

1 Type I TARP_s regulate Kv7.2 potassium channels and 2 susceptibility to seizures

3

4 Marina V. Rodrigues^{1, 2, 3, 4}, Ângela S. Inácio^{1, 2, 3}, Maria Virginia Soldovieri⁵, Sara Ribau^{*1, 2, 6},
5 Telmo M. Leal^{*1, 2, 7}, Theo Baurberg^{8, 9}, Ilaria Mosca⁵, Paolo Ambrosino¹⁰, Luísa Amado^{1, 2, 3,}
6 ⁴, Nuno Beltrão^{1, 2, 3, 4}, Gladys L. Caldeira^{1, 2, 3}, Luís F. Ribeiro^{1, 2, 3, 11}, Ka Wan Li¹², Laurent
7 Groc^{8, 9}, Joana S. Ferreira^{1, 2, 3, 11}, Maurizio Taglialatela¹³, and Ana Luisa Carvalho^{1, 2, 7}

8

9 ¹CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra,
10 Portugal

11 ²CiBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-
12 504 Coimbra, Portugal

13 ³IIIUC-Institute for Interdisciplinary Research, University of Coimbra, 3030-789, Coimbra,
14 Portugal

15 ⁴PhD Program in Experimental Biology and Biomedicine (PDBEB), University of Coimbra,
16 Coimbra, Portugal

17 ⁵Department of Medicine and Health Science Vincenzo Tiberio, University of Molise, 86100
18 Campobasso, Italy

19 ⁶Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal

20 ⁷Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal

21 ⁸Interdisciplinary Institute for Neuroscience, University of Bordeaux, UMR 5297, 33076
22 Bordeaux, France

23 ⁹CNRS, IINS UMR 5297, Bordeaux, France

24 ¹⁰Department of Science and Technology, University of Sannio, 82100 Benevento, Italy

25 ¹¹Multidisciplinary Institute of Ageing, University of Coimbra, 3004-504 Coimbra, Portugal

26 ¹²Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and
27 Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, 1081 HV
28 Amsterdam, The Netherlands

29 ¹³Department of Neuroscience, Reproductive Sciences and Dentistry, University Federico II
30 of Naples, 80131 Naples, Italy

31

32 *These authors contributed equally to this work.

33 #Corresponding author: alc@cnc.uc.pt

34

35 **Highlights**

- 36 • Type I TARPs bind to Kv7.2-M-channels and enhance Kv7.2-mediated currents.
- 37 • TARP- γ 2 governs the neuronal nano-organization and function of Kv7.2 channels.
- 38 • Intellectual disability-associated TARP- γ 2 variant impairs M-currents and facilitates
- 39 seizures.
- 40 • Type I TARPs can serve as molecular integrators of synaptic and intrinsic excitability.

41

42 **Summary**

43 The M-current is a low-threshold potassium current that modulates neuronal excitability and
44 suppresses repetitive firing. However, the mechanisms regulating M-channel function remain
45 unclear. We identified type I Transmembrane AMPA receptor Regulatory Proteins (TARPs)
46 as M-channel Kv7.2 subunit interactors in cortical neurons, with their interaction increasing
47 upon neuronal depolarization. Co-expression of TARPs with Kv7.2 increased channel
48 surface expression and Kv7.2-mediated currents, while disrupting TARP- γ 2 expression in
49 neurons perturbed dendritic Kv7.2 nano-clusters and decreased M-currents. Knock-in mice
50 with an intellectual disability-associated TARP- γ 2 variant showed reduced hippocampal M-
51 currents and increased seizure susceptibility, indicating that disrupting TARP- γ 2 regulation
52 of Kv7.2-M-channels is epileptogenic. These findings show that TARP- γ 2, a synaptic protein
53 crucial for excitatory transmission, also controls intrinsic excitability via M-channels. This
54 discovery provides a link between synaptic transmission and neuronal excitability, with
55 implications for disease, as the interplay between synaptic and intrinsic plasticity is pivotal to
56 how the brain adapts to varying input signals.

57

58 **Keywords**

59 M-channels, KCNQ2, Kv7.2, excitability, stargazin, epilepsy, intellectual disability

60

61 **Introduction**

62 The integration of small stimuli simultaneously arriving at a neuron can generate a
63 cumulative input signal that may trigger a fast depolarization event. Neuronal excitability is
64 shaped by the duration and nature of these inputs. Intrinsic properties, such as resting
65 membrane potential, the threshold for action potential generation, and input resistance,
66 significantly contribute to defining neuronal excitability. Neurons use both synaptic and
67 intrinsic plasticity to regulate network activity and maintain dependable computational
68 capability, ensuring circuit stability while allowing for flexibility^{1,2}. This prevents neuronal
69 circuits from becoming excessively silent or overly excitable. Even though neuronal circuit
70 function depends on the computational capacity of neurons and imbalances in excitability
71 are linked to neurodevelopmental and psychiatric disorders³⁻⁸, the mechanisms governing
72 neuronal excitability and responsiveness to synaptic inputs remain largely unknown.

73 The α -amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPAR) mediate
74 most of the fast excitatory synaptic transmission in the brain. The dynamic nature of these
75 receptors enables them to change in number, distribution, and functional properties in
76 response to synaptic activity, which is crucial for the ability of the brain to adapt and learn⁹.
77 One of the main protein families responsible for regulating these mechanisms is the
78 Transmembrane AMPA Receptor Regulatory Proteins (TARPs) family. This family of
79 proteins is subdivided into type I (TARP- γ 2, - γ 3, - γ 4, and - γ 8) and type II (TARP- γ 5 and - γ 7)
80 TARPs based on whether they possess a typical or atypical PDZ-binding motif. The first
81 protein identified in the TARP family was TARP- γ 2, also known as stargazin. It was identified
82 following the characterization of the stargazer mouse, which lacks TARP- γ 2 expression and
83 exhibits cerebellar ataxia, abnormal head tossing, absence seizures, and cognitive
84 impairment¹⁰. TARP- γ 2 regulates AMPAR cellular traffic and gating and alters receptor
85 pharmacological properties¹¹. Other members of the TARP family have been identified and
86 studied in the context of their role in AMPAR regulation¹¹⁻¹³, although their specific functions
87 remain relatively unexplored. Despite showing decreased AMPAR-mediated excitatory
88 transmission, the stargazer mouse presents unexplained cortical hyperexcitability,
89 suggesting that other molecular players apart from AMPAR may play a role in this
90 phenotype.

91 We have investigated the interactome of TARP- γ 2 in cortical neurons by
92 immunoprecipitating this protein and identifying its binding partners through mass
93 spectrometry and identified the Kv7.2 M-channel subunit as a new putative interactor of
94 TARP- γ 2. M-channels are ubiquitously expressed in the brain and play a pivotal role in
95 regulating neuronal excitability by delaying the onset of and/or hastening the termination of a

96 burst of spikes, thereby causing spike frequency adaptation^{14,15}. They are slow-activating
97 voltage-gated potassium channels that do not inactivate, becoming active below the
98 threshold for generating action potentials, a range where few other voltage-gated channels
99 are operative¹⁶. Pathogenic loss-of-function variants of the *KCNQ2* gene, encoding the
100 Kv7.2 subunit, have been repeatedly linked to a wide phenotypic spectrum of mostly early-
101 onset epilepsies¹⁷ and developmental delay¹⁸. In rodents, *Kcnq2* deletion is perinatally
102 lethal¹⁹, whereas *Kcnq3* (which encodes the Kv7.3 subunit) knock-out mice survive to
103 adulthood^{20,21}. Expression of dominant negative Kv7.2 subunit in mice decreases M-currents
104 in CA1 pyramidal neurons by 75%, resulting in spontaneous epileptiform activity²².
105 Interestingly, these animals present frequent head and neck extensions reminiscent of the
106 stargazer behavior²². Additionally, conditional deletion of Kv7.2 from cortical pyramidal
107 neurons results in abnormal electrocorticogram activity, increased excitability, and
108 decreased medium afterhyperpolarization, whereas near-normal excitability was found in
109 pyramidal neurons lacking Kv7.3 channels²³. Moreover, a knock-in mouse model carrying
110 one of the most recurrent variants in humans recapitulates at least some of the EEG and
111 behavioral changes occurring in the most severe cases of KCNQ dysfunction²⁴.

112 Despite their crucial role in regulating neuronal excitability, the mechanisms dictating the
113 targeted localization and function of Kv7.2-M-channels are poorly characterized. Here, we
114 report that in addition to regulating AMPARs and synaptic plasticity, type I TARPs also
115 influence neuronal excitability by interacting with the Kv7.2 subunit of M-channels and
116 enhancing Kv7.2-mediated currents. Genetic manipulation of TARP- γ 2 expression in cortical
117 neurons disturbed the nanoscale organization of Kv7.2 in dendrites and impaired neuronal
118 M-currents. Moreover, an intellectual disability-associated variant of TARP- γ 2 (V143L^{25,26})
119 failed to modulate Kv7.2-mediated currents. Knock-in mice harboring this human mutation
120 exhibited a decreased M-current density, and increased susceptibility to drug-induced
121 seizures.

122 Altogether, our data provide seminal evidence for type I TARPs as regulators of Kv7.2
123 homomeric M-channels in the brain. Our findings support a dual role for TARP- γ 2 in network
124 activity control, serving as an auxiliary protein for both AMPARs and Kv7.2-M-channels.
125 Thus, this discovery establishes a new connection between synaptic transmission and
126 modulation of intrinsic neuronal excitability.

127

128 **Results**

129 **Type I TARP γ 2 bind to the Kv7.2 subunit of M-channels**

130 M-channels were first identified in the peripheral nervous system as heteromeric complexes
131 composed of Kv7.2 and Kv7.3 subunits, primarily enriched in the axon initial segment (AIS)
132 and Ranvier nodes^{27–31}, which are crucial sites for regulating membrane potential and
133 facilitating action potential generation and propagation. Recent evidence suggests that
134 homomeric Kv7.2-M-channels play a more significant functional role in the somatodendritic
135 compartment^{20,32–34}. However, their physiological relevance remains largely unexplored and
136 presents experimental challenges^{15,35}. We have studied the interactome of TARP- γ 2 in
137 cortical neurons (Table S1) and identified the M-channel subunit Kv7.2 as a potential binding
138 partner. To validate this interaction and investigate whether other type I TARP γ s can also
139 interact with Kv7.2, we immunoprecipitated TARP- γ 2, - γ 3, and - γ 8 from HEK293T cells co-
140 expressing Kv7.2 and one of the TARP γ s. We observed that Kv7.2 co-immunoprecipitated
141 with all type I TARP γ s tested (Figure 1A). To evaluate these interactions in neurons and
142 determine their cellular localization, we performed an *in situ* proximity ligation assay (PLA) to
143 visualize endogenous TARP γ s and Kv7.2 that co-localized within 40 nm³⁶. We
144 immunolabeled hippocampal cultured neurons for Kv7.2 and either TARP- γ 2, - γ 3, or - γ 8 and
145 detected a positive PLA fluorescent signal in the soma and dendrites (Figure 1B), suggesting
146 an interaction of Kv7.2 with type I TARP γ s. Similar to hippocampal neurons, dendrites of
147 cortical neurons displayed a positive PLA signal for Kv7.2 and TARP- γ 2 (Figure S1A),
148 indicating that these proteins interact in the somatodendritic compartment. A negligible PLA
149 signal was detected when one of the primary antibodies was omitted from the reaction
150 (Figure S1A, B), validating the specificity of the signal. In agreement with previous studies³⁷,
151 both Kv7.2 and TARP- γ 2 were found to be endogenously expressed in all cellular
152 compartments in cortical neurons, with Kv7.2 enriched at the AIS and TARP- γ 2 at dendrites
153 (Figure S1C). However, contrarily to dendrites, no PLA puncta were detected in the AIS or
154 axons of cortical and hippocampal neurons at 15 days *in vitro* (DIV; Figure S1D, E). We then
155 used dual-color direct stochastic optical reconstruction microscopy (dSTORM)³⁸, a super-
156 resolution imaging technique that allows for the simultaneous visualization of two different
157 molecular species and enables the study of their co-localization at the nanoscale level. We
158 expressed exogenous HA-tagged TARP- γ 2 in cortical neurons and simultaneously labeled
159 TARP- γ 2 and Kv7.2. dSTORM imaging revealed dendritic nano-clusters of Kv7.2 that co-
160 localized with TARP- γ 2 (Figure 1C), with 35.6% of the Kv7.2 fluorescence signal overlapping
161 the HA-TARP- γ 2 signal (Figure 1D).

162 Next, we used splitFAST (split fluorescence-activating and absorption shifting tag) - a
163 reversible fluorescence complementation system which specifically and reversibly binds
164 fluorogenic hydroxybenzylidene rhodamine (HBR) analogues³⁹ - to visualize the interaction
165 between Kv7.2 and TARP- γ 2 in live cells. We engineered mCherry-TARP γ 2-CFAST-HA and
166 NFAST-FLAG-Kv7.2 constructs (Figure S1F) that were co-expressed in HEK293T cells.
167 Fluorescence was monitored before and after the addition of HMBR, which emits a green
168 fluorescent signal when trapped inside the pocket of the reconstructed FAST (Figure 1E-G).
169 The insertion of CFAST on the TARP- γ 2 C-tail and of NFAST on the Kv7.2 N-tail did not
170 affect the expression or trafficking of the proteins (Figure S1G). Expression of either portion
171 of the FAST protein alone did not result in fluorescence emission (Figure S1H). However,
172 the interaction between TARP- γ 2 and Kv7.2 allowed FAST assembly and fluorescence
173 emission upon HMBR binding (Figure 1G), further corroborating the co-immunoprecipitation
174 data, and supporting a direct interaction between the two proteins.

175 Considering the function of M-currents in controlling hyperexcitability, we investigated
176 whether neuronal depolarization could impact the endogenous interaction between TARP- γ 2
177 and Kv7.2 in cultured cortical neurons. After 24 hours of treatment with 15 mM KCl, we
178 observed a significant increase in the PLA signal for TARP- γ 2 and Kv7.2 (Figure S2A, B).
179 Additionally, we detected a significant distal shift of the AIS induced by chronic
180 depolarization (Figure S2C, D), as previously reported⁴⁰. These findings were independent of
181 changes in AMPAR synaptic content or cell viability (Figure S2E-I). These observations
182 imply that the interaction of TARP- γ 2 with Kv7.2 increases in conditions of prolonged
183 neuronal depolarization.

184 Taken together, these results indicate that Kv7.2 interacts with type I TARP family members.
185 In neurons, Kv7.2 co-localizes with TARPs in the soma and dendrites. Moreover, the
186 interaction between TARP- γ 2 and Kv7.2 is strengthened during neuronal depolarization,
187 indicating a dynamic interaction that may play a role in regulating the function or localization
188 of Kv7.2 channels in response to changes in neuronal activity.

189 **Type I TARPs regulate Kv7.2-mediated currents and channel surface trafficking**

190 To investigate the functional consequences of Kv7.2 interaction with TARPs, we performed
191 whole-cell patch-clamp experiments to measure Kv7.2-mediated currents in transfected
192 CHO cells, both in the absence and presence of each TARP. All type I TARPs (γ 2, γ 3, and
193 γ 4), except γ 8, significantly increased the density of Kv7.2-mediated currents (Figure 2A, B).
194 Co-expression of all TARPs resulted in Kv7.2 channel activation at less depolarized
195 potentials (Figure 2C). The half activation potential (V_{50}) for Kv7.2 was -22.72 ± -6.79 mV

196 when expressed alone, shifting to values ranging from -26.10 to -32.31 mV in the presence
197 of TARPs (Figure 2D). KCNQ2 expression precedes that of KCNQ3 during development,
198 and most neonatal M-current is likely formed by Kv7.2 homomers^{8,41}, but Kv7.2/7.3
199 heteromers are thought to comprise the majority of M-channels in the adult nervous
200 system²⁷⁻³¹. Hence, we investigated whether the impact of TARP- γ 2 on M-current extended
201 to heteromeric Kv7.2/7.3 heteromeric channels. Surprisingly, TARP- γ 2 failed to modulate
202 Kv7.2/Kv7.3-mediated currents, presenting itself as a specific regulator of Kv7.2 homomeric
203 channels (Figure S3A-D).

204 Given the role of TARPs in the surface trafficking of AMPAR⁴²⁻⁴⁴ and the observed increase
205 in Kv7.2-mediated current density when co-expressed with type I TARPs (Figure 2A, B), we
206 investigated whether TARPs affect the cell surface trafficking of Kv7.2. Co-expression of
207 type I TARPs with Kv7.2 resulted in increased cell surface levels of the channel (Figure 2E,
208 F). TARP- γ 2 and - γ 3 also induced an increase in the total expression of Kv7.2 (Figure 2G).
209 In cortical neurons, overexpression of TARP- γ 2 similarly augmented Kv7.2 levels (Figure
210 S2E-G). Collectively, these data demonstrate that type I TARPs regulate both the current
211 density and voltage-gating properties of Kv7.2 homomeric channels, as well as their
212 trafficking to the cell surface.

213 **TARP- γ 2 regulates dendritic Kv7.2 nano-clustering**

214 While heterologous systems are convenient for clarifying specific aspects of the TARP-
215 γ 2/Kv7.2 interaction and its function, it is crucial to assess the neuronal significance of this
216 interplay. Therefore, we used dSTORM to characterize the nanoscale topographic
217 organization of native neuronal Kv7.2-containing M-channels, coupled with genetic
218 manipulation of TARP- γ 2 expression. Quantitative dSTORM has been successfully used to
219 characterize the nano-organization of neurotransmitter receptors and ion channels in
220 neuronal preparations⁴⁵⁻⁴⁷. To map all Kv7.2-containing M-channels, we labeled cortical
221 neurons at 15 DIV using an antibody directed against an intracellular epitope of Kv7.2. As
222 observed previously (Figure S1C), conventional epifluorescence imaging showed Kv7.2
223 immunoreactivity distributed along dendrites and axons (Figure 3A). Super-resolution
224 dSTORM imaging revealed that Kv7.2-M-channel clusters were composed of several
225 adjacent domains (Figure 3B) distributed across both dendrites and the AIS. Quantitative
226 dSTORM imaging further elucidated the nanoscopic distribution of Kv7.2 clusters, revealing
227 different nano-structural organizations in distinct compartments of cortical neurons. Notably,
228 the size distribution of endogenous Kv7.2 nano-clusters observed in neurons (Figure S4A)
229 closely resembled those previously observed in a heterologous system⁴⁸. Segmentation of
230 the super-resolved reconstructed images showed a higher density of clusters in dendrites

231 than in the AIS (Figure 3D, E). These clusters were also larger (Figure 3F) and had a higher
232 content of particle detection – local density - (Figure 3G). To our knowledge, this is the first
233 report on the nanoscale cluster organization of native Kv7.2-containing M-channels in
234 different neuronal compartments. The differential nanoscale mapping of Kv7.2 suggests
235 different molecular mechanisms may operate to control dendritic- and AIS-localized
236 channels.

