

1 **Nanobody immunolabelling and three-dimensional imaging reveals**  
2 **spatially restricted LYVE1 expression by kidney lymphatic vessels**  
3 **in mice**

4

5 Eva Maria Funk<sup>1,2,3</sup>, Daniyal J Jafree<sup>4,5</sup>, Nils Rouven Hansmeier<sup>1,2,6</sup>, Clàudia Abad  
6 Baucells<sup>1,2,7</sup>, Rose Yinghan Behncke<sup>1,2</sup>, Gideon Pomeranz<sup>4,5</sup>, Maria Kolatsi-Joannou<sup>4,5</sup>,  
7 William J Mason<sup>4,5</sup>, Dale Moulding<sup>4</sup>, Lauren G Russell<sup>4,5</sup>, Sascha Ulfers<sup>1,2</sup>, Laura Wilson<sup>4,5</sup>,  
8 David A Long<sup>4,5</sup>, René Hägerling<sup>1,2,6,8\*</sup>

9

10 <sup>1</sup> Research Group 'Lymphovascular Medicine and Translational 3D-Histopathology', Institute of Medical and Human  
11 Genetics, Charité-Universitätsmedizin Berlin, Berlin, Germany; <sup>2</sup> Berlin Institute of Health at Charité-  
12 Universitätsmedizin Berlin, BIH Center for Regenerative Therapies, Berlin, Germany; <sup>3</sup> Berlin Institute of Health at  
13 Charité –Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH-MD Stipendium Program, Berlin,  
14 Germany; <sup>4</sup> Developmental Biology & Cancer Research & Teaching Department, UCL Great Ormond Street Institute  
15 of Child Health, UCL, London, UK; <sup>5</sup> UCL Centre for Kidney and Bladder Health, University College London, London,  
16 UK; <sup>6</sup> Research Group Development and Disease, Max Planck Institute for Molecular Genetics, Berlin, Germany; <sup>7</sup>  
17 Department of Nephrology and Medical Intensive Care, Charité Universitätsmedizin Berlin, Berlin, Germany; <sup>8</sup> Berlin  
18 Institute of Health at Charité – Universitätsmedizin Berlin, BIH Academy, Clinician Scientist Program, Berlin,  
19 Germany.

20 \* Author to whom correspondence should be addressed.

21

22

23

24

25

26

27 **ABSTRACT**

28 Lymphatic vessels are complex three-dimensional (3D) structures that facilitate tissue fluid  
29 clearance and regulate immune responses in health and inflammatory contexts. Recent  
30 advances in wholemount immunolabelling and 3D imaging have provided insights into organ-  
31 specific heterogeneity of lymphatic structure and function. However, the visualisation of  
32 lymphatic vessels deep within an intact organ remains a challenge. We hypothesised that  
33 nanobodies, single-domain antibodies raised in camelid species, would result in improved  
34 labelling of lymphatics in intact mouse organs, without loss of information due to organ  
35 sectioning or inadequate penetration. We generated and characterised nanobody clones  
36 targeting lymphatic vessel endothelial hyaluronan receptor 1 (LYVE1), a marker of lymphatic  
37 capillaries. Nanobodies were superior at penetrating whole mouse organs and enhanced  
38 labelling of lymphatics compared with a conventional anti-LYVE1 polyclonal antibody. Utilising  
39 this new tool, we found that kidney lymphatics; an organ in which labelling of lymphatics is  
40 challenging, have spatially restricted LYVE1 expression compared with lymphatics of skin,  
41 heart, and lung. The timing of this LYVE1 spatial restriction coincides with the early postnatal  
42 period in mice. Our findings highlight an unexpected, organ-specific characteristic of kidney  
43 lymphatic vessels, whilst providing a novel experimental tool for characterisation, isolation, or  
44 perturbation of lymphatic vessels in health and disease.

45

46 **Key words:** imaging, kidney, lymphatic heterogeneity, microscopy, nanobodies, vascular  
47 biology

48

49

50

51

52

## 53 INTRODUCTION

54 The lymphatic vasculature comprises a complex network of blind-ended vessels with roles in  
55 tissue fluid homeostasis and the clearance of immune cells and macromolecules to modulate  
56 inflammatory responses (Oliver et al. 2020). Lymphatics are present in nearly all adult organs,  
57 and have been implicated in a wide range of pathological contexts including cancer metastasis  
58 (Le et al. 2016) and anti-tumour immunity (Karakousi, Mudianto, and Lund 2024),  
59 cardiovascular diseases (Klaourakis, Vieira, and Riley 2021), and autoimmunity (Bouta et al.  
60 2018). The range of diseases in which lymphatics have been implicated highlight organ-  
61 specific heterogeneity in their structure and function (Ulvmar and Mäkinen 2016). Furthermore,  
62 evidence for lymphatic heterogeneity comes from organ specific roles including intestinal  
63 dietary lipid absorption (Nurmi et al. (2015), cerebrospinal fluid clearance (Ahn et al. 2019) and  
64 regulation of intraocular drainage (Park et al. 2014). However, due to their complex, three-  
65 dimensional (3D) structure and relative rarity compared to other cell types, traditional  
66 histological and imaging techniques fall short in accurately identifying and outlining the  
67 structural features of lymphatic vessels. This limitation poses a significant challenge in  
68 understanding organ-specific heterogeneity of lymphatic vasculature, underscoring the urgent  
69 need for improved technologies for lymphatic labelling and imaging (Liu, Glaser, et al. 2021).

70

71 Recently, whole-mount immunofluorescence has enabled the analysis of the complete  
72 lymphatic vascular network of mouse organs within which these vessels are superficially  
73 located, such as the meninges (Antila et al. 2017; Louveau et al. 2015), skin (Zhang et al.  
74 2022; Karaman et al. 2015), and heart (Trincot et al. 2019; Vieira et al. 2018). In certain organs,  
75 such as the kidney (Donnan, Kenig-Kozlovsky, and Quaggin 2021) (Jafree and Long 2020)  
76 and liver (Jeong et al. 2023; Jeong, Tanaka, and Iwakiri 2022), lymphatics are located deep  
77 within the tissue, necessitating optical clearing techniques that homogenise tissue refractive  
78 index (Ueda et al. 2020). This approach has been successfully used to characterise the  
79 emergence of lymphatics in mouse embryogenesis (Hägerling et al. 2013) and appreciate

80 structural changes to lymphatics in mouse models of kidney disease (Liu, Hiremath, et al.  
81 2021), human lymphedema (Hägerling et al. 2017) and transplant rejection (Jafree et al. 2022).  
82 However, without using alternative strategies such as genetic reporter mice (Redder et al.  
83 2021), lengthy labelling times (Cai et al. 2023) or specialised perfusion equipment (Mai et al.  
84 2023), wholmount immunolabelling is limited by the depth of penetration of conventional IgG  
85 antibodies into intact organs.

86

87 We hypothesised that harnessing camelid-derived single-domain antibodies, termed  
88 nanobodies, with a small size of approximately 15 kDa, would enable deep tissue penetration,  
89 and improved epitope detection compared with conventional IgG antibodies (Mitchell and  
90 Colwell 2018; Dumoulin et al. 2002; Hassanzadeh-Ghassabeh et al. 2013), making them  
91 ideally suited for immunolabelling lymphatics in intact organs. To this end, we developed  
92 nanobodies targeting lymphatic vessel endothelial hyaluronan receptor 1 (LYVE1), a CD44-  
93 like transmembrane glycoprotein (Johnson et al. 2021) and widely used lymphatic capillary  
94 marker (Banerji et al. 1999). We validated these anti-LYVE1 nanobodies before utilising them  
95 for 3D imaging and quantitative analysis, finding that nanobody labelling is superior to  
96 conventional immunolabelling for visualisation of lymphatic capillaries in intact mouse organs.  
97 In so doing, we reveal a novel organ-specific molecular feature of lymphatics, finding that  
98 kidney lymphatic capillaries have a spatially restricted expression of LYVE1 compared to these  
99 vessels in other organs, a phenomenon which occurs from an early postnatal stage.

100

101

102

103

104

105

106 **RESULTS**

107 **Generation and production of nanobodies targeting mouse LYVE1**

108 We selected LYVE1 as a target for nanobody generation, primarily as it is a candidate marker  
109 for lymphatic capillaries across organs which, if labelled successfully, would enable 3D  
110 quantitative analysis of organ-specific lymphatic vascular networks in the body (Jafree et al.  
111 2019). To generate nanobodies (**Fig. 1A-C**), peripheral blood lymphocytes were isolated from  
112 llamas that were repeatedly immunised with recombinant mouse LYVE1 protein fused with a  
113 polyhistidine (His10) tag (**Fig. 1D**). cDNA from all nanobody sequences present in peripheral  
114 blood lymphocytes, regardless of specificity for LYVE1, were amplified by PCR to generate a  
115 library of candidate nanobody clones. Nanobodies specific to mouse LYVE1 were enriched by  
116 biopanning (**Fig. 1E**). Based on ELISA data, six highly specific anti-LYVE1 nanobodies were  
117 chosen for production (**Fig. 1F**). The sequences of these six nanobodies were cloned into an  
118 expression vector carrying a 6xHistidine tag and, after successful bacterial production, the  
119 nanobody clones were purified by His-affinity purification. We confirmed that successful  
120 purification was achieved with a single band observed between 11-17 kDa on Coomassie-blue  
121 stained sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS-PAGE) gels (**Fig.**  
122 **1G**) and following western blotting using anti-His Ab (**Fig. 1H**). A summary of our workflow can  
123 be found in **Fig. S1**.

124

125 **Validation of anti-mouse LYVE1 nanobodies for 2D and 3D imaging**

126 Next, we evaluated the performance and specificity of the six anti-mouse LYVE1 nanobody  
127 clones. Initially, we performed conventional two-dimensional (2D) immunofluorescence, by  
128 labelling cryosections of C57BL/6 mice at embryonic day (E) 14.5 with either anti-LYVE1  
129 nanobodies or a commercially available anti-LYVE1 IgG antibody and comparing patterns of  
130 expression. All six nanobody clones exhibited staining patterns overlapping with that of the  
131 LYVE1 antibody, successfully capturing primitive network of jugular lymphatic sacs that give  
132 rise to systemic lymphatic vasculature (Yang and Oliver 2014) (**Fig. S2A**). To assess the

133 specificity of anti-LYVE1 nanobodies in a 3D context, we performed nanobody labelling of  
134 optically-cleared lungs from reporter mice (n=3) carrying Cre and an eGFP cassette within the  
135 endogenous *Lyve1* locus (*Lyve1*<sup>eGFP-Cre</sup>) (Pham et al. 2010). *Lyve1*<sup>eGFP-Cre</sup> mice at postnatal day  
136 (P) day 28 exhibited GFP expression in lymphatic endothelial cell nuclei, which overlapped  
137 with the cell surface labelling of our anti-LYVE1 nanobodies (**Fig. 2A**). These findings validate  
138 that the newly produced nanobodies recapitulate endogenous LYVE1 expression and  
139 demonstrate their specificity and suitability for 3D imaging of optically-cleared biological tissue.

140

#### 141 **Improved detection of organ lymphatic vessels using anti-mouse LYVE1 nanobodies**

142 Next, we tested whether using nanobodies targeting LYVE1 provides improvements in the  
143 detection of lymphatics in intact, optically-cleared mouse organs, compared with conventional  
144 IgG antibodies. To do this, we performed wholemount immunolabelling of wildtype mouse  
145 embryos (n=6) and a range of visceral organs at P28 (n=6 per organ). We harvested intestine,  
146 a hollow viscous tissue amenable to wholemount techniques (Zarkada et al. 2023), alongside  
147 lung (Stump et al. 2017) and kidney (Jafree and Long 2020) where lymphatics are located  
148 deep within the tissue, necessitating optical clearing prior to 3D imaging. Tissues were labelled  
149 using three anti-mouse LYVE1 nanobody clones (2LYV14, 2LYV22, 2LYV35) which exhibited  
150 the highest signal-to-background ratio in 2D staining experiments (**Fig. S2B**), or a  
151 commercially available anti-LYVE1 IgG antibody.

152

153 In all tissues examined, the commercial anti-LYVE1 IgG antibodies exhibited superficial  
154 staining, with weak immunoreactivity of lymphatic vessels deep within each tissue. E11.5  
155 embryos additionally exhibited a halo of non-specific staining around the perimeter of the  
156 tissue. By contrast, the nanobodies penetrated deeper in both the embryos and organs,  
157 enhancing the detection of lymphatics in the E11.5 embryo and intact P28 intestine, lung, and  
158 kidney (**Fig. 2B**). Within E11.5 embryos, the nanobodies enabled visualisation of known  
159 LYVE1<sup>+</sup> structures such as the jugular lymphatic sac or LYVE1<sup>+</sup> liver sinusoidal endothelial

160 cells (Guo et al. 2022). Within the intact P28 kidney, nanobody labelling revealed interlobular  
161 lymphatic vessels extending from the hilum to the organ's cortex (Donnan, Kenig-Kozlovsky,  
162 and Quaggin 2021; Jafree and Long 2020), whereas the conventional anti-LYVE1 IgG  
163 antibodies only labelled superficial hilar vessels. Within the P28 lung parenchyma, lymphatic  
164 vessels running alongside the bronchi could be visualised in greater detail with nanobody  
165 labelling as compared with conventional antibodies. Intestinal lymphatics also exhibited more  
166 widespread labelling with the nanobody approach (**Fig. 2B**).

167

168 To determine if non-lymphatic LYVE1<sup>+</sup> structures were being captured, we further  
169 immunolabelled E18.5 kidneys with the myeloid marker, F4/80. LYVE1<sup>+</sup> macrophages have  
170 been reported in embryonic kidneys (Lee et al. 2011) and indeed, using nanobody labelling,  
171 F4/80<sup>+</sup> LYVE1<sup>+</sup> cells were detected within E18.5 kidney (**Fig. S3A**). In these experiments, we  
172 also demonstrated a further methodological advantage over conventional IgG antibodies in  
173 that the incubation period with anti-LYVE1 nanobodies could be reduced to as little as four  
174 hours to achieve effective staining, whereas the equivalent staining with conventional anti-  
175 LYVE1 IgG antibodies was only visible after 48 hours (**Fig. S3B**). Overall, these findings  
176 show that anti-LYVE1 nanobodies are more efficacious than IgG antibodies for wholemount  
177 immunofluorescence, optical clearing and 3D imaging of lymphatics within mouse embryos  
178 and adult organs.

