

1 Prediction of symptomatic and asymptomatic bacteriuria in spinal
2 cord injury patients using machine learning

3

4 M. Mozammel Hoque¹, Parisa Noorian¹, Gustavo Espinoza-Vergara¹, Joyce To¹, Dominic
5 Leo¹, Priyadarshini Chari², Gerard Weber³, Julie Pryor^{3,4}, Iain G. Duggin¹, Bonsan B. Lee^{5,6},
6 Scott A. Rice^{1,7*}, Diane McDougald^{1*}

7

8 ¹Australian Institute for Microbiology & Infection, University of Technology Sydney,
9 Sydney, NSW, Australia.

10 ²Spinal cord injury unit, Royal North Shore Hospital, NSW, Australia.

11 ³Royal Rehab Group, Sydney, NSW, Australia.

12 ⁴Susan Wakil School of Nursing and Midwifery, University of Sydney, Sydney, Australia

13 ⁵Department of Spinal and Rehabilitation Medicine, Prince of Wales Hospital, Sydney, NSW,
14 Australia.

15 ⁶Neuroscience Research Australia (NEURA), Sydney, NSW, Australia.

16 ⁷CSIRO, Microbiomes for One Systems Health, Agriculture & Food, Westmead NSW.

17 *Correspondence to: diane.mcdougald@uts.edu.au and Scott.Rice@csiro.au

18

19 Running Title: Machine learning based prediction of bacteriuria.

20

21 **Keywords:** Spinal cord injury, Bacteriuria, Urinary tract infections, 16S rRNA, Catheter,
22 Urine, Machine learning, Prediction.

23 **Abstract**

24 **Background**

25 Individuals with spinal cord injuries (SCI) frequently rely on urinary catheters to drain urine
26 from the bladder, making them susceptible to asymptomatic and symptomatic catheter-
27 associated bacteriuria and urinary tract infections (UTI). Proper identification of these
28 conditions lacks precision, leading to inappropriate antibiotic use which promotes selection
29 for drug-resistant bacteria. Since infection often leads to dysbiosis in the microbiome and
30 correlates with health status, this study aimed to develop a machine learning-based diagnostic
31 framework to predict potential UTI by monitoring urine and/or catheter microbiome data,
32 thereby minimising unnecessary antibiotic use and improving patient health.

33 **Results**

34 Microbial communities in 609 samples (309 catheter and 300 urine) with asymptomatic and
35 symptomatic bacteriuria status were analysed using 16S rRNA gene sequencing from 27
36 participants over 18 months. Microbial community compositions were significantly different
37 between asymptomatic and symptomatic bacteriuria, suggesting microbial community
38 signatures have potential application as a diagnostic tool. A significant decrease in local
39 (alpha) diversity was noted in symptomatic bacteriuria compared to the asymptomatic
40 bacteriuria ($P < 0.01$). Beta diversity measured in weighted unifrac also showed a significant
41 difference ($P < 0.05$) between groups. Supervised machine learning models trained on
42 amplicon sequence variant (ASVs) counts and bacterial taxonomic abundances (Taxa) to
43 classify symptomatic and asymptomatic bacteriuria with a 10-fold cross-validation approach.
44 Combining urine and catheter microbiome data improved the model performance during
45 cross-validation, yielding a mean area under the receiver operating characteristic curve
46 (AUROC) of 0.91-0.98 (Interquartile range, IQR 0.93-0.96) and 0.78-0.91 (IQR 0.86-0.88)
47 for ASVs and taxonomic features, respectively. ASVs and taxa features achieve a mean

48 AUROC of 0.85-1 (IQR 0.93-0.98) and 0.69-0.99 (IQR 0.78-0.88) in the independent held-
49 out test set, respectively, signifying their potential in differentiating symptomatic and
50 asymptomatic bacteriuria states.

51 **Conclusions**

52 Our findings demonstrate that signatures within catheter and urine microbiota could serve as
53 tools to monitor the health status of SCI patients. Establishing an early warning system based
54 on these microbial signatures could equip physicians with alternative management strategies,
55 potentially reducing UTI episodes and associated hospital costs, thus significantly improving
56 patient quality of life while mitigating the impact of drug-resistant UTI.

57 **Background**

58 Spinal cord injury patients are at high risk of catheter-associated urinary tract infection
59 (CAUTI) [1]. CAUTI typically manifests as a bacteriuria which is generally defined as a
60 urine culture with at least 10^8 colony forming units (CFU)/L, of an identified
61 microorganism(s) [2]. Bacteriuria can be further classified as asymptomatic bacteriuria (AB)
62 or symptomatic bacteriuria (SB) [3]. Patients with AB generally lack signs and symptoms of
63 UTI and do not require treatment [4, 5]. Conversely, SB is associated with symptoms such as
64 fever, urethral and bladder inflammation, and potential renal scarring among other symptoms
65 [6]. While bacteriuria is a significant risk factor for CAUTI in SCI patients, differentiating
66 AB from SB can be challenging due to limitations in diagnosis and the influence of various
67 etiologic factors [7, 8]. Accurate identification of these conditions is crucial because CAUTI
68 often necessitates extensive antibiotic use. Unfortunately, this therapy is becoming less
69 effective due to the emergence of multidrug-resistant (MDR) bacteria. This poses life-
70 threatening risks and creates a significant economic burden on public health systems.
71 Healthcare costs associated with CAUTI are rising, with estimates suggesting millions of

72 dollars are spent annually on treating hospitalisations caused by CAUTI, resulting in over
73 19,000 deaths in the United States [9-11].

74 The main cause for the development of CAUTI has been associated with the presence of
75 pathogenic bacteria in microbial biofilms formed on the surface of urinary catheters. Reports
76 show that CAUTI are predominantly caused by *Escherichia coli*, *Proteus mirabilis*,
77 *Pseudomonas aeruginosa*, *Klebsiella pneumoniae* and *Enterococcus faecalis*, bacteria that
78 have been associated with biofilm formation in urinary catheters [3, 12, 13]. Routinely, the
79 diagnosis of CAUTI involves pathogen identification by urine screening followed by
80 antibiotic treatment based on antibiogram reports produced by pathology laboratories.
81 Despite the availability of screening and diagnostic tools for CAUTI, there is a lack of
82 strategies that can successfully predict CAUTI. However, advances in the study of catheter-
83 associated biofilm communities by next generation sequencing technologies can generate
84 valuable information to build predictive platforms for CAUTI. For example, reports based on
85 sequence analysis of urinary catheter associated-biofilms have shown that microbial
86 communities associated with urinary catheters from long-term catheterised patients are
87 diverse and show variability after UTI events or antibiotic treatments [14-16]. This fact leads
88 to the idea that critical changes in the microbial community composition of urinary catheters
89 can reveal the early steps of a UTI event. Thus, detection of early shifts in biofilm
90 communities can be explored to establish ‘community thresholds’ which might serve as an
91 early warning approach before a UTI event.

92 Machine learning approaches have been implemented for the prediction of various disease
93 states [17]. Machine learning's ability to capture subtle differences in feature abundances
94 using 16S rRNA data allows for accurate prediction and classification of diseases [18-21].
95 Previous studies have explored machine learning models to predict UTI based on patient

96 demographic information, biochemical and immunological markers [22-25]. However,
97 demographic data alone could not explain the underlying causes of the infection and none of
98 the studies underwent precise characterisation. Using a machine learning-based diagnostic
99 framework, this work aimed to investigate a predictive platform for CAUTI based on
100 microbial communities in the urine and catheters of patients.

101 Here, twenty-seven SCI participants were monitored longitudinally for changes in their
102 urinary and catheter microbiome. We hypothesised that monitoring changes in the bacterial
103 communities colonising patients' catheters and urine can serve as an early warning system for
104 impending CAUTI. Our data suggests that the composition of these microbial communities is
105 dynamic, shifting in response to factors such as antibiotic use or pathogen colonisation. The
106 results reveal that microbial signatures within urine and catheter could be used as a potential
107 predictor of asymptomatic and symptomatic bacteriuria with high accuracy using a
108 supervised machine learning model. This early diagnostic tool could empower clinicians to
109 intervene before a full-blown infection develops. This approach has the potential to improve
110 patient outcomes, reduce healthcare costs, and mitigate the spread of MDR pathogens.

111 **Methods and materials**

112 **Study cohort and baseline characteristics**

113 Participants were recruited from four specialist SCI units (Prince of Wales Hospital, Royal
114 North Shore Hospital, Royal Rehab Ryde and Fairfield West Medical Centre) in New South
115 Wales, Australia. They were all adults, aged 18 years and older with inclusion criteria of
116 stable SCI, stable neurogenic bladder management for at least 4 weeks and agreement to
117 fortnightly telephone consultations over 18 months. They also agreed to have their urine and
118 catheter specimens and extracted DNA from these specimens stored for future studies.
119 Exclusion criteria included long-term antibiotic therapy, immunosuppressant use, invasive

120 mechanical ventilation, chronic infections, surgical bladder interventions, severe
121 renal/hepatic failure, and concurrent enrolment in any intervention studies.

122 The samples were collected during regular catheter changes by their care team. Only samples
123 that would be otherwise discarded were collected, including 5 cm of the bladder end of the
124 used catheter and urine samples from the new catheter. Participants reporting potential UTI
125 symptoms were instructed to contact their medical practitioner, providing additional urine
126 samples and 5 cm of the old catheter to the research team if changed. Baseline and first UTI
127 event samples underwent routine pathology tests. Diagnosis of symptomatic bacteriuria/ UTI
128 relied on subjective complaints and lab findings, following diagnostic criteria first published
129 in the SINBA randomised controlled trial [[26-28](#)]. It was crucial to distinguish new or
130 increased symptoms from chronic issues, as many symptoms alone did not justify treatment.
131 UTI symptoms were defined by new onset symptoms and laboratory evidence of UTI.

132 Between November 2021 and March 2023, 39 potential participants expressing interest were
133 screened, with 27 enrolled. Participants were predominately male (66.7%), female (33.3%)
134 with a mean age of 55 years (Supplementary Table S1). Most used suprapubic catheters, with
135 only one participant using an indwelling urinary catheter. The median time since SCI was 18
136 years (range: 98 days to 56 years). The research team received subjective complaints of
137 CAUTI symptoms, designating 67 UTI/ symptomatic bacteriuria events based on symptoms,
138 pathology analysis and self-reported data

139 **Sample processing**

140 Samples were processed according to previously described methods with some modifications
141 [[14](#)]. A 5 cm section of the bladder end of the used catheter was collected in a sterile
142 container with 5 mL of sterile saline (0.9% NaCl). A fresh catch urine specimen was also
143 collected from the newly installed catheter in a separate sterile container. Both specimens

144 were transported to the laboratory by courier or overnight express post and processed
145 immediately on the day of receiving samples. The catheter was cut into half lengthwise along
146 the inflation line using a sterile scalpel blade. The content inside was soaked with 1 mL of
147 saline. A 1 mL syringe plunger was used to dislodge the soaked content by running the
148 plunger back and forth on the two halves of the catheter pieces. The catheter pieces and
149 plunger were transferred to the original container with saline, vortexed and sonicated in an
150 ultrasonic water bath (Powersonic 420, Thermoline Scientific) at medium power for 1 min,
151 after which time 1 mL of catheter cell suspension as well as 12 mL of urine samples were
152 centrifuged at 5000 g for 5 min. The supernatants discarded from both tubes and the cell
153 pellets were stored at -20°C for DNA extraction. The remaining catheter cell suspensions
154 were centrifuged at 5000 g for 5 min and cell pellets were frozen at -80°C in glycerol for
155 future analysis.