237 We then investigated whether the nanoscale organization of Kv7.2-containing M-channels in
238 dendrites was governed by TARP- γ 2 expression. The area of Kv7.2 dendritic clusters in
239 cortical neurons overexpressing TARP- γ 2 was significantly larger than that in clusters from
240 control-transfected neurons (Figure 3H, I). Moreover, Kv7.2 clusters' density – number of
241 clusters per region of interest (ROI) - remained unchanged, while showing lower particle
242 detection content (Figure S3B, C). In contrast, depletion of TARP- γ 2 expression in neurons
243 using an RNA interference strategy^{26,49} significantly diminished the area of endogenous
244 Kv7.2 clusters (Figure 3J, K) despite no changes in cluster density or local particle detection
245 (Figure S3D, E). All in all, our quantitative analysis of native Kv7.2 clusters using dSTORM
246 imaging uncovered a role for TARP- γ 2 in modulating the nanoscale organization of Kv7.2-M-
247 channels within dendrites, particularly in influencing the size of Kv7.2 nano-clusters.

248 **Depleting TARP- γ 2 in cortical neurons decreases M-currents**

249 To investigate the functional significance of TARP- γ 2 interaction with Kv7.2 in modulating
250 neuronal M-currents, cortical neurons were genetically manipulated to suppress TARP- γ 2
251 expression. Two different approaches were used to assess M-currents in whole-cell patch-
252 clamp experiments (Figure 4). First, we perfused transfected neurons with retigabine, a
253 specific activator of M-channels, to induce hyperpolarization of the resting membrane
254 potential (Figure 4A), which was then measured in current-clamp recordings. Cortical
255 neurons in which TARP- γ 2 expression was silenced showed a significant decrease in the
256 hyperpolarization induced by retigabine compared to control-transfected neurons (Figure
257 4B), supporting a role for endogenous TARP- γ 2 in positively regulating M-currents. Similar to
258 the findings described for the stargazer mouse⁵⁰, there were no significant alterations
259 detected in the resting membrane potential of TARP- γ 2-depleted neurons compared to
260 control neurons (Figure 4C).

261 Secondly, to directly measure M-currents, we analyzed the deactivation tail currents before
262 and after perfusion with the M-channel blocker XE991^{37,51,52}. The M-current, which
263 corresponds to the XE991-sensitive component of the deactivation tail current, was
264 significantly decreased in cortical neurons depleted of TARP- γ 2 compared to control-

265 transfected neurons (Figure. 4D, E). Altogether, our data clearly show that depleting the
266 endogenous expression of TARP- γ 2 in cortical neurons disrupts M-currents.

267 **Intellectual disability-associated TARP- γ 2 variant decreases M-current function and**
268 **facilitates seizures**

269 The TARP- γ 2 V143L variant, associated with intellectual disability²⁵, has been shown to
270 induce cognitive and social behavior alterations in mice, along with impairments in
271 hippocampal synaptic transmission and plasticity²⁶. Here, we investigated whether this
272 mutation disrupts the functional regulation of Kv7.2 by TARP- γ 2. Whole-cell patch clamp
273 experiments were conducted to evaluate Kv7.2-mediated currents in CHO cells co-
274 transfected with Kv7.2 and either wild-type TARP- γ 2 or the intellectual disability-associated
275 variant (Figure 5A-C). Unlike the wild-type protein, TARP- γ 2 V143L did not induce
276 potentiation of Kv7.2-mediated currents *in vitro* (Figure 5C).

277 To elucidate the significance of these findings, we assessed M-currents in the brains of
278 TARP- γ 2 V143L knock-in mice. Given the substantial co-enrichment of TARP- γ 2 and Kv7.2
279 in the subiculum (Figure S5A), we characterized the intrinsic properties (Figure S5D-I) and
280 measured M-currents in pyramidal neurons within this brain region. To investigate the impact
281 of TARP- γ 2 V143L on neuronal firing activity and the response to retigabine, cells were
282 current-clamped at 0 pA for 120 ms, followed by depolarization for 200 ms with increasing
283 steps of 50 pA, and then held at 0 pA for 4 seconds. This protocol was conducted under
284 control conditions and repeated during retigabine perfusion, which activates M-channels and
285 consequently decreases the firing rate. We observed that retigabine reduced burst activity in
286 wild-type neurons (Figures 5D and S5J) but had minimal effect on neurons from
287 heterozygous TARP- γ 2 V143L mice (Figures 5D and S5K). The efficacy of retigabine,
288 measured as the percentage of burst firing inhibition, was significantly reduced in TARP- γ 2
289 V143L neurons compared to wild-type (Figures 5E and S5J, K). These findings suggest a
290 reduced contribution of M-currents in attenuating burst activity in knock-in animals.

291 The M-current contributes to the medium and slow after-burst hyperpolarization (mAHP and
292 sAHP)²⁰. To further investigate the impact of the TARP- γ 2 V143L variant on M-currents, we
293 compared the mAHP in burst-firing pyramidal cells located in the subiculum of wild-type and
294 heterozygous TARP- γ 2 V143L mice (Figure 5F). The mAHP was defined as the amplitude of
295 the afterhyperpolarization peak relative to the membrane resting potential, measured within
296 the 20-100 ms interval following bursts fired at 50-60 Hz. Heterozygous TARP- γ 2 V143L
297 mice exhibited a significantly reduced basal mAHP compared to their wild-type littermates
298 (Figure 5G). Furthermore, while wild-type subiculum pyramidal neurons showed an increase

299 in mAHP amplitude in response to retigabine, the mAHP in neurons from TARP- γ 2 V143L
300 heterozygous mice was not affected by retigabine perfusion (Figure 5G).

301 Our findings indicate a disturbance in the regulation of M-currents caused by the TARP- γ 2
302 V143L variant. To examine the implications of this disruption in M-current function, we
303 investigated the susceptibility of these mice to seizures. Notably, as per current knowledge,
304 TARP- γ 2 V143L knock-in mice do not have spontaneous seizures and even show adaptive
305 changes in the intrinsic properties of subiculum neurons (Figure S5D-I). To evaluate seizure
306 susceptibility in these mice, we administered pentylenetetrazol (PTZ), a convulsive agent
307 known to inhibit GABAergic transmission, to 8-week-old wild-type and TARP- γ 2 V143L
308 heterozygous mice. The latency to reach epileptogenic phase 5/6 was determined according
309 to the PTZ-modified Racine scale⁵³. Heterozygous TARP- γ 2 V143L animals exposed to PTZ
310 exhibited significantly shorter latencies to reach stage 5/6 seizures (Figure 5H), suggesting
311 facilitated seizure susceptibility in these animals. We hypothesized that defective M-channel
312 function in TARP- γ 2 V143L knock-in mice might confer partial protection against seizure
313 induction by an M-channel blocker. Indeed, the latency to seizures was prolonged in
314 heterozygous TARP- γ 2 V143L mice compared to wild-type littermates when they were
315 injected with XE991, an M-channel blocker used to induce seizures (Figure 5H).

316 Multiple lines of evidence suggest dysfunctional M-channel activity in mice expressing the
317 TARP- γ 2 V143L variant. Compared to wild-type mice, heterozygous TARP- γ 2 V143L
318 animals exhibited: i) a reduced inhibitory effect of retigabine on burst firing in subiculum
319 pyramidal cells, ii) negligible potentiation of the mAHP by retigabine, and iii) lower sensitivity
320 to XE991-induced seizures. Overall, our results support impaired control of burst activity due
321 to compromised M-channel function in mice expressing the intellectual disability-associated
322 V143L TARP- γ 2 variant, correlating with increased susceptibility to PTZ-induced seizures.

323

324 **Discussion**

325 Synaptic plasticity and intrinsic excitability are pivotal for shaping neural activity and
326 information processing in the brain. However, how these mechanisms coordinate to regulate
327 various aspects of network activity remains poorly understood. We have discovered an
328 unexpected role for the type I TARP family of synaptic proteins, traditionally known as
329 AMPAR auxiliary subunits, as regulatory proteins of Kv7.2-M-channels, playing crucial roles
330 in regulating both their organization and function. Our data show that type I TARPs interact
331 with Kv7.2, increase the channel surface expression, enhance Kv7.2-mediated-currents and
332 modulate their voltage dependence. These findings support a dual role for TARPs in

333 regulating network activity, not only through synaptic transmission and plasticity but also
334 through intrinsic plasticity.

335 **Type I TARPs are regulatory subunits of Kv7.2-M-channels**

336 In this work, we show that type I TARPs, which are well-described auxiliary subunits of
337 AMPARs, interact with Kv7.2 and modulate its function. Biochemical and imaging assays
338 identified TARP- γ 2, - γ 3, - γ 4, and - γ 8 as interaction partners of the Kv7.2 subunit of M-
339 channels and revealed that they promote the surface trafficking of Kv7.2 homomeric
340 channels. Furthermore, electrophysiology assays showed that type I TARPs enhance Kv7.2-
341 mediated currents and modulate the gating properties of the channel. Importantly,
342 endogenous neuronal TARP- γ 2 regulates M-channels, as bi-directional manipulation of its
343 expression in cortical neurons disrupted the nano-structure of Kv7.2 dendritic clusters, and
344 TARP- γ 2 depletion in these neurons decreased M-currents. Therefore, TARP- γ 2 meets the
345 criteria to be considered an auxiliary subunit of Kv7.2 channels⁵⁴: i) it does not function as an
346 active channel itself; ii) TARP- γ 2 and Kv7.2 physically interact; iii) TARP- γ 2 directly
347 modulates the trafficking of Kv7.2; and iv) TARP- γ 2 regulates Kv7.2 in native tissue.
348 TARP- γ 3 and - γ 8 fulfill criteria i-iii and are strongly co-localized with Kv7.2 in the dendrites of
349 hippocampal neurons. Although, due to technical limitations, we do not have data regarding
350 criterion ii, TARP- γ 4 also fulfills criteria i and iii. However, further studies are needed to
351 clarify how TARP- γ 3 and - γ 8 regulate Kv7.2 in neurons. Given that TARP family members
352 have distinct (albeit partially overlapping) expression patterns in the brain, different TARPs
353 may be critical for Kv7.2 regulation across various brain regions, similar to how this family of
354 proteins regulates AMPARs⁵⁵.

355 Our results demonstrate that TARP- γ 2 regulates ion channels from unrelated families, as we
356 found that it cross-modulates Kv7.2, in addition to its well-known role as an auxiliary protein
357 of AMPAR. Previous examples of cross-modulation by auxiliary proteins include the
358 modulation of the biophysical properties of Kv1, Kv4.1, and Kv7 channels by Nav β 1^{56,57}, as
359 well as the regulatory role of KCNE1, which modulates both cardiac KCNQ1 channels and
360 TMEM16A chloride channels, belonging to two distinct ion channel superfamilies⁵⁸. Our
361 study adds to this body of evidence, supporting the concept of cross-modulation by auxiliary
362 proteins.

363 **TARP- γ 2 orchestrates Kv7.2 dendritic nano-clustering and regulates Kv7.2-M-currents**

364 Our data support a role for type I TARPs in enhancing currents mediated by homomeric
365 Kv7.2 channels but not by heteromeric Kv7.2/Kv7.3 channels. Heteromerization of M-

366 channels is described as necessary for channel anchoring at the active sites of the AIS and
367 axons^{30,31,37,59–61}, suggesting that homomeric Kv7.2 channels are excluded from these
368 compartments. Therefore, it is likely that dendritic Kv7.2 homomeric channels are
369 preferentially, if not exclusively, regulated by type I TARPs. Indeed, the PLA signal for type I
370 TARP-Kv7.2 interactions was found predominantly in the dendrites of hippocampal and
371 cortical neurons. Furthermore, the dendritic compartment of cortical neurons exhibited a
372 higher density of Kv7.2 clusters, which were larger and presented higher molecule content
373 than those observed in the AIS, where heteromeric Kv7.2/Kv7.3 channels are more
374 abundant. The nanoscale organization of dendritic Kv7.2 clusters is coordinated by TARP-
375 γ 2. Overexpression of TARP- γ 2 led to larger Kv7.2 clusters and overall Kv7.2 increased
376 expression, while the knockdown of TARP- γ 2 decreased the area of Kv7.2 clusters and
377 resulted in smaller M-currents in cortical neurons. These results raise the possibility that the
378 decrease in cortical M-currents following TARP- γ 2 knockdown may be a consequence of
379 lower Kv7.2 homomeric currents.

380 **Disrupted M-currents and increased seizure susceptibility in mice with a point
381 mutation in TARP- γ 2 linked to intellectual disability**

382 Seizures arise from disruptions in mechanisms that control neuronal excitability, and the M-
383 current is one such mechanism^{23,62,63}. Studies show a high comorbidity of epilepsy with most
384 neuropsychiatric disorders, particularly intellectual disability^{64–67}. Here, we show that a point
385 mutation in TARP- γ 2 linked to intellectual disability perturbs the functional regulation of
386 Kv7.2-M-currents by TARP- γ 2, ultimately resulting in increased susceptibility to seizures
387 induced by GABAergic inhibition with pentylenetetrazol. Moreover, knock-in mice with this
388 TARP- γ 2 variant displayed decreased susceptibility to seizures induced by the M-channel
389 blocker XE991 and reduced response to retigabine in the subiculum, supporting diminished
390 M-currents in the presence of the mutant form of TARP- γ 2.

391 Balanced neuronal excitability is particularly relevant in cerebral regions responsible for
392 brain-wave oscillations and seizure control, which can act as backup brakes to suppress or
393 facilitate convulsions. Interestingly, we found co-expression of TARP- γ 2 and Kv7.2 in brain
394 regions implicated in seizure suppression. Strong co-enrichment of TARP- γ 2 and Kv7.2 was
395 observed in the cerebellum, particularly in the cerebellar molecular layer, where stimulation
396 of the cerebellar deep fastigial nucleus can block temporal lobe seizures^{68,69}. Thus, the
397 regulation of Kv7.2-mediated currents by TARP- γ 2, and consequently synaptic excitability,
398 may be of importance in Purkinje cell dendrites. Additionally, strong co-labeling of TARP- γ 2
399 and Kv7.2 was found in the pallidum ventral subregions and the substantia nigra pars
400 reticulata. Of note, deep stimulation of the ventral subregions of the pallidum attenuates

401 pilocarpine-induced seizures⁷⁰, and inhibition of substantia nigra pars reticulata neurons
402 suppresses seizures in epilepsy-prone genetically engineered rat models⁷¹. Another region
403 with significant enrichment of Kv7.2 and TARP- γ 2 is the subiculum in the hippocampal
404 formation. Subiculum pyramidal cells are burst-firing neurons that contribute to the oscillatory
405 activity of this brain area. This region has been reported to be particularly active in cases of
406 focal epileptic disorders⁷². The functional modulation of Kv7.2 by TARP- γ 2 in these brain
407 regions may ensure a suitable level of excitability to coordinate the appropriate neuronal
408 output.

409 Similar to stargazer mice^{50,73}, subiculum pyramidal neurons in TARP- γ 2 V143L mice exhibited
410 a decrease in the mAHP following a burst. A major contribution of Kv7.2-mediated currents
411 to the mAHP has been suggested as conditional deletion of Kv7.2, but not Kv7.3, from CA1
412 pyramidal neurons results in a striking decrease in the mAHP²³. Hence, we propose that the
413 decreased mAHP observed in TARP- γ 2 V143L mice may result from impaired Kv7.2
414 homomeric currents due to defective regulation by the TARP- γ 2 V143L variant.

415 **Type I TARP-Kv7.2 interaction as a molecular integrator of synaptic input and intrinsic
416 excitability**

417 A recent study by Li and colleagues⁷⁴ revealed an autoregulatory feedback loop in which
418 chronic inactivity induces a homeostatic widening of action potentials. This homeostatic
419 regulation of neuronal excitability relies on the control of the alternative splicing of BK
420 channels through molecular mechanisms similar to Hebbian plasticity. Despite the growing
421 evidence of cross-talk between homeostatic and Hebbian plasticity, as well as between
422 synaptic transmission regulation and neuronal excitability, the molecular players facilitating
423 this integration remain elusive. The role of TARP- γ 2 as an auxiliary protein of both AMPARs
424 and M-channels suggests that TARPs may function as molecular integrators of plasticity,
425 synaptic transmission, and intrinsic neuronal excitability. Specific molecular modifications
426 could potentially act as switches, directing TARPs towards the regulation of either AMPARs
427 or Kv7.2 channels. The molecular mechanisms underlying these switches, which are likely
428 responsive to neuronal activity, remain to be identified and warrant further investigation.

429 Recent studies have begun to unveil the interplay between glutamatergic transmission and
430 Kv7.2-M-channels in the ventral hippocampus. The sustained antidepressant effects of
431 ketamine were found to be potentiated by retigabine and to depend on increased M-currents
432 through upregulation of Kv7.2 mRNA, but not Kv7.3, in this brain region⁷⁵. Ketamine also
433 increases AMPAR function in the ventral hippocampus, which is crucial for its fast
434 antidepressant effect. This effect relies on the rapid recruitment of TARP- γ 8 to synaptic

435 sites, anchoring more AMPAR at PSD95 clusters in a CaMKIIα-dependent manner⁷⁶. Based
436 on these studies and our findings, it is tempting to suggest that a TARP-mediated
437 mechanism, through the upregulation of Kv7.2 activity, may be involved in recruiting input-
438 inhibition mechanisms to counteract ketamine-enhanced AMPAR function, thus preventing
439 excessive neuronal activity.

440 Altogether, our findings establish a molecular link between synaptic function and intrinsic
441 excitability. The concurrent modulation of AMPARs and Kv7.2 channels by TARPs at the
442 dendritic level provides a mechanism for maintaining synaptic signals within physiological
443 limits, particularly following synaptic plasticity. The slow braking activity of Kv7.2, promoted
444 by TARPs, limits the depolarizing effects of AMPAR activation in a time-precise manner. In
445 this scenario, the neuronal computing capacity is expanded while preserving both Hebbian
446 and homeostatic net capabilities ready for further activity changes, thus facilitating complex
447 cognitive processes. The pathways involved in such mechanisms require further
448 investigation, as each type I TARP possesses differential regulatory effects, despite their
449 convergent role in potentiating Kv7.2 function.

