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Abstract 

High-throughput omics technologies have revolutionised the identification of associations between 

individual traits and underlying biological characteristics, but still use ‘one effect-size fits all’ 

approaches. While covariates are often used, their potential as effect modifiers often remains 

unexplored. To bridge this gap, we introduce ESPClust, a novel unsupervised method designed to 

identify covariates that modify the effect size of associations between sets of omics variables and 

outcomes. By extending the concept of moderators to encompass multiple exposures, ESPClust 

analyses the effect size profile (ESP) to identify regions in covariate space with different ESP, enabling 

the discovery of subpopulations with distinct associations. Applying ESPClust to insulin resistance 

and COVID-19 symptom manifestation, we demonstrate its versatility and ability to uncover nuanced 

effect size modifications that traditional analyses may overlook. By integrating information from 

multiple exposures, ESPClust identifies effect size modifiers in datasets that are too small for 

traditional univariate stratified analyses. This method provides a robust framework for understanding 

complex omics data and holds promise for personalised medicine.  

Introduction 
Rapidly expanding high-throughput technologies offer an unprecedented ability to identify 

associations between observed traits of individuals and biological endpoints via characterisation of 

various ‘omics’ data.  ‘Omics’ represents a range of disciplines including genomics, proteomics, 

metagenomics   and allows elucidation of mechanisms and processed underpinning health and 

disease states 1–5. 

Associations between omics variables and a given phenotypic outcome are often influenced by 

various covariates, including demographics (such as age, sex, body mass index -BMI- , ethnicity), 

biological diversity within samples6 or technical variation in the timing of collection, collection 

method and processing of samples7. It is standard practice to account for the potential confounding 

effects of such covariates when analysing associations between omics variables and outcomes. 
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Covariates can also act as moderators which alter the effect size of associations8.  This possibility, 

however, is not systematically considered in omics association studies. Neglecting moderators not 

only risks skewing effect size estimates but also disregards vital heterogeneity linked to covariates, 

which reflects diversity within human populations. Recognising such diversity can prove invaluable in 

identifying target subpopulations for maximising intervention effectiveness or delineating thresholds 

that differentiate groups based on distinct characteristics. Understanding how effects are different 

within different subpopulations is the cornerstone of developing personalised medicine. 

Here, we present ESPClust, an unsupervised method to identify covariates that modify the effect size 

of association between a set of omics variables and an outcome, which can be used in relatively 

small sample sizes for discovery science. This method extends the concept of moderators, which 

typically apply to the relationship between a single exposure and an outcome, to encompass 

multiple exposures simultaneously. It does so by analysing the effect size profile (ESP), a collection of 

effect sizes representing the connections between various omics variables and the outcome. The 

method divides the space of covariates into regions of approximately homogeneous ESP, defining 

clusters of individuals who share similar associations between their omics profile and the outcome. 

In essence, ESPClust extends the concept of effect modification to consider modification of the ESP, 

i.e. modification of the joint effect size of multiple exposures. 

ESPClust is versatile and can be readily employed to explore connections between different omics 

datasets and outcomes. The research questions we address here are chosen to illustrate the ability of 

the method to a) make new discoveries in a highly researched area and b) identify completely novel 

findings in an emerging disease. For the former, we investigated the correlation between blood 

metabolomics and insulin resistance, an area which has already been heavily researched9–11, 

providing a valuable context for our new findings. For the latter, we explored whether and how pre-

pandemic blood metabolomics, reflecting pre-infection metabolism, influenced whether someone 

would become symptomatic after SARS-CoV-2 infection.  Although numerous studies have analysed 

potential relationships between COVID-19 and blood metabolomics, they often concentrate on blood 

samples collected post-infection or use infection severity (such as hospitalisation) as the primary 

outcome12–16. By considering a new question, we showcase the ability of ESPClust to analyse 

previously unexplored associations. 

Results 

Overview of the ESPClust method 
Given a set of 𝑀 omics variables {𝑋1, 𝑋2, … , 𝑋𝑀}, we define the effect size profile (ESP) as the set of 

effect sizes {𝑒1, 𝑒2, … , 𝑒𝑀} giving the individual association of each omics variable and the outcome 

(Fig. 1a). Suppose that each effect size 𝑒𝑚 in the ESP can depend on 𝐽 covariates, {𝑍1, 𝑍2, … , 𝑍𝐽}, 

which act as effect modifiers. ESPClust generalizes the idea of univariate effect modification8,17 to 

modification of the whole ESP (Fig. 1b). The main aim of the method is to identify regions in the 

covariate space where the ESP can be considered homogeneous. Analyses that ignore effect size 

modification should be appropriate within each of these regions. In contrast, assuming homogeneity 

for the ESP across different regions would not be justified. 

