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Abstract 23 

For over a century, Australian wheat breeders have successfully adapted wheat to a broad 24 

range of climatic conditions and crop management practices. The OzWheat genome-to-25 

phenome (G2P) platform was established to capture this breeding history and explore traits, 26 

genes, and their interactions with the environment to enable ongoing research and deliver 27 

targets for wheat improvement. A panel of 285 cultivars and landraces were chosen through 28 

knowledge of breeding pedigrees to represent both global diversity and the historic flow of 29 

genetic variation over more than 100 years of selective breeding in Australia. Genetic 30 

characterisation of the panel included identification of genome-wide sequence variants and 31 
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gene expression profiling across environments. Important traits for adaptation (flowering 32 

time and plant height) were assayed in controlled environments and at multiple field sites and 33 

years, with genome-wide association analyses (GWAS) using linear mixed models detecting 34 

both known and novel loci. Here, we report establishment of the OzWheat G2P platform as a 35 

powerful tool to integrate wheat genomes and phenomes and demonstrate its use to identify 36 

candidate genes and understand gene by environment interactions. This provides the wheat 37 

research and breeding community a new resource to support future cultivar development. 38 

 39 

Keywords: Wheat, phenology, adaptation, genetic diversity, genome to phenome, G2P. 40 

 41 

Introduction 42 

Wheat is an important food crop worldwide, with global production forecast at 787 million 43 

tonnes in 2023/24, representing 28% of total cereal production (FAO 2023). To meet the needs 44 

of a growing world population, it is imperative that wheat production is increased and a global 45 

research effort to improve wheat yield in changing climates is underway (see Bentley et al. 46 

2022, Fischer et al. 2014). With this challenge in-mind, wheat pre-breeding research has 47 

benefitted from extensive development, sharing and deployment of wheat genomic resources 48 

to characterise traits which underpin crop performance and identify target genes for crop 49 

improvement (Krasileva et al. 2017, Walkowiak et al. 2020, Rogers et al. 2024). Traditional 50 

pre-breeding research has typically involved time consuming and labour-intensive approaches 51 

such as map-based cloning in bi-parental crosses, development of near-isogenic lines or proof-52 

of-function analysis via transgenesis (Borrill et al. 2018). Although fundamental to defining 53 

gene function, these types of analyses in a limited number of genetic backgrounds have not 54 

always provided an accurate understanding of gene effects for complex traits. That is, they 55 
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have not always captured the genetic architecture of polygenic traits nor how genes interact 56 

with the environment. Genome-wide association analysis (GWAS) aims to overcome such 57 

limitations by surveying a broader genetic base and applying whole-of-genome scale analyses 58 

for the simultaneous identification of large effect loci (major genes) together with minor-effect 59 

or additive genetic loci (Rafalski 2010).  60 

For GWAS to identify genetic variation which will be relevant to germplasm in a breeding 61 

program, it is important to carefully choose the genetic diversity which underpins the platform. 62 

Over the course of breeding, populations are developed through crossing and selection with the 63 

highest performing, best adapted lines becoming released cultivars. Germplasm sharing 64 

between breeders and researchers and frequent intercrossing, backcrossing and selfing to fix 65 

lines for release, means that genetic loci are recombined, while recurrent selection and 66 

backcrossing maintains favourable allelic combinations. Such germplasm represents a valuable 67 

source of diversity for GWAS as it provides opportunity for high-resolution marker-trait 68 

associations (Yu et al. 2006). In addition, utilising germplasm which represents the ancestry of 69 

current cultivars is potentially a way to validate the phenotypic effects of alleles which have 70 

been inherited through a breeding program over time. 71 

Wheat breeding in Australia began over a century ago, when pioneer breeder William Farrer 72 

found that colonial wheats were not well-adapted to local growing conditions (Evans, 1980). 73 

To create earlier-maturing wheat which flowered at the optimum time for the Australian 74 

environment, Farrer made crosses between Fife (hard grain Canadian wheat) and Indian 75 

selections which were adapted to high temperatures (Guthrie 1922). By combining favourable 76 

quality attributes and high yield potential, Farrer produced a plethora of cultivars which feature 77 

in the ancestry of many modern wheats today. Most notably, Federation wheat which was 78 

released in 1901 remained the most widely grown cultivar for more than 20 years (Macindoe 79 

and Brown 1968). 80 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 12, 2024. ; https://doi.org/10.1101/2024.08.11.603522doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.11.603522
http://creativecommons.org/licenses/by-nc-nd/4.0/


4 
 

The enduring success of Farrer wheats can largely be attributed to the development of 81 

germplasm adapted to specific growing environments. Today, it is just as important to develop 82 

adapted wheat, as crops are cultivated across a broad geographic range, in different farming 83 

systems, and in changing climates. Major genes important for adaptation (and therefore yield) 84 

include those that affect flowering behaviour (phenology) and plant architecture, and many 85 

important loci which affect these traits have been identified including REDUCED HEIGHT1 86 

(RHT1), VERNALISATION1 (VRN1), PHOTOPERIOD1 (PPD1) and EARLINESS PER SE 87 

(EPS) (Peng et al. 1999, Trevaskis et al. 2003, Diaz et al. 2012, Gawronski and Schnurbusch 88 

2012). Extensive studies in Australia have highlighted the impact of allelic variation of such 89 

loci for adaptation (Eagles et al. 2009; Cane et al. 2013; Eagles et al. 2014) although it is 90 

apparent that these major genes do not fully explain phenological development in different 91 

environments (Bloomfield et al. 2018).  92 

Designing GWAS experiments to allow detection of genetic, environment and their interaction 93 

