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Abstract

For over a century, Australian wheat breeders have successfully adapted wheat to a broad
range of climatic conditions and crop management practices. The OzWheat genome-to-
phenome (G2P) platform was established to capture this breeding history and explore traits,
genes, and their interactions with the environment to enable ongoing research and deliver
targets for wheat improvement. A panel of 285 cultivars and landraces were chosen through
knowledge of breeding pedigrees to represent both global diversity and the historic flow of
genetic variation over more than 100 years of selective breeding in Australia. Genetic

characterisation of the panel included identification of genome-wide sequence variants and
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gene expression profiling across environments. Important traits for adaptation (flowering
time and plant height) were assayed in controlled environments and at multiple field sites and
years, with genome-wide association analyses (GWAS) using linear mixed models detecting
both known and novel loci. Here, we report establishment of the OzWheat G2P platform as a
powerful tool to integrate wheat genomes and phenomes and demonstrate its use to identify
candidate genes and understand gene by environment interactions. This provides the wheat

research and breeding community a new resource to support future cultivar development.

Keywords: Wheat, phenology, adaptation, genetic diversity, genome to phenome, G2P.

Introduction

Wheat is an important food crop worldwide, with global production forecast at 787 million
tonnes in 2023/24, representing 28% of total cereal production (FAO 2023). To meet the needs
of a growing world population, it is imperative that wheat production is increased and a global
research effort to improve wheat yield in changing climates is underway (see Bentley et al.
2022, Fischer et al. 2014). With this challenge in-mind, wheat pre-breeding research has
benefitted from extensive development, sharing and deployment of wheat genomic resources
to characterise traits which underpin crop performance and identify target genes for crop
improvement (Krasileva et al. 2017, Walkowiak et al. 2020, Rogers et al. 2024). Traditional
pre-breeding research has typically involved time consuming and labour-intensive approaches
such as map-based cloning in bi-parental crosses, development of near-isogenic lines or proof-
of-function analysis via transgenesis (Borrill et al. 2018). Although fundamental to defining
gene function, these types of analyses in a limited number of genetic backgrounds have not

always provided an accurate understanding of gene effects for complex traits. That is, they
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have not always captured the genetic architecture of polygenic traits nor how genes interact
with the environment. Genome-wide association analysis (GWAS) aims to overcome such
limitations by surveying a broader genetic base and applying whole-of-genome scale analyses
for the simultaneous identification of large effect loci (major genes) together with minor-effect

or additive genetic loci (Rafalski 2010).

For GWAS to identify genetic variation which will be relevant to germplasm in a breeding
program, it is important to carefully choose the genetic diversity which underpins the platform.
Over the course of breeding, populations are developed through crossing and selection with the
highest performing, best adapted lines becoming released cultivars. Germplasm sharing
between breeders and researchers and frequent intercrossing, backcrossing and selfing to fix
lines for release, means that genetic loci are recombined, while recurrent selection and
backcrossing maintains favourable allelic combinations. Such germplasm represents a valuable
source of diversity for GWAS as it provides opportunity for high-resolution marker-trait
associations (Yu et al. 2006). In addition, utilising germplasm which represents the ancestry of
current cultivars is potentially a way to validate the phenotypic effects of alleles which have

been inherited through a breeding program over time.

Wheat breeding in Australia began over a century ago, when pioneer breeder William Farrer
found that colonial wheats were not well-adapted to local growing conditions (Evans, 1980).
To create earlier-maturing wheat which flowered at the optimum time for the Australian
environment, Farrer made crosses between Fife (hard grain Canadian wheat) and Indian
selections which were adapted to high temperatures (Guthrie 1922). By combining favourable
quality attributes and high yield potential, Farrer produced a plethora of cultivars which feature
in the ancestry of many modern wheats today. Most notably, Federation wheat which was
released in 1901 remained the most widely grown cultivar for more than 20 years (Macindoe

and Brown 1968).
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81  The enduring success of Farrer wheats can largely be attributed to the development of
82  germplasm adapted to specific growing environments. Today, it is just as important to develop
83 adapted wheat, as crops are cultivated across a broad geographic range, in different farming
84  systems, and in changing climates. Major genes important for adaptation (and therefore yield)
85 include those that affect flowering behaviour (phenology) and plant architecture, and many
86  important loci which affect these traits have been identified including REDUCED HEIGHTI
87 (RHTI), VERNALISATIONI (VRN1), PHOTOPERIODI (PPDI) and EARLINESS PER SE
88  (EPS) (Peng et al. 1999, Trevaskis et al. 2003, Diaz et al. 2012, Gawronski and Schnurbusch
89  2012). Extensive studies in Australia have highlighted the impact of allelic variation of such
90 loci for adaptation (Eagles et al. 2009; Cane et al. 2013; Eagles et al. 2014) although it is
91  apparent that these major genes do not fully explain phenological development in different

92  environments (Bloomfield et al. 2018).

