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Abstract 23 

Background 24 

Individuals with spinal cord injuries (SCI) frequently rely on urinary catheters to drain urine 25 

from the bladder, making them susceptible to asymptomatic and symptomatic catheter-26 

associated bacteriuria and urinary tract infections (UTI). Proper identification of these 27 

conditions lacks precision, leading to inappropriate antibiotic use which promotes selection 28 

for drug-resistant bacteria. Since infection often leads to dysbiosis in the microbiome and 29 

correlates with health status, this study aimed to develop a machine learning-based diagnostic 30 

framework to predict potential UTI by monitoring urine and/or catheter microbiome data, 31 

thereby minimising unnecessary antibiotic use and improving patient health. 32 

Results 33 

Microbial communities in 609 samples (309 catheter and 300 urine) with asymptomatic and 34 

symptomatic bacteriuria status were analysed using 16S rRNA gene sequencing from 27 35 

participants over 18 months. Microbial community compositions were significantly different 36 

between asymptomatic and symptomatic bacteriuria, suggesting microbial community 37 

signatures have potential application as a diagnostic tool. A significant decrease in local 38 

(alpha) diversity was noted in symptomatic bacteriuria compared to the asymptomatic 39 

bacteriuria (P < 0.01). Beta diversity measured in weighted unifrac also showed a significant 40 

difference (P < 0.05) between groups. Supervised machine learning models trained on 41 

amplicon sequence variant (ASVs) counts and bacterial taxonomic abundances (Taxa) to 42 

classify symptomatic and asymptomatic bacteriuria with a 10-fold cross-validation approach. 43 

Combining urine and catheter microbiome data improved the model performance during 44 

cross-validation, yielding a mean area under the receiver operating characteristic curve 45 

(AUROC) of 0.91-0.98 (Interquartile range, IQR 0.93-0.96) and 0.78-0.91 (IQR 0.86-0.88) 46 

for ASVs and taxonomic features, respectively. ASVs and taxa features achieve a mean 47 
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AUROC of 0.85-1 (IQR 0.93-0.98) and 0.69-0.99 (IQR 0.78-0.88) in the independent held-48 

out test set, respectively, signifying their potential in differentiating symptomatic and 49 

asymptomatic bacteriuria states. 50 

Conclusions 51 

Our findings demonstrate that signatures within catheter and urine microbiota could serve as 52 

tools to monitor the health status of SCI patients. Establishing an early warning system based 53 

on these microbial signatures could equip physicians with alternative management strategies, 54 

potentially reducing UTI episodes and associated hospital costs, thus significantly improving 55 

patient quality of life while mitigating the impact of drug-resistant UTI. 56 

Background 57 

Spinal cord injury patients are at high risk of catheter-associated urinary tract infection 58 

(CAUTI) [1]. CAUTI typically manifests as a bacteriuria which is generally defined as a 59 

urine culture with at least 10^8 colony forming units (CFU)/L, of an identified 60 

microorganism(s) [2]. Bacteriuria can be further classified as asymptomatic bacteriuria (AB) 61 

or symptomatic bacteriuria (SB) [3]. Patients with AB generally lack signs and symptoms of 62 

UTI and do not require treatment [4, 5]. Conversely, SB is associated with symptoms such as 63 

fever, urethral and bladder inflammation, and potential renal scarring among other symptoms 64 

[6]. While bacteriuria is a significant risk factor for CAUTI in SCI patients, differentiating 65 

AB from SB can be challenging due to limitations in diagnosis and the influence of various 66 

etiologic factors [7, 8]. Accurate identification of these conditions is crucial because CAUTI 67 

often necessitates extensive antibiotic use. Unfortunately, this therapy is becoming less 68 

effective due to the emergence of multidrug-resistant (MDR) bacteria. This poses life-69 

threatening risks and creates a significant economic burden on public health systems. 70 

Healthcare costs associated with CAUTI are rising, with estimates suggesting millions of 71 
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dollars are spent annually on treating hospitalisations caused by CAUTI, resulting in over 72 

19,000 deaths in the United States [9-11]. 73 

The main cause for the development of CAUTI has been associated with the presence of 74 

pathogenic bacteria in microbial biofilms formed on the surface of urinary catheters. Reports 75 

show that CAUTI are predominantly caused by Escherichia coli, Proteus mirabilis, 76 

Pseudomonas aeruginosa, Klebsiella pneumoniae and Enterococcus faecalis, bacteria that 77 

have been associated with biofilm formation in urinary catheters [3, 12, 13]. Routinely, the 78 

diagnosis of CAUTI involves pathogen identification by urine screening followed by 79 

antibiotic treatment based on antibiogram reports produced by pathology laboratories. 80 

Despite the availability of screening and diagnostic tools for CAUTI, there is a lack of 81 

strategies that can successfully predict CAUTI. However, advances in the study of catheter-82 

associated biofilm communities by next generation sequencing technologies can generate 83 

valuable information to build predictive platforms for CAUTI. For example, reports based on 84 

sequence analysis of urinary catheter associated-biofilms have shown that microbial 85 

communities associated with urinary catheters from long-term catheterised patients are 86 

diverse and show variability after UTI events or antibiotic treatments [14-16]. This fact leads 87 

to the idea that critical changes in the microbial community composition of urinary catheters 88 

can reveal the early steps of a UTI event. Thus, detection of early shifts in biofilm 89 

communities can be explored to establish ‘community thresholds’ which might serve as an 90 

early warning approach before a UTI event.  91 

Machine learning approaches have been implemented for the prediction of various disease 92 

states [17]. Machine learning's ability to capture subtle differences in feature abundances 93 

using 16S rRNA data allows for accurate prediction and classification of diseases [18-21]. 94 

Previous studies have explored machine learning models to predict UTI based on patient 95 
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demographic information, biochemical and immunological markers [22-25]. However, 96 

demographic data alone could not explain the underlying causes of the infection and none of 97 

the studies underwent precise characterisation. Using a machine learning-based diagnostic 98 

framework, this work aimed to investigate a predictive platform for CAUTI based on 99 

microbial communities in the urine and catheters of patients.   100 

Here, twenty-seven SCI participants were monitored longitudinally for changes in their 101 

urinary and catheter microbiome. We hypothesised that monitoring changes in the bacterial 102 

communities colonising patients’ catheters and urine can serve as an early warning system for 103 

impending CAUTI. Our data suggests that the composition of these microbial communities is 104 

dynamic, shifting in response to factors such as antibiotic use or pathogen colonisation. The 105 

results reveal that microbial signatures within urine and catheter could be used as a potential 106 

predictor of asymptomatic and symptomatic bacteriuria with high accuracy using a 107 

supervised machine learning model. This early diagnostic tool could empower clinicians to 108 

intervene before a full-blown infection develops. This approach has the potential to improve 109 

patient outcomes, reduce healthcare costs, and mitigate the spread of MDR pathogens. 110 