450

451 **Figure Legends**

452 **Figure 1. Type I TARPs interact with the Kv7.2 subunit of M-channels.**

453 A) Co-immunoprecipitation of Kv7.2 with TARP- γ 2, - γ 3 and - γ 8 from co-transfected
454 HEK293T cells. Immunoprecipitation (IP) assays were performed using either control non-
455 immune rabbit IgGs (IP-) or specific rabbit antibodies against each TARP (IP+). Kv7.2 co-
456 immunoprecipitated with all type I TARP tested (150 kDa band in the IP+ lane). The
457 expression of each protein was confirmed in total lysates (input). FT^{IP-}, control flow-through;
458 FT^{IP+}, IP flow-through. B) Representative images of proximity ligation assay (PLA) signal for
459 type I TARPs and Kv7.2 in 15 DIV rat hippocampal neurons. PLA signal (pink) indicates
460 spatial proximity between endogenously expressed TARP- γ 2, - γ 3, or - γ 8 and Kv7.2.
461 Neurons were also labelled for MAP2 (blue). C) Representative image of the dSTORM
462 resolved nano-distribution of Kv7.2 and TARP- γ 2 in 15 DIV cortical rat neurons, showing
463 their co-localization in these cells. D) Manders' co-localization coefficient between Kv7.2 and
464 TARP- γ 2 nano-clusters in cortical neurons overexpressing TARP- γ 2. Data are presented as
465 median \pm interquartile range (IQR), with the box showing the 25th and 75th percentiles,
466 whiskers ranging from the minimum to the maximum values, and the horizontal line
467 indicating the median. N=4 independent experiments, n=7 neurons. E) Scheme depicting the
468 experimental design of the splitFast assay to investigate the interaction between TARP- γ 2
469 and Kv7.2 in live cells. CFast11 was fused to the C-terminal of TARP- γ 2, while NFast11 was

470 fused to the N-terminal of Kv7.2. The fluorescence signal requires the complementation of
471 the Fast11 protein and depends on the binding of the HMBR fluorogen to the reconstructed
472 Fast protein. F) Representative images showing the live interaction between TARP- γ 2 and
473 Kv7.2 in co-transfected HEK293T. The fluorescence signal (white) is only observed after
474 adding HMBR, indicating that TARP- γ 2 and Kv7.2 are physically interacting. The mCherry
475 signal (red) was used to identify transfected cells. G) Temporal evolution of the normalized
476 splitFAST and mCherry fluorescence intensities before and after adding HMBR. Data are
477 shown as mean \pm SD. N=2 independent experiments, n=55 cells. (See also Figure S1 and
478 S2)

479 **Figure 2. Type I TARP γ s differentially regulate Kv7.2 function and surface trafficking.**

480 A) Representative traces of Kv7.2-M-currents measured in CHO cells transfected with Kv7.2
481 alone or co-transfected with Kv7.2 and either TARP- γ 2, - γ 3, - γ 4 or - γ 8. To generate
482 conductance–voltage curves, cells were held at -80 mV and depolarized for 1.5 seconds
483 from -80 to +40 mV in 20 mV increments, followed by an 800 ms isopotential pulse at 0 mV.
484 B) TARP- γ 2, - γ 3, and - γ 4 co-expression increased currents mediated by Kv7.2 homomeric
485 channels. Results are presented in whisker plots as median \pm IQR (boxes show the 25th and
486 75th percentiles, whiskers range from the minimum to the maximum values, and the
487 horizontal lines represent the median). Kruskal-Wallis ($p < 0.0001$) followed by Dunn's
488 multiple comparison test, ** $p=0.0021$, *** $p=0.0001$; **** $p < 0.0001$, ns $p > 0.9999$. C)
489 Current/voltage curves showing the impact of type I TARP γ s on Kv7.2 voltage-gating
490 properties. Data are presented as mean \pm SEM. D) The half-activation potentials (V_{50}) were
491 determined by fitting the current/voltage curves to a Boltzmann distribution. All type I TARP γ s
492 significantly alter the gating properties of homomeric Kv7.2-M-channels, shifting the V_{50} to
493 more negative potentials. Data are presented in whisker plots as median \pm IQR. One-way
494 ANOVA ($p < 0.0001$) followed by Dunnett's multiple comparison test, * $p=0.0307$, **** $p <$
495 0.0001. B and D) N \geq 3 independent experiments, n=49 cells for Kv7.2, n=32 cells for Kv7.2
496 + TARP- γ 2, n=32 cells for Kv7.2 + TARP- γ 3, n=33 cells for Kv7.2 + TARP- γ 4, n=34 cells for
497 Kv7.2 + TARP- γ 8. E) Representative fluorescence images showing the effect of type I
498 TARP γ s on Kv7.2 total (blue) and surface (pink) expression levels. HEK293T cells were
499 transfected with Kv7.2 alone or co-transfected with Kv7.2 and either TARP- γ 2, - γ 3, - γ 4 or - γ 8.
500 An EGFP-Kv7.2-HA chimeric construct was used, and the extracellular hemagglutinin
501 (HA) tag was labelled to visualize and quantify surface Kv7.2. The EGFP signal was used to
502 determine the total levels of Kv7.2. TARP γ s (yellow) were immunolabeled with an anti-FLAG-
503 tag antibody. F) Cell surface expression of Kv7.2 was significantly increased by TARP co-
504 expression. Surface Kv7.2 was measured by quantifying the HA fluorescence intensity sum
505 per cell, and data were normalized to the average intensity sum of the respective control

506 (Kv7.2 alone). Kruskal-Wallis ($p < 0.0001$) followed by Dunn's multiple comparison test,
507 * $p=0.0457$, **** $p < 0.0001$. G) Total Kv7.2 expression was evaluated by quantifying the
508 EGFP intensity sum per cell, and data were normalized to the average intensity sum of the
509 respective control. Kruskal-Wallis ($p=0.0296$) followed by Dunn's multiple comparison test,
510 * $p=0.0457$ for TARP- $\gamma 2$, * $p=0.0162$ for TARP- $\gamma 3$, ns $p=0.4397$ for TARP- $\gamma 4$, ns $p > 0.9999$
511 for TARP- $\gamma 8$. F and G) Results are shown in whisker plots as median \pm IQR. N=4
512 independent experiments, n=63 for Kv7.2, n=61 cells for Kv7.2 + TARP- $\gamma 2$, n=62 cells for
513 Kv7.2 + TARP- $\gamma 3$, n=57 cells for Kv7.2 + TARP- $\gamma 4$, n=6 cells for Kv7.2 + TARP- $\gamma 8$. (See
514 also Figure S3)

515 **Figure 3. Differential neuronal compartmentalization of Kv7.2 at the nanoscale relies**
516 **on balanced levels of TARP- $\gamma 2$ expression.**

517 A) Representative image of 15 DIV rat cortical neurons immunolabeled for Kv7.2 and
518 acquired using epifluorescence microscopy. B) The same neurons imaged with super-
519 resolution dSTORM technique. C) Super-resolved Kv7.2 clusters from the zoomed image in
520 B) segmented using SR-Tesseler analysis. D) Representative clusters of endogenously
521 expressed Kv7.2 on dendrites and the axon initial segment (AIS) obtained with SR-Tesseler.
522 MAP2 was used as a dendritic marker, while the AIS was identified as the soma-proximal
523 region that was positive for EGFP but negative for MAP2 staining. Red lines delineate the
524 cluster, with each dot representing an individual detection. Purple lines indicate the predicted
525 polygons centered on each detection using the Voronoï diagram. E) Kv7.2 cluster density is
526 higher in the dendritic compartment compared to the AIS. Data are shown in whisker plots
527 as median \pm IQR (boxes show the 25th and 75th percentiles, whiskers range from the
528 minimum to the maximum values, and the horizontal lines represent the median). Unpaired t-
529 test with Welch's correction, $p=0.0459$, $N \geq 3$ independent experiments, n=6 neurons for
530 dendrites, n=17 neurons for the AIS. F) Dendritic Kv7.2 clusters have larger areas compared
531 to Kv7.2 clusters in the AIS. Two-tailed Mann-Whitney test, $p < 0.0001$. G) Kv7.2 clusters in
532 dendrites have a higher particle density than those in the AIS. Two-tailed Mann-Whitney test,
533 $p < 0.0001$. F) and G) Data are shown as median \pm IQR. $N \geq 3$ independent experiments,
534 n=1800 clusters randomly selected from all the acquisitions of the specific region. H)
535 Representative clusters of endogenous Kv7.2 in the dendrites of cortical neurons following
536 TARP- $\gamma 2$ overexpression. Cells were transfected with either a control EGFP plasmid or a
537 TARP- $\gamma 2$ -EGFP plasmid ($\gamma 2$ Over), and transfected cells were identified by EGFP
538 expression. I) Dendritic Kv7.2 cluster area in cortical neurons increases with TARP- $\gamma 2$
539 overexpression. Two-tailed Mann-Whitney test, $p=0.0001$. Data are presented as median \pm
540 IQR. N=4 independent experiments, n=787 clusters randomly selected from all the

541 acquisitions. J) Representative dendritic clusters of endogenous Kv7.2 following TARP- γ 2
542 knockdown in cortical neurons. Cells were transfected with either a control EGFP plasmid or
543 a TARP- γ 2-specific EGFP-shRNA-encoding plasmid (γ 2 KD). Transfected cells were
544 identified by EGFP expression. K) TARP- γ 2 knockdown decreases the area of Kv7.2
545 clusters in the dendrites of cortical neurons. Two-tailed Mann-Whitney test, $p=0.0031$. J) and
546 K) Results are shown in whisker plots as median \pm IQR. N=5 independent experiments,
547 n=1050 clusters randomly selected from all the acquisitions. (See also Figure S4)

548 **Figure 4. Silencing TARP- γ 2 in cortical neurons decreases M-currents.**

549 A) Representative traces showing retigabine (Ret)-induced hyperpolarization of the resting
550 membrane potential through activation of Kv7.2-containing M-channels in 15 DIV cortical
551 neurons. Neurons transfected with a control plasmid, or a TARP- γ 2-shRNA plasmid (γ 2 KD)
552 were held at 0 pA, and retigabine (30 μ M) was perfused for 5 seconds, as indicated by the
553 shaded grey area. B) Retigabine-induced hyperpolarization was significantly decreased in
554 neurons following TARP- γ 2 knockdown compared to control neurons. Two-tailed unpaired t -
555 test, $**p=0.0063$. C) TARP- γ 2 knockdown did not significantly alter the resting membrane
556 potential in cortical neurons. Two-tailed unpaired t -test, ns $p=0.0936$. B and C) Data are
557 presented as mean \pm SEM. N=8 independent experiments, n=30 neurons for control, n=25
558 neurons for γ 2 KD. D) Representative M-current traces from 15 DIV cortical neurons elicited
559 by a 1-second repolarization step from -20 mV to -50 mV. M-currents in control neurons and
560 neurons depleted of TARP- γ 2 were measured as the XE991-sensitive component,
561 calculated by subtracting the XE991-resistant component from the total current. E)
562 Knockdown of TARP- γ 2 resulted in a significant decrease of M-current density in cortical
563 neurons. Two-tailed Mann-Whitney test, $*p=0.0389$, N=10 independent experiments, n=22
564 neurons for control, n=24 neurons for γ 2 KD. Data are presented in whisker plots as median
565 \pm IQR (boxes show 25th and 75th percentiles, whiskers range from the minimum to the
566 maximum values, and the horizontal lines represent the median).

567 **Figure 5. Intellectual disability-associated mutant of TARP- γ 2 (V143L) impairs
568 M-currents in subiculum pyramidal neurons and increases seizure susceptibility.**

569 A) Schematic representation of TARP- γ 2 highlighting an intellectual disability-linked
570 missense mutation that leads to the replacement of valine 143 with leucine (V143L) in the
571 third transmembrane domain²³. This mutation is located at a highly conserved residue of the
572 protein. B) Representative traces of Kv7.2 homomeric M-currents measured in CHO cells
573 transfected with Kv7.2 alone or co-transfected with Kv7.2 and either wild-type TARP- γ 2 (γ 2
574 WT) or the intellectual disability-associated mutant form of TARP- γ 2 (γ 2 V143L). To
575 generate conductance-voltage curves, cells were held at -80 mV and depolarized for 1.5

576 seconds from -80 to +40 mV in 20 mV increments, followed by an 800 ms isopotential pulse
577 at 0 mV. C) Unlike wild-type TARP- γ 2, the TARP- γ 2 V143L variant did not potentiate
578 Kv7.2-mediated currents. Data are presented in whisker plots as median \pm IQR (boxes show
579 25th and 75th percentiles, whiskers range from the minimum to the maximum values, and the
580 horizontal lines represent the median). Kruskal-Wallis ($p=0.0060$) followed by Dunn's
581 multiple comparison test, ** $p=0.0066$; ns $p=0.4811$. N \geq 3 independent experiments, n=18
582 cells for Kv7.2, n=41 cells for γ 2 WT, n=22 cells for γ 2 V143L. D) Representative traces of
583 evoked action potentials in response to a 200 pA current step recorded from subiculum
584 burst-firing pyramidal neurons of wild-type (WT) and heterozygous TARP- γ 2 V143L (Het- γ 2
585 V143L) 8-week-old mice, both before and during perfusion with retigabine (30 μ M). E)
586 Subiculum neurons from heterozygous TARP- γ 2 V143L knock-in animals are less sensitive to
587 retigabine compared to WT neurons. Data are presented as the mean \pm SEM of the
588 percentage of retigabine-induced firing inhibition. Two-way repeated measures ANOVA, $p =$
589 0.0387 (genotype effect). F) Representative traces of the medium after-burst
590 hyperpolarization (mAHP) recorded from subiculum burst-firing pyramidal neurons of WT and
591 Het- γ 2 V143L mice under control conditions and during perfusion with retigabine (Ret, 30
592 μ M). The mAHP amplitude was calculated from action potential trains where the injected
593 current induced firing at 60 Hz. G) Het- γ 2 V143L mice showed a significant reduction in the
594 amplitude of the mAHP in subiculum pyramidal neurons compared to WT mice, and the
595 mAHP amplitude in these animals did not change in response to retigabine. Data presented
596 as mean \pm SEM. Two-way repeated measures ANOVA ($p=0.0011$, genotype effect;
597 $p=0.0020$, retigabine effect; $p=0.3398$, interaction effect) followed by Šídák's multiple
598 comparison test, ** $p=0.0090$ control WT vs Ret WT, ns $p=0.1156$ control Het- γ 2 V143L vs
599 Ret Het- γ 2 V143L, ** $p=0.0060$ control WT vs control Het- γ 2 V143L, *** $p=0.0006$ Ret WT vs
600 Ret Het- γ 2 V143L. D-G) N \geq 4 animals, n=7 neurons for WT, n=7 neurons for Het- γ 2 V143L.
601 H) 8-week-old Het- γ 2 V143L mice presented increased susceptibility to seizures induced by
602 a single dose of 40 mg/kg pentylenetetrazole (PTZ) and reduced susceptibility to seizures
603 induced by a single dose of 15 mg/kg XE991, a blocker of M-channels. Latency to seizures
604 was determined by the time required for each animal to reach phase 5/6 of adapted Racine's
605 scale of epileptogenesis after injection. Data presented as mean \pm SEM. For the PTZ
606 experiment N=5 animals for both genotypes. Two-tailed unpaired t-test, ** $p=0.0097$. For the
607 XE991 experiment N=9 animals for WT, N=6 animals for Het- γ 2 V143L. Two-tailed unpaired
608 t-test, * $p=0.0166$. (See also Figure S5)

609

610 **STAR Methods**

611

612 **Key resources table**

REAGENT or RESOURCE	SOURCE	IDENTIFIER
Antibodies		
mouse monoclonal anti-KCNQ2 [N26A/23]	abcam	Cat#ab84812 RRID: AB_1859997
rabbit polyclonal anti-KCNQ2	abcam	Cat#ab22897 RRID: AB_775890
rabbit polyclonal anti-TARP γ -2	Millipore Sigma-Aldrich	Cat#AB9876 RRID: AB_877307
rabbit polyclonal anti-TARP γ -2	Nittobo Medical	Cat#MSFR105740
rabbit polyclonal anti-TARP γ -3	Synaptic Systems	Cat#254 003 RRID: AB_2619964
rabbit polyclonal anti-TARP γ -8	Nittobo Medical	Cat#MSFR105820
rat monoclonal anti-HA high affinity (clone 3F10)	Roche	Cat#11867423001 RRID: AB_390918
mouse monoclonal anti-FLAG M2 antibody	Sigma-Aldrich	Cat#F3165 RRID: AB_259529
mouse monoclonal anti-GluA antibody (extracellular)	Synaptic Systems	Cat#182 411 RRID: AB_2619876
rabbit monoclonal anti-PSD95 antibody (D27E11)	Cell Signaling Technology	Cat#37657 RRID: AB_2943447
chicken polyclonal anti-MAP2 antibody	abcam	Cat#ab5392 RRID: AB_2138153
guinea pig polyclonal anti-Ankyrin G antibody	Synaptic Systems	Cat#386 005 RRID: AB_2737033
guinea pig polyclonal anti-Neurofilament H antibody	Synaptic Systems	Cat#171 104 RRID: AB_2619869
normal rabbit IgG polyclonal antibody	Millipore Sigma-Aldrich	Cat#12-370 RRID: AB_145841
alkaline phosphatase goat anti-mouse IgG, light chain specific	Jackson ImmunoResearch	Cat#115-055-174 RRID: AB_2338541
alkaline phosphatase mouse anti-rabbit IgG	Jackson ImmunoResearch	Cat#211-055-109 RRID: AB_2339152
goat anti-rat IgG Alexa Fluor 594 antibody	Jackson ImmunoResearch	Cat#112-585-167 RRID: AB_2338383
goat anti-mouse IgG Alexa Fluor 647 antibody	Invitrogen Thermo Fisher Scientific	Cat#A-21236 RRID: AB_2535805
goat anti-rabbit IgG Alexa Fluor 532 antibody	Invitrogen Thermo Fisher Scientific	Cat#A-11009 RRID: AB_2534076
goat anti-rabbit Alexa Fluor 488 antibody	Invitrogen Thermo Fisher Scientific	Cat#A-11008 RRID: AB_143165
goat anti-rabbit IgG Alexa Fluor 647 antibody	Invitrogen Thermo Fisher Scientific	Cat#A-21244 RRID: AB_2535812
goat anti-mouse IgG2a Alexa Fluor 647 antibody	Invitrogen Thermo Fisher Scientific	Cat#A-21241 RRID: AB_2535810

goat anti-mouse IgG Alexa Fluor 568 antibody	Invitrogen Thermo Fisher Scientific	Cat#A-11004 RRID: AB_2534072
goat anti-guinea pig IgG Alexa Fluor 488 antibody	Invitrogen Thermo Fisher Scientific	Cat#A-11073 RRID: AB_2534117
donkey anti-rabbit IgG Alexa Fluor 568 antibody	Invitrogen Thermo Fisher Scientific	Cat#A10042 RRID: AB_2534017
AMCA AffiniPure goat anti-chicken IgY (IgG) (H+L)	Jackson ImmunoResearch	Cat#103-155-155 RRID: AB_2337385
Bacterial and virus strains		
<i>Escherichia coli</i> NEB 5-alpha competent (high efficiency) strain	New England Biolabs	Cat#C2987H
Chemicals, peptides, and recombinant proteins		
Dulbecco's Modified Eagle Medium (DMEM)	GIBCO Thermo Fisher Scientific	Cat#52100021
Dulbecco's Modified Eagle Medium (DMEM), high glucose (4.5 g/L), with sodium bicarbonate and sodium pyruvate	HiMedia	Cat#AL007
Minimum Essential Medium Eagle (MEM)	Sigma-Aldrich	Cat#M0268
Neurobasal media	GIBCO Thermo Fisher Scientific	Cat#21103049
Opti-MEM reduced serum medium, powder	GIBCO Thermo Fisher Scientific	Cat#22600134
Fetal Bovine Serum (FBS)	GIBCO Thermo Fisher Scientific	Cat#10270106
Fetal Bovine Serum (FBS) Superior	Sial	Cat# SIAL-FBS-SA
Horse Serum	GIBCO Thermo Fisher Scientific	Cat#16050122
NeuroCult SM1 Neuronal Supplement	StemCell Technologies	Cat#05711
L-Glutamine	Sigma-Aldrich	Cat#G8540 CAS: 56-85-9
L-Glutamine 200 mM solution	HiMedia	Cat#TCL012 CAS: 56-85-9
Sodium pyruvate	Sigma-Aldrich	Cat#P5280 CAS: 113-24-6
L-Glutamic acid monosodium salt hydrate (Glutamate)	Sigma-Aldrich	Cat#G1626 CAS: 142-47-2
Penicillin-Streptomycin (10,000 U/mL)	GIBCO Thermo Fisher Scientific	Cat#15140122
Gentamicin (50mg/mL)	GIBCO Thermo Fisher Scientific	Cat#15750060
0.25% Trypsin/EDTA	GIBCO Thermo Fisher Scientific	Cat#25200072
Trypsin (1:250), powder	GIBCO Thermo Fisher Scientific	Cat#27250018
Trypsin/EDTA 1X in PBS	Biowest	Cat#L0940
Sequencing Grade Modified Trypsin	Promega	Cat#V5111
Poly-D-lysine hydrobromide	Sigma-Aldrich	Cat#P7886 CAS: 25998-63-0
Poly-L-lysine hydrobromide	Sigma-Aldrich	Cat#P1274 CAS: 27964-99-4