93  Designing GWAS experiments to allow detection of genetic, environment and their interaction
94 (GxE) effects will therefore be essential to informing our understanding of regulatory
95  mechanisms underlying wheat traits and the reliability of gene targets for breeding. Integrating
96  association analysis across multiple carefully selected environments is becoming a standard
97  approach to address this need supported by a broad set of statistical approaches to partition and
98  detect significant effects (see Tibbs Cortes et al. 2021). The inclusion of other ‘omic data types
99  with GWAS analysis, such the transcriptome or proteome, which are a direct function of G, E
100 and GXE provide an additional avenue for identification of genes which respond to
101  environmental cues and vary in expression level across individuals (Wu et al. 2022, Han et al.
102 2022, Dillon et al. 2024). This can be achieved by including these ‘omic variables in the
103  association analysis, or likewise through post-GWAS analysis to bolster confidence in

104  identified associations with additional lines of evidence.

105
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106  This study aimed to develop a Genome-to-Phenome (G2P) platform that provides a new
107  dimension to GWAS, through incorporation of multi-environment assessments and validation
108  of gene associations with gene expression patterns. The addition of gene expression data aims
109 to provide additional insight into the regulatory mechanisms underpinning yield component
110  traits. Phenology and plant height were chosen as exemplar traits to demonstrate the G2P
111 approach using multi-environment, whole-transcriptome variation of a pedigree-informed
112 diversity panel. To handle the extensive datasets created we developed and share an online
113  interface to allow users to visualise and interact with the data by exploring sequence variants,
114  haplotypes and cross-environment gene expression. The OzWheat germplasm and resource
115  connects advances in genomics, transcriptomics and phenomics, providing a G2P platform for

116  the wheat research community to deliver outcomes for breeding.

117

118  Materials and Methods

119  Genetic material

120 The OzWheat Panel consists of landraces, historic releases and modern cultivars chosen to
121 include founders, key introductions and important parents in Australian wheat breeding. The
122  year and region of release in Australia was also considered to ensure a broad range of adaptation
123  and an accurate representation of the flow of alleles through time. Finally, a small number of
124  lines outside the Australian pedigree but with interesting or important agronomic traits or
125  genetic diversity were selected. This selection ensures relevance of the panel to modern
126  Australian breeding programs and growing conditions. In total, 285 cultivars and unreleased
127  breeding lines were sourced directly from breeders, and the Australian Winter Cereals
128  Collection (AWCC, Tamworth, NSW Department of Primary Industries) and Australian Grains

129  Genebank (AGG, https://agriculture.vic.gov.au/crops-and-horticulture/the-australian-grains-
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130  genebank (Supplementary Table S1). Seeds of the OzWheat Panel are available for researchers

131 through the AGG.

132

133  Genomic data

134  Genomic single nucleotide polymorphism (SNP) data was generated from DNA extracted from
135  seedlings for each panel accession. Fresh leaf tissue from seedlings (a pool of 6 plants per line)
136  was freeze-dried and genomic DNA extracted according to Ellis et al. (2005) with the addition
137  of 10pg/ml RNaseA (Sigma, R6513) to the lysis buffer and liquid handling with Microlab
138  NIMBUS robot (Hamilton, Reno, NV, USA). Genotyping with [llumina 90K Infinium iSelect
139  SNP array was performed as outlined in Wang et al. (2014). Alleles were assigned using
140  GenomeStudio (Illumina, San Diego, CA, USA) and a custom Perl script, with SNPs anchored
141  according to sequence alignment with CS Ref Seq v1.0 (IWGSC, 2018). This yielded data for
142 22,556 polymorphic SNPs across the panel. These were combined with 26,498 SNPs called
143  from transcriptome alignments for the same set of varieties as described by Dillon et al. 2024,
144  to make up a total set of 49,054 SNP markers which were applied in downstream analysis.
145  Transcriptome data used in this study were generated for each panel accession growing under
146  long and short daylength conditions as described by Dillon et al. 2024. Bioinformatic analysis
147  of the transcriptome sequence data produced a matrix of quantitative expression for 44,054
148  genes across all accessions as described by Dillon et al. 2024, which were applied in

149  downstream analysis.

150 A SNP Haplotype map (HapMap) file combining 90K and transcriptome SNPs was generated
151  after removal of missing or poor-quality data (genotypes with >50% missing data removed,
152 SNPs with >20% missing data removed) and re-coding to a biallelic score instead of actual

153  nucleotide base (G/C, for HapMap format). Monomorphic markers and those with a minor
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154  allele frequency less than 5% were also removed. The HapMap file (sorted by physical
155  chromosome position of SNP in CS Ref Seq v1.0) was used for subsequent association
156  mapping. Graphic visualisation of SNP marker density was produced using the CMPlot

157  package in R (Yin et al., 2021).
158

159  Pedigree and population structure

160  The Helium Pedigree Visualisation Framework (Shaw et al. 2014) was utilised to view the
161 OzWheat Panel in the context of the wider Australian wheat pedigree. A Helium-compatible
162  text file containing all known ancestors was derived from the International Crop Information
163  System (ICIS) (Portugal et al. 2007) using a custom script for reformatting. Population
164  structure was examined by principal components analysis (PCA) (Patterson et al. 2006) and
165  multidimensional scaling (MDS) in genomics software package TASSEL v5.2.3.1 (Trait
166  Analysis by aSSociation, Evolution and Linkage) (Bradbury et al. 2007). Linkage
167  disequilibrium (LD) was estimated at genome-wide and within -chromosome level in TASSEL
168  using 90K SNPs, filtered to remove unmapped SNPs, those positioned within 10 kbp of each
169  other and those with allele frequency less than 10%. Pairwise associations (°) were obtained
170  ina 50 SNP sliding window, excluding heterozygotes. A decay curve was generated by plotting
171 (7°) against physical distance for a whole-genome representation as well as for each
172 chromosome. To determine the average decay distance per chromosome the background 7
173  (genome-wide mean) was selected as the threshold of significance, with decay distance being
174  the intercept of this threshold and a fitted decay curve generated in R (locally weighted
175  regression, Loess, R Core Team 2023). These distances were considered when defining the
176  regions of interest from marker-trait associations (MTAs) which were visualised with

