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13 Abstract

14 Nanopore sequencing enables detection of DNA methylation at the same time as identification of
15 canonical sequence. A recent study validated low pass nanopore sequencing to accurately estimate
16  global methylation levels in vertebrates with sequencing coverage as low as 0.01x. We investigated the
17 applicability of this approach to plants by testing three plant species and analysed the effect of
18  technical and biological parameters on estimate precision and accuracy. Our results indicate that a
19 higher coverage (0.1x) is required to assess plant global methylation at an equivalent accuracy to
20  vertebrates. Shorter read length and a closer sequence match between sample and reference genome
21 improved measurement accuracy. Application of this method in Vitis vinifera showed consistent global
22 methylation levels across different leaf sizes, and different sample preservation and DNA extraction
23 methods, whereas different varieties and tissue types did exhibit methylation differences. Similarly,
24 distinct methylation patterns could be observed in different genomic features. Our findings suggest
25  the suitability of this method as a low-cost screening tool for validation of experimental parameters,
26  developmental time courses and to assess methylation status for different modification types and
27 sequence contexts at the level of whole genome or for abundant genomic features such as

28  transposable elements.
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30 Introduction

31  Skimseq, or genome skimming, is defined as untargeted, low-pass sequencing, usually at lower than
32 2x coverage (Hu et al., 2023). Whilst originally employed as an approach to comprehensively capture
33 over-represented elements within the sample, such as organelle, viral or parasitic genomes (Ripma et
34 al., 2014; Weitemier et al., 2014), this method can also provide reliable, cost-effective estimates of
35 global genomic parameters (e.g. for investigation of highly abundant transposable elements (Lwin et
36 al.,, 2017)), or it can be combined with genomic imputation for high-throughput genotyping by
37 sequencing (Kumar et al., 2021).

38 The Oxford Nanopore Technologies sequencing platform reports not only canonical bases but also
39 native DNA modifications including methylated and hydroxymethylated cytosines (5mC and 5hmC,
40 respectively) and methylated adenosines (6mA) and, consequently, genomic insights can extend from
41  the canonical sequence to the epigenetic properties of the samples (Laszlo et al., 2013; Schreiber et
42 al., 2013; Simpson et al., 2017). Using low coverage nanopore sequencing for methylation detection in
43  vertebrate genomes, Faulk reported the high precision and accuracy of global methylation assessment
44  at only 0.01x coverage (i.e. 30 Mb per sample) (Faulk, 2023). The report also demonstrated the
45 accuracy of methylation level estimation for Alu transposon elements at 0.001x (i.e. 3Mb per sample).
46  The approach was shown to be reproducible across technical and biological replicates and was

47 reportedly not affected either by read length or quality.

48 In vertebrates, cytosines adjacent to guanine (CG) can be methylated by DNA Methyltransferases,
49 either during DNA replication or during early development (Klughammer et al., 2023). In contrast,
50 cytosines in plant genomes can be methylated in a variety of sequence contexts, which are mediated
51 by different enzymatic pathways. These methylation contexts are categorised as CG, CHG or CHH,
52  where H is either A, T, or C. Methylation level is typically highest in CG, followed by CHG and CHH
53 contexts, with wide variation throughout different plant species (Niederhuth et al., 2016). Methylation
54 in the CG context is the main methylation found in gene bodies and is regulated by
55 METHYLTRANSFERASE 1 (MET1), while CHG methylation is largely associated with repetitive
56  sequences, with the methylation in this motif being copied to the newly synthesised strand by
57 CHROMOMETHYLASE 3 (CMT3) during DNA replication. In contrast, CHH methylation is not
58  symmetrical, and therefore must be applied in a sequence-guided manner. This is achieved by CMT2,
59  which targets heterochromatic DNA, or by DOMAINS REARRANGED METHYLTRANSFERASE 2 (DRM2)
60  during RNA-dependent DNA methylation (Liu et al., 2023; Zhang et al., 2018a). Adenosine methylation
61 (6mA) has also been observed in low levels in plants, enriched in genic regions and, in contract to 5mC,

62 has been shown to be positively associated with gene expression (Zhang et al., 2018b; Zhang et al.,
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63 2023). Exploring genome methylation by context therefore gives important biological insight into

64  chromatin structure and transposon silencing, in addition to gene regulation.

