer samples. SQK-NBD-114.24 kit (Native 1092
1043 barcoding kit 14) to prepare libraries for the SCC and 1093
1044 BCC samples, which were sequenced on 1094
1045 PromethION P24 device using R10 flow cell (FLO- 1095
1046 PRO114M). Sequence bases (raw data) were called 1096
1047 using PromethION software release 23.11.4 1097
1048 (minknow-core-promethion 5.8.3, dorado version 1098
1049 7.2.13). Re-basecalling was done using dorado 1099
1050 version 0.5.1. Similar downstream analysis using 1100
1051 scNanoGPS and uTAR visualization were 1101
1052 performed. 1102

1103 **PacBio**

1104 The full length Visium cDNA libraries were used for 1105
1105 HiFi Sequencing. The procedure for Preparing MAS- 1106
1106 Seq libraries using MAS-Seq for 10x Single Cell 3' 1107
1107 kit (PN:102-678-600-REV03) is as follows. After the 1108
1108 steps of cDNA amplification, cleanup and QC of 1109
1109 10X Visium, 225 pM cDNA per library with 1110
1110 concentration of 23 ng/ul were pooled for 1111
1111 sequencing. Firstly, the TSO priming artifacts during 1112
1112 cDNA synthesis were removed using biotinylated 1113
1113 primers. Next, DNA fragments containing 1114
1114 orientation-specific MAS segmentation adapter 1115
1115 sequences were generated by performing 16 parallel 1116
1116 cDNA amplification reactions. MAS enzyme was 1117
1117 used to create single-stranded extensions to enable 1118
1118 directional assembly of cDNA segments into a linear 1119
1119 array. After DNA damage repair and nuclease 1120
1120 treatment, the cDNA clean-up was done with 1.2X 1121
1121 SMRTbell beads. 1122

1123 Further, the pbcbromwell workflow of SMRTlink 1124
1124 Tools was used for to process the HiFi BAM files. 1125
1125 With the aligned genome file from Minimap2, the 1126
1126 uTAR pipeline was run and the uTAR expression 1127
1127

1128 was overlaid on the tissues and compared with that
1129 of the Visium.

1130 Quantitative Reverse Transcription Polymerase 1131 Chain Reaction

1132 Six cDNA samples from the 10X Visium libraries
1133 including the Head and Neck Samples (HNB, HNC),
1134 SCC, BCC and the Colorectal cancer samples
1135 (Colorectal Primary Tumor - CP and metastasized
1136 tumor - CM) were tested for seven potential
1137 lncRNAs (**Table**). *GAPDH*, a housekeeping gene
1138 and *KRT18*, an epithelial marker were used as
1139 positive controls. Two negative controls NEG1 and
1140 NEG2 were designed to target genomic regions
1141 around the centromere that do not code for RNA,
1142 hence controls for any genomic DNA contamination.
1143 H₂O was used as a non-template negative control.
1144 Primers were designed to target 7 uTARs. The
1145 primers were designed in such a way that they did
1146 not have any off-targets using the sequence
1147 information of the HNC sample. qPCR Master Mix
1148 was prepared for each sample following the KAPA
1149 SYBR FAST qPCR Kit guide to allow each well to
1150 contain 1 μ L of 10ng/ μ L cDNA, 5 μ L KAPA SYBR®
1151 FAST qPCR Master Mix (2X) (Roche), 0.2 μ L
1152 ROX™ Low Reference Dye (50X) (Roche) and
1153 3.4 μ L of RNase-free water. As *GAPDH* is an
1154 endogenous control, the template for this primer was
1155 further diluted 1:8 to ensure it is within a comparable
1156 quantifiable range.

1157 9.6 μ L of the qPCR Master Mix was loaded into each
1158 well on the 96-well qRT-PCR plate before 0.4 μ L of
1159 10nM the respective lncRNA primer pairs were
1160 added. The qPCR reaction was performed with the
1161 following protocol using the ViiA7 96-well Real-
1162 Time PCR System with High Resolution Melt
1163 (Applied Biosystems); initial denaturation (98°C for
1164 3 minutes), 2-step amplification (98°C for 5 seconds
1165 and 63°C for 30 seconds) for a total of 35 cycles and
1166 the melting curve method.

1167 The expression was calculated using the formula
1168 $C_{KRT18} = C_{cuTAR} \cdot CT_{cuTAR}$. The CT was
1169 normalized with that of one of the positive controls
1170 *KRT18* such that $C_{KRT18} = 1$. The cuTAR expression
1171 was calculated as

1172 $C_{cuTAR} = 1 \cdot CT_{KRT18} / CT_{cuTAR}$. The average was used
1173 for two primers targeting a same cuTAR. The
1174 expression was visualized on a heatmap
1175 (**Supplementary Fig. 14**).

1176 Spatial autocorrelation of lncRNAs with 1177 genes relevant to cancer

1178 SpatialDE⁹³ was used to identify spatially variable
1179 features. The significant spatially variable uTARs
1180 and the top chosen candidates chosen for the Head
1181 and neck cancer samples were further used to
1182 measure pairwise spatial autocorrelation with coding
1183 genes using Moran's Index using python scripts.
1184 Several hallmark genes relevant to cancer were
1185 retrieved from GSEA-MsigDB⁹⁴ and were used for
1186 the analysis. The spots showing (i) high expression
1187 of both the gene and the uTAR were categorized as
1188 HH, (ii) spots with gene expression and no uTAR
1189 expression as LH, (iii) ones with uTAR expression
1190 and lack of gene expression as HL (iv) no expression
1191 of both features as LL and (v) ns for spots with
1192 insignificant Moran's I. The uTARs showing high
1193 spatial correlation (more than 50 HH spots) with
1194 genes of different hallmarks were calculated to
1195 identify the more functionally relevant uTARs and
1196 the pathways involved. The Moran's I was calculated
1197 using the formula below

$$I_T = \frac{\sum_i (\sum_j w_{ij} z_{j,t-1} \times z_{i,t})}{\sum_i z_{i,t}^2}$$

1198 Here, I_T is the calculated Bivariate Moran's Index
1199 Bivariate Spatial Correlation for expression values at
1200 two points: lncRNA (t) and gene (t-1) across all spots
1201 with central spots i , and their neighboring spots j .
1202 Spatial weights (w_{ij}) represent the strength of spatial
1203 interaction or proximity between spatial units i and j .
1204 These weights are defined based on contiguity (e.g.,
1205 sharing a border). With this, I_T is 1 if all neighboring
1206 spots $z_{j,t-1}$ have the same value of that gene at $z_{i,t}$.
1207 Therefore, $I_T = 1$ indicates that the predicted value of
1208 a gene with a high spatial autocorrelation is accurate
1209 (based on the values of neighboring spots). In
1210 another word, I_T measures the degree of *spatial*
1211 correlation between observed values in neighboring
1212 spots and the predicted values of central spots.