177  ChromoMap R package (Anand and Rodriguez, 2022).
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178  Phenotypic analysis

179  The OzWheat panel was grown in a polycarbonate greenhouse (CSIRO, Black Mountain) in
180  autumn (shortening days) and spring (lengthening days) of 2016 to best represent local growing
181  conditions, and in long and short days as described by Dillon et al. 2024. In summary, anthesis
182  date (Z61, anthers visible on primary spike) was recorded for each replicate (n=5-6) and to
183  ensure all material was represented in the genome analysis, some winter-types which failed to
184  flower in non-vernalised glasshouse were given a proxy anthesis date (set to be the day after

185  the experiment was harvested).

186  Field experiments were conducted at CSIRO Ginninderra Experimental Station in Canberra in
187 2018 and 2019, at Australian Grain Technologies (AGT) Kabinga breeding site, Wagga in 2018
188  and at the University of Sydney Plant Breeding Institute Narrabri in 2019. Two replicates of
189  each line were sown in a randomised complete block design at each site. In Canberra, each plot
190  comprised 8 rows with 18cm spacing and length of 5 linear metres. Wagga plots comprised 2
191  rows only, with total plot dimensions 0.75m x 2.5 linear metres and Narrabri configuration was
192  2m wide, 6-row plots at 3.8m long. Heading date (Z51, date that 50% of plants in the plot had
193  spikes fully emerged from the boot) was recorded, along with plot height at maturity (mean of

194 3 representative plants per field plot).

195

196  Environment data

197  Temperature and daylengths for each trial site/year combination were obtained from the
198  SILO Patched Point Dataset, at the nearest stations of the Bureau of Meteorology and
199  Geoscience Australia (Jeffrey et al. 2001, Geoscience Australia 2019). Site descriptions and a

200 summary of the climatic conditions for each site are shown in Supplementary Table S2 and
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201  Supplementary Fig. S1. All sites received supplemental irrigation to ensure adequate grain

202  production.

203

204  Statistical analysis

205  Trait data was analysed, and graphics generated using GenStat version 16.1.0.10916 (VSN
206  International, 2022) and R version 3.2.1 (R Core Team, 2017). To integrate climate data in the
207  field experiments, degree-days to heading (DDTH) was determined by an average equation
208  with a base temperature of 0°C (McMaster and Wilhelm 1997). Raw data from each experiment
209  was checked for normality before fitting a linear mixed model (residual maximum likelihood
210  method, REML) to determine trait values and variance estimates for heritability (Allard, 1999).
211 In the greenhouse, bench and position-within-bench were applied as random factors with
212 genotype as either fixed (to calculate best-linear unbiased estimates (BLUESs)) or random (for
213  predictions (BLUPs)). The analysis of field data included row and column within the block as
214  random effects. To assess the proportion of the genetic to phenotypic variation in the OzWheat
215  panel, and therefore understand the environmental contribution to heading date and height, the
216  genetic and phenotypic coefficients of variation (GCV, PCV) were calculated from variance

217  components (Allard, 1999).

218

219  Association analysis

220  Genome-wide association analysis (GWAS) was performed in TASSEL v5.2.3.1, with results
221  from different models and correction for population structure compared; a general linear model
222  (GLM) with principal components as covariates in the model (with 1000 permutations), and
223  mixed linear model (MLM) with principal components from MDS analysis, plus kinship matrix

224  based on SNPs included. Quantile-quantile (QQ) and Manhattan plots (CMplot, Yin et al.

9
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2021) were compared for each model in the controlled environment experiments to determine
the optimum parameters and significance threshold for genome-wide association analysis of
field data. To determine the threshold of significance for associations, Bonferroni correction

was used (Kaler and Purcell 2019) comparing significance levels of a (0.05, 0.01, 0.001).

Data visualisation tool

A standard workflow to visualise the OzWheat SNP and transcriptome data was developed as
a Shiny web application (Chang et al. 2024) in the R programming language (R Core Team,
2023) with interactive plot functionality using catmaply (Mauron, 2024). This workflow is

illustrated in Supplementary Fig. S2.

Results

Supplementary data from this study is available at the CSIRO data access portal,

https://data.csiro.au/collection/csiro:62968

OzWheat platform captures significant diversity from the Australian wheat gene pool and

global germplasm.

Available pedigree information was collated into a Helium-compatible file (Supplementary
Table S3) with 1,528 nodes. After filtering, a total of 49,504 SNPs were identified and a
kinship matrix for the OzWheat panel derived (Supplementary Table S4, S5). Inclusion of the
transcriptome SNPs doubled the marker density achieved by the 90K Illumina array, and
included marker saturation in regions which were not well represented by the SNP array

alone (for example, close to centromere or on the D-genome, see Supplementary Fig S3).