Lipofectamine transfection reagent	Invitrogen Thermo Fisher Scientific	Cat#18324012
5-Fluoro-2'-deoxyuridine	Sigma-Aldrich	Cat#F0503 CAS: 50-91-9
Q5 High-Fidelity DNA Polymerase	New England Biolabs	Cat#M0491
NheI-HF	New England Biolabs	Cat#R3131
XbaI	New England Biolabs	Cat#R0145
LB Broth (granulated)	NZYtech	Cat#MB02802
LB Agar (granulated)	NZYtech	Cat#MB11802
Ampicillin (sodium salt)	NZYtech	Cat#MB02101
TE buffer	Invitrogen Thermo Fisher Scientific	Cat#12090015
Kynurenic acid	Sigma-Aldrich	Cat#K3375 CAS: 492-27-3
Sodium fluoride (NaF)	Sigma-Aldrich	Cat#201154 CAS: 7681-49-4
Sodium orthovanadate (Na ₃ VO ₄)	Sigma-Aldrich	Cat#567540 CAS: 13721-39-6
Dithiothreitol (DTT)	Thermo Fisher Scientific	Cat#R0861 CAS: 3483-12-3
Phenylmethylsulfonyl fluoride (PMSF)	Thermo Fisher Scientific	Cat#36978 CAS: 329-98-6
Chymostatin	Sigma-Aldrich	Cat#C7268 CAS: 9076-44-2
Leupeptin	Sigma-Aldrich	Cat#L2884 CAS: 103476-89-7
Antipain dihydrochloride	Sigma-Aldrich	Cat#A6191 CAS: 37682-72-7
Pepstatin A	Sigma-Aldrich	Cat#P4265 CAS: 26305-03-3
Protein A-Sepharose CL-4B	GE Healthcare	Cat#11514945
ECF substrate for Western blotting	GE Healthcare	Cat#RPN5785
5X SDS-PAGE sample loading buffer	NZYtech	Cat#MB11701
30% Acrylamide/Bis Solution, 37.5:1	Bio-Rad Laboratories	Cat#1610158
XE911 dihydrochloride	Tocris Bioscience	Cat#2000 CAS: 122955-13-9
Retigabine	Tocris Bioscience	Cat#2633 CAS: 150812-12-7
Pentylenetetrazole (PTZ)	Tocris Bioscience	Cat#2687 CAS: 54-95-5
Tetrodotoxin citrate (TTX)	Tocris Bioscience	Cat#1069 CAS: 18660-81-6
Cadmium chloride	Sigma-Aldrich	Cat#202908 CAS: 10108-64-2
4-Aminopyridine (A-AP)	Tocris Bioscience	Cat#0940 CAS: 504-24-5
Tetrodotoxin citrate (TTX)	Tetrodotoxin citrate	Cat#1069 CAS: 18660-81-6
Picrotoxin (PTX)	Tocris Bioscience	Cat#1128 CAS: 124-87-8

D-2-amino-5-phosphonovalerate (D-AP5)	Tocris Bioscience	Cat#0106 CAS: 79055-68-8
6-Cyano-7-nitroquinoxaline-2,3-dione (CNQX)	Tocris Bioscience	Cat#0190 CAS: 115066-14-3
Flash Phalloidin green 488	BioLegend	Cat#424201
Bovine serum albumin (BSA), Fraction V	NZYtech	Cat#MB04602
Paraformaldehyde (PFA)	Sigma-Aldrich	Cat#441244 CAS: 30525-89-4
bisBenzimide Hoechst 33342 trihydrochloride	Sigma-Aldrich	Cat#B2261 CAS: 875756-97-1
Dako fluorescent mounting medium	Agilent Technologies	Cat#S3023
VECTASHIELD HardSet antifade mounting medium	Vector Laboratories	Cat#H-1400-10
TF _{Lime} (a.k.a. HMFR) FAST fluorogenic ligand	The Twinkle Factory	Cat#480541-250
TetraSpeck Microspheres, 0.1 µm, fluorescent blue/green/orange/dark red	Invitrogen Thermo Fisher Scientific	Cat#T7279
Pyranose oxidase from <i>Coriolus</i> sp.	Sigma-Aldrich	Cat#P4234 CAS: 37250-80-9
Catalase from bovine liver (aqueous suspension, 40,000-60,000 units/mg protein)	Sigma-Aldrich	Cat#C-100 CAS: 9001-05-2
Cysteamine hydrochloride (MEA-HCl)	Sigma-Aldrich	Cat#M6500 CAS: 156-57-0
Tris(2-carboxyethyl)phosphine hydrochloride (TCEP)	Sigma-Aldrich	Cat#C4706 CAS: 51805-45-9
Critical commercial assays		
Macherey-Nagel NucleoSpin Gel and PCR Clean-up Kit	Fisher Scientific	Cat#1992242
NEBuilder HiFi DNA Assembly Cloning Kit	New England Biolabs	Cat#E5520
GeneJET Plasmid Miniprep Kit	Thermo Fisher Scientific	Cat# K0502
Pierce BCA Protein Assay Kit	Thermo Fisher Scientific	Cat# 23225
Duolink In Situ Detection Reagents Far Red	Sigma-Aldrich	Cat#DUO92013
Duolink In Situ PLA Probe Anti-Mouse MINUS	Sigma-Aldrich	Cat#DUO92004
Duolink In Situ PLA Probe Anti-Rabbit PLUS	Sigma-Aldrich	Cat#DUO92002
Experimental models: Cell lines		
Hamster: Chinese hamster ovary (CHO) cells	ATCC	CCL-61
Human: Human embryonic kidney (HEK) 293T cells	ATCC	CRL-3216
Experimental models: Organisms/strains		
Mouse: stargazin V143L knock-in	Caldeira and Inácio <i>et al.</i> ²⁶	N/A
Rat: Wistar Han E17/18 embryos	Charles River	Strain code: 273
Oligonucleotides		
Primers for genotyping, see Table S2	Caldeira and Inácio <i>et al.</i> ²⁶	N/A
Primers: pFUGW_TARPy2-FLAG, see Table S2	This paper	N/A
Primers: pFUGW_TARPy3-FLAG, see Table S2	This paper	N/A
Primers: pFUGW_TARPy4-FLAG, see Table S2	This paper	N/A
Primers: pFUGW_mCherry-TARPy2-CFAST-HA, see Table S2	This paper	N/A
Primers: pFUGW_mCherry-TARPy2-CFAST-HA, see Table S2	This paper	N/A
Primers: pFUGW_NFAST-FLAG-4xGGS-Kv7.2, see Table S2	This paper	N/A

gBlock: pFUGW_TARP γ 8-FLAG, see Table S2	This paper	Integrated DNA Technologies
Recombinant DNA		
Plasmid: pFUGW_TARP γ 2-FLAG	This paper	N/A
Plasmid: pFUGW_TARP γ 3-FLAG	This paper	N/A
Plasmid: pFUGW_TARP γ 4-FLAG	This paper	N/A
Plasmid: pFUGW_TARP γ 8-FLAG	This paper	N/A
Plasmid: pFUGW_mCherry-TARP γ 2-CFAST-HA	This paper	N/A
Plasmid: pFUGW_NFAST-FLAG-Kv7.2	This paper	N/A
Plasmid: FUGW	Lois <i>et al.</i> ⁷⁷	Addgene Plasmid #14883 <i>RRID:</i> <i>Addgene_14883</i>
Plasmid: pcDNA3.1(-)	Invitrogen Thermo Fisher Scientific	Cat#V79520
Plasmid: pEGFP-C2_Kv7.2-HA	Soldovieri <i>et al.</i> ⁷⁸	N/A
Plasmid: pcDNA3.1_Kv7.2	Schroeder <i>et al.</i> ⁷⁹	N/A
Plasmid: pcDNA3.1_Kv7.3	Schroeder <i>et al.</i> ⁷⁹	N/A
Plasmid: pEGFP	Clontech	N/A https://www.addgene.org/vector-database/2485/
Plasmid: pcDNA3.1_TARP γ 2	Letts <i>et al.</i> ¹⁰	N/A
Plasmid: pLL3.7_HA-TARP γ 2	Caldeira and Inácio <i>et al.</i> ²⁶	N/A
Plasmid: pLL3.7_HA-TARP γ 2-V143L	Caldeira and Inácio <i>et al.</i> ²⁶	N/A
Plasmid: pLL3.7_shRNA-TARP γ 2	Louros <i>et al.</i> ⁴⁹	N/A
Plasmid: pLL3.7_shRNA-scramble	Louros <i>et al.</i> ⁴⁹	N/A
Plasmid: pRES2-EGFP_TARP γ 3	Jackson <i>et al.</i> ⁸⁰	N/A
Plasmid: pRES2-EGFP_TARP γ 4	Jackson <i>et al.</i> ⁸⁰	N/A
Plasmid: pRES2-EGFP_TARP γ 8	Jackson <i>et al.</i> ⁸⁰	N/A
Software and algorithms		
MaxQuant	Cox <i>et al.</i> ⁸¹	https://www.maxquant.net.org/maxquant/ <i>RRID:</i> SCR_014485
PANTHER GO-slim version 19.0	Thomas <i>et al.</i> ⁸²	https://www.pantherdb.org/panther/goSlim.jsp
ImageJ/Fiji	Schindelin <i>et al.</i> ⁸³	https://imagej.net/software/fiji/ <i>RRID:</i> SCR_002285
imaris v10.1.0	Bitplane/Oxford Instruments	https://imaris.oxinst.com/packages <i>RRID:</i> SCR_007370
Zeiss ZEN microscopy software	Carl Zeiss	https://www.zeiss.com/microscopy/en/products/software/zeiss-zend.html <i>RRID:</i> SCR_013672

Leica LAS software	Leica Microsystems	https://www.leica-microsystems.com/products/microscope-software/details/product/leica-las-x-ls/ <i>RRID: SCR_013673</i>
SR-Tesseler software	Levet <i>et al.</i> ⁸⁴	http://www.iins.u-bordeaux.fr/team-sibarita-SR-Tesseler
PoCA software	Levet and Sibarita ⁸⁵	https://poca-smiln.github.io/
NEB Tm Calculator	New England Biolabs	https://tmcalculator.neb.com/#!/main <i>RRID: SCR_017969</i>
PATCHMASTER software	HEKA Elektronik	http://www.heka.com/products/products_main.html#soft_pm <i>RRID: SCR_000034</i>
pCLAMP v10.2 and v10.7	Axon Instruments/Molecular Devices	https://www.moleculardevices.com/ <i>RRID: SCR_011323</i>
GraphPad Prism v10.1.2 for Windows	GraphPad Software	https://www.graphpad.com/ <i>RRID: SCR_002798</i>
BioRender	BioRender	http://biorender.com <i>RRID: SCR_018361</i>
Other		
SpeedVac	Thermo Fisher Scientific	https://www.thermofisher.com/search/results?query=SpeedVac%20Vacuum%20Concentrators&focusarea=Search%20All
HPLC system	Eksigent Technologies	N/A
LTQ-Orbitrap mass spectrometer	Thermo Fisher Scientific	https://www.thermofisher.com/search/results?query=LTQ-Orbitrap%20mass%20spectrometer&focusarea=Search%20All <i>RRID: SCR_020549</i>
PepMap 100 C18 trapping column	Dionex/Thermo Fisher Scientific	N/A
NanoDrop 2000 spectrophotometer	Thermo Fisher Scientific	https://www.thermofisher.com/order/catalog/product/ND2000_CLAPTOP <i>RRID: SCR_018042</i>
Immobilon-P PVDF membrane	Millipore Sigma-Aldrich	Cat#IPVH00010

ChemiDoc MP imaging system	Bio-Rad Laboratories	https://www.bio-rad.com/en-ie/product/chemidoc-mp-imaging-system?ID=NINJ8ZE8Z RRID: SCR_019037
MINIPLUS 3 peristaltic pump	Gilson	https://pt.gilson.com/PTSV/minipuls-3-peristaltic-pumps.html
CryoStar NX50 cryostat	Thermo Fisher Scientific	https://tools.thermofisher.com/content/sfs/brochures/M45009%20Cryostar%20NX50%20Brochure.pdf
Leica VT1200s vibrating microtome	Leica Microsystems	https://www.leicabiosystems.com/research/vibratomes/leica-vt1200-s/ RRID: SCR_020243
Axio Observer Z1 microscope	Carl Zeiss	https://www.zeiss.com/microscopy/en/products/light-microscopes/widefield-microscopes/axio-observer-for-life-science-research.html
Axio Imager Z2 microscope	Carl Zeiss	https://www.microshop.zeiss.com/en/no/system/axio+imager+2-axio+imager.z2-upright+microscopes/10217/ RRID: SCR_018856
LSM 710 Confocal microscope	Carl Zeiss	https://www.zeiss.com/microscopy/en/products/light-microscopes/confocal-microscopes.html RRID: SCR_018063
Borosilicate glass with filament	Science Products	Cat#GB150F-8P
Borosilicate glass	King Precision Glass	Cat#8250
P-97 Flaming/Brown type micropipette puller	Sutter Instruments	https://www.sutter.com/MICROPIPETTE/p-97.html RRID: SCR_016842

Narishige PC-10 puller	Biomedical Instruments	https://biomedical-instruments.com/pdf/Narishige%20PC-10.pdf RRID:SCR_022057
Picospritzer III	Parker Hannifin	https://ph.parker.com/us/en/product-list/picospritzer-iii-intracellular-microinjection-dispense-systems-picospritzer-micro-dispense-system RRID: SCR_018152
EPC 10 USB patch-clamp amplifier	HEKA Elektronik	https://www.heka.com/products/products_main.html#physiol_epc10multi RRID:SCR_018399
HBO 100 W/2 lamp	OSRAM	Cat#4050300507095
Leica EL6000 Fluorescence Light Source	Leica Microsystems	Cat#11504115
Axio Observer.A1 microscope	Carl Zeiss	https://www.zechb.cz/en/instrumentation/43/zeiss-axio-observer-a1
Multiclamp 700B microelectrode amplifier	Axon Instruments/Molecular Devices	https://www.moleculardevices.com/sites/default/files/en/assets/data-sheets/dd/cns/multiclamp-700b-microelectrode-amplifier.pdf RRID: SCR_018455
Axopatch 200B amplifier	Axon Instruments/Molecular Devices	https://www.moleculardevices.com/products/axon-patch-clamp-system/amplifiers/axon-instruments-patch-clamp-amplifiers#gref RRID: SCR_018866
Digidata 1550A	Axon Instruments/Molecular Devices	https://www.moleculardevices.com/products/axon-patch-clamp-system

Axio Examiner.D1	Carl Zeiss	https://www.microshop.zeiss.com/en/us/system/axio+examiner-axio+examiner.d1-upright+microscopes/10188/
Leica DMI3000B manual inverted microscope	Leica Microsystems	https://www.leica-microsystems.com/products/light-microscopes/p/leica-dmi3000-b/?country=PT
Leica SR GSD microscope	Leica Microsystems	https://www.leica-microsystems.com/products/light-microscopes/p/leica-sr-gsd/
Ludin chamber	Life Imaging Services	https://www.lis.ch/therchamber.html
EMCCD iXon camera	ANDOR Oxford Instruments	https://andor.oxinst.com/products/emccd-cameras?ppc_keyword=emccd&gad_source=1&gclid=CjwKCAjw9IayBhBJEiwAVuc3fsIdY9YmNEL4iEkYOL3ua15Z2NKqe9gRhiLApSUgih9RhdvFA-C_HhoCkjYQAvD_BwE

613

614

615 **Resource availability**

616 **Lead contact**

617 Further information and requests for resources and reagents should be directed and will be
618 fulfilled by the lead contact, Ana Luísa Carvalho (alc@cnc.uc.pt).

619

620 **Materials availability**

621 Plasmids generated in this study are available from lead contact upon request.

622

623 **Data and code availability**

624 All data reported in this paper will be shared by the lead contact upon request.

625 This paper does not report original code.

626 Any additional information required to reanalyze the data reported in this paper is available
627 from the lead contact upon request.

628

629 Experimental model and study participant details

630 Cell line culture

631 *Chinese hamster ovary cells (CHO)*

632 CHO cells (ATCC, #CCL-61) were grown in DMEM (HiMedia, #AL007), supplemented with
633 10% inactivated FBS (Sial, #SIAL-FBS-SA), 1% penicillin/streptomycin (GIBCO Thermo
634 Fisher Scientific, #15140122), and 1% L-glutamine (HiMedia, #TCL012), at 37°C in a
635 humidified atmosphere with 5% CO₂. Cells were split when reaching 80-90% confluence by
636 enzymatic digestion using trypsin/EDTA (Biowest, #L0940) and were maintained for a
637 maximum of 100 passages. For electrophysiological recordings, cells were plated at a 70%
638 confluence on 40-mm plates containing 25 mm glass coverslips coated with 0.1 mg/mL poly-
639 L-lysine (Sigma-Aldrich, #P1274) and transfected 24 hours later.

