

1 Characterization of a marine bacteria through a novel metabologenomics

2 approach

3 Gabriel Santos Arini^{a,b,c*}, Tiago Cabral Borelli^{a,b,c*}, Elthon Góis Ferreira^d, Rafael de Felício^e,
4 Paula Rezende Teixeira^d, Matheus Pedrino^{c,f}, Franciene Rabiço^{c,f}, Guilherme Marcelino Viana
5 de Siqueira^{c,f}, Luiz Gabriel Mencucini^a, Henrique Tsuji^a, Lucas Sousa Neves Andrade^g,
6 Leandro Maza Garrido^g, Gabriel Padilla^g, Alberto Gil-de-la-Fuente^{h,i}, Mingxun Wang^j,
7 Norberto Peporine Lopes^b, Daniela Barretto Barbosa Trivella^e, Leticia Veras Costa Lotufo^d,
8 María-Eugenia Guazzaroni^f, Ricardo Roberto da Silva^{a,b,c#}

9 ^aComputational Chemical Biology Laboratory, Department of BioMolecular Sciences, School
10 of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-
11 900, Brazil

12 ^bNPPNS, Department of BioMolecular Sciences, School of Pharmaceutical Sciences of
13 Ribeirão Preto, University of São Paulo, Ribeirão Preto, 14040-900, Brazil

14 ^cCellular and Molecular Biology Program, Department of Cellular and Molecular Biology
15 of Ribeirão Preto, School of Medicine, University of São Paulo, Ribeirão Preto, 14049-900,
16 Brazil

17 ^dMarine Pharmacology Laboratory, Department of Pharmacology, Institute of Biomedical
18 Sciences, University of São Paulo, São Paulo, 05508-000, Brazil

19 ^eBrazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy
20 and Materials (CNPEM), Campinas, 13083-970, Brazil

21 ^fMetaGenLab Laboratory, Department of Biology, FFCLRP, University of São Paulo
22 of Ribeirão Preto, School of Medicine, University of São Paulo, Ribeirão Preto, 14040-900,
23 Brazil

24 ^gLaboratory of Bioproducts, Department of Microbiology. Institute of Biomedical Sciences,
25 University of São Paulo, São Paulo, 05508-900, Brazil

26 ^hCentro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San
27 Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain

28 ⁱDepartamento de Tecnologías de la Información, Escuela Politécnica Superior, Universidad
29 San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain

30 ^jDepartment of Computer Science and Engineering, University of California Riverside,
31 Riverside, CA 92521, USA

32 *G.S.A. and T.C.B. contributed equally to this work.

33 [#]Author to whom correspondence should be addressed: ridasilva@usp.br

34

35

36

37

38

39 **Abstract**

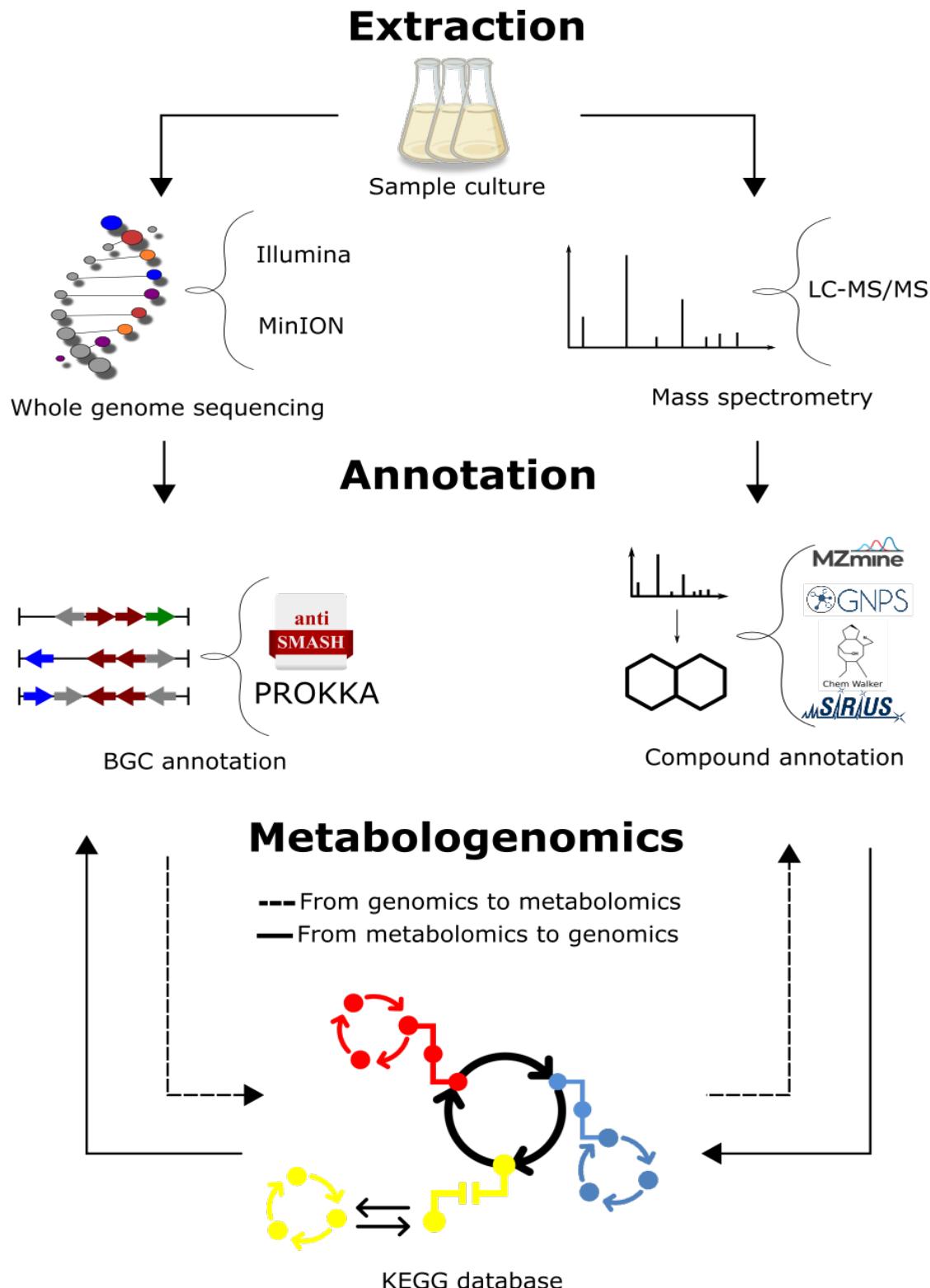
40 Exploiting microbial natural products is a key pursuit of the bioactive compound discovery
41 field. Recent advances in modern analytical techniques have increased the volume of microbial
42 genomes and their encoded biosynthetic products measured by mass spectrometry-based
43 metabolomics. However, connecting multi-omics data to uncover metabolic processes of
44 interest is still challenging. This results in a large portion of genes and metabolites remaining
45 unannotated. Further exacerbating the annotation challenge, databases and tools for annotation
46 and omics integration are scattered, requiring complex computations to annotate and integrate
47 omics datasets. Here we performed a two-way integrative analysis combining genomics and
48 metabolomics data to describe a new approach to characterize the marine bacterial isolate
49 BRA006 and to explore its biosynthetic gene cluster (BGC) content as well as the bioactive
50 compounds detected by metabolomics. We described BRA006 genomic content and structure
51 by comparing Illumina and Oxford Nanopore MinION sequencing approaches. Digital
52 DNA:DNA hybridization (dDDH) taxonomically assigned BRA006 as a potential new species
53 of the *Micromonospora* genus. Starting from LC-ESI(+)-HRMS/MS data, and mapping the
54 annotated enzymes and metabolites belonging to the same pathways, our integrative analysis
55 allowed us to correlate the compound Brevianamide F to a new BGC, previously assigned to
56 other function.

57

58 **Introduction**

59 The search for new bioactive compounds of natural origin from different organisms
60 coming from different biomes is an arduous task. Since marine environments are poorly
61 explored, they hold the promise of a formidable source of rich metabolic potential for the
62 production of novel biosynthetic compounds, especially when you consider the
63 microorganisms that reach a billion strains in a gram of marine sediment (1). Considering that
64 more than 40% of pharmaceutical ingredients are derived directly or indirectly from natural
65 products derived from plants or microorganisms, one can expect that thousands of unknown
66 potential medicines are expected to be discovered in marine ecosystems (2-3). This feature
67 places Brazil under the spotlight since its coast is especially large, ranging from tropical to
68 temperate climate zones (4).

69 Within the phylum *Actinomycetota*, the genus *Micromonospora* is distributed in
70 different regions of the world, mainly in soil and marine environments (5). The
71 *Micromonospora* genus is composed of 177 Gram-positive, spore-forming aerobic species and
72 is ubiquitous in marine environments. They belong to the *Actinomycetota*, a diverse phylum
73 responsible for 70% of natural compounds under development or already in clinical use. The
74 chemical diversity, in terms of natural products, that this genus is capable of producing is
75 enormous. *Micromonospora* natural products are used as drugs against infections caused by
76 fungi or bacteria. The genera started to receive attention after the discovery of gentamicin in
77 1963 and after that, more than 740 bioactive compounds have been reported from
78 *Micromonospora* strains. Among this chemical diversity produced, as well as the different
79 locations where this genus can be found, there are reports in the literature searching specifically
80 for anticancer bioactive compounds on *Micromonospora* sp. BRA006 (6).


81 The evolution of bacterial genome organization clustered genes that encode enzymes
82 of the same metabolic pathway, which are known as biosynthetic gene clusters (BGC) (7). For
83 this reason, modern drug discovery from bacteria is based on BGC identification as the starting
84 point followed by an experimental procedure that aims to detect, isolate, or produce the
85 compound (8). However, searching for novel natural bioactive compounds from
86 microorganisms can be a harsh task, mostly because the majority of the microbial life cannot
87 be cultured under laboratory conditions. Also, it is difficult to obtain bioactive compounds in
88 the desired concentrations (9). Thus, bacterial bioactive compound discovery requires a
89 multidisciplinary approach, such as genomics and metabolomics (metabologenomics) (10).
90 Genomics enables the analysis of the whole genome sequencing data and raises hypotheses
91 about metabolic pathways and compound products based on the genetic content (11). Then,
92 metabolomic assays based on mass spectrometry analysis, such as LC-MS/MS are performed
93 to validate them. The integration of data in the description of new bacterial strains has been

94 shown as a powerful resource, as it allows the study and characterization of new
95 microorganisms in a holistic way (12).

96 In the present work, we used metabologenomics to describe the potential bioactive
97 compounds of BRA006, a bacteria strain recovered from a marine environment collected on
98 the coast of Brazil. We performed our analysis in a two-way direction, searching for
99 metabolites by LC-MS/MS previously predicted by antiSMASH, using two genome
100 sequencing platforms, as well as finding coding sequences (CDS) for enzymes that are part of
101 metabolic pathways for syntheses of BRA006's observed metabolome.

102

103

104 Figure 1. Metabologenomics workflow. LC-MS/MS raw data was pre-processed using MZmine3. Spectral pairing
105 and molecular network construction with GNPS2. *in silico* annotations were performed with ChemWalker and
106 SIRIUS. The annotated compounds were used to search KEGG pathway database. KEGG pathway matches had
107 the enzymes searched in the genome. The genome assemblies for MinION and Illumina had gene annotation
108 performed by Prokka and AntiSMASH. From the prediction of metabolites, we searched the annotated
109 metabolome.

110

111 **2. Results**

112 **2.1 Genomic Analysis**

113 The isolate BRA006 exhibits very characteristic growth. The colonies are orange in
114 color with apical growth and a rough appearance with the presence of individual dark-colored
115 spores. In solid medium, it releases as yet undetermined compounds that diffuse into the agar,
116 giving it a pink-purple color, as can be seen in Supplementary Figure 1.