10
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Principle components analysis (PCA) revealed that the first two components explained 16.9%
of the genetic variance (PC1: 11.6%, PC2: 5.8%) with subsequent components explaining
below 5% (Supplementary Fig S4). Multi-dimensional scaling (MDS) best resolved tight
clusters (Fig. 1) and Scree plot (Supplementary Fig S5) indicated that four components would
apply the most stringent conditions to control for population structure in association analysis.
Calculation of linkage disequilibrium across the genome indicated an average ° = 0.24 with
decay occurring within 7.3 Mbp (Supplementary Fig. S6, Supplementary Table S6). To
interpret subsequent association analysis results, the linkage disequilibrium value for each
chromosome defined the regions of interest. That is, for a gene to be considered a candidate
from a marker-trait association, it was physically located within the LD estimate for the

chromosome identified (see Association analysis section below).

Significant variation for flowering time and plant height in the OzWheat panel.

Trait data displayed relatively normal distributions and residual plots revealed that models were
appropriate for predictions of days to heading and height and for each trial, and genotype was
a highly significant (p<0.001) term in the model (Supplementary Fig S7-10, Supplementary
Table S7). Variance components analysis (Table 1-2) within each site revealed that broad-sense
heritability was high (from 0.67 to 0.99) and the phenotypic coefficients of variation (PCV)
only slightly higher than the genotypic coefficients of variation (GCV), indicating a large effect
of genetic background on trait variance. Comparing PCVs for each trait within sites indicated
that variability for height was greater than the relative variability for degree-days to heading in
Canberra and Wagga, whereas the opposite was true for Narrabri, possibly reflecting the

different climatic conditions.

11
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Table 1. Phenotypic trait analysis, predicted degree-days to heading.

Variance components, broad-sense heritability (H?), genotypic coefficient of variation (GCV)
and phenotypic coefficient of variation (CV) (standard errors in brackets) for OzWheat panel
(replicates = 2) grown in Canberra (2018, 2019), Wagga (2018) and Narrabri (2019).

Variance Variance  Variance Variance GCV PCV
Trial H

genotype column row residual (%) (%)
Canberra 2018 8048 (689) 0.6 (0.8) 2.7(3.9) 470 (40) 0.94 6.7 6.9
Canberra 2019 8856 (765) 60.1 (33) 271(92) 586 (54) 0.91 6.6 7.0
Wagga 2018 5131 (464) 82.1 (34) 504 (157) 325(31) 0.85 5.3 5.7
Narrabri 2019 41506 (3436)  49.1 (24) 88.7(39) 400 (36) 0.99 13.6 13.7

Table 2. Phenotypic trait analysis, predicted plot height.

Variance components, broad-sense heritability (H?), genotypic coefficient of variation (GCV)
and phenotypic coefficient of variation (CV) (standard errors in brackets) for OzWheat panel
(replicates = 2) grown in Canberra (2018, 2019), Wagga (2018) and Narrabri (2019).

Variance Variance Variance Variance GCVv  PCV
Trial H

genotype column row residual (%) (%)
Canberra 2018 98 (9) 0.003 (0.01) 0.03 (0.04) 17(1.5) 0.85 15.8 17.2
Canberra 2019 108 (11) 9(3.6) 0.5 (1) 45 (4.1) 0.67 15.1 18.5
Wagga 2018 153 (14) 4 (1.6) 0.96 (0.73) 17(1.6) 0.88 163 17.4
Narrabri 2019 89 (8) 1.5 (0.7) 1.4 (0.7) 11(1) 0.8 11.9 12.9

Association analysis

Different models and significance thresholds for association analysis were compared in
controlled environments (Fig. 2). Mixed linear models (MLM) with Bonferroni threshold set
at p=0.05, identified 48 marker trait associations (MTAs) (Fig. 3 and listed in Supplementary

Tables S8-S9). Manhattan plots for all environments are provided in Supplementary Fig. S11

12
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290 - 18. A within-environment comparison for flowering time and height GWAS results is shown
291  in Supplementary Fig. S19. Significant MTAs detected in more than one environment (circular

292  Manhattan plot, Fig 4.) were selected for further investigation.

293

294  Single nucleotide polymorphisms identify candidate genes for adaptation.

295  To identify candidate genes in the OzWheat G2P platform, further evidence aside from marker-
296 trait associations are required. Visualisation of marker alleles flowing through the breeding
297  pedigree can provide confidence that genes associated with adaptation have been identified,
298  since alleles are maintained during the breeding process (Fig. SA). Alleles of marker SNP2749-
299 1B, associated with flowering time in Canberra and Narrabri (mDDTH.Cbr19.SNP2749.1B.2
300 and mDDTH.Narl9.SNP2749.1B.6) were present in both winter and spring types, offering
301 potential for this diversity to be utilised in a range of different environments or farming
302 systems. The ability to include gene expression data provides additional support for
303 identification of a candidate gene through GWAS. As shown in Fig. 5B, plants containing
304  contrasting alleles of SNP2749-1B differed in their relative transcript abundance (in crown
305 tissue) when grown in controlled conditions. In addition, we found increased transcript
306  abundance (for both allelic classes) when plants were grown in inductive (long day) conditions

307 relative to short days (data not shown).