179

180 **Quantitative comparison reveals spatially restricted expression of LYVE1 as an organ-  
181 specific feature of kidney lymphatics**

182 Having successfully developed anti-LYVE1 nanobodies for wholemount immunofluorescence  
183 in mouse tissues, we hypothesised this novel reagent would enable us to examine LYVE1  
184 expression and lymphatic architecture across a range of postnatal mouse organs. Therefore,  
185 we assessed heart, lung, skin and kidney at P28 in C57BL/6 wildtype mice ( $n=8$  mice per  
186 group), a timepoint where we reasoned that the developmental remodelling of lymphatics

187 would be complete (Klaourakis, Vieira, and Riley 2021). Focussing on imaging the parenchyma  
188 of each tissue to capture lymphatic capillaries, we undertook comparative 3D image analysis  
189 by utilising anti-LYVE1 nanobodies and an anti-podoplanin (PDPN) IgG antibody. PDPN is  
190 expected to label all postnatal lymphatic endothelial cells (Breiteneder-Geleff et al. 1997; Guo  
191 et al. 2022; Dick et al. 2022), serving as means of comparing the number of lymphatic  
192 capillaries which also expressed LYVE1. Being a conventional IgG antibody, PDPN antibodies  
193 did not fully penetrate all organs, thus LYVE1 and PDPN vessel structures were extracted  
194 separately, binarized and analysed for geometric properties including vessel branch volume,  
195 length or mean radius using open-source 3D analysis software (Bumgarner and Nelson 2022).  
196 In regions of tissues fully penetrated by both immunolabels, PDPN should capture all lymphatic  
197 vessels, thus LYVE1<sup>+</sup> vessels were examined relative to their PDPN<sup>+</sup> counterparts (**Fig. S4**).

198

199 We inspected 3D images from P28 heart, lung, and skin, finding consistent overlap between  
200 PDPN and LYVE1 expression profiles in all organs examined (**Fig. 3A-C**). Accordingly, no  
201 significant difference between the relative volume of LYVE1<sup>+</sup> vessels and PDPN<sup>+</sup> vessels were  
202 found in the skin ( $p=0.15$ ), heart ( $p=0.15$ ) or lung ( $p=0.88$ ) (**Fig. 3E-G**). However, the kidney  
203 showed a clear discrepancy. Analysing over 30 imaging volumes of individual vessel segments  
204 within the kidney's parenchyma, we consistently identified kidney lymphatic vessels expressing  
205 PDPN, but lacking expression of LYVE1 (**Fig. 3D**). Quantitative analysis substantiated our  
206 findings, revealing a statistically significant difference ( $p=0.03$ ) between the relative volume of  
207 LYVE1<sup>+</sup> vessels and that of PDPN<sup>+</sup> vessels (**Fig. 3H**).

208

209 The expression of LYVE1 in adjacent vessel branches suggests that the lack of expression of  
210 LYVE1 by kidney lymphatics is not an artefact of limited immunolabel penetration into the  
211 tissue. These LYVE1<sup>-</sup>PDPN<sup>+</sup> vessels were always continuous with LYVE1<sup>+</sup>PDPN<sup>+</sup> lymphatics,  
212 demonstrating that they were part of the lymphatic network and not anatomically separate.  
213 Moreover, the arrangement of LYVE1<sup>-</sup>PDPN<sup>+</sup> vessels was non-hierarchical, with lack of LYVE1

214 expression by lymphatics captured both in the hilum and cortex of the kidney, suggesting that  
215 this feature does not originate from a pre-collecting or collecting vessel phenotype (Ulvmar and  
216 Mäkinen 2016; Mäkinen et al. 2005). Thus, a combination of nanobody labelling, 3D  
217 visualisation and quantitative analysis demonstrated an organ-specific spatial restricted  
218 expression of LYVE1 by kidney lymphatics.

219

220 **Temporal decline in LYVE1 expression by kidney lymphatics occurs during postnatal  
221 maturation**

222 Finally, given the organ-specific nature of restricted LYVE1 expression by lymphatics in the  
223 kidney, we sought to gain insight into the dynamics of LYVE1 expression over the course of  
224 kidney development and maturation. We characterised and compared 3D imaging of wildtype  
225 kidney lymphatics at five timepoints: E18.5, P1, P5, P28 and P90. E18.5 (n=8) was chosen as  
226 an embryonic timepoint at which we have previously characterised the spatial relationships of  
227 kidney lymphatics, and during which LYVE1 is expressed by all bona fide lymphatic vessels  
228 (Jafree et al. 2019). Between P1 (n=7) and P5 (n=8), the development of nephrons; the  
229 functional units of the kidney, has been reported to reach cessation (Li et al. 2021) with P28  
230 (n=8) representing early adulthood and P90 (n=6) representing a mature stage by which time  
231 mouse kidneys have reached their full size.

232

233 At E18.5, all PDPN<sup>+</sup> lymphatic vessels were found to express LYVE1 and, accordingly,  
234 quantitative analysis demonstrated no significant differences between LYVE1<sup>+</sup> vessel and  
235 PDPN<sup>+</sup> vessel volume ( $p=0.96$ ) (**Fig. 4A-B**). Likewise, there was no significant difference in  
236 LYVE1<sup>+</sup> vessel and PDPN<sup>+</sup> vessel volume at P1 ( $p=0.33$ ) (**Fig. 4A,C**), or P5 ( $p=0.15$ ), albeit  
237 there were some visible regions containing LYVE1<sup>-</sup> PDPN<sup>+</sup> lymphatic vessels at this early  
238 postnatal timepoint (**Fig. 4A,D**). Thereafter, there was a striking decrease in LYVE1<sup>+</sup> regions  
239 of PDPN<sup>+</sup> lymphatic vessels as the mice aged. (**Fig. 4A**). By P28, there was a significant  
240 difference between LYVE1<sup>+</sup> vessel and PDPN<sup>+</sup> vessel volume ( $p=0.03$ ) (**Fig. 3H**), consistent

241 with findings at P90 ( $p=0.04$ ) (Fig. 4E). Non-parametric multiple comparisons were applied to  
242 evaluate LYVE1<sup>-</sup> vessels across the five different timepoints. Using this approach, no  
243 significant differences could be found between time points E18.5 and P1 ( $p=0.95$ ), nor between  
244 P28 and P90 ( $p=0.77$ ) or P5 and P28 ( $p=0.68$ ) (Fig. 4F). However, in an analysis of individual  
245 regions of interests across all animals, a significant difference between P5 and P28 was  
246 detected ( $p= 0.03$ ) (Fig. S5G). The most pronounced difference in this analysis within  
247 maturation stages occurred between P1 and P5 ( $p=0.002$ ) (Fig. 4F). In summary, our 3D  
248 quantitative analysis of LYVE1 expression during kidney lymphatic vessel remodelling  
249 revealed that the organ-specific feature of restricted LYVE1 expression manifests during the  
250 organ's early postnatal maturation, occurring most rapidly between P1-P5.

251

## 252 **DISCUSSION**

253 In this study, we successfully generated and validated novel anti-LYVE1 nanobodies to  
254 improve 3D imaging of lymphatic capillaries in mice. Our approach enables faster and more  
255 effective wholemount immunostaining of intact murine organs, facilitating both qualitative and  
256 quantitative analysis of organ-specific lymphatic architecture. Testament to the potential of this  
257 novel tool for discovery, we found that LYVE1 expression was spatially restricted in lymphatic  
258 vessels of the kidney as compared to other organs, and that this phenomenon manifests during  
259 the organ's postnatal maturation, coinciding with the cessation of organogenesis in the kidney.  
260 In developing a reagent for 3D lymphatic imaging, we have therefore highlighted an organ-  
261 specific feature of lymphatics in the kidney and demonstrate the importance of exercising  
262 caution when using single markers, such as LYVE1, to discriminate lymphatics in  
263 uncharacterised tissues.

264

265 Previous reports have harnessed the beneficial properties of single-domain antibodies for 3D  
266 imaging, specifically their small size, improved epitope detection compared with conventional  
267 IgG antibodies (Muyldermans 2013), high solubility, heat stability, chemical resistance

268 (Dumoulin et al. 2002) and cost-effectiveness (Muyldermans 2021). Recent examples of 3D  
269 imaging utilising nanobodies include labelling human dermal vasculature (Hansmeier et al.  
270 2022), capturing GFP<sup>+</sup> cells in whole mice (Cai et al. 2023) or characterising the murine  
271 placental vasculature (Freise et al. 2023). Such nanobodies surmount the challenges of using  
272 conventional IgG antibodies for immunolabelling, including long incubation times or specialised  
273 equipment being required for tissue penetration (Mai et al. 2023). To our knowledge, this  
274 represents the first nanobody that binds to lymphatics. LYVE1 was selected given its reported  
275 widespread expression on lymphatic capillaries (Oliver et al. 2020), and its amenability to  
276 successful nanobody production given its simple structure and limited number of post-  
277 translational modifications compared to other lymphatic markers such as PDPN. The  
278 nanobody clones presented in this report have other applications beyond 3D imaging, including  
279 flow cytometry and cell isolation, live imaging or functional blocking experiments in mice  
280 (Babamohamadi et al. 2024; Pymm et al. 2021).

281

282 Having generated and validated anti-LYVE1 nanobodies, we demonstrate whole organ  
283 imaging of lymphatic vascular networks. Although previous reports have utilised LYVE1 as a  
284 marker in isolation to capture lymphatic vessels (Baranwal et al. 2021; Lee et al. 2011),  
285 nanobody labelling revealed that LYVE1 expression is spatially restricted by lymphatics of the  
286 kidney from an early postnatal stage. Given the location of these LYVE1<sup>-</sup> PDPN<sup>+</sup> capillaries  
287 and their absence in other organs, we provide evidence for an organ-specific feature of  
288 lymphatics in the mouse kidney. We have recently shown that these findings also translate to  
289 human tissues, as 3D imaging of human kidneys demonstrates regions of lymphatic vessels  
290 with LYVE1<sup>-</sup> PDPN<sup>+</sup> capillaries (Jafree et al. 2022). Furthermore, transcriptional comparison  
291 using single-cell RNA sequencing data highlights that approximately 30% of lymphatic cells in  
292 the kidney lack *LYVE1* expression (Jafree et al. 2022). This demonstration of intra-organ  
293 molecular heterogeneity of lymphatics may also apply to other contexts (Ulvmar and Mäkinen  
294 2016), such as the nasal lymphatics, within which a population of atypical LYVE1<sup>-</sup> lymphatic  
295 capillaries was also identified (Hong et al. 2023).

296

297 Our study is not without limitations. Firstly, our validation of nanobodies in 3D imaging data is  
298 performed with co-labelling of conventional IgG antibodies. As a result, experiments are limited  
299 by the penetration depth of full-size IgG antibodies, necessitating separate analysis of PDPN<sup>+</sup>  
300 vessel and LYVE1<sup>+</sup> vessel volumes for quantitative analysis. Secondly, the nanobodies  
301 generated bind to mouse LYVE1, but to our knowledge, do not exhibit reactivity with human  
302 LYVE1. Moreover, our study does not address the functional significance of lymphatic  
303 heterogeneity, which is out of the scope of this technical report. CD44<sup>+</sup> immune cells enter  
304 lymphatics *via* hyaluronan-mediated binding to LYVE1 on lymphatic endothelium (Johnson et  
305 al. 2017; Johnson et al. 2021), thus the limited expression of LYVE1 on kidney lymphatics may  
306 have implications for renal immune cell trafficking (Kitching and Hickey 2022; Riedel, Turner,  
307 and Panzer 2021). In the mouse nasal mucosa, single-cell transcriptomics indicates that  
308 LYVE1<sup>-</sup> lymphatic cells are enriched for expression of molecules involved in stimulation or  
309 regulation of immune responses (Hong et al. 2023), suggesting that this subpopulation may  
310 be directly involved in local nasal immunity. Finally, deciphering the origins of lymphatic  
311 heterogeneity remains a subject of ongoing debate. Our findings support a developmental  
312 origin of restricted LYVE1 expression, as we observe the greatest increase in the proportion of  
313 LYVE1<sup>-</sup> vessel volume during a postnatal window during which kidney organogenesis ceases.  
314 Thus, differences in organ-specific lymphatic development, including paracrine or physical  
315 signals from tissue progenitors, transcriptional enhancers or repressors and alternative cellular  
316 lineages are all potential contributors to structural, molecular and functional heterogeneity of  
317 lymphatic vessels (Jafree et al. 2021).

318

319 In conclusion, we report the generation of the first nanobodies targeting lymphatic vessels. We  
320 find that anti-LYVE1 nanobodies represent a promising and simple-to-use tool to structurally  
321 profile organ lymphatics in mouse, rendering the complex technique of 3D imaging more widely  
322 accessible within the rapidly evolving field of lymphatic biology. Testament to the utility of these

323 nanobodies, we add to the evidence that lymphatic vessels within certain organs possess  
324 unique anatomical and molecular properties, with an atypical LYVE1<sup>-</sup> lymphatic capillary profile  
325 in the mouse kidney. Overall, we anticipate nanobodies will contribute to the suite of novel  
326 experimental tools advancing the understanding of lymphatic heterogeneity in health and  
327 disease.

328

329 **MATERIALS AND METHODS**

330 ***Llama immunization and nanobody library construction***

331 For nanobody generation, a recombinant LYVE1 protein, consisting of 288 amino acids, fused  
332 to a His10 tag was expressed in human embryonic kidney 293 cells. The recombinant protein  
333 was injected at days 0, 7, 14, 21, 28, and 35 into a llama (*Lama glama*). After immunization,  
334 100 ml of anticoagulated blood were collected from the llama on day 40, 5 days after the final  
335 antigen injection. Peripheral blood lymphocytes were isolated and total RNA extracted for  
336 cDNA first-strand synthesis using oligo(dT) primers. Sequences encoding variable nanobodies  
337 were subsequently amplified by PCR, digested with the restriction enzyme *SapI*, and finally  
338 cloned into the *SapI* site of the phagemid vector pMECs. Electrocompetent *E. coli* TG1 (60502,  
339 Lucigen, Middleton, WI, USA) were then transformed with VHH sequence harbouring pMECS  
340 vectors, resulting in a nanobody library comprising 10<sup>9</sup> independent transformants. This  
341 process has previously been described in detail by (Vincke et al. 2012).

342

343 ***Biopanning and identification of anti-mouse nanobodies specific to LYVE1***

344 Phage enrichment and biopanning were carried out as detailed by (Vincke et al. 2012). Briefly,  
345 the previously constructed nanobody library was panned for 3 rounds on solid phase coated  
346 with mouse LYVE1 (100 µg/ml in 100 mM NaHCO<sub>3</sub> pH 8.2) yielding a 400-fold enrichment of  
347 antigen-specific phages after the 3<sup>rd</sup> round of panning. A total of 380 colonies were randomly  
348 selected and assayed for mouse LYVE1-specific antigens by ELISA, again using mouse

349 LYVE1 and additionally mouse LYVE-1 fused to human IgG1 Fc at the C-terminus (50065-  
350 M02H, Sino Biological, Beijing, China). To exclude potential nanobody clones binding to human  
351 IgG1 Fc, human IgG1 Fc (10702-HNAH, Sino Biological) was utilized as a control as well as  
352 blocking buffer only (100 mM NaHCO<sub>3</sub>, with pH 8.2). After comparing binding specificity of  
353 different clones with the control values, 278 colonies were identified as positive for mouse  
354 LYVE1 binding. Using the sequence data, the number of possible nanobody candidates was  
355 further narrowed down to 98, of which 96 were able to specifically bind both mouse LYVE1-  
356 His10 and mouse LYVE1 fused to human IgG1 Fc. The remaining unique clones derived from  
357 21 different B cell linages according to their complementary determining region (CDR) 3  
358 groups. Considering the different B cell linages and robustness of ELISA screening data, 6  
359 clones were selected for further experiments.

