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Abstract

High-throughput omics technologies have revolutionised the identification of associations between
individual traits and underlying biological characteristics, but still use ‘one effect-size fits all’
approaches. While covariates are often used, their potential as effect modifiers often remains
unexplored. To bridge this gap, we introduce ESPClust, a novel unsupervised method designed to
identify covariates that modify the effect size of associations between sets of omics variables and
outcomes. By extending the concept of moderators to encompass multiple exposures, ESPClust
analyses the effect size profile (ESP) to identify regions in covariate space with different ESP, enabling
the discovery of subpopulations with distinct associations. Applying ESPClust to insulin resistance
and COVID-19 symptom manifestation, we demonstrate its versatility and ability to uncover nuanced
effect size modifications that traditional analyses may overlook. By integrating information from
multiple exposures, ESPClust identifies effect size modifiers in datasets that are too small for
traditional univariate stratified analyses. This method provides a robust framework for understanding
complex omics data and holds promise for personalised medicine.

Introduction

Rapidly expanding high-throughput technologies offer an unprecedented ability to identify
associations between observed traits of individuals and biological endpoints via characterisation of
various ‘omics’ data. ‘Omics’ represents a range of disciplines including genomics, proteomics,
metagenomics and allows elucidation of mechanisms and processed underpinning health and
disease states .

Associations between omics variables and a given phenotypic outcome are often influenced by
various covariates, including demographics (such as age, sex, body mass index -BMlI-, ethnicity),
biological diversity within samples® or technical variation in the timing of collection, collection
method and processing of samples’. It is standard practice to account for the potential confounding
effects of such covariates when analysing associations between omics variables and outcomes.
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Covariates can also act as moderators which alter the effect size of associations®. This possibility,
however, is not systematically considered in omics association studies. Neglecting moderators not
only risks skewing effect size estimates but also disregards vital heterogeneity linked to covariates,
which reflects diversity within human populations. Recognising such diversity can prove invaluable in
identifying target subpopulations for maximising intervention effectiveness or delineating thresholds
that differentiate groups based on distinct characteristics. Understanding how effects are different
within different subpopulations is the cornerstone of developing personalised medicine.

Here, we present ESPClust, an unsupervised method to identify covariates that modify the effect size
of association between a set of omics variables and an outcome, which can be used in relatively
small sample sizes for discovery science. This method extends the concept of moderators, which
typically apply to the relationship between a single exposure and an outcome, to encompass
multiple exposures simultaneously. It does so by analysing the effect size profile (ESP), a collection of
effect sizes representing the connections between various omics variables and the outcome. The
method divides the space of covariates into regions of approximately homogeneous ESP, defining
clusters of individuals who share similar associations between their omics profile and the outcome.
In essence, ESPClust extends the concept of effect modification to consider modification of the ESP,
i.e. modification of the joint effect size of multiple exposures.

ESPClust is versatile and can be readily employed to explore connections between different omics
datasets and outcomes. The research questions we address here are chosen to illustrate the ability of
the method to a) make new discoveries in a highly researched area and b) identify completely novel
findings in an emerging disease. For the former, we investigated the correlation between blood
metabolomics and insulin resistance, an area which has already been heavily researched®?,
providing a valuable context for our new findings. For the latter, we explored whether and how pre-
pandemic blood metabolomics, reflecting pre-infection metabolism, influenced whether someone
would become symptomatic after SARS-CoV-2 infection. Although numerous studies have analysed
potential relationships between COVID-19 and blood metabolomics, they often concentrate on blood
samples collected post-infection or use infection severity (such as hospitalisation) as the primary
outcome??1, By considering a new question, we showcase the ability of ESPClust to analyse
previously unexplored associations.

