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Abstract

Background

Individuals with spinal cord injuries (SCI) frequently rely on urinary catheters to drain urine
from the bladder, making them susceptible to asymptomatic and symptomatic catheter-
associated bacteriuria and urinary tract infections (UTI). Proper identification of these
conditions lacks precision, leading to inappropriate antibiotic use which promotes selection
for drug-resistant bacteria. Since infection often leads to dysbiosis in the microbiome and
correlates with health status, this study aimed to develop a machine learning-based diagnostic
framework to predict potential UTI by monitoring urine and/or catheter microbiome data,

thereby minimising unnecessary antibiotic use and improving patient health.

Results

Microbial communities in 609 samples (309 catheter and 300 urine) with asymptomatic and
symptomatic bacteriuria status were analysed using 16S rRNA gene sequencing from 27
participants over 18 months. Microbial community compositions were significantly different
between asymptomatic and symptomatic bacteriuria, suggesting microbial community
signatures have potential application as a diagnostic tool. A significant decrease in local
(alpha) diversity was noted in symptomatic bacteriuria compared to the asymptomatic
bacteriuria (P < 0.01). Beta diversity measured in weighted unifrac also showed a significant
difference (P < 0.05) between groups. Supervised machine learning models trained on
amplicon sequence variant (ASVs) counts and bacterial taxonomic abundances (Taxa) to
classify symptomatic and asymptomatic bacteriuria with a 10-fold cross-validation approach.
Combining urine and catheter microbiome data improved the model performance during
cross-validation, yielding a mean area under the receiver operating characteristic curve
(AUROC) 0f 0.91-0.98 (Interquartile range, IQR 0.93-0.96) and 0.78-0.91 (IQR 0.86-0.88)

for ASVs and taxonomic features, respectively. ASVs and taxa features achieve a mean
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AUROC of 0.85-1 (IQR 0.93-0.98) and 0.69-0.99 (IQR 0.78-0.88) in the independent held-
out test set, respectively, signifying their potential in differentiating symptomatic and

asymptomatic bacteriuria states.

Conclusions

Our findings demonstrate that signatures within catheter and urine microbiota could serve as

tools to monitor the health status of SCI patients. Establishing an early warning system based
on these microbial signatures could equip physicians with alternative management strategies,
potentially reducing UTI episodes and associated hospital costs, thus significantly improving

patient quality of life while mitigating the impact of drug-resistant UTI.

Background

Spinal cord injury patients are at high risk of catheter-associated urinary tract infection
(CAUTI) [1]. CAUTI typically manifests as a bacteriuria which is generally defined as a
urine culture with at least 10"8 colony forming units (CFU)/L, of an identified
microorganism(s) [2]. Bacteriuria can be further classified as asymptomatic bacteriuria (AB)
or symptomatic bacteriuria (SB) [3]. Patients with AB generally lack signs and symptoms of
UTTI and do not require treatment [4, 5]. Conversely, SB is associated with symptoms such as
fever, urethral and bladder inflammation, and potential renal scarring among other symptoms
[6]. While bacteriuria is a significant risk factor for CAUTI in SCI patients, differentiating
AB from SB can be challenging due to limitations in diagnosis and the influence of various
etiologic factors [7, 8]. Accurate identification of these conditions is crucial because CAUTI
often necessitates extensive antibiotic use. Unfortunately, this therapy is becoming less
effective due to the emergence of multidrug-resistant (MDR) bacteria. This poses life-
threatening risks and creates a significant economic burden on public health systems.

Healthcare costs associated with CAUTI are rising, with estimates suggesting millions of
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dollars are spent annually on treating hospitalisations caused by CAUTI, resulting in over

19,000 deaths in the United States [9-11].

The main cause for the development of CAUTI has been associated with the presence of
pathogenic bacteria in microbial biofilms formed on the surface of urinary catheters. Reports
show that CAUTI are predominantly caused by Escherichia coli, Proteus mirabilis,
Pseudomonas aeruginosa, Klebsiella pneumoniae and Enterococcus faecalis, bacteria that
have been associated with biofilm formation in urinary catheters [3, 12, 13]. Routinely, the
diagnosis of CAUTI involves pathogen identification by urine screening followed by
antibiotic treatment based on antibiogram reports produced by pathology laboratories.
Despite the availability of screening and diagnostic tools for CAUTI, there is a lack of
strategies that can successfully predict CAUTI. However, advances in the study of catheter-
associated biofilm communities by next generation sequencing technologies can generate
valuable information to build predictive platforms for CAUTI. For example, reports based on
sequence analysis of urinary catheter associated-biofilms have shown that microbial
communities associated with urinary catheters from long-term catheterised patients are
diverse and show variability after UTI events or antibiotic treatments [14-16]. This fact leads
to the idea that critical changes in the microbial community composition of urinary catheters
can reveal the early steps of a UTI event. Thus, detection of early shifts in biofilm
communities can be explored to establish ‘community thresholds’ which might serve as an

early warning approach before a UTI event.

Machine learning approaches have been implemented for the prediction of various disease
states [17]. Machine learning's ability to capture subtle differences in feature abundances
using 16S rRNA data allows for accurate prediction and classification of diseases [18-21].

Previous studies have explored machine learning models to predict UTI based on patient
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demographic information, biochemical and immunological markers [22-25]. However,
demographic data alone could not explain the underlying causes of the infection and none of
the studies underwent precise characterisation. Using a machine learning-based diagnostic
framework, this work aimed to investigate a predictive platform for CAUTI based on

microbial communities in the urine and catheters of patients.

Here, twenty-seven SCI participants were monitored longitudinally for changes in their
urinary and catheter microbiome. We hypothesised that monitoring changes in the bacterial
communities colonising patients’ catheters and urine can serve as an early warning system for
impending CAUTI. Our data suggests that the composition of these microbial communities is
dynamic, shifting in response to factors such as antibiotic use or pathogen colonisation. The
results reveal that microbial signatures within urine and catheter could be used as a potential
predictor of asymptomatic and symptomatic bacteriuria with high accuracy using a
supervised machine learning model. This early diagnostic tool could empower clinicians to
intervene before a full-blown infection develops. This approach has the potential to improve

patient outcomes, reduce healthcare costs, and mitigate the spread of MDR pathogens.