ESPClust consists of three basic steps: 

1. Evaluation of the ESP as a function of the potential effect modifiers, {𝑍1, 𝑍2, … , 𝑍𝐽}. For a 

discrete covariate 𝑍 such as sex or smoking status, simply requires estimating the ESP 

separately for each value of 𝑍. To deal with continuous covariates, we evaluate the ESP 

within a set of windows {𝑊1, 𝑊2, … , 𝑊𝑛𝑤
} which cover the region of the covariate space 
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spanned by the data. For a single covariate (i.e. for 𝐽 = 1), windows are one-dimensional 

segments of lengths {𝐿1, 𝐿2, … , 𝐿𝑛𝑤
} (Fig. 1c). This procedure ultimately approximates the 

dependence of ESP on the covariates {𝑍1, 𝑍2, … , 𝑍𝐽} by window-dependent effect size 

spectra (e.g. the ESP corresponding to window 𝑊1 is {𝑒1(𝑊1), 𝑒2(𝑊1), … , 𝑒𝑀(𝑊1)}). 

2. Clustering of windows with similar ESP. The ESP for a given window is used as a vector of 

features that allows windows to be clustered in groups with similar ESP. Fig. 1d illustrates the 

concept: Windows 𝑊1, 𝑊2 and 𝑊3 used in Fig. 1c form a cluster where both 𝑒1 and 𝑒2 show 

a positive association across all three windows. In contrast, windows 𝑊4, 𝑊5 and 𝑊6 form a 

separate cluster where the values of 𝑒1 are negative and those of  𝑒2 are positive. The 

number of clusters identified by ESPClust can be manually set to any positive integer. 

However, we will present results in which the number of clusters represents the most 

frequently occurring value among four clustering indices: Calinski-Harabasz18 , Davies-

Bouldin19, silhouette20 and elbow21 (see Methods). If there is no repeated number across the 

four indices or in case of a tie, we will use the smallest number of clusters. Agglomerative 

clustering will be used throughout the article. 

3. Identification of regions in the covariate space with homogeneous ESP using the window 

clusters obtained in step 2. Figure 1e illustrates the process for a case with a single effect 

modifier. In this example, the covariate space is split into two regions with “small” and 

“large” 𝑧. Since the windows covering the covariate space can overlap, hard clustering of 

windows in the effect size space results in fuzzy clustering in the covariate space22. For 

instance, in Fig. 1e, segments overlap, allowing a specific value of the modifier to belong to 

multiple windows simultaneously. This approach acknowledges that individuals sharing a 

common modifier (e.g., age) may exhibit varied associations between omics variables and 

outcomes. Nonetheless, we employ the midpoint of each window, 𝑊𝑙
̅̅̅̅ , to provide a clearer 

visualization of regions characterized by homogeneous ESP. 

The centroids of the clusters serve as summaries of the ESP within each region, aiding in the 

interpretation of how covariates influence the relationship between each omics variable and the 

outcome. In Fig. 1f, the coordinates of the centroids and their dispersion are displayed. In this 

instance, the influence of the covariate 𝑧 on the association between the pair (𝑋1, 𝑌) is significantly 

greater than that on the pair (𝑋2, 𝑌). This is evident from the larger difference between the centroids 

𝐶1 and 𝐶2 for 𝑋1 compared to those for 𝑋2. Ultimately, this discrepancy reflects the stronger 

dependency of 𝑒1 on 𝑧, as illustrated in Fig. 1c. 

Association between insulin resistance and serum metabolomics 
We employed ESPClust to investigate the impact of BMI, sex, and gut microbiome gene richness (i.e., 

the number of unique microbial genes) on the relationship between serum metabolites and insulin 

resistance  (HOMA-IR) among 275 non-diabetic individuals from the Danish MetaHIT study 11,23,24 (see 

Supplementary Table S1). Results will be presented for two examples using different metabolomic 

variables as exposures.  

The first example utilised 94 polar metabolites11. To assess the effect sizes of step 1 in ESPClust for 

each sex, univariate linear regression was employed within predefined windows with several 

dimensions. Fig. 2 shows the results corresponding to windows determined by sliding a rectangular 

frame with dimensions  (𝐿𝐵𝑀𝐼 , 𝐿𝑔.𝑟𝑖𝑐ℎ.) = (8 kg/m2, 0.2𝑒6) at steps (Δ𝐵𝑀𝐼 , Δ𝑔.𝑟𝑖𝑐ℎ.) =

(1 kg/m2, 0.05𝑒6), as illustrated by the grey rectangle in Fig. 2c. Only windows containing more than 

10 observations (n > 10) were considered. Within each window, the effect size for every metabolite 

was calculated as the slope of a linear regression model, adjusting for both BMI and gene richness. 
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Fig. 2a shows the dependence of the effect size on each of the covariates for two metabolites which 

exemplify different levels of heterogeneity: the association between aminomalonic acid and insulin 

resistance exhibits more pronounced variation with the covariates compared to that of decanoic 

acid.  