Results

Overview of the ESPClust method

Given a set of M omics variables {X;, X5, ..., Xy}, we define the effect size profile (ESP) as the set of
effect sizes {ey, e,, ..., €y} giving the individual association of each omics variable and the outcome
(Fig. 1a). Suppose that each effect size e, in the ESP can depend on J covariates, {Z1, Z3, ..., Z;},
which act as effect modifiers. ESPClust generalizes the idea of univariate effect modification®'’ to
modification of the whole ESP (Fig. 1b). The main aim of the method is to identify regions in the
covariate space where the ESP can be considered homogeneous. Analyses that ignore effect size
modification should be appropriate within each of these regions. In contrast, assuming homogeneity
for the ESP across different regions would not be justified.

ESPClust consists of three basic steps:

1. Evaluation of the ESP as a function of the potential effect modifiers, {Z;, Z5, ...,Z]}. Fora
discrete covariate Z such as sex or smoking status, simply requires estimating the ESP
separately for each value of Z. To deal with continuous covariates, we evaluate the ESP
within a set of windows {Wy, W,, ..., W, } which cover the region of the covariate space
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spanned by the data. For a single covariate (i.e. for | = 1), windows are one-dimensional
segments of lengths {Ly, Ly, ..., L, } (Fig. 1c). This procedure ultimately approximates the
dependence of ESP on the covariates {Z1, Z;, ..., Z;} by window-dependent effect size
spectra (e.g. the ESP corresponding to window W, is {e; (W), e;(W,), ..., epy (W1) D).

2. Clustering of windows with similar ESP. The ESP for a given window is used as a vector of
features that allows windows to be clustered in groups with similar ESP. Fig. 1d illustrates the
concept: Windows W;, W, and W5 used in Fig. 1c form a cluster where both e; and e, show
a positive association across all three windows. In contrast, windows W,, W5 and Wy form a
separate cluster where the values of e; are negative and those of e, are positive. The
number of clusters identified by ESPClust can be manually set to any positive integer.
However, we will present results in which the number of clusters represents the most
frequently occurring value among four clustering indices: Calinski-Harabasz'® , Davies-
Bouldin®®, silhouette?® and elbow?! (see Methods). If there is no repeated number across the
four indices or in case of a tie, we will use the smallest number of clusters. Agglomerative
clustering will be used throughout the article.

3. Identification of regions in the covariate space with homogeneous ESP using the window
clusters obtained in step 2. Figure 1e illustrates the process for a case with a single effect
modifier. In this example, the covariate space is split into two regions with “small” and
“large” z. Since the windows covering the covariate space can overlap, hard clustering of
windows in the effect size space results in fuzzy clustering in the covariate space®. For
instance, in Fig. 1e, segments overlap, allowing a specific value of the modifier to belong to
multiple windows simultaneously. This approach acknowledges that individuals sharing a
common modifier (e.g., age) may exhibit varied associations between omics variables and
outcomes. Nonetheless, we employ the midpoint of each window, W}, to provide a clearer
visualization of regions characterized by homogeneous ESP.

The centroids of the clusters serve as summaries of the ESP within each region, aiding in the
interpretation of how covariates influence the relationship between each omics variable and the
outcome. In Fig. 1f, the coordinates of the centroids and their dispersion are displayed. In this
instance, the influence of the covariate z on the association between the pair (X, Y) is significantly
greater than that on the pair (X,,Y). This is evident from the larger difference between the centroids
C; and C, for X; compared to those for X,. Ultimately, this discrepancy reflects the stronger
dependency of e; on z, as illustrated in Fig. 1c.

Association between insulin resistance and serum metabolomics

We employed ESPClust to investigate the impact of BMI, sex, and gut microbiome gene richness (i.e.,
the number of unique microbial genes) on the relationship between serum metabolites and insulin
resistance (HOMA-IR) among 275 non-diabetic individuals from the Danish MetaHIT study 12324 (see
Supplementary Table S1). Results will be presented for two examples using different metabolomic
variables as exposures.