(G×E) effects will therefore be essential to informing our understanding of regulatory 94 

mechanisms underlying wheat traits and the reliability of gene targets for breeding. Integrating 95 

association analysis across multiple carefully selected environments is becoming a standard 96 

approach to address this need supported by a broad set of statistical approaches to partition and 97 

detect significant effects (see Tibbs Cortes et al. 2021). The inclusion of other ‘omic data types 98 

with GWAS analysis, such the transcriptome or proteome, which are a direct function of G, E 99 

and G×E provide an additional avenue for identification of genes which respond to 100 

environmental cues and vary in expression level across individuals (Wu et al. 2022, Han et al. 101 

2022, Dillon et al. 2024). This can be achieved by including these ‘omic variables in the 102 

association analysis, or likewise through post-GWAS analysis to bolster confidence in 103 

identified associations with additional lines of evidence. 104 

 105 
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This study aimed to develop a Genome-to-Phenome (G2P) platform that provides a new 106 

dimension to GWAS, through incorporation of multi-environment assessments and validation 107 

of gene associations with gene expression patterns. The addition of gene expression data aims 108 

to provide additional insight into the regulatory mechanisms underpinning yield component 109 

traits. Phenology and plant height were chosen as exemplar traits to demonstrate the G2P 110 

approach using multi-environment, whole-transcriptome variation of a pedigree-informed 111 

diversity panel. To handle the extensive datasets created we developed and share an online 112 

interface to allow users to visualise and interact with the data by exploring sequence variants, 113 

haplotypes and cross-environment gene expression. The OzWheat germplasm and resource 114 

connects advances in genomics, transcriptomics and phenomics, providing a G2P platform for 115 

the wheat research community to deliver outcomes for breeding.  116 

  117 

Materials and Methods 118 

Genetic material 119 

The OzWheat Panel consists of landraces, historic releases and modern cultivars chosen to 120 

include founders, key introductions and important parents in Australian wheat breeding. The 121 

year and region of release in Australia was also considered to ensure a broad range of adaptation 122 

and an accurate representation of the flow of alleles through time. Finally, a small number of 123 

lines outside the Australian pedigree but with interesting or important agronomic traits or 124 

genetic diversity were selected. This selection ensures relevance of the panel to modern 125 

Australian breeding programs and growing conditions. In total, 285 cultivars and unreleased 126 

breeding lines were sourced directly from breeders, and the Australian Winter Cereals 127 

Collection (AWCC, Tamworth, NSW Department of Primary Industries) and Australian Grains 128 

Genebank (AGG, https://agriculture.vic.gov.au/crops-and-horticulture/the-australian-grains-129 
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genebank (Supplementary Table S1). Seeds of the OzWheat Panel are available for researchers 130 

through the AGG. 131 

 132 

Genomic data 133 

Genomic single nucleotide polymorphism (SNP) data was generated from DNA extracted from 134 

seedlings for each panel accession. Fresh leaf tissue from seedlings (a pool of 6 plants per line) 135 

was freeze-dried and genomic DNA extracted according to Ellis et al. (2005) with the addition 136 

of 10µg/ml RNaseA (Sigma, R6513) to the lysis buffer and liquid handling with Microlab 137 

NIMBUS robot (Hamilton, Reno, NV, USA). Genotyping with Illumina 90K Infinium iSelect 138 

SNP array was performed as outlined in Wang et al. (2014). Alleles were assigned using 139 

GenomeStudio (Illumina, San Diego, CA, USA) and a custom Perl script, with SNPs anchored 140 

according to sequence alignment with CS Ref Seq v1.0 (IWGSC, 2018). This yielded data for 141 

22,556 polymorphic SNPs across the panel. These were combined with 26,498 SNPs called 142 

from transcriptome alignments for the same set of varieties as described by Dillon et al. 2024, 143 

to make up a total set of 49,054 SNP markers which were applied in downstream analysis. 144 

Transcriptome data used in this study were generated for each panel accession growing under 145 

long and short daylength conditions as described by Dillon et al. 2024. Bioinformatic analysis 146 

of the transcriptome sequence data produced a matrix of quantitative expression for 44,054 147 

genes across all accessions as described by Dillon et al. 2024, which were applied in 148 

downstream analysis.  149 

A SNP Haplotype map (HapMap) file combining 90K and transcriptome SNPs was generated 150 

after removal of missing or poor-quality data (genotypes with >50% missing data removed, 151 

SNPs with >20% missing data removed) and re-coding to a biallelic score instead of actual 152 

nucleotide base (G/C, for HapMap format). Monomorphic markers and those with a minor 153 
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allele frequency less than 5% were also removed. The HapMap file (sorted by physical 154 

chromosome position of SNP in CS Ref Seq v1.0) was used for subsequent association 155 

mapping. Graphic visualisation of SNP marker density was produced using the CMPlot 156 

package in R (Yin et al., 2021).  157 

 158 

Pedigree and population structure 159 

The Helium Pedigree Visualisation Framework (Shaw et al. 2014) was utilised to view the 160 

OzWheat Panel in the context of the wider Australian wheat pedigree. A Helium-compatible 161 

text file containing all known ancestors was derived from the International Crop Information 162 

System (ICIS) (Portugal et al. 2007) using a custom script for reformatting. Population 163 

structure was examined by principal components analysis (PCA) (Patterson et al. 2006) and 164 

multidimensional scaling (MDS) in genomics software package TASSEL v5.2.3.1 (Trait 165 