1213 Interaction with RBPs and colocalization

1214 Machine learning models that have been trained
1215 using known lncRNA-protein interactions can be
1216 used to predict interaction of novel lncRNAs with
1217 proteins, adding another layer or potential
1218 functionality. HLPI-Ensemble which adopts the
1219 ensemble strategy based on three mainstream
1220 machine learning algorithms of Support Vector
1221

1223 Machines (SVM), Random Forests (RF) and 1271 expression across cell-types was visualized. As a
1224 Extreme Gradient Boosting (XGB) was used to 1272 positive control, marker genes for melanoma were
1225 predict the interaction of top uTARs with RNA 1273 also visualized.
1226 binding proteins (RBPs). Further the spatial 1274 **Response to drug in Medulloblastoma PDOX**
1227 colocalization of the uTARs with their interacting 1275 **models**
1228 RBP partners and with the genes with reported 1276 In-house Visium Medulloblastoma data as described
1229 associated with those RBPs was visualized. 1277 by⁵² were also analyzed. Briefly, Medulloblastoma
1230 **Identification of cell-type specific lncRNAs** 1278 (SHH MB) tissue from a 4.9-year-old patient was
1231 **and their response to therapy** 1279 used to generate PDOX line by implanting the tumor
1232 The melanoma scRNA-seq dataset from the study (1280 cells in the cerebellum of immunocompromised
1233 [PRJNA862451](#))⁸² was used to identify cell-type 1281 NSG mice within hours of surgical removal from the
1234 specific lncRNAs and their response to therapy. The 1282 patient and propagating them from mouse to mouse
1235 dataset included acral and cutaneous melanoma 1283 exclusively without in vitro passaging as previously
1236 samples. The coding gene count matrices 4 acral and 1284 described. Two of the tumor bearing mice were
1237 1 cutaneous melanoma samples (10X Chromium V2 1285 treated with Palbociclib hydrochloride (Pfizer) and
1238 chemistry) were integrated using the Seurat 1286 the rest were untreated. These treated and untreated
1239 workflow and clustering was performed. Cell-type 1287 samples were analyzed for lncRNAs in this study and
1240 markers as described in the original study were used 1288 those significantly differentially expressed between
1241 to annotate the clusters. Melanocytes (*MITF*, *PMEL*, 1289 the treated and untreated groups were identified. The
1242 *TYR*, *DCT*, *MLANA*, *PMEL*, *APOC1*, *S100A1*) 1290 raw Visium data were processed using a human-
1243 Cycling melanoma cells (*UBE2C*, *NUSAP1*, *MKI67*, 1291 mouse hybrid reference since the tissue comprised of
1244 *CENPF*), Endothelial cells (*VWF*, *PECAMI*), 1292 the human tumor and the mouse brain tissues.
1245 Fibroblasts (*COL3A1*, *COL1A2*, *COL1A1*, *LUM*), 1293 **Interactive Website for annotations and**
1246 CD8+ T-cells (*CD8A*, *HAVCR2*, *LAG3*, *PD1*, *TIGIT*, 1294 **visualization**
1247 *CTLA4*, *HOPX*), CD4+ T-cells (*CD4*, *FOXP3*, *IL2*), 1295 The findings of this study have been made available
1248 Monocytes (*CD14*, *LYZ*, *CD74*, *CD68*, *CD79A*), B 1296 for users to browse through the annotations and to
1249 cells (*MS4A1*), NK cells (*GNLY*, *FGFBP2*, 1297 visualize coding gene and cuTAR expression on
1250 *FCGR3A*, *KLRD1*, *KLRF1*), NK-like T-cells (*CD3E*, 1298 tissue images. The Angular 13.3 web site is hosted
1251 *CD3D*, *GZMB*, *XCL2*, *IFNG*, *CCL4*, *NKG7*, *GZMA*, 1299 using AWS Amplify. It uses a Github repository for
1252 *GZMK*) 1300 version control, AWS Code Build to generate the
1253 and macrophages (*CD68*, *CD163*, *CD14*, *CD11b*, 1301 production artefacts (HTML, CSS, and JavaScript),
1254 *CD206*, *CD80*, *CD86*, *CD16*, *CD64*, *CCL18*, 1302 and uses AWS Cloudfront CDN
1255 *CD115*, *CD11c*, *CD32*, *HLA-DR*, *MRC1*, *MSRI*, 1303 (<https://aws.amazon.com/cloudfront/features/>) to
1256 *GCA*, *Pf4*) were identified. 1304 distribute these globally. Libraries used include:
1257 The cell barcode and its corresponding cell-type 1305 TypeScript 4.6 and Node 10.8.1. The backend web
1258 identity were used as metadata for the differential 1306 service is running the Django 5.0 web framework, on
1259 expression analysis of the potential lncRNAs. DE 1307 Python 3.10, using the slim version of Debian
1260 analysis was performed by the pseudo-bulk approach 1308 Bookworm (https://hub.docker.com/_/debian). This
1261 using edgeR. The model was built as design<- 1309 is deployed on AWS Lambda instances provisioned
1262 model.matrix(~celltype+sample) to identify cell- 1310 with 4.5 GB of RAM connected to an AWS EFS
1263 type specific lncRNAs accounting for sample batch 1311 (Elastic File System) file system for accessing HDF5
1264 effects. 1312 and SQLite 3 files used during querying. Python
1265 Further there was only one acral melanoma sample 1313 libraries used include: AnnData 0.10, h5py 3.11.0,
1266 for which data was collected before and after anti- 1314 numba 0.59.1, numpy 1.26.4, pandas 2.2.2, scanpy
1267 PD1 treatment. The differentially expressed genes 1315 1.10.1, scipy 1.13.1, and seaborn 0.13.2. For
1268 and lncRNAs in the tumor cells with respect to the 1316 visualization of expressions, python scripts were
1269 other cells were identified. 10 pseudo-replicates of 1317 used in the backend with preloaded anndata objects
1270 60 cells per-cell-type were created and their raw 1318 for each sample (.h5ad files).