156 **DNA extraction**

157 Total DNA was extracted from catheter and urine pellets obtained in the previous step using
158 DNeasy PowerSoil Pro Kit (Qiagen, cat. no. 47016) according to the manufacturer's
159 instructions except that the final elution was in 50 µL of water. The quality and quantity of
160 the isolated DNA were determined using a NanoDrop spectrophotometer (Thermo Fisher
161 Scientific, USA). The DNA samples were stored at -20°C before further analysis.

162 **Library preparation and amplicon sequencing**

163 The V4 region of the bacterial 16S rRNA gene was amplified for sequencing by a two-stage
164 PCR process. The first PCR was carried out using 10 ng of genomic DNA using 515F (5'-
165 GTGYCAGCMGCCGCGGTAA 3') and 806R (5'- GGACTACNVGGGTWTCTAAT 3')
166 primers including the Illumina adapters and KAPA HiFi HotStart ReadyMix (Cat
167 No.KR0370-v14.22; Roche, Switzerland) under the PCR cycle: initial denaturation at 95°C

168 for 2 min; followed by 20 cycles of: 95°C for 15 s, 60°C for 15 s, 72°C for 30 s; and a final
169 extension step at 72°C for 1 min and hold at 4°C. The PCR products from the first PCR were
170 diluted in water (1:40) and 3 µL of the diluted products were used as templates for the second
171 PCR to add unique barcodes to each sample. PCR conditions were the same as the first PCR
172 except that only 10 cycles were used. Two µL of each final product was pooled into one tube
173 and solid-phase reversible immobilisation (SPRI) beads (Beckman Coulter, USA) were used
174 to remove excess primers. The cleaned libraries were sequenced on an Illumina MiSeq v2
175 Nano 2 x 150 bp to assess read counts. The final normalised libraries were sequenced on an
176 Illumina MiSeq v3 2 x 300 bp.

177 **Sequence processing and alignment**

178 Sequencing data were analysed using the Quantitative Insights Into Microbial Ecology 2
179 program (QIIME2) version 2022.8.0 [29]. Raw fastq sequencing reads were imported to
180 QIIME2 in iHPC environment using qiime ‘tools import’ plugin. The reads were filtered to
181 remove sequencing primers using cutadapt [30]. The primer-trimmed sequences were
182 denoised and clustered to amplicon sequence variants (ASVs) using DADA2 plugins. At the
183 denoising step, the forward and reverse reads were truncated at position 220 and 160 bp,
184 respectively, to retain only high-quality sequences [31]. The orientation of the denoised
185 sequences was corrected by aligning to the reference sequences using ‘rescript orient-seq’
186 plugins [32]. For taxonomic assignments, the oriented sequences were aligned to the
187 greengenes2 16S rRNA reference database (V4 region) using ‘feature-classifier’ plugin [33].
188 The Naive Bayes classifier pre-trained on the V4 region was obtained from greengenes2 data
189 repository. Greengenes2, released in 2023, is the latest 16S rRNA reference database and
190 contains high-quality full length 16S sequences from the Living Tree Project with updated
191 taxonomic information. The feature table was filtered to remove unassigned features based on
192 the taxa table obtained during the alignment step. The feature table was further subjected to

193 taxonomic filtering to remove low abundant phyla (if feature frequency less than 5). The
194 filtered sequences were aligned using ‘mafft’ and ‘fasttree’ plugins to generate rooted
195 phylogenetic trees [34, 35].

196 **Microbiome diversity and taxonomic analysis**

197 The feature table, taxonomic table and rooted tree obtained from the previous section were
198 imported to build phyloseq object in R program using phyloseq package [36]. All samples
199 were rarefied at 11,000 reads with the phyloseq function ‘rarefy_even_depth’ to normalise
200 the variance [37]. Rarefaction retained 591 samples (307 catheter and 284 urine) and 18 of
201 the samples were excluded from the analysis due to insufficient reads. All the downstream
202 alpha diversity, beta diversity, taxonomic and machine learning analyses were performed
203 with the rarefied dataset. The alpha diversity ‘Shannon index’ was computed using the R
204 package ‘Microbiome’ [38]. Principal coordinates analysis (PCoA) was carried out on the
205 beta diversity (weighted and unweighted unifrac) distance metrics using ‘microeco’ R
206 package [39]. Taxonomic abundances were calculated using ‘microeco’ package at different
207 taxonomic level. Taxonomic abundances data for machine learning were prepared using the
208 ‘trans_classifier’ function of the microeco package in R. Shared and unique taxa analyses
209 were also conducted using the ‘microeco’ package. Data were visualised using the ‘ggplot2’
210 package in R version 4.2 [40].

211 **Supervised machine learning**

212 The raw ASVs counts and taxonomic abundance data were pre-processed in three steps using
213 the R package mikropml [41]. First, the raw ASVs counts and taxonomic abundance data
214 were pre-processed using the default method. Briefly, the default method normalised the data
215 by centering and scaling and removed variables with near-zero variance. Second, the unique
216 ASVs or Taxa belonging to AB and SB were also subjected to mikropml pre-processing to

217 remove zero variance features only. In the third and final step, the feature lists from the first
218 and second steps were combined and again subjected to pre-processing using mikropml to
219 remove zero variance features. The pre-processed data were utilised to initiate the supervised
220 machine learning pipeline using the PyCaret package (version 3.2) in python with default
221 parameters unless otherwise stated [42]. For 20 random seeds, transformed data were
222 subjected to stratified (proportional class distribution) split to obtain 80% training and 20%
223 held-out sets. We used 10 iterations of stratified 10-fold cross-validations to ensure the
224 robustness of our approach and to precisely evaluate the prediction power of the models. We
225 applied SMOTE (Synthetic Minority Over-sampling Technique) to fix imbalances in the
226 distribution of the target class in the training set during the PyCaret setup function. We also
227 removed outliers using sklearn's "IsolationForest" method with default threshold (0.05)
228 during the setup function.

229 A second round of feature selection was applied to remove additional features based on the
230 classic feature selection method within PyCaret setup with the 'n_features_to_select' parameter
231 was set at 0.9. During model optimisation, a total of 16 machine learning algorithms from the
232 scikit-learn library were used to construct initial models (Supplementary Table S2) [43]. The
233 top three models, based on balanced accuracy, were blended and tuned. The blended and
234 tuned model performance was evaluated on both cross-validation and held-out sets. We
235 evaluated model performance based on several metrics including AUROC (summarises trade-
236 off between sensitivity and specificity across all possible thresholds) and AUPRC (focuses on
237 the trade-off between precision and recall). In addition to these two metrics, we also provided
238 accuracy (correct prediction / all prediction), precision (true positives divided by the total
239 number of positive predictions), recall (weighted average of sensitivity and specificity),
240 balanced accuracy (arithmetic average of sensitivity and specificity) and F1 scores (harmonic
241 mean of the precision and recall) (Supplementary Tables S3 and S4). All hyperparameters

242 were automatically tuned and optimised by the PyCaret. Finally, the most important ASVs
243 and Taxa contributing to model performance were determined by the feature importance
244 score extracted from the top performing model.

245 **Statistical analysis**

246 Statistical significance for the alpha diversity (Shannon index) metric was calculated with
247 non-parametric Wilcoxon test in R. Statistical significance for beta diversity (weighted and
248 unweighted unifrac distance) metrics were determined by Permutational Multivariate
249 Analysis of Variance (PERMANOVA) with a number of 999 permutations using QIIME2
250 ‘diversity beta group significance’ plugin [44]. Differences in AUROC scores between cross-
251 validation and held-out set were determined by no-parametric Wilcoxon test in R.
252 Differences in ASVs and taxa abundances were also determined by no-parametric Wilcoxon
253 test in R.

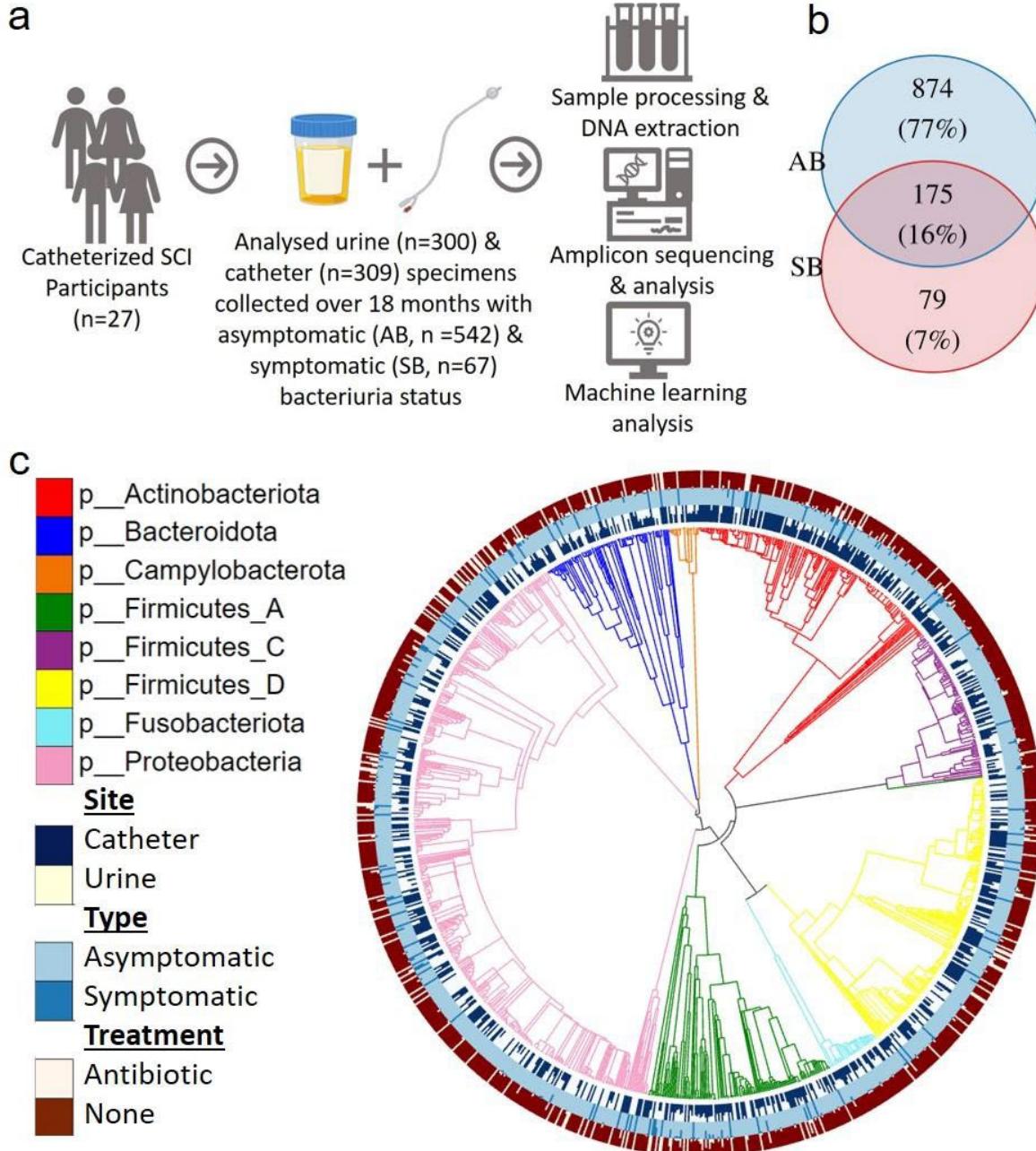
254 **Results**

255 **Evaluation of microbial community composition in asymptomatic and symptomatic
256 bacteriuria**

257 To investigate the microbial community composition in asymptomatic (AB) and symptomatic
258 (SB) bacteriuria, we performed 16S rRNA sequencing analysis on a total of 300 urine and
259 309 catheter samples collected from 27 participants ([Fig. 1a](#)). A total of 35,101,926 high
260 quality sequences were produced, with a median of 61,613 sequences per sample. After
261 quality filtering, sequencing reads were clustered into 1246 amplicon sequence variants
262 (ASVs) of which 1128 ASVs remained after rarefaction. The AB group harboured more
263 distinct ASVs compared to the SB group ([Fig. 1b](#)). Out of 1128 ASVs, 874 (77%) and 79
264 (7%) were unique to AB and SB, respectively, with 175 (16%) shared by both groups. The
265 identified ASVs belonged to diverse phylogenetic lineages, spanning 8 phyla, 11 classes, 43

266 orders, 68 families, 138 genera and 144 species ([Fig. 1c](#)). Nearly all (mean ~100%) ASVs
267 were classified to the family level, while a mean of 76.1% and 34.1% were assigned to genus
268 and species levels, respectively. The majority of the ASVs were Proteobacteria (n=433,
269 38.4%), followed by Firmicutes_D (n=183, 16.2%), Actinobacteriota (165, n=14.6%),
270 Firmicutes_A (n=112, 9.9%), Firmicutes_C (n=98, 8.7%), Bacteriodota (n=85, 7.5%),
271 Fusobacteriota (n=35, 3.1%) and Campylobacterota (n=17, 1.5%). Enterobacteriaceae
272 (n=282, 25%) and Pseudomonadaceae (n=70, 6%) were the largest contributors to the
273 Proteobacteria phyla (Supplementary Fig. S1).