Analysis by aSSociation, Evolution and Linkage) (Bradbury et al. 2007). Linkage 166 

disequilibrium (LD) was estimated at genome-wide and within -chromosome level in TASSEL 167 

using 90K SNPs, filtered to remove unmapped SNPs, those positioned within 10 kbp of each 168 

other and those with allele frequency less than 10%. Pairwise associations (r2) were obtained 169 

in a 50 SNP sliding window, excluding heterozygotes. A decay curve was generated by plotting 170 

(r2) against physical distance for a whole-genome representation as well as for each 171 

chromosome. To determine the average decay distance per chromosome the background r2 172 

(genome-wide mean) was selected as the threshold of significance, with decay distance being 173 

the intercept of this threshold and a fitted decay curve generated in R (locally weighted 174 

regression, Loess, R Core Team 2023). These distances were considered when defining the 175 

regions of interest from marker-trait associations (MTAs) which were visualised with 176 

ChromoMap R package (Anand and Rodriguez, 2022).  177 
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Phenotypic analysis 178 

The OzWheat panel was grown in a polycarbonate greenhouse (CSIRO, Black Mountain) in 179 

autumn (shortening days) and spring (lengthening days) of 2016 to best represent local growing 180 

conditions, and in long and short days as described by Dillon et al. 2024. In summary, anthesis 181 

date (Z61, anthers visible on primary spike) was recorded for each replicate (n=5-6) and to 182 

ensure all material was represented in the genome analysis, some winter-types which failed to 183 

flower in non-vernalised glasshouse were given a proxy anthesis date (set to be the day after 184 

the experiment was harvested).  185 

Field experiments were conducted at CSIRO Ginninderra Experimental Station in Canberra in 186 

2018 and 2019, at Australian Grain Technologies (AGT) Kabinga breeding site, Wagga in 2018 187 

and at the University of Sydney Plant Breeding Institute Narrabri in 2019. Two replicates of 188 

each line were sown in a randomised complete block design at each site. In Canberra, each plot 189 

comprised 8 rows with 18cm spacing and length of 5 linear metres. Wagga plots comprised 2 190 

rows only, with total plot dimensions 0.75m × 2.5 linear metres and Narrabri configuration was 191 

2m wide, 6-row plots at 3.8m long. Heading date (Z51, date that 50% of plants in the plot had 192 

spikes fully emerged from the boot) was recorded, along with plot height at maturity (mean of 193 

3 representative plants per field plot).  194 

 195 

Environment data 196 

Temperature and daylengths for each trial site/year combination were obtained from the 197 

SILO Patched Point Dataset, at the nearest stations of the Bureau of Meteorology and 198 

Geoscience Australia (Jeffrey et al. 2001, Geoscience Australia 2019). Site descriptions and a 199 

summary of the climatic conditions for each site are shown in Supplementary Table S2 and 200 
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Supplementary Fig. S1. All sites received supplemental irrigation to ensure adequate grain 201 

production.  202 

 203 

Statistical analysis 204 

Trait data was analysed, and graphics generated using GenStat version 16.1.0.10916 (VSN 205 

International, 2022) and R version 3.2.1 (R Core Team, 2017). To integrate climate data in the 206 

field experiments, degree-days to heading (DDTH) was determined by an average equation 207 

with a base temperature of 0°C (McMaster and Wilhelm 1997). Raw data from each experiment 208 

was checked for normality before fitting a linear mixed model (residual maximum likelihood 209 

method, REML) to determine trait values and variance estimates for heritability (Allard, 1999). 210 

In the greenhouse, bench and position-within-bench were applied as random factors with 211 

genotype as either fixed (to calculate best-linear unbiased estimates (BLUEs)) or random (for 212 

predictions (BLUPs)). The analysis of field data included row and column within the block as 213 

random effects. To assess the proportion of the genetic to phenotypic variation in the OzWheat 214 

panel, and therefore understand the environmental contribution to heading date and height, the 215 

genetic and phenotypic coefficients of variation (GCV, PCV) were calculated from variance 216 

components (Allard, 1999).  217 

 218 

Association analysis 219 

Genome-wide association analysis (GWAS) was performed in TASSEL v5.2.3.1, with results 220 

from different models and correction for population structure compared; a general linear model 221 

(GLM) with principal components as covariates in the model (with 1000 permutations), and 222 

mixed linear model (MLM) with principal components from MDS analysis, plus kinship matrix 223 

based on SNPs included. Quantile-quantile (QQ) and Manhattan plots (CMplot, Yin et al. 224 
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2021) were compared for each model in the controlled environment experiments to determine 225 

the optimum parameters and significance threshold for genome-wide association analysis of 226 

field data. To determine the threshold of significance for associations, Bonferroni correction 227 

was used (Kaler and Purcell 2019) comparing significance levels of α (0.05, 0.01, 0.001).     228 

 229 

Data visualisation tool           230 

A standard workflow to visualise the OzWheat SNP and transcriptome data was developed as 231 

a Shiny web application (Chang et al. 2024) in the R programming language (R Core Team, 232 

2023) with interactive plot functionality using catmaply (Mauron, 2024). This workflow is 233 

illustrated in Supplementary Fig. S2. 234 

         235 

Results 236 

Supplementary data from this study is available at the CSIRO data access portal, 237 

https://data.csiro.au/collection/csiro:62968  238 

OzWheat platform captures significant diversity from the Australian wheat gene pool and 239 

global germplasm. 240 

Available pedigree information was collated into a Helium-compatible file (Supplementary 241 

Table S3) with 1,528 nodes. After filtering, a total of 49,504 SNPs were identified and a 242 

kinship matrix for the OzWheat panel derived (Supplementary Table S4, S5). Inclusion of the 243 

transcriptome SNPs doubled the marker density achieved by the 90K Illumina array, and 244 

included marker saturation in regions which were not well represented by the SNP array 245 

alone (for example, close to centromere or on the D-genome, see Supplementary Fig S3).  246 