640

641 *Human embryonic kidney 293T cells (HEK 293T)*

642 HEK 293T cells (ATCC, #CRL-3216) were cultured in DMEM (GIBCO Thermo Fisher
643 Scientific, #52100021) supplemented with 10% inactivated FBS (GIBCO Thermo Fisher
644 Scientific, #10270106), and 1% penicillin/streptomycin (GIBCO Thermo Fisher Scientific,
645 #15140122), at 37°C in a humidified atmosphere with 5% CO₂. Cells were split when
646 reaching 80-90% confluence by enzymatic digestion using 0.25% trypsin/EDTA (GIBCO
647 Thermo Fisher Scientific, #25200072) and were maintained for a maximum of 35 passages.
648 Cells were plated on 6-well plates for immunoprecipitation assays or on 18 mm glass
649 coverslips coated with 0.1 mg/mL poly-D-lysine (Sigma-Aldrich, #P7886) for
650 immunofluorescence assays, and they were transfected when reaching 50-60% confluence.

651

652 Primary hippocampal and cortical neuronal cultures

653 Primary hippocampal and cortical neuronal cultures were prepared from E17/18 Wistar rat
654 embryos. Briefly, hippocampi and cortices were dissected and collected in Ca²⁺- and Mg²⁺-
655 free Hanks' balanced salt solution (HBSS; 5.36 mM KCl, 0.44 mM KH₂PO₄, 137 mM NaCl,
656 4.16 mM NaHCO₃, 0.34 mM Na₂HPO₄, 5 mM glucose, 1 mM sodium pyruvate, 10 mM
657 HEPES, and 0.001% phenol red). Tissues were then digested with 0.02% trypsin (GIBCO
658 Thermo Fisher Scientific, #27250018) in HBSS at 37°C for 12-15 minutes. After extensive
659 washing with HBSS to remove trypsin, tissues were mechanically dissociated, and neurons
660 were plated in MEM (GIBCO Thermo Fisher Scientific, #10270106) supplemented with 10%

661 horse serum (GIBCO Thermo Fisher Scientific, #16050122), 0.6% glucose, and 1 mM
662 sodium pyruvate (Sigma-Aldrich, #P5280) on 18 mm glass coverslips coated with 0.1 mg/mL
663 poly-D-lysine (Sigma-Aldrich, #P7886). Cells were plated at an approximate density of
664 90,000 cells/cm² for immunoprecipitation assays, 12,000 cells/cm² for imaging, and
665 52,000 cells/cm² for electrophysiology experiments. After cell attachment to the surface,
666 approximately 2 hours after plating, the coverslips were inverted onto a confluent support
667 layer of glia cells on 60 mm Petri dishes⁸⁶ and maintained in Neurobasal medium (GIBCO
668 Thermo Fisher Scientific, #21103049) supplemented with 1:50 NeuroCult SM1 neuronal
669 supplement (StemCell Technologies, #05711), 0.5 mM L-glutamine (Sigma-Aldrich,
670 #G8540), and 0.12 mg/mL gentamicin (GIBCO Thermo Fisher Scientific, #15750060), at
671 37°C in a humidified atmosphere with 5% CO₂. In the case of hippocampal neuronal
672 cultures, 25 µM glutamate (Sigma-Aldrich, #G1626) was also added to the supplemented
673 Neurobasal medium. Three days after plating, cultures were treated with 10 µM 5-Fluoro-2'-
674 deoxyuridine (Sigma-Aldrich, #F0503) to prevent the overgrowth of glial cells. Cells were fed
675 every five days by replacing one-third of the culture medium with fresh supplemented
676 Neurobasal medium without glutamate. When required, neuronal depolarization was induced
677 by adjusting the KCl concentration of the conditioned culture medium to 15 mM 24 hours
678 before use.

679

680 **Mice**

681 All procedures involving animals adhered strictly to the guidelines established by the
682 European Union Directive 2010/63/EU. All experiments were approved by the institutional
683 animal welfare body (ORBEA) and the national competent authority (DGAV). Stargazin
684 V143L mice were generated in our laboratory as previously described²⁶, and were bred and
685 maintained in the animal facility at the Faculty of Medicine at the University of Coimbra. Mice
686 were housed in a 12-hour light/dark cycle at 22°C and 60% humidity. Food and water were
687 provided *ad libitum*. Genotyping was performed by PCR from mouse ear or tail DNA using a
688 forward primer for the WT allele (AAGGGACCCTCCGTCCTCTC) and a forward primer for
689 the mutant allele (GGGCCCGGTGCAATACACGC), while the same reverse primer was
690 used for both reactions (CATCGGGCATGGATCCTCAGTTC). Littermate WT mice were
691 used as controls for all experiments. 8-week-old animals were used for electrophysiology
692 recordings, and 10-12-week-old animals were used for immunohistochemistry experiments
693 and seizure susceptibility testing. Both male and female mice were used for
694 immunohistochemistry, and male mice were used for all other experiments. All tests and
695 quantifications were performed blindly to the genotype. Sample size estimates were based
696 on previous literature, and no randomization was applied.

697

698 Method details

699 Immunoprecipitation-mass spectrometry analysis

700 Total cell lysates were prepared from 11 days *in vitro* (DIV) high-density cultured cortical
701 neurons. The cell culture medium was removed, and the cells were washed with ice-cold
702 PBS, and scraped and resuspended in ice-cold TEEN buffer (25 mM Tris-HCl pH 7.4,
703 150 mM NaCl, 1 mM EDTA, 1 mM EGTA, 1% Triton X-100) supplemented with a cocktail of
704 phosphatase and protease inhibitors (5 mM NaF, 0.1 mM Na₃VO₄, 1 mM okadaic acid, 1 mM
705 DTT, 0.2 mM PMSF, 1 µg/mL CLAP – chymostatin, leupeptin, antipain, pepstatin). The cell
706 lysates were kept on ice for 10 minutes before being sonicated for 45 seconds (4 pulses of 5
707 seconds) using an ultrasonic probe. After centrifugation at 21,100 g for 10 minutes at 4°C,
708 the supernatant was collected, and the protein concentration was quantified using the
709 bicinchoninic acid (BCA) assay (Thermo Fisher Scientific, #23225), following the protocol
710 provided by the manufacturer. For TARP-γ2 immunoprecipitation, cell lysates were diluted
711 with supplemented TEEN buffer to a final concentration of 2 µg/µL (approximately 1.6 mg of
712 protein) and pre-cleared by incubation with 30 µL of protein-A Sepharose (GE Healthcare,
713 #11514945) for 1 hour at 4°C under rotation. After centrifugation at 3,000 g for 1 minute at
714 4°C, the supernatant was collected and divided into two tubes. One was incubated with 2 µg
715 of rabbit polyclonal Anti-TARP γ-2 (Millipore Sigma-Aldrich, #AB9876), and the other with
716 2 µg of species-matched non-specific IgGs (Millipore Sigma-Aldrich, #12-370), overnight at
717 4°C under rotation. After that, 80 µL of protein-A Sepharose beads were added, and the
718 samples were incubated for 2 hours at 4°C under rotation. Following centrifugation at
719 3,000 g for 1 minute at 4°C, 30 µL of the supernatant was collected to evaluate the efficiency
720 of the immunoprecipitation. An equal volume of 2X SDS-PAGE sample loading buffer
721 (diluted from 5X SDS-PAGE sample loading buffer; NZYTech, #MB11701) was added to
722 each sample. The Sepharose beads were washed six times: three washes with TEEN buffer,
723 two with TEEN buffer supplemented with 1% Triton X-100, and one with TEEN buffer
724 supplemented with 150 mM NaCl. This was followed by a final centrifugation at 3,000 g for 1
725 minute at 4°C. The supernatant was discarded, and proteins were eluted from the beads
726 using 40 µL of 2X SDS-PAGE sample loading buffer (diluted from NZYTech 5X SDS-PAGE
727 sample loading buffer). Samples were further incubated with 8 µL of 30% acrylamide
728 (BioRad, #1610158) for 30 minutes at room temperature to alkylate cysteinyl residues and
729 then resolved by SDS-PAGE in Tris-glycine-SDS buffer (25mM Tris, 192mM glycine,
730 0.1% SDS, pH 8.3) on an 11% polyacrylamide gel. Polyacrylamide gels were stained for 2
731 hours at room temperature with colloidal Coomassie blue, as previously described⁸⁷, washed
732 with water, and each gel lane was cut into five slices using a clean scalpel. Gel pieces were

733 subsequently subjected to tryptic digestion as described elsewhere⁸⁸ Briefly, the gel pieces
734 were sequentially incubated with 50% acetonitrile in 50 mM NH₄CO₃, 100% acetonitrile, and
735 50 mM NH₄CO₃. The destaining cycle was repeated once. After dehydration in 100%
736 acetonitrile, gel fragments were dried in a SpeedVac (Thermo Fisher Scientific), digested
737 with 10 mg/mL trypsin (Promega, #V5111) in 50 mM NH₄HCO₃ overnight at 37°C. The
738 peptides were extracted twice from the gel pieces with 200 µL of 50% acetonitrile in 0.1 %
739 trifluoroacetic acid. The supernatants were collected, dried in a SpeedVac, and stored at -
740 20°C until further use. The peptides were re-dissolved in 20 µL 0.1% acetic acid and
741 analyzed by liquid chromatography coupled with mass spectrometry (LC-MS/MS). Samples
742 were injected into an LTQ-Orbitrap mass spectrometer (Thermo Electron, Thermo Fisher
743 Scientific) equipped with an HPLC system (Eksigent Technologies). Peptides trapped on a
744 5 mm PepMap 100 C18 column (300 µm ID, 5 µm particle size; Dionex, Thermo Fisher
745 Scientific) and then analyzed on a 200 mm Alltima C18 home-made column (100 µm ID,
746 3 µm particle size). Peptides were separated at a flow rate of 400 nL/min with a linear 40-
747 minute gradient from 5% solvent A (5% acetonitrile, 94.9% H₂O, 0.1% acetic acid) to 40%
748 solvent B (95% acetonitrile, 4.9% H₂O, 0.1% acetic acid). The mass spectrometer was
749 operated in a data-dependent mode with a single MS full-scan survey (m/z range 330-2000),
750 followed by MS/MS experiments of the five most abundant ions.
751

752 **Generation of DNA constructs**

753 The engineering of the pFUGW_TARP-FLAG constructs consisted of inserting a FLAG-tag
754 in the C-terminal tail of each TARP at the 304th nucleotide, similar to the mCherry insertion in
755 TARP γ-2 described by Sainlos and colleagues⁸⁹. Except for TARP γ-8, primers (see Table
756 S2) were designed to produce two DNA inserts: one containing the N-terminal and
757 transmembrane domains coding sequence and the other containing the C-terminal coding
758 sequence. In the case of TARP γ-8, a synthetic oligomer containing overhangs allowing for
759 Gibson assembly (gBlock sequence in Table S2, Integrated DNA Technologies) was used.
760 For the pFUGW_mCherry-TARPy2-CFAST-HA construct, the CFAST11 sequence³⁹ was
761 inserted into the C-terminal tail of TARP γ-2 at the 304th nucleotide, and mCherry and T2A
762 sequences were cloned upstream of the TARP γ-2 sequence. An HA-tag was also inserted
763 after CFAST11, before the C-terminal of TARP γ-2. Three DNA inserts were produced using
764 the primers listed in Table S2. The pFUGW_NFAST-FLAG-4xGGS-Kv7.2 construct was
765 engineered to insert the NFAST sequence³⁹ followed by a FLAG-tag and a flexible spacer of
766 four GSS repeats in the N-terminal of Kv7.2, cloned upstream of the Kv7.2 sequence similar
767 to the EGFP insertion described by Soldovieri and colleagues⁹⁰. Two DNA inserts were
768 produced using the primers listed in Table S2. All DNA inserts were generated via PCR

769 using Q5 High-Fidelity DNA Polymerase (New England Biolabs, #M0491), with 1 µg
770 template DNA and 10 µM of each forward and reverse primer. Cycling parameters were an
771 initial denaturation at 98°C for 30 seconds, followed by 35 amplification cycles of
772 denaturation at 98°C for 10 seconds, primer annealing at 58-72°C for 60 seconds, and
773 extension at 72°C for 30 seconds, with a final extension step at 72°C for 120 seconds. The
774 primer annealing temperatures were defined based on predictions using the NEB Tm
775 Calculator (New England Biolabs). The resulting amplicons were run on a 1% agarose gel at
776 90V for 40 minutes and then purified using the Macherey-Nagel NucleoSpin Gel and PCR
777 Clean-up Kit (Fisher Scientific, #1992242), following the manufacturer's instructions. Inserts
778 were cloned into the FUGW plasmid (Addgene, #14883) via Gibson assembly⁹¹. The EGFP
779 sequence was excised during the plasmid linearization step using the NheI-HF (New
780 England Biolabs, #R3131) and XbaI (New England Biolabs, #R0145) enzymes. For Gibson
781 assembly reactions, 100 ng of plasmid DNA was incubated with insert DNA at a 1:2 ratio, in
782 10 µL of 2X concentrated NEBuilder HiFi DNA Assembly Master Mix (New England Biolabs,
783 #E5520). The final volume of the reaction was adjusted to 20 µL with nuclease-free water
784 and incubated at 50°C for 1 hour. NEB 5-alpha competent *E. coli* strain (New England
785 Biolabs, # C2987H) was used for subcloning. Briefly, 3 µL of the Gibson assembly reaction
786 product was added to 50 µL of bacterial suspension and incubated on ice for 30 minutes,
787 followed by 30 seconds at 42°C and a further 2 minutes on ice. Subsequently, 950 µL of
788 SOC outgrowth medium (New England Biolabs, #E5520) was added and the bacteria were
789 incubated at 37°C for 1 hour with agitation (250 rpm). At the end of the incubation, the
790 bacteria were centrifuged at 21,100 g for 1 minute, and the pellet was resuspended in LB
791 broth (NZYtech, #MB02802). Bacteria were then spread on LB agar (NZYtech, #MB11802)
792 plates with 0.5 mg/mL ampicillin (NZYtech, #MB02101) and grown at 30°C for 20 hours.
793 DNA constructs were purified from selected colonies using the GeneJET Plasmid Miniprep
794 Kit (Thermo Fisher Scientific, #K0502), and DNA was eluted in TE buffer (Invitrogen Thermo
795 Fisher Scientific, #12090015). The DNA concentration was measured by absorbance at 260
796 nm using a NanoDrop 2000 (Thermo Fisher Scientific), and the plasmids were stored at -
797 20°C. All DNA constructs were validated using Sanger sequencing (Eurofins Genomics).
798

799 **Cell transfection**

800 *Transfection of CHO cells*

801 For electrophysiological recordings, CHO cells were transfected with 4 µg of plasmid DNA
802 using the lipocationic reagent Lipofectamine (Invitrogen Thermo Fisher Scientific,
803 #18324012). Cells were co-transfected with pcDNA3.1_Kv7.2 and either pcDNA3.1(-) empty
804 vector, pcDNA3.1_TARPγ2, piRES2-EGFP_TARPγ3, piRES2-EGFP_TARPγ4, or piRES2-

805 EGFP_TARPy8, at different transfection ratios, totaling 3.6 µg of plasmid DNA. These
806 plasmids were mixed with 0.4 µg of pEGFP, which contains the gene for Enhanced Green
807 Fluorescent Protein (EGFP) used as a transfection marker. Briefly, plasmid DNAs and
808 Lipofectamine were separately diluted in 250 µl of Opti-MEM medium (GIBCO Thermo
809 Fisher Scientific, #22600134), mixed, and incubated for 20 minutes at room temperature to
810 allow the formation of Lipofectamine-DNA complexes. Subsequently, 1 mL of Opti-MEM was
811 added to the precipitates, and the total volume of the mixture was used to replace the DMEM
812 medium in the culture dish. After 5 hours of incubation, the medium containing the
813 precipitate was replaced with fresh complete DMEM medium.
814 For Kv7.2/Kv7.3 heteromeric current recordings, cells were co-transfected with
815 pcDNA3.1_Kv7.2 and pcDNA3.1_Kv7.3, along with either pcDNA3.1(-) empty vector or
816 pcDNA3.1_TARPy2, at a 1:1:5 ratio, as described.
817

818 *Transfection of HEK 293T cells*

819 For immunoprecipitation and imaging assays, HEK 293T cells were transfected with 10 µg or
820 4 µg of plasmid DNA, respectively, using the calcium phosphate co-precipitation method.
821 Briefly, plasmid DNA was diluted in TE buffer (Invitrogen Thermo Fisher Scientific,
822 #12090015), and a CaCl₂ solution (2 M CaCl₂) was added dropwise to reach a final
823 concentration of 246 mM, facilitating the formation of precipitates. These precipitates were
824 subsequently combined with an equal volume of 2X concentrated HEPES-buffered saline
825 (280 mM NaCl, 50 mM HEPES, 1.5 mM Na₂HPO₄, pH 7.1). The precipitate solution was
826 added to the cells and incubated at 37°C for 4-6 hours in a humidified atmosphere with 5%
827 CO₂. Afterwards, the cell culture medium was replaced with fresh medium.
828 For immunoprecipitation assays, cells were co-transfected with pEGFP-C2_Kv7.2-HA and
829 either pcDNA3.1_TARPy2, pRES2-EGFP_TARPy3 or pRES2-EGFP_TARPy8, at a 1:1
830 ratio. Cells were lysed 48 hours after transfection.
831 For immunostaining, cells were co-transfected with pEGFP-C2_Kv7.2-HA and either
832 pcDNA3.1(-) empty vector, pFUGW_TARPy2-FLAG, FUGW_TARPy3-FLAG,
833 FUGW_TARPy4-FLAG or FUGW_TARPy8-FLAG, at a 1:1 ratio. Cells were fixed and
834 immunostained 24 hours after transfection.
835 For the SplitFAST assay, cells were co-transfected with pFUGW_mCherry-TARPy2-CFAST-
836 HA and pFUGW_NFAST-FLAG-4xGGS-Kv7.2, at a 1:1 ratio. As a negative control, cells
837 were transfected with each of the plasmids alone, and the total amount of DNA was kept
838 constant using the pcDNA3.1(-) empty vector. Imaging was performed 24 hours after
839 transfection. To assess the possible effects of the protein tags' position on protein
840 localization, cells were transfected with either TARPy2-CFAST-HA, pcDNA3.1_TARPy2,

841 pFUGW_NFAST-FLAG-4xGGS-Kv7.2 or pcDNA3.1_Kv7.2, fixed, and immunostained 24
842 hours after transfection.