274



275

276 **Fig. 1. Study design and distribution of 16S rRNA amplicon sequence variants.**

277 (a) The schematic shows the overview of the study design and workflow. (b) Venn diagram

278 showing the unique and shared ASVs between asymptomatic (AB) and symptomatic (SB)

279 bacteriuria groups. (c) Phylogenetic tree for 1128 microbiome members constructed based on

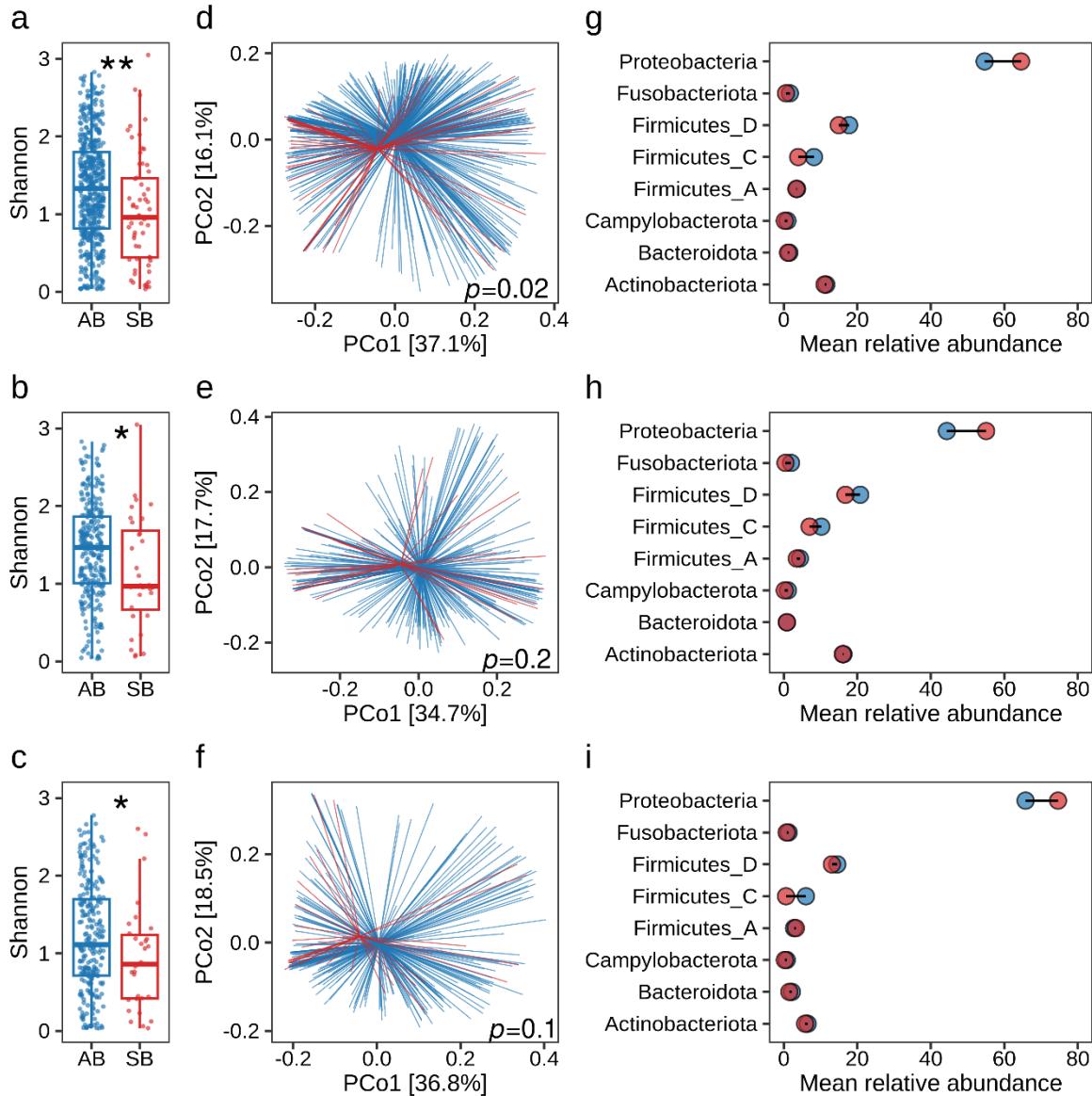
280 16S rRNA amplicon sequence variants. Tree branches are coloured based on their respective

281 phylum. The inner, middle and outer bar plot rings indicate the proportion of counts split by

282 site (catheter vs urine), type (AB vs SB) and antibiotic use (with and without), respectively,

283 as indicated in the legend.

284 We assessed and compared the microbial community composition between AB and SB
285 groups for urine and catheter samples separately as well as when combined. Alpha diversity,
286 measured by Shannon index (accounting for both species abundance and evenness), was
287 significantly lower in SB compared to AB, both in the combined and individual datasets ([Fig.](#)
288 [2a-c](#)). The mean Shannon index was 1.3 for AB (IQR 0.8-1.8) compared to 1.0 for SB (IQR
289 0.4-1.4) in the combined dataset. Beta diversity analysis using weighted unifrac distances
290 revealed significant differences in community composition between AB and SB groups on
291 the combined dataset (PERMANOVA, Pseudo-F = 2.5, $P = 0.02$) ([Fig. 2d](#)). While these
292 differences were not statistically significant when analysed separately for urine or catheter
293 samples, a moderate difference was observed for urine ($P = 0.1$) when compared to catheter
294 ($P = 0.2$) ([Fig. 2e-f](#)). These findings suggest an altered community composition in SCI
295 patients with symptomatic bacteriuria. Participant-specific analysis showed distinct clustering
296 of microbial communities between AB and SB groups in participants one, six, eight, nine,
297 eleven, twenty-five and twenty-six (Supplementary Fig. S2 and S3).



298

299

300 **Fig. 2. Differences in microbiota community structure and composition between**
301 **asymptomatic (AB) and symptomatic (SB) bacteriuria samples.**

302 (a-c) Alpha diversity measured by the Shannon index of AB (blue) and SB (red) samples
303 across combined (a), catheter (b) and urine (c). Each data point represents an individual
304 sample. Statistical analysis was performed using Wilcoxon rank-sum test and significance is
305 indicated by, ** $P < 0.01$; * $P < 0.05$ between groups. (d-f). Principal coordinates analyses
306 (PCoA) of beta-diversity between groups based on weighted unifrac distance matrices are
307 shown across combined (d), catheter (e) and urine (f). Each group is shown in a different
308 colour (AB: blue, SB: red) with centroid and each line represents an individual sample.
309 Statistical significance was determined by permutational ANOVA (PERMANOVA) with 999
310 permutations between groups and pairwise p-values are indicated inside of each plot. (g-i)
311 Overview of taxonomic composition in AB and SB groups across combined (g), catheter (h)
312 and urine (i). The points (AB: blue, SB: red) and solid line (black) depicting mean relative
313 abundances in percentages and their differences, respectively, for the phyla as indicated in the
y-axis.

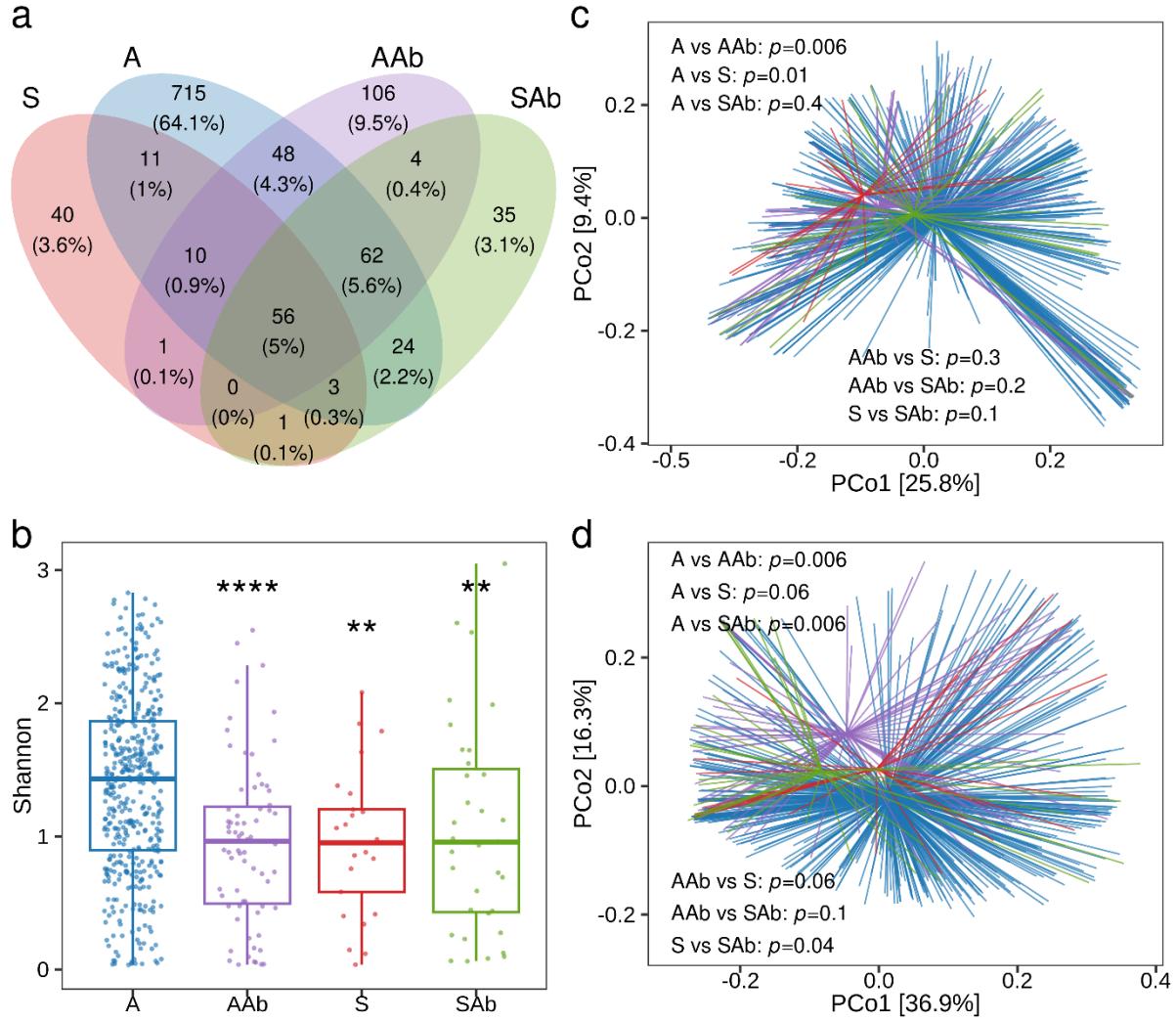
314 Taxonomic analysis was conducted to identify bacterial groups driving the differences
315 between AB and SB samples. At the phylum level, the greatest differences in the mean
316 relative abundances were observed for Proteobacteria, followed by Firmicutes_C and
317 Fusobacteriota ([Fig. 3g-I](#) and Supplementary Fig. S4). The mean relative abundance of
318 Proteobacteria was higher in SB (64.5%) compared to AB (54.6%). Conversely,
319 Firmicutes_C (AB: 8.2%, SB: 3.9%) and Fusobacteriota (AB: 1.7%, SB: 0.6%) displayed
320 lower abundances in SB compared to AB. This pattern mirrored the differences observed in
321 the catheter and urine subsets, though with some variations. Notably, Proteobacteria
322 abundance was higher in urine (AB: 65.8%, SB: 74.6%) compared to the catheter (AB:
323 44.4%, SB: 55.1%). Conversely, Actinobacteriota and Firmicutes displayed higher
324 abundances in the catheter compared to urine. Hence, the phyla level analysis revealed that
325 Proteobacteria and Firmicutes_C were mostly associated with SB and AB respectively. At the
326 family level, Enterobacteriaceae_A, Pseudomonadaceae and Actinomycetaceae were the
327 three most abundant families observed across the three datasets. Genus-level analysis further
328 revealed distinct profiles between AB and SB. Notably, SB samples harboured a higher
329 proportion of *Achromobacter*, *Actinotignum*, *Escherichia_710834*, *Massilia*, *Proteus*,
330 *Staphylococcus*, and *Stenotrophomonas_A*. In contrast, AB samples showed higher
331 abundances of *Enterococcus_B*, *Fusobacterium_C*, *Serratia_D*, *Streptococcus*, and
332 *Veillonella_A*.