Methods and materials

Study cohort and baseline characteristics

Participants were recruited from four specialist SCI units (Prince of Wales Hospital, Royal
North Shore Hospital, Royal Rehab Ryde and Fairfield West Medical Centre) in New South
Wales, Australia. They were all adults, aged 18 years and older with inclusion criteria of
stable SCI, stable neurogenic bladder management for at least 4 weeks and agreement to
fortnightly telephone consultations over 18 months. They also agreed to have their urine and
catheter specimens and extracted DNA from these specimens stored for future studies.

Exclusion criteria included long-term antibiotic therapy, immunosuppressant use, invasive
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120  mechanical ventilation, chronic infections, surgical bladder interventions, severe

121 renal/hepatic failure, and concurrent enrolment in any intervention studies.

122 The samples were collected during regular catheter changes by their care team. Only samples
123 that would be otherwise discarded were collected, including 5 cm of the bladder end of the
124 used catheter and urine samples from the new catheter. Participants reporting potential UTI
125  symptoms were instructed to contact their medical practitioner, providing additional urine
126  samples and 5 cm of the old catheter to the research team if changed. Baseline and first UTI
127  event samples underwent routine pathology tests. Diagnosis of symptomatic bacteriuria/ UTI
128  relied on subjective complaints and lab findings, following diagnostic criteria first published
129  in the SINBA randomised controlled trial [26-28]. It was crucial to distinguish new or

130  increased symptoms from chronic issues, as many symptoms alone did not justify treatment.

131  UTI symptoms were defined by new onset symptoms and laboratory evidence of UTI.

132 Between November 2021 and March 2023, 39 potential participants expressing interest were
133 screened, with 27 enrolled. Participants were predominately male (66.7%), female (33.3%)
134  with a mean age of 55 years (Supplementary Table S1). Most used suprapubic catheters, with
135  only one participant using an indwelling urinary catheter. The median time since SCI was 18
136  years (range: 98 days to 56 years). The research team received subjective complaints of

137  CAUTI symptoms, designating 67 UTI/ symptomatic bacteriuria events based on symptoms,

138  pathology analysis and self-reported data

139  Sample processing

140  Samples were processed according to previously described methods with some modifications
141  [14]. A 5 cm section of the bladder end of the used catheter was collected in a sterile

142 container with 5 mL of sterile saline (0.9% NaCl). A fresh catch urine specimen was also

143 collected from the newly installed catheter in a separate sterile container. Both specimens
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144  were transported to the laboratory by courier or overnight express post and processed

145  immediately on the day of receiving samples. The catheter was cut into half lengthwise along
146  the inflation line using a sterile scalpel blade. The content inside was soaked with 1 mL of
147  saline. A 1 mL syringe plunger was used to dislodge the soaked content by running the

148  plunger back and forth on the two halves of the catheter pieces. The catheter pieces and
149  plunger were transferred to the original container with saline, vortexed and sonicated in an
150  ultrasonic water bath (Powersonic 420, Thermoline Scientific) at medium power for 1 min,
151  after which time 1 mL of catheter cell suspension as well as 12 mL of urine samples were
152 centrifuged at 5000 g for 5 min. The supernatants discarded from both tubes and the cell
153 pellets were stored at -20°C for DNA extraction. The remaining catheter cell suspensions
154  were centrifuged at 5000 g for 5 min and cell pellets were frozen at -80°C in glycerol for

155  future analysis.

156  DNA extraction

157  Total DNA was extracted from catheter and urine pellets obtained in the previous step using
158  DNeasy PowerSoil Pro Kit (Qiagen, cat. no. 47016) according to the manufacturer’s

159  instructions except that the final elution was in 50 pL of water. The quality and quantity of
160  the isolated DNA were determined using a NanoDrop spectrophotometer (Thermo Fisher

161  Scientific, USA). The DNA samples were stored at -20°C before further analysis.

162  Library preparation and amplicon sequencing

163 The V4 region of the bacterial 16S rRNA gene was amplified for sequencing by a two-stage
164  PCR process. The first PCR was carried out using 10 ng of genomic DNA using 515F (5'-
165 GTGYCAGCMGCCGCGGTAA 3') and 806R (5'- GGACTACNVGGGTWTCTAAT 3')
166  primers including the Illumina adapters and KAPA HiFi HotStart ReadyMix (Cat

167 No0.KR0370-v14.22; Roche, Switzerland) under the PCR cycle: initial denaturation at 95°C
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168  for 2 min; followed by 20 cycles of: 95°C for 15 s, 60°C for 15 s, 72°C for 30 s; and a final
169  extension step at 72°C for 1 min and hold at 4°C. The PCR products from the first PCR were
170 diluted in water (1:40) and 3 pL of the diluted products were used as templates for the second
171  PCR to add unique barcodes to each sample. PCR conditions were the same as the first PCR
172 except that only 10 cycles were used. Two puL of each final product was pooled into one tube
173 and solid-phase reversible immobilisation (SPRI) beads (Beckman Coulter, USA) were used
174  to remove excess primers. The cleaned libraries were sequenced on an Illumina MiSeq v2
175  Nano 2 x 150 bp to assess read counts. The final normalised libraries were sequenced on an

176  Illumina MiSeq v3 2 x 300 bp.

177  Sequence processing and alignment

178  Sequencing data were analysed using the Quantitative Insights Into Microbial Ecology 2

179  program (QIIME2) version 2022.8.0 [29]. Raw fastq sequencing reads were imported to

180  QIIME2 in iHPC environment using qiime ‘tools import’ plugin. The reads were filtered to
181  remove sequencing primers using cutadapt [30]. The primer-trimmed sequences were

182  denoised and clustered to amplicon sequence variants (ASVs) using DADA?2 plugins. At the
183  denoising step, the forward and reverse reads were truncated at position 220 and 160 bp,

184  respectively, to retain only high-quality sequences [31]. The orientation of the denoised

185  sequences was corrected by aligning to the reference sequences using ‘rescript orient-seq’
186  plugins [32]. For taxonomic assignments, the oriented sequences were aligned to the

187  greengenes2 16S rRNA reference database (V4 region) using ‘feature-classifier’ plugin [33].
188  The Naive Bayes classifier pre-trained on the V4 region was obtained from greengenes2 data
189  repository. Greengenes2, released in 2023, is the latest 16S rRNA reference database and
190  contains high-quality full length 16S sequences from the Living Tree Project with updated
191  taxonomic information. The feature table was filtered to remove unassigned features based on

192  the taxa table obtained during the alignment step. The feature table was further subjected to
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taxonomic filtering to remove low abundant phyla (if feature frequency less than 5). The
filtered sequences were aligned using ‘mafft’ and ‘fasttree’ plugins to generate rooted

phylogenetic trees [34, 35].