A split of the windows into two clusters is the most frequent optimal across different clustering 

indices (Supplementary Fig. S1). This also looks appropriate when projecting the window effect sizes 

onto the two first principal components (Fig. 2b). Fig. 2c shows that cluster 1 comprises female 

individuals with high BMI and low gene richness. It cannot be established whether cluster 1 extends 

to the region of high BMI and low gene richness for males due to insufficient data in this region for 

this group. Similarly, there is insufficient data to ascertain whether cluster 1 extends to males within 

the low gene richness range.  

In Fig. 2d (left), the centroid coordinates corresponding to the 20 metabolites with the most 

significant differences between clusters are shown. This highlights that, in addition to differing in ESP 

collectively, distinct clusters also diverge at the level of specific individual metabolites (such as 

cholesterol or glycine). 

Previous studies have suggested that elevated levels of cholesterol are linked with obesity (i.e. high 

BMI), increased insulin resistance25, and reduced gene richness26. Our findings suggest that BMI and 

insulin resistance may not only confound the association between cholesterol and insulin resistance, 

but also act as effect modifiers, amplifying the positive association in cluster 1 (i.e. among individuals 

with high BMI and low gene diversity). Similarly, ESPClust indicates that the negative association 

between glycine levels and insulin resistance27 is moderated by BMI and gene diversity.  

To test the sensitivity of ESPClust to the specific dimensions of the windows used, we replicated the 

earlier analysis using gliding windows of varying sizes. Employing gliding rectangles with dimensions 

(𝐿𝐵𝑀𝐼 , 𝐿𝑔.𝑟𝑖𝑐ℎ.) = (5 kg/m2, 0.2𝑒6) once again yields two clusters, segregating individuals with high 

BMI and low gene richness from the reminder (Supplementary Fig. S2). The sampling of the covariate 

space becomes more restricted, as indicated by the emergence of gaps associated with windows 

containing insufficient data (n≤10) to compute effect sizes. For windows of dimensions 

(𝐿𝐵𝑀𝐼 , 𝐿𝑔.𝑟𝑖𝑐ℎ.) = (8 kg/m2, 0.1𝑒6), only the region of high gene richness can be explored 

(Supplementary Fig. S3), since none of the windows in the low gene richness region contain enough 

observations. 

To compare the results of ESPClust with traditional univariate methods using stratification, we run 

two analyses. In the first analysis, we categorised individuals into two groups representing the 

clusters identified by ESPClust. Cluster 1 was represented by individuals with BMI ≥ 26 kg/m2 and 

gene richness26,28 ≤ 480,000; cluster 0 was represented by the rest of individuals.  

Fig. 2d (center) shows that the effect size for the most distinct metabolites exhibits trends similar to 

those of the centroid coordinates (Fig. 2d (left)). However, the differences in effect sizes do not 

achieve statistical significance, as evidenced by the overlap of error bars in Fig. 2d (right). This 

demonstrates that ESPClust can identify clusters with varying ESP levels that may not be discernible 

combining traditional stratification and univariate analysis. Indeed, ESPClust may detect collective 

differences between effect size profiles that may not be prominent at the level of individual omics 

variables unless large datasets are used to enhance the power of univariate analysis.  

For the second stratification analysis, we used ESPClust with strata of dimensions (𝐿𝐵𝑀𝐼 , 𝐿𝑔.𝑟𝑖𝑐ℎ.) =

(8 kg/m2, 0.2𝑒6) built with non-overlapping windows gliding at steps that match their size, i.e. 

(Δ𝐵𝑀𝐼 , Δ𝑔.𝑟𝑖𝑐ℎ.) = (𝐿𝐵𝑀𝐼 , 𝐿𝑔.𝑟𝑖𝑐ℎ.). The results are significantly less informative than those shown in 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 12, 2024. ; https://doi.org/10.1101/2024.08.11.607486doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.11.607486
http://creativecommons.org/licenses/by/4.0/


5 
 

Fig. 2 for overlapping windows. ESPClust gives seven clusters of strata as the most frequent optimal 

(Supplementary Fig. 4S). Given the small number of strata, this suggests overfitting. When forcing a 

split of strata into two clusters, ESPClust identifies a cluster for females with low gene richness and 

high BMI (Supplementary Fig. 5S), analogous to cluster 1 in Fig. 2. However, this cluster consists of a 

single stratum and does not provide a precise separation between groups in the covariate space.  