333 These findings highlight the value of analysing both urine and catheter samples for a more
334 comprehensive understanding of microbial community composition, particularly in
335 identifying UTI-related signatures. While urine alone may reveal some differentiation,
336 combining both sample types provides a more nuanced picture.

337 **Symptomatic bacteriuria and use of antibiotics lead to alterations in microbial
338 community composition**

339 About one-fifth (~19%) of the samples (14% of AB and 61% of SB) were collected while
340 participants were taking antibiotics. This use may not always have been for UTI but for other
341 secondary infections. Since antibiotics disrupt the microbiota, we aimed to understand the
342 true differences in microbial community composition between asymptomatic and
343 symptomatic individuals, unaffected by antibiotic influence. We divided the samples based
344 on antibiotic use and UTI symptoms: Asymptomatic without antibiotics (A), Asymptomatic
345 with antibiotics (AAb), Symptomatic without antibiotics (S) and Symptomatic with
346 antibiotics (SAb). These four groups shared 5% (n = 56) of the ASVs while 64.1% (n = 715),
347 9.5% (n = 106), 3.6% (n = 40) and 3.1% (n = 35) of ASVs were unique to A, AAb, S and
348 SAb, respectively ([Fig. 3a](#)). This suggests distinct microbial compositions for each group.

349 Alpha diversity analysis revealed that both antibiotic use and symptomatic bacteriuria lead to
350 a significant decrease in diversity ([Fig. 3b](#)). A significant decrease in alpha diversity was
351 observed in AAb ($P < 0.0001$), S ($P < 0.01$) and SAb ($P < 0.01$) compared to the A group. No
352 significant difference was observed between S and SAb. The community compositions
353 among four groups were also evaluated by unweighted (qualitative) and weighted
354 (quantitative) unifrac beta diversity metrics ([Fig. 3c-d](#)). The unweighted measure of beta
355 diversity metrics further demonstrated significant differences between A and S. The
356 unweighted UniFrac showed a significant separation between A vs. AAb ($P = 0.006$) and A
357 vs. S ($P = 0.01$). The weighted UniFrac showed a significant pairwise separation between the
358 antibiotic treated group compared to the A and S.



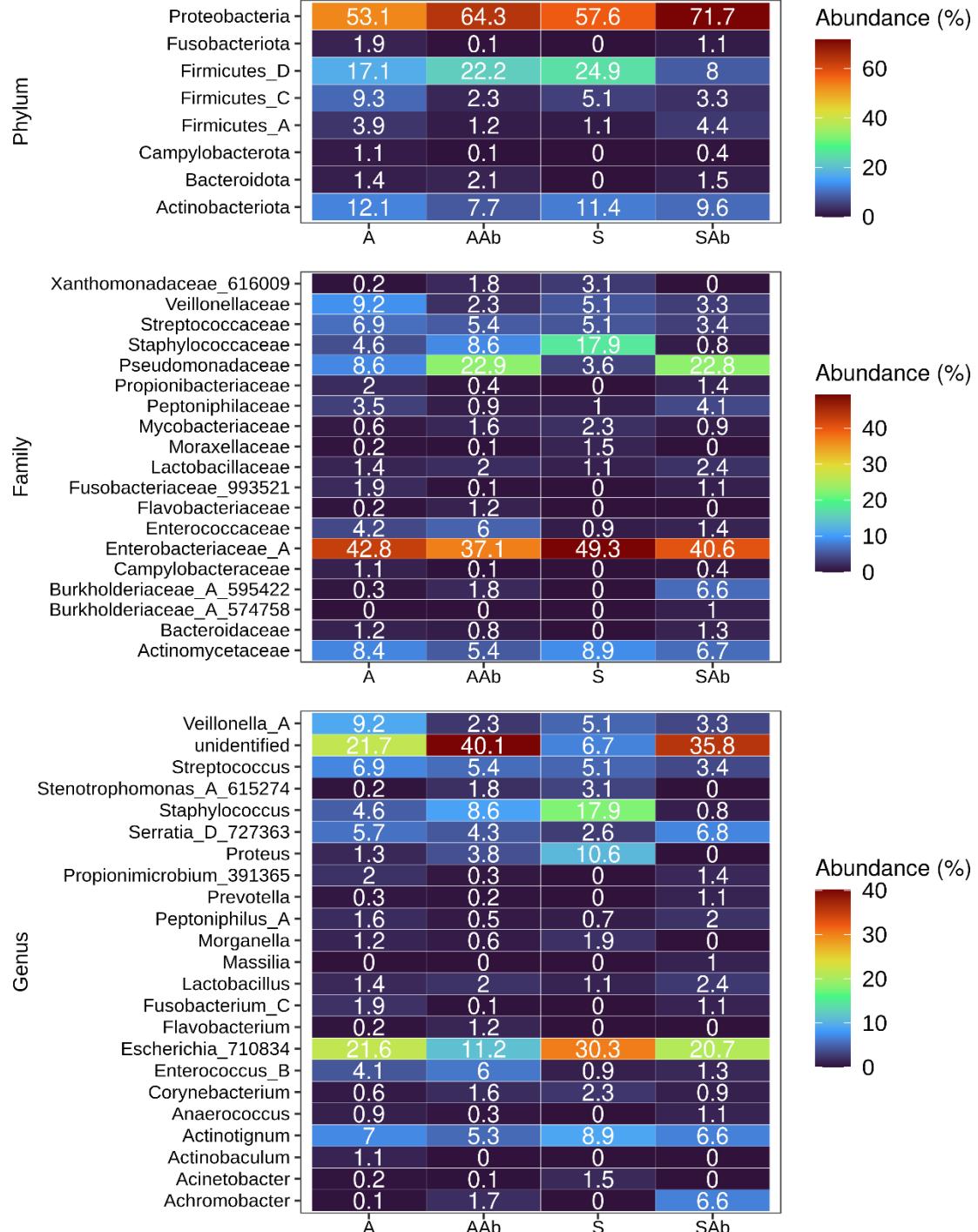
359

360 **Fig. 3. Differences in microbiota community structure among asymptomatic and**
 361 **symptomatic bacteriuria groups with and without antibiotics use.**

362 (a) Venn diagram showing the unique and shared ASVs among four groups, asymptomatic
 363 samples without antibiotics use (A), asymptomatic samples with antibiotics use (AAb),
 364 symptomatic samples without antibiotics (S), and symptomatic samples with antibiotics
 365 (SAb). (b) Alpha diversity measured using the Shannon index among the four groups are
 366 shown in boxplots. Each data point represents an individual sample. Statistical analysis was
 367 performed using Wilcoxon rank-sum test and significance are indicated by, **** $P < 0.0001$;
 368 ** $P < 0.01$ compared to group A (c-d). Principal coordinates analyses (PCoA) of beta-
 369 diversity between groups based on unweighted (c) and weighted (d) unifrac distance matrices
 370 are shown. Each group is shown in a different colour with centroid and each line represents
 371 an individual sample. Statistical significance was determined by permutational ANOVA
 372 (PERMANOVA) with 999 permutations between groups and pairwise p-values are indicated
 373 inside of each plot.

374 Analysis of the predominant taxa revealed higher relative abundances of Proteobacteria in
375 antibiotic-treated groups (AAb 64.3% and SAb 71.7%) compared to untreated groups (A
376 53.1% and S 57.6%) ([Fig. 4](#)). This increase can be attributed to the Pseudomonadaceae
377 family, with a mean relative abundance of 22.9% and 22.8 % in AAb and SAb, respectively.
378 Additionally, the S group displayed higher proportions of Firmicutes_D (~25%) compared to
379 the other sample groups. At the family level, Enterobacteriaceae_A dominated the S group,
380 with the highest mean relative abundance (49.3%). Other notable families in S included
381 Staphylococcaceae (17.9%), Actinomycetaceae (8.9%), Xanthomonadaceae_616009 (3.1%)
382 and Mycobacteriaceae (2.3%). Genus-level analysis revealed enrichment of *Acinetobacter*,
383 *Actinotignum*, *Corynebacterium*, *Escherichia_710834*, *Morganella*, *Proteus*, *Staphylococcus*,
384 and *Stenotrophomonas* in S compared to other sample groups. Notably, four genera:
385 *Escherichia_710834* (30.3%), *Staphylococcus* (17.9%), *Proteus* (10.6%), and *Actinotignum*
386 (8.9%) constituted over two-thirds of the S group bacterial composition.

387 These results confirm that community composition between asymptomatic (A) and
388 symptomatic (S) groups differs significantly. The analysis also revealed that the use of
389 antibiotics significantly alters the community composition in asymptomatic samples. These
390 findings also highlight the value of analysing antibiotic treated and untreated samples for a
391 more comprehensive understanding of microbial community composition. Furthermore, this
392 analysis identified potential taxa associated with A and S, highlighting their potential as
393 biomarkers for differentiating these two groups.