 247 
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Principle components analysis (PCA) revealed that the first two components explained 16.9% 248 

of the genetic variance (PC1: 11.6%, PC2: 5.8%) with subsequent components explaining 249 

below 5% (Supplementary Fig S4). Multi-dimensional scaling (MDS) best resolved tight 250 

clusters (Fig. 1) and Scree plot (Supplementary Fig S5) indicated that four components would 251 

apply the most stringent conditions to control for population structure in association analysis.  252 

Calculation of linkage disequilibrium across the genome indicated an average r2 = 0.24 with 253 

decay occurring within 7.3 Mbp (Supplementary Fig. S6, Supplementary Table S6). To 254 

interpret subsequent association analysis results, the linkage disequilibrium value for each 255 

chromosome defined the regions of interest. That is, for a gene to be considered a candidate 256 

from a marker-trait association, it was physically located within the LD estimate for the 257 

chromosome identified (see Association analysis section below). 258 

 259 

Significant variation for flowering time and plant height in the OzWheat panel. 260 

Trait data displayed relatively normal distributions and residual plots revealed that models were 261 

appropriate for predictions of days to heading and height and for each trial, and genotype was 262 

a highly significant (p<0.001) term in the model (Supplementary Fig S7-10, Supplementary 263 

Table S7). Variance components analysis (Table 1-2) within each site revealed that broad-sense 264 

heritability was high (from 0.67 to 0.99) and the phenotypic coefficients of variation (PCV) 265 

only slightly higher than the genotypic coefficients of variation (GCV), indicating a large effect 266 

of genetic background on trait variance. Comparing PCVs for each trait within sites indicated 267 

that variability for height was greater than the relative variability for degree-days to heading in 268 

Canberra and Wagga, whereas the opposite was true for Narrabri, possibly reflecting the 269 

different climatic conditions.  270 

 271 
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Table 1. Phenotypic trait analysis, predicted degree-days to heading.  272 

Variance components, broad-sense heritability (H2), genotypic coefficient of variation (GCV) 273 
and phenotypic coefficient of variation (CV) (standard errors in brackets) for OzWheat panel 274 
(replicates = 2) grown in Canberra (2018, 2019), Wagga (2018) and Narrabri (2019). 275 

 276 

Trial 
Variance 

genotype 

Variance 

column 

Variance 

row 

Variance 

residual 
H2  

GCV 

(%) 

PCV 

(%) 

Canberra 2018 8048 (689) 0.6 (0.8) 2.7 (3.9) 470 (40) 0.94 6.7 6.9 

Canberra 2019 8856 (765) 60.1 (33) 271 (92) 586 (54) 0.91 6.6 7.0 

Wagga 2018 5131 (464) 82.1 (34) 504 (157) 325 (31) 0.85 5.3 5.7 

Narrabri 2019 41506 (3436) 49.1 (24) 88.7 (39) 400 (36) 0.99 13.6 13.7 

 277 

 278 

Table 2. Phenotypic trait analysis, predicted plot height. 279 

Variance components, broad-sense heritability (H2), genotypic coefficient of variation (GCV) 280 
and phenotypic coefficient of variation (CV) (standard errors in brackets) for OzWheat panel 281 
(replicates = 2) grown in Canberra (2018, 2019), Wagga (2018) and Narrabri (2019). 282 

 283 

 Trial 
Variance 

genotype  

Variance 

column 

Variance  

row 

Variance 

residual 
H2 

GCV 

(%) 

PCV 

(%) 

Canberra 2018 98 (9) 0.003 (0.01) 0.03 (0.04) 17 (1.5) 0.85 15.8 17.2 

Canberra 2019 108 (11) 9 (3.6) 0.5 (1) 45 (4.1) 0.67 15.1 18.5 

Wagga 2018 153 (14) 4 (1.6) 0.96 (0.73) 17 (1.6) 0.88 16.3 17.4 

Narrabri 2019 89 (8) 1.5 (0.7) 1.4 (0.7) 11 (1) 0.86 11.9 12.9 

 284 

Association analysis 285 

Different models and significance thresholds for association analysis were compared in 286 

controlled environments (Fig. 2). Mixed linear models (MLM) with Bonferroni threshold set 287 

at p=0.05, identified 48 marker trait associations (MTAs) (Fig. 3 and listed in Supplementary 288 

Tables S8-S9). Manhattan plots for all environments are provided in Supplementary Fig. S11 289 
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– 18. A within-environment comparison for flowering time and height GWAS results is shown 290 

in Supplementary Fig. S19. Significant MTAs detected in more than one environment (circular 291 

Manhattan plot, Fig 4.) were selected for further investigation. 292 

 293 

Single nucleotide polymorphisms identify candidate genes for adaptation. 294 

To identify candidate genes in the OzWheat G2P platform, further evidence aside from marker-295 

trait associations are required. Visualisation of marker alleles flowing through the breeding 296 

pedigree can provide confidence that genes associated with adaptation have been identified, 297 

since alleles are maintained during the breeding process (Fig. 5A). Alleles of marker SNP2749-298 