The first example utilised 94 polar metabolites!!. To assess the effect sizes of step 1 in ESPClust for
each sex, univariate linear regression was employed within predefined windows with several
dimensions. Fig. 2 shows the results corresponding to windows determined by sliding a rectangular
frame with dimensions (Lgwmy, Lgricn) = (8 kg/m?,0.2e6) at steps (ABMI'Ag.riCh.) =

(1 kg/m?,0.05e6), as illustrated by the grey rectangle in Fig. 2c. Only windows containing more than
10 observations (n > 10) were considered. Within each window, the effect size for every metabolite
was calculated as the slope of a linear regression model, adjusting for both BMI and gene richness.
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Fig. 2a shows the dependence of the effect size on each of the covariates for two metabolites which
exemplify different levels of heterogeneity: the association between aminomalonic acid and insulin
resistance exhibits more pronounced variation with the covariates compared to that of decanoic
acid.

A split of the windows into two clusters is the most frequent optimal across different clustering
indices (Supplementary Fig. S1). This also looks appropriate when projecting the window effect sizes
onto the two first principal components (Fig. 2b). Fig. 2c shows that cluster 1 comprises female
individuals with high BMI and low gene richness. It cannot be established whether cluster 1 extends
to the region of high BMI and low gene richness for males due to insufficient data in this region for
this group. Similarly, there is insufficient data to ascertain whether cluster 1 extends to males within
the low gene richness range.

In Fig. 2d (left), the centroid coordinates corresponding to the 20 metabolites with the most
significant differences between clusters are shown. This highlights that, in addition to differing in ESP
collectively, distinct clusters also diverge at the level of specific individual metabolites (such as
cholesterol or glycine).

Previous studies have suggested that elevated levels of cholesterol are linked with obesity (i.e. high
BMI), increased insulin resistance?®, and reduced gene richness?®. Our findings suggest that BMI and
insulin resistance may not only confound the association between cholesterol and insulin resistance,
but also act as effect modifiers, amplifying the positive association in cluster 1 (i.e. among individuals
with high BMI and low gene diversity). Similarly, ESPClust indicates that the negative association
between glycine levels and insulin resistance?’ is moderated by BMI and gene diversity.

To test the sensitivity of ESPClust to the specific dimensions of the windows used, we replicated the
earlier analysis using gliding windows of varying sizes. Employing gliding rectangles with dimensions
(Lemn Lgricn) = (5 kg/m?,0.2e6) once again yields two clusters, segregating individuals with high
BMI and low gene richness from the reminder (Supplementary Fig. S2). The sampling of the covariate
space becomes more restricted, as indicated by the emergence of gaps associated with windows
containing insufficient data (n<10) to compute effect sizes. For windows of dimensions

(Lemni Lgricn) = (8 kg/m?,0.1e6), only the region of high gene richness can be explored
(Supplementary Fig. S3), since none of the windows in the low gene richness region contain enough
observations.

To compare the results of ESPClust with traditional univariate methods using stratification, we run
two analyses. In the first analysis, we categorised individuals into two groups representing the
clusters identified by ESPClust. Cluster 1 was represented by individuals with BMI > 26 kg/m? and
gene richness®®*® < 480,000; cluster 0 was represented by the rest of individuals.

Fig. 2d (center) shows that the effect size for the most distinct metabolites exhibits trends similar to
those of the centroid coordinates (Fig. 2d (left)). However, the differences in effect sizes do not
achieve statistical significance, as evidenced by the overlap of error bars in Fig. 2d (right). This
demonstrates that ESPClust can identify clusters with varying ESP levels that may not be discernible
combining traditional stratification and univariate analysis. Indeed, ESPClust may detect collective
differences between effect size profiles that may not be prominent at the level of individual omics
variables unless large datasets are used to enhance the power of univariate analysis.