Methods and materials 111 

Study cohort and baseline characteristics 112 

Participants were recruited from four specialist SCI units (Prince of Wales Hospital, Royal 113 

North Shore Hospital, Royal Rehab Ryde and Fairfield West Medical Centre) in New South 114 

Wales, Australia. They were all adults, aged 18 years and older with inclusion criteria of 115 

stable SCI, stable neurogenic bladder management for at least 4 weeks and agreement to 116 

fortnightly telephone consultations over 18 months. They also agreed to have their urine and 117 

catheter specimens and extracted DNA from these specimens stored for future studies. 118 

Exclusion criteria included long-term antibiotic therapy, immunosuppressant use, invasive 119 
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mechanical ventilation, chronic infections, surgical bladder interventions, severe 120 

renal/hepatic failure, and concurrent enrolment in any intervention studies.  121 

The samples were collected during regular catheter changes by their care team. Only samples 122 

that would be otherwise discarded were collected, including 5 cm of the bladder end of the 123 

used catheter and urine samples from the new catheter. Participants reporting potential UTI 124 

symptoms were instructed to contact their medical practitioner, providing additional urine 125 

samples and 5 cm of the old catheter to the research team if changed. Baseline and first UTI 126 

event samples underwent routine pathology tests. Diagnosis of symptomatic bacteriuria/ UTI 127 

relied on subjective complaints and lab findings, following diagnostic criteria first published 128 

in the SINBA randomised controlled trial [26-28]. It was crucial to distinguish new or 129 

increased symptoms from chronic issues, as many symptoms alone did not justify treatment. 130 

UTI symptoms were defined by new onset symptoms and laboratory evidence of UTI. 131 

Between November 2021 and March 2023, 39 potential participants expressing interest were 132 

screened, with 27 enrolled. Participants were predominately male (66.7%), female (33.3%) 133 

with a mean age of 55 years (Supplementary Table S1). Most used suprapubic catheters, with 134 

only one participant using an indwelling urinary catheter. The median time since SCI was 18 135 

years (range:  98 days to 56 years). The research team received subjective complaints of 136 

CAUTI symptoms, designating 67 UTI/ symptomatic bacteriuria events based on symptoms, 137 

pathology analysis and self-reported data 138 

Sample processing 139 

Samples were processed according to previously described methods with some modifications 140 

[14]. A 5 cm section of the bladder end of the used catheter was collected in a sterile 141 

container with 5 mL of sterile saline (0.9% NaCl). A fresh catch urine specimen was also 142 

collected from the newly installed catheter in a separate sterile container. Both specimens 143 
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were transported to the laboratory by courier or overnight express post and processed 144 

immediately on the day of receiving samples. The catheter was cut into half lengthwise along 145 

the inflation line using a sterile scalpel blade. The content inside was soaked with 1 mL of 146 

saline. A 1 mL syringe plunger was used to dislodge the soaked content by running the 147 

plunger back and forth on the two halves of the catheter pieces. The catheter pieces and 148 

plunger were transferred to the original container with saline, vortexed and sonicated in an 149 

ultrasonic water bath (Powersonic 420, Thermoline Scientific) at medium power for 1 min, 150 

after which time 1 mL of catheter cell suspension as well as 12 mL of urine samples were 151 

centrifuged at 5000 g for 5 min. The supernatants discarded from both tubes and the cell 152 

pellets were stored at -20°C for DNA extraction. The remaining catheter cell suspensions 153 

were centrifuged at 5000 g for 5 min and cell pellets were frozen at -80°C in glycerol for 154 

future analysis. 155 

DNA extraction 156 

Total DNA was extracted from catheter and urine pellets obtained in the previous step using 157 

DNeasy PowerSoil Pro Kit (Qiagen, cat. no. 47016) according to the manufacturer’s 158 

instructions except that the final elution was in 50 µL of water. The quality and quantity of 159 

the isolated DNA were determined using a NanoDrop spectrophotometer (Thermo Fisher 160 

Scientific, USA). The DNA samples were stored at -20°C before further analysis. 161 

Library preparation and amplicon sequencing 162 

The V4 region of the bacterial 16S rRNA gene was amplified for sequencing by a two-stage 163 

PCR process. The first PCR was carried out using 10 ng of genomic DNA using 515F (5′- 164 

GTGYCAGCMGCCGCGGTAA 3′) and 806R (5′- GGACTACNVGGGTWTCTAAT 3′) 165 

primers including the Illumina adapters and KAPA HiFi HotStart ReadyMix (Cat 166 

No.KR0370-v14.22; Roche, Switzerland) under the PCR cycle:  initial denaturation at 95°C 167 
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for 2 min; followed by 20 cycles of:  95°C for 15 s, 60°C for 15 s, 72°C for 30 s; and a final 168 

extension step at 72°C for 1 min and hold at 4°C. The PCR products from the first PCR were 169 

diluted in water (1:40) and 3 µL of the diluted products were used as templates for the second 170 

PCR to add unique barcodes to each sample. PCR conditions were the same as the first PCR 171 

except that only 10 cycles were used. Two µL of each final product was pooled into one tube 172 

and solid-phase reversible immobilisation (SPRI) beads (Beckman Coulter, USA) were used 173 

to remove excess primers. The cleaned libraries were sequenced on an Illumina MiSeq v2 174 

Nano 2 x 150 bp to assess read counts. The final normalised libraries were sequenced on an 175 

Illumina MiSeq v3 2 x 300 bp. 176 

Sequence processing and alignment 177 

Sequencing data were analysed using the Quantitative Insights Into Microbial Ecology 2 178 

program (QIIME2) version 2022.8.0 [29]. Raw fastq sequencing reads were imported to 179 

QIIME2 in iHPC environment using qiime ‘tools import’ plugin. The reads were filtered to 180 

remove sequencing primers using cutadapt [30]. The primer-trimmed sequences were 181 

denoised and clustered to amplicon sequence variants (ASVs) using DADA2 plugins. At the 182 

denoising step, the forward and reverse reads were truncated at position 220 and 160 bp, 183 

respectively, to retain only high-quality sequences [31]. The orientation of the denoised 184 

sequences was corrected by aligning to the reference sequences using ‘rescript orient-seq’ 185 

plugins [32]. For taxonomic assignments, the oriented sequences were aligned to the 186 

greengenes2 16S rRNA reference database (V4 region) using ‘feature-classifier’ plugin [33]. 187 