1B, associated with flowering time in Canberra and Narrabri (mDDTH.Cbr19.SNP2749.1B.2 299 

and mDDTH.Nar19.SNP2749.1B.6) were present in both winter and spring types, offering 300 

potential for this diversity to be utilised in a range of different environments or farming 301 

systems. The ability to include gene expression data provides additional support for 302 

identification of a candidate gene through GWAS. As shown in Fig. 5B, plants containing 303 

contrasting alleles of SNP2749-1B differed in their relative transcript abundance (in crown 304 

tissue) when grown in controlled conditions. In addition, we found increased transcript 305 

abundance (for both allelic classes) when plants were grown in inductive (long day) conditions 306 

relative to short days (data not shown).  307 

 308 

Predicted protein sequence. 309 

An identified SNP which also encodes an amino acid change or stop codon potentially 310 

corresponds to variation that affects function of a gene. The most significant MTA for height 311 

in all field environments was identified by SNP21122-4D, located within known dwarfing gene 312 

RHT-D1. The marker detected a [G/T] point mutation of TraesCS4D01G040400 which induces 313 
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the premature stop-codon and subsequent truncated protein defined by the Rht-D1b dwarfing 314 

allele, [T61G] (Peng et al. 1999). We also identified the causal SNP for dwarfing gene RHT-315 

B1, (SNP20031-4B, Rht-B1b) although this was not associated with plant height in the field.  316 

Aside from Rht-B1b and Rht-D1b an additional 190 SNPs were identified that induced 317 

premature stop codons (nonsense mutations) in the transcriptomes collected from plants grown 318 

in controlled conditions, although none of these SNPs were associated with time to flowering 319 

or plant height in this study. From 1,3196 missense SNPs (predicted to encode a change in an 320 

amino acid) identified in this study, 20 were reported as MTAs for flowering time or height 321 

(Supplementary Table S7, S8). For instance, a SNP which encoded an amino acid substitution 322 

in TraesCS6D01G028200 was associated with time to flowering at Wagga and the glasshouse. 323 

This transcript corresponds to a DExH-box helicase gene, with 80% homology to BAD 324 

REPONSE TO REFRIGERATION 2 (BRR2), a regulator of flowering time in Arabidopsis 325 

(Mahrez et al. 2016).  326 

 327 

Coincidence of candidate genes with loci detected in other studies.  328 

Transcriptome-derived SNPs are useful to align MTAs and candidate genes identified in other 329 

studies. The most significant MTA for flowering time in Canberra and Narrabri was defined 330 

by SNPs within TraesCS7B01G055300 (annotated as an ATP-dependent DNA helicase). This 331 

transcript was previously reported as a dwarfing gene in wheat (TaDHL) through QTL mapping 332 

and GWAS (Guo et al. 2022), and additional SNPs were identified in this study (Supplementary 333 

Table S10).   334 

 335 

 336 

 337 
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Exploration and visualisation of OzWheat datasets. 338 

To explore candidate loci for genome-to-phenome approaches, the Rapid Gene Identification 339 

data visualisation tool developed in this study allows users to search and filter the OzWheat 340 

database via uploaded lists of SNPs, transcript identifiers, or through a set of dropdown menus. 341 

A standard workflow begins by selecting SNPs of interest, for instance those identified through 342 

genome-wide association analysis or located in a specific position in the genome (physical 343 

position according to Chinese Spring RefSeq v1.0, Alaux et al. 2018). The tool displays SNP 344 

information including position, predicted amino acid changes and summary data (allelic calls 345 

for the OzWheat panel). The user can explore selected transcripts via a link to the Wheat 346 

Expression Browser (Borrill et al. 2016, Ramirez-Gonzalez et al. 2018) and download sequence 347 

information to be used for the design of SNP-based markers for example (He et al. 2014). The 348 

user can view relative transcript abundances (in short and long days) and allelic diversity within 349 

a user-specified window through interactive box plots and heatmaps. With these data 350 

visualisations and export functions, the Rapid Gene Identification Tool supports the 351 

identification of candidate genes and provides user-friendly access to relevant data which 352 

underpins the OzWheat G2P platform.   353 

 354 

Discussion 355 

Functional characterisation of genes in complex polyploid genomes such as wheat is possible 356 

through application of high-throughput sequencing technologies and the use of genome-to-357 

phenome (G2P) platforms (Adamski et al, 2020). In this study, use of genetic diversity which 358 

is rich in recombinational history provided high-resolution mapping power and identified 359 

known genes for adaptation and causal mutations (for instance Rht-D1b) in addition to novel 360 

loci. The use of important complex traits as the first use-case provided validation of the 361 

platform, as well as new biological insights. The most significant region affecting time to 362  
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flowering when non-vernalised plants were grown in both long and short days coincided with 363 

the VRN1 locus (Fig 2). GWAS using a generalised linear model in these environments also 364 

detected SNPs at the region encompassing the FT1 locus (VRN3), though with less 365 

importance relative to VRN1. Previous studies identified FT1 and its interaction with VRN1 366 

associated with flowering time (Li and Dubcovsky 2008, Deng et al. 2015, DeWitt et al. 367 

2021) and our results support the finding that the A-genome copy, VRN-A1 has the largest 368 

impact on vernalisation requirement compared to the B- and D- genome in Australian wheat 369 

(Pugsley 1971, Trevaskis et al. 2003).   370 

We showed the choice of model for association analysis impacted the ability to detect genetic 371 

loci. From Fig. 2, the most stringent model (MLM including kinship matrix and 4PCs) 372 

produced less-significant marker trait associations and failed to detect the region containing 373 