65  To investigate how effectively skimseq can be applied to study global methylation in plants, we tested
66  the precision and accuracy of the approach in nanopore sequencing datasets from three plant species:
67 Vitis vinifera (grapevine), Arabidopsis thaliana and Actinidia melanandra (purple kiwifruit). We
68  examined the influence of technical and biological factors such as read length, methylation entropy,
69  genetic heterozygosity, genome size, and reference genome choice on the accuracy of this approach

70  for measuring global methylation.

71 Having established appropriate coverage thresholds for skimseq in plants, we used this approach to
72 investigate the variation of global methylation levels with respect to sample preservation and DNA
73 extraction methods, as well as across different grapevine tissues and varieties. Sample preservation
74 method is an important factor for plant genomic analysis, to ensure good quality of nucleic acid and
75 preservation of biological information. For genomic analysis, suitable DNA can normally be obtained
76  from samples collected without immediate freezing. In contrast, samples are typically snap-frozen in
77  the field using liquid nitrogen or immersed in RNA-preserving chemicals such as RNALater to ensure
78 high-quality RNA can be extracted for transcriptomic studies. Scant data is available regarding the
79 effect of sample preservation methods on the stability of DNA methylation. To address this, we used
80  skimseq to compare global methylation levels of tissue samples collected using four different methods
81 (snap-frozen in liquid nitrogen, frozen with dry ice, packaged with silica-gel, and stored at room
82  temperature), as well as two different DNA extraction methods. To compare the impact of technical
83 methods with true biological variation, we also compared the global methylation level between

84  different grapevine tissues of the same variety, and different grapevine varieties.

85 Methods
86  Samples

87 Vitis vinifera cv. ‘Sauvignon Blanc’, clone UCD1 (FPMS1) young leaf samples were collected from the
88 New Zealand Winegrowers National Vine Collection held at Lincoln University. Vine-harvested leaves
89  of Actinidia melanandra (MEO2_01) were collected from Te Puke, Bay of Plenty. Leaf punches of
90  Arabidopsis thaliana Col-0 ecotype were obtained from a single lab-grown plant. All samples were

91 snap-frozen by immersion in liquid nitrogen at the time of collection.

92  To compare global methylation levels between technical methods, tissue types and cultivars, leaf and
93  tendril samples were collected from Vitis vinifera cv. Sauvignon Blanc, clone UCD1 (FPMS1) grafted

94  onto rootstock 3309 from a commercial vineyard (Waiata Vineyard, Tiki Wine) in North Canterbury,
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95 New Zealand. Samples were snap-frozen in the field and stored at -80 °C until DNA extraction, except
96 for some samples that were specifically collected for assessment of the impact of preservation
97 methods on sequence properties. These alternative preservation methods included: (i) collection into
98 silica-gel, whereby leaves were collected into an empty teabag and put inside a Ziploc bag with 30g of
99 silica gel, refrigerated at 2-8 °C overnight before being stored at -80 °C; (ii) frozen by packaging in dry
100 ice; (iii) a room temperature condition, where leaves were collected without any cooling method, and
101 left at room temperature for 2 hours before storage at -80 °C. Two other Vitis vinifera varieties, Pinot
102 Gris and Pinot Noir were also collected using the liquid nitrogen sampling method. Two to three

103 replicates were collected for each set of experimental parameters.
104  DNA extraction