117 We compared the Illumina and MinION whole genome sequence techniques results
118 from BRA006. While Illumina assembly yielded 10 contigs and 6,734,372 base pairs (6.73
119 Mb) in total, sequencing by MinION showed higher genome completeness, with an assembly
120 resulting in 4 contigs with 6,762,267 base pairs (6.76 Mb) in total. Functional analysis (Table
121 1) performed by Prokka showed a significant increase in CDS predicted from MinION
122 assembly data. The complete result is shown in Supplementary Tables 1 and 2. The CDS
123 prediction followed the number of hypothetical proteins, with more predictions from MinION
124 than from Illumina.

125

126

127

128

129 Table 1. Functional genomic features

CDS	CDS with COG*	Hypothetical proteins	rRNAs	tRNAs	ncRNAs	BUSCO**			Technique
						C	F	M	
11072	1529	8318	65	6	1	201	93	62	MinION
6080	1769	3289	69	5	1	350	1	5	Illumina

130 *Complete distributions of COG (Cluster of Orthologous Groups) functional categories for each assembly
131 technique are available on Figure 1C.

132 ** Assembly completeness analysis based on near-universal single-copy orthologs gene content by BUSCO. The
133 letters C, F, and M stand for complete, fragmented, and missing sequences, respectively.

134

135 2.2. Metabolic potential

136 The *Micromonospora* is the largest genera of Actinomycetota and possesses a large
137 repertoire of bioactive secondary metabolites (SM) with a broad spectrum of therapeutic effects
138 (13), for instance, aminoglycosides and macrolactam antibiotics. Through antiSMASH, we
139 annotated the BGC content from Illumina and MinION assemblies of BRA006. MinION
140 assembly resulted in a total of 15 BGCs (Table 2) that vary in similarity with antiSMASH
141 database. Among them, there are those with reported antimicrobial, antifungal, and antitumor
142 activities. For instance, quinolidomycin A is a macrolide with antibiotic and anticancer effects
143 isolated from *Micromonospora* sp JY16 (7) and BRA006 presents a quinolidomycin BGC with
144 219 Mb in length and 67% similarity with the most similar known cluster.

145 The type-III polyketide Loseolamycin was identified from *Micromonospora*
146 *endolithica* and inhibited the growth of the Gram-positive *Bacillus subtilis* and also showed
147 herbicidal activity against the weed *Agrostis stolonifera* (14). Cinerubins are anthracycline
148 antimicrobials produced by actinomycetota which also present antitumor activity (15-16).
149 BRA006 possesses highly similar clusters to cinerubin B (74% by MinION and 80% by
150 Illumina) and loseolamycin (88% by MinION and 92% by Illumina) A1/A2. BRA006 also has

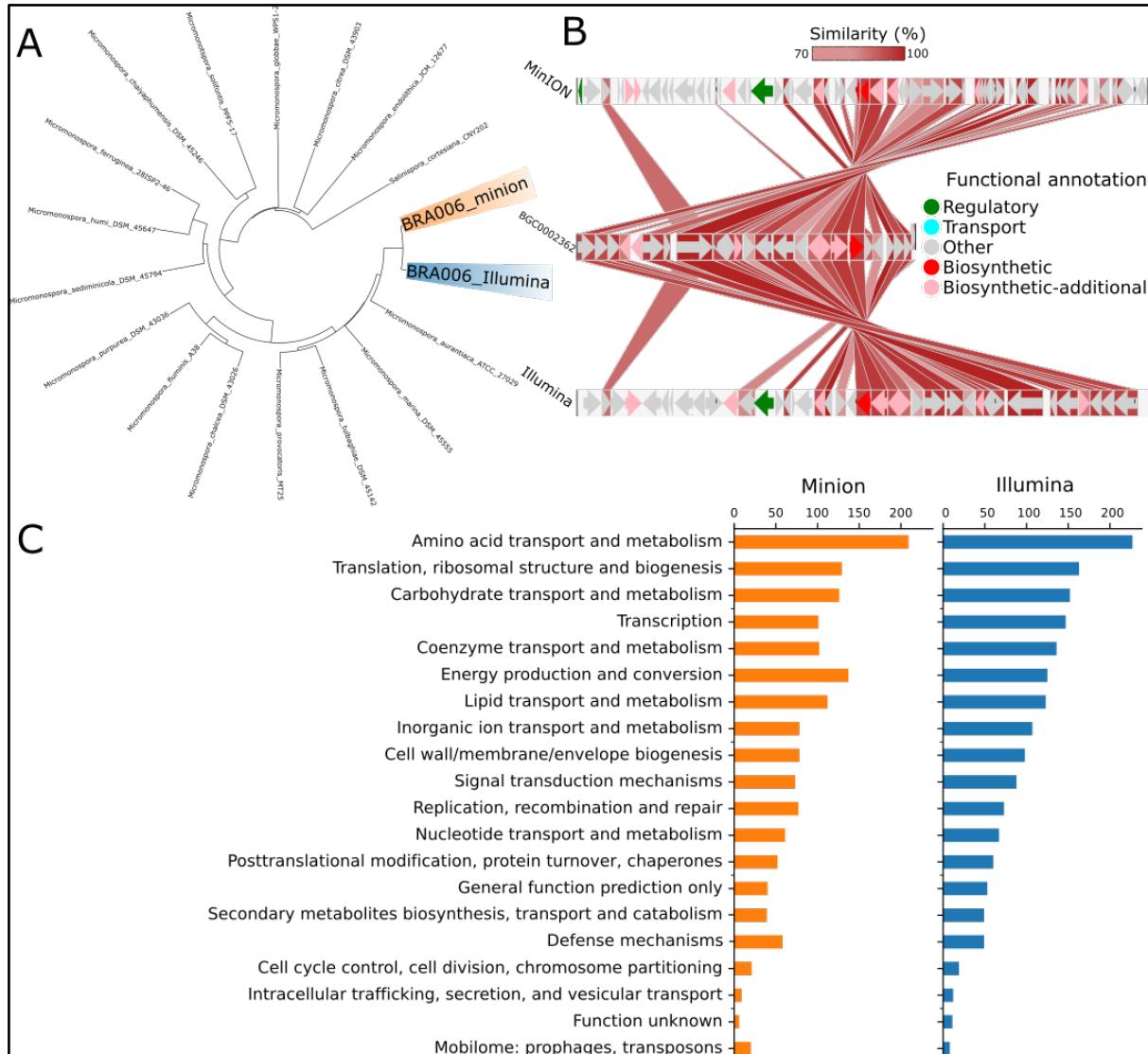
151 less similar BGCs for the biosynthesis of other natural compounds with antitumoral activity
 152 such as bleomycins and kedarcidin, isolated from *Streptomyces verticillus* and an unclassified
 153 Actinomycetales strain (ATCC 53650) *Actinomycetes*, respectively (17-18).

154 Table 2. Biosynthetic Gene Cluster from antiSMASH.

Region	Type	From	To	Most similar known cluster	Type from most similar known cluster	Similarity	Technique
1.1	T1PKS	173,653	262,468	catenulisporolides	NRP+Polyketide	12%	Illumina
1.2	T3PKS	972,718	1,013,770	loseolamycin A1/loseolamycin A2	Polyketide	92% / 88% *	Both
1.3	thioamide-NRP	1,165,443	1,214,791	cadaside A/cadaside B	NRP	19%	Illumina
1.4	terpene	1,632,755	1,652,207	isorenieratene	Terpene	25% / 25% *	Both
1.5	terpene	1,735,876	1,756,185	phosphonoglycans	Saccharide	3%	Illumina
1.9	T1PKS	3,818,978	3,889,418	quinolidomycin A	Polyketide	45% / 67% *	Both
1.10	NI-siderophore	3,941,102	3,951,331	FW0622	Other	50%	Illumina
1.11	NRPS-like, NRPS, T1PKS, PKS-like	3,956,633	4,058,605	sungeidine C/sungeidine B/sungeidine D/sungeidine H/sungeidine A/sungeidine E/sungeidine F/sungeidine G	Polyketide	100%	Illumina
1.12	NRPS-like, NRPS, T1PKS	4,153,951	4,219,351	crochelin A	NRP+Polyketide	12%	Illumina
1.13	terpene	4,832,538	4,853,269	nocathiacin	RiPP:Thiopeptide	4% / 4%*	Both
1.14	T2PKS	5,027,025	5,098,322	formicamycins A-M	Polyketide	18%	Illumina
1.15	oligosaccharide, terpene	5,268,386	5,304,696	lobosamide A/lobosamide B/lobosamide C	Polyketide	13%	Illumina
1.16	T2PKS, oligosaccharide, other, NRPS	5,309,290	5,436,713	cinerubin B	Polyketide:Type II polyketide	80% / 74%	Both
1.17	NI-siderophore	5,616,661	5,629,872	peucechelin	NRP	10%	Illumina
1.18	terpene, RiPP-like	5,837,876	5,861,979	lymphostin/neolymphostinol B/lymphostinol/neolymphostin B	NRP+Polyketide	33%	Illumina
1.19	terpene	5,994,482	6,015,432	tetrachlorizine	Polyketide	13%	Illumina

Region	Type	From	To	Most similar known cluster	Type from most similar known cluster	Similarity	Technique
1.20	other,ladderane ,NRPS,arylpolypene	6,201,575	6,311,984	kedarcidin	NRP+Polyketide:Iterative type I polyketide+Polyketide:Enediyne type I polyketide	13% / 6%	Both
6.1	NRPS-like,T1PKS	1	37,77	quinolidomycin A	Polyketide	28.% / 67%	Both
2.1	RiPP-like	136,664	147,482	lymphostin/neolymphostinol B/lymphostinol/neolymphostin b	Polyketide+NRP	15%	MinION
2.5	NI-siderophore	4,182,055	4,194,725	peucechelin	NRP	10%	MinION
3.2	NRPS-like	407,718	448,468	sarpeptin A/sarpeptin B	NRP	25%	MinION
3.4	oligosaccharide ,terpene	530,94	565,187	brasilicardin A	Terpene+Saccharide	38%	MinION
3.5	T2PKS,NRPS-like	732,357	804,659	pradimicin-A	Polyketide	17%	MinION
3.7	NRPS	1,520,332	1,559,968	bleomycin A2/bleomycin B2	NRP+Polyketide+ Saccharide	14%	MinION
3.9	T1PKS	1,799,831	1,841,948	rakicidin A/rakicidin B	NRP:Cyclic depsipeptide+Polyketide:Modular type I polyketide	40%	MinION
3.10	NI-siderophore	1,859,147	1,870,220	putrebactin/avaroferrin	Other	50%	MinION

155 * Similarity data from Illumina and MinION, respectively


156 AntiSMASH results from Illumina assembly yielded 18 BGCs (Table 2) in total,
 157 including clusters for the production of Quinolidomycin, Cinerubin B, and Loseolamycin
 158 A1/A2 found in both Illumina and MinION data. However, only by sequencing with Illumina,
 159 it was possible to find a BGC 100% similar to the production of Sungeidines (19), a group of
 160 metabolites produced by pathways with close evolutionary relations with the antitumor
 161 Dynemicins (20).