FT1 associated with time to flowering. It is important therefore, to apply existing knowledge 374 

of the genetic architecture of traits if possible. In this case, it is possible that correction for 375 

population structure led to the failure to detect FT1.  Deviation from the 1:1 line of QQ plots 376 

as shown in Supplementary Fig. S19 also suggested a difference in significant associations 377 

for the different traits (flowering time compared to plant height). It is possible this reflects co-378 

selection of alleles for phenological adaptation. For instance, co-inheritance of non-linked 379 

alleles will frequently occur in plants which are well adapted to specific environments due to 380 

frequent co-selection of some allelic combinations (for instance, strong vernalisation 381 

requirement combined with photoperiod sensitivity to ensure adaptation to environments with 382 

cold winters and late frost events). It is also possible that the incorporation of transcript-383 

derived SNPs from tissue that is highly predictive of phenology (the RNA samples included 384 

the shoot apical meristem) created a dataset that has a greater proportion of genetic markers 385 

associated with flowering time than would be expected by chance. Indeed, all MTAs detected 386 

in this study have peak markers derived from the transcriptome rather than the 90K array 387 
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which suggests some level of bias. This hypothesis will be tested as new transcriptomes from 388 

alternate tissues are added to the OzWheat dataset in the future, along with new genotyping 389 

information from additional SNP arrays.  390 

In this study a conservative method (Bonferroni correction) was used for thresholding and 391 

when comparing different significance levels (α =0.05, 0.01, 0.001) we again found that the 392 

ability to detect the region containing FT1 was lost when levels were greater than 0.01. For 393 

this reason, we chose α =0.05 Bonferroni threshold for the field GWAS. The capacity to 394 

detect some genes is also limited by alignment of OzWheat transcripts to a single reference 395 

(CS RefSeq v1.0). In the future, a de novo assembly of the OzWheat pan-transcriptome 396 

would overcome a current limitation that only genes which are present in the reference 397 

genome are identified. 398 

 The use of contrasting controlled environment GWAS is valuable to understand gene by 399 

environment interactions and comparisons between plants grown in long and short days 400 

identified genes which interact with photoperiod. For instance, known allelic variation at 401 

PPD1 determines if a plant is sensitive or insensitive to the length of days for flowering (Law 402 

et al. 1978). Genotypes with daylength sensitivity will be slow to flower, or not flower at all, 403 

in short day conditions. We identified the genetic region containing PPD-D1 in the short day 404 

experiment (Fig. 2A), although did not detect its ortholog PPD-B1. This suggested the D-405 

genome copy had a greater effect on flowering time in the OzWheat G2P panel (as reported 406 

in other studies, see Bentley et al. 2013, Cane et al. 2013). Conversely, when plants were 407 

grown in long days, PPD-D1 was not detected. This is likely due to photoperiod requirement 408 

of all plants regardless of their allelic variation being met when grown in this condition (16h 409 

days) (Fig. 2B,C). 410 
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Another flowering-time MTA (detected on chromosome 5B) was identified when plants were 411 

grown in short days in the glasshouse and at Wagga, though the same region was not detected 412 

in the long-day experiment (mDDTH.Wag18.SNP23771.5B.3, mDTA.GHSD.SNP23768.5B.4, 413 

Table S8). This suggested the underlying gene responsible was associated with response to 414 

daylength. A cluster of three transcripts are located at this locus in Chinese Spring (TaBx3B, 415 

TaBx4B, TaBx5B), which are genes involved in synthesis of plant defensive compounds 416 

known as benzoxazinones. Genes from this family are also responsive to environmental cues 417 

such as daylength and temperature and associated with adaptation (Nomura et al. 2005, 418 

Niemeyer 2009, Ben-Abu 2018). A recent transcriptome study revealed that benzoxazinone 419 

genes played a role in stem elongation in a mutant with accelerated development, qd (Xu et 420 

al. 2021) and adaptation to temperate environments during maize domestication (Wang et al. 421 

2017). 422 

From the four field trials conducted in this study, the region containing VRN1 was only detected 423 

as important for time to heading at Narrabri in 2019 (mDDTH.Nar19.SNP23025.5A.15, Table 424 

S7) which could be explained by the interaction of VRN1 with temperature. Narrabri recorded 425 

the highest minimum temperatures in the field (see Supplementary Fig. S1) which prolonged 426 

the time to vernalisation saturation relative to plants grown in Canberra and Wagga. This likely 427 

explains the skewed fitted value plot for flowering time residuals (Supplementary Fig. S10B), 428 

greatest heritability for degree-days to heading (H2=0.99, Table 1) and detection of an MTA 429 

linked to VRN1. 430 

In field conditions where all vernalisation and photoperiod requirements for the plants are met, 431 

variation in time to heading will be due to the effects of EARLINESS PER SE (EPS) loci. The 432 

identification of such genetic loci is important to consider when fine-tuning adaptation beyond 433 

allelic variation for major phenology genes VRN1 and PPD1. The EPS gene EARLY 434 

FLOWERING3 (ELF3) is located at the distal end of group 1 chromosomes (Chinese Spring 435 
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RefSeq v1.0 A-genome: 591Mbp, B-genome: 685Mbp, D-genome: 493Mbp) and in this study, 436 

MTAs for degree days to heading flanked these loci on 1BL (681 – 690Mbp) and 1DL (436 – 437 

495Mbp). Further resolution at these loci is required to determine if ELF3 underlies the MTAs.  438 

A single transcript identified on chromosome 6AS and orthologous region on 6DS was 439 

associated with time to heading at all field sites and the glasshouse (in short days), providing 440 

greater confidence that a candidate gene (BRR2-like) had been identified. It is possible that the 441 

regions on 6A and 6D represent a single locus, since the initial set of SNPs derived from the 442 

transcriptome were not filtered for multi-mapped reads. This can lead to hemi-SNPs and 443 

subsequently an inability to resolve the genome contribution due to mis-mapped SNPs. 444 