394

395 **Fig. 4. Overview of taxonomic composition in asymptomatic and symptomatic**
 396 **bacteriuria with and without antibiotics treated groups from combined dataset.**

397 The colour heatmaps depicting mean relative abundances in percentages ranging from blue
 398 (low abundance) to red (high abundance) by phylum, family and genus. The numbers inside
 399 the heatmaps show mean relative abundance of corresponding taxa indicated in y-axis across
 400 four different groups, asymptomatic samples without antibiotics use (A), asymptomatic
 401 samples with antibiotics use (AAb), symptomatic samples without antibiotics (S) and
 402 symptomatic samples with antibiotics (SAb). Family and genus are shown if their mean
 403 relative abundances in any of the group was more than 1.

404 **Machine learning can classify symptomatic and asymptomatic bacteriuria with high
405 accuracy**

406 Our study explored the potential of urine and catheter microbial composition as a diagnostic
407 tool for classifying symptomatic and asymptomatic bacteriuria using supervised machine
408 learning. Two feature sets derived from 16S rRNA gene amplicon analysis, ASVs counts and
409 taxonomic abundances (Taxa), were used to train and evaluate prediction models. We aimed
410 to accurately classify both AB and SB patients. Clinically, it is important to determine the
411 timeframe over which patients with AB can retain their existing instilled catheters, while
412 those with SB, or at-risk microbiological profiles, may need catheter replacement to minimise
413 advanced UTI risks. Therefore, we applied the AUROC metric, which evaluates the trade-off
414 between sensitivity and specificity across all possible thresholds, allowing for comprehensive
415 comparisons of classifier performance on various datasets. Recognising the imbalanced
416 nature of our dataset (more AB cases, fewer SB), we additionally provide AUPRC as a
417 complementary measure. AUPRC focused on the trade-off between precision and recall,
418 considering a baseline equivalent to the proportion of minority class (SB) within the entire
419 sample. Both cross-validation and held-out set results were reported since including both
420 results demonstrate the robustness of the model's performance as the former estimates the
421 stability and generalisability of a model by repeatedly training and testing on different subsets
422 of data, while the later one provides an independent evaluation of the model ([Fig. 5a](#)).
423 Additionally, evaluation of both is useful to check any overfitting and underfitting
424 performance of the trained model. Here, the majority of datasets showed a similar level of
425 performance during cross-validation and held-out evaluation ([Fig. 5b](#)). The mean AUROC
426 differences between the cross-validation and held-out sets were not statistically different in
427 the majority of datasets. This indicates that the model did not show any overfitting or
428 underfitting issues, particularly in ASVs and without antibiotic datasets.

429 Model performance was evaluated across three variables: antibiotic use (samples with vs.
430 without), feature type (ASVs vs Taxa) and sample type (catheter, urine or combined). Firstly,
431 we assessed model performance on samples with and without antibiotic treatment. This
432 aimed to account for the significant effect antibiotics have on bacterial diversity. Importantly,
433 diagnosing untreated samples (person) seeking medical advice is more clinically relevant.
434 However, we also evaluated samples with antibiotic use, considering that many SCI patients
435 receive antibiotics, necessitating accurate diagnosis of both antibiotic-associated
436 asymptomatic and symptomatic bacteriuria in these cases. Cross-validation results showed
437 that excluding antibiotic-treated samples improved model accuracy. Mean AUROC scores
438 with ASV features ranged from 0.91-0.98 (IQR 0.93-0.96) without antibiotics to 0.82-0.89
439 (IQR 0.83-0.86) with antibiotics ([Fig. 5b](#) and Supplementary Tables S3). Held-out set
440 evaluation confirmed this trend, with a mean AUROC of 0.85-1 (IQR 0.93-0.98) and 0.69-
441 0.93 (IQR 0.81-0.88) in untreated and treated samples, respectively ([Fig. 5b](#) and
442 Supplementary Tables S4). The ASV feature on combined and without antibiotic dataset
443 showed the highest AUPRC with a mean of 0.37-0.1 (IQR 0.6-0.84) compared to any other
444 dataset with a baseline AUPRC value of 0.05. These findings suggest that excluding
445 antibiotic-treated samples improves overall model performance for combined (catheter and
446 urine) datasets.

447 Next, we compared model performance between ASV and taxa features and found that ASV
448 yielded higher AUROC scores, reaching 0.91-0.98 (IQR 0.93-0.96) compared to 0.78-0.91
449 (IQR 0.86-0.88) for taxa when trained on untreated combined datasets ([Fig. 5b](#) and
450 Supplementary Tables S3). Held-out set evaluation also showed this trend, with a mean
451 AUROC of 0.85-1 (IQR 0.93-0.98) and 0.69-0.99 (IQR 0.78-0.88) for ASV and taxa features,
452 respectively ([Fig. 5b](#) and Supplementary Tables S4). The same trend was also observed in
453 datasets with antibiotics, which showed better performance with ASV during cross-validation

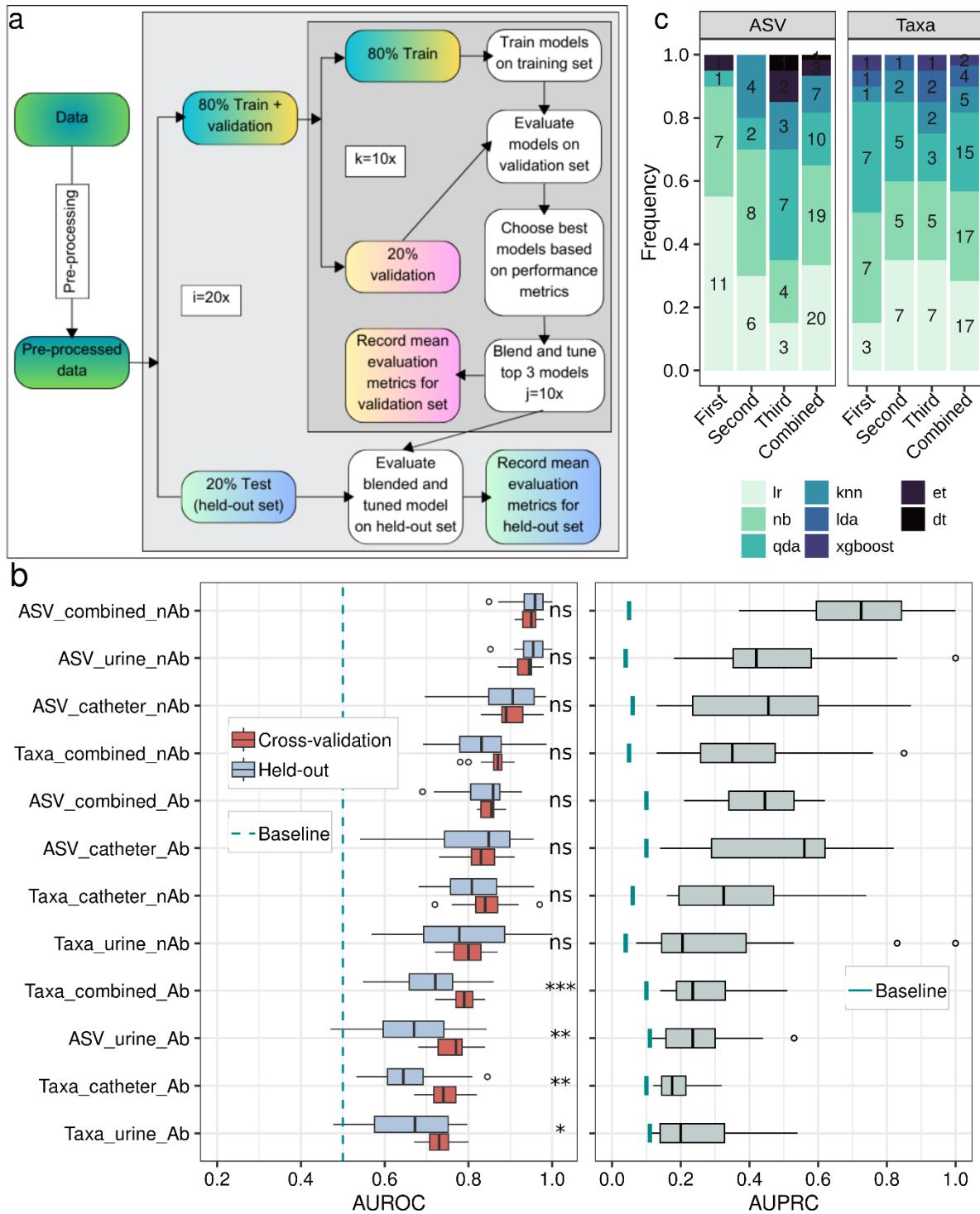
454 with mean AUROC of 0.82-0.89 (IQR 0.83-0.86) compared to taxa (AUROC 0.72-0.84, IQR
455 0.77-0.81) datasets ([Fig. 5b](#) and Supplementary Tables S3). Held-out evaluation showed a
456 mean AUROC of 0.69-0.93 (IQR 0.81-0.88) and 0.55-0.86 (IQR 0.66-0.76) for ASV and taxa
457 feature, respectively ([Fig. 5b](#) and Supplementary Tables S4). The ASV feature also showed a
458 higher AUPRC score compared to taxa on both with and without antibiotic dataset. Hence,
459 the results show in general a better performance of the models trained with ASV feature
460 compared to the taxa feature across all datasets.

461 Finally, we compared model performance on combined datasets versus catheter and urine-
462 only datasets, considering the differences in diversity observed between these groups. ASV
463 features and exclusion of antibiotic-treated samples led to the best performance in combined
464 datasets (mean AUROC 0.91-0.98, IQR 0.93-0.96) compared to catheter (AUROC 0.83-0.98,
465 IQR 0.88-0.93) or urine-only datasets (AUROC 0.87-0.98, IQR 0.92-0.95) during cross-
466 validation ([Fig. 5b](#) and Supplementary Tables S3). Held-out evaluation also confirmed this
467 trend, with ASV features achieving a mean AUROC of 0.85-1 (IQR 0.93-0.98) in the
468 combined dataset, compared to 0.7-0.99 (IQR 0.85-0.96) for catheter and 0.85-1 (IQR 0.93-
469 0.98) for urine-only datasets ([Fig. 5b](#) and Supplementary Tables S4). The AUPRC score was
470 highest for the combined dataset 0.37 to 1 (IQR 0.6-0.84) followed by urine 0.18 to 1 (IQR
471 0.35-0.58) and catheter 0.13 to 0.87 (IQR 0.24-0.6) with a baseline 0.05, 0.04 and 0.06
472 respectively. These findings indicate that using combined datasets significantly improved
473 model performance compared to analysing individual sampling sites.

474 We blended the top three performing models and evaluated the performance on the blended
475 and tuned model. Among the 16 tested models, we observed that nine models appeared in the
476 top three list when evaluated in ASV and Taxa combined and without antibiotics datasets

477 (Fig. 5c). Logistic regression (lr), Naïve bayes (nb) and Quadratic discriminant analysis (qda)

478 classifier were the highest performing classifier.