For the second stratification analysis, we used ESPClust with strata of dimensions (Lgyy, Lg rich.) =
(8 kg/m?,0.2e6) built with non-overlapping windows gliding at steps that match their size, i.e.
(ABM,, Agln-ch_) = (Lgmi» Lg ricn.)- The results are significantly less informative than those shown in
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Fig. 2 for overlapping windows. ESPClust gives seven clusters of strata as the most frequent optimal
(Supplementary Fig. 4S). Given the small number of strata, this suggests overfitting. When forcing a
split of strata into two clusters, ESPClust identifies a cluster for females with low gene richness and
high BMI (Supplementary Fig. 5S), analogous to cluster 1 in Fig. 2. However, this cluster consists of a
single stratum and does not provide a precise separation between groups in the covariate space.

As a second example within the context of insulin resistance, we utilised ESPClust with 289 lipids
from the Danish MetaHIT study as exposures®®, Our findings mirrored those obtained with 94
metabolites. Employing gliding windows of size (Lgyy, Lgricn) = (8 kg/m?,0.2e6) resulted in a
division of the covariate space into two clusters, identical to those depicted in Fig. 2c for the 94
metabolites dataset. Similarly, results for windows of other sizes were consistent with those
described above for the 94 metabolites.

The coordinates of the cluster centroids for the lipidomic dataset indicate a higher effect size within
cluster 1 for numerous triglycerides (e.g. TG(56:5)) and some glycerophosphoethanolamines (e.g.
PE(36:1)) (Fig. 2e). Previous studies have established that elevated levels of triglycerides are linked
with obesity, low gene richness, and metabolic disorders such as insulin resistance?®%. Our findings
suggest that the positive association between triglycerides and insulin resistance is particularly
strengthened in regions characterized by high BMI and low gene richness.

In Fig. 2e, three sphingomyelins exhibit a diminished effect size within cluster 1, with SM(d18:1/16:0)
(C16 Sphingomyelin) being the most prominent effect modifier. The interpretation of such a negative
association is not clear, as previous research has reported a positive correlation between
endogenous sphingomyelins and insulin resistance®. Conversely, exogenous dietary sphingomyelins
were found to be negatively associated with insulin resistance and obesity3!.

Association between the COVID-19 symptoms manifestation and pre-pandemic serum

metabolites

We utilized ESPClust to explore the potential of BMI, sex, and age as modifiers for the association
between metabolomic variables collected before COVID-19 infection and the manifestation of
COVID-19 symptoms (i.e. symptomatic or asymptomatic). The symptom status was derived from self-
reported symptoms32 in TwinsUK COVID-19 questionnaires®, administered between July 2020 and
February 2022, and serology data®* (see Methods).

We will illustrate the performance of ESPClust for exposures taken from two different metabolomics
datasets (see Supplementary Table S2).

The first example is based on 221 biomarkers obtained from serum of 680 participants of the
TwinsUK cohort study®® using Nuclear Magnetic Resonance 3¢ (NMR). The ESP was estimated through
univariate logistic regression within a series of windows defined by sliding rectangles of various sizes.
Only windows containing more than 25 observations (n>25) were considered, ensuring a robust
representation of both symptomatic and asymptomatic phenotypes within each window.

Defining windows with gliding rectangles of size (Lguyy, Lage) = (8 kg/m?, 21 yr) results in three
clusters (Fig. 3a). Cluster 2 exclusively comprises male individuals (Fig. 3b-left); clusters 0 and 1 are
predominantly found within the female covariate subspace (Fig. 3b-right). We infer that sex acts as a
modifier for the EPS characterising the association between NMR biomarkers and the onset of
COVID-19 symptoms. However, due to the limited data coverage for male individuals, this conclusion
is only applicable to males with relatively low BMI (<29 kg/m2) and aged over 35 years.
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The differences between clusters 0 and 1, as depicted in Fig. 2b-right, are not easily interpretable in
terms of BMI and age. We note, however, a significant overlap between these clusters in the PCA plot
of Fig. 3a, suggesting that the disparities in ESP between these two clusters are minor, and combining
them to form a single cluster for female individuals would offer a more parsimonious description.