Nevertheless, the BRR2-like gene is an interesting candidate, a yeast mutant of the RNA 445 

helicase BRR2 was reported to confer cold sensitivity due to a single base-pair substitution 446 

within the N-terminal Brr domain (Raghunathan and Guthrie 1998). Mutations in the same 447 

domain detected in this study (C-terminal Sec63) were found to affect pre-mRNA splicing 448 

through modulation of ATPase activity of the spliceosome (Cordin et al. 2014). In Arabidopsis, 449 

BRR2a regulated flowering time through disrupted FLOWERING LOCUS C (FLC) splicing 450 

(Mahrez et al 2016).  451 

Another helicase gene (ATP-dependent helicase, seed maturation protein 452 

TraesCS7B01G055300, 58.7Mbp) was identified for degree-days to heading. This gene was 453 

located 30 Mbp distal to VEGETATIVE TO REPRODUCTIVE TRANSITION 2 (VRT2), and 454 

more than 270 Mbp from LATE ELONGATED HYPOCOTYL (LHY) and FT1, so the MTA is 455 

unlikely to be associated with these genes known to affect heading date on chromosome 7BS 456 

in Chinese Spring. (Yan et al. 2006, Kane et al. 2005, Zhang et al. 2015). Yang et al. (2020) 457 

reported a QTL for heading date and yield in a panel of elite Chinese wheat, which maps 458 

closeby in Chinese Spring (61.5 Mbp) and it remains to be determined if the region could 459 

overlap with a gene associated with flowering in long days, PPD-B2 reported by Khlestkina et 460 
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al. (2009). The plant gene expression omnibus database (Koh et al. 2024, available at 461 

https://expression.plant.tools/ ) indicated the helicase transcript in wheat is most highly 462 

expressed in the flower bud and coleoptile, and is co-expressed with VERNALIZATION 463 

INSENSITIVE 3 (VIN3, TraesCS1D01G090400) which is associated with chromatin 464 

organisation and post-translational histone modification. VIN3 is a polycomb repressive 465 

complex (PRC2) induces trimethylation of lysine 27 on histone H3 (H3K27me3) during 466 

vernalisation induced flowering of winter cereals (Oliver et al. 2009).  467 

Aside from the association with flowering time in this study, TraesCS7B01G055300 (recently 468 

named TaDHL) was proposed to influence plant height in wheat (Guo et al. 2022), although 469 

we did not detect the region associated with height in the field. Several EMS-derived mutants 470 

have been reported at this locus (Krasileva et al. 2017), and future analysis of these lines 471 

containing additional SNPs to those already identified might provide further insights into the 472 

allelic effects on height and heading date in spring wheat germplasm.  473 

We also found allelic variation which was not explained by winter or spring growth habit. For 474 

example, the flow of SNP2749-1B alleles through the breeding pedigree (Fig. 5) suggested no 475 

deleterious effects of particular alleles, and that the source of the SNP located in 476 

TraesCS1B01G429200 might be Purple Straw. The differences in transcript abundance when 477 

the OzWheat population was grouped by this SNP allele suggested lower gene expression for 478 

lines carrying the ‘T’ allele compared to ‘C’, with overall gene expression increased in long 479 

days (Fig. 5). These results suggested a functional difference between allelic classes, in 480 

addition to some interaction with daylength.  481 

The mapping precision of the OzWheat G2P platform was demonstrated when the causal 482 

mutation for reduced height was identified (Rht-D1b, SNP21122-4D) as the most significant 483 

contributor to plant height in all environments (Table S9). We did not find Rht-B1 associated 484 
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with plant height in our GWAS, despite the RhtB1b allele (identified by SNP20031-4B) present 485 

in 46% of lines (compared to 31% of lines in the panel containing RhtD1b). A previous GWAS 486 

study (Garcia et al. 2019) also did not detect Rht-B1 as important for height in the field (in 487 

southern Australia).  We note that the Rht-B1b SNP polymorphism [C190T] is also present in 488 

the Rht-B1d allele derived from Saitama 27 which is prevalent in European wheats and reported 489 

to produce taller plants compared to Rht-B1b (Pearce et al. 2011, Worland and Petrovic 1988). 490 

It is possible that a failure to differentiate Rht-B1d and Rht-B1b alleles may be confounding 491 

our analysis. Additionally, the effects of population structure and other loci or interactions 492 

could explain our results. Indeed, Pearce et al. (2011) suggested an alternate mutation outside 493 

of the coding region may contribute to height in Rht-B1d genotypes, and in the future, 494 

additional sequencing or marker screening combined with multi-locus genome wide 495 

association analysis might better account for undetected alleles and epistatic effects in the 496 

model.  497 

The OzWheat G2P platform has potential to contribute to crop improvement by providing an 498 

understanding of genotype by environment interactions via the transcriptome captured in 499 

contrasting conditions. This understanding will allow more informed decisions and multiple 500 

outputs for breeding. For instance, sequence information provided by the OzWheat G2P 501 

platform allows transcript derived markers for breeding to be developed, including kompetitive 502 

allele-specific PCR (KASP)s for marker-assisted selection (He et al. 2014; Ramirez-Gonzalez 503 

et al. 2015). Additionally, it is possible to identify markers from SNP arrays which are 504 

correlated with transcript SNPs and therefore informative for enrichment of favourable alleles 505 

during genomic selection (GS). The inclusion of trait-associated transcript markers can 506 

improve genomic prediction models for adaptation as demonstrated in maize and rice 507 

(Bhandari et al. 2019, Azodi et al, 2019, Wang et al. 2019). An approach which incorporates 508 

gene information to improve crop model accuracy is being tested by genetic parameterisation 509 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 12, 2024. ; https://doi.org/10.1101/2024.08.11.603522doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.11.603522
http://creativecommons.org/licenses/by-nc-nd/4.0/