As a second example within the context of insulin resistance, we utilised ESPClust with 289 lipids  

from the Danish MetaHIT study as exposures11. Our findings mirrored those obtained with 94 

metabolites. Employing gliding windows of size (𝐿𝐵𝑀𝐼 , 𝐿𝑔.𝑟𝑖𝑐ℎ.) = (8 kg/m2, 0.2𝑒6) resulted in a 

division of the covariate space into two clusters, identical to those depicted in Fig. 2c for the 94 

metabolites dataset. Similarly, results for windows of other sizes were consistent with those 

described above for the 94 metabolites.  

The coordinates of the cluster centroids for the lipidomic dataset indicate a higher effect size within 

cluster 1 for numerous triglycerides (e.g. TG(56:5)) and some glycerophosphoethanolamines (e.g. 

PE(36:1)) (Fig. 2e). Previous studies have established that elevated levels of triglycerides are linked 

with obesity, low gene richness, and metabolic disorders such as insulin resistance28,29. Our findings 

suggest that the positive association between triglycerides and insulin resistance is particularly 

strengthened in regions characterized by high BMI and low gene richness. 

In Fig. 2e, three sphingomyelins exhibit a diminished effect size within cluster 1, with SM(d18:1/16:0) 

(C16 Sphingomyelin) being the most prominent effect modifier. The interpretation of such a negative 

association is not clear, as previous research has reported a positive correlation between 

endogenous sphingomyelins and insulin resistance30. Conversely, exogenous dietary sphingomyelins 

were found to be negatively associated with insulin resistance and obesity31.  

Association between the COVID-19 symptoms manifestation and pre-pandemic serum 

metabolites 
We utilized ESPClust to explore the potential of BMI, sex, and age as modifiers for the association 

between metabolomic variables collected before COVID-19 infection and the manifestation of 

COVID-19 symptoms (i.e. symptomatic or asymptomatic). The symptom status was derived from self-

reported symptoms32 in TwinsUK COVID-19 questionnaires33, administered between July 2020 and 

February 2022, and serology data34 (see Methods). 

We will illustrate the performance of ESPClust for exposures taken from two different metabolomics 

datasets (see Supplementary Table S2). 

The first example is based on 221 biomarkers obtained from serum of 680 participants of the 

TwinsUK cohort study35 using Nuclear Magnetic Resonance 36 (NMR). The ESP was estimated through 

univariate logistic regression within a series of windows defined by sliding rectangles of various sizes. 

Only windows containing more than 25 observations (n>25) were considered, ensuring a robust 

representation of both symptomatic and asymptomatic phenotypes within each window. 

Defining windows with gliding rectangles of size (𝐿𝐵𝑀𝐼 , 𝐿𝑎𝑔𝑒) = (8 kg/m2, 21 yr) results in three 

clusters (Fig. 3a). Cluster 2 exclusively comprises male individuals (Fig. 3b-left); clusters 0 and 1 are 

predominantly found within the female covariate subspace (Fig. 3b-right). We infer that sex acts as a 

modifier for the EPS characterising the association between NMR biomarkers and the onset of 

COVID-19 symptoms. However, due to the limited data coverage for male individuals, this conclusion 

is only applicable to males with relatively low BMI (<29 kg/m2) and aged over 35 years.  

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 12, 2024. ; https://doi.org/10.1101/2024.08.11.607486doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.11.607486
http://creativecommons.org/licenses/by/4.0/


6 
 

The differences between clusters 0 and 1, as depicted in Fig. 2b-right, are not easily interpretable in 

terms of BMI and age. We note, however, a significant overlap between these clusters in the PCA plot 

of Fig. 3a, suggesting that the disparities in ESP between these two clusters are minor, and combining 

them to form a single cluster for female individuals would offer a more parsimonious description. 

The coordinates of the centroids for different clusters overlap and no individual metabolite exhibits a 

clearly distinct effect size across clusters (Fig. 3c). In this application, the differences between the 

clusters are therefore linked to the EPS as a whole. Nevertheless, there is a notable trend for many 

LDL and VLDL ratios to show higher effect sizes in males compared to females. A larger dataset might 

lead to a statistically clearer trend in this direction. 

When ESPClust was run with smaller gliding windows of size (𝐿𝐵𝑀𝐼 , 𝐿𝑎𝑔𝑒) = (5 kg/m2, 21 yr) or  

(8 kg/m2, 11 yr), the explored region in the male subspace shrunk, and the ESP differences between 

males and females could not be identified (Supplementary Figs. S6 and S7). 