The Naive Bayes classifier pre-trained on the V4 region was obtained from greengenes2 data 188 

repository. Greengenes2, released in 2023, is the latest 16S rRNA reference database and 189 

contains high-quality full length 16S sequences from the Living Tree Project with updated 190 

taxonomic information. The feature table was filtered to remove unassigned features based on 191 

the taxa table obtained during the alignment step. The feature table was further subjected to 192 
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taxonomic filtering to remove low abundant phyla (if feature frequency less than 5). The 193 

filtered sequences were aligned using ‘mafft’ and ‘fasttree’ plugins to generate rooted 194 

phylogenetic trees [34, 35].  195 

Microbiome diversity and taxonomic analysis 196 

The feature table, taxonomic table and rooted tree obtained from the previous section were 197 

imported to build phyloseq object in R program using phyloseq package [36]. All samples 198 

were rarefied at 11,000 reads with the phyloseq function ‘rarefy_even_depth’ to normalise 199 

the variance [37]. Rarefaction retained 591 samples (307 catheter and 284 urine) and 18 of 200 

the samples were excluded from the analysis due to insufficient reads. All the downstream 201 

alpha diversity, beta diversity, taxonomic and machine learning analyses were performed 202 

with the rarefied dataset. The alpha diversity ‘Shannon index’ was computed using the R 203 

package ‘Microbiome’ [38]. Principal coordinates analysis (PCoA) was carried out on the 204 

beta diversity (weighted and unweighted unifrac) distance metrics using ‘microeco’ R 205 

package [39]. Taxonomic abundances were calculated using ‘microeco’ package at different 206 

taxonomic level. Taxonomic abundances data for machine learning were prepared using the 207 

‘trans_classifier’ function of the microeco package in R. Shared and unique taxa analyses 208 

were also conducted using the ‘microeco’ package. Data were visualised using the ‘ggplot2’ 209 

package in R version 4.2 [40]. 210 

Supervised machine learning 211 

The raw ASVs counts and taxonomic abundance data were pre-processed in three steps using 212 

the R package mikropml [41]. First, the raw ASVs counts and taxonomic abundance data 213 

were pre-processed using the default method. Briefly, the default method normalised the data 214 

by centering and scaling and removed variables with near-zero variance. Second, the unique 215 

ASVs or Taxa belonging to AB and SB were also subjected to mikropml pre-processing to 216 
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remove zero variance features only. In the third and final step, the feature lists from the first 217 

and second steps were combined and again subjected to pre-processing using mikropml to 218 

remove zero variance features. The pre-processed data were utilised to initiate the supervised 219 

machine learning pipeline using the PyCaret package (version 3.2) in python with default 220 

parameters unless otherwise stated [42]. For 20 random seeds, transformed data were 221 

subjected to stratified (proportional class distribution) split to obtain 80% training and 20% 222 

held-out sets. We used 10 iterations of stratified 10-fold cross-validations to ensure the 223 

robustness of our approach and to precisely evaluate the prediction power of the models. We 224 

applied SMOTE (Synthetic Minority Over-sampling Technique) to fix imbalances in the 225 

distribution of the target class in the training set during the PyCaret setup function. We also 226 

removed outliers using sklearn's “IsolationForest” method with default threshold (0.05) 227 

during the setup function.  228 

A second round of feature selection was applied to remove additional features based on the 229 

classic feature section method within PyCaret setup with the ‘n_features_to_select’ parameter 230 

was set at 0.9. During model optimisation, a total of 16 machine learning algorithms from the 231 

scikit-learn library were used to construct initial models (Supplementary Table S2) [43]. The 232 

top three models, based on balanced accuracy, were blended and tuned. The blended and 233 

tuned model performance was evaluated on both cross-validation and held-out sets. We 234 

evaluated model performance based on several metrics including AUROC (summarises trade-235 

off between sensitivity and specificity across all possible thresholds) and AUPRC (focuses on 236 

the trade-off between precision and recall). In addition to these two metrics, we also provided 237 

accuracy (correct prediction / all prediction), precision (true positives divided by the total 238 

number of positive predictions), recall (weighted average of sensitivity and specificity), 239 

balanced accuracy (arithmetic average of sensitivity and specificity) and F1 scores (harmonic 240 

mean of the precision and recall) (Supplementary Tables S3 and S4). All hyperparameters 241 
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were automatically tuned and optimised by the PyCaret. Finally, the most important ASVs 242 

and Taxa contributing to model performance were determined by the feature importance 243 

score extracted from the top performing model.  244 

Statistical analysis 245 

Statistical significance for the alpha diversity (Shannon index) metric was calculated with 246 

non-parametric Wilcoxon test in R. Statistical significance for beta diversity (weighted and 247 

unweighted unifrac distance) metrics were determined by Permutational Multivariate 248 

Analysis of Variance (PERMANOVA) with a number of 999 permutations using QIIME2 249 

‘diversity beta group significance’ plugin [44]. Differences in AUROC scores between cross-250 

validation and held-out set were determined by no-parametric Wilcoxon test in R. 251 

Differences in ASVs and taxa abundances were also determined by no-parametric Wilcoxon 252 

test in R. 253 

Results 254 

Evaluation of microbial community composition in asymptomatic and symptomatic 255 

bacteriuria  256 

To investigate the microbial community composition in asymptomatic (AB) and symptomatic 257 

(SB) bacteriuria, we performed 16S rRNA sequencing analysis on a total of 300 urine and 258 

309 catheter samples collected from 27 participants (Fig. 1a). A total of 35,101,926 high 259 

quality sequences were produced, with a median of 61,613 sequences per sample. After 260 

quality filtering, sequencing reads were clustered into 1246 amplicon sequence variants 261 

(ASVs) of which 1128 ASVs remained after rarefaction. The AB group harboured more 262 

distinct ASVs compared to the SB group (Fig. 1b). Out of 1128 ASVs, 874 (77%) and 79 263 

(7%) were unique to AB and SB, respectively, with 175 (16%) shared by both groups. The 264 

identified ASVs belonged to diverse phylogenetic lineages, spanning 8 phyla, 11 classes, 43 265 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 10, 2024. ; https://doi.org/10.1101/2024.08.09.607254doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.09.607254
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

12 
 

orders, 68 families, 138 genera and 144 species (Fig. 1c). Nearly all (mean ~100%) ASVs 266 

were classified to the family level, while a mean of 76.1% and 34.1% were assigned to genus 267 

and species levels, respectively. The majority of the ASVs were Proteobacteria (n=433, 268 

38.4%), followed by Firmicutes_D (n=183, 16.2%), Actinobacteriota (165, n=14.6%), 269 

Firmicutes_A (n=112, 9.9%), Firmicutes_C (n=98, 8.7%), Bacteriodota (n=85, 7.5%), 270 

Fusobacteriota (n=35, 3.1%) and Campylobacterota (n=17, 1.5%). Enterobacteriaceae 271 

(n=282, 25%) and Pseudomonadaceae (n=70, 6%) were the largest contributors to the 272 

Proteobacteria phyla (Supplementary Fig. S1).  273 
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 274 