360

### 361 ***Cloning of nanobody sequences in expression vector***

362 To generate 6xHis-tagged nanobodies, nanobody sequences were cloned from the pMECS  
363 phagemid vector into the pHEN6c expression vector. Initially, nanobody sequences were  
364 amplified by PCR using the following primers:

365 (1) 5' GAT GTG CAG CTG CAG GAG TCT GGR GGA GG 3'

366 (2) 5' CTA GTG CGG CCG CTG AGG AGA CGG TGA CCT GGG T 3'

367 PCR products were purified (QIAquick PCR Purification Kit, 28104, Qiagen, Hilden, Germany)  
368 and digested for 20 minutes at 37 °C with *PstI-HF* (R3140, New England Biolabs, Ipswich, MA,  
369 USA) and *BstEII-HF* (R3162, New England Biolabs) restriction enzymes, while empty pHEN6c  
370 plasmids were concurrently digested with the same restriction enzymes. The empty pHEN6c  
371 plasmids, however, were supplemented by 5 units of heat-inactivated (5 minutes at 80 °C)  
372 FastAP™ alkaline phosphatase (EF0651, Thermo Fisher Scientific, Waltham, MA, USA).

373 Digestion products were purified (28104, QIAquick PCR Purification Kit, Qiagen) and subjected  
374 to T4 DNA ligase-mediated ligation reactions. The ligation reaction was performed at 16 °C for  
375 16 hours using 2.5 units of T4 DNA ligase (M0202, New England Biolabs). Subsequently, newly  
376 generated nanobody sequence harboring pHEN6c plasmids were transformed into WK6 E.

377 coli cells (C303006, Thermo Fisher Scientific) and analysed towards correct nanobody  
378 sequence integration by Sanger DNA sequencing. To this end, the primers used were as  
379 follows:

380 (1) 5' TCA CAC AGG AAA CAG CTA TGA C 3'  
381 (2) 5' CGC CAG GGT TTT CCC AGT CAC GAC 3'

382

383 ***Production and purification of anti-LYVE1 nanobodies***

384 WK6 E. coli carrying pHEN6c-Nanobody plasmid were cultivated at 37 °C, shaking in  
385 1L`Terrific Broth` medium (2.3 g/L KH<sub>2</sub>PO<sub>4</sub>, 16.4 g/L K<sub>2</sub>HPO<sub>4</sub>-3H<sub>2</sub>O, 12 g/L tryptone, 24 g/L  
386 yeast extract, 0.4% (v/v) glycerol) complemented with 100 µg/mL ampicillin, 2 mM MgCl<sub>2</sub>, and  
387 0.1% (w/v) glucose. Nanobody expression was induced at an OD600 of 0.6-0.9 by adding 1nM  
388 isopropyl β-D-1-thiogalactopyranoside. After an incubation period of 16 hours, the nanobodies  
389 were extracted by centrifugation (8000× g, 8 min, RT). 18 ml of TES/4 buffer (0.05 M Tris [pH  
390 8.0], 0.125 mM EDTA, 0.125 M sucrose) were added for 1 hour of shaking on ice. The cell  
391 suspension was thereafter centrifuged (8000× g, 30 min, 4 °C), and periplasmic protein-  
392 containing supernatant was collected. For 6xHis-tagged nanobody extraction, HIS-Select®  
393 nickel affinity gel (P6611, Sigma-Aldrich, Darmstadt, Germany) was applied according to the  
394 manufacturer's instructions. The solution was loaded on a PD-10 column (17-0435-01, GE  
395 healthcare, Chicago, IL, USA) and nanobodies were eluted via 3 × 1 mL 0.5 M imidazole in  
396 phosphate-buffered saline (PBS) (I2399, Sigma-Aldrich). An overnight dialysis (3 kDa MWCO,  
397 66382, Thermo Fisher Scientific) against PBS was carried out to remove undesirable imidazole  
398 from the nanobody solution.

399

400 ***Coomassie-blue stained SDS PAGE and western blotting***

401 To verify nanobody production and pureness, sample protein was separated by molecular  
402 weight using established sodium dodecyl sulphate-polyacrylamide gel electrophoresis. For  
403 each clone, 5 µg of denatured protein with 0.04% (w/v) OrangeG in ddH<sub>2</sub>O were loaded onto

404 the gel alongside a pre-stained protein ladder (ab116029, Abcam, Cambridge, UK). For protein  
405 visualisation, gels were treated with Coomassie staining solution (0.1% (w/v), Coomassie  
406 Brilliant Blue R-250 (1610400, Bio-Rad Laboratories Inc., Hercules, CA, USA), 50% (v/v)  
407 methanol, and 10% (v/v) glacial acetic acid in ddH<sub>2</sub>O) for 1 hour, followed by incubation with  
408 Coomassie detaining solution (50% ddH<sub>2</sub>O, 40% methanol, 10% acetic acid (v/v/v)).  
409 Alternatively, gels were blotted onto a nitrocellulose membrane (1620112, Bio-Rad  
410 Laboratories Inc.) and nanobodies were identified using a primary anti-His antibody (12698,  
411 Cell Signaling Technology, Danvers, MA, USA) and a secondary anti-rabbit antibody (926-  
412 32211, LI-COR Biosciences, Lincoln, NE, USA). Subsequently, blots were analysed by an  
413 Odyssey® Fc Imaging System (LI-COR Biosciences).

414

#### 415 ***Mouse husbandry and acquisition of mouse tissues***

416 C57BL/6 wildtype mice or *Lyve1*<sup>Cre-eGFP</sup> mice (Pham et al. 2010) were maintained in compliance  
417 with the UK Animals (Scientific Procedures) Act 1986 and experiments were carried out under  
418 a UK Home Office project license (PPL: PP1776587). Further, laboratory mouse work was  
419 approved by German federal authorities (LaGeSo Berlin) under the licence number ZH120.  
420 Nutrition and water were available to animals *ad libitum*. Adult mice or pregnant mice were  
421 sacrificed using CO<sub>2</sub> inhalation and cervical translocation as a Schedule 1 procedure. The  
422 desired organs were obtained from embryonic, juvenile, or adult mice, washed in PBS, and  
423 subsequently fixed in 4% (w/v) paraformaldehyde (PFA) in PBS for 4 hours at 4 °C to preserve  
424 tissue integrity. After fixation, samples were thoroughly washed in three changes of PBS and  
425 stored at 4 °C in PBS containing 0.02% (w/v) sodium azide until further processing.

426

#### 427 ***Antibodies used for immunofluorescence***

428 The following commercially available antibodies were used: rabbit monoclonal anti-His  
429 antibody (12698, Cell Signaling Technologies) [1:200], donkey polyclonal anti-rabbit IgG Alexa  
430 Fluor™ 647 antibody (A31573, Invitrogen, Waltham, MA, USA) [1:1000], donkey polyclonal

431 anti-rabbit IgG Highly-Cross-Absorbed Alexa Fluor™ 647 antibody (A32795, Invitrogen)  
432 [1:1000], goat polyclonal anti-mLYVE1 (AF2125, R&D Systems, Minneapolis, MN, USA)  
433 [1:100], donkey polyclonal anti-goat IgG Alexa Fluor™ 568 antibody (A11057, Invitrogen)  
434 [1:1000], donkey polyclonal anti-goat IgG Highly cross-absorbed Alexa Fluor™ 488+ antibody  
435 (A32814, Invitrogen) [1:1000], hamster monoclonal anti-Podoplanin (14-5381-82, Invitrogen)  
436 [1:200], goat polyclonal anti-Syrian hamster IgG Cross-Absorbed Alexa Fluor™ 546 antibody  
437 (A-21111, Invitrogen) [1:1000], chicken polyclonal anti-GFP (ab13970, Abcam) [1:200], donkey  
438 anti-chicken Highly cross-absorbed Alexa Fluor™ 488+ antibody (A32931TR, Invitrogen)  
439 [1:1000], rat monoclonal anti-mF4/80 antibody (MCA497G, BioRad) [1:50], donkey anti-rat  
440 Highly cross-absorbed Alexa Fluor™ 488+ antibody (A48269, Invitrogen) [1:1000].  
441 Nanobodies were detected by anti-His staining in combination with an Alexa Fluor™ dye-  
442 conjugated secondary antibody.

443

#### 444 ***Immunofluorescence staining of cryosections***

445 Snap-frozen 5 µm sections of E14.5 wildtype mice were stained with nanobodies at different  
446 concentrations (0.1 µg/ml, 1 µg/ml, 10 µg/ml) and control antibodies as previously described  
447 in detail (Hansmeier et al. 2022). Visualisation of representative regions was accomplished  
448 using an Axioscope5 fluorescence microscope (Zeiss, Oberkochen, Germany) equipped with  
449 a Plan-NEOFLUAR 40x/0.75 objective (Zeiss).

450

#### 451 ***Wholemount immunofluorescence staining and optical clearing***

452 Mouse organs were either cut into smaller sections measuring 0.5-2 mm or processed as  
453 whole specimens. Tissues were dehydrated using an ascending methanol series and bleached  
454 overnight at 4 °C in a solution containing 5% H2O2 (VWR Chemicals, Radnor, PE, USA) in  
455 methanol. Wholemount staining, embedding and optical clearing was performed as previously  
456 described (Hägerling et al. 2013). Intestine samples were not optically-cleared, but mounted

457 in fluorescent medium (S3023, Agilent Technologies, Santa Clara, CA, USA). Nanobody (10  
458 µg/ml), primary IgG Antibodies, and secondary IgG were incubated for various periods of time  
459 based on sample size and staining reagent (Nanobodies 2-4 hours, primary antibodies 3-14  
460 days, secondary antibodies 1-7 days).

461

462 ***Wholmount immunofluorescence staining and optical clearing of E18.5 and p1  
463 specimens***

464 Embryonic and early postnatal kidneys were initially dehydrated and bleached as described  
465 above. Following rehydration, samples were permeabilized overnight in a 5% solution of 3-(3-  
466 cholamidopropyl) dimethylammonio)-1-propanesulfonate in ddH<sub>2</sub>O and blocked in PBS  
467 supplemented with 0.2% (v/v) Triton X100, 10% (v/v) DMSO, and 6% (v/v) goat serum.  
468 Nanobodies (10 µg/ml) and antibodies were diluted in antibody solution (PBS + 0.2% v/v  
469 Tween20 + 0.1% v/v heparin solution + 5% v/v DMSO + 3% v/v goat serum + 0.1% w/v  
470 saponin) and incubated between 4 hours (nanobodies) and 24 hours (IgG antibodies) at 4 °C.  
471 Between staining steps, samples were washed in PBS-Tween20. Clearing was performed as  
472 previously described for embryonic kidneys (Jafree et al. 2020)

473

474 ***Confocal and light sheet imaging***

475 Specimens were imaged using two different microscopy systems. For confocal imaging, an  
476 LSM 880 Upright Confocal Multiphoton microscope (Zeiss) equipped with a 20x/NA 1.0 W-plan  
477 Apochromat water immersion objective was utilized. A comprehensive description of the setup  
478 specific to BABB-cleared specimens for this microscope can be found in previously published  
479 work (Jafree et al. 2020). Intact mouse organs were imaged by LaVision Ultramicroscope II  
480 with a LaVision BioTec MVPLAPO 2x OC OBE objective. Various magnifications were  
481 employed, and image acquisition utilized a step size of 2 µm.

482

483 ***Image processing and 3D rendering***

484 2D immunofluorescence images were subjected to post-processing using ZEN 3.4 (blue  
485 edition) software from Zeiss. Single channels were extracted and saved in TIFF format.

486 Z-stack datasets were processed and 3D-rendered using Imaris 9.8, a software package  
487 provided by Oxford Instruments (Abingdon, UK). To reduce non-specific background signals,  
488 single channels were often subjected to the Imaris Surface function. Images of the 3D-  
489 rendered data were captured using the Imaris snapshot function and saved in TIFF format.

490

491 **Quantification of signal-to-background ratio in 2D immunofluorescence**

492 Signal-to-background ratio was quantified using ImageJ 2.24/1.54f  
493 (<https://github.com/imagej/ImageJ>, (Schindelin et al. 2012)). Ten intensity values were  
494 randomly selected in vessel areas and areas that showed no specific staining. The mean  
495 values for signal and background areas were calculated and the signal-to-background ratio  
496 was determined using the formula: Signal-to-background ratio = mean signal/mean  
497 background.

498

499 **Quantitative analysis of 3D imaging volumes**

500 The quantitative analysis of three-dimensional volumes commenced with the binarization of  
501 single channels using Imaris software (v9.8, Oxford Instruments). The binarization process  
502 was conducted using the isosurface rendering function, and for E18.5 and P1 samples, 3D  
503 cropping was applied to exclude regions with high PDPN intensity at the kidney surface, thus  
504 enhancing binarization accuracy. During surface rendering, the threshold was set to absolute  
505 intensity, with manual adjustments to ensure the inclusion of all relevant structures. To  
506 eliminate smaller non-specific signals, structures were filtered based on the number of voxels.  
507 Following surface generation, PDPN channel-derived non-vascular structures were manually  
508 removed using the selection function. Subsequently, the channel of interest was masked using

509 specific settings: constant inside/outside, setting voxels outside the surface to 0.00, and inside  
510 the surface to the maximum intensity of the prepared channel. All channels except the newly  
511 created masked channel were then deleted, and the single channel was saved in TIFF format.  
512 With the binarized files prepared, TIFF files were imported into the VesselVio application  
513 (Bumgarner and Nelson 2022). The analysis settings were configured as follows: unit  $\mu\text{m}$ ,  
514 resolution type anisotropic with individual sizes of samples, analysis dimensions 3D, image  
515 resolution  $1.0 \mu\text{m}^3$ , and filters applied to isolate segments shorter than  $10.0 \mu\text{m}$  and purge end-  
516 point segments shorter than  $10.0 \mu\text{m}$ . Analysis results were automatically saved in Microsoft  
517 Excel files by VesselVio. Among the parameters offered by VesselVio, vessel volume was  
518 selected as the parameter for further analysis, as it takes into account both vessel length and  
519 width.