The coordinates of the centroids for different clusters overlap and no individual metabolite exhibits a
clearly distinct effect size across clusters (Fig. 3c). In this application, the differences between the
clusters are therefore linked to the EPS as a whole. Nevertheless, there is a notable trend for many
LDL and VLDL ratios to show higher effect sizes in males compared to females. A larger dataset might
lead to a statistically clearer trend in this direction.

When ESPClust was run with smaller gliding windows of size (Lgyy, Lage) = (5 kg/m?,21 yr) or
(8 kg/m?,11 yr), the explored region in the male subspace shrunk, and the ESP differences between
males and females could not be identified (Supplementary Figs. S6 and S7).

The second metabolomics dataset utilised comprises 774 pre-pandemic serum metabolites obtained
through liquid chromatography-mass spectrometry 3738 (LC-MS) from 368 TwinsUK participants.
Employing gliding windows of size (Lgyy, Lage) = (8 kg/m?2, 21 yr) results in four clusters in the
female subspace (Fig. 3d); none of the windows contained sufficient data to estimate the ESP in the
male subspace (Fig. 3e).

In terms of BMI and age, the split of windows in the female subspace obtained using the 774 LC-MS
metabolites (Fig. 3b-right) is more intuitive than that obtained using 221 NMR metabolites (Fig. 3e-
right). One possible explanation is that increasing the number of metabolites enhances the
resolution of the dependence of the EPS on the covariates. At the level of individual metabolites,
however, there is again significant overlap between clusters (Fig. 3f).

Discussion

We have introduced ESPClust, a flexible method for unsupervised identification of effect size
modifiers in omics association studies. The method expands upon the concept of effect size
modification, traditionally related to the association between an exposure-outcome pair, to utilise
the information provided by a set of effect sizes for the association of multiple omics variables and
an outcome. This collection of effect sizes defines the effect size profile, referred to as ESP. ESPClust
finds regions in the covariate space with differing ESP, effectively generalising the effect size
modification concept for individual omics variables to the concept of ESP modification.

An ESP modifier may function as an effect modifier for individual omics variables, as demonstrated in
our analysis of serum metabolites and insulin resistance. However, ESP modification captures
phenomena not discernible at the individual omics level, as shown in our COVID-19 symptom
phenotype analysis.

ESPClust approximates the dependence of ESP on covariates using a cover of the covariate space
consisting of overlapping windows. This concept, rooted in topology®?, expands upon the traditional
disjoint partitioning used in stratified analysis. Overlapping windows offer advantages: they eliminate
the arbitrariness in defining strata that may intersect regions with heterogeneous ESPs, such as
conventional age groups. They also provide a more detailed description of the dependence of effect
sizes on covariates. However, overlapping windows create fuzzy boundaries separating regions with
different ESPs.
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The dimensions of windows defining a cover are adjustable parameters of ESPClust. Ideally, windows
should offer a detailed description of the dependence of ESP on covariates across a wide region,
ensuring statistically robust estimates within each window. We suggest running ESPClust with various
window settings, as shown in our examples. Future research will explore automatic optimisation of
cover configurations. The number of clusters to identify groups with similar ESP is also adjustable. In
this study, we used a specific rule for selecting the number of clusters, but exploring different
numbers of clusters can be beneficial for identifying suitable divisions.

ESPClust offers considerable potential for advancing personalised medicine by identifying
subpopulations with distinct biological responses. By detecting covariate-specific effect size
modifications even using relatively small datasets, ESPClust reveals subtle associations that
traditional methods may miss. This ability to tailor interventions based on individual biological
profiles can enhance treatment efficacy and precision. Consequently, ESPClust facilitates the
development of more personalised healthcare strategies, improving patient outcomes and driving
progress in the field of personalised medicine.
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Figure 1. ESPClust method to identify regions in the covariate space with similar effect size profile. (a)
Association between Momics variables (exposures) and an outcome Y in terms of pair-wise effect sizes