Microbiome diversity and taxonomic analysis

The feature table, taxonomic table and rooted tree obtained from the previous section were
imported to build phyloseq object in R program using phyloseq package [36]. All samples
were rarefied at 11,000 reads with the phyloseq function ‘rarefy even_ depth’ to normalise
the variance [37]. Rarefaction retained 591 samples (307 catheter and 284 urine) and 18 of
the samples were excluded from the analysis due to insufficient reads. All the downstream
alpha diversity, beta diversity, taxonomic and machine learning analyses were performed
with the rarefied dataset. The alpha diversity ‘Shannon index” was computed using the R
package ‘Microbiome’ [38]. Principal coordinates analysis (PCoA) was carried out on the
beta diversity (weighted and unweighted unifrac) distance metrics using ‘microeco’ R
package [39]. Taxonomic abundances were calculated using ‘microeco’ package at different
taxonomic level. Taxonomic abundances data for machine learning were prepared using the
‘trans_classifier’ function of the microeco package in R. Shared and unique taxa analyses
were also conducted using the ‘microeco’ package. Data were visualised using the ‘ggplot2’

package in R version 4.2 [40].

Supervised machine learning

The raw ASVs counts and taxonomic abundance data were pre-processed in three steps using
the R package mikropml [41]. First, the raw ASVs counts and taxonomic abundance data
were pre-processed using the default method. Briefly, the default method normalised the data
by centering and scaling and removed variables with near-zero variance. Second, the unique

ASVs or Taxa belonging to AB and SB were also subjected to mikropml pre-processing to
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remove zero variance features only. In the third and final step, the feature lists from the first
and second steps were combined and again subjected to pre-processing using mikropml to
remove zero variance features. The pre-processed data were utilised to initiate the supervised
machine learning pipeline using the PyCaret package (version 3.2) in python with default
parameters unless otherwise stated [42]. For 20 random seeds, transformed data were
subjected to stratified (proportional class distribution) split to obtain 80% training and 20%
held-out sets. We used 10 iterations of stratified 10-fold cross-validations to ensure the
robustness of our approach and to precisely evaluate the prediction power of the models. We
applied SMOTE (Synthetic Minority Over-sampling Technique) to fix imbalances in the
distribution of the target class in the training set during the PyCaret setup function. We also
removed outliers using sklearn's “IsolationForest” method with default threshold (0.05)

during the setup function.

A second round of feature selection was applied to remove additional features based on the
classic feature section method within PyCaret setup with the ‘n_features to select’ parameter
was set at 0.9. During model optimisation, a total of 16 machine learning algorithms from the
scikit-learn library were used to construct initial models (Supplementary Table S2) [43]. The
top three models, based on balanced accuracy, were blended and tuned. The blended and
tuned model performance was evaluated on both cross-validation and held-out sets. We
evaluated model performance based on several metrics including AUROC (summarises trade-
off between sensitivity and specificity across all possible thresholds) and AUPRC (focuses on
the trade-off between precision and recall). In addition to these two metrics, we also provided
accuracy (correct prediction / all prediction), precision (true positives divided by the total
number of positive predictions), recall (weighted average of sensitivity and specificity),
balanced accuracy (arithmetic average of sensitivity and specificity) and F1 scores (harmonic

mean of the precision and recall) (Supplementary Tables S3 and S4). All hyperparameters

10
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were automatically tuned and optimised by the PyCaret. Finally, the most important ASVs
and Taxa contributing to model performance were determined by the feature importance

score extracted from the top performing model.

Statistical analysis

Statistical significance for the alpha diversity (Shannon index) metric was calculated with
non-parametric Wilcoxon test in R. Statistical significance for beta diversity (weighted and
unweighted unifrac distance) metrics were determined by Permutational Multivariate
Analysis of Variance (PERMANOVA) with a number of 999 permutations using QIIME2
‘diversity beta group significance’ plugin [44]. Differences in AUROC scores between cross-
validation and held-out set were determined by no-parametric Wilcoxon test in R.
Differences in ASVs and taxa abundances were also determined by no-parametric Wilcoxon

test in R.

Results

Evaluation of microbial community composition in asymptomatic and symptomatic
bacteriuria

To investigate the microbial community composition in asymptomatic (AB) and symptomatic
(SB) bacteriuria, we performed 16S rRNA sequencing analysis on a total of 300 urine and
309 catheter samples collected from 27 participants (Fig. 1a). A total of 35,101,926 high
quality sequences were produced, with a median of 61,613 sequences per sample. After
quality filtering, sequencing reads were clustered into 1246 amplicon sequence variants
(ASVs) of which 1128 ASVs remained after rarefaction. The AB group harboured more
distinct ASVs compared to the SB group (Fig. 1b). Out of 1128 ASVs, 874 (77%) and 79
(7%) were unique to AB and SB, respectively, with 175 (16%) shared by both groups. The

identified ASVs belonged to diverse phylogenetic lineages, spanning 8 phyla, 11 classes, 43

11
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266  orders, 68 families, 138 genera and 144 species (Fig. 1c). Nearly all (mean ~100%) ASVs
267  were classified to the family level, while a mean of 76.1% and 34.1% were assigned to genus
268  and species levels, respectively. The majority of the ASVs were Proteobacteria (n=433,

269  38.4%), followed by Firmicutes D (n=183, 16.2%), Actinobacteriota (165, n=14.6%),

270  Firmicutes A (n=112, 9.9%), Firmicutes C (n=98, 8.7%), Bacteriodota (n=85, 7.5%),

271  Fusobacteriota (n=35, 3.1%) and Campylobacterota (n=17, 1.5%). Enterobacteriaceae

272 (n=282, 25%) and Pseudomonadaceae (n=70, 6%) were the largest contributors to the

273  Proteobacteria phyla (Supplementary Fig. S1).

12
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276  Fig. 1. Study design and distribution of 16S rRNA amplicon sequence variants.
277  (a) The schematic shows the overview of the study design and workflow. (b) Venn diagram