 275 

Fig. 1. Study design and distribution of 16S rRNA amplicon sequence variants.  276 
(a) The schematic shows the overview of the study design and workflow. (b) Venn diagram 277 
showing the unique and shared ASVs between asymptomatic (AB) and symptomatic (SB) 278 
bacteriuria groups. (c) Phylogenetic tree for 1128 microbiome members constructed based on 279 
16S rRNA amplicon sequence variants. Tree branches are coloured based on their respective 280 
phylum. The inner, middle and outer bar plot rings indicate the proportion of counts split by 281 
site (catheter vs urine), type (AB vs SB) and antibiotic use (with and without), respectively, 282 
as indicated in the legend.   283 
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We assessed and compared the microbial community composition between AB and SB 284 

groups for urine and catheter samples separately as well as when combined. Alpha diversity, 285 

measured by Shannon index (accounting for both species abundance and evenness), was 286 

significantly lower in SB compared to AB, both in the combined and individual datasets (Fig. 287 

2a-c). The mean Shannon index was 1.3 for AB (IQR 0.8-1.8) compared to 1.0 for SB (IQR 288 

0.4-1.4) in the combined dataset. Beta diversity analysis using weighted unifrac distances 289 

revealed significant differences in community composition between AB and SB groups on 290 

the combined dataset (PERMANOVA, Pseudo-F = 2.5, P = 0.02) (Fig. 2d). While these 291 

differences were not statistically significant when analysed separately for urine or catheter 292 

samples, a moderate difference was observed for urine (P = 0.1) when compared to catheter 293 

(P = 0.2) (Fig. 2e-f). These findings suggest an altered community composition in SCI 294 

patients with symptomatic bacteriuria. Participant-specific analysis showed distinct clustering 295 

of microbial communities between AB and SB groups in participants one, six, eight, nine, 296 

eleven, twenty-five and twenty-six (Supplementary Fig. S2 and S3).   297 
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 298 
Fig. 2. Differences in microbiota community structure and composition between 299 
asymptomatic (AB) and symptomatic (SB) bacteriuria samples.  300 
(a-c) Alpha diversity measured by the Shannon index of AB (blue) and SB (red) samples 301 
across combined (a), catheter (b) and urine (c). Each data point represents an individual 302 
sample. Statistical analysis was performed using Wilcoxon rank-sum test and significance is 303 
indicated by, ** P < 0.01; * P < 0.05 between groups. (d-f). Principal coordinates analyses 304 
(PCoA) of beta-diversity between groups based on weighted unifrac distance matrices are 305 
shown across combined (d), catheter (e) and urine (f). Each group is shown in a different 306 
colour (AB:  blue, SB:  red) with centroid and each line represents an individual sample. 307 
Statistical significance was determined by permutational ANOVA (PERMANOVA) with 999 308 
permutations between groups and pairwise p-values are indicated inside of each plot. (g-i) 309 
Overview of taxonomic composition in AB and SB groups across combined (g), catheter (h) 310 
and urine (i). The points (AB:  blue, SB:  red) and solid line (black) depicting mean relative 311 
abundances in percentages and their differences, respectively, for the phyla as indicated in the 312 
y-axis.  313 
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Taxonomic analysis was conducted to identify bacterial groups driving the differences 314 

between AB and SB samples. At the phylum level, the greatest differences in the mean 315 

relative abundances were observed for Proteobacteria, followed by Firmicutes_C and 316 

Fusobacteriota (Fig. 3g-I and Supplementary Fig. S4). The mean relative abundance of 317 

Proteobacteria was higher in SB (64.5%) compared to AB (54.6%). Conversely, 318 

Firmicutes_C (AB: 8.2%, SB: 3.9%) and Fusobacteriota (AB: 1.7%, SB: 0.6%) displayed 319 

lower abundances in SB compared to AB. This pattern mirrored the differences observed in 320 

the catheter and urine subsets, though with some variations. Notably, Proteobacteria 321 

abundance was higher in urine (AB:  65.8%, SB:  74.6%) compared to the catheter (AB:  322 

44.4%, SB:  55.1%). Conversely, Actinobacteriota and Firmicutes displayed higher 323 

abundances in the catheter compared to urine. Hence, the phyla level analysis revealed that 324 

Proteobacteria and Firmicutes_C were mostly associated with SB and AB respectively. At the 325 

family level, Enterobacteriaceae_A, Pseudomonadaceae and Actinomycetaceae were the 326 

three most abundant families observed across the three datasets. Genus-level analysis further 327 

revealed distinct profiles between AB and SB. Notably, SB samples harboured a higher 328 

proportion of Achromobacter, Actinotignum, Escherichia_710834, Massilia, Proteus, 329 

Staphylococcus, and Stenotrophomonas_A. In contrast, AB samples showed higher 330 

abundances of Enterococcus_B, Fusobacterium_C, Serratia_D, Streptococcus, and 331 

Veillonella_A.  332 

These findings highlight the value of analysing both urine and catheter samples for a more 333 

comprehensive understanding of microbial community composition, particularly in 334 

identifying UTI-related signatures. While urine alone may reveal some differentiation, 335 

combining both sample types provides a more nuanced picture.  336 
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Symptomatic bacteriuria and use of antibiotics lead to alterations in microbial 337 

community composition  338 

About one-fifth (~19%) of the samples (14% of AB and 61% of SB) were collected while 339 

participants were taking antibiotics. This use may not always have been for UTI but for other 340 

secondary infections. Since antibiotics disrupt the microbiota, we aimed to understand the 341 

true differences in microbial community composition between asymptomatic and 342 

symptomatic individuals, unaffected by antibiotic influence. We divided the samples based 343 

on antibiotic use and UTI symptoms:  Asymptomatic without antibiotics (A), Asymptomatic 344 

with antibiotics (AAb), Symptomatic without antibiotics (S) and Symptomatic with 345 

antibiotics (SAb). These four groups shared 5% (n = 56) of the ASVs while 64.1% (n = 715), 346 

9.5% (n = 106), 3.6% (n = 40) and 3.1% (n = 35) of ASVs were unique to A, AAb, S and 347 

SAb, respectively (Fig. 3a). This suggests distinct microbial compositions for each group. 348 

Alpha diversity analysis revealed that both antibiotic use and symptomatic bacteriuria lead to 349 

a significant decrease in diversity (Fig. 3b). A significant decrease in alpha diversity was 350 

observed in AAb (P < 0.0001), S (P < 0.01) and SAb (P < 0.01) compared to the A group. No 351 

significant difference was observed between S and SAb. The community compositions 352 

among four groups were also evaluated by unweighted (qualitative) and weighted 353 

(quantitative) unifrac beta diversity metrices (Fig. 3c-d). The unweighted measure of beta 354 

diversity metrics further demonstrated significant differences between A and S. The 355 

unweighted UniFrac showed a significant separation between A vs. AAb (P = 0.006) and A 356 

vs. S (P = 0.01). The weighted UniFrac showed a significant pairwise separation between the 357 

antibiotic treated group compared to the A and S.   358 
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 359 