22 
 

of crop model APSIM (Agricultural Production Systems sIMulator) for improved prediction 510 

of wheat phenology (Celestina et al. 2021). Here, the OzWheat G2P platform is being used to 511 

predict the cultivar-specific physiological parameters which underpin the model (Dravitzki, 512 

2024 submitted) with the aim to provide cross-environment phenology prediction at the time 513 

of cultivar release.  514 

To determine the function of candidate genes which have been identified by a G2P platform, 515 

investigation of mutants in TILLING (Targeting Induced Local Lesions IN Genomes) 516 

populations, analysis of gene expression via transgenics, or gene editing can be deployed 517 

(McCallum et al. 2000, Ford et al. 2019). The marker-trait associations identified by the 518 

OzWheat G2P platform provide targeted information for sequence capture design to produce 519 

new TILLING libraries. Introduction of genetic variation through gene editing for the targets 520 

identified in this study is also a path to crop improvement for the outputs of this research. 521 

Combined with existing understanding of major genes which contribute to adaptation, there is 522 

potential for accelerated genetic gain through multi-targets or “adaptation edits” to be built, 523 

which adapt elite cultivars to specific growing environments and markets. For this, an 524 

understanding of future climates, farming systems and different end-uses is vital. Examples of 525 

some additional traits which could be applied in the OzWheat G2P platform and targeted for a 526 

gene editing package include plant architecture (for example, short-stature wheat with a long 527 

coleoptile), water-use efficiency, tolerance to temperature extremes, improved grain quality 528 

and disease resistance. That, which would traditionally take many years and an entire breeding 529 

program to deliver, could now be more achievable through gene editing for crop improvement, 530 

and ultimately, comparative genomics linking multiple G2P platforms in different species to 531 

produce a crop-agnostic system might even be possible. 532 

 533 
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Conclusion 534 

This study delivered the OzWheat genome-to-phenome (G2P) platform for wheat pre-535 

breeding and research which is accessible through germplasm, data and visualisation tools. 536 

We demonstrated the power of genome-wide association studies in contrasting controlled 537 

conditions and multiple environment field trials to detect novel loci which underpin adaptive 538 

traits, and to understand genotype by environment interactions. A high degree of mapping 539 

resolution was achieved, and since the OzWheat panel was curated to capture breeding 540 

history, the loci detected were relevant in a broad range of genetic diversity. In addition to the 541 

sequence variation captured, gene expression information from the transcriptome provided a 542 

powerful tool for functional genomics, and candidate genes identified in this pilot study have 543 

potential to contribute to the development of adapted wheat suitable for changing global 544 

climates. We propose the OzWheat G2P platform is a re-usable and expandable resource for 545 

the wheat research community. Additional trait and ‘omics data layers will meet new science 546 

challenges and answer different biological questions in the future, and as the dataset expands, 547 

new methods for integration and analysis provide further insight into the genetic basis of 548 

adaptation and other traits.  549 

 550 

 551 

 552 

 553 

 554 

 555 

 556 

 557 
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Figure 1. Multi-dimensional scaling (MDS) performed in TASSEL. Principal Co-ordinates 
Analysis Plot (PCoA) of SNP data in OzWheat, sized by year of release, coloured by region of 
origin. 
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Figure 2.  Genome wide association analysis of days to anthesis for plants grown in non-
vernalising glasshouse conditions. Location of known major genes for phenology, VRN1 (chr 
5A), FLOWERING TIME 1 (FT1) (chr 7A) and PPD1 (chr 2D) coinciding with MTAs are 
indicated by grey vertical dashed lines (genome position according to Chinese Spring Ref Seq 
v1.0).  (A). Generalised linear model with 1000 permutations and two principal components 
for short day experiment (12h). Three levels of significance (Bonferroni thresholds) indicated 
by red dotted line (0.05), blue dashed line (0.01) and horizontal green line (0.001). (B). 
Generalised linear model with 1000 permutations and two principal components for long day 
experiment (16h). Bonferroni level of significance indicated by red dotted line (0.05). (C). 
Mixed linear model with kinship matrix and four principal components for plants grown in 
long days (16h). Bonferroni level of significance indicated by red dotted line (0.05). 
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Figure 3. Marker-trait associations for flowering time (mixed linear model, kinship matrix, 4 
principal components). Genome position of MTAs identified in controlled conditions (long and 
short days) and field experiments (Canberra, Wagga, Narrabri 2018 – 2019), relative to known 
location of major phenological genes in linkage disequilibrium according to physical position 
in Chinese Spring Ref Seq v1.0. 
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Figure 4

Figure 4. Genome wide association analysis for degree-days to heading at each field location. 
Circular Manhattan plot (mixed linear model, kinship matrix, 4 principal components); from 
inner to outer circle, Canberra (2018), Canberra (2019), Wagga (2018), Narrabri (2019). 
Significance of association (log-10 p-value) designated by grey grid-lines within each 
site/year, density of SNPs shown in outermost ring (bin size=100MBp) from 0 (white) to 
1197 (red). 
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Figure 5. Marker from TraesCS1B01G429200 associated with degree-days to heading at 
Canberra and Narrabri, SNP2749-1B, alleles in selected OzWheat lines and associated 
transcript abundance. (A) Green “C” allele and purple “T” allele in historic material and 
modern cultivars, dashed lines represent simplified crossing schema (not all parents are shown) 
and SNP data unavailable for grey nodes. (B) Abundance of TraesCS1B01G429200 for the 
contrasting allelic groups (C/T) in the OzWheat panel, plants grown in long (16h) days. 
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