278  showing the unique and shared ASVs between asymptomatic (AB) and symptomatic (SB)
279  bacteriuria groups. (c) Phylogenetic tree for 1128 microbiome members constructed based on
280  16S rRNA amplicon sequence variants. Tree branches are coloured based on their respective
281  phylum. The inner, middle and outer bar plot rings indicate the proportion of counts split by
282  site (catheter vs urine), type (AB vs SB) and antibiotic use (with and without), respectively,
283  as indicated in the legend.
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We assessed and compared the microbial community composition between AB and SB
groups for urine and catheter samples separately as well as when combined. Alpha diversity,
measured by Shannon index (accounting for both species abundance and evenness), was
significantly lower in SB compared to AB, both in the combined and individual datasets (Fig.
2a-c). The mean Shannon index was 1.3 for AB (IQR 0.8-1.8) compared to 1.0 for SB (IQR
0.4-1.4) in the combined dataset. Beta diversity analysis using weighted unifrac distances
revealed significant differences in community composition between AB and SB groups on
the combined dataset (PERMANOVA, Pseudo-F = 2.5, P =0.02) (Fig. 2d). While these
differences were not statistically significant when analysed separately for urine or catheter
samples, a moderate difference was observed for urine (P = 0.1) when compared to catheter
(P =0.2) (Fig. 2e-f). These findings suggest an altered community composition in SCI
patients with symptomatic bacteriuria. Participant-specific analysis showed distinct clustering
of microbial communities between AB and SB groups in participants one, six, eight, nine,

eleven, twenty-five and twenty-six (Supplementary Fig. S2 and S3).
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Fig. 2. Differences in microbiota community structure and composition between
asymptomatic (AB) and symptomatic (SB) bacteriuria samples.

(a-c) Alpha diversity measured by the Shannon index of AB (blue) and SB (red) samples
across combined (a), catheter (b) and urine (c). Each data point represents an individual
sample. Statistical analysis was performed using Wilcoxon rank-sum test and significance is
indicated by, ** P <0.01; * P <0.05 between groups. (d-f). Principal coordinates analyses
(PCoA) of beta-diversity between groups based on weighted unifrac distance matrices are
shown across combined (d), catheter (¢) and urine (f). Each group is shown in a different
colour (AB: blue, SB: red) with centroid and each line represents an individual sample.
Statistical significance was determined by permutational ANOVA (PERMANOVA) with 999
permutations between groups and pairwise p-values are indicated inside of each plot. (g-1)
Overview of taxonomic composition in AB and SB groups across combined (g), catheter (h)
and urine (1). The points (AB: blue, SB: red) and solid line (black) depicting mean relative
abundances in percentages and their differences, respectively, for the phyla as indicated in the
y-axis.

15


https://doi.org/10.1101/2024.08.09.607254
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.08.09.607254; this version posted August 10, 2024. The copyright holder for this preprint

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

made available under aCC-BY-NC-ND 4.0 International license.

Taxonomic analysis was conducted to identify bacterial groups driving the differences
between AB and SB samples. At the phylum level, the greatest differences in the mean
relative abundances were observed for Proteobacteria, followed by Firmicutes C and
Fusobacteriota (Fig. 3g-1 and Supplementary Fig. S4). The mean relative abundance of
Proteobacteria was higher in SB (64.5%) compared to AB (54.6%). Conversely,
Firmicutes_C (AB: 8.2%, SB: 3.9%) and Fusobacteriota (AB: 1.7%, SB: 0.6%) displayed
lower abundances in SB compared to AB. This pattern mirrored the differences observed in
the catheter and urine subsets, though with some variations. Notably, Proteobacteria
abundance was higher in urine (AB: 65.8%, SB: 74.6%) compared to the catheter (AB:
44.4%, SB: 55.1%). Conversely, Actinobacteriota and Firmicutes displayed higher
abundances in the catheter compared to urine. Hence, the phyla level analysis revealed that
Proteobacteria and Firmicutes C were mostly associated with SB and AB respectively. At the
family level, Enterobacteriaceae A, Pseudomonadaceae and Actinomycetaceae were the
three most abundant families observed across the three datasets. Genus-level analysis further
revealed distinct profiles between AB and SB. Notably, SB samples harboured a higher
proportion of Achromobacter, Actinotignum, Escherichia 710834, Massilia, Proteus,
Staphylococcus, and Stenotrophomonas_A. In contrast, AB samples showed higher
abundances of Enterococcus B, Fusobacterium C, Serratia D, Streptococcus, and

Veillonella A.

These findings highlight the value of analysing both urine and catheter samples for a more
comprehensive understanding of microbial community composition, particularly in
identifying UTI-related signatures. While urine alone may reveal some differentiation,

combining both sample types provides a more nuanced picture.
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337  Symptomatic bacteriuria and use of antibiotics lead to alterations in microbial

338  community composition

339  About one-fifth (~19%) of the samples (14% of AB and 61% of SB) were collected while
340  participants were taking antibiotics. This use may not always have been for UTI but for other
341  secondary infections. Since antibiotics disrupt the microbiota, we aimed to understand the
342  true differences in microbial community composition between asymptomatic and

343  symptomatic individuals, unaffected by antibiotic influence. We divided the samples based
344  on antibiotic use and UTI symptoms: Asymptomatic without antibiotics (A), Asymptomatic
345  with antibiotics (AAb), Symptomatic without antibiotics (S) and Symptomatic with

346  antibiotics (SAb). These four groups shared 5% (n = 56) of the ASVs while 64.1% (n=715),
347 9.5% (n=106), 3.6% (n =40) and 3.1% (n = 35) of ASVs were unique to A, AAb, S and

348  SAb, respectively (Fig. 3a). This suggests distinct microbial compositions for each group.

349  Alpha diversity analysis revealed that both antibiotic use and symptomatic bacteriuria lead to
350 asignificant decrease in diversity (Fig. 3b). A significant decrease in alpha diversity was

351  observed in AAb (P <0.0001), S (P <0.01) and SAb (P <0.01) compared to the A group. No
352  significant difference was observed between S and SAb. The community compositions

353  among four groups were also evaluated by unweighted (qualitative) and weighted

354  (quantitative) unifrac beta diversity metrices (Fig. 3c-d). The unweighted measure of beta

355  diversity metrics further demonstrated significant differences between A and S. The

356  unweighted UniFrac showed a significant separation between A vs. AAb (P = 0.006) and A
357  vs. S (P=0.01). The weighted UniFrac showed a significant pairwise separation between the

358  antibiotic treated group compared to the A and S.
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360 Fig. 3. Differences in microbiota community structure among asymptomatic and

361 symptomatic bacteriuria groups with and without antibiotics use.