520

### 521 ***Sample size estimation and statistical analysis***

522 Sample size was estimated based on prior publications of renal developmental studies of the  
523 lymphatic vessels (Jafree et al. 2019) and studies investigating the lymphatics in adult mice  
524 organs (Vieira et al. 2018; Park et al. 2014) Therefore, we anticipated  $n=6-8$  animals per  
525 experiment would be sufficient to power statistical analyses. Statistical analysis was conducted  
526 using Prism (v8, GraphPad by Dotmatics, Boston, MA, USA) and RStudio version 12.0 (Posit,  
527 Boston, MA, USA). To determine the significance of differences in volume between LYVE1 and  
528 PDPN at individual time points and individual organs, a paired student's *t*-test was carried out.  
529 To assess statistical significance across different time points a rank-based approach using the  
530 R package nparcomp (Konietschke et al. 2015) with the function mctp1 (multiple comparisons  
531 for relative contrast effect testing) was chosen. This approach allows for nonparametric  
532 multiple comparisons to evaluate relative contrast effects. A *p* value of less than 0.05 was  
533 considered statistically significant for all tests. Quantitative data was visualised using Prism.  
534 All graphical representations present individual data points either by region of interest or by  
535 animal, along with the mean and standard error of the mean.

536

537 **Preparation of figures and videos**

538 The figures presented in this paper have been prepared using the free software tool Inkscape  
539 1.1.0 (Inkscape Project, 2020) for graphic design and layout. Any modifications made to the  
540 images were applied consistently to maintain uniformity across all coherent single and merged  
541 channel images.

542

543 **Data Availability**

544 The data that support the findings of this study are available from the corresponding author  
545 upon reasonable request.

546

547 **Authors information**

548 EMF, NRH, DJ, RH and DAL conceived the study. Cloning and production of nanobodies was  
549 performed by EMF, NRH and CAB. Acquisition of mouse material, mouse husbandry and  
550 immunostaining or histology were performed by EMF, NRH, RYB, ACB, GP, MKJ, WJM, LGR,  
551 LW, and SU. Confocal or lightsheet imaging and 3D analysis were performed by EMF, DJ, DM  
552 and RYH. Project oversight and supervision was provided by NRH, DJ, RH and DAL. EMF  
553 wrote the first draft of the paper, refined by DJ, RH and DAL, and subsequently all authors  
554 were involved in revision and preparation of the final manuscript for submission.

555

556 **Acknowledgement**

557 We express our gratitude to Gholamreza Hassanzadeh, VIB Nanobody Core, Vrije Universiteit  
558 Brussel, Brussel, Belgium, for supervision of llama immunizations and technical expertise. We  
559 acknowledge Dr Louise Johnson (University of Oxford, UK) for her technical insights into  
560 LYVE1 purification, Dr Robert Lees (UKRI Central Laser Facility, UK) for his lightsheet

561 fluorescence microscopy expertise, Dr. Felix Heymann (Universitätsmedizin Berlin, Germany)  
562 for access to confocal microscopy and Prof. Dr. Ansgar Peterson (Julius Wolff Institute, Charité  
563 Universitätsmedizin Berlin, Germany) for access to image analysis infrastructure. We thank  
564 Stephen Schüürhuis and the Institute of Biometry and Clinical Epidemiology (Charité  
565 Universitätsmedizin Berlin, Germany) for statistical consultation services.

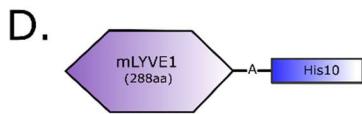
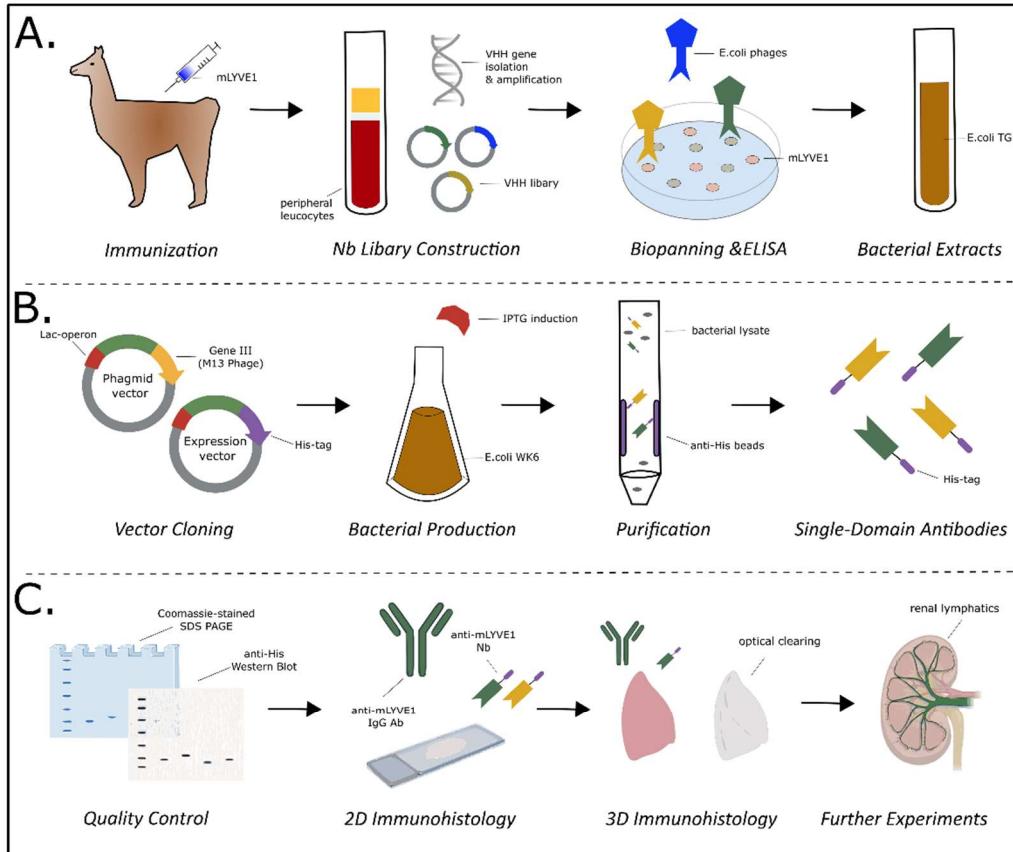
566

567 **Funding**

568 EMF was a participant in the BIH MD Stipendium Program funded by the Charité –  
569 Universitätsmedizin Berlin and the Berlin Institute of Health at Charité (BIH). DJ was supported  
570 by a Rosetrees Trust PhD Plus Award (PhD2020\100012), a Foulkes Foundation Postdoctoral  
571 Fellowship and the Specialised Foundation Programme in the East of England Foundation  
572 Schools. The work is also supported by an Innovation Grant from Kidney Research UK  
573 (IN\_012\_20190306) and a Wellcome Trust Investigator Award (220895/Z/20/Z) to DAL. DAL's  
574 laboratory is supported by the NIHR Biomedical Research Centre at Great Ormond Street  
575 Hospital for Children NHS Foundation Trust and University College London. Further, this work  
576 was supported in part by the Berlin Institute of Health (BIH) and by grants from the Lymphatic  
577 Malformation Institute and European Union (ERC, PREVENT, 101078827) (to RH). RH is a  
578 participant in the BIH-Charité Junior/Digital/Clinician Scientist Program funded by the Charité  
579 – Universitätsmedizin Berlin and the BIH.

580

581 **Ethics declaration**



582 All authors declare no conflicts of interest.

583

584

585

586 **FIGURES**

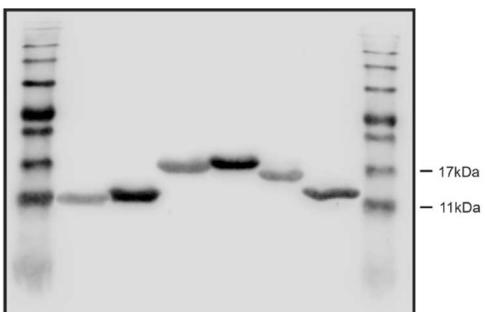


**E.**

|        | LYVE1  | Fc     | control |
|--------|--------|--------|---------|
| 2LYV14 | 5,5784 | 0,1254 | 0,1752  |
| 2LYV22 | 5,3795 | 0,105  | 0,1059  |
| 2LYV35 | 5,3798 | 0,1027 | 0,1001  |
| 2LYV59 | 5,4481 | 0,1193 | 0,0955  |
| 3LYV9  | 5,6204 | 0,1396 | 0,1326  |
| 3LYV39 | 5,9342 | 0,1875 | 0,2095  |

**F.**

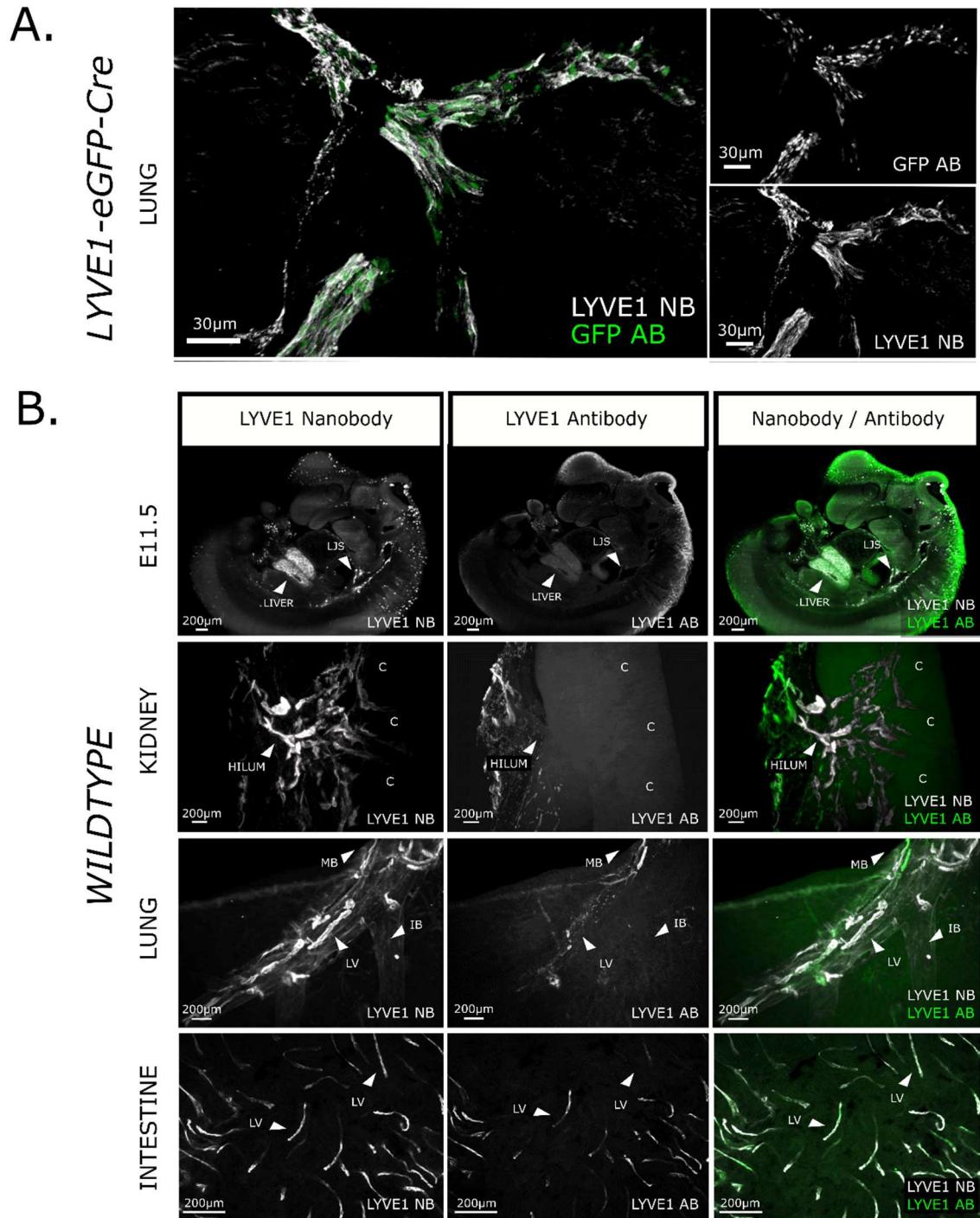
| FR3    | CDR3    | FR4                 |
|--------|---------|---------------------|
| 2LYV14 | ....YYC | YA-----RLLSDYW      |
| 2LYV22 | ...YYC  | -----TPTY-ETGS----- |
| 2LYV35 | ...YDC  | ALDPSTSWPAVEH-EYTYR |
| 2LYV59 | ...YYC  | YT-----SKYGIY       |
| 3LYV9  | ...YYC  | NADLRYSIGGNYLYNPDYW |
| 3LYV39 | ...YYC  | AADPSNTVVDA--WEYTYW |