308

309  Predicted protein sequence.

310  An identified SNP which also encodes an amino acid change or stop codon potentially
311  corresponds to variation that affects function of a gene. The most significant MTA for height
312  inall field environments was identified by SNP21122-4D, located within known dwarfing gene

313  RHT-DI. The marker detected a [G/T] point mutation of TraesCS4D01G040400 which induces

13


https://doi.org/10.1101/2024.08.11.603522
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.08.11.603522; this version posted August 12, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

314  the premature stop-codon and subsequent truncated protein defined by the Rh¢-D1b dwarfing
315 allele, [T61G] (Peng et al. 1999). We also identified the causal SNP for dwarfing gene RHT-

316  BI, (SNP20031-4B, Rht-B1b) although this was not associated with plant height in the field.

317 Aside from Rht-Blb and Rht-DI1b an additional 190 SNPs were identified that induced
318  premature stop codons (nonsense mutations) in the transcriptomes collected from plants grown
319 in controlled conditions, although none of these SNPs were associated with time to flowering
320  or plant height in this study. From 1,3196 missense SNPs (predicted to encode a change in an
321  amino acid) identified in this study, 20 were reported as MTAs for flowering time or height
322  (Supplementary Table S7, S8). For instance, a SNP which encoded an amino acid substitution
323  in TraesCS6D01G028200 was associated with time to flowering at Wagga and the glasshouse.
324  This transcript corresponds to a DExH-box helicase gene, with 80% homology to BAD
325 REPONSE TO REFRIGERATION 2 (BRR2), a regulator of flowering time in Arabidopsis

326  (Mahrez et al. 2016).

327

328  Coincidence of candidate genes with loci detected in other studies.

329  Transcriptome-derived SNPs are useful to align MTAs and candidate genes identified in other
330 studies. The most significant MTA for flowering time in Canberra and Narrabri was defined
331 by SNPs within TraesCS7B01G055300 (annotated as an ATP-dependent DNA helicase). This
332 transcript was previously reported as a dwarfing gene in wheat (TaDHL) through QTL mapping
333 and GWAS (Guo et al. 2022), and additional SNPs were identified in this study (Supplementary
334  Table S10).

335

336

337
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338  Exploration and visualisation of OzWheat datasets.

339  To explore candidate loci for genome-to-phenome approaches, the Rapid Gene Identification
340  data visualisation tool developed in this study allows users to search and filter the OzWheat
341  database via uploaded lists of SNPs, transcript identifiers, or through a set of dropdown menus.
342 A standard workflow begins by selecting SNPs of interest, for instance those identified through
343  genome-wide association analysis or located in a specific position in the genome (physical
344  position according to Chinese Spring RefSeq v1.0, Alaux et al. 2018). The tool displays SNP
345  information including position, predicted amino acid changes and summary data (allelic calls
346  for the OzWheat panel). The user can explore selected transcripts via a link to the Wheat
347  Expression Browser (Borrill et al. 2016, Ramirez-Gonzalez et al. 2018) and download sequence
348 information to be used for the design of SNP-based markers for example (He et al. 2014). The
349  user can view relative transcript abundances (in short and long days) and allelic diversity within
350 a user-specified window through interactive box plots and heatmaps. With these data
351  visualisations and export functions, the Rapid Gene Identification Tool supports the
352 identification of candidate genes and provides user-friendly access to relevant data which
353  underpins the OzWheat G2P platform.

354

355  Discussion

356  Functional characterisation of genes in complex polyploid genomes such as wheat is possible
357  through application of high-throughput sequencing technologies and the use of genome-to-
358  phenome (G2P) platforms (Adamski et al, 2020). In this study, use of genetic diversity which
359 isrich in recombinational history provided high-resolution mapping power and identified
360  known genes for adaptation and causal mutations (for instance Rht-D1b) in addition to novel
361  loci. The use of important complex traits as the first use-case provided validation of the

362  platform, as well as new biological insights. The most significant region affecting time to
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flowering when non-vernalised plants were grown in both long and short days coincided with
the VRN locus (Fig 2). GWAS using a generalised linear model in these environments also
detected SNPs at the region encompassing the F'7/ locus (VRN3), though with less
importance relative to VRNI. Previous studies identified F7/ and its interaction with VRN
associated with flowering time (Li and Dubcovsky 2008, Deng et al. 2015, DeWitt et al.
2021) and our results support the finding that the A-genome copy, VRN-A1 has the largest
impact on vernalisation requirement compared to the B- and D- genome in Australian wheat

(Pugsley 1971, Trevaskis et al. 2003).