362  (a) Venn diagram showing the unique and shared ASVs among four groups, asymptomatic
363  samples without antibiotics use (A), asymptomatic samples with antibiotics use (AAD),

364  symptomatic samples without antibiotics (S), and symptomatic samples with antibiotics

365 (SAD). (b) Alpha diversity measured using the Shannon index among the four groups are

366  shown in boxplots. Each data point represents an individual sample. Statistical analysis was
367  performed using Wilcoxon rank-sum test and significance are indicated by, **** P <(0.0001;
368  ** P<0.01 compared to group A (c-d). Principal coordinates analyses (PCoA) of beta-

369  diversity between groups based on unweighted (c) and weighted (d) unifrac distance matrices
370  are shown. Each group is shown in a different colour with centroid and each line represents
371  anindividual sample. Statistical significance was determined by permutational ANOVA

372 (PERMANOVA) with 999 permutations between groups and pairwise p-values are indicated
373  inside of each plot.
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374  Analysis of the predominant taxa revealed higher relative abundances of Proteobacteria in
375  antibiotic-treated groups (AAb 64.3% and SAb 71.7%) compared to untreated groups (A
376  53.1% and S 57.6%) (Fig. 4). This increase can be attributed to the Pseudomonadaceae

377  family, with a mean relative abundance of 22.9% and 22.8 % in AAb and SAb, respectively.
378  Additionally, the S group displayed higher proportions of Firmicutes D (~25%) compared to
379  the other sample groups. At the family level, Enterobacteriaceae A dominated the S group,
380  with the highest mean relative abundance (49.3%). Other notable families in S included

381  Staphylococcaceae (17.9%), Actinomycetaceae (8.9%), Xanthomonadaceae 616009 (3.1%)
382  and Mycobacteriaceae (2.3%). Genus-level analysis revealed enrichment of Acinetobacter,
383  Actinotignum, Corynebacterium, Escherichia 710834, Morganella, Proteus, Staphylococcus,
384  and Stenotrophomonas in S compared to other sample groups. Notably, four genera:

385  Escherichia_710834 (30.3%), Staphylococcus (17.9%), Proteus (10.6%), and Actinotignum

386  (8.9%) constituted over two-thirds of the S group bacterial composition.

387  These results confirm that community composition between asymptomatic (A) and

388  symptomatic (S) groups differs significantly. The analysis also revealed that the use of

389  antibiotics significantly alters the community composition in asymptomatic samples. These
390 findings also highlight the value of analysing antibiotic treated and untreated samples for a
391  more comprehensive understanding of microbial community composition. Furthermore, this
392  analysis identified potential taxa associated with A and S, highlighting their potential as

393  biomarkers for differentiating these two groups.
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394
395  Fig. 4. Overview of taxonomic composition in asymptomatic and symptomatic

396  bacteriuria with and without antibiotics treated groups from combined dataset.

397  The colour heatmaps depicting mean relative abundances in percentages ranging from blue
398  (low abundance) to red (high abundance) by phylum, family and genus. The numbers inside
399  the heatmaps show mean relative abundance of corresponding taxa indicated in y-axis across
400  four different groups, asymptomatic samples without antibiotics use (A), asymptomatic

401  samples with antibiotics use (AAb), symptomatic samples without antibiotics (S) and

402  symptomatic samples with antibiotics (SAb). Family and genus are shown if their mean

403  relative abundances in any of the group was more than 1.
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Machine learning can classify symptomatic and asymptomatic bacteriuria with high
accuracy

Our study explored the potential of urine and catheter microbial composition as a diagnostic
tool for classifying symptomatic and asymptomatic bacteriuria using supervised machine
learning. Two feature sets derived from 16S rRNA gene amplicon analysis, ASVs counts and
taxonomic abundances (Taxa), were used to train and evaluate prediction models. We aimed
to accurately classify both AB and SB patients. Clinically, it is important to determine the
timeframe over which patients with AB can retain their existing instilled catheters, while
those with SB, or at-risk microbiological profiles, may need catheter replacement to minimise
advanced UTI risks. Therefore, we applied the AUROC metric, which evaluates the trade-off
between sensitivity and specificity across all possible thresholds, allowing for comprehensive
comparisons of classifier performance on various datasets. Recognising the imbalanced
nature of our dataset (more AB cases, fewer SB), we additionally provide AUPRC as a
complementary measure. AUPRC focused on the trade-off between precision and recall,
considering a baseline equivalent to the proportion of minority class (SB) within the entire
sample. Both cross-validation and held-out set results were reported since including both
results demonstrate the robustness of the model's performance as the former estimates the
stability and generalisability of a model by repeatedly training and testing on different subsets
of data, while the later one provides an independent evaluation of the model (Fig. 5a).
Additionally, evaluation of both is useful to check any overfitting and underfitting
performance of the trained model. Here, the majority of datasets showed a similar level of
performance during cross-validation and held-out evaluation (Fig. 5b). The mean AUROC
differences between the cross-validation and held-out sets were not statistically different in
the majority of datasets. This indicates that the model did not show any overfitting or

underfitting issues, particularly in ASVs and without antibiotic datasets.
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429  Model performance was evaluated across three variables: antibiotic use (samples with vs.
430  without), feature type (ASVs vs Taxa) and sample type (catheter, urine or combined). Firstly,
431  we assessed model performance on samples with and without antibiotic treatment. This

432  aimed to account for the significant effect antibiotics have on bacterial diversity. Importantly,
433  diagnosing untreated samples (person) seeking medical advice is more clinically relevant.
434  However, we also evaluated samples with antibiotic use, considering that many SCI patients
435  receive antibiotics, necessitating accurate diagnosis of both antibiotic-associated

436  asymptomatic and symptomatic bacteriuria in these cases. Cross-validation results showed
437  that excluding antibiotic-treated samples improved model accuracy. Mean AUROC scores
438  with ASV features ranged from 0.91-0.98 (IQR 0.93-0.96) without antibiotics to 0.82-0.89
439  (IQR 0.83-0.86) with antibiotics (Fig. 5b and Supplementary Tables S3). Held-out set

440  evaluation confirmed this trend, with a mean AUROC of 0.85-1 (IQR 0.93-0.98) and 0.69-
441  0.93 (IQR 0.81-0.88) in untreated and treated samples, respectively (Fig. 5b and

442 Supplementary Tables S4). The ASV feature on combined and without antibiotic dataset

443  showed the highest AUPRC with a mean of 0.37-0.1 (IQR 0.6-0.84) compared to any other
444  dataset with a baseline AUPRC value of 0.05. These findings suggest that excluding

445  antibiotic-treated samples improves overall model performance for combined (catheter and

446  urine) datasets.