The second metabolomics dataset utilised comprises 774 pre-pandemic serum metabolites obtained 

through liquid chromatography-mass spectrometry 37,38 (LC-MS) from 368 TwinsUK participants. 

Employing gliding windows of size  (𝐿𝐵𝑀𝐼 , 𝐿𝑎𝑔𝑒) = (8 kg/m2, 21 yr) results in four clusters in the 

female subspace (Fig. 3d); none of the windows contained sufficient data to estimate the ESP in the 

male subspace (Fig. 3e).  

In terms of BMI and age, the split of windows in the female subspace obtained using the 774 LC-MS 

metabolites (Fig. 3b-right) is more intuitive than that obtained using 221 NMR metabolites (Fig. 3e-

right). One possible explanation is that increasing the number of metabolites enhances the 

resolution of the dependence of the EPS on the covariates. At the level of individual metabolites, 

however, there is again significant overlap between clusters (Fig. 3f). 

Discussion 
We have introduced ESPClust, a flexible method for unsupervised identification of effect size 

modifiers in omics association studies. The method expands upon the concept of effect size 

modification, traditionally related to the association between an exposure-outcome pair, to utilise 

the information provided by a set of effect sizes for the association of multiple omics variables and 

an outcome. This collection of effect sizes defines the effect size profile, referred to as ESP. ESPClust 

finds regions in the covariate space with differing ESP, effectively generalising the effect size 

modification concept for individual omics variables to the concept of ESP modification. 

An ESP modifier may function as an effect modifier for individual omics variables, as demonstrated in 

our analysis of serum metabolites and insulin resistance. However, ESP modification captures 

phenomena not discernible at the individual omics level, as shown in our COVID-19 symptom 

phenotype analysis. 

ESPClust approximates the dependence of ESP on covariates using a cover of the covariate space 

consisting of overlapping windows. This concept, rooted in topology39, expands upon the traditional 

disjoint partitioning used in stratified analysis. Overlapping windows offer advantages: they eliminate 

the arbitrariness in defining strata that may intersect regions with heterogeneous ESPs, such as 

conventional age groups. They also provide a more detailed description of the dependence of effect 

sizes on covariates. However, overlapping windows create fuzzy boundaries separating regions with 

different ESPs. 
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The dimensions of windows defining a cover are adjustable parameters of ESPClust. Ideally, windows 

should offer a detailed description of the dependence of ESP on covariates across a wide region, 

ensuring statistically robust estimates within each window. We suggest running ESPClust with various 

window settings, as shown in our examples. Future research will explore automatic optimisation of 

cover configurations. The number of clusters to identify groups with similar ESP is also adjustable. In 

this study, we used a specific rule for selecting the number of clusters, but exploring different 

numbers of clusters can be beneficial for identifying suitable divisions. 

ESPClust offers considerable potential for advancing personalised medicine by identifying 

subpopulations with distinct biological responses. By detecting covariate-specific effect size 

modifications even using relatively small datasets, ESPClust reveals subtle associations that 

traditional methods may miss. This ability to tailor interventions based on individual biological 

profiles can enhance treatment efficacy and precision. Consequently, ESPClust facilitates the 

development of more personalised healthcare strategies, improving patient outcomes and driving 

progress in the field of personalised medicine. 
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Figure 1. ESPClust method to identify regions in the covariate space with similar effect size profile. (a) 

Association between 𝑀omics variables (exposures) and an outcome 𝑌 in terms of pair-wise effect sizes 

{𝑒1, 𝑒2, … , 𝑒𝑀} that may depend on 𝐽 covariates. (b) Schematic representation of the effect size profile 

dependence on the covariates. Panels (c)-(f) illustrate the method for a simple case with two omics variables, 

{𝑋1, 𝑋2}, which depend on a single continuous covariate, 𝑧. (c) The effect size for each omics variable is 

calculated within 6 windows, {𝑊𝑙}𝑙=1
6 , of lengths {𝐿𝑖}𝑖=1

6  that cover the values taken by the covariate 𝑧. (d) 