105 Frozen tissues were ground in liquid nitrogen using a mortar and pestle or homogenised in 2 mL tubes
106 using a Tissuelyzer instrument (Qiagen) immediately prior to DNA extraction. Purified DNA for the Vitis
107 vinifera high-coverage sample and Actinidia melanandra were extracted using the Nucleobond High
108 Molecular Weight DNA kit (Macherey- Nagel, Diren, Germany). Nuclei isolation was performed prior
109  to DNA extraction for the Actinidia sample using the PacBio protocol (Pacific Biosciences, 2022). Size
110  selection to remove short reads was performed for both DNA extracts using the Short Read Eliminator
111 XL reagent (Pacific Biosciences, CA, USA). The Arabidopsis genomic DNA was extracted using a CTAB -
112  based protocol in which a leaf punch was incubated for 2 hours at 56 °C in CTAB buffer (as described
113  in (Hilario, 2018) with gentle homogenisation of the tissue during incubation, followed by one round
114  of chloroform:isoamyl alcohol (24:1) purification, ethanol precipitation of the nucleic acids and

115 resuspension in 1X TE buffer (pH 7.5). RNase treatment was performed after extraction.

116 For samples intended for comparison of different Vitis vinifera tissue types, varieties and pre-analytical
117 methods, DNA was extracted using the Nucleomag plant DNA kit (Macherey-Nagel, Diiren, Germany),
118 a CTAB-based extraction protocol, with the purification step automated on Eppendorf EpMotion 5075
119 liqguid-handling robot. Three samples were also re-extracted using an alternative SDS-based extraction
120 method (Russo, 2020). DNA concentrations were measured using the Qubit broad range kit on a Qubit
121 Flex instrument and purity was determined using a nanodrop 8000 (both from Thermo Fisher

122 Scientific, Waltham, MA, USA).
123 Library preparation

124  Sequencing libraries for the grapevine, Arabidopsis and kiwifruit samples were prepared using the
125 ligation sequencing kit from Oxford Nanopore Technologies (SQK-LSK114) following the
126 manufacturer’s protocol and sequenced on separate R10.4.1 flow cells. For the extended Vitis vinifera

127 population samples, barcoding and sequencing library preparation was performed using the Oxford
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128 Nanopore Rapid barcoding kit V14 (SQK-RBK114.96) following the manufacturer’s protocol and
129 sequenced across two R10.4.1 flow cells. All sequencing was performed on an PromethlON P24

130 instrument (Oxford Nanopore Technologies) at the Bragato Research Institute (Lincoln).
131 Data analysis

132  The publicly available dataset from the Oxford Nanopore Open Data Project human cell line GM12878
133 (HG001; Genome in A Bottle Consortium) was used as a comparison to the plant datasets generated

134 in this study (see https://labs.epi2me.io/giab-2023.05/). Raw Fast5 sequence data files were converted

135 into pod5 where necessary using pod5 tool v0.2.4 (https://github.com/nanoporetech/pod5-file-

136 format), and re-basecalled using dorado v0.3.2 (https://github.com/nanoporetech/dorado) with the

137  ‘super accurate’ (SUP) basecalling model and modified base models for both 5mC and 6mA

138 (dna r10.4.1 e8.2 400bps sup@v4.2.0 5mC@v2 and

139 dna r10.4.1 e8.2 400bps sup@v4.2.0 6mA@v2) in all contexts. The resulting BAM files were

140  converted back to fastg, with modification tags preserved, using SAMtools v1.0 (RRID:SCR_002105)
141 (Danecek et al., 2021). Quality filtering of the reads (minimum Phred average quality score of 10) was

142 performed using chopper v0.5.0 (https://github.com/wdecoster/chopper) and these reads, containing

143 MM/ML tags were mapped to reference genomes using minimap2 v2.26 (RRID:SCR_018550) (Li, 2021)
144  with the -ax map-ont presets. Reference genomes used were PN40024.v4 and SB1031v1 for Vitis
145  vinifera, TAIR10 (GenBank accession: GCA_000001735.2) for Arabidopsis thaliana, MEO2_01 v2.5 for
146  Actinidia melanandra, and GRCh38 (GenBank accession: GCA_000001405.15) for human dataset.

147 Coverage was assessed using Mosdepth v0.3.3 (RRID:SCR_018929)

148 (https://github.com/brentp/mosdepth) and was used to calculate the proportion of a dataset required

149 to downsample the mapped BAM files to the desired coverage levels using SAMtools v1.0
150 (RRID:SCR_002105) (Danecek et al., 2021). Modkit v0.1.8 (https://github.com/nanoporetech/modkit)

151  was used to process the BAM files to generate, filter and process methylation calls, producing a
152 BEDmethyl output file, and to generate reference BED files containing genomic position of CG, CHG,
153 CHH, and 6mA contexts.