1319 **DATA AVAILABILITY** 1365 **CONFLICT OF INTEREST**
1320 The annotations generated in this study is available 1366 None declared
1321 on the website SPanC-Lnc. All the scripts used for
1322 the analysis and visualizations can be accessed on 1367
1323 Github at 1368
1324 <https://github.com/GenomicsMachineLearning/SPa> 1369
1325 nc_Lnc_PanCancer_LncRNA_Atlas.git. The count 1370
1326 matrices will be published to UQ eSPACE. The raw 1371
1327 data of the unpublished in-house data will be 1372
1328 submitted to the European Genome-Phenome 1373
1329 Archive and will be accessible upon request. 1373

1330 **SUPPLEMENTARY DATA** 1374
1331 Supplementary Data are available online. 1375

1332 **AUTHOR CONTRIBUTIONS** 1376
1333 P. Prakrithi: Formal analysis, Methodology, 1377
1334 Visualization, Validation, Writing—original draft. 1377
1335 Tuan Vo: Experiments. Hani Vu: qPCR experiments. 1378
1336 Andrew Newman—Website hosting on AWS cloud, 1378
1337 Jazmina Gonzalez Cruz: Writing—review & editing. 1379
1338 Ishaan Gupta: Conceptualization, Writing—review 1379
1339 & editing. Quan Nguyen: Conceptualization, 1380
1340 Writing—review & editing. 1380

1341 **ACKNOWLEDGEMENT** 1381
1342 We acknowledge Subash Rai and Shivangi Wani for their 1382
1343 contribution to the Nanopore and PacBio experiments 1382
1344 respectively. We also thank B. Sathish Kumar for 1383
1345 building the SPanC-Lnc website and Xingliang from 1383
1346 PacBio team for helping setup SMRTlink. We would like 1384
1347 to thank Laura Grice and Juliet French for their critical 1384
1348 review of the manuscript and their valuable suggestions. 1385

1349 **FUNDING** 1386
1350 This work was supported by Australian Research 1387
1351 Council (ARC DECRA grant DE190100116), 1387
1352 National Health and Medical Research Council 1388
1353 (NHMRC Project Grant 2001514), and NHMRC 1388
1354 Investigator Grant (GNT2008928) and the UQ-IITD 1389
1355 Research Academy. This work is also supported by 1389
1356 the Ministry of Human resource development, 1390
1357 Government of India sponsored Prime Minister's 1390
1358 Research Fellowship (PMRF) IITD/Admis- 1391
1359 sion/Ph.D./PMRF/2022/36443 to P.P. This work is 1391
1360 supported by funds from the Ramalingaswami 1392
1361 fellowship No.BT/RLF/Re-entry/19/2018 by 1392
1362 Department of Biotechnology (DBT), Government 1393
1363 of India and Indian Council for Medical Research 1393
1364 (ICMR) research grant IIRP-2023-2341/F1 to I.G. 1394

1365 **ETHICS APPROVAL STATEMENT**
1366 All samples were approved for research under ethical
1367 approval numbers 2018000165 and 2017000318 by
1368 the University of Queensland's Human Research
1369 Ethics Committees.

1370 **REFERENCES**
1371 1. Boland, C. R. Non-coding RNA: It's Not Junk.
1372 *Dig. Dis. Sci.* **62**, 1107–1109 (2017).
1373 2. Niderla-Bielinska, J., Jankowska-Steifer, E. &
1374 Włodarski, P. Non-Coding RNAs and Human
1375 Diseases: Current Status and Future
1376 Perspectives. *Int. J. Mol. Sci.* **24**, 11679 (2023).
1377 3. Fang, Y. & Fullwood, M. J. Roles, Functions,
1378 and Mechanisms of Long Non-coding RNAs in
1379 Cancer. *Genomics Proteomics Bioinformatics*
1380 **14**, 42–54 (2016).
1381 4. Zhang, X. et al. Mechanisms and Functions of
1382 Long Non-Coding RNAs at Multiple Regulatory
1383 Levels. *Int. J. Mol. Sci.* **20**, 5573 (2019).
1384 5. Statello, L., Guo, C.-J., Chen, L.-L. & Huarte,
1385 M. Gene regulation by long non-coding RNAs
1386 and its biological functions. *Nat. Rev. Mol. Cell
1387 Biol.* **22**, 96–118 (2021).
1388 6. Wang, L. et al. CRISPR-Cas13d screens
1389 identify KILR, a breast cancer risk-associated
1390 IncRNA that regulates DNA replication and
1391 repair. *Mol. Cancer* **23**, 101 (2024).
1392 7. Wang, Y. et al. LncRNA-encoded polypeptide