{e1, ey, ..., ey} that may depend on ] covariates. (b) Schematic representation of the effect size profile
dependence on the covariates. Panels (c)-(f) illustrate the method for a simple case with two omics variables,
{X1,X,}, which depend on a single continuous covariate, z. (c) The effect size for each omics variable is
calculated within 6 windows, {W,}o_;, of lengths {L;}¢_, that cover the values taken by the covariate z. (d)
Clustering of the windows in the effect size space. Windows within a cluster have a similar effect size profile. C;
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segments (top) or window midpoints (bottom). (f) Coordinates of the cluster centroids summarising the effect
of the covariate z on the association profile of each omics variable with the outcome.
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Figure 2. Application of ESPClust to study the association between insulin resistance and (a-d) 94 serum
metabolites or (e) 289 molecular lipids. (a) Example of the effect size within windows for aminomalonic acid
and decanoic acid in the covariate space (BMI, sex, gene richness). The error bars in the plots for BMI and gene
richness indicate the size of the window used to cover these covariates. (b) Visualisation of two clusters with
different ESP using the first two principal components of the windows effect sizes. (c) Clusters in the covariate
space separately shown for male and female. The symbols indicate the middle point of the windows used to
estimate the effect sizes. The size of the window used to calculate effect sizes for fixed sex is shown by a grey
rectangle. (d) The left panel shows the coordinates of the cluster centroids corresponding to the 20 metabolites
that differ the most between clusters. The error bars indicate 1.965D, where SD is the standard deviation of the
centroid coordinates. The central panel shows the effect size for the same metabolites for two groups of
individuals representing the two identified clusters. The third panel shows the same effect sizes as in the
second panel but the 95% confidence intervals for the effect sizes are shown with error bars. (e) Centroid
coordinates for the 90 lipids which differ the most between the two clusters.
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Figure 3. Results obtained by employing EPSClust to investigate the potential role of BMI, sex and age on the
association between COVID-19 symptoms manifestation and serum metabolomics. Panels (a-c) show findings
from ESPClust analysis using 221 NMR blood biomarkers as exposures, while panels (d-f) present analogous
results obtained using 774 LC-MS blood metabolites. (a,d) Visualisation of the clusters for the ESP, using the
first two principal components of the window effect sizes. (b,e) Clusters in the covariate space separately
shown for male and female individuals. The symbols indicate the middle point of the windows used to estimate
effect sizes. The size of the gliding window used to calculate effect sizes for fixed sex is represented by a grey
rectangle in the panel for male individuals. (c,f) Coordinates of the cluster centroids corresponding to the 20
metabolites that differ the most between clusters. The error bars indicate 1.965D, where SD is the standard
deviation of the centroid coordinates.

Methods

Clustering methods

In the step 2 of ESPClust, the effect size patterns {e; (W), e,(W)), ..., eps(W;)} were normalised
before clustering. More explicitly, the effect sizes for a given omics variable, {ei(Wl)}{=1, were
transformed by subtracting the mean over different windows and dividing by the standard deviation.

To obtain the optimal number of clusters, Calinski-Harabasz, Davies-Bouldin and silhouette clustering
measures, the optimal number of clusters clustering corresponds to the number of clusters at the
maximum.

The optimal number of clusters for the eloow method was calculated by considering the value of k
for which the change in slope for the clustering quadratic error?! (also called inertia) is maximal. This
effectively identifies the most prominent elbow in the discrete curve obtained by plotting the inertia
vs. k.

To give the operational definition used by ESPClust, let us denote the inertia of k clusters as I,. The
slope of the inertia is then s, = I}, — I}_4 for k = 2,3, ... From this, one can calculate the relative
change of the slope at k as follows:

Sk — Sk+1

Ak:
Sk+1
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Since the slope sy, is non-positive and increases with k, the relative change takes a non-negative
value for any k. The optimal number of clusters according to the elbow method implemented in
ESPClust corresponds to the value of k for which A, is maximum.