162

163 **2.3. Evolutionary relationships**

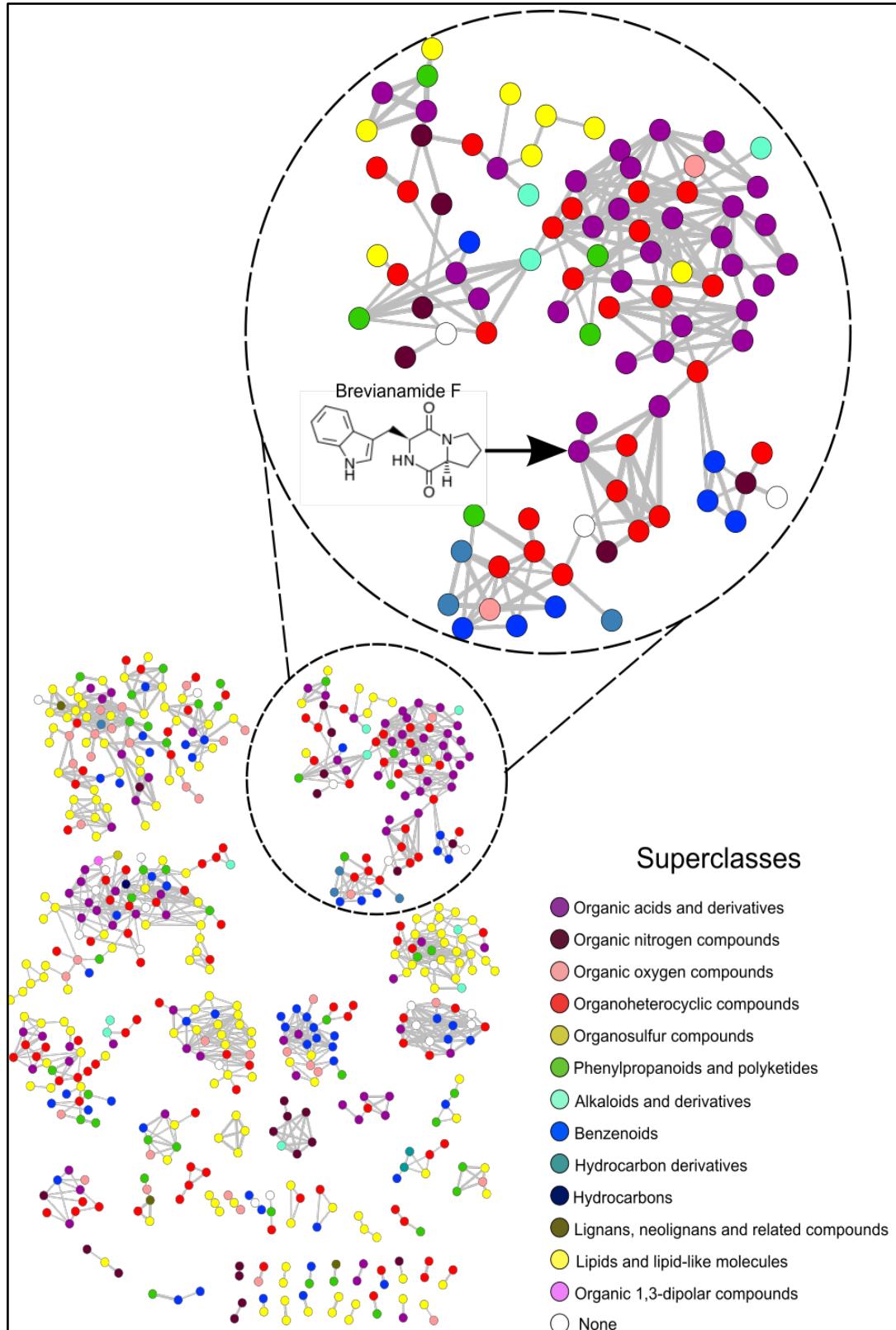
164 Since both genome sequencing methods yielded identical clusters with enzymes from
165 pathways for synthesizing compounds with medical applications, we decided to explore the
166 evolutionary relationship. According to digital DNA:DNA hybridization used by Type
167 Genome Server (TYGS) (21) for phylogenetic inferencing, these two assemblies were
168 classified as *Micromonospora spp* and pointed out as possible novel species due to their
169 relatively high genomic distance to its closest related group: *Micromonospora aurantiaca*
170 ATCC 27029 (Figure 2). However, the BGC with higher similarity to the antiSMASH database
171 is the one for the production of Loseolamycin A1/A2 in both MinION and Illumina assemblies.
172 Therefore we used BLASTp to compare the proteins within those BGCs to the reference:
173 BGC0002362 from *Micromonospora endolithica*.

174

175

176 Figure 2. (A) Digital DNA:DNA hybridization phylogenetic tree of the Illumina and MinION data from the isolate
177 BRA006. The Type Genome Server displays the 16 closest related genomes present in its database based on the
178 genomic distance of the whole genome sequencing data. (B) Protein BLASTp similarity between BRA006
179 Loseolamycin BGC and reference BGC0002362 point by antiSMASH. All possible matches for every BRA006
180 match were filtered by the smallest e-value (See complete BLAST data in Supplementary Tables 1, 2 and 3). (C)
181 The distribution of CDSs annotated by Prokka according to Cluster of Orthologous Groups.

182 Figure 1B shows the protein similarity between loseolamycin-producing BGC from
183 BRA006 and *M. endolithica*. Both assembly methods detected the complete inversion of this
184 *M. endolithica* BGC followed by a series of indels in the upstream region majorly composed
185 of CDSs that encode proteins with no functional annotation. Other BGCs with less similarity
186 to the antiSMASH database were also compared with the reference sequences. For the


187 cinebubin B and quinalidomicin A BGCs there were differences between antiSMASH results
188 regarding the sequencing method. In the case of cinerubin B BGC, sequencing by Illumina
189 resulted in a BGC with 172 Mb length while MinION's with 71 Mb. Both with a few highly
190 similar proteins to the reference BGS (BGC0000212) (Supplementary Figure 2) original from
191 *Streptomyces sp. SPBO074*. On the other hand, quinolidomicin A BGCs showed 219 Mb in
192 MinION and 70 Mb in Illumina assembly. Quinolidomicin A BGC from MinION data
193 presented more similarity (67% against 45% from the counterpart) to reference BGC0002520
194 original from *Micromonospora sp* (Supplementary Figure 3).

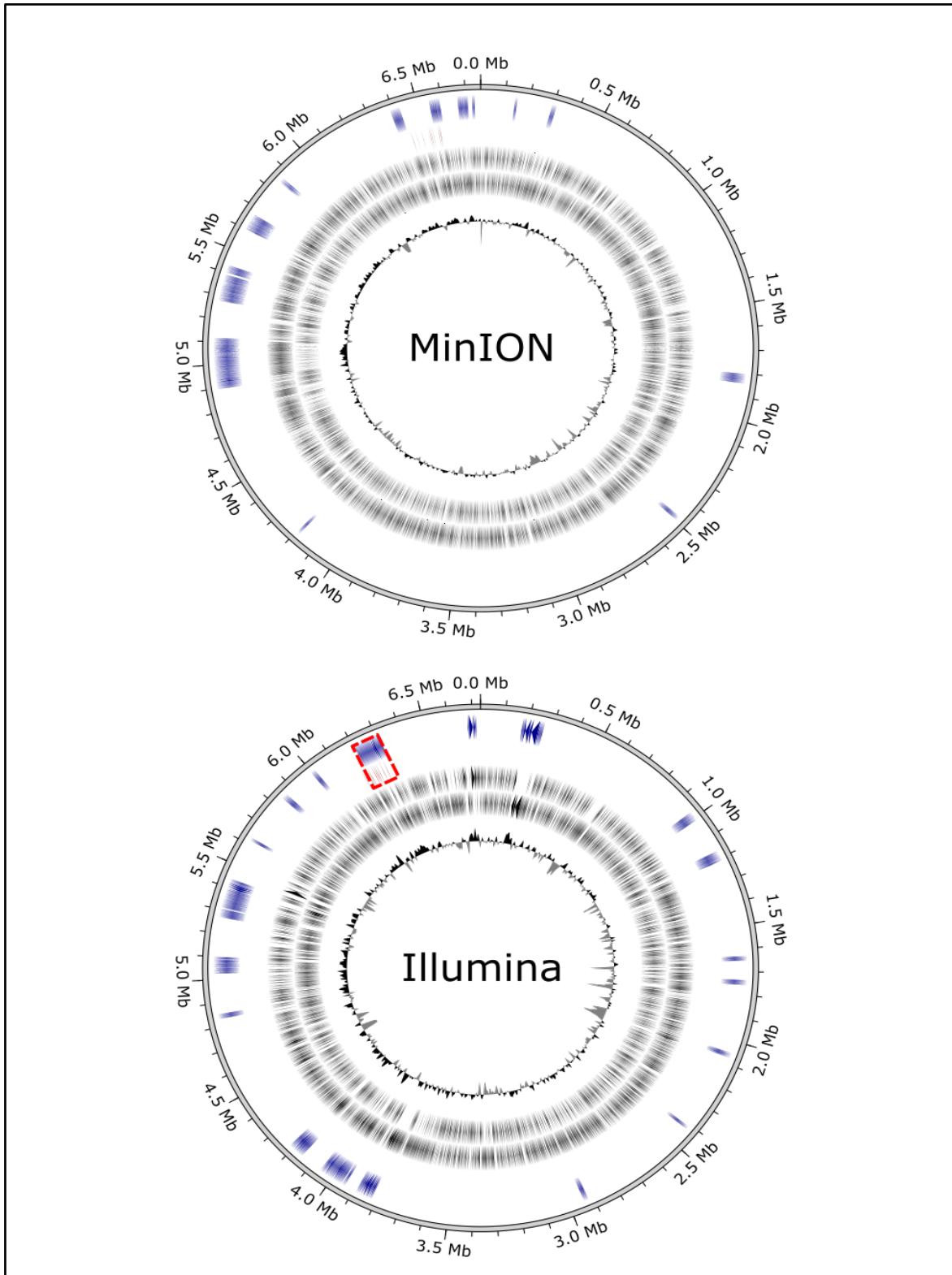
195

196 **2.4. Metabolomic Analysis**

197 From the analysis of potential BGCs found in BRA006, where their potential to
198 biosynthesize compounds with antibacterial (loseolamycins A, quinolidomicin A, cinerubin B,
199 and brasiliocardin A), antifungal (pradimicin A) and anticancer (bleomycin A2 and kedarcidin)
200 activity was identified, we investigated whether these compounds were present in the
201 metabolome of this Actinomycetota. To do so, and to extend the analysis to other compounds
202 that BRA006 might be able to produce, we performed a metabolomics analysis in which the
203 BRA006 extract was analyzed by LC-ESI(+) -HRMS/MS. After the LC-MS/MS analysis, the
204 obtained raw data were converted into .mzXML format using Proteowizard (22), and feature
205 finding was performed using MZmine (23). We then performed the annotations sequentially,
206 in three steps. In the first, the annotations were made by spectral pairing and molecular network
207 construction through GNPS2 (<https://gnps2.org/>). As a result, we obtained 527 nodes with at
208 least one connection, of which 83 were annotated by GNPS2. Based on this result, we
209 propagated the annotations to the nodes that did not present an annotation by spectral pairing
210 using ChemWalker (24), increasing the annotations to 373 nodes. Finally, for the nodes that

211 could not be annotated by this tool, we used a third *in silico* spectral annotation tool, SIRIUS
212 (25), increasing the annotations for an additional 67 nodes. Thus, a total of 527 nodes were
213 represented by the molecular network, of which 523 were annotated. With these results in hand,
214 we performed an automated chemical classification of each annotated compound using
215 ClassyFire (26). The molecular network was colored based on the superclasses to which each
216 annotated compound belonged (Fig. 3).

217 Figure 3. Molecular network constructed from BRA006 metabolomic data. Nodes were colored based on the
218 superclass classification performed on the molecules annotated by ClassyFire. The full description of the
219 annotation set is presented in Supplementary Table 4. The cluster showing the node with the annotation for
220 brevianamide F is highlighted.