1395 ASRPS inhibits triple-negative breast cancer 1422 control senescence entry and exit. *Nat.*
1396 angiogenesis. *J. Exp. Med.* **217**, jem.20190950 1423 *Commun.* **5**, 5323 (2014).
1397 (2020). 1424 14. Park, E.-G., Pyo, S.-J., Cui, Y., Yoon, S.-H. &
1398 8. Jin, H. *et al.* lncRNA and breast cancer: 1425 Nam, J.-W. Tumor immune microenvironment
1399 Progress from identifying mechanisms to 1426 lncRNAs. *Brief. Bioinform.* **23**, bbab504 (2021).
1400 challenges and opportunities of clinical 1427 15. Yang, L., Duff, M. O., Graveley, B. R.,
1401 treatment. *Mol. Ther. Nucleic Acids* **25**, 613– 1428 Carmichael, G. G. & Chen, L.-L. Genomewide
1402 637 (2021). 1429 characterization of non-polyadenylated RNAs.
1403 9. Qian, Y., Shi, L. & Luo, Z. Long Non-coding 1430 *Genome Biol.* **12**, R16 (2011).
1404 RNAs in Cancer: Implications for Diagnosis, 1431 16. Bitar, M. *et al.* Redefining normal breast cell
1405 Prognosis, and Therapy. *Front. Med.* **7**, 612393 1432 populations using long noncoding RNAs.
1406 (2020). 1433 *Nucleic Acids Res.* **51**, 6389–6410 (2023).
1407 10. Lemos, A. E. G., Matos, A. da R., Ferreira, L. 1434 17. Pinkney, H. R., Black, M. A. & Diermeier, S. D.
1408 B. & Gimba, E. R. P. The long non-coding RNA 1435 Single-Cell RNA-Seq Reveals Heterogeneous
1409 PCA3: an update of its functions and clinical 1436 lncRNA Expression in Xenografted Triple-
1410 applications as a biomarker in prostate cancer. 1437 Negative Breast Cancer Cells. *Biology* **10**, 987
1411 *Oncotarget* **10**, 6589–6603 (2019). 1438 (2021).
1412 11. Modi, A. *et al.* Integrative Genomic Analyses 1439 18. Spatial transcriptome analysis of long non-
1413 Identify lncRNA Regulatory Networks across 1440 coding RNAs reveals tissue specificity and
1414 Pediatric Leukemias and Solid Tumors. *Cancer* 1441 functional roles in cancer. *J. Zhejiang Univ. Sci.*
1415 *Res.* **83**, 3462–3477 (2023). 1442 *B* **24**, 15–31 (2023).
1416 12. Tan, B.-S. *et al.* LncRNA NORAD is repressed 1443 19. Lv, D. *et al.* LncSpA: LncRNA Spatial Atlas of
1417 by the YAP pathway and suppresses lung and 1444 Expression across Normal and Cancer Tissues.
1418 breast cancer metastasis by sequestering 1445 *Cancer Res.* **80**, 2067–2071 (2020).
1419 S100P. *Oncogene* **38**, 5612–5626 (2019). 1446 20. Weirick, T. *et al.* The identification and
1420 13. Puvvula, P. K. *et al.* Long noncoding RNA 1447 characterization of novel transcripts from RNA-
1421 PANDA and scaffold-attachment-factor SAFA 1448 seq data. *Brief. Bioinform.* **17**, 678–685 (2016).

1449 21. Wang, M. F. Z. *et al.* Uncovering transcriptional 1476 promotes breast cancer cell proliferation and
1450 dark matter via gene annotation independent 1477 migration by regulating OAS1. *Cell Death*
1451 single-cell RNA sequencing analysis. *Nat. 1478 Discov.* **7**, 1–16 (2021).
1452 *Commun.* **12**, 2158 (2021). 1479 28. Lin, Z.-B. *et al.* Long Noncoding RNA
1453 22. Xu, K. *et al.* Pan-cancer characterization of 1480 KCNQ1OT1 is a Prognostic Biomarker and
1454 expression and clinical relevance of m6A- 1481 mediates CD8+ T cell exhaustion by regulating
1455 related tissue-elevated long non-coding RNAs. 1482 CD155 Expression in Colorectal Cancer. *Int. J.*
1456 *Mol. Cancer* **20**, 31 (2021). 1483 *Biol. Sci.* **17**, 1757–1768 (2021).
1457 23. Li, Y. *et al.* Pan-cancer characterization of 1484 29. Mini, E. *et al.* RNA sequencing reveals PNN
1458 immune-related lncRNAs identifies potential 1485 and KCNQ1OT1 as predictive biomarkers of
1459 oncogenic biomarkers. *Nat. Commun.* **11**, 1000 1486 clinical outcome in stage III colorectal cancer
1460 (2020). 1487 patients treated with adjuvant chemotherapy.
1461 24. Isaev, K. *et al.* Pan-cancer analysis of non- 1488 *Int. J. Cancer* **145**, 2580–2593 (2019).
1462 coding transcripts reveals the prognostic onco- 1489 30. Ma, L., Bajic, V. B. & Zhang, Z. On the
1463 lncRNA HOXA10-AS in gliomas. *Cell Rep.* **37**, 1490 classification of long non-coding RNAs. *RNA*
1464 109873 (2021). 1491 *Biol.* **10**, 924–933 (2013).
1465 25. Luo, Y., Morgan, S. L. & Wang, K. C. PICsAR: 1492 31. Li, J. & Liu, C. Coding or Noncoding, the
1466 Long Noncoding RNA in Cutaneous Squamous 1493 Converging Concepts of RNAs. *Front. Genet.*
1467 Cell Carcinoma. *J. Invest. Dermatol.* **136**, 1494 **10**, 496 (2019).
1468 1541–1542 (2016). 1495 32. Pan, J. *et al.* Functional Micropeptides
1469 26. Wang, Q. *et al.* LncRNA TINCR impairs the 1496 Encoded by Long Non-Coding RNAs: A
1470 efficacy of immunotherapy against breast 1497 Comprehensive Review. *Front. Mol. Biosci.* **9**,
1471 cancer by recruiting DNMT1 and 1498 817517 (2022).
1472 downregulating MiR-199a-5p via the STAT1– 1499 33. Gao, T. & Qian, J. EnhancerAtlas 2.0: an
1473 TINCR-USP20-PD-L1 axis. *Cell Death Dis.* **14**, 1500 updated resource with enhancer annotation in
1474 76 (2023). 1501 586 tissue/cell types across nine species.
1475 27. Lu, D. *et al.* The long noncoding RNA TINCR 1502 *Nucleic Acids Res.* **48**, D58–D64 (2020).