447  Next, we compared model performance between ASV and taxa features and found that ASV
448  yielded higher AUROC scores, reaching 0.91-0.98 (IQR 0.93-0.96) compared to 0.78-0.91
449  (IQR 0.86-0.88) for taxa when trained on untreated combined datasets (Fig. 5b and

450  Supplementary Tables S3). Held-out set evaluation also showed this trend, with a mean

451  AUROC of 0.85-1 (IQR 0.93-0.98) and 0.69-0.99 (IQR 0.78-0.88) for ASV and taxa features,
452  respectively (Fig. 5b and Supplementary Tables S4). The same trend was also observed in

453  datasets with antibiotics, which showed better performance with ASV during cross-validation
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with mean AUROC of 0.82-0.89 (IQR 0.83-0.86) compared to taxa (AUROC 0.72-0.84, IQR
0.77-0.81) datasets (Fig. 5b and Supplementary Tables S3). Held-out evaluation showed a
mean AUROC of 0.69-0.93 (IQR 0.81-0.88) and 0.55-0.86 (IQR 0.66-0.76) for ASV and taxa
feature, respectively (Fig. 5b and Supplementary Tables S4). The ASV feature also showed a
higher AUPRC score compared to taxa on both with and without antibiotic dataset. Hence,
the results show in general a better performance of the models trained with ASV feature

compared to the taxa feature across all datasets.

Finally, we compared model performance on combined datasets versus catheter and urine-
only datasets, considering the differences in diversity observed between these groups. ASV
features and exclusion of antibiotic-treated samples led to the best performance in combined
datasets (mean AUROC 0.91-0.98, IQR 0.93-0.96) compared to catheter (AUROC 0.83-0.98,
IQR 0.88-0.93) or urine-only datasets (AUROC 0.87-0.98, IQR 0.92-0.95) during cross-
validation (Fig. 5b and Supplementary Tables S3). Held-out evaluation also confirmed this
trend, with ASV features achieving a mean AUROC of 0.85-1 (IQR 0.93-0.98) in the
combined dataset, compared to 0.7-0.99 (IQR 0.85-0.96) for catheter and 0.85-1 (IQR 0.93-
0.98) for urine-only datasets (Fig. 5b and Supplementary Tables S4). The AUPRC score was
highest for the combined dataset 0.37 to 1 (IQR 0.6-0.84) followed by urine 0.18 to 1 (IQR
0.35-0.58) and catheter 0.13 to 0.87 (IQR 0.24-0.6) with a baseline 0.05, 0.04 and 0.06
respectively. These findings indicate that using combined datasets significantly improved

model performance compared to analysing individual sampling sites.

We blended the top three performing models and evaluated the performance on the blended
and tuned model. Among the 16 tested models, we observed that nine models appeared in the

top three list when evaluated in ASV and Taxa combined and without antibiotics datasets
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477  (Fig. 5c¢). Logistic regression (Ir), Naive bayes (nb) and Quadratic discriminant analysis (qda)

478  classifier were the highest performing classifier.
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480  Fig. 5. Workflow and predictive performance of machine learning models based on
481  microbiota composition.
482  (a) Workflow for supervised machine learning. The pre-processed data were subjected to
483  stratified (proportional class distribution) split to create 80% training and 20% held-out sets
484  (repeated 20 times). A 10-fold cross-validation was performed on the training data to select
485  the best models. Top three models based on accuracy were blended and tuned (repeated 10
486  times). The blended and tuned model performance was evaluated on both cross-validation
487  and held-out sets. (b) The boxplots show performance of ML models using AUROC on
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488  cross-validation and held-out testing set (left panel) and AUPRC on held-out testing set (right
489  panel) across different datasets. The datasets were arranged in descending order from top to
490  bottom based on the mean AUROC values. The median depicted as centre line in the box,
491  edges depict inter-quartiles, and whiskers as distribution of the data (1.5 times of the

492  quartiles). Outliers are shown as points. The random chances of AUROC depicted by a

493  vertical dashed ‘dark-cyan’ line at 0.5. The baseline chances of AUPRC depicted as vertical
494  solid ‘dark-cyan’ line underneath of the boxplots for each dataset. The baseline performance
495  for AUPRC was calculated as the fraction of the samples in the minority class (SB) over the
496  total number of samples in the test set. Statistical analysis was performed using Wilcoxon
497  rank-sum test and significance is indicated by, *** P <0.001; ** P <0.01; * P <0.05; ns:
498  not significant between cross-validation and held-out set. (c) Frequency of the top three

499  blended models across ASV and Taxa (combined and without antibiotics) datasets.

500

501

502  ASVs and Taxa belonging to Proteobacteria phyla showed the highest importance in
503  classification of AB and SB

504  Given the good predictive performances of the models trained on the ASV feature, we next
505  sought to identify ASVs that were most important in classifying the AB and SB using the
506  feature importance derived from the top performing classifier. We plotted the top 20 ASVs,
507  of which 9 ASVs belonged to the Proteobacteria phyla, which includes members of 8

508  Enterobacteriaceae A and 1 Pseudomonadaceae families (Fig. 6a). A member of the

509  Escherichia 710834 genus (ASV 1126) had the strongest effect on feature importance

510  followed by a member of the Staphylococcus genus (ASV 224). Plotting the relative

511  abundance of these top 20 ASVs revealed significant differences between AB and SB (Fig.
512 6a). In particular, the median relative abundance of the genus Escherichia 710834 (ASV
513 1126, 1040, 1074) was higher in SB compared to AB. The relative abundance of the genus
514  Escherichia 710834 (ASV 1020), Enterobacteriaceaec A (ASV 933), Enterococcus B (ASV
515  163) and Staphylococcus (ASV 224) were significantly different between AB and SB (P <
516  0.05). The ASV 1126 and 205 were unique to SB corresponding to Escherichia 710834 and
517  Staphylococcus genus, respectively. In contrast, seven ASVs were unique to AB, ASV 292,