221 The compounds could be grouped into 13 different chemical superclasses, where 30.2%
222 of the annotated compounds belong to the superclass of lipids and lipid-like molecules, 19.5%
223 to organoheterocyclic compounds, 15.1% to organic acids and derivatives, 9.9% to benzenoids,
224 7.6% to phenylpropanoids and polyketides, 6.5% to organic oxygen compounds, 4.0% to
225 organic nitrogen compounds, 1.7% to alkaloids and derivatives, 0.6% to lignans, neolignans,
226 and related compounds, 0.4% to hydrocarbon derivatives, 0.2% to organic 1, 3-dipolar
227 compounds, 0.2% to hydrocarbons, 0.2% to organosulfur compounds, and 3.8% could not be
228 classified (None). The complete relationship between all annotated compounds and their
229 chemical hierarchical classification into kingdom, superclass, and class is shown in
230 Supplementary Table 4. From the entire set of annotations and classifications, we searched for
231 the seven compounds predicted by antiSMASH in the BRA006 metabolome. None of the seven
232 compounds were found in the annotation hall. Therefore, we took the molecular structure of
233 these seven compounds and performed their chemical classification using ClassyFire; once we
234 had their chemical class, we would search for compounds annotated in the BRA006
235 metabolome that had the same chemical class. From a pharmacological point of view,
236 compounds belonging to the same chemical class might belong to the same biosynthetic
237 pathway and or have similar effects, as is the case, for example, with the class of
238 peptidomimetics in the treatment of cancer (27) and steroids in the treatment of pain (28). The
239 seven compounds were grouped into six different classes of molecules, where loseolamycin
240 A1 belongs to the phenol class, cinerubin B belongs to the anthracycline class, brasiliocardin A
241 belongs to the steroid and steroid derivative class, pradimicin A belongs to the naphthacene
242 class, bleomycin A2 belongs to the peptidomimetic class, and quinolidomycin A and
243 kedarcidin are organooxygen compounds.

244 Of these six chemical classes to which the compounds of interest belong, the Phenols
245 class presented 10 annotated molecules, while the Organooxygen Compounds and Steroids and

246 Steroid Derivatives classes presented 34 compounds each and Peptidomimetics presented two
247 compounds in our analysis. Among the 10 compounds belonging to the Phenol class, three of
248 them had bioactivity previously reported, but with a different action from the antibiotic
249 luseolamycins A1. In the case of the compounds found, lumizinone A was described as having
250 inhibitory activity on proteases (29), rubrolide R showed cytotoxic activity against tumor cells
251 (30), while hierridin C showed antimalarial activity (31). In turn, of the 34 molecules belonging
252 to the organooxygen compounds, six showed bioactivity reported in the literature. Pyrenocine
253 B was described for its immunosuppressive potential (32), while subamolide A and surinone
254 C were described for their cytotoxic activity (33-34). Talaroenamine B showed evidence of
255 antiplasmodial activity (35), while moniliferanone B was described for its antibiotic potential
256 (36), the same activity described for quinolidomycin A as predicted by antiSMASH. For the
257 34 compounds belonging to the class of steroids and steroid derivatives, seven showed
258 biological activity described in the literature. Of these, veramiline has been described for its
259 potential in the therapy of dengue infection (37). Certonardosterol D3 has been described for
260 its anticancer potential (38), while vaganine D has been described for its cholinesterase
261 inhibitory activity (39). Among the others, 6-ketolithocholic acid was described for its action
262 in suppressing bile acid production (40), cholic acid for its action in cholesterol reduction (41),
263 and gitoxigenin showed therapeutic effects in congestive heart failure (42). Finally, of the two
264 compounds detected in the metabolome belonging to the class of peptidomimetics,
265 pseudodestruxin A has been described for its antibacterial activity (43). The targeting offered
266 by antiSMASH, by searching for molecules belonging to the same class as those with bioactive
267 activity predicted by the tool, allowed us to find a larger and more diverse range of compounds.

268 Using a reverse flow of integrative analysis, where we start from what was annotated
269 in the metabolome, we set out to evaluate whether it would be possible to identify, from a given
270 metabolite, the enzymes that lead to its production in BRA006. To this end, we first crossed

271 the annotated metabolome with the KEGG database (44) to search within the metabolome of
272 this Actinomycetota for molecules with known biosynthetic pathways. As a result, we found a
273 molecule belonging to the staurosporin biosynthetic pathway, brevianamide F. It should be
274 noted that of the three methods used in the annotation process, brevianamide F was annotated
275 by spectral pairing with the GNPS spectral library (45), showing a MQScore of 0.97469 and a
276 m/z error of 2.47028 ppm. Since the topology of the molecular network is given by the
277 similarity between nodes, the node with an annotation for brevianamide F is connected to seven
278 other nodes (Figure 3B). All seven nodes have been annotated by ChemWalker. Looking at the
279 predicted structures, six of the seven share the same indole-like nucleus as brevianamide F,
280 suggesting that other molecules may ultimately be produced, either by brevianamide F BGC
281 or by other intermediates belonging to the same pathway as brevianamide F. Once identified,
282 the enzymes that make up the staurosporin biosynthetic pathway, we searched the BRA006
283 genome for which of these enzymes would be encoded. From this search, 16 staurosporin
284 pathway enzymes were identified in the genome of this Actinomycetota (Supplementary Figure
285 4), and 11 overlap the region of the BGC 20 from Illumina (Figure 4). Among them, we found
286 an NRPK 2,3-dihydroxybenzoate-AMP ligase functionally classified as a biosynthetic-
287 additional enzyme by antiSMASH. These results show that a dynamic integrative approach,
288 i.e., first combining spectral and *in silico* annotation, assigning chemical classes, and then
289 searching for metabolites from the genome to match encoded proteins in the genome to the
290 pathway producing the putative metabolite annotated, is an efficient approach to characterize
291 new species with the potential to produce bioactive compounds.

292

293 Figure 4. Circular representation of BRA006 genome according to the sequencing technique. The first circle (from
294 inside to outside) GC content, the gray circles represent forward and reverse CDS positions, respectively, the red
295 circles represent CDSs that encode proteins present in the KO000404 pathway
296 (<https://www.genome.jp/pathway/ko00404>), and the blue circles represent the CDSs from BGCs. The highlighted
297 area (in red) shows the overlap between BGC 20 and proteins present in the KO00404.

298

299 **3. Discussion**

300 The metabologenomic characterization of new *Micromonospora* strains, especially
301 those found in the marine environment, is a highly relevant task given the potential for the
302 discovery of new bioactive compounds. In this sense, the use of dynamic integrative analytical
303 approaches seems to be a promising resource, both in the process of characterizing new species
304 and in the evaluation of the potential for the production of natural products from a new
305 microorganism. In the present work, we characterized BRA006, a potential new species of the
306 genus *Micromonospora* in terms of secondary metabolites production. We used both genomic
307 and metabolomic points of view, comparing two whole genome sequencing approaches and a
308 multiple-step metabolite annotation workflow. This strategy introduces an innovative dynamic
309 approach to metabologenomic analysis in which the annotated BGCs types predicted by
310 antiSMASH guided the search for bioactive compounds in the metabolome content, as well as
311 the compounds identified in the metabolome (which match specific pathways) led to the search
312 for CDSs that encode enzymes from these pathways. Among the various microbial genera
313 described to date that stand out for their ability to produce bioactive compounds, the genus
314 *Micromonospora* is an important model in natural products research and a milestone in the
315 discovery of new biocompounds (5). The potential to produce bioactive natural products from
316 bacterial isolates from the Brazilian coast is already known, especially those with antitumor
317 activity (6,46). Among these, the activity observed in crude extracts of the genus
318 *Micromonospora* was attributed to a group of anthracyclinones (6).

319 According to (13), species from the *Micromonospora* genus encode from 4200 to 8017
320 proteins and have genome sizes from 5.07 to 9.24 Mb. BRA006 possesses a 6.7 Mb genome,
321 confirmed by two independent sequencing methods, although MinION assembly annotated by
322 Prokka showed up to 11.000 CDS against 6080 from Illumina. This gap between them is mostly

323 due to higher error rates from MinION assembly, which probably causes artificial stop codons
324 that could explain the higher number of CDSs. A proper way to solve this issue would be to
325 perform a hybrid assembly (47-48). However, this question needs further investigation. Besides
326 the difference in CDS number, antiSMASH found the same BGCs in both assemblies, such as
327 Cinerubin B and Loseolamycins, with high similarity to antiSMASH database. Also, the whole
328 genome sequence phylogeny placed both assemblies as a monophyletic group dissimilar
329 enough from *Micromonospora aurantiaca* ATCC27029 to TYGS to point BRA006 as a
330 possible novel *Micromonospora* species. As an example of genetic divergence of BRA006
331 from other *Micromonospora*, we can cite the Loseolamycin A1 BGC, where it is possible to
332 observe a complete inversion of the cluster and several indels. According to Medema et al.,
333 (2014) (49) NRPK clusters evolved from gene duplication followed by differentiation, which
334 could explain the difference between BRA006 and *M. endolithica*. Unfortunately, even with
335 Prokka, annotating most of the proteins in that BGC was not yet possible.

336 The approach “from genomics to metabolomics” yielded a BGC that encodes pathways
337 to compounds with pharmaceutical applications, which confirms the importance of the
338 *Micromonospora* genus, although the compounds produced by these BGCs were not found in
339 metabolomic data. Their absence can be explained by differences between laboratory culture
340 media and the original ecological niche, as well as the need for improvements in the acquisition
341 parameters. Genomic-guided works often require heterologous expression of parts or the entire
342 BGC to obtain the active compound in the laboratory (50). For instance, Lasch et al. (14)
343 obtained Loseolamycins from *M. endolithica* by heterologously expressing type III polyketide
344 synthase, Domingues Vieira et al. increased the production of Eponemycin and related
345 epoxyketone peptides by cloning the whole *epn-tmc* BGC from *Streptomyces* sp. BRA346 (8),
346 and Yamanaka produced Taraomycin A by editing regulators of this BGC from
347 *Saccharomonospora* sp. CNO490 (51).

348 Starting from metabolomics, the analysis of the BRA006 metabolome allowed us to
349 identify annotated compounds belonging to already well-established chemical classes whose
350 biosynthesis is reported in the literature for this genus, as in the case of macrolides (5). Of
351 these, we were able to annotate nine compounds belonging to this class (Supplementary Table
352 4), two of which previously reported bioactivity: Tricholide A, with antibacterial activity (52)
353 and 11,12-dihydroxy-6,14-dimethyl-1,7-dioxacyclotetradeca-3,9-diene-2,8-dione, with
354 immunosuppressive activity (53). It should be noted that two compounds were recorded as
355 Tricholide A. Both presented the same *m/z* value but with very different retention times,
356 indicating the presence of isomers of this compound, as both appear as neighboring nodes in
357 the molecular network. The annotation procedures and KEGG pathway search identified
358 Brevianamide F, a compound with activity against *Staphylococcus aureus* (54) and an
359 intermediate of well-established inducer of apoptosis, Staurosporin (55). Among the three
360 annotation methods for a given molecule we used, spectral matching against a reference library
361 is the best available resource (56). In addition, we used two other *in silico* annotation resources:
362 ChemWalker and SIRIUS. Of these two tools, SIRIUS has the best accuracy, but it is very
363 difficult to use when dealing with large sets of spectra. This limitation is overcome by
364 ChemWalker, which allows greater annotation coverage, taking into account the topology of
365 the molecular network. We reached brevianamide F annotation through two different
366 annotation routes, which brings robustness to the interpretation of the result obtained and
367 highlights the potential for a reverse flow in elucidating the biosynthetic potential of a new
368 non-model organism. It is worth highlighting that we also carried out an *in silico* prediction
369 analysis using SIRIUS for the seven nodes related to that of Brevianimide F. However, the best
370 candidates predicted by this tool had little structural similarity with the compound itself, unlike
371 the candidates provided by ChemWalker. The advantage of ChemWalker is that it uses the
372 sample context given by the molecular network topology on compound re-ranking. Eventually,

373 this new proposed BGC could synthesize the other molecules annotated and linked to the
374 Brevianamide F's node or, maybe, they are intermediates from different pathways that had not
375 been described yet. In both cases, the knowledge of these analogues opens the possibilities to
376 improve the known bioactivity of Brevianamide F, which could be tested by isolation or even
377 by (bio)synthesizing the compounds.