843

844 *Transfection of cortical neurons*

845 Rat cortical neurons were transfected with 3 µg of plasmid DNA at DIV 11 using the calcium
846 phosphate co-precipitation method⁹². Plasmid DNA was diluted in TE buffer (1 mM Tris-HCl
847 pH7.3, 1 mM EDTA), and a CaCl₂ (2.5 mM CaCl² in 10 mM HEPES) was added dropwise to
848 reach a final concentration of 250 mM, facilitating the formation of precipitates. These
849 precipitates were subsequently combined with an equal volume of 2X concentrated HEPES-
850 buffered saline (274 mM NaCl, 42 mM HEPES, 1.4 mM Na₂HPO₄, 10 mM KCl, 11 mM
851 glucose, pH 7.2). Neurons were transferred to 12-well plates with 200 µL of conditioned
852 culture medium supplemented with 2 M kynurenic acid (Sigma-Aldrich, #K3375). Then,
853 100 µL of the precipitate solution was added to each well, and cells were incubated for 1-2
854 hours at 37°C in a humidified atmosphere with 5% CO₂. Afterwards, the remaining
855 precipitates were dissolved by incubating the neurons in fresh Neurobasal medium
856 supplemented with 2 mM kynurenic acid for 15 minutes at 37°C in a humidified atmosphere
857 with 5% CO₂. Lastly, coverslips were transferred to the original culture dish with glia cells
858 and kept for four days before being used for electrophysiological recordings or being fixed
859 for imaging experiments. For electrophysiological recordings, cells were transfected with
860 either pLL3.7_shRNA-scramble or pLL3.7_shRNA-TARP γ 2. For dSTORM super-resolution
861 imaging, neurons were transfected with either pLL3.7_shRNA-scramble, pLL3.7_shRNA-
862 TARP γ 2 or pLL3.7_HA-TARP γ 2.

863

864 **Co-immunoprecipitation assays**

865 HEK 293T cell lysates were prepared 48 hours after transfection. The cell culture medium
866 was removed, and the cells were scraped and resuspended in ice-cold TEEN buffer (25 mM
867 Tris-HCl pH 7.4, 150 mM NaCl, 1 mM EDTA, 1 mM EGTA, 1% Triton X-100) supplemented
868 with a cocktail of phosphatase and protease inhibitors (5 mM NaF, 0.1 mM Na₃VO₄, 1 mM
869 DTT, 0.2 mM PMSF, 1 µg/mL CLAP – chymostatin, leupeptin, antipain, pepstatin). The cell
870 lysates were kept on ice for 10 minutes before being sonicated for 70 seconds (7 pulses of 5
871 seconds) using an ultrasonic probe. After centrifugation at 21,100 g for 10 minutes at 4°C,
872 the supernatant was collected, and the protein concentration was quantified using the
873 bicinchoninic acid (BCA) assay (Thermo Fisher Scientific, #23225), following the protocol
874 provided by the manufacturer. For type I TARP immunoprecipitation, 500 µg of protein was
875 incubated with 2 µg of either rabbit polyclonal Anti-TARP γ -2 (Millipore Sigma-Aldrich,
876 #AB9876), rabbit polyclonal Anti-TARP γ -3 (Synaptic Systems, #254 003), rabbit polyclonal

877 Anti-TARP γ -8 (Nittobo Medical, #MSFR105820), or normal rabbit polyclonal IgG (Millipore
878 Sigma-Aldrich, #12-370) antibodies for 2 hours at 4°C under rotation. After that, 50 μ L of
879 protein-A Sepharose (GE Healthcare, #11514945) was added, and the samples were
880 incubated overnight at 4°C under rotation. The samples were then centrifuged at 100 g for 1
881 minute at 4°C, and the flowthrough was collected. An equal volume of 2X concentrated
882 denaturing buffer (62.5 mM Tris-HCl pH 6.8, 10% glycerol, 2% SDS, 0.01% bromophenol
883 blue, 5% β -mercaptoethanol) was added to each sample. The pellet containing the
884 Sepharose beads was washed first with 1 mL of TEEN buffer, followed by a wash with TEEN
885 buffer supplemented with 150 mM NaCl, and then resuspended in 50 μ L of 2X concentrated
886 denaturing buffer. Samples were resolved by SDS-PAGE in Tris-glycine-SDS buffer (25 mM
887 Tris, 192 mM glycine, 0.1% SDS, pH 8.3) on an 11% polyacrylamide gel. Following
888 electrophoresis, proteins were transferred overnight (40 V, 4°C) to a PVDF membrane
889 (Millipore Sigma-Aldrich, #IPVH00010) in Tris-glycine buffer (25 mM Tris, 192 mM glycine,
890 pH 8.3) containing 20% methanol. The membranes were then blocked with 5% non-fat dry
891 milk in TBS buffer (20 mM Tris, 137 mM NaCl, pH 7.6) with 0.1% Tween-20 (TBS-T) at room
892 temperature for 1 hour. Next, the primary antibodies against either Kv7.2 (mouse
893 monoclonal #ab84812, abcam; 1:1000), TARP γ -2 (rabbit polyclonal #AB9876, Millipore
894 Sigma-Aldrich; 1:750), TARP γ -3 (rabbit polyclonal #254 003, Synaptic Systems; 1:1000), or
895 TARP γ -8 (rabbit polyclonal #MSFR105820, Nittobo Medical; 1:1000) were diluted in
896 blocking solution and incubated for 2 hours at room temperature. The membranes were then
897 washed three times in TBS-T for 10 minutes each and incubated for 1 hour at room
898 temperature with the appropriate alkaline phosphatase-conjugated secondary antibodies
899 (goat anti-mouse IgG light chain specific #115-055-174 or mouse anti-rabbit IgG #211-055-
900 109, Jackson ImmunoResearch) diluted 1:10,000 in blocking solution. Following three 10-
901 minute washes with TBS-T, the membranes were developed with ECF alkaline phosphatase
902 substrate (GE Healthcare, # RPN5785), and the protein bands were detected using a
903 ChemiDoc MP imaging system (Bio-Rad Laboratories).

904

905 **Immunostaining and imaging**

906 *Immunostaining of rat cortical neurons*

907 Low-density cortical neurons, 15 days in vitro (DIV), were fixed in 4% paraformaldehyde
908 (PFA; Sigma-Aldrich, #441244) and 4% sucrose in phosphate-buffered saline (PBS; 137 mM
909 NaCl, 2.7 mM KCl, 10 mM Na₂HPO₄, 1.8 mM KH₂PO₄, pH 7.4) for 15 minutes at room
910 temperature. After washing with PBS, neurons were permeabilized with ice-cold 0.25%
911 Triton X-100 in PBS for 5 minutes at 4°C, followed by three washes with PBS. Next,
912 nonspecific staining was blocked by incubation with 10% bovine serum albumin (BSA;

913 NZYtech, #MB04602) in PBS for 30 minutes at 37°C in a humidified chamber. Neurons were
914 then incubated overnight at 4°C with the appropriate primary antibodies diluted in 3% BSA in
915 PBS. The following primary antibodies were used: monoclonal mouse anti-Kv7.2 antibody
916 (1:200; abcam, #ab84812), polyclonal rabbit anti-TARP γ -2 (1:500; Millipore Sigma-Aldrich,
917 #AB9876), polyclonal chicken anti MAP2 (1:5000; abcam, #ab5392), polyclonal guinea pig
918 anti-Ankyrin G (1:1000; Synaptic Systems, #386 005), and polyclonal guinea pig anti-
919 Neurofilament H (1:1000; Synaptic Systems, #171 104). Neurons were then extensively
920 washed with PBS and incubated with the appropriate secondary Alexa (goat anti-mouse IgG
921 Alexa Fluor 568 #A-11004, goat anti-rabbit IgG Alexa Fluor 647 #A-21244, goat anti-guinea
922 pig IgG Alexa Fluor 488 #A-11073, Invitrogen Thermo Fisher Scientific) or AMCA (goat anti-
923 chicken IgY (IgG) #103-155-155, Jackson ImmunoResearch) antibodies, diluted 1:500 or
924 1:200 respectively, in 3% BSA in PBSA for 45 minutes at 37°C in a humidified chamber.
925 When required, phalloidin (BioLegend, #424201), diluted at a ratio of 1:70, was added to the
926 secondary antibody solution to stain actin filaments. Nuclei were visualized by staining with
927 1 μ g/mL Hoechst 33342 (Sigma-Aldrich, #B2261) in PBS for 5 minutes at room temperature.
928 Following extensive washing with PBS, coverslips were mounted with Dako fluorescent
929 mounting medium (Agilent Technologies, #S3023). Images were captured using an Axio
930 Observer Z1 microscope (Carl Zeiss) equipped with a Plan-Apochromat 63X oil-immersion
931 objective (NA 1.4) and the Zeiss ZEN software.
932 For labelling surface AMPA receptors, neurons were incubated with a monoclonal mouse
933 anti-GluA extracellular epitope antibody (1:100; Synaptic Systems, #182 411) prior to cell
934 permeabilization. Briefly, after fixation, cells were washed with PBS and blocked in 10% BSA
935 in PBS for 30 minutes at 37°C in a humidified chamber. Neurons were then incubated with
936 the primary antibody, followed by incubation with the secondary antibody (1:500; goat anti-
937 mouse IgG2a Alexa 647 #A-2124, Invitrogen Thermo Fisher Scientific), as described above.
938 Subsequently, cells were permeabilized and stained for PSD95 (1:200, monoclonal rabbit
939 anti-PSD95 #37657, Cell Signaling Technology; 1:500, goat anti-rabbit IgG Alexa 488 #A-
940 11008, Invitrogen Thermo Fisher Scientific) and MAP2 (1:5000, polyclonal chicken anti
941 MAP2 #ab5392, abcam; 1:200, AMCA goat anti-chicken IgY (IgG) #103-155-155, Jackson
942 ImmunoResearch). Nuclei were stained with 1 μ g/mL Hoechst 33342, and coverslips were
943 mounted with Dako fluorescent mounting medium.
944 For dSTORM imaging, neurons were immunostained as already described using the primary
945 mouse monoclonal anti-Kv7.2 antibody (1:200; abcam, #ab84812) alone or in combination
946 with a rabbit polyclonal anti-TARP γ -2 antibody (1:200; Nittobo Medical, #MSFR105740),
947 and the respective secondary antibodies (1:500; goat anti-mouse IgG Alexa 647 #A-21236,
948 goat anti-rabbit IgG Alexa 532 #A-11009 Invitrogen Thermo Scientific). The cells were

949 postfixed for 10 minutes at room temperature in 4% PFA and 4% sucrose in PBS to preserve
950 the fluorescence signal and then kept in PBS until imaging.

951

952 *Total and surface staining of Kv7.2 in HEK 293T cells*

953 HEK 293T cells were fixed in 4% PFA and 4% sucrose in PBS for 15 minutes at room
954 temperature, 24 hours after transfection with a dual-tagged Kv7.2 chimeric construct. This
955 construct had an EGFP tag at the cytoplasmic N-terminus of Kv7.2, which was used to
956 visualize and quantify the total expression levels of the protein. Additionally, the surface
957 expression of Kv7.2 was evaluated by staining the extracellular HA-tag inserted in the loop
958 connecting the transmembrane domains S1 and S2⁷⁸ before cell permeabilization. Briefly,
959 after washing with PBS, cells were blocked in 10% BSA in PBS for 30 minutes at 37°C in a
960 humidified chamber. Next, the cells were incubated overnight at 4°C with a primary
961 monoclonal rat anti-HA antibody (1:500; Roche, #11867423001) diluted in 3% BSA in PBS.
962 Cells were then extensively washed with PBS and incubated for 45 minutes at 37°C in a
963 humidified chamber with the secondary anti-rat IgG Alexa 594 antibody (1:500; Jackson
964 ImmunoResearch, #112-585-167) diluted in 3% BSA in PBS. After that, cells were washed
965 with PBS and permeabilized with ice-cold 0.25% Triton X-100 in PBS for 5 minutes at 4°C,
966 washed again with PBS, and blocked 10% BSA in PBS, as already described. To label type I
967 TARP_s, the intracellular FLAG-tag inserted on the C-terminal tail was immunostained using
968 a primary monoclonal mouse Anti-FLAG antibody (1:500; Sigma-Aldrich, #F3165) and a
969 secondary anti-mouse IgG2a Alexa 647 antibody (1:500; Invitrogen Thermo Fisher Scientific,
970 #A-21241). Nuclei were visualized by staining with 1 µg/mL Hoechst 33342 (Sigma-Aldrich,
971 #B2261) in PBS for 5 minutes at room temperature. Lastly, after extensive washing with
972 PBS, coverslips were mounted with Dako fluorescent mounting medium (Agilent
973 Technologies, #S3023). 16-bit z-stack images were acquired on a Zeiss LSM 710 laser
974 scanning confocal microscope (Carl Zeiss) equipped with a Plan-Apochromat 63X oil-
975 immersion objective (NA 1.4) using Zeiss ZEN software (Carl Zeiss).

976

977 *TARP γ-2 and Kv7.2 staining in brain slices*

978 10-12-week-old mice were deeply anesthetized with isoflurane and transcardially perfused
979 with ice-cold PBS, followed by freshly prepared 4% PFA in PBS at a constant flow rate of 7
980 mL per minute using a peristaltic pump (Gilson). Brains were removed and kept in 4% PFA
981 in PBS overnight at 4°C and then transferred to a 30% sucrose in PBS solution and stored at
982 4°C until they sank (24-48 hours). Brains were sliced using a Cryostar NX50 cryostat
983 (Thermo Fisher Scientific) to obtain 50 µm coronal and sagittal slices. Free-floating slices
984 were washed three times in PBS for 10 minutes and then permeabilized for 1 hour in 0.25%

985 Triton X-100 and 5% horse serum (GIBCO Thermo Fisher Scientific, #16050122) in PBS at
986 room temperature on an orbital shaker for continuous gentle agitation. After that, slices were
987 incubated overnight at room temperature with continuous gentle agitation with a primary
988 polyclonal rabbit anti-Kv7.2 antibody (1:500; abcam, #ab22897) or a polyclonal rabbit anti-
989 TARP γ -2 antibody (1:200; Nittobo Medical, #MSFR105740) diluted in 0.25% Triton X-100
990 and 2% horse serum in PBS. After extensive washing with 0.25% Triton X-100 in PBS, slices
991 were incubated with the secondary anti-rabbit IgG Alexa 568 antibody (1:500; Invitrogen
992 Thermo Fisher Scientific, #A10042) diluted in 0.25% Triton X-100 and 2% horse serum in
993 PBS for 2 hours at room temperature with continuous agitation. Brain sections were further
994 incubated with 1 μ g/mL Hoechst 33342 (Sigma-Aldrich, #B2261) in PBS for 5 minutes at
995 room temperature to stain cell nuclei. Lastly, after three washes in PBS for 10 minutes with
996 mild continuous agitation, brain slices were mounted in gelatinized glass slides using
997 VECTASHIELD mounting medium (Vector Laboratories, #H-1400-10). Images were
998 captured on an Axio Imager Z2 (Carl Zeiss) equipped with a Plan-Apochromat 20X air
999 objective (NA 0.8) using the Zeiss ZEN software (Carl Zeiss).

1000

1001 **Proximity ligation assay (PLA)**

1002 Low-density 15 DIV hippocampal and cortical neurons were fixed for 15 minutes at room
1003 temperature in 4% PFA and 4% sucrose in PBS. After washing with PBS, cells were
1004 permeabilized for 5 minutes in 0.25% Triton X-100 in PBS at 4°C. Neurons were then
1005 blocked for 30 minutes in 10% BSA in PBS in a humidified chamber at 37°C and incubated
1006 overnight at 4°C with the appropriate combination of primary antibodies prepared in 3% BSA
1007 in PBS. To detect the proximity between Kv7.2 and type I TARPs, a mouse monoclonal anti-
1008 Kv7.2 antibody (1:200; abcam, #ab84812) was used in combination with either a rabbit
1009 polyclonal anti-TARP γ -2 antibody (1:200; Nittobo Medical, #MSFR105740), a rabbit
1010 polyclonal anti-TARP γ -3 antibody (1:100; Synaptic Systems, #254 003) or polyclonal anti-
1011 TARP γ -8 antibody (1:200; Nittobo Medical, #MSFR105820). TARP antibodies are knock-out
1012 validated⁹³. Negative controls in which one of the primary antibodies was omitted from the
1013 reaction were also included to assess the specificity of the PLA signal. After washing with
1014 PBS, followed by three washes with buffer A (0.01 M Tris, 0.15 M NaCl, 0.05% Tween20)⁹⁴,
1015 proximity ligation was performed using the Duolink *in situ* PLA Rabbit PLUS (Sigma-Aldrich,
1016 # DUO92002) and Mouse MINUS (Sigma-Aldrich, # DUO92004) probes, according to the
1017 manufacturer's instructions, and the Duolink *in situ* Detection Reagents (Sigma-Aldrich, #
1018 DUO92013) were used for ligation, amplification, and label probe binding steps. Briefly,
1019 neurons were incubated with PLA probes diluted 1:5 in antibody diluent for 2 hours at 37°C
1020 in a humidified chamber, followed by several washes with was buffer A. Afterwards, cells

1021 were incubated for 30 minutes at 37°C in a humidified chamber with the ligation reaction
1022 prepared according to the manufacturer's recommendations. Amplification and label probe
1023 binding were performed after extensive washing with buffer A. Neurons were incubated with
1024 the amplification reaction mixture for 1 hour and 45 minutes at 37°C in a humidified
1025 chamber. Amplification was stopped by two washes in buffer B (0.2 M Tris, 0.1 M NaCl, pH
1026 7.5)⁹⁴, followed by two washes in PBS. The cells were postfixed for 10 minutes at room
1027 temperature in 4% PFA and 4% sucrose in PBS to improve signal stability, washed with
1028 PBS, and further processed for staining with cell and nuclear markers as described above.
1029 Coverslips were mounted using Dako fluorescent mounting medium (Agilent Technologies,
1030 #S3023). Images were captured using an Axio Observer Z1 microscope (Carl Zeiss)
1031 equipped with a Plan-Apochromat 63X oil-immersion objective (NA 1.4), with the Zeiss ZEN
1032 software (Carl Zeiss).

1033

1034 **SplitFAST fluorescence complementation assay**

1035 Live imaging of transfected HEK 293T cells was performed 24 hours after transfection on a
1036 Zeiss LSM 710 laser scanning confocal microscope (Carl Zeiss) equipped with a Plan-
1037 Apochromat 63X oil-immersion objective (NA 1.4) and a heated stage for temperature
1038 control. Images were captured using Zeiss ZEN software (Carl Zeiss). To assess the
1039 interaction between Kv7.2 and TARP γ -2 the cells were imaged in an extracellular pH-
1040 buffered solution (119 mM NaCl, 5 mM KCl, 2 mM CaCl₂, 2 mM MgCl₂, 30 mM glucose,
1041 10 mM HEPES, pH 7.4) at 37°C. mCherry signal was used to identify transfected cells.
1042 Samples were imaged continuously for 4 minutes at a frequency of 0.3 frames per second.
1043 The baseline signal was recorded for 20 seconds after which 5 μ M HMBR FAST fluorogenic
1044 ligand (The Twinkle Factory, #480541-250) was added to the cells³⁹.