1503 34. The GTEx Consortium atlas of genetic 1530 41. Hiwatari, M. *et al.* Abstract 6734: Identification
1504 regulatory effects across human tissues. 1531 of the novel TENM3-ALK fusion in an AYA case
1505 *Science* **369**, 1318–1330 (2020). 1532 with ALK rearranged neuroblastoma. *Cancer*
1506 35. Lonsdale, J. *et al.* The Genotype-Tissue 1533 *Res.* **83**, 6734 (2023).
1507 Expression (GTEx) project. *Nat. Genet.* **45**, 1534 42. de Lima, J. M. *et al.* NDRG1 deficiency is
1508 580–585 (2013). 1535 associated with regional metastasis in oral
1509 36. Chen, E. Y. *et al.* Enrichr: interactive and 1536 cancer by inducing epithelial-mesenchymal
1510 collaborative HTML5 gene list enrichment 1537 transition. *Carcinogenesis* **41**, 769–777 (2020).
1511 analysis tool. *BMC Bioinformatics* **14**, 128 1538 43. Joshi, V., Lakhani, S. R. & McCart Reed, A. E.
1512 (2013). 1539 NDRG1 in Cancer: A Suppressor, Promoter, or
1513 37. The Cancer Genome Atlas - Citing TCGA - 1540 Both? *Cancers* **14**, 5739 (2022).
1514 National Cancer Institute. 1541 44. Huang, H., Li, L. & Wen, K. Interactions
1515 <a href="https://www.cancer.gov/about- 1542 between long non-coding RNAs and RNA-
1516 nci/organization/ccg/research/structural- 1543 binding proteins in cancer. *Oncol. Rep.* **46**, 256
1517 genomics/tcga/using-tcga/citing-tcga (2019). 1544 (2021).
1518 38. Gao, R. *et al.* Delineating copy number and 1545 45. Hu, H. *et al.* HLPI-Ensemble: Prediction of
1519 clonal substructure in human tumors from 1546 human lncRNA-protein interactions based on
1520 single-cell transcriptomes. *Nat. Biotechnol.* **39**, 1547 ensemble strategy. *RNA Biol.* **15**, 797–806
1521 599–608 (2021). 1548 (2018).
1522 39. Peppino, G. *et al.* Teneurins: Role in Cancer 1549 46. Al-Yahya, S. *et al.* Post-transcriptional
1523 and Potential Role as Diagnostic Biomarkers 1550 regulation of BIRC5/survivin expression and
1524 and Targets for Therapy. *Int. J. Mol. Sci.* **22**, 1551 induction of apoptosis in breast cancer cells by
1525 2321 (2021). 1552 tristetraprolin. *RNA Biol.* **21**, 1–15 (2024).
1526 40. Jang, M. K., Shen, K. & McBride, A. A. 1553 47. Kawakami, A. & Fisher, D. E. The master role
1527 Papillomavirus genomes associate with BRD4 1554 of microphthalmia-associated transcription
1528 to replicate at fragile sites in the host genome. 1555 factor in melanocyte and melanoma biology.
1529 *PLoS Pathog.* **10**, e1004117 (2014). 1556 *Lab. Invest.* **97**, 649–656 (2017).

1557 48. Yao, J. *et al.* Altered Expression and Splicing of 1584 *Clin. Cancer Res. CR* **37**, 247 (2018).

1558 ESRP1 in Malignant Melanoma Correlates with 1585 54. Yu, P., Ye, J., Zhao, S. & Cai, Y. lncRNAs are

1559 Epithelial–Mesenchymal Status and Tumor- 1586 potential prognostic markers in patients with

1560 Associated Immune Cytolytic Activity. *Cancer* 1587 nasopharyngeal carcinoma in China: A

1561 *Immunol. Res.* **4**, 552–561 (2016). 1588 systematic review and meta-analysis. *Mol. Clin.*

1562 49. Bai, W. *et al.* LINC00589-dominated ceRNA 1589 *Oncol.* **20**, 1–13 (2024).

1563 networks regulate multiple chemoresistance 1590 55. Arriaga-Canon, C. *et al.* The use of long non-

1564 and cancer stem cell-like properties in HER2+ 1591 coding RNAs as prognostic biomarkers and

1565 breast cancer. *Npj Breast Cancer* **8**, 1–19 1592 therapeutic targets in prostate cancer.

1566 (2022). 1593 *Oncotarget* **9**, 20872–20890 (2018).

1567 50. Delorme, S. *et al.* New insight into the role of 1594 56. Hon, C.-C. *et al.* An atlas of human long non-

1568 ANXA1 in melanoma progression: involvement 1595 coding RNAs with accurate 5' ends. *Nature*

1569 of stromal expression in dissemination. *Am. J.* 1596 **543**, 199–204 (2017).

1570 *Cancer Res.* **11**, 1600–1615 (2021). 1597 57. Li, Z. *et al.* LncExpDB: an expression database

1571 51. Hunihan, L. *et al.* RASGRF1 Fusions Activate 1598 of human long non-coding RNAs. *Nucleic Acids*

1572 Oncogenic RAS Signaling and Confer 1599 *Res.* **49**, D962–D968 (2021).

1573 Sensitivity to MEK Inhibition. *Clin. Cancer Res.* 1600 58. Lianhe, Z. *et al.* NONCODEV6: An updated

1574 *Off. J. Am. Assoc. Cancer Res.* **28**, 3091–3103 1601 database dedicated to long non-coding RNA

1575 (2022). 1602 annotation in both animals and plants. *Nucleic*

1576 52. Vo, T. *et al.* Spatial transcriptomic analysis of 1603 *Acids Res.* **49**, (2020).

1577 Sonic hedgehog medulloblastoma identifies 1604 59. García-Padilla, C. *et al.* Molecular Mechanisms

1578 that the loss of heterogeneity and promotion of 1605 of lncRNAs in the Dependent Regulation of

1579 differentiation underlies the response to 1606 Cancer and Their Potential Therapeutic Use.