378 Inspecting KEGG's metabolic pathways, we found that Brevianamide F, a product of
379 fungi metabolism (57), is part of Staurosporin biosynthesis (KO00404). Therefore, we
380 retrieved all EC numbers from the KO00404 pathway, connected them to our Prokka data, and
381 found three enzymes that can catalyze the Brevianamide F synthesis reaction. In the KO00404
382 pathway, brevianamide F biosynthesis requires tryptophan and proline as substrates, being its
383 core assembled by a non-ribosomal peptide synthetase (COG1020), named Brevianamide F
384 synthase (EC: 6.3.2.-), which is encoded by the gene FtmA (NCBI ID *Aspergillus fumigatus*
385 (AFUA_8G00170) (58), and is also reported in *Streptomyces* sp (59). The isolate BRA006 has
386 an NRPK mbtB_1 (MinION data) that matches with COG and EC number of FtmA, but is not
387 a component of any BGC found by antiSMASH. However, examining the downstream and
388 upstream regions of 2,3-dihydroxybenzoate-AMP ligase CDS (Illumina data) we found a
389 genomic region that has the potential to be part of the brevianamide F synthesis pathway BGC.

390 AntiSMASH identifies BGCs based on profiles of Hidden Markov Models (pHMM)
391 from PFAM (60), TIGRFAMs (61), SMART (62), BAGEL (63), Yadav et al. 2019 (64) and
392 custom models that recognize signature sequences of such conserved domains in genomic
393 query sequences (65). However, there are BGCs that lack universal class-specific signature
394 sequences and therefore are partially identified. To overcome this limitation, deep-learning-
395 based tools such as DeepBGC (66) have been applied in genomic mining research to uncover
396 new BGCs.

397 It is interesting to emphasize the innovative approach used in the present work with a
398 two-way analysis of the genome and metabolome. We started with the metabolome to see if
399 the biosynthetic gene clusters involved in the production of a given metabolite could be
400 identified in the genome. We then analyzed the genome sequencing data, and from there, by
401 searching specific databases such as antiSMASH, we went to the metabolome to check whether
402 the compounds predicted by antiSMASH were being produced (8). Traditionally, the search
403 for potential new compounds with bioactivity follows the latter linear flow of analysis, which
404 in our case did not result in the identification of 7 of the metabolites predicted by genome
405 mining. However, by using the chemical classes of these compounds, we could find analogues
406 in our metabolomic data.

407 In addition, we present a new approach that integrates the classical approach with a
408 reverse analysis, starting from the metabolome to the genome. For example, in neither short-
409 read (Illumina) nor long-read (minION) sequencing data, it was possible to automatically detect
410 the biosynthetic gene cluster for brevianamide F or staurosporin production. By using the two-
411 way approach we could identify brevianamide F (reported as an intermediate in the
412 Staurosporin biosynthesis) in BRA006 metabolome and, from there, we could identify some
413 of brevianamide F' putative analogs and a BGC in the BRA006 genome, initially annotated
414 with other function, that could represent Brevianamide F biosynthetic pathway in BRA006.
415 Therefore, the approach presented in the present work allowed us to extend the characterization
416 of the potential of bioactive natural products produced by BRA006.

417

418 **4. Materials and Methods**

419 **4.1 Collection, DNA Extraction and Sequencing**

420 The BRA006, from MicroMarin collection (<https://www.labbmar.ufc.br/micromarinbr>) was
421 cultured in A1 medium [Starch (10 g/L); Yeast extract (4 g/L); Peptone (2 g/L); Sea Water
422 75%] in a volume of 100 mL in 250 mL Erlenmeyer flasks. The cultures were centrifuged at
423 12.000 x g for 10 min and the cell pellets were resuspended in 10 uL of lysozyme 0.05 g/mL
424 for 500 ul of SET buffer. The mixture was incubated at 37°C for 30 minutes. Then 14 ul
425 Proteinase K (20 mg/ml) and 60 uL SDS 10% were added to the cell lysate and incubated for
426 a further 1h at 55°C. Then 200 uL NaCl 5M was added and the temperature was raised to 37°C.
427 500uL of chloroform was added and the system was centrifuged at 4,500 x g for 10min at 20°C.
428 500uL was collected in a new tube and 300uL of isopropanol was added and incubated
429 overnight (16 hours). The system was centrifuged at 14,000 x g for 10 minutes at 4°C. The
430 supernatant was discarded and the DNA pellet was resuspended in TE buffer. DNA libraries
431 were prepared using the Oxford Nanopore Ligation Sequencing Kit (SQK-LSK110) and library
432 loading and sequencing were performed according to the manufacturer's instructions and
433 protocol for Flongle.

434 **4.2 Genome Sequencing and Assembly Pipeline**

435 For MinION data in use an in house pipeline with tools suggested by Oxford Nanopore. The
436 acquisition of the raw data, a series of processing steps were followed until these genomes were
437 assembled. The first stage of data processing consisted of converting the raw signals into DNA
438 base sequences (base calling) using the Guppy tool (67). With this data in hand, the quality of
439 the readings taken in the previous step was assessed using the NanoStat software (68). With
440 these results, the processing continued with the removal of adapters from the base called reads
441 to prepare them for subsequent steps; this was done using the Porechop tool

442 (https://github.com/rrwick/Porechop), which also compressed the resulting reads. Once the
443 adapters had been removed, a new quality analysis was carried out using the NanoStat tool.
444 Once this step was completed, the low-quality bases and short reads were trimmed using the
445 Chopper tool (69), which not only trimmed but also compressed the resulting reads. The next
446 step was to analyze the quality of the resulting sequence, again using the NanoStat tool. With
447 the resulting data, we then used the Flye (70) tool to assemble the genomes using filtered, high-
448 quality reads. The genome assembly was then refined using information from reads mapped
449 using the Racon tool (71). Finally, with the final result in hand, the quality of the final genome
450 assembly was assessed using the Quast tool (72) and BUSCO (73). For Illumina procedures,
451 BRA006 genome samples were sequenced using MiSeq technology at Macrogen facility (Seul,
452 South Korea), all the processing steps such as read mapping, trimming low quality reads and
453 *de novo* genome assembly were performed using the proprietary software Geneious (Version
454 11) (74).

455 **4.3 Phylogenetic analysis**

456 For phylogenetic inference, we choose a comprehensive method called digital DNA:DNA
457 hybridization (dDDH) available in the Type Genome Server (TYGS) web tool (21). We used
458 both MinION and Illumina data as query sequences with a standard parameter set.

459 **4.4 BGCs analysis and functional annotation**

460 To reveal biosynthetic gene clusters (BGC) from the BRA006 genome, we used the
461 antiSMASH tool (version 7.1.0) (75) with relaxed detection strictness and all extra features
462 selection. Coding sequences (CDS) prediction of BRA006 assemblies were made using Prokka
463 (1.14.6) (76), which is based on prodigal (77) HMM models to identify proteins by their family
464 motifs. Finally, we combine Prokka and antiSMASH results to obtain a better resolution of
465 protein functions within BGCs. We manually filtered antiSMASH extra features and retrieved

466 the most similar known cluster genbank format of our BGCs of interest from MiBiG (version
467 3.0) (78). Thus, python scripts were used to convert CDS of GenBank files from MiBiG and
468 antiSMASH into fasta format in which the MiBiG sequences were used to construct reference
469 databases and antiSMASH's as query sequences for BLASTp. With the TSV files from
470 BLASTp, we grouped all possible matches by each query sequence and selected the one with
471 the lowest e-value. Finally, we used BioPython to plot the comparisons with more than 70% of
472 similarity.

473 **4.5 Metabolomic analysis**

474 The BRA006 isolates were cultivated in 100 mL of the sterile A1 culture medium , in 250 mL
475 Erlenmeyer flasks. The liquid cultures were extracted with ethyl acetate, and the organic phase
476 was dried under pressure and kept at 4°C. For the LC-MS/MS analyses, organic extracts were
477 diluted in methanol at a ratio of 1.0 mg/mL (79). The LC-MS/MS analysis itself was conducted
478 in the Acquity UPLC H-Class (Waters, Milford, MA - US) hyphenated with Impact II mass
479 spectrometer (Bruker Daltonics, Billerica - US). The mobile phase (flow 0.3 mL.min⁻¹)
480 consisted of water (A) and methanol (B) in the following gradient: 0.0 - 15.0 min (5 - 20% B,
481 curve 6); 15.0 - 30.0 min (20-95% B, curve 6); 30.0 - 33.0 min - (100 B, curve 1); 33.0 - 40.0
482 min (5% B, curve 1). C18 - Luna (Phenomenex® - 100 mm x 2.1 mm x 2.6 μm) and the
483 temperature adjusted to 35°C. The parameters adjusted for the spectrometer were: end plate
484 offset of 500V; capillary voltage of 4.5kV; nitrogen (N2) was used as gas; drying gas flow at
485 5.0L.min⁻¹; drying gas temperature at 180°C; 4 bar nebulizer gas pressure; positive ESI mode.
486 Spectra (*m/z* 30–2000) were recorded at a rate of 8 Hz. Accurate masses were obtained
487 using sodium formic acid [HCOO-Na⁺] as an internal standard.

488 **4.6 GNPS2 Molecular Networking and *in silico* annotation**

489 The .csv and .mgf files generated in MZmine3 (23) from the raw data of the metabolomic
490 analysis were imported into the GNPS2 platform (<https://gnps2.org/>), where the molecular
491 network and spectral pairing were performed using the Feature Based Molecular Network
492 (FBMN) (80)
493 (https://gnps2.org/workflowinput?workflowname=feature_based_molecular_networking_workflow). We used the standard parameters for FBMN. Once the network was built, the
494 annotations were propagated using the ChemWalker (24) tool through GNPS2 interface
495 (https://gnps2.org/workflowinput?workflowname=chemwalker_nextflow_workflow). We
496 used the standard parameters for ChemWalker, including COCONUT (81) as the reference
497 database and 0 for the component index to propagate information for the whole network. For
498 the nodes that could not be annotated, the MS/MS mass spectra were analyzed using the
499 SIRIUS tool (25). For *in silico* annotation, both ChemWalker and SIRIUS were used to
500 annotate a structure with the best ranked candidate. The raw data set, as well as the parameters
501 used for preprocessing in MZmine3 and access to the results with GNPS2 are available from
502 Zenodo <https://doi.org/10.5281/zenodo.10366840>.

504

505 **Author Contributions**

506 Conceptualization, G.S.A., T.C.B., and R.R.d.S.; methodology, G.S.A., T.C.B., and R.R.d.S.;
507 software, T.C.B., A.G.F., M.W., and R.d.S.; resources, R.R.d.S., M.E.G., L.C.L., G.P.,
508 D.B.B.T., and N.P.L.; data acquisition, G.S.A., M.P., G.M.V.S., E.G.F., R.d.F., P.R.T., and
509 F.R.O.; data curation, G.S.A., T.C.B., L.G.M., H.T., L.G.; writing—original draft preparation,
510 G.S.A., T.C.B., and R.R.d.S.; writing—review and editing, all authors; supervision, R.R.d.S.;

511 **Funding**

512 This work was supported by the São Paulo State Foundation (FAPESP, Award 2017/18922-2;

513 2020/02207-5; 2021/08235-3; 2021/10401-9; 2021/01748-5; 2021/09375-3; 2019/25432-7).