**G.**

2LYV14    2LYV22    2LYV35    2LYV59    3LYV9    3LYV39



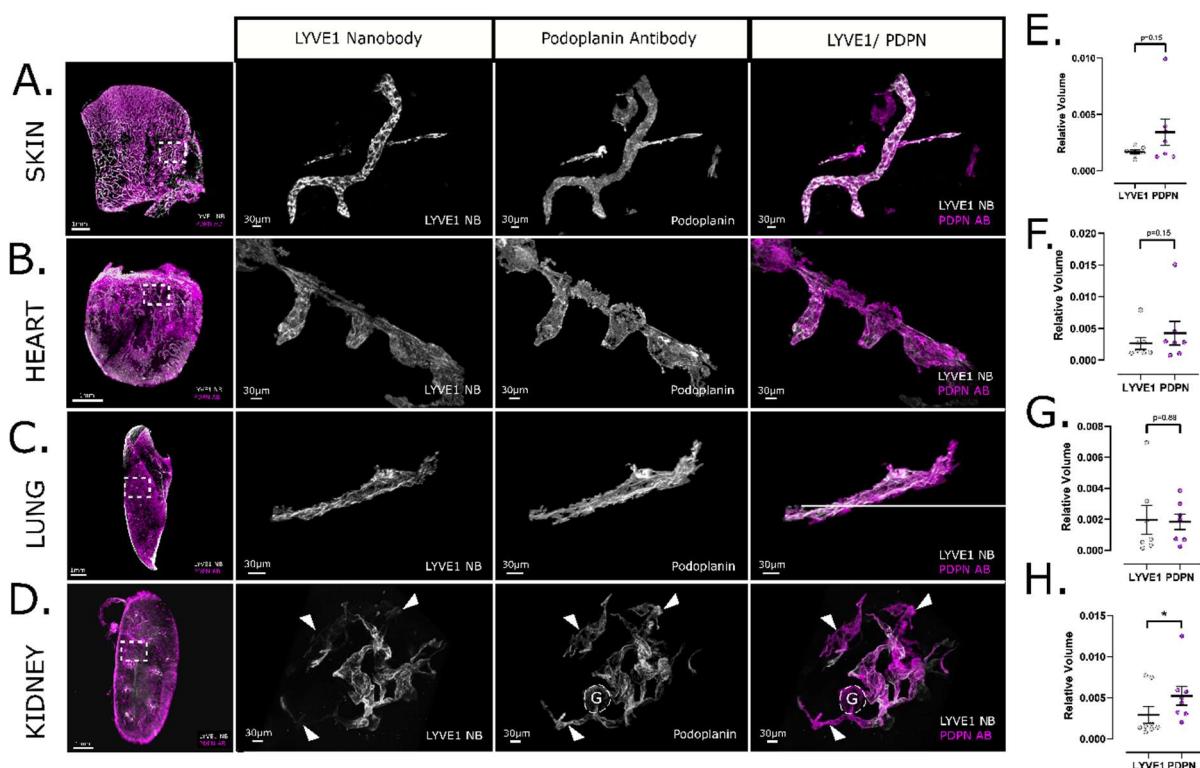
**H.**


2LYV14    2LYV22    2LYV35    2LYV59    3LYV9    3LYV39



588 **Figure 1: Generation and production of an anti-mouse LYVE1 nanobody.**

589 To generate the anti-mouse LYVE1 nanobody (**A**), a recombinant mouse LYVE1 protein,  
590 consisting of 288 amino acids (aa), fused to a His10 tag (**D**) was repeatedly injected into llama  
591 (*Immunisation*). Peripheral blood lymphocytes were harvested, and total RNA extracted for  
592 first-strand cDNA synthesis. Nanobody-encoding sequences were amplified and cloned into  
593 phagemid vector pMECs and transformed into *E. coli* TG1, resulting in a nanobody library of  
594  $10^9$  independent transformants (*Library Construction*). Next, anti-mouse LYVE1-specific  
595 nanobodies were enriched by phage display and biopanning on a solid phase coated mouse  
596 LYVE1. LYVE1-binding nanobodies were further analysed towards binding performance by  
597 whole-cell phage ELISA (**E**). Wells assessed were coated with (1) mouse LYVE1 with His10  
598 tag and mouse LYVE1 fused to human IgG1 Fc, (2) the human IgG1 Fc (Fc) or (3) blocking  
599 buffer only (control). The values indicate specificity of clones, which was used to determine  
600 which to produce. (*Biopanning & ELISA*). Finally, bacteria carrying the anti-mouse LYVE1  
601 nanobody plasmid were used for further downstream steps (*Bacterial Extracts*). For production  
602 (**B**) nanobody sequences were cloned into pHEN6c expression vector carrying an additional  
603 6x His (*Vector Cloning*). Amino acid sequence of complementary determining region (CDR) 3  
604 with accompanying Framework region (FR) 3 and 4 of six anti-mouse LYVE1 nanobody  
605 produced are displayed in (**F**). Next, WK6 *E. coli* carrying pHEN6c-nanobody plasmids were  
606 cultured and production was induced by addition of isopropyl- $\beta$ -D-1-thiogalactopyranoside  
607 (IPTG) (*Bacterial Production*). Bacterial cells were then lysed and nanobodies separated from  
608 other cell components by His affinity purification (*Purification*). Finally, His-tagged LYVE1  
609 nanobodies were ready for further experiments. (*Single Domain Antibodies*).  
610 To validate (**C**) LYVE1 nanobodies, sodium dodecyl sulphate-polyacrylamide gel  
611 electrophoresis (SDS-PAGE) with Coomassie blue staining and anti-His western blotting were  
612 performed. Both confirmed single protein bands of the expected nanobody size of 11-17kDa  
613 (**G**). Anti-His western blotting found His-positive proteins (**H**). Taken together, these results  
614 acted as a confirmation of successful nanobody production and purification (*Quality Control*).  
615 To assess the suitability of nanobodies for immunohistology, nanobodies were primarily tested

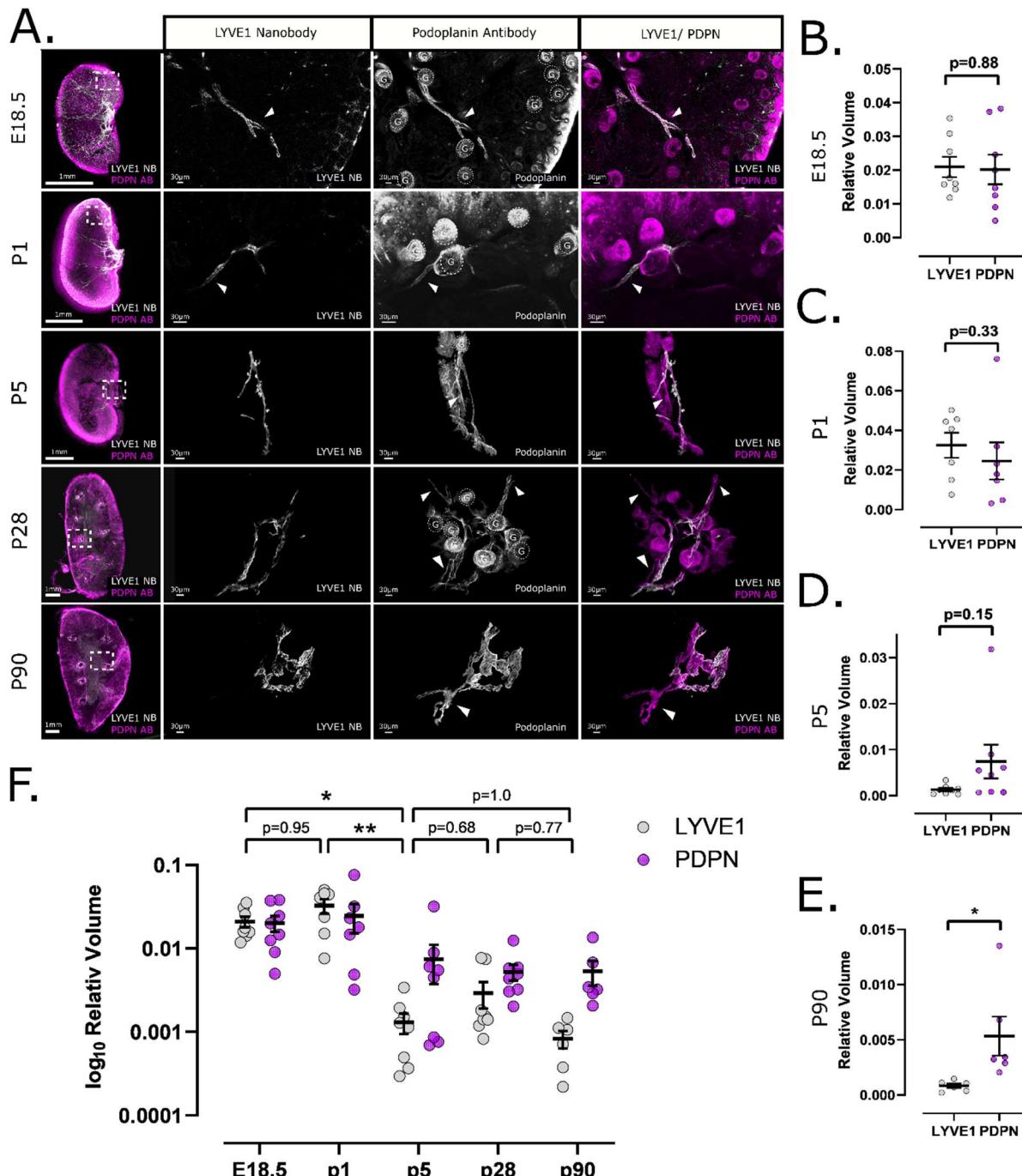

616 in two-dimensional (2D) histological sections using anti-mouse LYVE1 IgG antibody as a  
617 control (**Fig. S2**) (*2D Immunohistology*). Next, nanobodies were validated for use in  
618 wholemount immunolabelling and optical clearing (**Fig. 2**) (*3D Immunohistology*).  
619 Subsequently, nanobodies were utilised to investigate the presence of LYVE1 in various  
620 conditions (*Further Experiments*).



622 **Figure 2: Characterisation and evaluation of an anti-mouse LYVE1 nanobody for 3D**  
623 **imaging of intact mouse organs**

624 (A) Co-staining of anti-mouse LYVE1 nanobodies (white) and anti-GFP IgG antibodies (green)  
625 in P28 *Lyve1<sup>eGFP-Cre</sup>* mouse lung tissue (n=3) visualised by confocal microscopy. Both anti-GFP  
626 IgG antibodies and LYVE1 nanobodies visualise a large lymphatic vessel. While the anti-GFP  
627 IgG antibody shows the expected nuclear staining pattern, the LYVE1 nanobodies visualise  
628 lymphatic endothelial cell surfaces. This not only reinforces the specificity of anti-mouse LYVE1  
629 nanobodies shown previously in 2D histology (Fig. S2), but also further supports the feasibility  
630 of using LYVE1 nanobodies in tissue cleared specimens. The scale bar represents 30  $\mu$ m. (B)  
631 Evaluation of the efficacy of LYVE1 nanobodies in wholmount immunostaining of entire tissue  
632 samples. This panel compares the efficacy of LYVE1 nanobodies (white) to LYVE1 IgG  
633 antibodies (green) controls using light sheet microscopy in various intact mouse organs. In  
634 E11.5 mouse embryos (n=6), the jugular lymphatic sac (JLC) is distinctly visible in the LYVE1  
635 nanobody channel, while the antibody channel exhibits a weak signal with a halo around the  
636 embryo surface, indicating limited IgG antibody penetration. Furthermore, the LYVE1+ liver  
637 sinusoidal endothelial cells are visualised in great detail by the LYVE1 nanobodies, which the  
638 LYVE1 IgG antibodies lack. In P28 kidney (n=6), nanobodies efficiently label lymphatic vessels  
639 beyond the superficial hilum vessels and further into the kidney, whereas IgG antibodies mainly  
640 visualises lymphatic vessels on the hilum surface. The nanobodies allow evaluation of  
641 interlobular lymphatic vessels extending deep into the cortex (C). P28 lung lobes (n=6) exhibit  
642 a higher number of deeper lymphatic vessels (LV) and increased bronchial autofluorescence  
643 in the nanobody channel. While IgG antibodies primarily visualised vascular structures  
644 overlying the main bronchus (MB) near the tissue surface, nanobodies additionally reveal  
645 vascular structures accompanying the intermediate bronchus (IB). In the small intestine (n=6),  
646 confocal visualisation shows increased staining of lymphatic vessels (LV) in the nanobody  
647 channel. In comparison, IgG antibodies detect less LV, at lower intensity or only partially. The  
648 scale bar represents 200  $\mu$ m.

649

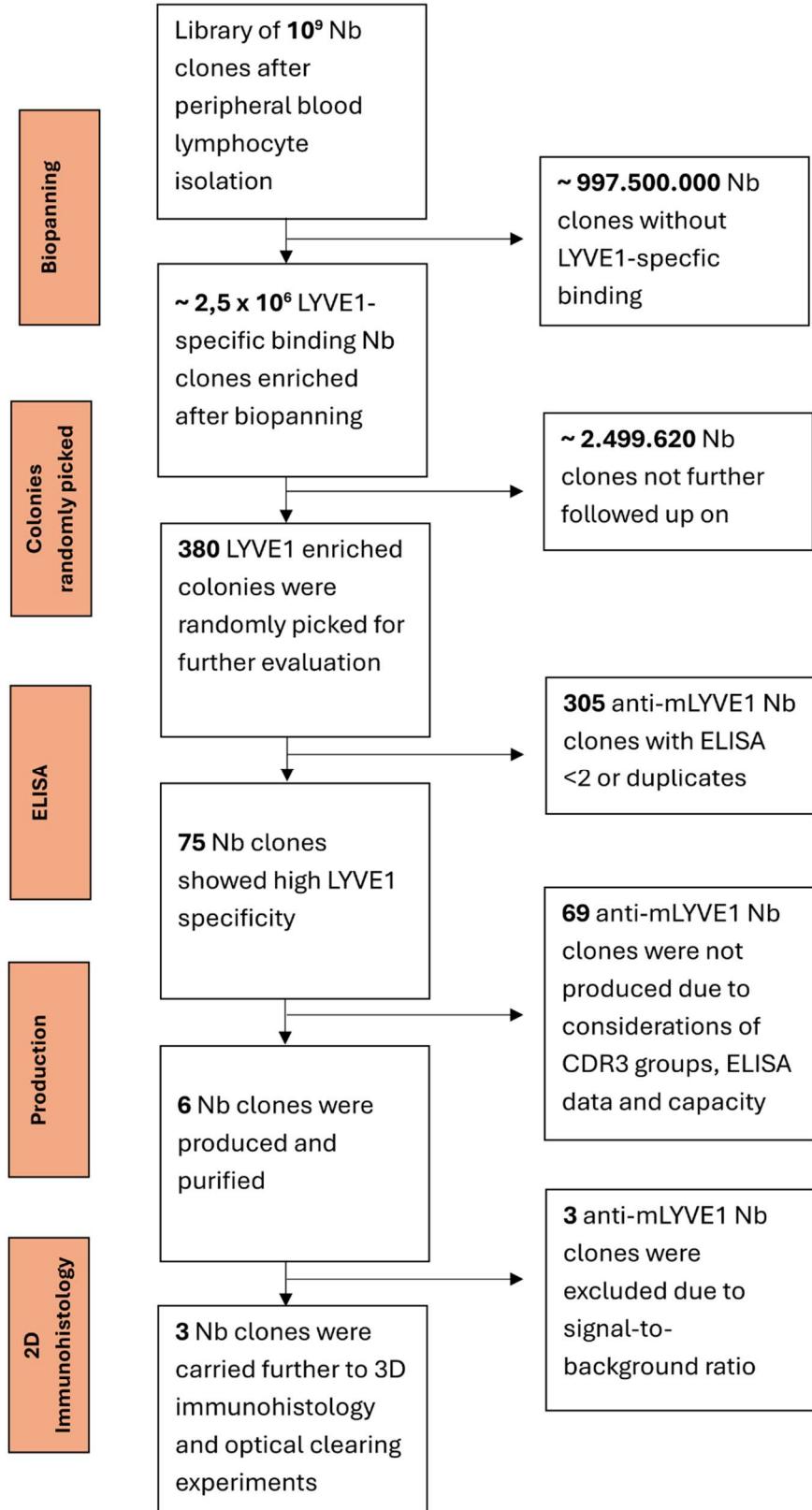



650

651 **Figure 3: 3D imaging of nanobody-stained mouse organs reveals spatially restricted**  
652 **expression of LYVE1 as an organ-specific marker of kidney lymphatic vasculature.**