1580 CDK4/6 inhibition. *Genome Med.* **15**, 29 (2023). 1607 *Int. J. Mol. Sci.* **23**, 764 (2022).

1581 53. Huang, D. *et al.* GLI2 promotes cell proliferation 1608 60. Peng, L. *et al.* Super-Enhancer-Associated

1582 and migration through transcriptional activation 1609 Long Noncoding RNA HCCL5 Is Activated by

1583 of ARHGEF16 in human glioma cells. *J. Exp.* 1610 ZEB1 and Promotes the Malignancy of

1611 Hepatocellular Carcinoma. *Cancer Res.* **79**, 1638 66. Yarmishyn, A. A. *et al.* Circular RNAs Modulate
1612 572–584 (2019). 1639 Cancer Hallmark and Molecular Pathways to
1613 61. Yan, L., Chen, H., Tang, L., Jiang, P. & Yan, F. 1640 Support Cancer Progression and Metastasis.
1614 Super-enhancer-associated long noncoding 1641 *Cancers* **14**, 862 (2022).
1615 RNA AC005592.2 promotes tumor progression 1642 67. MacFarlane, L.-A. & Murphy, P. R. MicroRNA:
1616 by regulating OLFM4 in colorectal cancer. *BMC* 1643 Biogenesis, Function and Role in Cancer. *Curr.*
1617 *Cancer* **21**, 187 (2021). 1644 *Genomics* **11**, 537–561 (2010).
1618 62. Bjørklund, S. S. *et al.* Subtype and cell type 1645 68. Zhang, Q. *et al.* The epigenetic regulatory
1619 specific expression of lncRNAs provide insight 1646 mechanism of PIWI/piRNAs in human cancers.
1620 into breast cancer. *Commun. Biol.* **5**, 1–14 1647 *Mol. Cancer* **22**, 45 (2023).
1621 (2022). 1648 69. Yao, J. *et al.* PIWI-interacting RNAs in cancer:
1622 63. Castellanos-Rubio, A. & Ghosh, S. Functional 1649 Biogenesis, function, and clinical significance.
1623 Implications of Intergenic GWAS SNPs in 1650 *Front. Oncol.* **12**, (2022).
1624 Immune-Related LncRNAs. in *Long Noncoding* 1651 70. Zhang, Y., Yang, L. & Chen, L.-L. Life without A
1625 *RNA: Mechanistic Insights and Roles in* 1652 tail: new formats of long noncoding RNAs. *Int.*
1626 *Inflammation* (ed. Carpenter, S.) 147–160 1653 *J. Biochem. Cell Biol.* **54**, 338–349 (2014).
1627 (Springer International Publishing, Cham, 1654 71. Raghubar, A. M. *et al.* High risk clear cell renal
1628 2022). doi:10.1007/978-3-030-92034-0_8. 1655 cell carcinoma microenvironments contain
1629 64. Olazagoitia-Garmendia, A., Senovilla-Ganzo, 1656 protumour immunophenotypes lacking specific
1630 R., García-Moreno, F. & Castellanos-Rubio, A. 1657 immune checkpoints. *Npj Precis. Oncol.* **7**, 1–9
1631 Functional evolutionary convergence of long 1658 (2023).
1632 noncoding RNAs involved in embryonic 1659 72. Kawamata, F. *et al.* Copy number profiles of
1633 development. *Commun. Biol.* **6**, 1–11 (2023). 1660 paired primary and metastatic colorectal
1634 65. Kristensen, L. S., Jakobsen, T., Hager, H. & 1661 cancers. *Oncotarget* **9**, 3394–3405 (2017).
1635 Kjems, J. The emerging roles of circRNAs in 1662 73. Wu, S. Z. *et al.* A single-cell and spatially
1636 cancer and oncology. *Nat. Rev. Clin. Oncol.* **19**, 1663 resolved atlas of human breast cancers. *Nat.*
1637 188–206 (2022). 1664 *Genet.* **53**, 1334–1347 (2021).

1665 74. Vo, T. *et al.* *Benchmarking Robust Spatial* 1692 81. NSCLC Tumor (F) (v2, 150 x 150), 5' Single
1666 *Transcriptomics Approaches to Capture the* 1693 Cell Immune Profiling Dataset by Cell Ranger
1667 *Molecular Landscape and Pathological* 1694 2.2.0, 10x Genomics, (2018, August 1).
1668 *Architecture of Archived Cancer Tissues.* 1695 82. Zhang, C. *et al.* A single-cell analysis reveals
1669 (2023). doi:10.1101/2023.02.11.527941. 1696 tumor heterogeneity and immune environment
1670 75. Prakrithi, P., Juwayria, Jain, D., Malik, P. S. & 1697 of acral melanoma. *Nat. Commun.* **13**, 7250
1671 Gupta, I. Caution towards spurious off-target 1698 (2022).
1672 signal in 10X Visium spatial transcriptomics 1699 83. Paulson, K. G. *et al.* Acquired cancer
1673 assay from potential lncRNAs. *Brief. Bioinform.* 1700 resistance to combination immunotherapy from
1674 bbad031 (2023) doi:10.1093/bib/bbad031. 1701 transcriptional loss of class I HLA. *Nat.*
1675 76. Human Ovarian Tumor (FF) (v2, 150 x 150), 1702 *Commun.* **9**, 3868 (2018).
1676 Single Cell Immune Profiling Dataset by Cell 1703 84. Kürten, C. H. L. *et al.* Investigating immune and
1677 Ranger 7.0.0, 10x Genomics, (2022, May 14). 1704 non-immune cell interactions in head and neck
1678 77. Human Invasive Ductal Carcinoma (3' v3.1, 1705 tumors by single-cell RNA sequencing. *Nat.*
1679 150 x 150), Single Cell Gene Expression 1706 *Commun.* **12**, 7338 (2021).
1680 Dataset by Cell Ranger 6.0.0, 10x Genomics, 1707 85. Yost, K. E. *et al.* Clonal replacement of tumor-
1681 (2021, March 31). 1708 specific T cells following PD-1 blockade. *Nat.*
1682 78. Human Glioblastoma Multiforme (3' v3.1, 150 x 1709 *Med.* **25**, 1251–1259 (2019).
1683 150), Single Cell Gene Expression Dataset by 1710 86. Chae, M., Danko, C. G. & Kraus, W. L.
1684 Cell Ranger 6.0.0, 10x Genomics, (2021, 1711 groHMM: a computational tool for identifying
1685 March 31). 1712 unannotated and cell type-specific transcription
1686 79. Human Kidney Tumor (FF) (5' v2, 150 x 150), 1713 units from global run-on sequencing data. *BMC*
1687 Single Cell Immune Profiling Dataset by Cell 1714 *Bioinformatics* **16**, 222 (2015).
1688 Ranger 7.0.0, 10x Genomics, (2022, May 14). 1715 87. Bageritz, J. & Raddi, G. Single-Cell RNA
1689 80. Pancreatic Tumor (FF) (5' v2, 150 x 150), 1716 Sequencing with Drop-Seq. *Methods Mol. Biol.*
1690 Single Cell Immune Profiling Dataset by Cell 1717 *Clifton NJ* **1979**, 73–85 (2019).
1691 Ranger 7.0.0, 10x Genomics, (2022, May 14). 1718 88. Wang, L. *et al.* CPAT: Coding-Potential