479

480 **Fig. 5. Workflow and predictive performance of machine learning models based on**
 481 **microbiota composition.**

482 (a) Workflow for supervised machine learning. The pre-processed data were subjected to
 483 stratified (proportional class distribution) split to create 80% training and 20% held-out sets
 484 (repeated 20 times). A 10-fold cross-validation was performed on the training data to select
 485 the best models. Top three models based on accuracy were blended and tuned (repeated 10
 486 times). The blended and tuned model performance was evaluated on both cross-validation
 487 and held-out sets. (b) The boxplots show performance of ML models using AUROC on

488 cross-validation and held-out testing set (left panel) and AUPRC on held-out testing set (right
489 panel) across different datasets. The datasets were arranged in descending order from top to
490 bottom based on the mean AUROC values. The median depicted as centre line in the box,
491 edges depict inter-quartiles, and whiskers as distribution of the data (1.5 times of the
492 quartiles). Outliers are shown as points. The random chances of AUROC depicted by a
493 vertical dashed ‘dark-cyan’ line at 0.5. The baseline chances of AUPRC depicted as vertical
494 solid ‘dark-cyan’ line underneath of the boxplots for each dataset. The baseline performance
495 for AUPRC was calculated as the fraction of the samples in the minority class (SB) over the
496 total number of samples in the test set. Statistical analysis was performed using Wilcoxon
497 rank-sum test and significance is indicated by, *** $P < 0.001$; ** $P < 0.01$; * $P < 0.05$; ns:
498 not significant between cross-validation and held-out set. (c) Frequency of the top three
499 blended models across ASV and Taxa (combined and without antibiotics) datasets.
500
501

502 **ASVs and Taxa belonging to Proteobacteria phyla showed the highest importance in
503 classification of AB and SB**

504 Given the good predictive performances of the models trained on the ASV feature, we next
505 sought to identify ASVs that were most important in classifying the AB and SB using the
506 feature importance derived from the top performing classifier. We plotted the top 20 ASVs,
507 of which 9 ASVs belonged to the Proteobacteria phyla, which includes members of 8
508 Enterobacteriaceae_A and 1 Pseudomonadaceae families ([Fig. 6a](#)). A member of the
509 *Escherichia_710834* genus (ASV 1126) had the strongest effect on feature importance
510 followed by a member of the *Staphylococcus* genus (ASV 224). Plotting the relative
511 abundance of these top 20 ASVs revealed significant differences between AB and SB ([Fig.](#)
512 [6a](#)). In particular, the median relative abundance of the genus *Escherichia_710834* (ASV
513 1126, 1040, 1074) was higher in SB compared to AB. The relative abundance of the genus
514 *Escherichia_710834* (ASV 1020), Enterobacteriaceae_A (ASV 933), *Enterococcus_B* (ASV
515 163) and *Staphylococcus* (ASV 224) were significantly different between AB and SB ($P <$
516 0.05). The ASV 1126 and 205 were unique to SB corresponding to *Escherichia_710834* and
517 *Staphylococcus* genus, respectively. In contrast, seven ASVs were unique to AB, ASV 292,
518 412, 456, 696, 936, 1005 and 1019 corresponding to *Streptococcus constellatus*,

519 *Fastidiosipila sanguinis*, *Veillonella* genus, *Campylobacter ureolyticus* and

520 Enterobacteriaceae_A family, respectively.

521 In addition to the ASV feature, we also sought to identify taxa that were most important in

522 classifying the AB and SB using the feature importance derived from the top performing

523 classifier. Interestingly, many taxa identified were similar to the ASV analysis, and 6 out of

524 the top 20 taxa belonged to the Proteobacteria phyla ([Fig. 6b](#)). Among the top 20 taxa, the

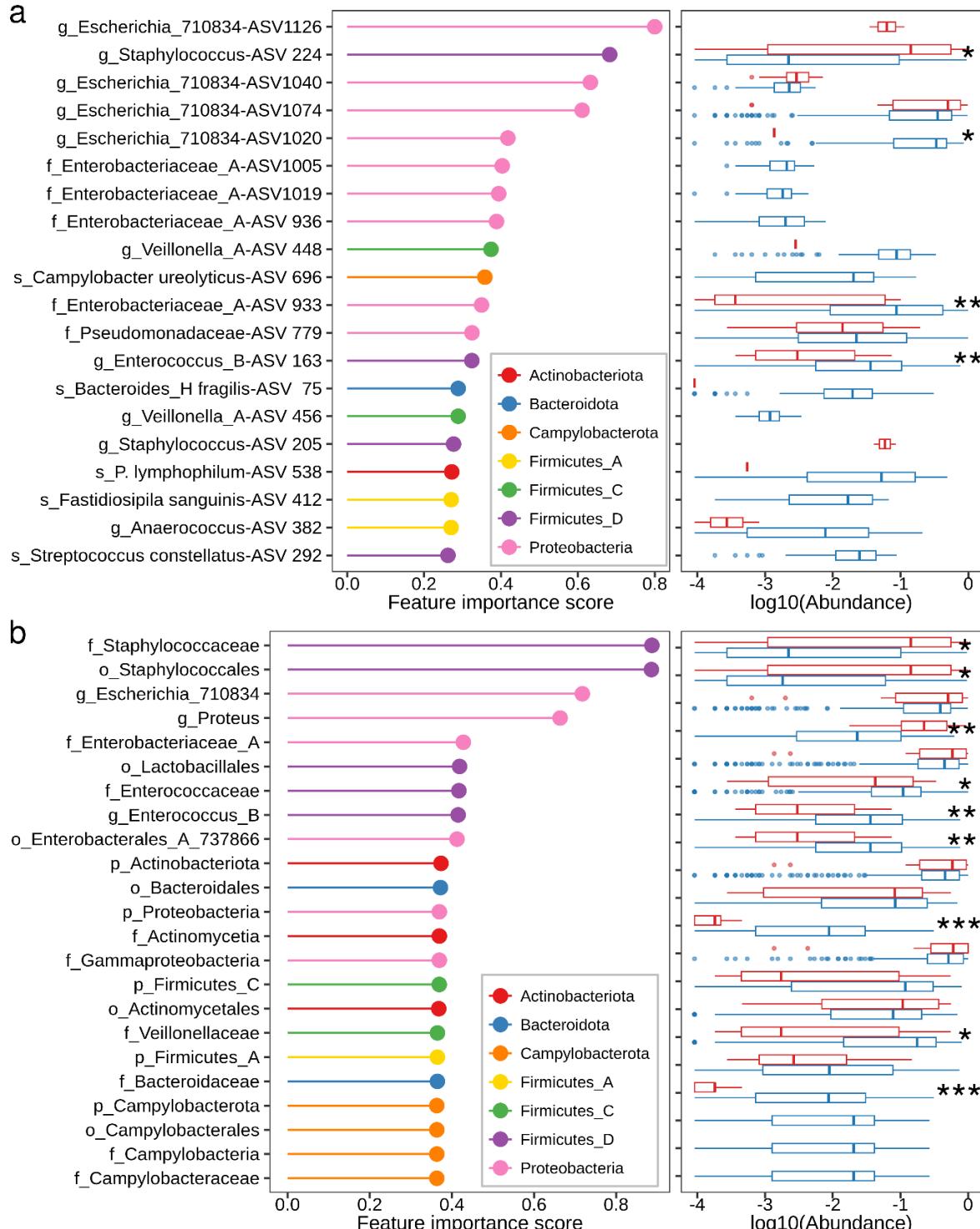
525 family Staphylococcaceae had the strongest effect, followed by the three members of the

526 Proteobacteria phyla. At the genus level, *Escherichia_710834* showed the highest effect,

527 followed by *Proteus* and *Enterococcus*. In the majority of cases, the feature importance score

528 corresponded to the differences in mean abundances of these taxa observed during taxonomic

529 analysis ([Fig. 4](#)).



530

531 **Fig. 6. Important ASVs and taxa features contributing to the classification of AB and**
 532 **SB.**

533 Feature importance of the top 20 most important ASVs (a) and Taxa (b) derived from the top
 534 performing classifier. Colour represents the phyla corresponding to each ASVs and Taxa. The
 535 right panel depicts the differences in log10-transformed relative abundance for the top 20
 536 most important ASVs (a) and Taxa (b) between symptomatic and asymptomatic bacteriuria
 537 samples. Statistical analysis was performed using the Wilcoxon rank-sum test and
 538 significance is indicated as *** $P < 0.001$; ** $P < 0.01$; * $P < 0.05$ between groups.

539 **Discussion**

540 SCI individuals are often critically ill and may require long-term catheter use for urination,
541 which can lead to an increased risk of developing bacteriuria and CAUTI [45]. Frequent
542 catheter changes are unpleasant for patients and can be painful. Therefore, it is crucial to
543 monitor these patients closely to determine the optimal catheter change schedule, balancing
544 infection prevention and minimising unnecessary procedures. A key clinical challenge lies in
545 differentiating asymptomatic and symptomatic bacteriuria due to the reported presence of
546 UTI-causing pathogens in both states [7, 46, 47]. Additionally, the likelihood of colonisation
547 and biofilm formation progressing to clinical infection is often related to patient-specific
548 immunological background, the types of catheter biomaterial, microbiota present as well as
549 environmental and medication factors [48-50].

550 Our study also corroborates the previous findings that many pathogens overlap between
551 asymptomatic and symptomatic bacteriuria states. Moreover, previous studies have also
552 shown that infections disrupt the urinary and catheter microbiome, causing an imbalance in
553 the normal bacterial community and allowing pathogens to dominate [14, 51, 52]. Similar to
554 those studies, our results indicate that symptomatic bacteriuria and antibiotic use are
555 associated with distinct microbial communities compared to healthy states. This is reflected
556 in our diversity analysis, which revealed lower alpha diversity (species richness) in
557 symptomatic samples and differences in beta diversity (community composition) between
558 asymptomatic and symptomatic samples. We also observed increased abundance of UTI-
559 associated pathogens in these samples. These findings align with our previous pilot study,
560 suggesting that community composition changes in response to disruptions, such as antibiotic
561 treatment or pathogen colonisation, which can lead to CAUTI [14]. Here, we demonstrated
562 that SB alters the microbial community structure in patients with SCI. These changes are
563 associated with an increase in abundance of members of the *Escherichia* sp., *Staphylococcus*

564 sp., *Proteus* sp., *Actinotignum* sp., *Corynebacterium* sp., and *Morganella* sp. genus. These
565 bacteria are known to be major causes of UTI and also have been previously identified in
566 urine samples [7, 47, 53].

567 This study investigated machine learning approaches that utilises microbial signatures to
568 classify AB and SB in patients with SCI. We demonstrated the effectiveness of this approach
569 across various sample types, including samples with and without antibiotic treatment and
570 those obtained from catheters and urine. The model achieved the highest performance with
571 samples that had not received antibiotic treatment. In these samples the model could predict
572 AB and SB with over 90% accuracy and at 7-20 times greater precision compared to the
573 baseline precision. While diagnosing untreated samples holds greater clinical relevance, a
574 significant portion of the SCI population require antibiotics. These antibiotics may not always
575 target UTI-causing pathogens but address secondary infections or complications. Even
576 including samples that received antibiotics, the model maintained over 80% accuracy and
577 achieved 2-6 times greater precision compared to the baseline in predicting AB and SB.
578 Therefore, our study explored the suitability of the model in both scenarios, demonstrating its
579 ability to classify AB and SB with high accuracy regardless of antibiotic treatment.

580 Our highest performing model utilised both catheter and urine samples for prediction.
581 However, we observed that urine samples alone yielded better performance compared to
582 catheter samples in identifying AB and SB. This is advantageous because fresh-catch urine
583 samples are easier to obtain and evaluate for screening purposes. The improved performance
584 of urine-based models might be attributed to the higher abundance of Proteobacteria phyla
585 identified through taxonomic analysis. Our data showed approximately 20% increase in
586 Proteobacteria in urine samples with SB compared to catheter. Future investigations are
587 needed to definitively determine why urine is a more informative sample type than the

588 catheter biofilm content. Potential explanations include the frequent route of exposure for
589 pathogens in the urinary tract and the bladder serving as a more suitable niche for UTI-
590 causing bacteria compared to the biofilms of a catheter. Additionally, UTI pathogens may be
591 more motile or dispersive, and bacteria may adhere to and colonise at different rate in
592 catheters compared to the urinary tract and bladder. In support of these statements, a previous
593 study has shown increased association of the members of Proteobacteria phyla particularly *E.*
594 *coli* and *Klebsiella* sp. in urine samples compared to catheter biofilm contents in SCI patients
595 [54].