1045

1046 **dSTORM imaging**

1047 Images were acquired using a Leica SR GSD microscope (Leica Microsystems) equipped
1048 with a Leica HC PL APO 160X oil-immersion TIRF objective (NA 1.43) and an EMCCD iXon
1049 camera (ANDOR Oxford Instruments) with a final pixel size of 100 nm, enabling the
1050 detection of single fluorophores. Samples were illuminated in TIRF mode, and images were
1051 captured using the Leica LAS software (Leica Microsystems) with an exposure time of 12 ms
1052 for up to 100,000 consecutive frames. Imaging was performed at room temperature within a
1053 sealed Ludin chamber (Life Imaging Services). An extracellular solution with adjusted pH
1054 (20 mM Tris-HCl, 50 mM NaCl, 10% glycerol, 10% glucose, pH7.5), supplemented with
1055 oxygen scavenger (0.1% catalase suspension #C100, 1 mg/mL pyranose oxidase #P4234,
1056 Sigma-Aldrich) and reducing agents (200 mM MEA-HCl #M6500, 4 mM TCEP #C4706,

1057 Sigma-Aldrich) was used. The collective fluorescence signal of Alexa Fluor 647 (Thermo
1058 Fisher Scientific, #A-21236) was converted into a dark state using half the potency of the
1059 642 nm laser (500 mW). When the targeted count of individual fluorophores per frame was
1060 reached, the power of the 642 nm laser was reduced to 15% of its maximum potency. To
1061 maintain an optimal number of stochastically activated molecules per frame, the power of the
1062 642 nm laser was continuously adjusted, up to a maximum of 30%. Likewise, the power of the
1063 405 nm laser (30 mW) was continuously adjusted up to a maximum of 10% of its
1064 maximum potency. The particle detection threshold was set to 20 in the acquisition software.
1065 For dual-color imaging, the 642 nm and 532 nm lasers were used sequentially. After
1066 capturing the signal of Alexa Fluor 647, as described above, the fluorescence signal of Alexa
1067 Fluor 532 (Thermo Fisher Scientific, #A-11009) was converted into a dark state using the
1068 maximum power of the 532 nm laser (1000 mW) in epifluorescence mode. Once the desired
1069 number of single fluorophores per frame was reached, the power of the 532 nm laser was
1070 reduced to 15% of its maximum potency. To maintain an optimal number of stochastically
1071 activated molecules per frame, the power of the 532 nm laser was continuously adjusted, up
1072 to a maximum of 30%. Also, the power of the 405 nm laser (30 mW) was continuously
1073 adjusted up to a maximum of 10% of its maximum potency. The particle detection threshold
1074 was set to 20-50 in the acquisition software.

1075

1076 **Electrophysiological recordings**

1077 *Patch-clamp recordings in CHO cells*

1078 Whole-cell patch-clamp recordings on CHO cells were performed 24 hours after transfection,
1079 as previously described⁶². The recording chamber was mounted on a Leica DMI3000B
1080 inverted microscope (Leica Microsystems) with a mobile stage and perfused with
1081 extracellular solution (138 mM NaCl, 2 mM CaCl₂, 5.4 mM KCl, 1 mM MgCl₂, 10 mM
1082 glucose, 10 mM HEPES, pH 7.4 adjusted with NaOH). Transfected cells were identified by
1083 EGFP expression using fluorescence illumination (Leica EL6000 Fluorescence Light Source,
1084 Leica Microsystems, #11504115), while transmitted light was used to visualize the selected
1085 cells during patch-clamp recordings. Patch pipette electrodes (3-5 mΩ), made from
1086 borosilicate glass (King Precision Glass, #8250), were prepared using a vertical
1087 microelectrode puller (Narishige PC-10 puller, Biomedical Instruments) and filled with a KCl-
1088 based intracellular solution (140 mM KCl, 2 mM MgCl₂, 10 mM EGTA, 10 mM HEPES, 5 mM
1089 Mg-ATP, pH 7.4 adjusted with KOH). Voltage-clamp recordings were performed using an
1090 Axopatch 200B patch-clamp amplifier (Axon Instruments, Molecular Devices). Data were
1091 acquired at 0.5-2 kHz and filtered at 1-5 kHz with the 4-pole low-pass Bessel filter of the
1092 amplifier, using pCLAMP v10.2 software (Axon Instruments, Molecular Devices). No

1093 corrections were made for liquid junction potentials. Cells were excluded if the leak current
1094 exceeded 100 pA. Linear cell capacitance was determined by integrating the area under the
1095 whole-cell capacity transient, evoked by short (5-10 ms) pulses from -80 to -75 mV, with the
1096 whole-cell capacitance compensation circuit of the Axopatch 200B turned off. Current
1097 densities (expressed in pA/pF) were calculated as peak potassium currents divided by cell
1098 capacitance. To generate conductance/voltage (G/V) curves, cells were held at -80 mV and
1099 then depolarized for 1.5 seconds from -80 to +40 mV in 20 mV increments, followed by an
1100 isopotential pulse at 0 mV for 0.8 seconds. The current values recorded at the beginning of
1101 the 0 mV pulse were normalized and expressed as a function of the preceding voltages. The
1102 data were fit to a Boltzmann equation, $y = \text{max}/[1+\exp(V_{1/2} - V)/k]$, where V is the test
1103 potential, $V_{1/2}$ is the half-activation potential, and k is the slope factor. Currents were
1104 corrected offline for linear capacitance and leakage current using the standard subtraction
1105 routines of the Clampfit module of pClamp v10.2.

1106

1107 *Patch-clamp recordings in rat cortical neurons*

1108 Whole-cell patch-clamp recordings from 15 DIV transfected cortical neurons plated on poly-
1109 D-lysine coated coverslips were performed at room temperature (~22°C). The recording
1110 chamber was mounted on a mobile stage inverted Axio Observer.A1 microscope (Carl
1111 Zeiss) and perfused with extracellular solution (140 mM NaCl, 2.4 mM KCl, 10 mM HEPES,
1112 10 mM glucose, 4 mM CaCl₂, 4 mM MgCl₂, pH 7.3, 300-310 mOsm), at a constant rate of 1-
1113 2 mL per minute. Transfected neurons were identified by EGFP expression using
1114 fluorescence illumination (HBO 100 W/2 lamp, OSRAM, #4050300507095), and
1115 transmission light differential contrast (DIC) was used to visualize the selected neurons
1116 during patch-clamp. Patch pipette electrodes (4–6 mΩ) made from borosilicate glass
1117 (Science Products, #GB150F-8P) were pulled with a horizontal microelectrode puller (P-97
1118 Flaming/Brown type micropipette puller, Sutter Instruments), and filled with a K-gluconate-
1119 based solution (122 mM K-gluconate, 20 mM KCl, 20 mM HEPES, 13.6 mM NaCl, 3 mM
1120 Mg²⁺-ATP, 1 mM EGTA, 0.2 mM CaCl₂, pH 7.3 adjusted with KOH, 295-300 mOsm). Both
1121 voltage- and current-clamp recordings were performed using an EPC 10 USB patch-clamp
1122 amplifier (HEKA Elektronik), low-pass filtered at 2.9 kHz using a built-in Bessel filter and
1123 digitized at 25 kHz with PATCHMASTER software (HEKA Elektronik). Cells were excluded if
1124 the leak current exceeded 200 pA, the series resistance (Rs) was above 25 MΩ or the Rs
1125 varied by more than 20%.

1126 For gap-free recordings in current-clamp mode, neurons were clamped at 0 pA. A baseline
1127 was recorded for 5 seconds. Subsequently, 30 μM retigabine (Tocris Bioscience, #2687),
1128 prepared in extracellular recording solution, was perfused for 5 seconds using a Picospritzer
1129 III (Parker Hannifin). This was followed by a 10-second recovery period. The M-current was

1130 measured as the hyperpolarizing peak amplitude relative to the membrane resting potential
1131 induced by retigabine, an M-channel activator⁹⁵.

1132 For recording M-current in voltage-clamp mode, the extracellular solution was supplemented
1133 with 0.5 μ M (Tocris Biosciences, #1069), 100 μ M CdCl₂ (Sigma-Aldrich, #202908), and
1134 1 mM 4-AP (Tocris Biosciences, #0940). Neurons were clamped at -20 mV for 200 ms,
1135 followed by a series of 1-second-long repolarization steps from -30 mV to -80 mV, after
1136 which neurons were held at -20 mV for 500 ms. To pharmacologically isolate the M-current,
1137 the protocol was repeated while the cell was locally perfused with 10 μ M of the specific M-
1138 channel blocker XE991, prepared in extracellular recording solution (Tocris Biosciences,
1139 #2000). The M-current was determined by subtracting the XE991 sensitive component from
1140 the total deactivating tail currents measured for the voltage step from -20 mV to -50 mV³⁷.

1141

1142 *Subiculum pyramidal neuron recordings in hippocampal acute brain slices*

1143 8-week-old WT and stagazin V143L heterozygous male mice were deeply anesthetized with
1144 isoflurane and transcardially perfused with an ice-cold, oxygenated (95% O₂ and 5% CO₂)
1145 sucrose solution (217.7 mM sucrose, 2.6 mM KCl, 1.23 mM NaH₂PO₄, 26 mM NaHCO₃,
1146 10 mM glucose, 3 mM MgCl₂, 1 mM CaCl₂, pH 7.4, 300-320 mOsm). The brains were
1147 quickly removed and placed in ice-cold, oxygenated sucrose solution, and 300 μ m
1148 hippocampal sagittal slices were prepared using a Leica VT1200s vibrating microtome
1149 (Leica Microsystems). The brain slices were transferred to a holding chamber with
1150 oxygenated artificial cerebrospinal fluid (aCSF; 125.1 mM NaCl, 2.5 mM KCl, 1.1 mM
1151 NaH₂PO₄, 25 mM NaHCO₃, 25 mM glucose, 2 mM MgSO₄, 2 mM CaCl₂, pH 7.4, 300-
1152 310 mOsm), and kept at 32°C for 30 minutes, followed by 1 hour at room temperature to
1153 recover before recording.

1154 Subiculum pyramidal neurons were visualized under infrared-differential interference contrast
1155 (IR-DIC) microscopy using an upright Axio Examiner.D1 microscope (Carl Zeiss). Whole-cell
1156 patch-clamp recordings were performed using a Multiclamp 700B amplifier (Axon
1157 Instruments, Molecular Devices), low-pass filtered at 2 kHz, digitized at 20 kHz with Digidata
1158 1550A (Axon Instruments, Molecular Devices), and acquired with the pCLAMP v10.7
1159 software (Axon Instruments, Molecular Devices). Patch pipette electrodes (4–6 m Ω) made
1160 from borosilicate glass (Science Products, #GB150F-8P) were pulled using a horizontal
1161 microelectrode puller (P-97 Flaming/Brown type micropipette puller, Sutter Instruments). The
1162 electrodes were filled with a K-gluconate-based solution (122 mM K-gluconate, 20 mM KCl,
1163 20 mM HEPES, 13.6 mM NaCl, 3 mM Mg²⁺-ATP, 1 mM EGTA, 0.2 mM CaCl₂, pH 7.3
1164 adjusted with KOH, 295-300 mOsm). Slices were kept at 30°C in a recording chamber
1165 perfused with oxygenated aCSF (2-3 mL per minute), supplemented with 100 μ M PTX
1166 (Tocris Bioscience, #1128), 50 μ M D-AP5 (Tocris Bioscience, #0106), and 10 μ M CNQX

1167 (Tocris Bioscience, #0190) to block synaptic activity. Recordings were performed in the
1168 current-clamp mode at a holding current of 0 pA, and the resting membrane potential (RMP)
1169 was recorded. Next, a depolarizing current ramp injection from 0-200 pA was applied. The
1170 rheobase was determined as the minimum injected current required for the cell to fire an
1171 action potential (AP), and the threshold voltage was defined as the membrane potential at
1172 which the voltage deflection exceeded 20 mV/ms. Afterwards, the membrane input
1173 resistance and the membrane time constant (tau) were estimated from the response of the
1174 cell to a rectangular current pulse of -200 pA applied for 100 ms. The steady-state
1175 hyperpolarization was measured, and the membrane input resistance was calculated using
1176 Ohm's law. Capacitance (pF) was calculated as $(\tau / \text{input resistance}) \times 1000$. Each trace was
1177 also fitted with a monoexponential decay curve, between 10% of the maximum voltage
1178 deflection and the minimum membrane potential during the response, and the membrane
1179 time constant was obtained from the fits. Lastly, spike trains were elicited by injecting
1180 rectangular current pulses from 0-550 pA in 50 pA incrementing steps, with a duration of
1181 120 ms, followed by 4 seconds recovery at 0 pA. This protocol was repeated while the cell
1182 was locally perfused with 30 μ M of the M-channel activator retigabine, prepared in
1183 extracellular recording solution (Tocris Biosciences, #2000), using a Picospritzer III (Parker
1184 Hannifin). The medium after burst-hyperpolarization (mAHP) was measured in the current
1185 injection step eliciting a 50-60 Hz firing frequency by measuring the peak voltage in the 20-
1186 100 ms post-burst interval⁹⁶. Holding current and Rs were monitored, and cells were
1187 discarded if either of these parameters varied more than 20% or if Rs was above 25 M Ω .
1188

1189 **Seizure induction in stargazin V143L mice**

1190 *Pentylenetetrazol (PTZ)-induced seizures*

1191 10-12-week-old male WT and stargazin V143L littermate mice were injected intraperitoneally
1192 with a single dose of 40 mg/kg PTZ (Tocris Bioscience, #2687), a GABA_A receptor
1193 antagonist. The PTZ dose used was selected based on a pilot test. Mice were placed in an
1194 open field arena with transparent walls and continuous video monitoring immediately after
1195 the injection. The severity of the seizures was assessed by observing the behavior of the
1196 animals, and the latency to reach phase 5/6 according to the PTZ-adapted Racine scale⁵³
1197 was determined by a blinded observer. In this scale, phase 5 is defined as bilateral clonic
1198 and tonic-clonic seizures (lying on the belly), whereas phase 6 is characterized by both
1199 bilateral clonic and tonic-clonic seizures, as well as loss of righting reflex (lying on the side).
1200 The experiment was conducted in a room at 28-30°C with controlled humidity. Animals were
1201 acclimatized to the room for 2 hours before the experiment, with *ad libitum* access to food
1202 and water.

1203

1204 ***XE991-induced seizures***

1205 To provoke seizures by suppressing M-currents, 10-12-week-old male WT and stargazin
1206 V143L littermate mice were intraperitoneally injected with a single dose of 15 mg/kg XE991
1207 (Tocris Bioscience, #2000), an M-channel blocker, under the same experimental conditions
1208 described for PTZ-induced seizures. The XE991 dose used was selected based on a pilot
1209 test. Since mice injected with XE991 exhibited behavioral manifestations similar to those
1210 described in phases 1-3 of the classical Racine scale⁹⁷, the videos were analyzed by a
1211 blinded observer for scoring using a combination of the classical and the PTZ-modified
1212 Racine scales.

1213

1214 **Quantification and statistical analysis**

1215 **Protein identification and gene ontology analysis**

1216 The mass spectra were imported into MaxQuant software (version 1.5) and cross-referenced
1217 with the Uniprot mouse proteomic database (version 2013-01-06). The mass tolerances
1218 were set to 6 ppm and 0.5 Da for MS and MS/MS, respectively. Up to two missense
1219 cleavages were allowed, with trypsin as the selected protease. Cysteine alkylation with
1220 acrylamide was set as a fixed modification, while methionine oxidation and N-terminal
1221 acetylation were set as variable modifications. The false discovery rate (FDR) was set at
1222 0.01. Only unique peptides were used for identification and protein hits were considered
1223 valid if they contained at least one unique peptide. Valid hits were considered putative
1224 interactors of TARP- γ 2 if they co-immunoprecipitated with TARP- γ 2 and were absent in
1225 control samples (immunoprecipitation performed with non-immune IgGs) in at least one of
1226 the duplicates from two independent experiments. To identify ontology groups for biological
1227 processes associated with the list of TARP- γ 2 interacting proteins, gene ontology (GO)
1228 analysis was performed using PANTHER GO-slim (version 19.0, released 2024-06-19;
1229 <https://www.pantherdb.org/panther/goSlim.jsp>)⁸².

1230

1231 **Image analysis**

1232 ***PLA puncta analysis***

1233 8-10 fields on each coverslip were randomly selected, and stargzin/Kv7.2 PLA puncta were
1234 quantified using the Surfaces model in Imaris v10.1.0 software (Bitplane, Oxford
1235 Instruments). The number of PLA puncta was normalized for the area of the neurons visible
1236 in each image. The area was defined using phalloidin staining and quantified with ImageJ/Fiji

1237 software (National Institutes of Health). Data are presented as percentage of the respective
1238 control.

1239

1240 *Analysis of axon initial distance from the soma*

1241 The distance from the soma to the axon initial segment (AIS) in cultured cortical neurons
1242 was measured manually using ImageJ/Fiji software (National Institutes of Health). Only
1243 neurons with a single axon originating from the soma were included in the analysis. The
1244 EGFP signal of transfected cells was used to identify the soma, while Ankyrin G labeling was
1245 used to visualize the AIS. All analyses were performed blind to the experimental conditions.

1246

1247 *AMPA receptor surface and synaptic levels*

1248 All experimental conditions were prepared and stained simultaneously, with acquisition
1249 settings maintained across conditions within each independent experiment. GluA-AMPA
1250 receptor surface and synaptic puncta number, area, and intensity were analyzed using
1251 ImageJ/Fiji software (National Institutes of Health) with an in-house macro that automated
1252 the quantification steps. 11-12 fields on each coverslip were randomly selected, and
1253 dendritic regions of interest (ROIs) were defined based on the MAP2 staining. The dendritic
1254 length was measured, and background and intensity threshold settings were adjusted for
1255 each channel. The threshold was defined to include all visible puncta. The average
1256 background value for each image was subtracted from the thresholded mean intensity value
1257 to obtain the corrected intensity value. These corrected intensity values were then multiplied
1258 by the puncta area to determine the final integrated intensity. Synaptic GluA-AMPA receptor
1259 puncta were defined by their co-localization with PSD95. For this, binary masks were
1260 created for each channel and overlaid with the other to test for the co-localization of GluA-
1261 AMPA receptor puncta with PSD95 puncta.

1262

1263 *Cortical neurons viability*

1264 Cortical neurons viability was assessed by analyzing nuclear morphology using
1265 Hoechst 33342 staining. 10-12 images were randomly captured per coverslip. The total
1266 number of cells per sample was manually counted using ImageJ/Fiji software (National
1267 Institutes of Health), and the percentage of cells with condensed and fragmented nuclei was
1268 determined.