154 Grapevine gene annotations were downloaded from https://integrape.eu/ and transposable element

155 (TE) regions were annotated using EDTAv2.1.0 (RRID:SCR_022063) (Ou et al., 2019). No curated library
156  was provided to EDTA, de novo element discovery with RepeatModeler2 was enabled, and the coding
157 sequences from the PN40024.v4 assembly release were provided to limit misclassification of genes as
158  transposable elements. Methylation data on each region and context were generated using BEDtools
159  v2.29.2 (RRID:SCR_006646) (Quinlan and Hall, 2010). For analysis of data with different read lengths,

160 reads were grouped based on read length criteria using Chopper. As the Vitis library contains mainly
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161 long reads, the 5kb length data was generated by trimming the reads to this length using reformat.sh
162  from bbmap v39.01 (RRID:SCR_016965) (Bushnell, 2014). Phasing and separation of reads to each
163  haplotype was performed using WhatsHap v1.6 ((Martin et al., 2016). Global methylation levels were
164  calculated using AWK scripts, as described by (Faulk, 2023). Error rate was calculated as a mean
165 difference in percentage between the highest and lowest value of the 10 replicates compared to true
166  value, i.e. value obtained from data with high coverage. Nanoplot v1.41.0 (RRID:SCR_024128) was
167 used to generate sequencing metrics such as read length and quality (De Coster and Rademakers,
168 2023). Methylation entropy was calculated using DMEAS (He et al., 2013) on data with ~10x coverage.
169 Differences of methylation levels among groups were analysed using one-way ANOVA
170  (RRID:SCR_002427) followed by a Tukey’s multiple comparison test and Plots were created in using
171  ggplot2 (RRID:SCR_014601) (Wickham, 2009) in R v4.2.2. All bioinformatics analysis was performed

172  with the aid of New Zealand eScience Infrastructure (NeSl) high performance computing facilities.

173 Results
174 Performance of skimseq approach for global methylation assessment in grapevine

175  We sequenced one grapevine sample to a total depth of 168x, and downsampled this dataset to 10x,
176 1x, 0.1x, 0.01x and 0.001x coverage, with ten bootstrap replicates performed at each coverage level.
177 Using the analysis approach described in (Faulk, 2023), global methylation level estimates for CG, CHG,
178 CHH and 6mA contexts were computed for each coverage level. In all sequence contexts, global
179 estimates of methylation level were consistent with the original value down to coverage of 0.1x, with
180  error rate <5% for CG and 6mA. Error rates were slightly higher for CHG and CHH contexts, (<10% at
181  0.1x and <5% at 1x). These observed error rates were higher than those previously reported in

182  vertebrates (Faulks, 2023), especially for non-CG contexts (Table 1 and Figure 1).
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184 Figure 1. Global methylation level estimates in CG, CHG, CHH, and 6mA contexts in the full dataset
185  and at downsampled coverage from 10x to 0.001x for Vitis vinifera, with 10 bootstraps performed for

186 each subsample.
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187  Table 1. Summary statistics for global methylation level estimates in CG, CHG, CHH, and 6mA
188 contexts in the full dataset and at downsampled coverage from 10x to 0.001x for Vitis vinifera, with
189 10 bootstraps performed for each subsample.