Clustering of the windows in the effect size space. Windows within a cluster have a similar effect size profile. 𝐶1 

and 𝐶2 are the cluster centroids. (e) Window clusters in the covariate space defining regions shown with 

segments (top) or window midpoints (bottom). (f) Coordinates of the cluster centroids summarising the effect 

of the covariate 𝑧 on the association profile of each omics variable with the outcome. 
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Figure 2. Application of ESPClust to study the association between insulin resistance and (a-d) 94 serum 
metabolites or (e) 289 molecular lipids. (a) Example of the effect size within windows for aminomalonic acid 
and decanoic acid in the covariate space (BMI, sex, gene richness). The error bars in the plots for BMI and gene 
richness indicate the size of the window used to cover these covariates. (b) Visualisation of two clusters with 
different ESP using the first two principal components of the windows effect sizes. (c) Clusters in the covariate 
space separately shown for male and female. The symbols indicate the middle point of the windows used to 
estimate the effect sizes. The size of the window used to calculate effect sizes for fixed sex is shown by a grey 
rectangle. (d) The left panel shows the coordinates of the cluster centroids corresponding to the 20 metabolites 
that differ the most between clusters. The error bars indicate 1.96SD, where SD is the standard deviation of the 
centroid coordinates. The central panel shows the effect size for the same metabolites for two groups of 
individuals representing the two identified clusters. The third panel shows the same effect sizes as in the 
second panel but the 95% confidence intervals for the effect sizes are shown with error bars. (e) Centroid 
coordinates for the 90 lipids which differ the most between the two clusters. 
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Figure 3. Results obtained by employing EPSClust to investigate the potential role of BMI, sex and age on the 
association between COVID-19 symptoms manifestation and serum metabolomics. Panels (a-c) show findings 
from ESPClust analysis using 221 NMR blood biomarkers as exposures, while panels (d-f) present analogous 
results obtained using 774 LC-MS blood metabolites. (a,d) Visualisation of the clusters for the ESP, using the 
first two principal components of the window effect sizes. (b,e) Clusters in the covariate space separately 
shown for male and female individuals. The symbols indicate the middle point of the windows used to estimate 
effect sizes. The size of the gliding window used to calculate effect sizes for fixed sex is represented by a grey 
rectangle in the panel for male individuals. (c,f) Coordinates of the cluster centroids corresponding to the 20 
metabolites that differ the most between clusters. The error bars indicate 1.96SD, where SD is the standard 
deviation of the centroid coordinates. 

Methods 
Clustering methods 
In the step 2 of ESPClust, the effect size patterns  {𝑒1(𝑊𝑙), 𝑒2(𝑊𝑙), … , 𝑒𝑀(𝑊𝑙)} were normalised 

before clustering. More explicitly, the effect sizes for a given omics variable, {𝑒𝑖(𝑊𝑙)}𝑙=1
𝐽 , were 

transformed by subtracting the mean over different windows and dividing by the standard deviation. 

To obtain the optimal number of clusters, Calinski-Harabasz, Davies-Bouldin and silhouette clustering 

measures, the optimal number of clusters clustering corresponds to the number of clusters at the 

maximum.  

The optimal number of clusters for the elbow method was calculated by considering the value of 𝑘 

for which the change in slope for the clustering quadratic error 21 (also called inertia) is maximal. This 

effectively identifies the most prominent elbow in the discrete curve obtained by plotting the inertia 

vs. 𝑘.  

To give the operational definition used by ESPClust, let us denote the inertia of 𝑘 clusters as 𝐼𝑘. The 

slope of the inertia is then 𝑠𝑘 = 𝐼𝑘 − 𝐼𝑘−1 for 𝑘 = 2,3, … From this, one can calculate the relative 

change of the slope at 𝑘 as follows: 

Δ𝑘 =
𝑠𝑘 − 𝑠𝑘+1

𝑠𝑘+1
 . 
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Since the slope 𝑠𝑘 is non-positive and increases with 𝑘, the relative change takes a non-negative 

value for any 𝑘. The optimal number of clusters according to the elbow method implemented in 

ESPClust corresponds to the value of 𝑘 for which Δ𝑘 is maximum. 

 

Regression to determine effect sizes within windows 
The current implementation of ESPClust uses a linear model to describe the outcome 𝑌 as a function 

of an omics variable 𝑋𝑚 adjusting for confounding of {𝑍1, 𝑍2, … , 𝑍𝐽}: 

 𝑓(𝑌) = 𝛽0 + 𝛽𝑚𝑋𝑚 + ∑ 𝛼𝑗𝑍𝑗

𝐽

𝑗=1

+ 𝜖 . (1) 

Here, 𝜖 is a normally distributed error. The function 𝑓(𝑌) depends on the nature of the outcome. For 

a continuous outcome such as insulin resistence, we used simple linear regression with 𝑓(𝑌) = 𝑌. In 

this case, the effect sizes are given by the slope coefficient of the model, i.e. 𝑒𝑚 = 𝛽𝑚. For a binary 

variable such as the COVID-19 symptomatic/asymptomatic status, we used logistic regression with 

𝑓(𝑌) = logit(𝑌). In this case, the presented effect sizes 𝑒𝑚 are the odds ratios given by 𝑒𝛽𝑚. 

 

Data for the insuline resistance examples 
The data used for this example was published by Pedersen et al.11,24 who gave a complete 

description. We restricted our analysis to known metabolites and lipids within these data. 