1719	Assessment Tool using an alignment-free	1735	interactions and spatial trajectories within
1720	logistic regression model. <i>Nucleic Acids Res.</i>	1736	undissociated tissues. <i>bioRxiv</i>
1721	41 , e74 (2013).	1737	2020.05.31.125658 (2020)
1722	89. Pollard, K. S., Hubisz, M. J., Rosenbloom, K. R.	1738	doi:10.1101/2020.05.31.125658.
1723	& Siepel, A. Detection of nonneutral	1739	93. Svensson, V., Teichmann, S. A. & Stegle, O.
1724	substitution rates on mammalian phylogenies.	1740	SpatialDE: identification of spatially variable
1725	<i>Genome Res.</i> 20 , 110–121 (2010).	1741	genes. <i>Nat. Methods</i> 15 , 343–346 (2018).
1726	90. Lorenz, R. <i>et al.</i> ViennaRNA Package 2.0.	1742	94. Subramanian, A. <i>et al.</i> Gene set enrichment
1727	<i>Algorithms Mol. Biol.</i> 6 , 26 (2011).	1743	analysis: A knowledge-based approach for
1728	91. Li, M. J. <i>et al.</i> GWASdb: a database for human	1744	interpreting genome-wide expression profiles.
1729	genetic variants identified by genome-wide	1745	<i>Proc. Natl. Acad. Sci.</i> 102 , 15545–15550
1730	association studies. <i>Nucleic Acids Res.</i> 40 ,	1746	(2005).
1731	D1047–D1054 (2012).	1747	Additional information
1732	92. Pham, D. <i>et al.</i> stLearn: integrating spatial	1748	Supplementary information The online version
1733	location, tissue morphology and gene	1749	contains supplementary material
1734	expression to find cell types, cell-cell	1750	available at <u>Supplementary_final.pdf</u> .
		1751	Correspondence and requests for materials should be
		1752	addressed to Quan Nguyen.

753
754 **TABLE AND FIGURES LEGENDS**

755 **Fig. 1: Pan-cancer identification of novel lncRNAs from spatial and single-cell data.** **a**, Different cancer types
756 used from public scRNA-seq and in-house spatial transcriptomics datasets. Numbers highlighted in red indicate
757 the number of unannotated Transcriptionally Active Regions (uTARs) detected for each cancer type, followed by
758 the number of samples analyzed within square brackets. **b**, uTAR counts overlaid on the tissue for representative
759 samples as compared to the protein-coding gene counts. **c**, Breakdown of known and novel uTARs identified per
760 cancer sample. The blue region indicates novel uTARs and green, orange and yellow indicate an overlap with
761 public datasets (FANTOM, LncExpDB and both respectively). Bar labels and the grey scale bar on top show the
762 number of uTARs found from each source. **d**, Gene-uTAR expression ratio, (i.e., number of genes vs. number of
763 uTARs), per spot across the ST samples. A higher value indicates a higher number of uTARs detected per spot
764 with respect to the number of genes.

765
766 **Fig. 2: Analysis of sequence features and co-localization with functional SNPs.** **a**, Analysis of coding potential
767 of the identified uTARs. Box plots display log coding probability values for each cancer. The red dashed line
768 indicates the log coding probability cut-off. Percentage values show the proportion of non-coding transcripts
769 based on this cut-off. Sequences with a predicted coding potential below the standard cut-off for humans,
770 0.364, were determined to be non-coding. **b**, Classification of lncRNAs based on their overlap with regulatory

771 features as enhancer-associated lncRNAs (e-lncRNAs), promoter-associated lncRNAs (p-lncRNAs) and
772 intergenic lncRNAs **c**, Conservation and Minimum Free Energy (MFE) calculations as a measure of stability. **d**,
773 Overlap of uTARs and randomly chosen regions from coding genes with tissue-specific eQTLs.

774 **Fig. 3: Identification of tumor region specific uTARs and validation with long read sequencing**
775 **technologies.** **a**, Tumor regions (dark shaded) in the Head and Neck cancer samples B (top) and Colorectal cancer
776 Primary tumor CP (middle). **b**, (From left to right) uTAR lengths, overlap of uTARs with that from scRNA-seq
777 data and with lncRNAs from public databases, expression of uTARs in bulk RNA-seq samples from TCGA
778 (normalized bigWig coverage), and quantification of the uTARs in the cancerous and normal regions of Head and
779 Neck cancer samples. The overlapping uTARs across samples are indicated by the sample suffix (_B, _C and _D)
780 The highlighted uTARs with red boxes indicate the ones with higher expression in the tumor region than the
781 normal region, some of which are shown in panel **c**. These show relatively higher expression in the analyzed
782 H&N cancer samples from TCGA highlighted using the vertical red box **c**, Expression of exemplar cancer region-
783 specific uTARs projected on the tissues. **d**, Validation of some uTARs with long read sequencing ONT and
784 SMART-Seq for Head and Neck and Colorectal cancer samples, respectively.

785
786 **Fig. 4: Spatial co-expression of uTARs with cancer relevant genes.** **a**, Top uTARs in Head and neck cancer
787 (sample C) with high spatial autocorrelation (HH: both features expressed in a given spot) with different cancer-
788 relevant gene sets. **b**, Spatial correlation of expression with genes (LH/HL: Either the gene or cuTAR is expressed,
789 LL: Both features not expressed, NS: No significant autocorrelation). **c**, WGCNA analysis shows 32 genes
790 displaying high coexpression with cuTAR170206 (circled in red) that forms part of the same regulatory module
791 which includes genes like NDRG1, the downregulation of which is associated with metastasis in OPSCC and
792 other genes involved in DNA repair, hypoxia response and negative regulation of apoptosis (associated GO terms
793 highlighted in red boxes). **d**, Cell-type annotations of a breast cancer tissue. **e**, Co-expression of cuTAR215705
794 with the mRNA encoding the RNA-binding protein ELAVL1 and its interacting partner *BIRC5* and the mRNA
795 encoding TARDBP5 in breast cancer.