Coverage 168x 10x 1x 0.1x 0.01x 0.001x
Context CG

Mean 61.53 61.61 61.72 61.17 62.64 59.67
Max 61.72 62.47 62.22 65.54 76.97
Min 61.45 61.06 59.76 57.77 44,51
SD 0.1 0.38 0.84 2.91 9.36
SE 0.03 0.12 0.26 0.92 2.96
Upper error % 0.3 1.52 1.12 6.52 25.09
Lower error % -0.14 -0.77 -2.88 -6.12 -27.67
Mean error % 0.22 1.15 2.00 6.32 26.38
Context CHG

Mean 27.24 27.32 27.44 26.97 28.05 27.64
Max 27.45 28.03 28.7 31.67 43.88
Min 27.1 26.86 24.91 22.55 18.3
SD 0.11 0.35 1.31 3.07 7.94
SE 0.03 0.11 0.42 0.97 2.51
Upper error % 0.77 2.9 5.38 16.26 61.09
Lower error % -0.51 -1.39 -8.56 -17.22 -32.82
Mean error % 0.64 2.14 6.97 16.74 46.96
Context CHH

Mean 1.84 1.84 1.85 1.82 1.93 1.66
Max 1.85 1.88 1.91 2.28 2.04
Min 1.84 1.81 1.67 1.54 1.14
SD 0 0.02 0.08 0.22 0.27
SE 0 0.01 0.02 0.07 0.08
Upper error % 0.76 2.52 4.07 24.21 11.09
Lower error % -0.04 -1.32 -9.06 -16.09 -37.73
Mean error % 0.40 1.15 2.00 6.32 26.38
Context 6mA

Mean 4.1 411 4.12 4.08 4.2 3.99
Max 4.12 4.17 4.2 4.59 4.82
Min 4.09 4.08 3.91 3.58 3.25
SD 0.01 0.03 0.11 0.33 0.56
SE 0 0.01 0.03 0.11 0.18
Upper error % 0.47 1.72 2.45 12.02 17.62
Lower error % -0.18 -0.62 -4.59 -12.7 -20.67
Mean error % 0.32 1.17 3.52 12.36 19.14

190
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191 Comparison of different plant data

192  Todetermine whether the higher error rates of skimseq global methylation levels in grapevine, relative
193  to that reported in vertebrates, is common to other plant species, we extended our analyses to two
194  otherspecies: Arabidopsis thaliana, sequenced to ~12x, and Actinidia melanandra, sequenced to ~70x
195 coverage. We also analysed a control human dataset, sequenced to 11x coverage using the same flow
196 cell type and library kit chemistry as our plant datasets. These three additional samples were
197 downsampled using the same approach, and error rates of global methylation in CG context were
198 compared. Data from the human sample showed a similar pattern to that reported by Faulk (2023),
199  with accurate estimation of methylation level down to 0.01x (error approximately 3%). Despite a large
200  difference in absolute levels of CG methylation (30% compared to 65%), Arabidopsis thaliana showed
201 a similar error profile to Vitis vinifera across all coverage levels, with an error rate of >5% at 0.1x.
202  Actinidia melanandra showed a lower error rate compared to Vitis vinifera and Arabidopsis thaliana
203 at 0.1x and 0.01x (0.31% and 3% respectively), but a similar error rate at 0.001x. The methylation

204  entropy also differs notably among the three plant species (Figure 2 and Table S1).
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80
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o o e 3
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NSO 12.7kb 22.5kb 0.6kb 14.3kb
Mean read length 0.8kb 30.4kb 0.4kb 14.7kb
Mean read quality 18.8 21.7 16.2 18.9
Methylation entropy 0.617 0.428 0.651 0.289

205

206 Figure 2. Global methylation level estimates of human, Vitis vinifera, Arabidopsis thaliana, and
207  Actinidia melanandra datasets in CG context at coverage from 10x to 0.001x, with 10 bootstraps
208  performed for each subsample.

209  The four datasets vary in terms of library properties (e.g. read length distributions), reference genome
210 properties (e.g. reference assembly quality and the degree of matching between the sample and the
211  reference assembly) and in genome biology (e.g. levels of heterozygosity), although all are from diploid
212 species. We sought to understand how these features might contribute to the variation of error rate

213 (Figure 3 and Table S2-4).
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214  To compare the effect of library read length on accuracy, we grouped the Vitis dataset into four
215  different length ranges (5kb, <10kb, 10 to 50 kb, and >50 kb), and performed downsampling separately
216  on each group. The error rates were considerably lower in datasets with shorter reads, especially for

217 CHG and CHH contexts (Figure 3A).

218 Plant genomes can be highly heterozygous (Claros et al., 2012), for example Vitis vinifera genomes
219 have up to 13% sequence divergence between haplotypes (Jaillon et al., 2007) . To account for the
220  effect of this genetic heterogeneity, we partitioned the reads by haplotype and downsampled
221 alignments each containing a single haplotype separately. No difference was observed between error

222 rates of each haplotype and that of the combined data (Figure 3B).