We showed the choice of model for association analysis impacted the ability to detect genetic
loci. From Fig. 2, the most stringent model (MLM including kinship matrix and 4PCs)
produced less-significant marker trait associations and failed to detect the region containing
FT1 associated with time to flowering. It is important therefore, to apply existing knowledge
of the genetic architecture of traits if possible. In this case, it is possible that correction for
population structure led to the failure to detect F7/. Deviation from the 1:1 line of QQ plots
as shown in Supplementary Fig. S19 also suggested a difference in significant associations
for the different traits (flowering time compared to plant height). It is possible this reflects co-
selection of alleles for phenological adaptation. For instance, co-inheritance of non-linked
alleles will frequently occur in plants which are well adapted to specific environments due to
frequent co-selection of some allelic combinations (for instance, strong vernalisation
requirement combined with photoperiod sensitivity to ensure adaptation to environments with
cold winters and late frost events). It is also possible that the incorporation of transcript-
derived SNPs from tissue that is highly predictive of phenology (the RNA samples included
the shoot apical meristem) created a dataset that has a greater proportion of genetic markers
associated with flowering time than would be expected by chance. Indeed, all MTAs detected

in this study have peak markers derived from the transcriptome rather than the 90K array
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which suggests some level of bias. This hypothesis will be tested as new transcriptomes from
alternate tissues are added to the OzWheat dataset in the future, along with new genotyping

information from additional SNP arrays.

In this study a conservative method (Bonferroni correction) was used for thresholding and
when comparing different significance levels (o =0.05, 0.01, 0.001) we again found that the
ability to detect the region containing F7 was lost when levels were greater than 0.01. For
this reason, we chose o =0.05 Bonferroni threshold for the field GWAS. The capacity to
detect some genes is also limited by alignment of OzWheat transcripts to a single reference
(CS RefSeq v1.0). In the future, a de novo assembly of the OzWheat pan-transcriptome
would overcome a current limitation that only genes which are present in the reference

genome are identified.

The use of contrasting controlled environment GWAS is valuable to understand gene by
environment interactions and comparisons between plants grown in long and short days
identified genes which interact with photoperiod. For instance, known allelic variation at
PPD] determines if a plant is sensitive or insensitive to the length of days for flowering (Law
et al. 1978). Genotypes with daylength sensitivity will be slow to flower, or not flower at all,
in short day conditions. We identified the genetic region containing PPD-D1 in the short day
experiment (Fig. 2A), although did not detect its ortholog PPD-B1. This suggested the D-
genome copy had a greater effect on flowering time in the OzWheat G2P panel (as reported
in other studies, see Bentley et al. 2013, Cane et al. 2013). Conversely, when plants were
grown in long days, PPD-D1 was not detected. This is likely due to photoperiod requirement
of all plants regardless of their allelic variation being met when grown in this condition (16h

days) (Fig. 2B,C).
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Another flowering-time MTA (detected on chromosome 5B) was identified when plants were
grown in short days in the glasshouse and at Wagga, though the same region was not detected
in the long-day experiment (mDDTH.Wag18.SNP23771.5B.3, mDTA.GHSD.SNP23768.5B.4,
Table S8). This suggested the underlying gene responsible was associated with response to
daylength. A cluster of three transcripts are located at this locus in Chinese Spring (7aBx3B,
TaBx4B, TaBx5B), which are genes involved in synthesis of plant defensive compounds
known as benzoxazinones. Genes from this family are also responsive to environmental cues
such as daylength and temperature and associated with adaptation (Nomura et al. 2005,
Niemeyer 2009, Ben-Abu 2018). A recent transcriptome study revealed that benzoxazinone
genes played a role in stem elongation in a mutant with accelerated development, gd (Xu et
al. 2021) and adaptation to temperate environments during maize domestication (Wang et al.

2017).

From the four field trials conducted in this study, the region containing VRN was only detected
as important for time to heading at Narrabri in 2019 (mnDDTH.Nar19.SNP23025.5A.15, Table
S7) which could be explained by the interaction of VRN with temperature. Narrabri recorded
the highest minimum temperatures in the field (see Supplementary Fig. S1) which prolonged
the time to vernalisation saturation relative to plants grown in Canberra and Wagga. This likely
explains the skewed fitted value plot for flowering time residuals (Supplementary Fig. S10B),
greatest heritability for degree-days to heading (H?=0.99, Table 1) and detection of an MTA

linked to VRNI.

In field conditions where all vernalisation and photoperiod requirements for the plants are met,
variation in time to heading will be due to the effects of EARLINESS PER SE (EPS) loci. The
identification of such genetic loci is important to consider when fine-tuning adaptation beyond
allelic variation for major phenology genes VRNI and PPDI. The EPS gene EARLY
FLOWERING3 (ELF3) is located at the distal end of group 1 chromosomes (Chinese Spring
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436  RefSeq v1.0 A-genome: 591Mbp, B-genome: 685Mbp, D-genome: 493Mbp) and in this study,
437  MTAs for degree days to heading flanked these loci on 1BL (681 — 690Mbp) and 1DL (436 —

438  495Mbp). Further resolution at these loci is required to determine if ELF3 underlies the MTAs.

439 A single transcript identified on chromosome 6AS and orthologous region on 6DS was
440  associated with time to heading at all field sites and the glasshouse (in short days), providing
441  greater confidence that a candidate gene (BRR2-like) had been identified. It is possible that the
442  regions on 6A and 6D represent a single locus, since the initial set of SNPs derived from the
443  transcriptome were not filtered for multi-mapped reads. This can lead to hemi-SNPs and
444  subsequently an inability to resolve the genome contribution due to mis-mapped SNPs.
445  Nevertheless, the BRR2-like gene is an interesting candidate, a yeast mutant of the RNA
446  helicase BRR2 was reported to confer cold sensitivity due to a single base-pair substitution
447  within the N-terminal Brr domain (Raghunathan and Guthrie 1998). Mutations in the same
448  domain detected in this study (C-terminal Sec63) were found to affect pre-mRNA splicing
449  through modulation of ATPase activity of the spliceosome (Cordin et al. 2014). In Arabidopsis,
450  BRR2a regulated flowering time through disrupted FLOWERING LOCUS C (FLC) splicing

451  (Mabhrez et al 2016).