796
797 **Fig. 5: Cell-type specific expression of lncRNAs.** **a**, Cell-type specific uTARs (highlighted with black boxes)
798 in scRNA-seq Acral Melanoma samples. **b**, Expression of some cell-type specific uTARs projected on the UMAP.
799 **c**, Expression trends as compared to coding genes. Tumor-specific uTARs and proximal cancer-associated coding
800 genes are highlighted in red circles. **d**, Cell-type specific lncRNAs identified in the scRNA-seq data that overlap
801 with in-house ST data. **e**, **f**, Expression of cell-type specific uTARs in 10X Visium Melanoma samples (Samples
802 MelA and MelD respectively).

803
804 **Fig. 6: Response of lncRNAs to drug treatments.** **a**, Expression trends of melanoma-specific uTARs in response
805 to anti-PD1 therapy **b**, and their UMAP projections. **c**, Downregulation of uTARs in Medulloblastoma in response
806 to Palbocyclib. Some uTARs showing explicit differences in expression are highlighted with the red box. **d**,
807 Spatial expression of the tumor specific uTARs downregulated post treatment highlighted with a red box in **c**.
808 Red outlines define the tissue borders and yellow outlines highlight the human tumor region.

809
810 **Fig. 7: SPanC-Lnc : A Spatial and Single cell Pan-cancer Atlas for lncRNAs.** **a**, All the findings of this study
811 are available in the form of a website. The annotation browser enables perusal through lncRNA coordinates,
812 cancer types identified, cell-type specificity, overlapping regulatory elements, etc. **b**, Visualization of the lncRNA
813 expressions on the spatial tissues across multiple cancer types from Visium and Long Read data.

814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856

Table 1: Comparison of available resources for lncRNAs

SUPPLEMENTARY FIGURES AND TABLE LEGENDS

Supplementary Fig. 1: uTAR counts overlaid on the tissue for all in-house samples

Supplementary Fig. 2 : Coding gene counts overlaid on the tissue for all in-house samples

Supplementary Fig. 3 : a, Expression of annotated well known lncRNAs in our in-house ST datasets **b,** Expression of annotated cancer-specific lncRNAs across respective cancer types in our in-house ST datasets

Supplementary Fig. 4: cuTARs overlapping with NONCODE v6 lncRNAs

Supplementary Fig. 5: a, Pan-cancer cuTARs. **b,** cuTARs specific to each cancer type. **c,** Consistency of uTAR detection for different Melanoma samples across the three different sequencing platforms

Supplementary Fig. 6: a, GTEx tissues enriched for genes associated with eQTLs colocalized with cancer-specific cuTARs. b, Other terms including pathways, GO, cell types

Supplementary Fig. 7: a, Pathways enriched for genes associated with eQTLs colocalized with pan-cancer uTARs

Supplementary Fig. 8: % uTARs from the in-house ST datasets overlapping with GWAS SNPs associated with different cancer types

Supplementary Fig. 9: Differential uTAR expression in Head and Neck OPSCC samples

Supplementary Fig. 10: a, Three major cancer subclones identified using copyKAT. b, DE uTARs across subclones. c, Subclones annotated on the Head and Neck OPSCC tissue. D, Expression of Subclone-specific uTARs

Supplementary Table 1: 10X Visium Vs Nanopore stats

Supplementary Fig. 11 : a, No. of UTARs for downsampled number of unique molecules per spot. b, Gene expression detected from 10X Visium and ONT

Supplementary Fig. 12 : a, % Positive spots expressing PCR validated cuTARs across Visium and ONT. b, Spatial plots for these cuTARs in SCC across the two platforms c, Spatial plots for these cuTARs in BCC and HNC across the two platforms

Supplementary Fig. 13 : a, cell-types in Primary colorectal cancer tissue. b, uTARs validated with long read HiFi sequencing by PacBio. c, cell-types in Metastasized colorectal cancer tissue and number uTARs validated with long read HiFi sequencing by PacBio. d, Expression of two uTARs across both platforms

Supplementary Fig. 14: Expression of some uTARs across samples using qPCR

Supplementary Fig. 15: 10X Visium Expression of the qPCR validated uTARs

Supplementary Fig. 16 : Number of spatially variable uTARs identified using SpaDE

Supplementary Fig. 17: Top uTARs in kidney cancer (sample A) with high spatial autocorrelation with different cancer-relevant gene sets

Supplementary Fig. 18: a, GO Terms associated with a co-expression module with cuTAR215705. b, Spatial autocorrelation of the cuTAR with interacting gene and RBP across cell-types

Supplementary Fig. 19: Single-cell Melanoma data analysis workflow

Supplementary Fig. 20: a, All samples from the study integrated. b, Seurat clusters. c, Manual annotation based on Marker genes from the paper. d, Automated annotation with scType

Supplementary Fig. 21: Analysis of an Acral melanoma sample – Pre and post treatment. a,

857 Integration of 2 samples (S3 Pre and Post). b, Clustering. c, Canonical cell-type marker expression. d, cluster
858 annotations

859 **Supplementary Fig. 22:** Expression of (A) Melanoma specific genes and (B) proliferation markers across
860 various cell-types.

861 **Supplementary Fig. 23:** a, Tissues from PDOX mouse models. b, Expression of the uTARs across Visium and
862 ONT. c, Expression of cancer hallmark genes in untreated and treated samples

863 **Supplementary Fig. 24:** Kaplan-Meyer curves for uTARs showing significant differences in survival
864 probabilities for high and low expressing groups

865 **Supplementary Fig. 25:** No stratification in Head and Neck cancer samples for the Melanoma-specific uTARs.
866 All samples were low expressing

867 **Supplementary Fig. 26:** Clustering and cell-type specific uTARs in a, Glioblastoma b, Breast cancer (Invasive
868 Ductal carcinoma). c, kidney cancer

869 **Supplementary Fig. 27:** cuTAR87324, upregulated in the tumor cells of kidney cancer is detected across
870 OPSCC (validated by ONT) and skin cancers although very low expression is seen