653 Co-staining of anti-mouse LYVE1 nanobodies (white) and anti-PDPN IgG antibodies  
654 (magenta) in C57BL/6 wild-type P28 organs by confocal microscopy. Each channel is  
655 displayed separately in grey scale. The scale bar in the overview is 1 mm and 30  $\mu$ m for regions  
656 of interest. (A-D) Comparison of the vascular structures visualised by anti-mouse LYVE1  
657 nanobodies and anti-PDPN IgG antibodies in P28 skin, heart, and lung (A-C) reveal full  
658 coherence between the lymphatic vessel markers LYVE1 and PDPN, as expected. To  
659 distinguish lymphatic vessels from bronchi, bronchial structures are outlined with dotted lines  
660 (B). In renal tissue (D) an incoherence with a lack or reduced levels of LYVE1 in individual  
661 vessel segments was found (Fig. 2A-C). Arrows indicate LYVE1<sup>-</sup> vessel segments. PDPN is a  
662 marker for both lymphatic endothelial cells and podocytes, which form the glomerulus.  
663 Consequently, the PDPN channel also visualises glomeruli (G), as indicated by the dotted  
664 lines. (E-H) Quantitative analysis of LYVE1<sup>+</sup> and PDPN<sup>+</sup> lymphatic vessels in P28 organs. Each  
665 data point represents the average relative volume of 3-4 regions of interest imaged per animal.  
666 The error bar shows the standard error of means. An analysis of single regions of interest per

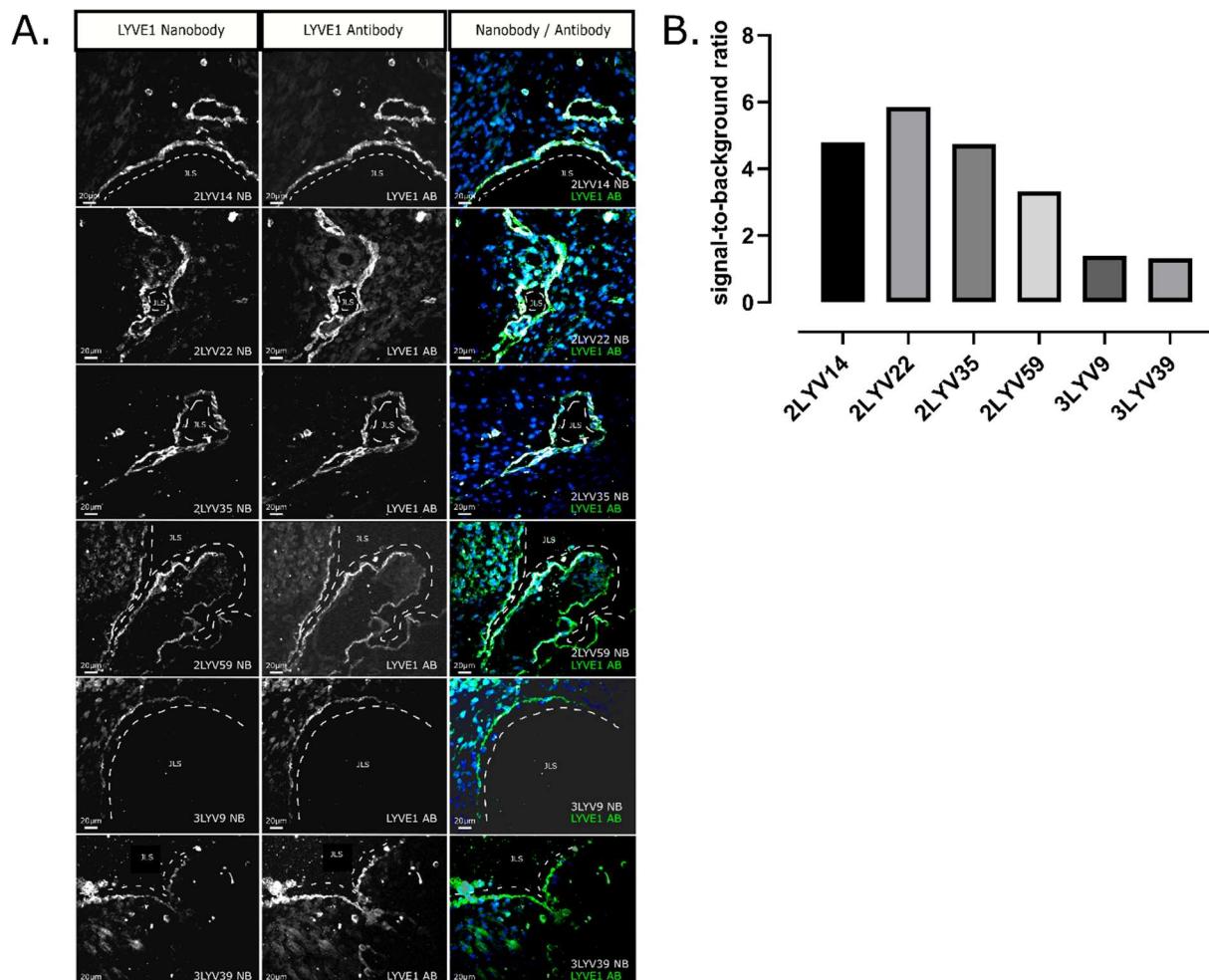
667 data point can be found in the supplements (**Fig. S6A-D**) Vessel volume has been adjusted to  
668 the overall sample volume. In P28 skin (n=6), a paired student's t-test found no significant  
669 difference (p=0.15) between the relative volumes of PDPN and LYVE1 (mean difference =  
670 0.0017, t=1.626, df=6) (**E**). Similarly, in P28 heart (n=7), no significant difference was observed  
671 (p=0.15, mean difference = 0.0016, t=1.662, df=6) (**F**). In P28 lung (n=7), the difference was  
672 also not significant (p=0.88, mean difference = -0.00012, t=0.1459, df=6) (**G**). However, in P28  
673 kidneys (n=8), a significant difference was found between the relative volumes of PDPN and  
674 LYVE1 (p=0.039, mean difference = 0.002311, t=2.528, df=7) (**H**).




676 **Figure 4: Spatial restricted expression of LYVE1 expression by kidney lymphatics**  
 677 **occurs within the postnatal period**

678 (A) Anti-mouse LYVE1 nanobodies (white) and anti-PDPN IgG antibodies (magenta) staining  
 679 of C57BL/6 wild-type kidney tissue sections at various time points visualised by confocal  
 680 microscopy. Each channel is displayed separately in grey scale. Regions of interest were  
 681 visualised in areas of the kidney tissue sample as indicated in the overview image. At E18.5  
 682 and P1, both LYVE1 and PDPN equally visualise vascular structures in the sample and no

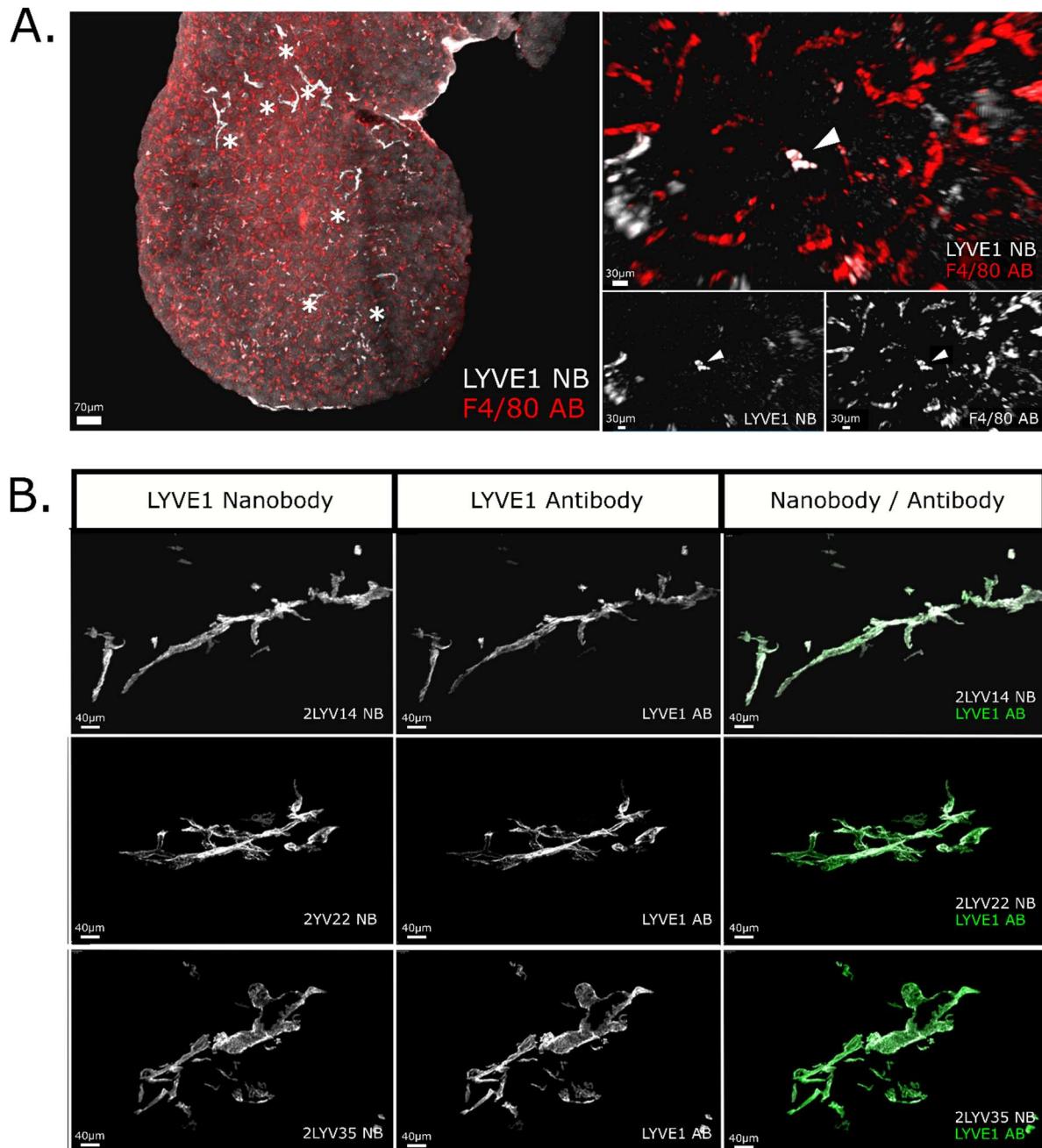
683 incoherence can be detected. However, different staining patterns between LYVE1 and PDPN  
684 were observed in P5 kidneys, although incoherence occurred in a smaller number of vessels  
685 and regions of interest compared to P28 kidney tissue (**Fig. 3D**). P90 renal lymphatics showed  
686 a similar number of LYVE1<sup>-</sup> areas, particularly in vessels of decreasing size. Arrows indicate  
687 LYVE1<sup>-</sup> vessel segments. Glomeruli (G) visualised by the PDPN IgG antibody are outlined by  
688 dotted lines in the grey scale image of PDPN. The scale bar is 1 mm, 30  $\mu$ m respectively. (**B-**  
689 **F**) Quantitative analysis of LYVE1<sup>+</sup> and PDPN<sup>+</sup> lymphatics vessel in kidneys. Each datapoint  
690 represents the average relative volume of 3-4 regions of interest imaged per kidney, except for  
691 E18.5 and P1 as kidneys were imaged as a complete unit. Error bar shows standard error of  
692 means. Vessel volume has been adjusted to the overall sample volume. An analysis of single  
693 regions of interest per data point can be found in the supplements (**Fig. S6E-F**). In E18.5  
694 kidneys (n=8), a paired student's t-test found no significant difference (p=0.88) between the  
695 relative volumes of PDPN and LYVE1 (mean difference = -0.0007419, t=0.1533, df=7) (**B**).  
696 Similarly, in P1 kidneys (n=7), no significant difference was observed (p=0.33, mean difference  
697 = -0.007961, t=1.046, df=6) (**C**). In P5 kidneys (n=8), the difference was also not significant  
698 (p=0.15, mean difference = 0.006101, t=1.642, df=7) (**D**). However, in P90 kidneys (n=6), a  
699 significant difference was found between the relative volumes of PDPN and LYVE1 (p=0.049,  
700 mean difference = 0.004502, t=2.574, df=5) (**E**). (**F**) Statistical analysis of LYVE1 volume  
701 dynamics throughout kidney maturation was conducted using nonparametric multiple  
702 comparisons for relative contrast effect testing (estimation method = global pseudo ranks, type  
703 of contrast = Tukey, confidence level = 95%) (Konietschke et al. 2015) across five  
704 developmental timepoints, revealing a significant overall alteration (p=0.0004, quantile=2.74).  
705 No significant differences were observed between E18.5 and P1 (p=0.95, estimator=0.603,  
706 lower=0.292, upper=0.848, statistic=0.879), P5 and P28 (p=0.68, estimator=0.344,  
707 lower=0.131, upper=0.646, statistic=-1.423), P5 and P90 (p=1.0, estimator=0.50, lower=0.221,  
708 upper=0.779, statistic=0.00), or P28 and P90 (p=0.77, estimator=0.344, lower=0.117,  
709 upper=0.674, statistic=-1.295). However, a significant decline was observed between P1 and  
710 P5 (p=0.002, estimator=0.076, lower=0.013, upper=0.345, statistic=-3.698). Additionally,


711 significant differences were noted between non-chronological timepoints, such as E18.5 and  
712 P28 ( $p=0.0004$ , estimator=0.027, lower=0.002, upper=0.241, statistic=-4.045), P1 and P28  
713 ( $p=0.003$ , estimator=0.071, lower=0.011, upper=0.356, statistic=-3.575), and P1 and P90  
714 ( $p=0.0013$ , estimator=0.042, lower=0.004, upper=0.296, statistic=-3.792). Statistical analysis  
715 of single regions of interest can be found in **Fig. S6G**.



718 **Supplementary Figure 1: Flowchart of anti-mouse LYVE1 nanobody clone selection**  
719 **process.**

720 After initial immunization and establishment of a nanobody library based on peripheral blood  
721 leucocytes, a total of  $10^9$  potential nanobody clones were available. After 400-fold enrichment  
722 by phage display and biopanning of LYVE1-specific binding clones, 380 clones were randomly  
723 selected for ELISA analysis. 305 clones scored  $<2$ , which was set as the cut-off for promising  
724 mouse LYVE1 high specificity or were duplicates. From the remaining 75 highly LYVE1 specific  
725 nanobody clones, due to capacity reasons, merely six clones were selected based on ELISA  
726 data and diversity of CDR3 groups for production. All six clones successfully immunolabelled  
727 LYVE1 in 2D histological sections, but due to differences in signal-to-background ratio, three  
728 clones were finally selected for 3D immunostaining with optical clearing.