223 Lastly, we observed lower error rates in kiwifruit, which was mapped to an in-house reference genome
224 built using reads from the exact same sample, while the grapevine sample was initially mapped to the
225 commonly used Vitis reference genome, PN40024.v4, which was built from a different Vitis vinifera
226  variety (Velt et al., 2023). We re-mapped the grapevine sample onto our in-house reference genome,
227 built using data from this exact Vitis sample, and re-performed the downsampling. This resulted in

228 lower error rates, especially for the CHG and CHH contexts at 0.1x coverage (Figure 3C).

10
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229
230  Figure 3. Variation of error rates based on biological and technical factors: (A) Error rates of Vitis

231  datasets with different read length, (B) error rates of Vitis datasets in separate haplotypes versus
232 combined haplotypes, (C) error rates of Vitis datasets mapped to two different reference genomes.

233  Performance of skimseq grapevine methylation level in different genomic features

234 Methylation levels vary in different genomic contexts and regions (Figure 4A). CG methylation levels
235 are relatively high throughout the genome, while CHG methylation levels are relatively high across
236  transposable elements (TE) but lower in genic regions. In the Vitis sample, TE and genic regions
237 comprised ~45% and ~33% of the genome, respectively. To determine the precision and accuracy of
238 skimseq approach for estimating methylation levels in these genomic regions across different
239 sequence contexts, we annotated the BEDmethyl files with region information and calculated the
240 methylation levels in respective regions. The error rates of methylation levels in TE and genic regions

241 at 0.1x to 10x coverage are comparable or lower than genome-wide assessment, except for CHG
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242 methylation in genic regions and CHH and 6mA methylation at separate classes of TE regions (Figure
243 4, Figure S1, and Table S5).
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245 Figure 4. Vitis vinifera methylation level and error rates in different genomic features. (A) Methylation
246  levels in different genomic contexts and features at coverage of 0.1x, (B) Error rates at coverage of 1x
247 to 0.01x.
248  Skimseq for methylation measurement of different grapevine tissue preservation methods
249 Having established the coverage threshold (0.1x) necessary to measure global methylation, as well as
250 for TE or genic regions, we applied this approach to validate the consistency of DNA methylation levels
251 at low coverage across different tissue types, and among different preservation and extraction
252 methods in Vitis vinifera cv. Sauvignon Blanc. In addition, we also assessed the methylation level in a
253 second grapevine variety, cv. ‘Pinot Noir’ and its clonal variant, ‘Pinot Gris’. Samples were sequenced
254 1o 0.24x — 2.31x coverage with N50 ranging from 2.9 - 9.9kb (Table S6).
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255  Analysis of these data showed methylation measurements to be independent of these parameters,
256  with some exceptions. Global CG methylation levels did not significantly differ across tissue types,
257 preservation methods, or DNA extraction methods. Global methylation of ‘Sauvignon Blanc’ appears

258  lower than the ‘Pinot’ varieties but did not cross the threshold for significance (Figure 5).

259  We also showed that methylation levels were consistent between three different sizes of young leaves
260 (21 cm, 2-2.5cm, and 23 cm) and tendril tissue for CG, CHG and 6mA contexts, while methylation in

261 CHH context were higher in tendril compared with the two smaller leaf sizes (Table S6 and Figure S2).

262 Interestingly, the two different Vitis varieties included in this study did differ in CG methylation with
263 regards to class Il TEs. This feature type showed significantly higher methylation levels in Pinot varieties
264  compared with Sauvignon Blanc (Pinot Gris=83.17+0.59%, Pinot Noir=82.19+0.29%, Sauvignon
265 Blanc=79.75+0.97%) (Figure S3).