Fig. 3. Differences in microbiota community structure among asymptomatic and 360 
symptomatic bacteriuria groups with and without antibiotics use. 361 
(a) Venn diagram showing the unique and shared ASVs among four groups, asymptomatic 362 
samples without antibiotics use (A), asymptomatic samples with antibiotics use (AAb), 363 
symptomatic samples without antibiotics (S), and symptomatic samples with antibiotics 364 
(SAb). (b) Alpha diversity measured using the Shannon index among the four groups are 365 
shown in boxplots. Each data point represents an individual sample. Statistical analysis was 366 
performed using Wilcoxon rank-sum test and significance are indicated by, **** P < 0.0001; 367 
** P < 0.01 compared to group A (c-d). Principal coordinates analyses (PCoA) of beta-368 
diversity between groups based on unweighted (c) and weighted (d) unifrac distance matrices 369 
are shown. Each group is shown in a different colour with centroid and each line represents 370 
an individual sample. Statistical significance was determined by permutational ANOVA 371 
(PERMANOVA) with 999 permutations between groups and pairwise p-values are indicated 372 
inside of each plot.  373 
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Analysis of the predominant taxa revealed higher relative abundances of Proteobacteria in 374 

antibiotic-treated groups (AAb 64.3% and SAb 71.7%) compared to untreated groups (A 375 

53.1% and S 57.6%) (Fig. 4). This increase can be attributed to the Pseudomonadaceae 376 

family, with a mean relative abundance of 22.9% and 22.8 % in AAb and SAb, respectively. 377 

Additionally, the S group displayed higher proportions of Firmicutes_D (~25%) compared to 378 

the other sample groups. At the family level, Enterobacteriaceae_A dominated the S group, 379 

with the highest mean relative abundance (49.3%). Other notable families in S included 380 

Staphylococcaceae (17.9%), Actinomycetaceae (8.9%), Xanthomonadaceae_616009 (3.1%) 381 

and Mycobacteriaceae (2.3%). Genus-level analysis revealed enrichment of Acinetobacter, 382 

Actinotignum, Corynebacterium, Escherichia_710834, Morganella, Proteus, Staphylococcus, 383 

and Stenotrophomonas in S compared to other sample groups. Notably, four genera:  384 

Escherichia_710834 (30.3%), Staphylococcus (17.9%), Proteus (10.6%), and Actinotignum 385 

(8.9%) constituted over two-thirds of the S group bacterial composition.      386 

These results confirm that community composition between asymptomatic (A) and 387 

symptomatic (S) groups differs significantly. The analysis also revealed that the use of 388 

antibiotics significantly alters the community composition in asymptomatic samples. These 389 

findings also highlight the value of analysing antibiotic treated and untreated samples for a 390 

more comprehensive understanding of microbial community composition. Furthermore, this 391 

analysis identified potential taxa associated with A and S, highlighting their potential as 392 

biomarkers for differentiating these two groups.  393 
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 394 
Fig. 4. Overview of taxonomic composition in asymptomatic and symptomatic 395 
bacteriuria with and without antibiotics treated groups from combined dataset.  396 
The colour heatmaps depicting mean relative abundances in percentages ranging from blue 397 
(low abundance) to red (high abundance) by phylum, family and genus. The numbers inside 398 
the heatmaps show mean relative abundance of corresponding taxa indicated in y-axis across 399 
four different groups, asymptomatic samples without antibiotics use (A), asymptomatic 400 
samples with antibiotics use (AAb), symptomatic samples without antibiotics (S) and 401 
symptomatic samples with antibiotics (SAb). Family and genus are shown if their mean 402 
relative abundances in any of the group was more than 1.  403 
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Machine learning can classify symptomatic and asymptomatic bacteriuria with high 404 

accuracy  405 

Our study explored the potential of urine and catheter microbial composition as a diagnostic 406 

tool for classifying symptomatic and asymptomatic bacteriuria using supervised machine 407 

learning. Two feature sets derived from 16S rRNA gene amplicon analysis, ASVs counts and 408 

taxonomic abundances (Taxa), were used to train and evaluate prediction models. We aimed 409 

to accurately classify both AB and SB patients. Clinically, it is important to determine the 410 

timeframe over which patients with AB can retain their existing instilled catheters, while 411 

those with SB, or at-risk microbiological profiles, may need catheter replacement to minimise 412 

advanced UTI risks. Therefore, we applied the AUROC metric, which evaluates the trade-off 413 

between sensitivity and specificity across all possible thresholds, allowing for comprehensive 414 

comparisons of classifier performance on various datasets. Recognising the imbalanced 415 

nature of our dataset (more AB cases, fewer SB), we additionally provide AUPRC as a 416 

complementary measure. AUPRC focused on the trade-off between precision and recall, 417 

considering a baseline equivalent to the proportion of minority class (SB) within the entire 418 

sample. Both cross-validation and held-out set results were reported since including both 419 

results demonstrate the robustness of the model's performance as the former estimates the 420 

stability and generalisability of a model by repeatedly training and testing on different subsets 421 

of data, while the later one provides an independent evaluation of the model (Fig. 5a). 422 

Additionally, evaluation of both is useful to check any overfitting and underfitting 423 

performance of the trained model. Here, the majority of datasets showed a similar level of 424 

performance during cross-validation and held-out evaluation (Fig. 5b). The mean AUROC 425 

differences between the cross-validation and held-out sets were not statistically different in 426 

the majority of datasets. This indicates that the model did not show any overfitting or 427 

underfitting issues, particularly in ASVs and without antibiotic datasets. 428 
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Model performance was evaluated across three variables:  antibiotic use (samples with vs. 429 

without), feature type (ASVs vs Taxa) and sample type (catheter, urine or combined). Firstly, 430 

we assessed model performance on samples with and without antibiotic treatment. This 431 

aimed to account for the significant effect antibiotics have on bacterial diversity. Importantly, 432 

diagnosing untreated samples (person) seeking medical advice is more clinically relevant. 433 

However, we also evaluated samples with antibiotic use, considering that many SCI patients 434 

receive antibiotics, necessitating accurate diagnosis of both antibiotic-associated 435 

asymptomatic and symptomatic bacteriuria in these cases. Cross-validation results showed 436 

that excluding antibiotic-treated samples improved model accuracy. Mean AUROC scores 437 

with ASV features ranged from 0.91-0.98 (IQR 0.93-0.96) without antibiotics to 0.82-0.89 438 

(IQR 0.83-0.86) with antibiotics (Fig. 5b and Supplementary Tables S3). Held-out set 439 

evaluation confirmed this trend, with a mean AUROC of 0.85-1 (IQR 0.93-0.98) and 0.69-440 

0.93 (IQR 0.81-0.88) in untreated and treated samples, respectively (Fig. 5b and 441 