729

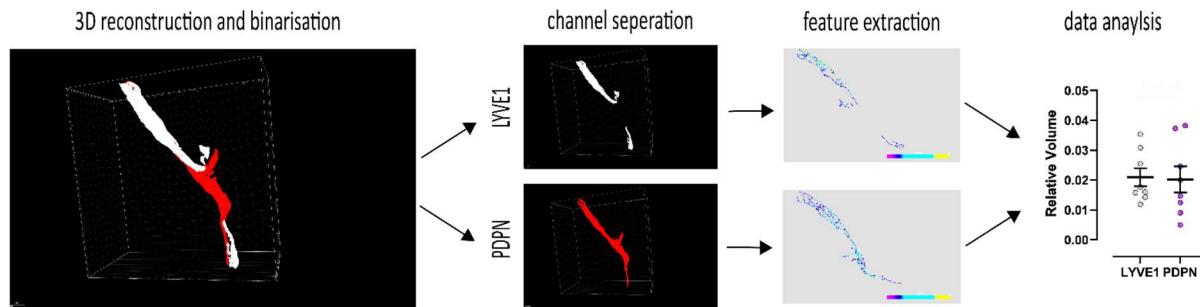


730

731 **Supplementary Figure 2: Validation of anti-mouse LYVE1 nanobody for 2D**  
732 **immunolabeling.**

733 **(A)** LYVE1 staining of 5  $\mu$ m cryosections of E14.5 mouse embryos was performed using anti-  
734 mouse LYVE1 nanobody clones (white) and IgG antibodies (green), with separate channels  
735 displayed in grayscale. The nanobody clones are indicated in each image corner. Hoechst  
736 (blue) served as a positive control and is visible in the merged image. Dashed lines outline the  
737 jugular lymphatic sac (JLS). Single cells not adjacent to the lymphatic vasculature were  
738 detected alongside vascular structures. All six nanobody clones visualised lymphatic structures  
739 comparably to IgG controls, often providing improved signal-to-noise ratio. Scale bar 20  $\mu$ m.  
740 **(B)** A quantitative comparison of the signal-to-background ratios for the six anti-mouse LYVE1  
741 nanobody clones in 2D immunofluorescence was performed by selecting ten random values  
742 from signal and background areas in ImageJ. The average ratios were 4.8 (2LYV14), 5.9  
743 (2LYV22), 4.7 (2LYV35), 3.3 (2LYV59), 1.4 (3LYV3), and 1.3 (3LYV39). Clones 2LYV14,  
744 2LYV22, and 2LYV35 were selected for 3D immunofluorescence experiments.

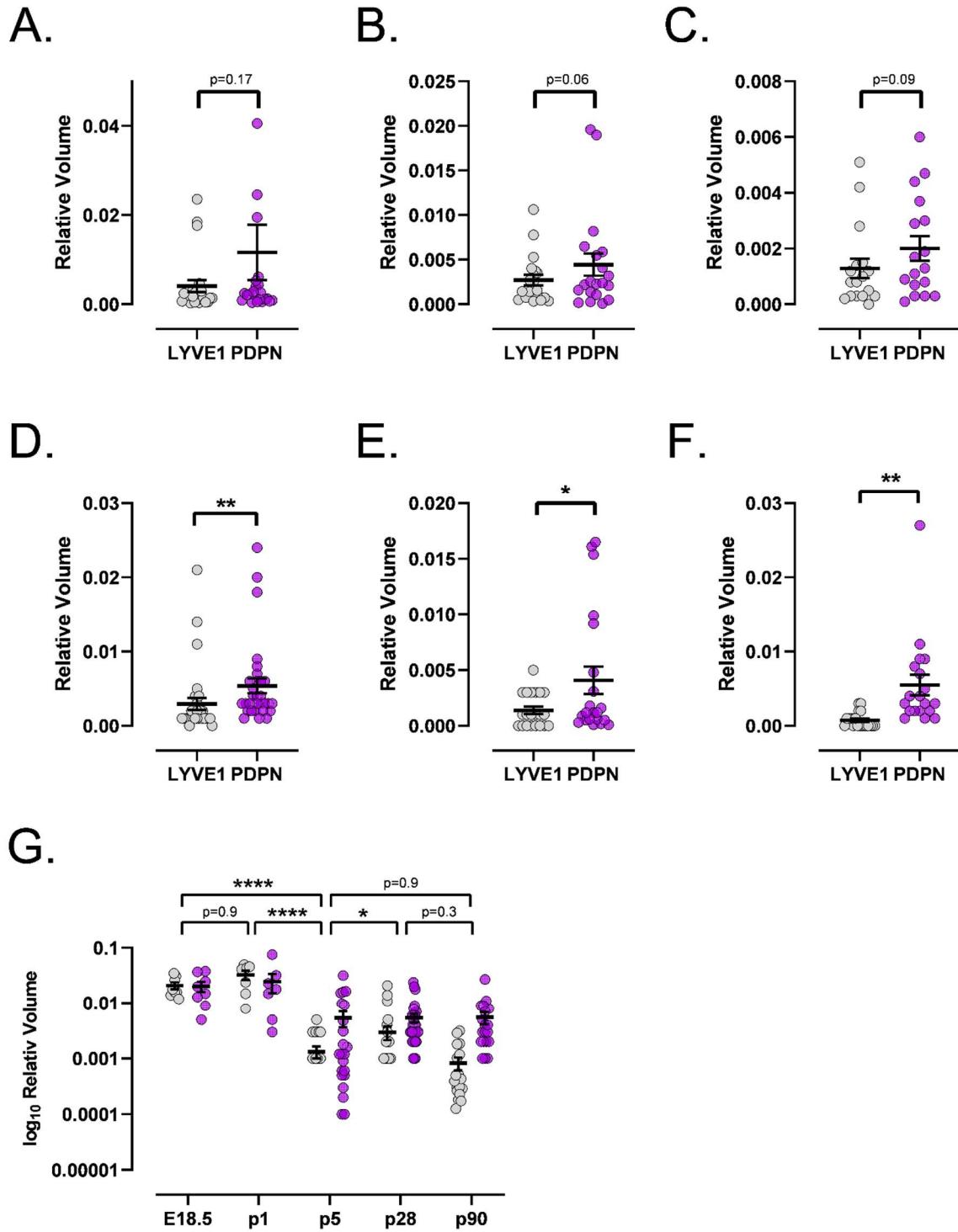



745

746 **Supplementary Figure 3: Validation of anti-mouse LYVE1 nanobody in optically-cleared**  
747 **murine kidney after incubation period reduction and validation of myeloid cell**  
748 **expression**

749 **(A)** Co-staining of anti-mouse LYVE1 nanobodies (white) and anti-F4/80 IgG antibodies (red)  
750 in C57BL/6 wildtype E18.5 kidney, visualised by confocal microscopy. The macrophage marker  
751 F4/80 successfully detected multiple cells within the kidney, while next to lymphatic vessels (\*),  
752 the anti-mouse LYVE1 nanobodies labelled occasional single cells not connected to the

753 lymphatic vasculature. These cells are co-labelled by anti-F4/80 IgG antibodies, suggesting  
754 that the nanobodies are not only capable of labelling LYVE1<sup>+</sup> lymphatic vessels but can further  
755 be used to study LYVE1<sup>+</sup> macrophage subsets. The scale bar is 70  $\mu$ m, 30  $\mu$ m respectively.  
756 (B) Anti-mouse LYVE1 nanobody clones 2LYVE14, 2LYV22 and 2LYVE35 in wholemount  
757 immunostaining of P28 murine kidney sections visualised by confocal microscopy. Control IgG  
758 antibodies were incubated for 48 h, in comparison to an incubation period of 4 h for  
759 nanobodies. The nanobodies (white) successfully detected the identical biological structures  
760 as the IgG antibody control staining (green), despite a noticeable reduction of incubation time  
761 by 44h. The scale bar is 40  $\mu$ m.


762



764 **Supplementary Figure 4: Overview of quantification process.**

765 Z-stack data was 3D reconstructed using Imaris software. The Imaris feature "Surface" enabled  
766 binarization of desired vessel structures. Thresholds were manually chosen and unwanted  
767 structures such as glomeruli in the PDPN channel were actively deleted within the surface  
768 feature. This was performed for both channels individually. Following the creation of two  
769 separate surfaces for the PDPN and LYVE1 channel, both channels were masked and  
770 separately saved as TIFF. Next, vessel volume was extracted using the open-source software  
771 VesselVio (Bumgarner and Nelson 2022). Lastly, values for separate channels of one sample  
772 were compared, visualised and statistical testing was carried out.

773



774

775 **Supplementary Figure 5: Quantitative analysis of LYVE1<sup>+</sup> and PDPN<sup>+</sup> volume per region**  
776 **of interest**

777 Quantitative analysis of the relative volume of LYVE1<sup>+</sup> and PDPN<sup>+</sup> lymphatic vessels in P28  
778 organs is shown, with each data point representing one region of interest and error bars  
779 indicating the standard error of the mean. Vessel volumes were adjusted to the overall sample

780 volume. In P28 skin (n=23), paired Student's t-test revealed no significant difference between  
781 the relative volumes of PDPN and LYVE1 ( $p=0.169$ ; mean difference = 0.0075,  $t=1.1421$ ,  
782  $df=22$ ) (**A**). In P28 heart (n=20), no significant difference was found ( $p=0.063$ ; mean difference  
783 = 0.0017,  $t=1.976$ ,  $df=19$ ) (**B**). In P28 lung (n=18), no significant difference was observed  
784 ( $p=0.097$ ; mean difference = 0.0007,  $t=1.765$ ,  $df=16$ ) (**C**). In P28 kidney (n=31), a highly  
785 significant difference was found ( $p=0.009$ ; mean difference = 0.0025,  $t=2.753$ ,  $df=30$ ). (**D**)  
786 In P5 kidney (n=21), a significant difference was observed ( $p=0.014$ ; mean difference = 0.0027,  
787  $t=2.684$ ,  $df=20$ ) (**E**). Note that E18.5 and P1 kidneys were imaged as a whole, so no separate  
788 region of interest data is available (see **Fig. 3B-C**). In P90 kidney (n=19), a highly significant  
789 difference was found ( $p=0.004$ ; mean difference = 0.0047,  $t=3.321$ ,  $df=18$ ) (**F**). (**G**) Statistical  
790 analysis of LYVE1 volume dynamics throughout development. Nonparametric multiple  
791 comparisons for relative contrast effect testing (estimation method = global pseudo ranks, type  
792 of contrast = Tukey, confidence level = 95 %) (Konietzschke et al. 2015) for five developmental  
793 timepoints did find a significant alteration between the timepoints (overall  $p$  value= $1.02e^{-8}$ ,  
794 quantile=2.75). As expected, a significant alteration between E18.5 and P1 could not be found  
795 ( $p=0.96$ , estimator=0.603, lower=0.292, upper=0.848, statistic=0.879). Further, no statistically  
796 significant difference could be detected between timepoints P28 and P90 ( $p=0.34$ ,  
797 estimator=0.375, lower=0.225, upper=0.554, statistic=-1.926). Statistical testing did find a  
798 significant change between developmental stage P1 and P5 ( $p=3.48e^{-7}$ , estimator=0.054,  
799 lower=0.013, upper=0.196, statistic=-5.006) and P5 and P28 ( $p=0.038$ , estimator=0.321,  
800 lower=0.186, upper=0.493, statistic=-2.850), confirming a decline in LYVE1<sup>+</sup> vessels  
801 throughout maturation. Further, non-chronological timepoints show highly significant  
802 differences, such as E18.5 and P28 ( $p=1.02e^{-8}$ , estimator=0.053, lower=0.015, upper=0.174,  
803 statistic=-5.998), P1 and P28 ( $p=1.49e^{-6}$ , estimator=0.065, lower=0.016, upper=0.223,  
804 statistic=-5.148) or P1 and P90 ( $p=5.82e^{-5}$ , estimator=0.049, lower=0.010, upper=0.208,  
805 statistic=-5.006). No statistically significant change was detected between P5 and P90 ( $p=0.9$ ,  
806 estimator=0.529, lower=0.354, upper=0.697, statistic=0.450).

807

808 **REFERENCES**

809 Ahn, J. H., H. Cho, J. H. Kim, S. H. Kim, J. S. Ham, I. Park, S. H. Suh, S. P. Hong, J. H. Song,  
810 Y. K. Hong, Y. Jeong, S. H. Park, and G. Y. Koh. 2019. 'Meningeal lymphatic vessels  
811 at the skull base drain cerebrospinal fluid', *Nature*, 572: 62-66.

812 Antila, S., S. Karaman, H. Nurmi, M. Airavaara, M. H. Voutilainen, T. Mathivet, D. Chilov,  
813 Z. Li, T. Koppinen, J. H. Park, S. Fang, A. Aspelund, M. Saarma, A. Eichmann, J. L.  
814 Thomas, and K. Alitalo. 2017. 'Development and plasticity of meningeal  
815 lymphatic vessels', *J Exp Med*, 214: 3645-67.

816 Babamohamadi, Mehregan, Nastaran Mohammadi, Elham Faryadi, Maryam Haddadi,  
817 Amirhossein Merati, Farbod Ghobadinezhad, Roshanak Amirian, Zhila Izadi, and  
818 Jamshid Hadjati. 2024. 'Anti-CTLA-4 nanobody as a promising approach in cancer  
819 immunotherapy', *Cell Death & Disease*, 15: 17.

820 Banerji, S., J. Ni, S. X. Wang, S. Clasper, J. Su, R. Tammi, M. Jones, and D. G. Jackson.  
821 1999. 'LYVE-1, a new homologue of the CD44 glycoprotein, is a lymph-specific  
822 receptor for hyaluronan', *J Cell Biol*, 144: 789-801.

823 Baranwal, G., H. A. Creed, L. M. Black, A. Auger, A. M. Quach, R. Vegiraju, H. E.  
824 Eckenrode, A. Agarwal, and J. M. Rutkowski. 2021. 'Expanded renal lymphatics  
825 improve recovery following kidney injury', *Physiol Rep*, 9: e15094.

826 Bauta, E. M., R. D. Bell, H. Rahimi, L. Xing, R. W. Wood, C. O. Bingham, 3rd, C. T. Ritchlin,  
827 and E. M. Schwarz. 2018. 'Targeting lymphatic function as a novel therapeutic  
828 intervention for rheumatoid arthritis', *Nat Rev Rheumatol*, 14: 94-106.

829 Breiteneder-Geleff, S., K. Matsui, A. Soleiman, P. Meraner, H. Poczewski, R. Kalt, G.  
830 Schaffner, and D. Kerjaschki. 1997. 'Podoplanin, novel 43-kd membrane protein  
831 of glomerular epithelial cells, is down-regulated in puromycin nephrosis', *Am J  
832 Pathol*, 151: 1141-52.

833 Bumgarner, J. R., and R. J. Nelson. 2022. 'Open-source analysis and visualization of  
834 segmented vasculature datasets with VesselVio', *Cell Rep Methods*, 2: 100189.

835 Cai, Ruiyao, Zeynep Ilgin Kolabas, Chenchen Pan, Hongcheng Mai, Shan Zhao, Doris  
836 Kaltenecker, Fabian F. Voigt, Muge Molbay, Tzu-lun Ohn, Cécile Vincke, Mihail I.  
837 Todorov, Fritjof Helmchen, Jo A. Van Ginderachter, and Ali Ertürk. 2023. 'Whole-  
838 mouse clearing and imaging at the cellular level with vDISCO', *Nature Protocols*,  
839 18: 1197-242.