518 412,456, 696, 936, 1005 and 1019 corresponding to Streptococcus constellatus,
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519  Fastidiosipila sanguinis, Veillonella genus, Campylobacter ureolyticus and

520  Enterobacteriaceae A family, respectively.

521  Inaddition to the ASV feature, we also sought to identify taxa that were most important in
522  classifying the AB and SB using the feature importance derived from the top performing

523  classifier. Interestingly, many taxa identified were similar to the ASV analysis, and 6 out of
524 the top 20 taxa belonged to the Proteobacteria phyla (Fig. 6b). Among the top 20 taxa, the
525  family Staphylococcaceae had the strongest effect, followed by the three members of the

526  Proteobacteria phyla. At the genus level, Escherichia_710834 showed the highest effect,

527  followed by Proteus and Enterococcus. In the majority of cases, the feature importance score
528  corresponded to the differences in mean abundances of these taxa observed during taxonomic

529  analysis (Fig. 4).
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531  Fig. 6. Important ASVs and taxa features contributing to the classification of AB and
532 SB.

533 Feature importance of the top 20 most important ASVs (a) and Taxa (b) derived from the top
534  performing classifier. Colour represents the phyla corresponding to each ASVs and Taxa. The
535  right panel depicts the differences in log10-transformed relative abundance for the top 20

536  most important ASVs (a) and Taxa (b) between symptomatic and asymptomatic bacteriuria
537  samples. Statistical analysis was performed using the Wilcoxon rank-sum test and

538  significance is indicated as *** P <0.001; ** P <0.01; * P <0.05 between groups.
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Discussion

SCI individuals are often critically ill and may require long-term catheter use for urination,
which can lead to an increased risk of developing bacteriuria and CAUTI [45]. Frequent
catheter changes are unpleasant for patients and can be painful. Therefore, it is crucial to
monitor these patients closely to determine the optimal catheter change schedule, balancing
infection prevention and minimising unnecessary procedures. A key clinical challenge lies in
differentiating asymptomatic and symptomatic bacteriuria due to the reported presence of
UTlI-causing pathogens in both states [7, 46, 47]. Additionally, the likelihood of colonisation
and biofilm formation progressing to clinical infection is often related to patient-specific
immunological background, the types of catheter biomaterial, microbiota present as well as

environmental and medication factors [48-50].

Our study also corroborates the previous findings that many pathogens overlap between
asymptomatic and symptomatic bacteriuria states. Moreover, previous studies have also
shown that infections disrupt the urinary and catheter microbiome, causing an imbalance in
the normal bacterial community and allowing pathogens to dominate [14, 51, 52]. Similar to
those studies, our results indicate that symptomatic bacteriuria and antibiotic use are
associated with distinct microbial communities compared to healthy states. This is reflected
in our diversity analysis, which revealed lower alpha diversity (species richness) in
symptomatic samples and differences in beta diversity (community composition) between
asymptomatic and symptomatic samples. We also observed increased abundance of UTI-
associated pathogens in these samples. These findings align with our previous pilot study,
suggesting that community composition changes in response to disruptions, such as antibiotic
treatment or pathogen colonisation, which can lead to CAUTI [14]. Here, we demonstrated
that SB alters the microbial community structure in patients with SCI. These changes are
associated with an increase in abundance of members of the Escherichia sp., Staphylococcus
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sp., Proteus sp., Actinotignum sp., Corynebacterium sp., and Morganella sp. genus. These
bacteria are known to be major causes of UTI and also have been previously identified in

urine samples [7, 47, 53].

This study investigated machine learning approaches that utilises microbial signatures to
classify AB and SB in patients with SCI. We demonstrated the effectiveness of this approach
across various sample types, including samples with and without antibiotic treatment and
those obtained from catheters and urine. The model achieved the highest performance with
samples that had not received antibiotic treatment. In these samples the model could predict
AB and SB with over 90% accuracy and at 7-20 times greater precision compared to the
baseline precision. While diagnosing untreated samples holds greater clinical relevance, a
significant portion of the SCI population require antibiotics. These antibiotics may not always
target UTI-causing pathogens but address secondary infections or complications. Even
including samples that received antibiotics, the model maintained over 80% accuracy and
achieved 2-6 times greater precision compared to the baseline in predicting AB and SB.
Therefore, our study explored the suitability of the model in both scenarios, demonstrating its

ability to classify AB and SB with high accuracy regardless of antibiotic treatment.

Our highest performing model utilised both catheter and urine samples for prediction.
However, we observed that urine samples alone yielded better performance compared to
catheter samples in identifying AB and SB. This is advantageous because fresh-catch urine
samples are easier to obtain and evaluate for screening purposes. The improved performance
of urine-based models might be attributed to the higher abundance of Proteobacteria phyla
identified through taxonomic analysis. Our data showed approximately 20% increase in
Proteobacteria in urine samples with SB compared to catheter. Future investigations are

needed to definitively determine why urine is a more informative sample type than the
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catheter biofilm content. Potential explanations include the frequent route of exposure for
pathogens in the urinary tract and the bladder serving as a more suitable niche for UTI-
causing bacteria compared to the biofilms of a catheter. Additionally, UTI pathogens may be
more motile or dispersive, and bacteria may adhere to and colonise at different rate in
catheters compared to the urinary tract and bladder. In support of these statements, a previous
study has shown increased association of the members of Proteobacteria phyla particularly E.
coli and Klebsiella sp. in urine samples compared to catheter biofilm contents in SCI patients

[54].

Our study demonstrated that ASVs offer greater advantages over taxa features for machine
learning tasks in predicting AB and SB. The underlying advantages of ASV features over
taxa might be attributed to the higher resolution, improved accuracy and strain level insights
provided by ASVs. Compared to taxa, ASVs exhibit subtle sequence variations. Often,
multiple ASVs can map to a single taxon, providing a more precise picture of microbial
communities. Furthermore, understanding strain-level variation within a species is crucial, as
these closely related strains might have distinct functional roles in the microbiome. ASV
based analysis allowed us to identify and differentiate between such strains. Interestingly, our
results revealed that specific groups of ASVs belonging to the same taxon were enriched in
either SB or AB. This suggests that particular pathogenic strains might predominate in each
state. Future studies with strain-level resolution in samples from AB and SB are necessary to
confirm this. In addition, machine learning algorithms perform best with informative features.
Since ASVs capture finer genetic variations, they offer a richer signal for the model to learn
from. This potentially leads to more accurate predictions compared to broader taxonomic
classifications. While our analysis showed improved performance using ASVs, it's important

to acknowledge the success of the taxa-based approach as well. Taxa-based models achieved
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an average accuracy exceeding 80% and a 3-17 fold increase in precision compared to the

baseline.