Regression to determine effect sizes within windows
The current implementation of ESPClust uses a linear model to describe the outcome Y as a function
of an omics variable X,,, adjusting for confounding of {Z;, Z,, ..., Z]}:

]
f( =ﬁ0+ﬁme+Zaij+6. (1)
j=1
Here, € is a normally distributed error. The function f(Y) depends on the nature of the outcome. For
a continuous outcome such as insulin resistence, we used simple linear regression with f(Y) =Y. In
this case, the effect sizes are given by the slope coefficient of the model, i.e. e,;;, = f;,,- For a binary
variable such as the COVID-19 symptomatic/asymptomatic status, we used logistic regression with
£(Y) = logit(Y). In this case, the presented effect sizes e,, are the odds ratios given by efm.

Data for the insuline resistance examples
The data used for this example was published by Pedersen et al.}*?* who gave a complete
description. We restricted our analysis to known metabolites and lipids within these data.

Data for the COVID-19 symptoms example

Study population

The individuals included in this example were selected from the UK Adult Twin Registry (TwinsUK). A
study participant was included in the analysis if the following conditions are satisfied: (i) There was
pre-pandemic metabolomic data for the participant, (ii) there was information on the presence or
absence of COVID-19 symptoms and (iii) there was evidence that the participant was infected by SARS-
CoV-2.

Exposure variables

The metabolite concentrations of fasting blood samples collected before the COVID-19 pandemic were
measured with two different platforms that yielded the two metabolic datasets used in this study. The
first dataset was obtained through a high-throughput nuclear magnetic resonance (NMR) platform?364°
by Nightingale Health Ltd., Helsinki, Finland. This platform provides the concentration of over 200
circulating metabolic biomarkers including lipids, fatty acids, amino acids, ketone bodies glycolysis
related metabolites as well as lipoprotein subclass distribution and particle size. The second dataset
(C19-1) was obtained using an untargeted liquid chromatography-mass spectrometry (LC-MS)
procedure conducted by Metabolon, Inc., Durham, North Carolina, USA as previously described?”:3,
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Outcome variable

Each of the infected cohort participants was classified into one of two classes: asymptomatic or
symptomatic. Participants were labelled as asymptomatic if they reported that had not had COVID-19
but there was evidence of SARS-CoV-2 infection. In contrast, participants were assumed to be
symptomatic if there was evidence of natural infection and they reported having had COVID-19 and
also provided the duration of symptoms (this requirement was imposed to strengthen the evidence
that these patients were symptomatic). Information on the symptoms of participants was obtained
from three TwinsUK COVID-19 questionnaires®® administered in July-August 2020 (Q2), October-
November 2020 (Q3) and November 2021-February 2022 (Q4). SARS-CoV-2 infection was assessed
using antibody testing data obtained in two rounds that approximately coincide in time with the
guestionnaires Q2 and Q4. These data were informed by self-reported vaccination status to

conclude that there was evidence of SARS-CoV-2 infection for any participant with a positive anti-

Nucleocapsid result at any time or a positive anti-Spike result before vaccination**.

Missing data

Metabolites whose concentration was missing for more than 20% of individuals were discarded.
Similarly, individuals who missed more than 20% of the metabolites were also discarded. The
remaining missing values for metabolites were imputed using k Nearest Neighbours *? with k = 3.

Data transformation

Sex was encoded as a numerical variable (0 for male and 1 for female); the rest of variables are
intrinsically numerical. Metabolites were individually transformed by adding one and applying the
natural logarithm function. All variables were individually standardized by subtracting the mean
value and dividing by the standard deviation.

Data availability
The metabolomic data for the examples on insulin resistance are available at*
https://bitbucket.org/hellekp/clinical-micro-meta-integration/src/master/. The data used for the

COVID-19 examples are held by the Department of Twin Research at King’s College London. The data
can be released to bona fide researchers using our normal procedures overseen by the Wellcome Trust
and its guidelines as part of our core funding (https://twinsuk.ac.uk/resources-for-researchers/access-

our-data/).