596 Our study demonstrated that ASVs offer greater advantages over taxa features for machine
597 learning tasks in predicting AB and SB. The underlying advantages of ASV features over
598 taxa might be attributed to the higher resolution, improved accuracy and strain level insights
599 provided by ASVs. Compared to taxa, ASVs exhibit subtle sequence variations. Often,
600 multiple ASVs can map to a single taxon, providing a more precise picture of microbial
601 communities. Furthermore, understanding strain-level variation within a species is crucial, as
602 these closely related strains might have distinct functional roles in the microbiome. ASV
603 based analysis allowed us to identify and differentiate between such strains. Interestingly, our
604 results revealed that specific groups of ASVs belonging to the same taxon were enriched in
605 either SB or AB. This suggests that particular pathogenic strains might predominate in each
606 state. Future studies with strain-level resolution in samples from AB and SB are necessary to
607 confirm this. In addition, machine learning algorithms perform best with informative features.
608 Since ASVs capture finer genetic variations, they offer a richer signal for the model to learn
609 from. This potentially leads to more accurate predictions compared to broader taxonomic
610 classifications. While our analysis showed improved performance using ASVs, it's important
611 to acknowledge the success of the taxa-based approach as well. Taxa-based models achieved

612 an average accuracy exceeding 80% and a 3-17 fold increase in precision compared to the
613 baseline.

614 In this study, we employed PyCaret to build ensemble models by selecting the top three
615 performing machine learning classifiers out of the sixteen evaluated. Since individual
616 classifiers often excel at predicting specific classes but struggle with others, combining them
617 improves overall prediction accuracy for both classes. This approach, utilising a soft voting
618 system, significantly enhances model performance compared to single classifiers. While
619 ensemble models are not a new concept, their application in disease diagnosis remains
620 limited. Most existing literature focuses on individual models for disease classification [20,
621 55]. However, our study, along with others employing ensemble models, demonstrates the
622 growing applicability and effectiveness of this approach [18, 56]. This success suggests that
623 similar ensemble strategies could be implemented to achieve high-accuracy classification in
624 other disease states.

625 Our study has several limitations. First, potential under- and over-reporting of asymptomatic
626 and symptomatic events may have occurred. Self-reported symptomatic events without
627 confirmatory pathology could lead to overestimation, while chronic UTI patients may tolerate
628 or ignore symptoms, causing underestimation. Second, catheter samples were collected only
629 during routine changes due to the invasive nature of the procedure. More frequent sampling
630 would have provided valuable insights into microbial dynamics and potentially improved
631 model performance. Since our model performed better with urine samples compared to
632 catheter, future studies could collect and analyse urine samples for prediction which, unlike
633 catheters, is easier to obtain and allows for more frequent sampling. Third, our study did not
634 include data on patient dietary habits and other potential immunological and environmental
635 inputs in the analysis. Finally, the training data for our machine learning model included a

636 relatively small cohort of symptomatic samples. We addressed class imbalance using
637 techniques like stratified splitting and SMOTE and reported metrics that account for this.
638 While our model showed promise within the recruited cohort, further validation with a larger,
639 external cohort is crucial. This will help identify potential biases that might affect its
640 performance in a clinical setting. There is also a need to determine whether including other
641 potential biomarkers and indicators of immunological resilience and environmental risks of
642 potential infection could improve the accuracy of the current model. In addition, external
643 validation is essential to confirm the model's effectiveness. However, acquiring such data can
644 be challenging due to limited metadata associated with existing sequence and the need for the
645 exact variable regions of the 16S rRNA gene that was used in this study.

646 Conclusion

647 Our findings reveal several unique characteristics of symptomatic bacteriuria in SCI patients,
648 including lower microbial diversity, compositional changes, and enrichment of UTI
649 associated pathogens. This study represents the first comprehensive microbiome profiling of
650 both catheter and urine samples from SCI patients and we utilised this data to develop a
651 machine learning model for UTI prediction. While future inclusion of more samples could
652 improve the model's class balance, the current version demonstrates high accuracy and holds
653 promise for real-world healthcare implementation. This could significantly improve patient
654 quality of life and guide treatment decisions. We demonstrated that 16S rRNA amplicon
655 sequencing data could be used to predict asymptomatic and symptomatic bacteriuria with
656 high accuracy. These results have significant implications for establishing an early warning
657 system for potential UTI in SCI patients. The benefits of our model are threefold. First, it can
658 predict potential UTI, informing decisions about catheter changes to prevent potential
659 infections. Second, for patients predicted to have asymptomatic bacteriuria, the model can

660 recommend keeping the catheter, reducing unnecessary procedures and costs. Third, it can
661 prevent unnecessary antibiotic use, thereby curbing the rise of multidrug-resistant bacteria.

662 Overall, this study evaluated the diagnostic potential of machine learning models for future
663 implementation in treatment decisions and intervention strategies to better protect this high-
664 risk patient population. Looking forward, we aim to implement our model into healthcare
665 settings to classify asymptomatic and symptomatic bacteriuria in SCI patients. This has the
666 potential to improve patient quality of life, reduce mortality rates, curb the spread of drug-
667 resistant bacteria and generate significant cost savings for hospitals.

668 **Abbreviations**

669 SCI: Spinal cord injury.

670 UTI: Urinary tract infection.

671 CAUTI: Catheter associated urinary tract infections.

672 DNA: Deoxyribonucleic acid.

673 rRNA: Ribosomal Ribonucleic acid.

674 PCR: Polymerase chain reaction.

675 ASVs: Amplicon sequence variants.

676 PCoA: Principal coordinate analysis.

677 PERMANOVA: Permutational multivariate analysis of variance.

678 QIIME: Quantitative insights into microbial ecology.

679 IQR: Interquartile range.

680 SMOTE: Synthetic minority over-sampling technique.

681 AUROC: Area under the receiver operating characteristic curve.

682 AUPRC: Area under the precision-recall curve.

683

684 **Supplementary Information**

685 **Additional file 1 (.pdf):**

686 **Supplementary Fig. S1.** Treemap showing the fraction of ASVs assigned to Family. The
687 number and percentages of ASVs belong to each family are denoted inside of each box. The
688 colors depict corresponding phyla.

689 **Supplementary Fig. S2.** Beta diversity (unweighted unifrac) analysis in participants with at
690 least one symptomatic bacteriuria event. Principal coordinates analyses (PCoA) of beta-
691 diversity between asymptomatic (AB, blue) and symptomatic (SB, red) bacteriuria group
692 based on unweighted unifrac distance matrices. Each dot represents an individual sample.

693 **Supplementary Fig. S3.** Beta diversity analysis (weighted unifrac) in participants with at
694 least one symptomatic bacteriuria event. Principal coordinates analyses (PCoA) of beta-
695 diversity between asymptomatic (AB, blue) and symptomatic (SB, red) bacteriuria group
696 based on weighted unifrac distance matrices. Each dot represents an individual sample.

697 **Supplementary Fig. S4.** Overview of taxonomic composition in asymptomatic and
698 symptomatic bacteriuria groups across combined, catheter and urine dataset. The colour
699 heatmaps depicting mean relative abundances in percentages ranging from blue (low
700 abundance) to red (high abundance) grouped by phylum, family, and genus. The numbers
701 inside heatmaps show mean relative abundance of corresponding taxa indicated in y-axis
702 across asymptomatic bacteriuria (AB) and symptomatic (SB) groups. Genus are shown if
703 their mean relative abundances in any of the group was more than 1.

704 **Supplementary Table S1.** Participants information and samples analysed.

705 **Supplementary Table S2.** Machine learning models.

706 **Supplementary Table S3** Performance of machine learning models during cross-validation.

707 **Supplementary Table S4.** Performance of machine learning models on held-out set.

708

709 **Declarations**

710 **Ethics approval and consent to participate**

711 The samples for this project were obtained as part of a multi-centre observational longitudinal
712 study 3PU (ACTRN12622000613707). The ethics approval for all study protocols were
713 obtained from the Northern Sydney Local Health District Human Research Ethics Committee
714 (HREC) 2021/ETH00329 as well as Site Specific Assessment (SSA) 2021/STE00542 by
715 Royal North Shore Hospital governance and 2021/STE00541 by Prince of Wales Hospital
716 governance. Participants Adults, age 18 years and older, with stable SCI and stable
717 neurogenic bladder management technique for at least 4 weeks before start of the study.
718 Participants agreed to have their urinary system microbial community and the microbiome
719 DNA from the catheter and urine to be extracted and stored long-term. Written informed
720 consent was obtained from all participants and samples were de-identified by the assigning of
721 an arbitrary subject number.

722 **Consent for publication**

723 Not applicable

724 **Competing interests**

725 The authors declare no competing interests.

726 **Funding**

727 This study supported by Spinal Cord Injury Research Grants, NSW Health, Australia,
728 awarded to Professor Diane McDougald on 30 June 2020 at the University of Technology
729 Sydney.

730 **Author's contributions**

731 DM, SAR, IGD and BBL developed the concept and designed the study. PN, JT, PC, GW, JP
732 and BBL co-ordinate the recruitment of all participants, collection of the samples, and
733 fortnightly telephone conversation. JT, PN, GEV, MMH and DL processed samples. JT
734 extracted DNA from all samples and performed 16S rRNA gene sequencing. MMH
735 processed the 16S rRNA gene sequencing data, performed bioinformatics, statistical, and
736 machine learning analyses. MMH, GEV, PN wrote the manuscript with input from all
737 authors. DM, SAR, IGD and BBL supervised the project. All authors provided valuable
738 feedback to improve the final manuscript.

739 **Acknowledgement**

740 We thank all the participants and care team who sincerely provided us the samples, especially
741 clinical nurses Ruth Hamilton, Ruyi Yao and Jennifer Greenway. We also like to thank staff
742 at Ferguson lodge and staff of Fairfield west clinic and Dr. Zahra Rassoly Obayd for their
743 help with participant recruitment and sample collection. We would like to thank Dr.
744 Obaydullah Marial for his advice on design of our participant data collection forms and
745 questionaries. We also thankful to UTS high performance computing facility iHPC for
746 providing us the platform for data analysis.