266 Lastly, we showed that methylation levels were independent of sample preservation methods (liquid
267 nitrogen, dry ice, silica-gel and room temperature) and extraction methods (CTAB-based versus SDS-

268 based) (Figure S4 and S5).

CG CG
80 80
2 3
70 £70
° [3
;: I TISSL:‘;"S(51 cm) 2 > _
. . . I * Pinot Gris
é 60 I + Leaf(2-25¢cm) f:’ 60 * Pinot Noir
.; . %’“:1(21 3cm) s + Sauvignon Blanc
. enan £
2 ]
€50 50
z° :
40 0
CG CG
_80 80
70 <70
> Preservation method H
= i i ~ Liquid nitrogen E Extraction method
§60 - Dryice 560 = - CTAB
5 ~ Roomtemperature ® - SDS
s « Silica gel >
250 £50
3 =
=
40 40

269

270 Figure 5. Vitis vinifera global methylation levels (mean % sd) in CG context across different tissues,
271  varieties, sample preservation methods, and DNA extraction method. CTAB =
272 Cetyltrimethylammonium bromide, SDS = Sodium dodecyl sulfate.
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273 Discussion

274  Various methods have been developed to measure DNA methylation. Genome-wide or targeted
275 methylation at a single-base level can be measured using bisulfite treatment followed by whole
276  genome or targeted sequencing. At a lower resolution, methods such as methylation-sensitive
277 amplification polymorphism offer more affordable ways to investigate DNA methylation status for
278 specific sequence motifs (Agius et al., 2023). Global methylation status can be assessed by capture and
279 detection of methylated DNA using an ELISA-based method or by separation of methylated and non-
280 methylated nucleotides using liquid chromatography (LC) followed by detection using mass

281 spectrometry or other detection methods (Adamczyk et al., 2023; Tomczyk et al., 2022).

282 Oxford Nanopore Technologies sequencing enables direct assessment of DNA methylation alongside
283 canonical base sequencing without any additional cost or sample pre-treatment. At higher coverage,
284 it can assess DNA methylation at single-base resolution, and it has recently been shown that global
285 methylation levels can be obtained accurately from very low coverage sequencing, enabling a cost-
286  efficient assessment (Faulk, 2023). Compared with traditional global methylation methods such as
287 ELISA or LC, measuring global methylation on nanopore sequencing offers the advantage of context or
288 region-specific methylation information, a feature especially important in plants where methylation in

289 different cytosine contexts is associated with different biological functions.

290  Our results indicated that higher coverage (0.1x to 1x) is needed to achieve a comparable precision
291 and accuracy when assessing global methylation in plants using the skimseq approach, compared with
292  vertebrates. The genome sizes of the plant species investigated in the current study are relatively small
293 compared with vertebrates, enabling a cost-efficient assessment of individuals despite the increased
294  coverage required. For example, for Vitis vinifera, it would be possible to determine global methylation

295  from 96 multiplex samples sequenced on a single PromethlON flow cell.

296 However, genome size and ploidy vary greatly among plant species (Pellicer & Leitch, 2020; K. Zhang
297 et al., 2019). In addition to having a relatively small genome size, each of the three plant species
298 included in this study is diploid. Further validation of this approach in plant species with larger
299  genomes and higher ploidy levels will be useful to ensure the general applicability of this approach

300 across plant species.

301 Our data showed that read length affects the accuracy of skimseq methylation assessment. When the
302 Vitis data were grouped into sets of differing read length, lower error rates were observed for data
303  with shorter reads. This contrasts with report by (Faulk, 2023) that observed no effect of read length
304  onerrorrate. Notably, however, the average read length in their dataset was considerably lower (<6kb)

305  while our data also included much longer reads (<10kb up to >50kb). The greater error is likely because
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306 very long reads will result in less randomisation during downsampling due to non-independence of
307 datapoints within single reads, especially in regions with highly variable DNA methylation. Indeed,
308 higher accuracy was observed when including only reads shorter than 10kb, particularly in the CHG
309 and CHH contexts, for which error rates dropped from ~9% to ~3% and ~2% at 0.1x coverage,
310 respectively. It is therefore advisable to maintain read length at around or below 10kb, for example,

311 by shearing the DNA before sequencing.