In this study, we employed PyCaret to build ensemble models by selecting the top three
performing machine learning classifiers out of the sixteen evaluated. Since individual
classifiers often excel at predicting specific classes but struggle with others, combining them
improves overall prediction accuracy for both classes. This approach, utilising a soft voting
system, significantly enhances model performance compared to single classifiers. While
ensemble models are not a new concept, their application in disease diagnosis remains
limited. Most existing literature focuses on individual models for disease classification [20,
55]. However, our study, along with others employing ensemble models, demonstrates the
growing applicability and effectiveness of this approach [18, 56]. This success suggests that

similar ensemble strategies could be implemented to achieve high-accuracy classification in

other disease states.

Our study has several limitations. First, potential under- and over-reporting of asymptomatic
and symptomatic events may have occurred. Self-reported symptomatic events without
confirmatory pathology could lead to overestimation, while chronic UTI patients may tolerate
or ignore symptoms, causing underestimation. Second, catheter samples were collected only
during routine changes due to the invasive nature of the procedure. More frequent sampling
would have provided valuable insights into microbial dynamics and potentially improved
model performance. Since our model performed better with urine samples compared to
catheter, future studies could collect and analyse urine samples for prediction which, unlike
catheters, is easier to obtain and allows for more frequent sampling. Third, our study did not
include data on patient dietary habits and other potential immunological and environmental

inputs in the analysis. Finally, the training data for our machine learning model included a
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relatively small cohort of symptomatic samples. We addressed class imbalance using
techniques like stratified splitting and SMOTE and reported metrics that account for this.
While our model showed promise within the recruited cohort, further validation with a larger,
external cohort is crucial. This will help identify potential biases that might affect its
performance in a clinical setting. There is also a need to determine whether including other
potential biomarkers and indicators of immunological resilience and environmental risks of
potential infection could improve the accuracy of the current model. In addition, external
validation is essential to confirm the model's effectiveness. However, acquiring such data can
be challenging due to limited metadata associated with existing sequence and the need for the

exact variable regions of the 16S rRNA gene that was used in this study.

Conclusion

Our findings reveal several unique characteristics of symptomatic bacteriuria in SCI patients,
including lower microbial diversity, compositional changes, and enrichment of UTI
associated pathogens. This study represents the first comprehensive microbiome profiling of
both catheter and urine samples from SCI patients and we utilised this data to develop a
machine learning model for UTI prediction. While future inclusion of more samples could
improve the model's class balance, the current version demonstrates high accuracy and holds
promise for real-world healthcare implementation. This could significantly improve patient
quality of life and guide treatment decisions. We demonstrated that 16S rRNA amplicon
sequencing data could be used to predict asymptomatic and symptomatic bacteriuria with
high accuracy. These results have significant implications for establishing an early warning
system for potential UTI in SCI patients. The benefits of our model are threefold. First, it can
predict potential UTI, informing decisions about catheter changes to prevent potential

infections. Second, for patients predicted to have asymptomatic bacteriuria, the model can

33


https://doi.org/10.1101/2024.08.09.607254
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.08.09.607254; this version posted August 10, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

660 recommend keeping the catheter, reducing unnecessary procedures and costs. Third, it can

661  prevent unnecessary antibiotic use, thereby curbing the rise of multidrug-resistant bacteria.

662  Overall, this study evaluated the diagnostic potential of machine learning models for future
663  implementation in treatment decisions and intervention strategies to better protect this high-
664  risk patient population. Looking forward, we aim to implement our model into healthcare
665  settings to classify asymptomatic and symptomatic bacteriuria in SCI patients. This has the
666  potential to improve patient quality of life, reduce mortality rates, curb the spread of drug-

667  resistant bacteria and generate significant cost savings for hospitals.

668 Abbreviations

669  SCI: Spinal cord injury.

670  UTI: Urinary tract infection.

671  CAUTI: Catheter associated urinary tract infections.

672  DNA: Deoxyribonucleic acid.

673  rRNA: Ribosomal Ribonucleic acid.

674  PCR: Polymerase chain reaction.

675  ASVs: Amplicon sequence variants.

676  PCoA: Principal coordinate analysis.

677 PERMANOVA: Permutational multivariate analysis of variance.
678  QIIME: Quantitative insights into microbial ecology.

679 IQR: Interquartile range.

680 SMOTE: Synthetic minority over-sampling technique.

681  AUROC: Area under the receiver operating characteristic curve.
682  AUPRC: Area under the precision-recall curve.

683
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Supplementary Information

Additional file 1 (.pdf):

Supplementary Fig. S1. Treemap showing the fraction of ASVs assigned to Family. The
number and percentages of ASVs belong to each family are denoted inside of each box. The
colors depict corresponding phyla.

Supplementary Fig. S2. Beta diversity (unweighted unifrac) analysis in participants with at
least one symptomatic bacteriuria event. Principal coordinates analyses (PCoA) of beta-
diversity between asymptomatic (AB, blue) and symptomatic (SB, red) bacteriuria group
based on unweighted unifrac distance matrices. Each dot represents an individual sample.
Supplementary Fig. S3. Beta diversity analysis (weighted unifrac) in participants with at
least one symptomatic bacteriuria event. Principal coordinates analyses (PCoA) of beta-
diversity between asymptomatic (AB, blue) and symptomatic (SB, red) bacteriuria group
based on weighted unifrac distance matrices. Each dot represents an individual sample.
Supplementary Fig. S4. Overview of taxonomic composition in asymptomatic and
symptomatic bacteriuria groups across combined, catheter and urine dataset. The colour
heatmaps depicting mean relative abundances in percentages ranging from blue (low
abundance) to red (high abundance) grouped by phylum, family, and genus. The numbers
inside heatmaps show mean relative abundance of corresponding taxa indicated in y-axis
across asymptomatic bacteriuria (AB) and symptomatic (SB) groups. Genus are shown if
their mean relative abundances in any of the group was more than 1.

Supplementary Table S1. Participants information and samples analysed.

Supplementary Table S2. Machine learning models.

Supplementary Table S3 Performance of machine learning models during cross-validation.

Supplementary Table S4. Performance of machine learning models on held-out set.
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