452  Another helicase gene (ATP-dependent helicase, seed maturation protein
453  TraesCS7B01G055300, 58.7Mbp) was identified for degree-days to heading. This gene was
454  located 30 Mbp distal to VEGETATIVE TO REPRODUCTIVE TRANSITION 2 (VRT2), and
455  more than 270 Mbp from LATE ELONGATED HYPOCOTYL (LHY) and FT1, so the MTA is
456  unlikely to be associated with these genes known to affect heading date on chromosome 7BS
457  in Chinese Spring. (Yan et al. 2006, Kane et al. 2005, Zhang et al. 2015). Yang et al. (2020)
458  reported a QTL for heading date and yield in a panel of elite Chinese wheat, which maps
459  closeby in Chinese Spring (61.5 Mbp) and it remains to be determined if the region could
460  overlap with a gene associated with flowering in long days, PPD-B2 reported by Khlestkina et
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461  al. (2009). The plant gene expression omnibus database (Koh et al. 2024, available at

462  https://expression.plant.tools/ ) indicated the helicase transcript in wheat is most highly

463  expressed in the flower bud and coleoptile, and is co-expressed with VERNALIZATION
464  INSENSITIVE 3 (VIN3, TraesCS1D01G090400) which is associated with chromatin
465  organisation and post-translational histone modification. VIN3 is a polycomb repressive
466  complex (PRC2) induces trimethylation of lysine 27 on histone H3 (H3K27me3) during

467  vernalisation induced flowering of winter cereals (Oliver et al. 2009).

468  Aside from the association with flowering time in this study, TraesCS7B01G055300 (recently
469 named TaDHL) was proposed to influence plant height in wheat (Guo et al. 2022), although
470  we did not detect the region associated with height in the field. Several EMS-derived mutants
471  have been reported at this locus (Krasileva et al. 2017), and future analysis of these lines
472  containing additional SNPs to those already identified might provide further insights into the

473  allelic effects on height and heading date in spring wheat germplasm.

474  We also found allelic variation which was not explained by winter or spring growth habit. For
475  example, the flow of SNP2749-1B alleles through the breeding pedigree (Fig. 5) suggested no
476  deleterious effects of particular alleles, and that the source of the SNP located in
477  TraesCS1B01G429200 might be Purple Straw. The differences in transcript abundance when
478  the OzWheat population was grouped by this SNP allele suggested lower gene expression for
479  lines carrying the ‘T’ allele compared to ‘C’, with overall gene expression increased in long
480 days (Fig. 5). These results suggested a functional difference between allelic classes, in

481  addition to some interaction with daylength.

482  The mapping precision of the OzWheat G2P platform was demonstrated when the causal
483  mutation for reduced height was identified (Rht-D1b, SNP21122-4D) as the most significant

484  contributor to plant height in all environments (Table S9). We did not find RA¢-B1 associated
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485  with plant height in our GWAS, despite the RAtB1b allele (identified by SNP20031-4B) present
486  in 46% of lines (compared to 31% of lines in the panel containing RAtD1b). A previous GWAS
487  study (Garcia et al. 2019) also did not detect Rht-B1 as important for height in the field (in
488  southern Australia). We note that the RAz-B1b SNP polymorphism [C190T] is also present in
489  the Rht-Bld allele derived from Saitama 27 which is prevalent in European wheats and reported
490  to produce taller plants compared to RAt-B1b (Pearce et al. 2011, Worland and Petrovic 1988).
491 It is possible that a failure to differentiate Rht-Bld and Rht-B1b alleles may be confounding
492  our analysis. Additionally, the effects of population structure and other loci or interactions
493  could explain our results. Indeed, Pearce et al. (2011) suggested an alternate mutation outside
494  of the coding region may contribute to height in Rht-Bld genotypes, and in the future,
495 additional sequencing or marker screening combined with multi-locus genome wide
496  association analysis might better account for undetected alleles and epistatic effects in the

497  model.

498  The OzWheat G2P platform has potential to contribute to crop improvement by providing an
499  understanding of genotype by environment interactions via the transcriptome captured in
500 contrasting conditions. This understanding will allow more informed decisions and multiple
501  outputs for breeding. For instance, sequence information provided by the OzWheat G2P
502  platform allows transcript derived markers for breeding to be developed, including kompetitive
503 allele-specific PCR (KASP)s for marker-assisted selection (He et al. 2014; Ramirez-Gonzalez
504 et al. 2015). Additionally, it is possible to identify markers from SNP arrays which are
505  correlated with transcript SNPs and therefore informative for enrichment of favourable alleles
506  during genomic selection (GS). The inclusion of trait-associated transcript markers can
507 improve genomic prediction models for adaptation as demonstrated in maize and rice
508 (Bhandari et al. 2019, Azodi et al, 2019, Wang et al. 2019). An approach which incorporates

509  gene information to improve crop model accuracy is being tested by genetic parameterisation
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510  of crop model APSIM (Agricultural Production Systems sIMulator) for improved prediction
511  of wheat phenology (Celestina et al. 2021). Here, the OzZWheat G2P platform is being used to
512  predict the cultivar-specific physiological parameters which underpin the model (Dravitzki,
513 2024 submitted) with the aim to provide cross-environment phenology prediction at the time

514  of cultivar release.