312  Another factor contributing to error rate is the quality of the reference genome used and the genetic
313 similarity between the reference sample and the test samples. Remapping grapevine sequence data
314  toanin-house reference genome of the same genotype (species, variety and clone) resulted in reduced
315 error rates across all contexts at 1x and 0.1x. We hypothesise that two factors may underlie these
316 observations. Firstly, a more accurate reference assembly will result in fewer read-mapping errors.
317  Secondly, a close genetic match between reference and sample will also reduce misclassification of
318 methylation calls resulting from sequence variation affecting sequence motifs (CG, CHG or CHH) in the
319 reference. As the plant- and variety-specific genome assemblies become more abundant, the accuracy

320  of this approach for plant study can be improved.

321  Another possible factor contributing to the error rate difference is the heterogeneity or randomness
322 of methylation pattern throughout the genome (which has been termed ‘methylation entropy’) (Xie et
323 al., 2011). Kiwifruit has lower methylation entropy than grapevine, however human and Arabidopsis
324 have similar methylation entropy values which are higher than the two other plant species, but the
325 error rates were lower in human dataset. Therefore, methylation entropy does not appear to explain

326 the error rate differences.

327 Methylation levels in plants are highly dynamic and can be affected by various environmental and
328  biological factors (Zhang et al., 2018a). Differences in plant global methylation have been observed
329 among tissues and developmental stages (Gao et al., 2019; Shangguan et al., 2020; Teyssier et al.,
330 2008) or after exposure to abiotic stimuli such as heat stress (F. Liu et al., 2023; Yadav et al., 2022),

331 osmotic stress (Antro et al., 2023; Wang et al., 2011), and drought (Antro et al., 2023).

332  There is currently no published data describing DNA methylation variability between stages of
333  grapevine leaf development or resulting from different sample preservation or extraction methods.
334  Young leaves are the preferred material for grapevine genomic studies due to their amenability to DNA
335 purification techniques. However, no published data could be found comparing methylation levels
336  across different stages of leaf development. Often, plant tissue preservation methods involving the use
337 of liquid nitrogen in the field are impractical. Alternative preservation methods, such as silica gel or

338 dry ice freezing, could offer a practical approach for plant epigenetic studies if proven to preserve DNA
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339 methylation information. Our findings showed no measurement effect due to preservation method,
340 both with regards to global methylation as well as across specific genetic features. Similarly, no
341 difference was observed across the two most common approaches for plant DNA purification: SDS and

342 CTAB-based.

343 Using the skimseq approach, we were able to identify different methylation level of class I
344  transposable elements between two V. vinifera varieties. Lastly, the epigenome of grapevine tendril
345  tissue could be distinguished from leaf samples due to elevated CHH methylation, while no significant
346  differences were found between leaf samples. This suggests that a degree of flexibility is possible when

347 collecting young V. vinifera leaves for epigenomic studies.

348 In conclusion, applying the skimseq approach to nanopore sequencing, combined with sample
349 multiplexing appears to be a suitable and cost-efficient method for studying global DNA methylation
350 in plants. Our results show that very long reads are less favoured for measurement precision and
351 accuracy, and therefore DNA shearing, which is known to benefit yield, would also improve the
352 accuracy of methylation measurements for low-coverage sequencing. The quality of the reference
353  genome to which the reads are mapped influences estimate precision and accuracy. Nevertheless, our
354  findings suggest that this method should be broadly suitable as screening tool to study changes in
355 plant global methylation status across developmental stages or due to external stimuli at coverage

356 levels of 0.1x or higher.

357 Data Availability

358 Al bioinformatic scripts are available in Github at:
359  https://github.com/yusmiatiliau/Plant_skimseq_methylation. Raw sequence datasets for the

360 grapevine samples have been deposited in ENA under accession number PRIEB78871.
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