Supplementary Tables S4). The ASV feature on combined and without antibiotic dataset 442 

showed the highest AUPRC with a mean of 0.37-0.1 (IQR 0.6-0.84) compared to any other 443 

dataset with a baseline AUPRC value of 0.05. These findings suggest that excluding 444 

antibiotic-treated samples improves overall model performance for combined (catheter and 445 

urine) datasets. 446 

Next, we compared model performance between ASV and taxa features and found that ASV 447 

yielded higher AUROC scores, reaching 0.91-0.98 (IQR 0.93-0.96) compared to 0.78-0.91 448 

(IQR 0.86-0.88) for taxa when trained on untreated combined datasets (Fig. 5b and 449 

Supplementary Tables S3). Held-out set evaluation also showed this trend, with a mean 450 

AUROC of 0.85-1 (IQR 0.93-0.98) and 0.69-0.99 (IQR 0.78-0.88) for ASV and taxa features, 451 

respectively (Fig. 5b and Supplementary Tables S4). The same trend was also observed in 452 

datasets with antibiotics, which showed better performance with ASV during cross-validation 453 
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with mean AUROC of 0.82-0.89 (IQR 0.83-0.86) compared to taxa (AUROC 0.72-0.84, IQR 454 

0.77-0.81) datasets (Fig. 5b and Supplementary Tables S3). Held-out evaluation showed a 455 

mean AUROC of 0.69-0.93 (IQR 0.81-0.88) and 0.55-0.86 (IQR 0.66-0.76) for ASV and taxa 456 

feature, respectively (Fig. 5b and Supplementary Tables S4). The ASV feature also showed a 457 

higher AUPRC score compared to taxa on both with and without antibiotic dataset. Hence, 458 

the results show in general a better performance of the models trained with ASV feature 459 

compared to the taxa feature across all datasets. 460 

Finally, we compared model performance on combined datasets versus catheter and urine-461 

only datasets, considering the differences in diversity observed between these groups. ASV 462 

features and exclusion of antibiotic-treated samples led to the best performance in combined 463 

datasets (mean AUROC 0.91-0.98, IQR 0.93-0.96) compared to catheter (AUROC 0.83-0.98, 464 

IQR 0.88-0.93) or urine-only datasets (AUROC 0.87-0.98, IQR 0.92-0.95) during cross-465 

validation (Fig. 5b and Supplementary Tables S3). Held-out evaluation also confirmed this 466 

trend, with ASV features achieving a mean AUROC of 0.85-1 (IQR 0.93-0.98) in the 467 

combined dataset, compared to 0.7-0.99 (IQR 0.85-0.96) for catheter and 0.85-1 (IQR 0.93-468 

0.98) for urine-only datasets (Fig. 5b and Supplementary Tables S4). The AUPRC score was 469 

highest for the combined dataset 0.37 to 1 (IQR 0.6-0.84) followed by urine 0.18 to 1 (IQR 470 

0.35-0.58) and catheter 0.13 to 0.87 (IQR 0.24-0.6) with a baseline 0.05, 0.04 and 0.06 471 

respectively. These findings indicate that using combined datasets significantly improved 472 

model performance compared to analysing individual sampling sites. 473 

We blended the top three performing models and evaluated the performance on the blended 474 

and tuned model. Among the 16 tested models, we observed that nine models appeared in the 475 

top three list when evaluated in ASV and Taxa combined and without antibiotics datasets 476 
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(Fig. 5c). Logistic regression (lr), Naïve bayes (nb) and Quadratic discriminant analysis (qda) 477 

classifier were the highest performing classifier.  478 
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 479 

Fig. 5. Workflow and predictive performance of machine learning models based on 480 
microbiota composition.  481 
(a) Workflow for supervised machine learning. The pre-processed data were subjected to 482 
stratified (proportional class distribution) split to create 80% training and 20% held-out sets 483 
(repeated 20 times). A 10-fold cross-validation was performed on the training data to select 484 
the best models. Top three models based on accuracy were blended and tuned (repeated 10 485 
times). The blended and tuned model performance was evaluated on both cross-validation 486 
and held-out sets. (b) The boxplots show performance of ML models using AUROC on 487 
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cross-validation and held-out testing set (left panel) and AUPRC on held-out testing set (right 488 
panel) across different datasets. The datasets were arranged in descending order from top to 489 
bottom based on the mean AUROC values. The median depicted as centre line in the box, 490 
edges depict inter-quartiles, and whiskers as distribution of the data (1.5 times of the 491 
quartiles). Outliers are shown as points. The random chances of AUROC depicted by a 492 
vertical dashed ‘dark-cyan’ line at 0.5. The baseline chances of AUPRC depicted as vertical 493 
solid ‘dark-cyan’ line underneath of the boxplots for each dataset. The baseline performance 494 
for AUPRC was calculated as the fraction of the samples in the minority class (SB) over the 495 
total number of samples in the test set. Statistical analysis was performed using Wilcoxon 496 
rank-sum test and significance is indicated by, *** P < 0.001; ** P < 0.01; * P < 0.05; ns:  497 
not significant between cross-validation and held-out set. (c) Frequency of the top three 498 
blended models across ASV and Taxa (combined and without antibiotics) datasets.  499 
 500 
 501 
ASVs and Taxa belonging to Proteobacteria phyla showed the highest importance in 502 

classification of AB and SB 503 

Given the good predictive performances of the models trained on the ASV feature, we next 504 

sought to identify ASVs that were most important in classifying the AB and SB using the 505 

feature importance derived from the top performing classifier. We plotted the top 20 ASVs, 506 

of which 9 ASVs belonged to the Proteobacteria phyla, which includes members of 8 507 

Enterobacteriaceae_A and 1 Pseudomonadaceae families (Fig. 6a). A member of the 508 

Escherichia_710834 genus (ASV 1126) had the strongest effect on feature importance 509 

followed by a member of the Staphylococcus genus (ASV 224). Plotting the relative 510 

abundance of these top 20 ASVs revealed significant differences between AB and SB (Fig. 511 

6a). In particular, the median relative abundance of the genus Escherichia_710834 (ASV 512 

1126, 1040, 1074) was higher in SB compared to AB. The relative abundance of the genus 513 

Escherichia_710834 (ASV 1020), Enterobacteriaceae_A (ASV 933), Enterococcus_B (ASV 514 

163) and Staphylococcus (ASV 224) were significantly different between AB and SB (P < 515 

0.05). The ASV 1126 and 205 were unique to SB corresponding to Escherichia_710834 and 516 

Staphylococcus genus, respectively. In contrast, seven ASVs were unique to AB, ASV 292, 517 

412, 456, 696, 936, 1005 and 1019 corresponding to Streptococcus constellatus, 518 
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Fastidiosipila sanguinis, Veillonella genus, Campylobacter ureolyticus and 519 