514 M.E.G. was supported by CNPq Research Productivity Scholarship (award 302750/2020-7).

515

516 **Acknowledgments**

517 MW was supported by the UCR startup.

518

519 **Conflicts of Interest**

520 MW is a co-founder of Ometa Labs LLC.

521

522 **Data availability**

523 All data, Python scripts and Jupyter notebooks used during metabologenomics data analysis

524 are available on this project GitHub page: [525 \[biology/metabologenomics\]\(https://github.com/computational-chemical-biology/metabologenomics\). The FBMN results can be found here](https://github.com/computational-chemical-</p></div><div data-bbox=)

526 <https://gnps2.org/status?task=7b134da60f0f4a80aec790d2a294aedd> and ChemWalker results

527 here <https://gnps2.org/status?task=9141a5cdabf842d39387e514e5305398>. The assemblies are

528 available on NBCI database. MiION: <https://www.ncbi.nlm.nih.gov/biosample/SAMN39609461/>

529 e Illumina: <https://www.ncbi.nlm.nih.gov/biosample/?term=SAMN29586427>.

531

532 **References**

533 1. Fenical, W.; Jensen, P.R. Developing a new resource for drug discovery: marine
534 actinomycete bacteria. *Nat Chem Biol.* **2006**, 12, 666-73.

535 2. Newman, D.J.; Cragg, G.M. Natural Products as Sources of New Drugs over the Nearly Four
536 Decades from 01/1981 to 09/2019. *J Nat Prod.* **2020**, 83, 770-803.

537 3. Kim, L.J.; Ohashi, M.; Zhang, Z.; Tan, D.; Asay, M.; Cascio, D.; Rodriguez, J.A.; Tang, Y.;
538 Nelson, H.M. Prospecting for natural products by genome mining and microcrystal electron
539 diffraction. *Nat Chem Biol.* **2021**, 17, 872-877.

540 4. Wilke, D.V.; Jimenez, P.C.; Branco, P.C.; Rezende-Teixeira, P.; Trindade-Silva, A.E.;
541 Bauermeister, A.; Lopes, N.P.; Costa-Lotufo, L.V. Anticancer Potential of Compounds from
542 the Brazilian Blue Amazon. *Planta Med.* **2021**, 87, 49-70.

543 5. Hifnawy, M.S.; Fouda, M.M.; Sayed, A.M.; Mohammed, R.; Hassan, H.M.; AbouZid, S.F.;
544 Rateb, M.E.; Keller, A.; Adamek, M.; Ziemert, N.; Abdelmohsen, U.R. The genus
545 Micromonospora as a model microorganism for bioactive natural product discovery. *RSC Adv.*
546 **2020**, 10, 20939-20959.

547 6. Sousa, T.da.S.; Jimenez, P.C.; Ferreira, E.G.; Silveira, E.R.; Braz-Filho, R.; Pessoa, O.D.;
548 Costa-Lotufo, L.V. Anthracyclinones from Micromonospora sp. *J Nat Prod.* **2012**, 75, 489-93.

549 7. Ruzzini, A.C.; Clardy, J Gene Flow and Molecular Innovation in Bacteria. *Curr Biol.* **2016**,
550 26, R859-R864.

551 8. Domingues Vieira, B.; Niero, H.; de Felício, R.; Giolo Alves, L.F.; Freitas Bazzano, C.;
552 Sigrist, R.; Costa Furtado, L.; Felix Persinoti, G.; Veras Costa-Lotufo, L.; Barreto Barbosa
553 Trivella, D. Production of Epoxyketone Peptide-Based Proteasome Inhibitors by Streptomyces
554 sp. BRA-346: Regulation and Biosynthesis. *Front Microbiol.* **2022**, 13, 786008.

555 9. Sun, W.; Wu, W.; Liu, X.; Zaleta-Pinet, D.A.; Clark, B.R. Bioactive Compounds Isolated
556 from Marine-Derived Microbes in China: 2009-2018. *Mar Drugs.* **2019**, 17, 339.

557 10. Behsaz, B.; Bode, E.; Gurevich, A.; Shi, Y.N.; Grundmann, F.; Acharya, D.; Caraballo-
558 Rodríguez, A.M.; Bouslimani, A.; Panitchpakdi, M.; Linck, A.; Guan, C.; Oh, J.; Dorrestein,
559 P.C.; Bode, H.B.; Pevzner, P.A.; Mohimani, H. Integrating genomics and metabolomics for
560 scalable non-ribosomal peptide discovery. *Nat Commun.* **2021**, 12, 3225.

561 11. Andrade, L.S.N. Identification and characterization of biosynthetic clusters from
562 *Micromonospora* sp. M.Sc dissertation, University of São Paulo, São Paulo, Brazil, 2020.

563 12. Kato, N.N.; Arini, G.S.; Silva, R.R.; Bichuette, M.E.; Bitencourt, J.A.P.; Lopes, N.P. The
564 World of Cave Microbiomes: Biodiversity, Ecological Interactions, Chemistry, and the Multi-
565 Omics Integration. *J Braz Chem Soc.* **2023**, 00, 1-16.

566 13. Yan, S.; Zeng, M.; Wang, H.; Zhang, H. *Micromonospora*: A Prolific Source of Bioactive
567 Secondary Metabolites with Therapeutic Potential. *J Med Chem.* **2022**, 13, 8735-8771.

568 14. Lasch, C.; Gummerlich, N.; Myronovskyi, M.; Paluszak, A.; Zapp, J.; Luzhetskyy, A.
569 Loseolamycins: A Group of New Bioactive Alkylresorcinols Produced after Heterologous
570 Expression of a Type III PKS from *Micromonospora endolithica*. *Molecules.* **2020**, 20, 4594.

571 15. Paderog, M.J.V.; Suarez, A.F.L.; Sabido, E.M.; Low, Z.J.; Saludes, J.P.; Dalisay, D.S.
572 Anthracycline Shunt Metabolites From Philippine Marine Sediment-Derived Streptomyces
573 Destroy Cell Membrane Integrity of Multidrug-Resistant *Staphylococcus aureus*. *Front*
574 *Microbiol.* **2020**, 11, 743.

575 16. Silva, L.J.; Crevelin, E.J.; Souza, D.T.; Lacerda-Júnior, G.V.; de Oliveira, V.M.; Ruiz,
576 A.L.T.G.; Rosa, L.H.; Moraes, L.A.B.; Melo, I.S. Actinobacteria from Antarctica as a source
577 for anticancer discovery. *Sci Rep.* **2020**, 1, 13870.

578 17. Hecht, S.M. Bleomycin: new perspectives on the mechanism of action. *J Nat Prod.* **2000**,
579 1, 158-68.

580 18. Hofstead, S.J.; Matson, J.A.; Malacko, A.R.; Marquardt, H. Kedarcidin, a new
581 chromoprotein antitumor antibiotic. II. Isolation, purification and physico-chemical properties.
582 *J Antibiot (Tokyo)*, **1992**, 8, 1250-4.

583 19. Low, Z.J.; Ma, G.L.; Tran, H.T.; Zou, Y.; Xiong, J.; Pang, L.; Nuryyeva, S.; Ye, H.; Hu,
584 J.F.; Houk, K.N.; Liang, Z.X. Sungeidines from a Non-canonical Enediyne Biosynthetic
585 Pathway. *J Am Chem Soc.* **2020**, 4, 1673-1679.

586 20. Unno, R.; Michishita, H.; Inagaki, H.; Suzuki, Y.; Baba, Y.; Jomori, T.; Nishikawa, T.;
587 Isobe, M. Synthesis and antitumor activity of water-soluble enediyne compounds related to
588 dynemicin A. *Bioorg Med Chem.* **1997**, 5, 987-99.

589 21. Meier-Kolthoff, J.P.; Göker, M. TYGS is an automated high-throughput platform for state-
590 of-the-art genome-based taxonomy. *Nat Commun.* **2019**, 1, 2182.

591 22. Chambers, M.C.; Maclean, B.; Burke, R.; Amodei, D.; Ruderman, D.L.; Neumann, S.;
592 Gatto, L.; Fischer, B.; Pratt, B.; Egertson, J.; Hoff, K.; Kessner, D.; Tasman, N.; Shulman, N.;
593 Frewen, B.; Baker, T.A.; Brusniak, M.Y.; Paulse, C.; Creasy, D.; Flashner, L.; Kani, K.;
594 Moulding, C.; Seymour, S.L.; Nuwaysir, L.M.; Lefebvre, B.; Kuhlmann, F.; Roark, J.; Rainer,
595 P.; Detlev, S.; Hemenway, T.; Huhmer, A.; Langridge, J.; Connolly, B.; Chadick, T.; Holly,
596 K.; Eckels, J.; Deutsch, E.W.; Moritz, R.L.; Katz, J.E.; Agus, D.B.; MacCoss, M.; Tabb, D.L.;

597 597 Mallick, P. A cross-platform toolkit for mass spectrometry and proteomics. *Nat Biotechnol.*
598 2012, 10, 918-20.

599 599 23. Schmid, R.; Heuckeroth, S.; Korf, A.; Smirnov, A.; Myers, O.; Dyrlund, T.S.; Bushuiev,
600 R.; Murray, K.J.; Hoffmann, N.; Lu, M.; Sarvepalli, A.; Zhang, Z.; Fleischauer, M.; Dührkop,
601 K.; Wesner, M.; Hoogstra, S.J.; Rudt, E.; Mokshyna, O.; Brungs, C.; Ponomarov, K.;
602 Mutabdzija, L.; Damiani, T.; Pudney, C.J.; Earll, M.; Helmer, P.O.; Fallon, T.R.; Schulze, T.;
603 Rivas-Ubach, A.; Bilbao, A.; Richter, H.; Nothias, L.F.; Wang, M.; Orešić, M.; Weng, J.K.;
604 Böcker, S.; Jeibmann, A.; Hayen, H.; Karst, U.; Dorrestein, P.C.; Petras, D.; Du, X.; Pluskal,
605 T. Integrative analysis of multimodal mass spectrometry data in MZmine 3. *Nat Biotechnol.*
606 2023, 41, 447-449.

607 607 24. Borelli, T.C.; Arini, G.S.; Feitosa, L.G.P.; Dorrestein, P.C.; Lopes, N.P.; da Silva, R.R.
608 Improving annotation propagation on molecular networks through random walks: introducing
609 ChemWalker. *Bioinformatics*. 2023, 3, btad078.

610 610 25. Dührkop, K.; Fleischauer, M.; Ludwig, M.; Aksенов, A.A.; Melnik, A.V.; Meusel, M.;
611 Dorrestein, P.C.; Rousu, J.; Böcker, S. SIRIUS 4: a rapid tool for turning tandem mass spectra
612 into metabolite structure information. *Nat Methods*. 2019, 4, 299-302.

613 613 26. Djoumbou Feunang, Y.; Eisner, R.; Knox, C.; Chepelev, L.; Hastings, J.; Owen, G.; Fahy,
614 E.; Steinbeck, C.; Subramanian, S.; Bolton, E.; Greiner, R.; Wishart DS. ClassyFire: automated
615 chemical classification with a comprehensive, computable taxonomy. *J Cheminform*. 2016, 8,
616 61.