Data for the COVID-19 symptoms example 

Study population 
The individuals included in this example were selected from the UK Adult Twin Registry (TwinsUK).  A 

study participant was included in the analysis if the following conditions are satisfied: (i) There was 

pre-pandemic metabolomic data for the participant, (ii) there was information on the presence or 

absence of COVID-19 symptoms and (iii) there was evidence that the participant was infected by SARS-

CoV-2. 

Exposure variables 
The metabolite concentrations of fasting blood samples collected before the COVID-19 pandemic were 

measured with two different platforms that yielded the two metabolic datasets used in this study. The 

first dataset was obtained through a high-throughput nuclear magnetic resonance (NMR) platform36,40 

by Nightingale Health Ltd., Helsinki, Finland. This platform provides the concentration of over 200 

circulating metabolic biomarkers including lipids, fatty acids, amino acids, ketone bodies glycolysis 

related metabolites as well as lipoprotein subclass distribution and particle size. The second dataset 

(C19-1) was obtained using an untargeted liquid chromatography-mass spectrometry (LC-MS) 

procedure conducted by Metabolon, Inc., Durham, North Carolina, USA as previously described37,38.  
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Outcome variable 

Each of the infected cohort participants was classified into one of two classes: asymptomatic or 

symptomatic. Participants were labelled as asymptomatic if they reported that had not had COVID-19 

but there was evidence of SARS-CoV-2 infection. In contrast, participants were assumed to be 

symptomatic if there was evidence of natural infection and they reported having had COVID-19 and 

also provided the duration of symptoms (this requirement was imposed to strengthen the evidence 

that these patients were symptomatic). Information on the symptoms of participants was obtained 

from three TwinsUK COVID-19 questionnaires33 administered in July-August 2020 (Q2), October-

November 2020 (Q3) and November 2021-February 2022 (Q4). SARS-CoV-2 infection was assessed 

using antibody testing data obtained in two rounds that approximately coincide in time with the 

questionnaires Q2 and Q4.  These data were informed by self-reported vaccination status to 

conclude that there was evidence of SARS-CoV-2 infection for any participant with a positive anti-

Nucleocapsid result at any time or a positive anti-Spike result before vaccination41.  

 

Missing data  
Metabolites whose concentration was missing for more than 20% of individuals were discarded. 

Similarly, individuals who missed more than 20% of the metabolites were also discarded. The 

remaining missing values for metabolites were imputed using k Nearest Neighbours 42 with 𝑘 = 3.  

Data transformation  
Sex was encoded as a numerical variable (0 for male and 1 for female); the rest of variables are 

intrinsically numerical. Metabolites were individually transformed by adding one and applying the 

natural logarithm function. All variables were individually standardized by subtracting the mean 

value and dividing by the standard deviation. 

Data availability 
The metabolomic data for the examples on insulin resistance are available at24 

https://bitbucket.org/hellekp/clinical-micro-meta-integration/src/master/. The data used for the 

COVID-19 examples are held by the Department of Twin Research at King’s College London. The data 

can be released to bona fide researchers using our normal procedures overseen by the Wellcome Trust 

and its guidelines as part of our core funding (https://twinsuk.ac.uk/resources-for-researchers/access-

our-data/). 

Code availability 
ESPClust software is freely available at https://github.com/fjpreche/ESPClust.git. It can be installed 

via Python package repositories as `pip install -i https://test.pypi.org/simple/ ESPClust==1.0.0` 
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Supplementary Tables 

Table S1. Demographics relevant to the application of ESPClust to the association between serum 

metabolomics and insulin resistance. The statistics for insulin resistance, BMI, and gene richness are 

given as Median (2.5% percentile, 97.5% percentile). 

sex n 
Insulin 
resistance BMI (kg/m2) Gene richness 

Male 125 1.8 (0.4,4.9) 
30.9 
(20.4,39.9) 

744470 
(407391,1013525) 

Female 150 1.5 (0.5,5.4) 
30.7 
(19.6,41.5) 

736092 
(378970,958634) 

All 275 1.7 (0.4,5.2) 
30.7 
(20.0,41.2) 

743324 
(398365,984865) 

 

Table S2. Demographics relevant to the application of ESPClust to the association between serum 

metabolomics and COVID-19 symptoms manifestation. The statistics for BMI and age are given as 

Median (2.5% percentile, 97.5% percentile) 

Omics data 
Symptoms 
class Sex (M/F) n BMI (kg/m2) Age (years) 

221 NMR biomarkers Asymptomatic Male 53 24.5 (19.9,34.4) 65 (24,86) 

   Female 292 25.4 (18.4,38.9) 67 (31,84) 