515  To determine the function of candidate genes which have been identified by a G2P platform,
516 investigation of mutants in TILLING (Targeting Induced Local Lesions IN Genomes)
517  populations, analysis of gene expression via transgenics, or gene editing can be deployed
518  (McCallum et al. 2000, Ford et al. 2019). The marker-trait associations identified by the
519  OzWheat G2P platform provide targeted information for sequence capture design to produce
520 new TILLING libraries. Introduction of genetic variation through gene editing for the targets
521  1identified in this study is also a path to crop improvement for the outputs of this research.
522  Combined with existing understanding of major genes which contribute to adaptation, there is
523  potential for accelerated genetic gain through multi-targets or “adaptation edits” to be built,
524  which adapt elite cultivars to specific growing environments and markets. For this, an
525  understanding of future climates, farming systems and different end-uses is vital. Examples of
526  some additional traits which could be applied in the OzWheat G2P platform and targeted for a
527  gene editing package include plant architecture (for example, short-stature wheat with a long
528  coleoptile), water-use efficiency, tolerance to temperature extremes, improved grain quality
529  and disease resistance. That, which would traditionally take many years and an entire breeding
530 program to deliver, could now be more achievable through gene editing for crop improvement,
531  and ultimately, comparative genomics linking multiple G2P platforms in different species to

532  produce a crop-agnostic system might even be possible.

533
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Conclusion

This study delivered the OzWheat genome-to-phenome (G2P) platform for wheat pre-
breeding and research which is accessible through germplasm, data and visualisation tools.
We demonstrated the power of genome-wide association studies in contrasting controlled
conditions and multiple environment field trials to detect novel loci which underpin adaptive
traits, and to understand genotype by environment interactions. A high degree of mapping
resolution was achieved, and since the OzWheat panel was curated to capture breeding
history, the loci detected were relevant in a broad range of genetic diversity. In addition to the
sequence variation captured, gene expression information from the transcriptome provided a
powerful tool for functional genomics, and candidate genes identified in this pilot study have
potential to contribute to the development of adapted wheat suitable for changing global
climates. We propose the OzZWheat G2P platform is a re-usable and expandable resource for
the wheat research community. Additional trait and ‘omics data layers will meet new science
challenges and answer different biological questions in the future, and as the dataset expands,
new methods for integration and analysis provide further insight into the genetic basis of

adaptation and other traits.
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Figure 1. Multi-dimensional scaling (MDS) performed in TASSEL. Principal Co-ordinates
Analysis Plot (PCoA) of SNP data in OzWheat, sized by year of release, coloured by region of
origin.
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Figure 2. Genome wide association analysis of days to anthesis for plants grown in non-
vernalising glasshouse conditions. Location of known major genes for phenology, VRN (chr
5A), FLOWERING TIME 1 (FTI) (chr 7A) and PPDI (chr 2D) coinciding with MTAs are
indicated by grey vertical dashed lines (genome position according to Chinese Spring Ref Seq
v1.0). (A). Generalised linear model with 1000 permutations and two principal components
for short day experiment (12h). Three levels of significance (Bonferroni thresholds) indicated
by red dotted line (0.05), blue dashed line (0.01) and horizontal green line (0.001). (B).
Generalised linear model with 1000 permutations and two principal components for long day
experiment (16h). Bonferroni level of significance indicated by red dotted line (0.05). (C).
Mixed linear model with kinship matrix and four principal components for plants grown in
long days (16h). Bonferroni level of significance indicated by red dotted line (0.05).
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Figure 3. Marker-trait associations for flowering time (mixed linear model, kinship matrix, 4
principal components). Genome position of MTAs identified in controlled conditions (long and
short days) and field experiments (Canberra, Wagga, Narrabri 2018 —2019), relative to known
location of major phenological genes in linkage disequilibrium according to physical position
in Chinese Spring Ref Seq v1.0.
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Figure 4. Genome wide association analysis for degree-days to heading at each field location.
Circular Manhattan plot (mixed linear model, kinship matrix, 4 principal components); from
inner to outer circle, Canberra (2018), Canberra (2019), Wagga (2018), Narrabri (2019).
Significance of association (log-10 p-value) designated by grey grid-lines within each
site/year, density of SNPs shown in outermost ring (bin size=100MBp) from 0 (white) to

1197 (red).
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Figure 5. Marker from TraesCS1B01G429200 associated with degree-days to heading at
Canberra and Narrabri, SNP2749-1B, alleles in selected OzWheat lines and associated
transcript abundance. (A) Green “C” allele and purple “T” allele in historic material and
modern cultivars, dashed lines represent simplified crossing schema (not all parents are shown)
and SNP data unavailable for grey nodes. (B) Abundance of TraesCS1B01G429200 for the
contrasting allelic groups (C/T) in the OzWheat panel, plants grown in long (16h) days.
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