Enterobacteriaceae_A family, respectively. 520 

In addition to the ASV feature, we also sought to identify taxa that were most important in 521 

classifying the AB and SB using the feature importance derived from the top performing 522 

classifier. Interestingly, many taxa identified were similar to the ASV analysis, and 6 out of 523 

the top 20 taxa belonged to the Proteobacteria phyla (Fig. 6b). Among the top 20 taxa, the 524 

family Staphylococcaceae had the strongest effect, followed by the three members of the 525 

Proteobacteria phyla. At the genus level, Escherichia_710834 showed the highest effect, 526 

followed by Proteus and Enterococcus. In the majority of cases, the feature importance score 527 

corresponded to the differences in mean abundances of these taxa observed during taxonomic 528 

analysis (Fig. 4).  529 
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 530 

Fig. 6. Important ASVs and taxa features contributing to the classification of AB and 531 
SB.  532 
Feature importance of the top 20 most important ASVs (a) and Taxa (b) derived from the top 533 
performing classifier. Colour represents the phyla corresponding to each ASVs and Taxa. The 534 
right panel depicts the differences in log10-transformed relative abundance for the top 20 535 
most important ASVs (a) and Taxa (b) between symptomatic and asymptomatic bacteriuria 536 
samples. Statistical analysis was performed using the Wilcoxon rank-sum test and 537 
significance is indicated as *** P < 0.001; ** P < 0.01; * P < 0.05 between groups.  538 
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Discussion 539 

SCI individuals are often critically ill and may require long-term catheter use for urination, 540 

which can lead to an increased risk of developing bacteriuria and CAUTI [45]. Frequent 541 

catheter changes are unpleasant for patients and can be painful. Therefore, it is crucial to 542 

monitor these patients closely to determine the optimal catheter change schedule, balancing 543 

infection prevention and minimising unnecessary procedures. A key clinical challenge lies in 544 

differentiating asymptomatic and symptomatic bacteriuria due to the reported presence of 545 

UTI-causing pathogens in both states [7, 46, 47]. Additionally, the likelihood of colonisation 546 

and biofilm formation progressing to clinical infection is often related to patient-specific 547 

immunological background, the types of catheter biomaterial, microbiota present as well as 548 

environmental and medication factors [48-50]. 549 

Our study also corroborates the previous findings that many pathogens overlap between 550 

asymptomatic and symptomatic bacteriuria states. Moreover, previous studies have also 551 

shown that infections disrupt the urinary and catheter microbiome, causing an imbalance in 552 

the normal bacterial community and allowing pathogens to dominate [14, 51, 52]. Similar to 553 

those studies, our results indicate that symptomatic bacteriuria and antibiotic use are 554 

associated with distinct microbial communities compared to healthy states. This is reflected 555 

in our diversity analysis, which revealed lower alpha diversity (species richness) in 556 

symptomatic samples and differences in beta diversity (community composition) between 557 

asymptomatic and symptomatic samples. We also observed increased abundance of UTI-558 

associated pathogens in these samples. These findings align with our previous pilot study, 559 

suggesting that community composition changes in response to disruptions, such as antibiotic 560 

treatment or pathogen colonisation, which can lead to CAUTI [14]. Here, we demonstrated 561 

that SB alters the microbial community structure in patients with SCI. These changes are 562 

associated with an increase in abundance of members of the Escherichia sp., Staphylococcus 563 
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sp., Proteus sp., Actinotignum sp., Corynebacterium sp., and Morganella sp. genus. These 564 

bacteria are known to be major causes of UTI and also have been previously identified in 565 

urine samples [7, 47, 53]. 566 

This study investigated machine learning approaches that utilises microbial signatures to 567 

classify AB and SB in patients with SCI. We demonstrated the effectiveness of this approach 568 

across various sample types, including samples with and without antibiotic treatment and 569 

those obtained from catheters and urine. The model achieved the highest performance with 570 

samples that had not received antibiotic treatment. In these samples the model could predict 571 

AB and SB with over 90% accuracy and at 7-20 times greater precision compared to the 572 

baseline precision. While diagnosing untreated samples holds greater clinical relevance, a 573 

significant portion of the SCI population require antibiotics. These antibiotics may not always 574 

target UTI-causing pathogens but address secondary infections or complications. Even 575 

including samples that received antibiotics, the model maintained over 80% accuracy and 576 

achieved 2-6 times greater precision compared to the baseline in predicting AB and SB. 577 

Therefore, our study explored the suitability of the model in both scenarios, demonstrating its 578 

ability to classify AB and SB with high accuracy regardless of antibiotic treatment. 579 

Our highest performing model utilised both catheter and urine samples for prediction. 580 

However, we observed that urine samples alone yielded better performance compared to 581 

catheter samples in identifying AB and SB. This is advantageous because fresh-catch urine 582 

samples are easier to obtain and evaluate for screening purposes. The improved performance 583 

of urine-based models might be attributed to the higher abundance of Proteobacteria phyla 584 

identified through taxonomic analysis. Our data showed approximately 20% increase in 585 

Proteobacteria in urine samples with SB compared to catheter. Future investigations are 586 

needed to definitively determine why urine is a more informative sample type than the 587 
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catheter biofilm content. Potential explanations include the frequent route of exposure for 588 

pathogens in the urinary tract and the bladder serving as a more suitable niche for UTI-589 

causing bacteria compared to the biofilms of a catheter. Additionally, UTI pathogens may be 590 

more motile or dispersive, and bacteria may adhere to and colonise at different rate in 591 

catheters compared to the urinary tract and bladder. In support of these statements, a previous 592 

study has shown increased association of the members of Proteobacteria phyla particularly E. 593 

coli and Klebsiella sp. in urine samples compared to catheter biofilm contents in SCI patients 594 

[54]. 595 

Our study demonstrated that ASVs offer greater advantages over taxa features for machine 596 

learning tasks in predicting AB and SB. The underlying advantages of ASV features over 597 

taxa might be attributed to the higher resolution, improved accuracy and strain level insights 598 

provided by ASVs. Compared to taxa, ASVs exhibit subtle sequence variations. Often, 599 

multiple ASVs can map to a single taxon, providing a more precise picture of microbial 600 

communities. Furthermore, understanding strain-level variation within a species is crucial, as 601 

these closely related strains might have distinct functional roles in the microbiome. ASV 602 

based analysis allowed us to identify and differentiate between such strains. Interestingly, our 603 

results revealed that specific groups of ASVs belonging to the same taxon were enriched in 604 

either SB or AB. This suggests that particular pathogenic strains might predominate in each 605 

state. Future studies with strain-level resolution in samples from AB and SB are necessary to 606 

confirm this. In addition, machine learning algorithms perform best with informative features. 607 