  Symptomatic Male 34 25.4 (20.3,33.5) 57 (25,74) 

    Female 301 24.5 (18.2,37.5) 56 (25,77) 

774 LC-MS 
metabolites Asymptomatic Male 31 24.8 (18.9,33.1) 69 (33,87) 

    Female 153 25.3 (18.8,36.0) 67 (34,84) 

 Symptomatic Male 19 25.6 (21.7,30.3) 59 (31,77) 

    Female 165 25.3 (18.4,36.0) 56 (31,76) 
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Supplementary figures 

ESPClust: Unsupervised identification of modifiers for the effect size profile in omics 

association studies 

 

 

Figure S4. Four clustering measures as a function of the number of clusters for the example on the association 
of insulin resistance and 94 metabolites using windows of dimensions (𝐿𝐵𝑀𝐼 , 𝐿𝑔.𝑟𝑖𝑐ℎ.) = (8 𝑘𝑔/𝑚2, 0.2𝑒6) 

gliding at steps (𝛥𝐵𝑀𝐼 , 𝛥𝑔.𝑟𝑖𝑐ℎ.) = (1 𝑘𝑔/𝑚2, 0.05𝑒6). 
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Figure S5. Clusters in the covariate space obtained by applying ESPClust to study the impact of BMI, sex and 
gene richness on the association of insulin resistance and 94 serum polar metabolites. For given sex, a gliding 
window of dimensions  (𝐿𝐵𝑀𝐼 , 𝐿𝑔.𝑟𝑖𝑐ℎ.) = (5 𝑘𝑔/𝑚2, 0.2𝑒6) was used, as marked by the dashed-line rectangle. 

 

  
Figure S3. Clusters in the covariate space obtained by applying ESPClust to study the impact of BMI, sex and 
gene richness on the association of insulin resistance and 94 serum polar metabolites. For given sex, a gliding 
window of dimensions  (𝐿𝐵𝑀𝐼 , 𝐿𝑔.𝑟𝑖𝑐ℎ.) = (8 𝑘𝑔/𝑚2, 0.1𝑒6) was used, as marked by the dashed-line rectangle. 
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Figure S4. Four clustering measures as a function of the number of clusters for the example on the association 
of insulin resistance and 94 metabolites using windows of dimensions (𝐿𝐵𝑀𝐼 , 𝐿𝑔.𝑟𝑖𝑐ℎ.) = (8 𝑘𝑔/𝑚2, 0.2𝑒6) 

gliding at steps (𝛥𝐵𝑀𝐼 , 𝛥𝑔.𝑟𝑖𝑐ℎ.) = (1 𝑘𝑔/𝑚2, 0.05𝑒6). 
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Figure S5. Application of ESPClust to study the association between insulin resistance and 94 serum using non-
overlapping strata of dimensions (𝐿𝐵𝑀𝐼 , 𝐿𝑔.𝑟𝑖𝑐ℎ.) = (8 𝑘𝑔/𝑚2, 0.2𝑒6). (a) Example of the effect size within 

windows for aminomalonic acid and decanoic acid in the covariate space (BMI, sex, gene richness). The error 
bars in the plots for BMI and gene richness indicate the size of the window used to cover these covariates. (b) 
Visualisation of two clusters with different ESP using the first two principal components of the windows effect 
sizes. (c) Clusters in the covariate space separately shown for male and female. The symbols indicate the 
middle point of the strata used to estimate the effect sizes. The size of the strata used to calculate effect sizes 
for fixed sex is shown by a grey rectangle. (d) Coordinates of the cluster centroids corresponding to the 20 
metabolites that differ the most between clusters. The error bars indicate 1.96SD, where SD is the standard 
deviation of the centroid coordinates.  
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Figure S6. Clusters in the covariate space obtained by applying ESPClust to study the impact of BMI, sex and age 
on the association of COVID-19 symptoms manifestation and 221 NMR serum metabolites. For given sex, a 
gliding window of dimensions  (𝐿𝐵𝑀𝐼 , 𝐿𝑎𝑔𝑒) = (5 𝑘𝑔/𝑚2, 21 𝑦𝑟) was used, as marked by the dashed-line 

rectangle. 

 

 

 

Figure S7. Clusters in the covariate space obtained by applying ESPClust to study the impact of BMI, sex and age 
on the association of COVID-19 symptoms manifestation and 221 NMR serum metabolites. For given sex, a 
gliding window of dimensions  (𝐿𝐵𝑀𝐼 , 𝐿𝑎𝑔𝑒) = (8 𝑘𝑔/𝑚2, 11 𝑦𝑟) was used, as marked by the dashed-line 

rectangle. 
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