617 617 27. de Valk, K.S.; Deken, M.M.; Handgraaf, H.J.M.; Bhairosingh, S.S.; Bijlstra, O.D.; van
618 Esdonk, M.J.; Terwisscha van Scheltinga, A.G.T.; Valentijn, A.R.P.M.; March, T.L.; Vuijk, J.;
619 Peeters, K.C.M.J.; Holman, F.A.; Hilling, D.E.; Mieog, J.S.D.; Frangioni, J.V.; Burggraaf, J.;

620 Vahrmeijer, A.L. First-in-Human Assessment of cRGD-ZW800-1, a Zwitterionic, Integrin-
621 Targeted, Near-Infrared Fluorescent Peptide in Colon Carcinoma. *Clin Cancer Res.* **2020**, 15,
622 3990-3998.

623 28. Paulsen, Ø.; Aass, N.; Kaasa, S.; Dale, O. Do corticosteroids provide analgesic effects in
624 cancer patients? A systematic literature review. *J Pain Symptom Manage.* **2013**, 1, 96-105.

625 29. Park, H.B.; Crawford, J.M. Pyrazinone protease inhibitor metabolites from *Photorhabdus*
626 *luminescens*. *J Antibiot (Tokyo)*. **2016**, 8, 616-21.

627 30. Zhu, T.; Chen, Z.; Liu, P.; Wang, Y.; Xin, Z.; Zhu, W. New rubrolides from the marine-
628 derived fungus *Aspergillus terreus* OUCMDZ-1925. *J Antibiot.* **2014**, 67, 315–318.

629 31. Costa, M.; Sampaio-Dias, IE.; Castelo-Branco, R.; Scharfenstein, H.; Rezende de Castro,
630 R.; Silva, A.; Schneider, M.P.C.; Araújo, M.J.; Martins, R.; Domingues, V.F.; Nogueira, F.;
631 Camões, V.; Vasconcelos, V.M.; Leão, P.N. Structure of Hierridin C, Synthesis of Hierridins
632 B and C, and Evidence for Prevalent Alkylresorcinol Biosynthesis in Picocyanobacteria. *J Nat
633 Prod.* **2019**, 2, 393-402.

634 32. Shishido, T.; Hachisuka, M.; Ryuzaki, K.; Miura, Y.; Tanabe, A.; Tamura, Y.; Kusayanagi,
635 T.; Takeuchi, T.; Kamisuki, S.; Sugawara, F.; Sahara, H. EpsinR, a target for pyrenocine B,
636 role in endogenous MHC-II-restricted antigen presentation. *Eur J Immunol.* **2014**, 11, 3220-
637 31.

638 33. Liu, C.H.; Chen, C.Y.; Huang, A.M.; Li, J.H. Subamolide A, a component isolated from
639 *Cinnamomum subavenium*, induces apoptosis mediated by mitochondria-dependent, p53 and
640 ERK1/2 pathways in human urothelial carcinoma cell line NTUB1. *J Ethnopharmacol.* **2011**,
641 1, 503-11.

642 34. Cheng, M.J.; Lee, S.J.; Chang, Y.Y.; Wu, S.H.; Tsai, I.L.; Jayaprakasam, B.; Chen, I.S.

643 Chemical and cytotoxic constituents from *Peperomia sui*. *Phytochemistry*. **2003**, 5, 603-8.

644 35. Zang, Y.; Genta-Jouve, G.; Sun, T.A.; Li, X.; Didier, B.; Mann, S.; Mouray, E.; Larsen,

645 A.K.; Escargueil, A.E.; Nay, B.; Prado, S. Unexpected talaroenamine derivatives and an

646 undescribed polyester from the fungus *Talaromyces stipitatus* ATCC10500. *Phytochemistry*.

647 **2015**, 119, 70-5.

648 36. Brkljača, R.; Urban, S. HPLC-NMR, and HPLC-MS investigation of antimicrobial

649 constituents in *Cystophora monilifera* and *Cystophora subfarcinata*. *Phytochemistry*. **2015**,

650 117, 200-208.

651 37. Cordero, A.M.F.; Gonzales III, A.A. Using multiscale molecular modeling to analyze

652 possible NS2b-NS3 protease inhibitors from medicinal plants endemic to the Philippines.

653 *bioRxiv*. **2023**.

654 38. Wang, W.; Hong, J.; Lee, C.O.; Im, K.S.; Choi, J.S.; Jung, J.H. Cytotoxic sterols and

655 saponins from the starfish *Certonardoa semiregularis*. *J Nat Prod*. **2004**, 4, 584-91.

656 39. Kalauni, S.K.; Choudhary, M.I.; Shaheen, F.; Manandhar, M.D.; Atta-ur-Rahman.; Gewali,

657 M.B.; Khalid, A. Steroidal alkaloids from the leaves of *Sarcococca coriacea* of Nepalese origin.

658 *J Nat Prod*. **2001**, 6, 842-4.

659 40. Salen, G.; Verga, D.; Batta, A.K.; Tint, G.S.; Shefer, S. Effect of 7-ketolithocholic acid on

660 bile acid metabolism in humans. *Gastroenterology*. **1982**, 2, 341-7.

661 41. Mandia, D.; Chaussenot, A.; Besson, G.; Lamari, F.; Castelnovo, G.; Curot, J.; Duval, F.;

662 Giral, P.; Lecerf, J.M.; Roland, D.; Pierdet, H.; Douillard, C.; Nadjar, Y. Cholic acid as a

663 treatment for cerebrotendinous xanthomatosis in adults. *J Neurol*. **2019**, 266, 2043–2050.

664 42. Bedir, E.; Karakoyun, Ç.; Doğan, G.; Kuru, G.; Küçüksolak, M.; Yusufoglu, H. New
665 Cardenolides from Biotransformation of Gitoxigenin by the Endophytic Fungus Alternaria
666 eureka 1E1BL1: Characterization and Cytotoxic Activities. *Molecules*. **2021**, 10, 3030.

667 43. Che, Y.; Swenson, D.C.; Gloer, J.B.; Koster, B.; Malloch, D. Pseudodestruxins A and B:
668 new cyclic depsipeptides from the coprophilous fungus *Nigrosabulum globosum*. *J Nat Prod.*
669 **2001**, 5, 555-8.

670 44. Kanehisa, M.; Goto, S. KEGG: kyoto encyclopedia of genes and genomes. *Nucleic Acids*
671 *Res.* **2000**, 1, 27-30.

672 45. Wang, M.; Carver, J.J.; Phelan, V.V.; Sanchez, L.M.; Garg, N.; Peng, Y.; Nguyen, D.D.;
673 Watrous, J.; Kaponi, C.A.; Luzzatto-Knaan, T.; Porto, C.; Bouslimani, A.; Melnik, A.V.;
674 Meehan, M.J.; Liu, W.T.; Crüsemann, M.; Boudreau, P.D.; Esquenazi, E.; Sandoval-Calderón,
675 M.; Kersten, R.D.; Pace, L.A.; Quinn, R.A.; Duncan, K.R.; Hsu, C.C.; Floros, D.J.; Gavilan,
676 R.G.; Kleigrewe, K.; Northen, T.; Dutton, R.J.; Parrot, D.; Carlson, E.E.; Aigle, B.; Michelsen,
677 C.F.; Jelsbak, L.; Sohlenkamp, C.; Pevzner, P.; Edlund, A.; McLean, J.; Piel, J.; Murphy, B.T.;
678 Gerwick, L.; Liaw, C.C.; Yang, Y.L.; Humpf, H.U.; Maansson, M.; Keyzers, R.A.; Sims, A.C.;
679 Johnson, A.R.; Sidebottom, A.M.; Sedio, B.E.; Klitgaard, A.; Larson, C.B. P. CAB.; Torres-
680 Mendoza, D.; Gonzalez, D.J.; Silva, D.B.; Marques, L.M.; Demarque, D.P.; Pociute, E.;
681 O'Neill, E.C.; Briand, E.; Helfrich, E.J.N.; Granatosky, E.A.; Glukhov, E.; Ryffel, F.; Houson,
682 H.; Mohimani, H.; Kharbush, J.J.; Zeng, Y.; Vorholt, J.A.; Kurita, K.L.; Charusanti, P.;
683 McPhail, K.L.; Nielsen, K.F.; Vuong, L.; Elfeki, M.; Traxler, M.F.; Engene, N.; Koyama, N.;
684 Vining, O.B.; Baric, R.; Silva, R.R.; Mascuch, S.J.; Tomasi, S.; Jenkins, S.; Macherla, V.;
685 Hoffman, T.; Agarwal, V.; Williams, P.G.; Dai, J.; Neupane, R.; Gurr, J.; Rodríguez, A.M.C.;
686 Lamsa, A.; Zhang, C.; Dorresteijn, K.; Duggan, B.M.; Almaliti, J.; Allard, P.M.; Phapale, P.;
687 Nothias, L.F.; Alexandrov, T.; Litaudon, M.; Wolfender, J.L.; Kyle, J.E.; Metz, T.O.; Peryea,

688 T.; Nguyen, D.T.; VanLeer, D.; Shinn, P.; Jadhav, A.; Müller, R.; Waters, K.M.; Shi, W.; Liu,
689 X.; Zhang, L.; Knight, R.; Jensen, P.R.; Palsson, B.O.; Pogliano, K.; Linington, R.G.;
690 Gutiérrez, M.; Lopes, N.P.; Gerwick, W.H.; Moore, B.S.; Dorrestein, P.C.; Bandeira, N.
691 Sharing and community curation of mass spectrometry data with Global Natural Products
692 Social Molecular Networking. *Nat Biotechnol.* **2016**, 34, 828-837.

693 46. Silva, A.E.T.; Guimarães, L.A.; Ferreira, E.G.; Torres, M.da.C.M.; da Silva, A.B.; Branco,
694 P.C.; Oliveira, F.A.S.; Silva, G.G.Z.; Wilke, D.V.; Silveira, E.R.; Pessoa, O.D.L.; Jimenez,
695 P.C.; Costa-Lotufo, L.V. Bioprospecting Anticancer Compounds from the Marine-Derived
696 Actinobacteria *Actinomadura* sp. Collected at the Saint Peter and Saint Paul Archipelago
697 (Brazil). *J Braz Chem Soc.* **2017**, 28, 465 – 474.

698 47. Wick, R.R.; Judd, L.M.; Gorrie, C.L.; Holt, K.E. Completing bacterial genome assemblies
699 with multiplex MinION sequencing. *Microb Genom.* 2017, 10, e000132.

700 48. Laver, T.; Harrison, J.; O'Neill, P.A.; Moore, K.; Farbos, A.; Paszkiewicz, K.; Studholme,
701 D.J. Assessing the performance of the Oxford Nanopore Technologies MinION. *Biomol Detect*
702 *Quantif.* **2015**, 3, 1-8.

703 49. Medema, M.H.; Cimermancic, P.; Sali, A.; Takano, E.; Fischbach, M.A. A systematic
704 computational analysis of biosynthetic gene cluster evolution: lessons for engineering
705 biosynthesis. *PLoS Comput Biol.* **2014**, 12, e1004016.

706 50. Xu, M.; Wright, G.D. Heterologous expression-facilitated natural products' discovery in
707 actinomycetes. *J Ind Microbiol Biotechnol.* **2019**, 3-4, 415-431.

708 51. Yamanaka, K.; Reynolds, K.A.; Kersten, R.D.; Ryan, K.S.; Gonzalez, D.J.; Nizet, V.;
709 Dorrestein, P.C.; Moore, B.S. Direct cloning and refactoring of a silent lipopeptide biosynthetic
710 gene cluster yields the antibiotic taromycin A. *Proc Natl Acad Sci U S A.* **2014**, 5, 1957-62.

711 52. Bertin, M.J.; Roduit, A.F.; Sun, J.; Alves, G.E.; Via, C.W.; Gonzalez, M.A.; Zimba, P.V.;

712 Moeller, P.D.R. Tricholides A and B and Unnarmicin D: New Hybrid PKS-NRPS Macrocycles

713 Isolated from an Environmental Collection of *Trichodesmium thiebautii*. *Mar Drugs*. **2017**, 7,

714 206.