Code availability

ESPClust software is freely available at https://github.com/fipreche/ESPClust.git. It can be installed
via Python package repositories as “pip install -i https://test.pypi.org/simple/ ESPClust==1.0.0"
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Supplementary Tables

Table S1. Demographics relevant to the application of ESPClust to the association between serum
metabolomics and insulin resistance. The statistics for insulin resistance, BMI, and gene richness are
given as Median (2.5% percentile, 97.5% percentile).

Insulin

sex n resistance BMI (kg/m?) | Gene richness
30.9 744470

Male 125 | 1.8 (0.4,4.9) (20.4,39.9) (407391,1013525)
30.7 736092

Female 150 | 1.5(0.5,5.4) (19.6,41.5) (378970,958634)
30.7 743324

All 275 | 1.7 (0.4,5.2) (20.0,41.2) (398365,984865)

Table S2. Demographics relevant to the application of ESPClust to the association between serum
metabolomics and COVID-19 symptoms manifestation. The statistics for BMI and age are given as
Median (2.5% percentile, 97.5% percentile)

Symptoms
Omics data class Sex (M/F) n BMI (kg/m?) Age (years)
221 NMR biomarkers | Asymptomatic | Male 53 | 24.5(19.9,34.4) | 65 (24,86)
Female 292 | 25.4(18.4,38.9) | 67 (31,84)
Symptomatic | Male 34 | 25.4 (20.3,33.5) | 57 (25,74)
Female 301 | 24.5(18.2,37.5) | 56 (25,77)
774 LC-MS
metabolites Asymptomatic | Male 31| 24.8(18.9,33.1) | 69 (33,87)
Female 153 | 25.3 (18.8,36.0) | 67 (34,84)
Symptomatic Male 19 | 25.6(21.7,30.3) | 59 (31,77)
Female 165 | 25.3(18.4,36.0) | 56 (31,76)
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Supplementary figures

ESPClust: Unsupervised identification of modifiers for the effect size profile in omics
association studies
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Figure S4. Four clustering measures as a function of the number of clusters for the example on the association
of insulin resistance and 94 metabolites using windows of dimensions (Lgp;, Ly ricn.) = (8 kg/m?,0.2e6)
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Figure S5. Application of ESPClust to study the association between insulin resistance and 94 serum using non-
overlapping strata of dimensions (Lgpy, Lg ricn) = (8 kg/m?,0.2e6). (a) Example of the effect size within
windows for aminomalonic acid and decanoic acid in the covariate space (BMI, sex, gene richness). The error
bars in the plots for BMI and gene richness indicate the size of the window used to cover these covariates. (b)
Visualisation of two clusters with different ESP using the first two principal components of the windows effect
sizes. (c) Clusters in the covariate space separately shown for male and female. The symbols indicate the
middle point of the strata used to estimate the effect sizes. The size of the strata used to calculate effect sizes
for fixed sex is shown by a grey rectangle. (d) Coordinates of the cluster centroids corresponding to the 20
metabolites that differ the most between clusters. The error bars indicate 1.965D, where SD is the standard
deviation of the centroid coordinates.
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Figure S6. Clusters in the covariate space obtained by applying ESPClust to study the impact of BMI, sex and age
on the association of COVID-19 symptoms manifestation and 221 NMR serum metabolites. For given sex, a
gliding window of dimensions (Lgpy, Lage) = (5 kg/m?,21 yr) was used, as marked by the dashed-line

rectangle.
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Figure S7. Clusters in the covariate space obtained by applying ESPClust to study the impact of BMI, sex and age
on the association of COVID-19 symptoms manifestation and 221 NMR serum metabolites. For given sex, a
gliding window of dimensions (Lgp;, Lage) = (8 kg/m?,11 yr) was used, as marked by the dashed-line
rectangle.

21


https://doi.org/10.1101/2024.08.11.607486
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.08.11.607486; this version posted August 12, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

22


https://doi.org/10.1101/2024.08.11.607486
http://creativecommons.org/licenses/by/4.0/