840 Dick, S. A., A. Wong, H. Hamidzada, S. Nejat, R. Nechanitzky, S. Vohra, B. Mueller, R.  
841 Zaman, C. Kantores, L. Aronoff, A. Momen, D. Nechanitzky, W. Y. Li, P.  
842 Ramachandran, S. Q. Crome, B. Becher, M. I. Cybulsky, F. Billia, S. Keshavjee, S.  
843 Mital, C. S. Robbins, T. W. Mak, and S. Epelman. 2022. 'Three tissue resident  
844 macrophage subsets coexist across organs with conserved origins and life  
845 cycles', *Sci Immunol*, 7: eabf7777.

846 Donnan, M. D., Y. Kenig-Kozlovsky, and S. E. Quaggin. 2021. 'The lymphatics in kidney  
847 health and disease', *Nat Rev Nephrol*, 17: 655-75.

848 Dumoulin, M., K. Conrath, A. Van Meirhaeghe, F. Meersman, K. Heremans, L. G. Frenken,  
849 S. Muyldermans, L. Wyns, and A. Matagne. 2002. 'Single-domain antibody  
850 fragments with high conformational stability', *Protein Sci*, 11: 500-15.

851 Freise, Lennart, Rose Yinghan Behncke, Hanna Helene Allerkamp, Tim Henrik  
852 Sandermann, Ngoc Hai Chu, Eva Maria Funk, Lukas Jonathan Hondrich, Alina  
853 Riedel, Christian Witzel, Nils Rouven Hansmeier, Magdalena Danyel, Alexandra  
854 Gellhaus, Ralf Dechend, and René Hägerling. 2023. 'Three-Dimensional



903 Jeong, J., M. Tanaka, and Y. Iwakiri. 2022. 'Hepatic lymphatic vascular system in health  
904 and disease', *J Hepatol*, 77: 206-18.

905 Jeong, J., M. Tanaka, Y. Yang, N. Arefyev, J. DiRito, G. Tietjen, X. Zhang, M. J. McConnell, T.  
906 Utsumi, and Y. Iwakiri. 2023. 'An optimized visualization and quantitative protocol  
907 for in-depth evaluation of lymphatic vessel architecture in the liver', *Am J Physiol  
908 Gastrointest Liver Physiol*, 325: G379-g90.

909 Johnson, L. A., S. Banerji, B. C. Lagerholm, and D. G. Jackson. 2021. 'Dendritic cell entry  
910 to lymphatic capillaries is orchestrated by CD44 and the hyaluronan glycocalyx',  
911 *Life Sci Alliance*, 4.

912 Johnson, Louise A., Suneale Banerji, William Lawrence, Uzi Gileadi, Gennaro Prota,  
913 Kayla A. Holder, Yaowaluck M. Roshorm, Tomáš Hanke, Vincenzo Cerundolo,  
914 Nicholas W. Gale, and David G. Jackson. 2017. 'Dendritic cells enter lymph  
915 vessels by hyaluronan-mediated docking to the endothelial receptor LYVE-1',  
916 *Nature Immunology*, 18: 762-70.

917 Karakousi, T., T. Mudianto, and A. W. Lund. 2024. 'Lymphatic vessels in the age of cancer  
918 immunotherapy', *Nat Rev Cancer*, 24: 363-81.

919 Karaman, Sinem, Dorina Buschle, Paola Luciani, Jean-Christophe Leroux, Michael  
920 Detmar, and Steven T. Proulx. 2015. 'Decline of lymphatic vessel density and  
921 function in murine skin during aging', *Angiogenesis*, 18: 489-98.

922 Kitching, A. Richard, and Michael J. Hickey. 2022. 'Immune cell behaviour and dynamics  
923 in the kidney — insights from in vivo imaging', *Nature Reviews Nephrology*, 18: 22-  
924 37.

925 Klaourakis, Konstantinos, Joaquim M. Vieira, and Paul R. Riley. 2021. 'The evolving  
926 cardiac lymphatic vasculature in development, repair and regeneration', *Nature  
927 Reviews Cardiology*, 18: 368-79.

928 Konietzschke, Frank, Marius Placzek, Frank Schaarschmidt, and Ludwig A. Hothorn.  
929 2015. 'nparcomp: An R Software Package for Nonparametric Multiple  
930 Comparisons and Simultaneous Confidence Intervals', *Journal of Statistical  
931 Software*, 64: 1 - 17.

932 Le, Caroline P., Cameron J. Nowell, Corina Kim-Fuchs, Edoardo Botteri, Jonathan G.  
933 Hiller, Hilmy Ismail, Matthew A. Pimentel, Ming G. Chai, Tara Karnezis, Nicole  
934 Rotmensz, Giuseppe Renne, Sara Gandini, Colin W. Pouton, Davide Ferrari,  
935 Andreas Möller, Steven A. Stacker, and Erica K. Sloan. 2016. 'Chronic stress in  
936 mice remodels lymph vasculature to promote tumour cell dissemination', *Nature  
937 Communications*, 7: 10634.

938 Lee, Hyun-Wook, Yan-Xia Qin, Yu-Mi Kim, Eun-Young Park, Jin-Sun Hwang, Guan-Hua  
939 Huo, Chul-Woo Yang, Wan-Young Kim, and Jin Kim. 2011. 'Expression of  
940 lymphatic endothelium-specific hyaluronan receptor LYVE-1 in the developing  
941 mouse kidney', *Cell and Tissue Research*, 343: 429-44.

942 Li, H., K. Kurtzeborn, J. Kupari, Y. Gui, E. Siefker, B. Lu, K. Mätilä, S. Olfat, A. R. Montaño-  
943 Rodríguez, S. H. Huh, F. Costantini, J. O. Andressoo, and S. Kuure. 2021.  
944 'Postnatal prolongation of mammalian nephrogenesis by excess fetal GDNF',  
945 *Development*, 148.

946 Liu, H., C. Hiremath, Q. Patterson, S. Vora, Z. Shang, A. R. Jamieson, R. Fiolka, K. M.  
947 Dean, M. T. Dellinger, and D. K. Marciano. 2021. 'Heterozygous Mutation of Vegfr3  
948 Reduces Renal Lymphatics without Renal Dysfunction', *J Am Soc Nephrol*, 32:  
949 3099-113.

950 Liu, Jonathan T. C., Adam K. Glaser, Kaustav Bera, Lawrence D. True, Nicholas P. Reder,  
951 Kevin W. Eliceiri, and Anant Madabhushi. 2021. 'Harnessing non-destructive 3D  
952 pathology', *Nature Biomedical Engineering*, 5: 203-18.

953 Louveau, A., I. Smirnov, T. J. Keyes, J. D. Eccles, S. J. Rouhani, J. D. Peske, N. C. Derecki,  
954 D. Castle, J. W. Mandell, K. S. Lee, T. H. Harris, and J. Kipnis. 2015. 'Structural and  
955 functional features of central nervous system lymphatic vessels', *Nature*, 523:  
956 337-41.

957 Mai, Hongcheng, Jie Luo, Luciano Hoeher, Rami Al-Maskari, Izabela Horvath, Ying Chen,  
958 Florian Kofler, Marie Piraud, Johannes C. Paetzold, Jennifer Modamio, Mihail  
959 Todorov, Markus Elsner, Farida Hellal, and Ali Ertürk. 2023. 'Whole-body cellular  
960 mapping in mouse using standard IgG antibodies', *Nature Biotechnology*.

961 Mäkinen, T., R. H. Adams, J. Bailey, Q. Lu, A. Ziemiecki, K. Alitalo, R. Klein, and G. A.  
962 Wilkinson. 2005. 'PDZ interaction site in ephrinB2 is required for the remodeling  
963 of lymphatic vasculature', *Genes Dev*, 19: 397-410.

964 Mitchell, L. S., and L. J. Colwell. 2018. 'Comparative analysis of nanobody sequence and  
965 structure data', *Proteins*, 86: 697-706.

966 Muylldermans, S. 2013. 'Nanobodies: natural single-domain antibodies', *Annu Rev  
967 Biochem*, 82: 775-97.

968 . 2021. 'A guide to: generation and design of nanobodies', *Febs J*, 288: 2084-102.

969 Nurmi, Harri, Pipsa Saharinen, Georgia Zarkada, Wei Zheng, Marius R Robciuc, and Kari  
970 Alitalo. 2015. 'VEGF-C is required for intestinal lymphatic vessel maintenance  
971 and lipid absorption', *EMBO Molecular Medicine*, 7: 1418-25.

972 Oliver, G., J. Kipnis, G. J. Randolph, and N. L. Harvey. 2020. 'The Lymphatic Vasculature  
973 in the 21(st) Century: Novel Functional Roles in Homeostasis and Disease', *Cell*,  
974 182: 270-96.

975 Park, Dae-Young, Junyeop Lee, Intae Park, Dongwon Choi, Sunju Lee, Sukhyun Song,  
976 Yoonha Hwang, Ki Yong Hong, Yoshikazu Nakaoka, Taija Makinen, Pilhan Kim, Kari  
977 Alitalo, Young-Kwon Hong, and Gou Young Koh. 2014. 'Lymphatic regulator  
978 PROX1 determines Schlemm's canal integrity and identity', *The Journal of Clinical  
979 Investigation*, 124: 3960-74.

980 Pham, T. H., P. Baluk, Y. Xu, I. Grigorova, A. J. Bankovich, R. Pappu, S. R. Coughlin, D. M.  
981 McDonald, S. R. Schwab, and J. G. Cyster. 2010. 'Lymphatic endothelial cell  
982 sphingosine kinase activity is required for lymphocyte egress and lymphatic  
983 patterning', *J Exp Med*, 207: 17-27.

984 Pymm, P., A. Adair, L. J. Chan, J. P. Cooney, F. L. Mordant, C. C. Allison, E. Lopez, E. R.  
985 Haycroft, M. T. O'Neill, L. L. Tan, M. H. Dietrich, D. Drew, M. Doerflinger, M. A.  
986 Dengler, N. E. Scott, A. K. Wheatley, N. A. Gherardin, H. Venugopal, D. Cromer, M.  
987 P. Davenport, R. Pickering, D. I. Godfrey, D. F. J. Purcell, S. J. Kent, A. W. Chung, K.  
988 Subbarao, M. Pellegrini, A. Glukhova, and W. H. Tham. 2021. 'Nanobody cocktails  
989 potently neutralize SARS-CoV-2 D614G N501Y variant and protect mice', *Proc  
990 Natl Acad Sci U S A*, 118.

991 Redder, E., N. Kirschnick, S. Bobe, R. Hägerling, N. R. Hansmeier, and F. Kiefer. 2021.  
992 'Vegfr3-tdTomato, a reporter mouse for microscopic visualization of lymphatic  
993 vessel by multiple modalities', *PLOS ONE*, 16: e0249256.

994 Riedel, J. H., J. E. Turner, and U. Panzer. 2021. 'T helper cell trafficking in autoimmune  
995 kidney diseases', *Cell Tissue Res*, 385: 281-92.

996 Schindelin, Johannes, Ignacio Arganda-Carreras, Erwin Frise, Verena Kaynig, Mark  
997 Longair, Tobias Pietzsch, Stephan Preibisch, Curtis Rueden, Stephan Saalfeld,

998 Benjamin Schmid, Jean-Yves Tinevez, Daniel James White, Volker Hartenstein,  
999 Kevin Eliceiri, Pavel Tomancak, and Albert Cardona. 2012. 'Fiji: an open-source  
1000 platform for biological-image analysis', *Nature Methods*, 9: 676-82.  
1001 Stump, B., Y. Cui, P. Kidambi, A. M. Lamattina, and S. El-Chemaly. 2017. 'Lymphatic  
1002 Changes in Respiratory Diseases: More than Just Remodeling of the Lung?', *Am J*  
1003 *Respir Cell Mol Biol*, 57: 272-79.  
1004 Trincot, Claire E., Wenjing Xu, Hua Zhang, Molly R. Kulikauskas, Thomas G. Caranasos,  
1005 Brian C. Jensen, Amélie Sabine, Tatiana V. Petrova, and Kathleen M. Caron. 2019.  
1006 'Adrenomedullin Induces Cardiac Lymphangiogenesis After Myocardial Infarction  
1007 and Regulates Cardiac Edema Via Connexin 43', *Circulation Research*, 124: 101-  
1008 13.  
1009 Ueda, Hiroki R., Ali Ertürk, Kwanghun Chung, Viviana Gradinaru, Alain Chédotal, Pavel  
1010 Tomancak, and Philipp J. Keller. 2020. 'Tissue clearing and its applications  
1011 in neuroscience', *Nature Reviews Neuroscience*, 21: 61-79.  
1012 Ulvmar, Maria H., and Taija Mäkinen. 2016. 'Heterogeneity in the lymphatic vascular  
1013 system and its origin', *Cardiovascular Research*, 111: 310-21.  
1014 Vieira, Joaquim Miguel, Sophie Norman, Cristina Villa del Campo, Thomas J. Cahill,  
1015 Damien N. Barnette, Mala Gunadasa-Rohling, Louise A. Johnson, David R.  
1016 Greaves, Carolyn A. Carr, David G. Jackson, and Paul R. Riley. 2018. 'The cardiac  
1017 lymphatic system stimulates resolution of inflammation following myocardial  
1018 infarction', *The Journal of Clinical Investigation*, 128: 3402-12.  
1019 Vincke, C., C. Gutiérrez, U. Wernery, N. Devoogdt, G. Hassanzadeh-Ghassabeh, and S.  
1020 Muylldermans. 2012. 'Generation of single domain antibody fragments derived  
1021 from camelids and generation of manifold constructs', *Methods Mol Biol*, 907:  
1022 145-76.  
1023 Yang, Y., and G. Oliver. 2014. 'Development of the mammalian lymphatic vasculature', *J*  
1024 *Clin Invest*, 124: 888-97.  
1025 Zarkada, G., X. Chen, X. Zhou, M. Lange, L. Zeng, W. Lv, X. Zhang, Y. Li, W. Zhou, K. Liu, D.  
1026 Chen, N. Ricard, J. Liao, Y. B. Kim, R. Benedito, L. Claesson-Welsh, K. Alitalo, M.  
1027 Simons, R. Ju, X. Li, A. Eichmann, and F. Zhang. 2023. 'Chylomicrons Regulate  
1028 Lacteal Permeability and Intestinal Lipid Absorption', *Circ Res*, 133: 333-49.  
1029 Zhang, Y., H. Ortsäter, I. Martinez-Corral, and T. Mäkinen. 2022. 'Cdh5-lineage-  
1030 independent origin of dermal lymphatics shown by temporally restricted lineage  
1031 tracing', *Life Sci Alliance*, 5.  
1032