715 53. Fujimoto, H.; Nagano, J.; Yamaguchi, K.; Yamazaki, M. Immunosuppressive components

716 from an Ascomycete, *Diplogelasinospora grovesii*. *Chem Pharm Bull (Tokyo)*. **1998**, 3, 423-9.

717 54. Ben Ameur Mehdi, R.; Shaaban, K.A.; Rebai, I.K.; Smaoui, S.; Bejar, S.; Mellouli, L. Five

718 naturally bioactive molecules including two rhamnopyranoside derivatives isolated from the

719 *Streptomyces* sp. strain TN58. *Nat Prod Res*. **2009**, 12, 1095-107.

720 55. Belmokhtar, C.A.; Hillion, J.; Ségal-Bendirdjian, E. Staurosporine induces apoptosis

721 through both caspase-dependent and caspase-independent mechanisms. *Oncogene*. **2001**, 26,

722 3354-62.

723 56. Ausloos, P.; Clifton, C.L.; Lias, S.G.; Mikaya, A.I.; Stein, S.E.; Tchekhovskoi, D.V.;

724 Sparkman, O.D.; Zaikin, V.; Zhu, D. The critical evaluation of a comprehensive mass spectral

725 library. *J Am Soc Mass Spectrom*. **1999**, 4, 287-99.

726 57. Mehetre, G.T.J.S.V.; Burkul, B.B.; Desai, D.B.S.; Dharne, M.S.; Dastager, S.G.

727 Bioactivities and molecular networking-based elucidation of metabolites of potent

728 actinobacterial strains isolated from the Unkeshwar geothermal springs in India. *RSC Adv*.

729 **2019**, 17, 9850-9859.

730 58. Wang, J.-T.; Shi, T.-T.; Ding, L.; Xie, J.; Zhao, P.-J. Multifunctional Enzymes in Microbial

731 Secondary Metabolic Processes. *Catalysts*. **2023**, 13, 581.

732 59. Maiya, S.; Grundmann, A.; Li, S.M.; Turner, G. The fumitremorgin gene cluster of
733 *Aspergillus fumigatus*: identification of a gene encoding brevianamide F synthetase.
734 *Chembiochem.* **2006**, 7, 1062-9.

735 60. Mistry, J.; Chuguransky, S.; Williams, L.; Qureshi, M.; Salazar, G.A.; Sonnhammer,
736 E.L.L.; Tosatto, S.C.E.; Paladin, L.; Raj, S.; Richardson, L.J.; Finn, R.D.; Bateman, A. Pfam:
737 the protein families database in 2021. *Nucleic Acids Res.* **2021**, 49, D412–D419.

738 61. Haft, D.H.; Selengut, J.D.; Richter, R.A.; Harkins, D.; Basu, M.K.; Beck, E. TIGRFAMs
739 and genome properties in 2013. *Nucleic Acids Res.* **2013**, 41, D387–D395.

740 62. Letunic, I.; Khedkar, S.; Bork, P. SMART: recent updates, new developments and status in
741 2020. *Nucleic Acids Res.* **2021**, 49, D458–D460.

742 63. van Heel, A.J.; de Jong, A.; Song, C.; Viel, J.H.; Kok, J.; Kuipers, O.P. BAGEL4: a user-
743 friendly web server to thoroughly mine RiPPs and bacteriocins. *Nucleic Acids Res.* **2018**, 46,
744 W278–W281.

745 64. Yadav, G.; Gokhale, R.S.; Mohanty, D. Towards prediction of metabolic products of
746 polyketide synthases: an In silico analysis. *PLOS Comput. Biol.* **2009**, 5, e1000351.

747 65. Biermann, F.; Wenski, S. L.; Helfrich, E. J. N. Navigating and expanding the roadmap of
748 natural product genome mining tools. *Beilstein J Org Chem.* **2022**, 18, 1656–1671.

749 66. Hannigan, G.D.; Prihoda, D.; Palicka, A.; Soukup, J.; Klempir, O.; Rampula, L.; Durcak,
750 J.; Wurst, M.; Kotowski, J.; Chang, D.; Wang, R.; Piizzi, G.; Temesi, G.; Hazuda, D.J.; Woelk,
751 C.H.; Bitton, D.A. A deep learning genome-mining strategy for biosynthetic gene cluster
752 prediction. *Nucleic Acids Res.* **2019**, 18, e110.

753 67. Wick, R.R.; Judd, L.M.; Holt, K.E. Performance of neural network basecalling tools for
754 Oxford Nanopore sequencing. *Genome Biol.* **2019**, 1, 129.

755 68. De Coster, W.; D'Hert, S.; Schultz, D.T.; Cruts, M.; Van Broeckhoven, C. NanoPack:
756 visualizing and processing long-read sequencing data. *Bioinformatics*. **2018**, 15, 2666-2669.

757 69. De Coster, W.; Rademakers, R. NanoPack2: population-scale evaluation of long-read
758 sequencing data. *Bioinformatics*. **2023**, 5, btad311.

759 70. Kolmogorov, M.; Yuan, J.; Lin, Y.; Pevzner, P.A. Assembly of long, error-prone reads
760 using repeat graphs. *Nat Biotechnol.* **2019**, 5, 540-546.

761 71. Vaser, R.; Sović, I.; Nagarajan, N.; Šikić, M. Fast and accurate de novo genome assembly
762 from long uncorrected reads. *Genome Res.* **2017**, 5, 737-746.

763 72. Gurevich, A.; Saveliev, V.; Vyahhi, N.; Tesler, G. QUAST: quality assessment tool for
764 genome assemblies. *Bioinformatics*. **2013**, 8, 1072-5.

765 73. Manni, M.; Berkeley, M. R.; Seppey, M.; Zdobnov, E. M. BUSCO: Assessing genomic
766 data quality and beyond. *Curr Protoc.* **2021**, 12, e323

767 74. Kearse, M.; Moir, R.; Wilson, A.; Stones-Havas, S.; Cheung, M.; Sturrock, S.; Buxton, S.;
768 Cooper, A.; Markowitz, S.; Duran, C.; Thierer, T.; Ashton, B.; Meintjes, P.; Drummond, A.
769 Geneious Basic: an integrated and extendable desktop software platform for the organization
770 and analysis of sequence data. *Bioinformatics*. **2012**, 12, 1647-9.

771 75. Blin, K.; Shaw, S.; Augustijn, H.E.; Reitz, Z.L.; Biermann, F.; Alanjary, M.; Fetter, A.;
772 Terlouw, B.R.; Metcalf, W.W.; Helfrich, E.J.N.; van Wezel, G.P.; Medema, M.H.; Weber, T.
773 antiSMASH 7.0: new and improved predictions for detection, regulation, chemical structures,
774 and visualization. *Nucleic Acids Res.* **2023**, 51, W46-W50.

775 76. Seemann, T. Prokka: rapid prokaryotic genome annotation. *Bioinformatics*. **2014**, 14,

776 2068–9.

777 77. Hyatt, D.; Chen, G.L.; LoCascio, P.F.; Land, M.L.; Larimer, F.W.; Hauser, L.J. Prodigal:

778 prokaryotic gene recognition and translation initiation site identification. *BMC Bioinformatics*.

779 **2010**, 1, 119.

780 78. Terlouw, B.R.; Blin, K.; Navarro-Muñoz, J.C.; Avalon, N.E.; Chevrette, M.G.; Egbert, S.;

781 Lee, S.; Meijer, D.; Recchia, M.J.J.; Reitz, Z.L.; van Santen, J.A.; Selem-Mojica, N.; Tørring,

782 T.; Zaroubi, L.; Alanjary, M.; Aleti, G.; Aguilar, C.; Al-Salihi, S.A.A.; Augustijn, H.E.; Avelar-

783 Rivas, J.A.; Avitia-Domínguez, LA.; Barona-Gómez, F.; Bernaldo-Agüero, J.; Bielinski, V.A.;

784 Biermann, F.; Booth, T.J.; Carrion Bravo, V.J.; Castelo-Branco, R.; Chagas, F.O.; Cruz-

785 Morales, P.; Du, C.; Duncan, K.R.; Gavriilidou, A.; Gayrard, D.; Gutiérrez-García, K.;

786 Haslinger, K.; Helfrich, E.J.N.; van der Hooft, J.J.J.; Jati, A.P.; Kalkreuter, E.; Kalyvas, N.;

787 Kang, K.B.; Kautsar, S.; Kim, W.; Kunjapur, A.M.; Li, Y.X.; Lin, G.M.; Loureiro, C.; Louwen,

788 J.J.R.; Louwen, N.L.L.; Lund, G.; Parra, J.; Philmus, B.; Pourmohsenin, B.; Pronk, L.J.U.;

789 Rego, A.; Rex, D.A.B.; Robinson, S.; Rosas-Becerra, L.R.; Roxborough, E.T.; Schorn, M.A.;

790 Scobie, D.J.; Singh, K.S.; Sokolova, N.; Tang, X.; Udwary, D.; Vigneshwari, A.; Vind, K.;

791 Vromans, S.P.J.M.; Waschulin, V.; Williams, S.E.; Winter, J.M.; Witte, T.E.; Xie, H.; Yang,

792 D.; Yu, J.; Zdouc, M.; Zhong, Z.; Collemare, J.; Linington, R.G.; Weber, T.; Medema, M.H.

793 MIBiG 3.0: a community-driven effort to annotate experimentally validated biosynthetic gene

794 clusters. *Nucleic Acids Res.* **2023**, 51, D603-D610.

795 79. Bauermeister, A.; Zucchi, T.D.; Moraes, L.A. Mass spectrometric approaches for the

796 identification of anthracycline analogs produced by actinobacteria. *J Mass Spectrom.* **2016**, 6,

797 437-45.

798 80. Nothias, L.F.; Petras, D.; Schmid, R.; Dührkop, K.; Rainer, J.; Sarvepalli, A.; Protsyuk, I.;
799 Ernst, M.; Tsugawa, H.; Fleischauer, M.; Aicheler, F.; Aksenov, A.A.; Alka, O.; Allard, P.M.;
800 Barsch, A.; Cachet, X.; Caraballo-Rodriguez, A.M.; Da Silva, R.R.; Dang, T.; Garg, N.;
801 Gauglitz, J.M.; Gurevich, A.; Isaac, G.; Jarmusch, A.K.; Kameník, Z.; Kang, K.B.; Kessler,
802 N.; Koester, I.; Korf, A.; Le Gouellec, A.; Ludwig, M.; Martin, H C.; McCall, L.I.; McSayles,
803 J.; Meyer, S.W.; Mohimani, H.; Morsy, M.; Moyne, O.; Neumann, S.; Neuweger, H.; Nguyen,
804 N.H.; Nothias-Esposito, M.; Paolini, J.; Phelan, V.V.; Pluskal, T.; Quinn, R.A.; Rogers, S.;
805 Shrestha, B.; Tripathi, A.; van der Hooft, J.J.J.; Vargas, F.; Weldon, K.C.; Witting, M.; Yang,
806 H.; Zhang, Z.; Zubeil, F.; Kohlbacher, O.; Böcker, S.; Alexandrov, T.; Bandeira, N.; Wang,
807 M.; Dorrestein, P.C. Feature-based molecular networking in the GNPS analysis environment.
808 *Nat Methods.* **2020**, 9, 905-908.

809 81. Sorokina, M.; Merseburger, P.; Rajan, K.; Yirik, M.A.; Steinbeck, C. COCONUT online:
810 Collection of Open Natural Products database. *J Cheminform.* **2021**, 1, 2.