747 References

- 748 1. Skelton-Dudley F, Doan J, Suda K, Holmes SA, Evans C, Trautner B. Spinal cord injury
749 creates unique challenges in diagnosis and management of catheter-associated urinary tract
750 infection. *Topics in spinal cord injury rehabilitation*. 2019;25(4):331-9.
- 751 2. Dalen DM, Zvonar RK, Jessamine PG. An evaluation of the management of asymptomatic
752 catheter-associated bacteriuria and candiduria at The Ottawa Hospital. *Canadian Journal of
753 Infectious Diseases and Medical Microbiology*. 2005;16:166-70.
- 754 3. Nicolle LE. Catheter associated urinary tract infections. *Antimicrobial resistance and
755 infection control*. 2014;3:1-8.
- 756 4. Nicolle LE. Asymptomatic bacteriuria: when to screen and when to treat. *Infectious
757 Disease Clinics*. 2003;17(2):367-94.
- 758 5. Trautner BW, Cope M, Cevallos ME, Cadle RM, Darouiche RO, Musher DM.
759 Inappropriate treatment of catheter-associated asymptomatic bacteriuria in a tertiary care
760 hospital. *Clinical Infectious Diseases*. 2009;48(9):1182-8.
- 761 6. Rubi H, Mudey G, Kunjalwar R. Catheter-associated urinary tract infection (CAUTI).
762 *Cureus*. 2022;14(10).
- 763 7. Fouts DE, Pieper R, Szpakowski S, Pohl H, Knoblach S, Suh M-J, et al. Integrated next-
764 generation sequencing of 16S rDNA and metaproteomics differentiate the healthy urine
765 microbiome from asymptomatic bacteriuria in neuropathic bladder associated with spinal
766 cord injury. *Journal of translational medicine*. 2012;10:1-17.
- 767 8. Werneburg GT. Catheter-associated urinary tract infections: current challenges and future
768 prospects. *Research and reports in urology*. 2022:109-33.
- 769 9. Hollenbeck CS, Schilling AL. The attributable cost of catheter-associated urinary tract
770 infections in the United States: A systematic review. *American journal of infection control*.
771 2018;46(7):751-7.
- 772 10. McCleskey SG, Shek L, Grein J, Gotanda H, Anderson L, Shekelle PG, et al. Economic
773 evaluation of quality improvement interventions to prevent catheter-associated urinary tract
774 infections in the hospital setting: a systematic review. *BMJ quality & safety*. 2022;31(4):308-
775 21.
- 776 11. Podkovik S, Toor H, Gattupalli M, Kashyap S, Brazdzionis J, Patchana T, et al.
777 Prevalence of catheter-associated urinary tract infections in neurosurgical intensive care
778 patients—the overdiagnosis of urinary tract infections. *Cureus*. 2019;11(8).
- 779 12. Flores-Mireles AL, Walker JN, Caparon M, Hultgren SJ. Urinary tract infections:
780 epidemiology, mechanisms of infection and treatment options. *Nature reviews microbiology*.
781 2015;13(5):269-84.
- 782 13. Albu S, Voidazan S, Bilca D, Badiu M, Truta A, Ciorea M, et al. Bacteriuria and
783 asymptomatic infection in chronic patients with indwelling urinary catheter: The incidence of
784 ESBL bacteria. *Medicine*. 2018;97(33):e11796.

785 14. Bossa L, Kline K, McDougald D, Lee BB, Rice SA. Urinary catheter-associated
786 microbiota change in accordance with treatment and infection status. PLoS One.
787 2017;12(6):e0177633.

788 15. Foxman B, Wu J, Farrer EC, Goldberg DE, Younger JG, Xi C. Early development of
789 bacterial community diversity in emergently placed urinary catheters. BMC research notes.
790 2012;5:1-7.

791 16. Nye TM, Zou Z, Obernuefemann CL, Pinkner JS, Lowry E, Kleinschmidt K, et al.
792 Microbial co-occurrences on catheters from long-term catheterized patients. Nature
793 communications. 2024;15(1):61.

794 17. Alowais SA, Alghamdi SS, Alsuhebany N, Alqahtani T, Alshaya AI, Almohareb SN, et
795 al. Revolutionizing healthcare: the role of artificial intelligence in clinical practice. BMC
796 medical education. 2023;23(1):689.

797 18. Chen H-C, Liu Y-W, Chang K-C, Wu Y-W, Chen Y-M, Chao Y-K, et al. Gut butyrate-
798 producers confer post-infarction cardiac protection. Nature communications.
799 2023;14(1):7249.

800 19. Barron MR, Sovacool KL, Abernathy-Close L, Vendrov KC, Standke AK, Bergin IL, et
801 al. Intestinal inflammation reversibly alters the microbiota to drive susceptibility to
802 *Clostridioides difficile* colonization in a mouse model of colitis. Mbio. 2022;13(4):e01904-
803 22.

804 20. Caussy C, Tripathi A, Humphrey G, Bassirian S, Singh S, Faulkner C, et al. A gut
805 microbiome signature for cirrhosis due to nonalcoholic fatty liver disease. Nature
806 communications. 2019;10(1):1406.

807 21. Forbes JD, Chen C-y, Knox NC, Marrie R-A, El-Gabalawy H, de Kievit T, et al. A
808 comparative study of the gut microbiota in immune-mediated inflammatory diseases—does a
809 common dysbiosis exist? Microbiome. 2018;6:1-15.

810 22. Ozkan IA, Koklu M, Sert IU. Diagnosis of urinary tract infection based on artificial
811 intelligence methods. Computer methods and programs in biomedicine. 2018;166:51-9.

812 23. Burton RJ, Albur M, Eberl M, Cuff SM. Using artificial intelligence to reduce diagnostic
813 workload without compromising detection of urinary tract infections. BMC medical
814 informatics and decision making. 2019;19:1-11.

815 24. Gadalla AA, Friberg IM, Kift-Morgan A, Zhang J, Eberl M, Topley N, et al.
816 Identification of clinical and urine biomarkers for uncomplicated urinary tract infection using
817 machine learning algorithms. Scientific reports. 2019;9(1):19694.

818 25. Jeng S-L, Huang Z-J, Yang D-C, Teng C-H, Wang M-C. Machine learning to predict the
819 development of recurrent urinary tract infection related to single uropathogen, *Escherichia*
820 *coli*. Scientific reports. 2022;12(1):17216.

821 26. Toh S-L, Lee BB, Ryan S, Simpson JM, Clezy K, Bossa L, et al. Probiotics [LGG-BB12
822 or RC14-GR1] versus placebo as prophylaxis for urinary tract infection in persons with spinal
823 cord injury [ProSCIUTTU]: a randomised controlled trial. Spinal Cord. 2019;57(7):550-61.

824 27. Lee BB, Toh S-L, Ryan S, Simpson JM, Clezy K, Bossa L, et al. Probiotics [LGG-BB12
825 or RC14-GR1] versus placebo as prophylaxis for urinary tract infection in persons with spinal
826 cord injury [ProSCIUTTU]: a study protocol for a randomised controlled trial. *BMC urology*.
827 2016;16:1-8.

828 28. Lee B, Haran M, Hunt L, Simpson J, Marial O, Rutkowski S, et al. Spinal-injured
829 neuropathic bladder antisepsis (SINBA) trial. *Spinal cord*. 2007;45(8):542-50.

830 29. Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, et al.
831 Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2.
832 *Nature biotechnology*. 2019;37(8):852-7.

833 30. Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads.
834 *EMBnet journal*. 2011;17(1):10-2.

835 31. Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2:
836 High-resolution sample inference from Illumina amplicon data. *Nature methods*.
837 2016;13(7):581-3.

838 32. Robeson MS, O'Rourke DR, Kaehler BD, Ziemska M, Dillon MR, Foster JT, et al.
839 RESCRIPt: Reproducible sequence taxonomy reference database management. *PLoS
840 computational biology*. 2021;17(11):e1009581.

841 33. McDonald D, Jiang Y, Balaban M, Cantrell K, Zhu Q, Gonzalez A, et al. Greengenes2
842 unifies microbial data in a single reference tree. *Nature biotechnology*. 2023:1-4.

843 34. Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7:
844 improvements in performance and usability. *Molecular biology and evolution*.
845 2013;30(4):772-80.

846 35. Price MN, Dehal PS, Arkin AP. FastTree 2—approximately maximum-likelihood trees for
847 large alignments. *PloS one*. 2010;5(3):e9490.

848 36. McMurdie PJ, Holmes S. phyloseq: an R package for reproducible interactive analysis
849 and graphics of microbiome census data. *PloS one*. 2013;8(4):e61217.

850 37. Schloss PD. Rarefaction is currently the best approach to control for uneven sequencing
851 effort in amplicon sequence analyses. *Msphere*. 2024:e00354-23.

852 38. Lahti L, Shetty S. Tools for microbiome analysis in R.
853 <http://microbiome.github.com/microbiome> (2017). Accessed 10.09.2023.

854 39. Liu C, Cui Y, Li X, Yao M. microeco: an R package for data mining in microbial
855 community ecology. *FEMS microbiology ecology*. 2021;97(2):fiaa255.

856 40. Hadley W. ggplot2: Elegant Graphics for Data Analysis. <https://ggplot2.tidyverse.org>
857 (2016). Accessed 15.02.2023.

858 41. Topçuoğlu BD, Lapp Z, Sovacool KL, Snitkin E, Wiens J, Schloss PD. mikropml: user-
859 friendly R package for supervised machine learning pipelines. *Journal of open source
860 software*. 2021;6(61).

861 42. Ali M. PyCaret: An open source, low-code machine learning library in Python.
862 <https://www.pycaret.org> (2020). Accessed 20.10.2023.

863 43. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-
864 learn: Machine learning in Python. *the Journal of machine Learning research*. 2011;12:2825-
865 30.

866 44. Anderson MJ. Permutational multivariate analysis of variance (PERMANOVA). Wiley
867 statsref: statistics reference online. 2014:1-15.

868 45. EsclarÍN De Ruz A, GARCÍA LEONI E, HERRUZO CABRERA R. Epidemiology and
869 risk factors for urinary tract infection in patients with spinal cord injury. *The Journal of*
870 *urology*. 2000;164(4):1285-9.

871 46. Nally E, Groah SL, Pérez-Losada M, Caldovic L, Ljungberg I, Chandel NJ, et al.
872 Identification of *Burkholderia fungorum* in the urine of an individual with spinal cord injury
873 and augmentation cystoplasty using 16S sequencing: copathogen or innocent bystander?
874 *Spinal Cord Series and Cases*. 2018;4(1):85.

875 47. Adu-Oppong B, Thänert R, Wallace MA, Burnham C-AD, Dantas G. Substantial overlap
876 between symptomatic and asymptomatic genitourinary microbiota states. *Microbiome*.
877 2022;10(1):6.

878 48. Donlan RM. Biofilms: microbial life on surfaces. *Emerging infectious diseases*.
879 2002;8(9):881.

880 49. Wu S, Zhang B, Liu Y, Suo X, Li H. Influence of surface topography on bacterial
881 adhesion: A review. *Biointerphases*. 2018;13(6).

882 50. Zou Z, Potter RF, McCoy WH, Wildenthal JA, Katumba GL, Mucha PJ, et al. *E. coli*
883 catheter-associated urinary tract infections are associated with distinctive virulence and
884 biofilm gene determinants. *JCI insight*. 2023;8(2).

885 51. Marshall CW, Kurs-Lasky M, McElheny CL, Bridwell S, Liu H, Shaikh N. Performance
886 of conventional urine culture compared to 16S rRNA gene amplicon sequencing in children
887 with suspected urinary tract infection. *Microbiology Spectrum*. 2021;9(3):e01861-21.

888 52. Pallares-Mendez R, Cervantes-Miranda DE, Gonzalez-Colmenero AD, Ochoa-Arvizo
889 MA, Gutierrez-Gonzalez A. A Perspective of the urinary microbiome in lower urinary tract
890 infections—A Review. *Current Urology Reports*. 2022;23(10):235-44.

891 53. Kim DS, Lee JW. Urinary tract infection and microbiome. *Diagnostics*.
892 2023;13(11):1921.

893 54. Garcia-Marques FJ, Zakrasek E, Bermudez A, Polasko AL, Liu S, Stoyanova T, et al.
894 Proteomics analysis of urine and catheter-associated biofilms in spinal cord injury patients.
895 *American Journal of Clinical and Experimental Urology*. 2023;11(3):206.

896 55. Zuo W, Wang B, Bai X, Luan Y, Fan Y, Michail S, et al. 16S rRNA and metagenomic
897 shotgun sequencing data revealed consistent patterns of gut microbiome signature in pediatric
898 ulcerative colitis. *Scientific Reports*. 2022;12(1):6421.

899 56. Chandrasekhar N, Peddakrishna S. Enhancing heart disease prediction accuracy through
900 machine learning techniques and optimization. Processes. 2023;11(4):1210.
901