Since ASVs capture finer genetic variations, they offer a richer signal for the model to learn 608 

from. This potentially leads to more accurate predictions compared to broader taxonomic 609 

classifications. While our analysis showed improved performance using ASVs, it's important 610 

to acknowledge the success of the taxa-based approach as well. Taxa-based models achieved 611 
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an average accuracy exceeding 80% and a 3-17 fold increase in precision compared to the 612 

baseline. 613 

In this study, we employed PyCaret to build ensemble models by selecting the top three 614 

performing machine learning classifiers out of the sixteen evaluated. Since individual 615 

classifiers often excel at predicting specific classes but struggle with others, combining them 616 

improves overall prediction accuracy for both classes. This approach, utilising a soft voting 617 

system, significantly enhances model performance compared to single classifiers. While 618 

ensemble models are not a new concept, their application in disease diagnosis remains 619 

limited. Most existing literature focuses on individual models for disease classification [20, 620 

55]. However, our study, along with others employing ensemble models, demonstrates the 621 

growing applicability and effectiveness of this approach [18, 56]. This success suggests that 622 

similar ensemble strategies could be implemented to achieve high-accuracy classification in 623 

other disease states. 624 

Our study has several limitations. First, potential under- and over-reporting of asymptomatic 625 

and symptomatic events may have occurred. Self-reported symptomatic events without 626 

confirmatory pathology could lead to overestimation, while chronic UTI patients may tolerate 627 

or ignore symptoms, causing underestimation. Second, catheter samples were collected only 628 

during routine changes due to the invasive nature of the procedure. More frequent sampling 629 

would have provided valuable insights into microbial dynamics and potentially improved 630 

model performance. Since our model performed better with urine samples compared to 631 

catheter, future studies could collect and analyse urine samples for prediction which, unlike 632 

catheters, is easier to obtain and allows for more frequent sampling. Third, our study did not 633 

include data on patient dietary habits and other potential immunological and environmental 634 

inputs in the analysis. Finally, the training data for our machine learning model included a 635 
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relatively small cohort of symptomatic samples. We addressed class imbalance using 636 

techniques like stratified splitting and SMOTE and reported metrics that account for this. 637 

While our model showed promise within the recruited cohort, further validation with a larger, 638 

external cohort is crucial. This will help identify potential biases that might affect its 639 

performance in a clinical setting. There is also a need to determine whether including other 640 

potential biomarkers and indicators of immunological resilience and environmental risks of 641 

potential infection could improve the accuracy of the current model. In addition, external 642 

validation is essential to confirm the model's effectiveness. However, acquiring such data can 643 

be challenging due to limited metadata associated with existing sequence and the need for the 644 

exact variable regions of the 16S rRNA gene that was used in this study. 645 

Conclusion 646 

Our findings reveal several unique characteristics of symptomatic bacteriuria in SCI patients, 647 

including lower microbial diversity, compositional changes, and enrichment of UTI 648 

associated pathogens. This study represents the first comprehensive microbiome profiling of 649 

both catheter and urine samples from SCI patients and we utilised this data to develop a 650 

machine learning model for UTI prediction. While future inclusion of more samples could 651 

improve the model's class balance, the current version demonstrates high accuracy and holds 652 

promise for real-world healthcare implementation. This could significantly improve patient 653 

quality of life and guide treatment decisions. We demonstrated that 16S rRNA amplicon 654 

sequencing data could be used to predict asymptomatic and symptomatic bacteriuria with 655 

high accuracy. These results have significant implications for establishing an early warning 656 

system for potential UTI in SCI patients. The benefits of our model are threefold. First, it can 657 

predict potential UTI, informing decisions about catheter changes to prevent potential 658 

infections. Second, for patients predicted to have asymptomatic bacteriuria, the model can 659 
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recommend keeping the catheter, reducing unnecessary procedures and costs. Third, it can 660 

prevent unnecessary antibiotic use, thereby curbing the rise of multidrug-resistant bacteria.  661 

Overall, this study evaluated the diagnostic potential of machine learning models for future 662 

implementation in treatment decisions and intervention strategies to better protect this high-663 

risk patient population. Looking forward, we aim to implement our model into healthcare 664 

settings to classify asymptomatic and symptomatic bacteriuria in SCI patients. This has the 665 

potential to improve patient quality of life, reduce mortality rates, curb the spread of drug-666 

resistant bacteria and generate significant cost savings for hospitals. 667 

Abbreviations 668 

SCI:  Spinal cord injury. 669 

UTI:  Urinary tract infection. 670 

CAUTI:  Catheter associated urinary tract infections. 671 

DNA:  Deoxyribonucleic acid. 672 

rRNA:  Ribosomal Ribonucleic acid. 673 

PCR:  Polymerase chain reaction. 674 

ASVs:  Amplicon sequence variants. 675 

PCoA:  Principal coordinate analysis. 676 

PERMANOVA:  Permutational multivariate analysis of variance. 677 

QIIME:  Quantitative insights into microbial ecology. 678 

IQR:  Interquartile range.  679 

SMOTE:  Synthetic minority over-sampling technique. 680 

AUROC:  Area under the receiver operating characteristic curve. 681 

AUPRC:  Area under the precision-recall curve. 682 
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Supplementary Information 684 

Additional file 1 (.pdf): 685 

Supplementary Fig. S1. Treemap showing the fraction of ASVs assigned to Family. The 686 

number and percentages of ASVs belong to each family are denoted inside of each box. The 687 

colors depict corresponding phyla. 688 

Supplementary Fig. S2. Beta diversity (unweighted unifrac) analysis in participants with at 689 

least one symptomatic bacteriuria event. Principal coordinates analyses (PCoA) of beta-690 

diversity between asymptomatic (AB, blue) and symptomatic (SB, red) bacteriuria group 691 

based on unweighted unifrac distance matrices. Each dot represents an individual sample. 692 

Supplementary Fig. S3. Beta diversity analysis (weighted unifrac) in participants with at 693 

least one symptomatic bacteriuria event. Principal coordinates analyses (PCoA) of beta-694 

diversity between asymptomatic (AB, blue) and symptomatic (SB, red) bacteriuria group 695 

based on weighted unifrac distance matrices. Each dot represents an individual sample. 696 

Supplementary Fig. S4. Overview of taxonomic composition in asymptomatic and 697 

symptomatic bacteriuria groups across combined, catheter and urine dataset. The colour 698 

heatmaps depicting mean relative abundances in percentages ranging from blue (low 699 

abundance) to red (high abundance) grouped by phylum, family, and genus. The numbers 700 

inside heatmaps show mean relative abundance of corresponding taxa indicated in y-axis 701 

across asymptomatic bacteriuria (AB) and symptomatic (SB) groups. Genus are shown if 702 

their mean relative abundances in any of the group was more than 1. 703 

Supplementary Table S1. Participants information and samples analysed. 704 

Supplementary Table S2. Machine learning models. 705 

Supplementary Table S3 Performance of machine learning models during cross-validation. 706 

Supplementary Table S4. Performance of machine learning models on held-out set. 707 

  708 
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