1269

1270 *SplitFAST fluorescence analysis*

1271 SplitFAST signal quantification was performed using ImageJ/Fiji software (National Institutes
1272 of Health). First, z-series images were corrected for small xy-drift using the TurboReg

1273 plugin⁹⁸. Next, the mCherry signal was used to manually annotate regions of interest (ROIs)
1274 corresponding to individual cells. The integrated intensity of the mCherry and HMBR
1275 fluorescence signals was analyzed over time. For each ROI, the baseline signal for each
1276 channel was obtained by averaging the integrated intensity of the frames acquired during the
1277 first 20 seconds before the addition of the fluorogen HMBR. HMBR and mCherry signals
1278 were expressed as a percentage of the respective baseline. For the HMBR channel, since
1279 the baseline fluorescent signal was background, this was subtracted from all data points.

1280

1281 *dSTORM image analysis*

1282 Super-resolution images were reconstructed with the Leica LAS software (Leica
1283 Microsystems) using the center of mass fitting algorithm. This algorithm determined the
1284 centroid-coordinates of individual molecules and fitted the point-spread-function (PSF) of
1285 each distinct diffraction-limited event to a Gaussian function. The resulting super-resolved
1286 images had a final spatial resolution of 20 nm. To correct lateral drift, multicolor fluorescent
1287 microspheres were employed (Invitrogen Thermo Fisher Scientific, #T7279). The SR-
1288 Tesseler software⁸⁴ was then used to analyze protein clusters. Single molecule spatial
1289 coordinates were used to compute a Voronoï diagram, decomposing the image into
1290 polygons of different sizes, each centered on a localized molecule. First-rank densities (δ_i^1)
1291 were calculated, and density maps were produced by applying the δ_i^1 values as textures to
1292 the Voronoï polygons. The Kv7.2 clusters were automatically segmented by applying a
1293 threshold of two times the average first-rank density of the entire dataset, with a minimum
1294 area of 0.04 pixel² and requiring at least 50 localizations. The minimum area was defined by
1295 considering the size of a single Kv7.2 channel, which is 20 nm⁴⁸. The number of detections
1296 was determined after a pilot experiment, which compared specific Kv7.2 clusters with non-
1297 specific clusters by omitting the primary antibody in the staining protocol. In the case of
1298 stargazin, clusters were detected by applying a threshold of two times the average density δ
1299 of the entire dataset, with a minimum area of 1 pixel², based on the minimum size of
1300 stargazin clusters in low-resolution images. A threshold of one time the average density of
1301 each cluster, with a minimum area of 0.04 pixel² and at least 50 localizations was used. Size
1302 parameters and local density (number of detections per cluster area) were extracted after
1303 cluster segmentation by principal component analysis.

1304 For co-localization analyses, each fluorescence channel was segmented independently as
1305 described, and co-localization was computed using the PoCA software⁸⁵. The total Kv7.2
1306 expression levels were quantified from epifluorescence images acquired from the same
1307 samples under control conditions and when stargazin was overexpressed, using ImageJ/Fiji
1308 software (National Institutes of Health).

1309

1310 *Total and surface staining of Kv7.2 in HEK 293T cells HEK 293T*

1311 In each independent experiment, 14-16 cells were randomly selected. FLAG-tag staining
1312 was used to confirm the expression of TARP_s in the selected cells when co-expressed with
1313 Kv7.2. All experimental conditions were prepared and stained simultaneously, with
1314 acquisition settings maintained across conditions within each independent experiment.
1315 Surfaces were generated from z-stack images in imaris v10.1.0 software (Bitplane, Oxford
1316 Instruments) using the combined fluorescence signal from the total and surface Kv7.2
1317 stainings. The intensity sum of the fluorescent signal for both the total (EGFP fluorescence)
1318 and surface (HA-tag immunostaining) Kv7.2 stainings for each cell was obtained from these
1319 volumetric reconstructions. For each independent experiment, the data were normalized to
1320 the average intensity sum of the respective control.

1321

1322 **Electrophysiology data analysis**

1323 All recordings were analyzed using pCLAMP v10.7 (Axon Instruments, Molecular Devices).
1324 Data acquired with the PATCHMASTER software (HEKA Elektronik) were converted to ABF
1325 file format before analyses. All electrophysiology data analyses were done blindly, without
1326 knowledge of the experimental conditions.

1327

1328 **Statistics**

1329 For each experiment, the normality of population distributions was assessed using the
1330 Shapiro-Wilk normality test. Based on this evaluation, either parametric or non-parametric
1331 tests were employed, as described in the figure legends. Accordingly, data are presented as
1332 mean \pm SEM or in box and whiskers plots as median \pm interquartile range, as indicated in
1333 the figure legends. Over time measurements are presented as mean \pm SD. The number of
1334 independent experiments is indicated in the figure legends. For all tests, statistical
1335 significance was considered as $p < 0.05$. Variance analysis following one-way ANOVA was
1336 performed using the Brown-Forsythe test. Before running a *t*-test, variance analysis was
1337 performed using the F-test. When the variances of the two populations differed, a Welch's *t*-
1338 test was applied. All statistical analyses were performed using GraphPad Prism 10.1.2
1339 software (GraphPad Software). Additional information regarding the number of independent
1340 experiments, the statistical tests employed, and the corresponding *p*-values is available in
1341 Table S3.

1342 The schemes in Figure 1E, 5A, and S1F were created with BioRender (BioRender.com).

1343 **Acknowledgments**

1344 The pcDNA3.1_Kv7.2 and pcDNA3.1_Kv7.3 plasmids were a kind gift from Prof. Thomas J.
1345 Jentsch (Zentrum für Molekulare Neurobiologie Hamburg, Germany); the
1346 pcDNA3.1_TARPy2 plasmid was a kind gift of Dr. Verity Letts (The Jackson Laboratory,
1347 USA); and the piRES2-EGFP_TARPy3, piRES2-EGFP_TARPy4, and piRES2-
1348 EGFP_TARPy8 plasmids were a kind gift from Prof. Mark Farrant (University College
1349 London, UK). This work was funded by La Caixa Iniciativa Ibérica and FCT 4b initiative
1350 under the project LCF/PR/HP20/52300003, and by the European Regional Development
1351 Fund (ERDF), through the COMPETE 2020 — Operational Program for Competitiveness
1352 and Internationalization and Portuguese national funds via FCT, under projects
1353 UIDB/04539/2020, UIDP/04539/2020, LA/P/0058/2020. MVR was funded by FCT through
1354 the following fellowships: SFRH/BD/129236/2017 and CRM:0026298. The authors wish to
1355 thank Francesco Micelli for insightful discussions, and the MICC Imaging facility of CNC-UC.
1356

1357 **References**

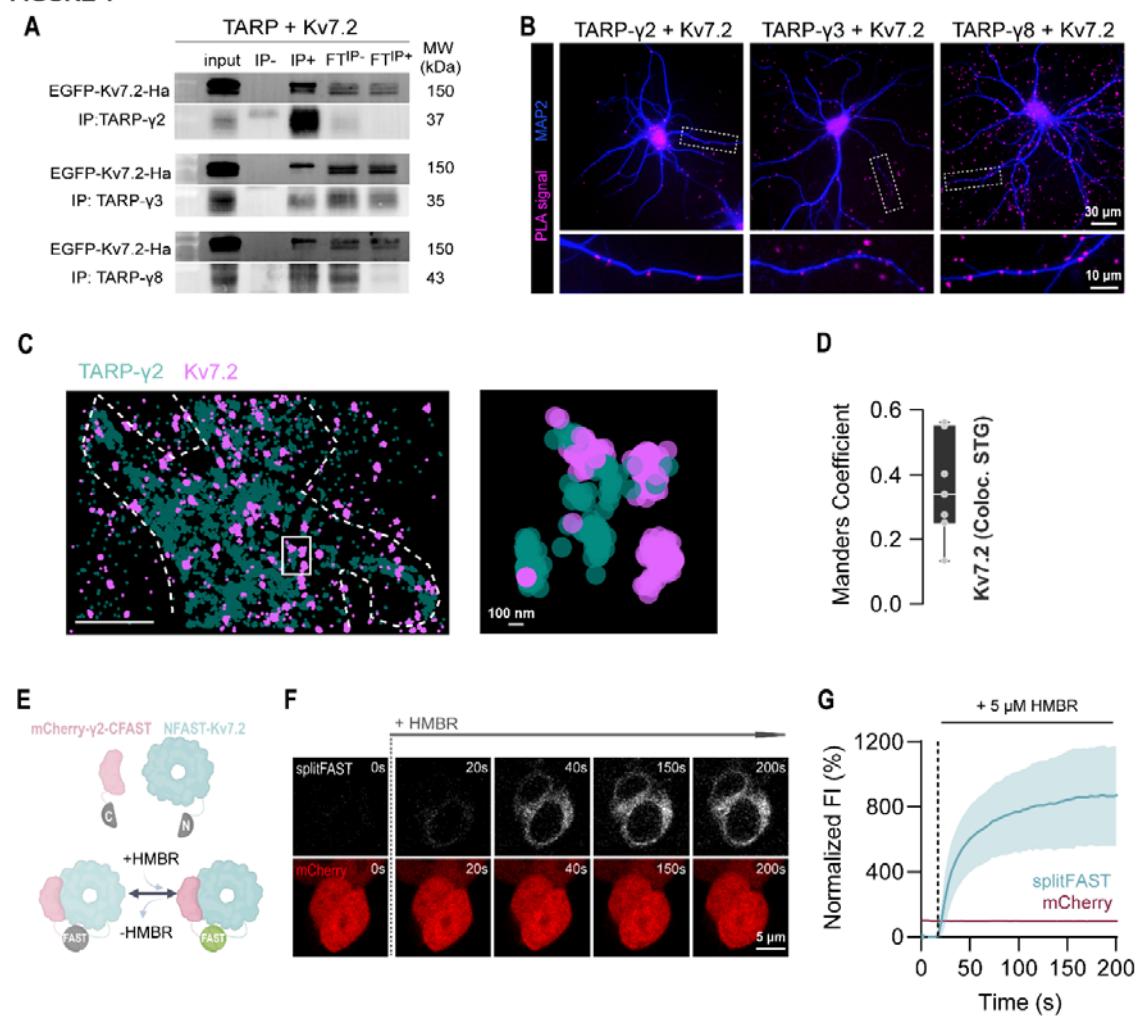
- 1358 1. Fernandes, D., and Carvalho, A.L. (2016). Mechanisms of homeostatic plasticity in the
1359 excitatory synapse. *Journal of Neurochemistry* 139, 973–996.
1360 <https://doi.org/10.1111/jnc.13687>.
- 1361 2. Debanne, D., Inglebert, Y., and Russier, M. (2019). Plasticity of intrinsic neuronal
1362 excitability. *Curr Opin Neurobiol* 54, 73–82. <https://doi.org/10.1016/j.conb.2018.09.001>.
- 1363 3. Castaldo, P., Del Giudice, E.M., Coppola, G., Pascotto, A., Annunziato, L., and
1364 Taglialatela, M. (2002). Benign Familial Neonatal Convulsions Caused by Altered
1365 Gating of KCNQ2/KCNQ3 Potassium Channels. *J. Neurosci.* 22, RC199–RC199.
1366 <https://doi.org/10.1523/JNEUROSCI.22-02-j0003.2002>.
- 1367 4. Borsotto, M., Cavarec, L., Bouillot, M., Romey, G., Maciardi, F., Delaye, A., Nasroune,
1368 M., Bastucci, M., Sambucy, J.-L., Luan, J.-J., et al. (2007). PP2A-Bg subunit and
1369 KCNQ2 K β channels in bipolar disorder. *The Pharmacogenomics Journal*, 123–132.
1370 <https://doi.org/10.1038/sj.tpj.6500400>.
- 1371 5. Yizhar, O., Fennel, L.E., Prigge, M., Schneider, F., Davidson, T.J., O'Shea, D.J., Sohal,
1372 V.S., Goshen, I., Finkelstein, J., Paz, J.T., et al. (2011). Neocortical excitation/inhibition
1373 balance in information processing and social dysfunction. *Nature* 477, 171–178.
1374 <https://doi.org/10.1038/nature10360>.
- 1375 6. McCarthy, S.E., Gillis, J., Kramer, M., Lihm, J., Yoon, S., Berstein, Y., Mistry, M.,
1376 Pavlidis, P., Solomon, R., Ghiban, E., et al. (2014). De novo mutations in schizophrenia
1377 implicate chromatin remodeling and support a genetic overlap with autism and
1378 intellectual disability. *Mol Psychiatry* 19, 652–658. <https://doi.org/10.1038/mp.2014.29>.
- 1379 7. Edfawy, M., Guedes, J.R., Pereira, M.I., Laranjo, M., Carvalho, M.J., Gao, X., Ferreira,
1380 P.A., Caldeira, G., Franco, L.O., Wang, D., et al. (2019). Abnormal mGluR-mediated
1381 synaptic plasticity and autism-like behaviours in Gprasp2 mutant mice. *Nat Commun*
1382 10, 1431. <https://doi.org/10.1038/s41467-019-09382-9>.
- 1383 8. Dirkx, N., Miceli, F., Taglialatela, M., and Weckhuysen, S. (2020). The Role of Kv7.2 in
1384 Neurodevelopment: Insights and Gaps in Our Understanding. *Front. Physiol.* 11.
1385 <https://doi.org/10.3389/fphys.2020.570588>.
- 1386 9. Hansen, K.B., Wollmuth, L.P., Bowie, D., Furukawa, H., Menniti, F.S., Sobolevsky, A.I.,
1387 Swanson, G.T., Swanger, S.A., Greger, I.H., Nakagawa, T., et al. (2021). Structure,
1388 Function, and Pharmacology of Glutamate Receptor Ion Channels. *Pharmacol Rev* 73,
1389 298–487. <https://doi.org/10.1124/pharmrev.120.000131>.
- 1390 10. Letts, V.A., Felix, R., Biddlecome, G.H., Arikath, J., Mahaffey, C.L., Valenzuela, A.,
1391 Bartlett, F.S., Mori, Y., Campbell, K.P., and Frankel, W.N. (1998). The mouse stargazer
1392 gene encodes a neuronal Ca²⁺-channel γ subunit. *Nat Genet* 19, 340–347.
1393 <https://doi.org/10.1038/1228>.
- 1394 11. Tomita, S., Chen, L., Kawasaki, Y., Petralia, R.S., Wenthold, R.J., Nicoll, R.A., and
1395 Bredt, D.S. (2003). Functional studies and distribution define a family of
1396 transmembrane AMPA receptor regulatory proteins. *J Cell Biol* 161, 805–816.
1397 <https://doi.org/10.1083/jcb.200212116>.
- 1398 12. Shelley, C., Farrant, M., and Cull-Candy, S.G. (2012). TARP-associated AMPA
1399 receptors display an increased maximum channel conductance and multiple kinetically

- 1400 distinct open states. *The Journal of Physiology* 590, 5723–5738.
1401 <https://doi.org/10.1113/jphysiol.2012.238006>.
- 1402 13. Chen, S., Zhao, Y., Wang, Y., Shekhar, M., Tajkhorshid, E., and Gouaux, E. (2017).
1403 Activation and Desensitization Mechanism of AMPA Receptor-TARP Complex by Cryo-
1404 EM. *Cell* 170, 1234-1246.e14. <https://doi.org/10.1016/j.cell.2017.07.045>.
- 1405 14. Delmas, P., and Brown, D.A. (2005). Pathways modulating neural KCNQ/M (Kv7)
1406 potassium channels. *Nat Rev Neurosci* 6, 850–862. <https://doi.org/10.1038/nrn1785>.
- 1407 15. Baculis, B.C., Kesavan, H., Weiss, A.C., Kim, E.H., Tracy, G.C., Ouyang, W., Tsai, N.-
1408 P., and Chung, H.J. (2022). Homeostatic regulation of extracellular signal-regulated
1409 kinase 1/2 activity and axonal Kv7.3 expression by prolonged blockade of hippocampal
1410 neuronal activity. *Front. Cell. Neurosci.* 16, 838419.
1411 <https://doi.org/10.3389/fncel.2022.838419>.
- 1412 16. Jentsch, T.J. (2000). Neuronal KCNQ potassium channels: physiology and role in
1413 disease. *Nat Rev Neurosci* 1, 21–30. <https://doi.org/10.1038/35036198>.
- 1414 17. Cooper, E.C. (2011). Made for “anchordin”: Kv7.2/7.3 (KCNQ2/KCNQ3) channels and
1415 the modulation of neuronal excitability in vertebrate axons. *Semin Cell Dev Biol* 22,
1416 185–192. <https://doi.org/10.1016/j.semcdb.2010.10.001>.
- 1417 18. Vanoye, C.G., Desai, R.R., Ji, Z., Adusumilli, S., Jairam, N., Ghabra, N., Joshi, N.,
1418 Fitch, E., Helbig, K.L., McKnight, D., et al. (2022). High-throughput evaluation of
1419 epilepsy-associated KCNQ2 variants reveals functional and pharmacological
1420 heterogeneity. *JCI Insight* 7, e156314. <https://doi.org/10.1172/jci.insight.156314>.
- 1421 19. Watanabe, H., Nagata, E., Kosakai, A., Nakamura, M., Yokoyama, M., Tanaka, K., and
1422 Sasai, H. (2000). Disruption of the epilepsy KCNQ2 gene results in neural
1423 hyperexcitability. *J Neurochem* 75, 28–33. <https://doi.org/10.1046/j.1471-4159.2000.0750028.x>.
- 1425 20. Tzingounis, A.V., and Nicoll, R.A. (2008). Contribution of KCNQ2 and KCNQ3 to the
1426 medium and slow afterhyperpolarization currents. *Proc. Natl. Acad. Sci. U.S.A.* 105,
1427 19974–19979. <https://doi.org/10.1073/pnas.0810535105>.
- 1428 21. Miceli, F., Soldovieri, M.V., Weckhuysen, S., Cooper, E., and Taglialatela, M. (2010).
1429 KCNQ2-Related Disorders. In *GeneReviews®*, M. P. Adam, J. Feldman, G. M. Mirzaa,
1430 R. A. Pagon, S. E. Wallace, L. J. Bean, K. W. Gripp, and A. Amemiya, eds. (University
1431 of Washington, Seattle).
- 1432 22. Peters, H.C., Hu, H., Pongs, O., Storm, J.F., and Isbrandt, D. (2005). Conditional
1433 transgenic suppression of M channels in mouse brain reveals functions in neuronal
1434 excitability, resonance and behavior. *Nat Neurosci* 8, 51–60.
1435 <https://doi.org/10.1038/nn1375>.
- 1436 23. Soh, H., Pant, R., LoTurco, J.J., and Tzingounis, A.V. (2014). Conditional deletions of
1437 epilepsy-associated KCNQ2 and KCNQ3 channels from cerebral cortex cause
1438 differential effects on neuronal excitability. *J Neurosci* 34, 5311–5321.
1439 <https://doi.org/10.1523/JNEUROSCI.3919-13.2014>.
- 1440 24. Milh, M., Roubertoux, P., Biba, N., Chavany, J., Spiga Ghata, A., Fulachier, C., Collins,
1441 S.C., Wagner, C., Roux, J.-C., Yalcin, B., et al. (2020). A knock-in mouse model for

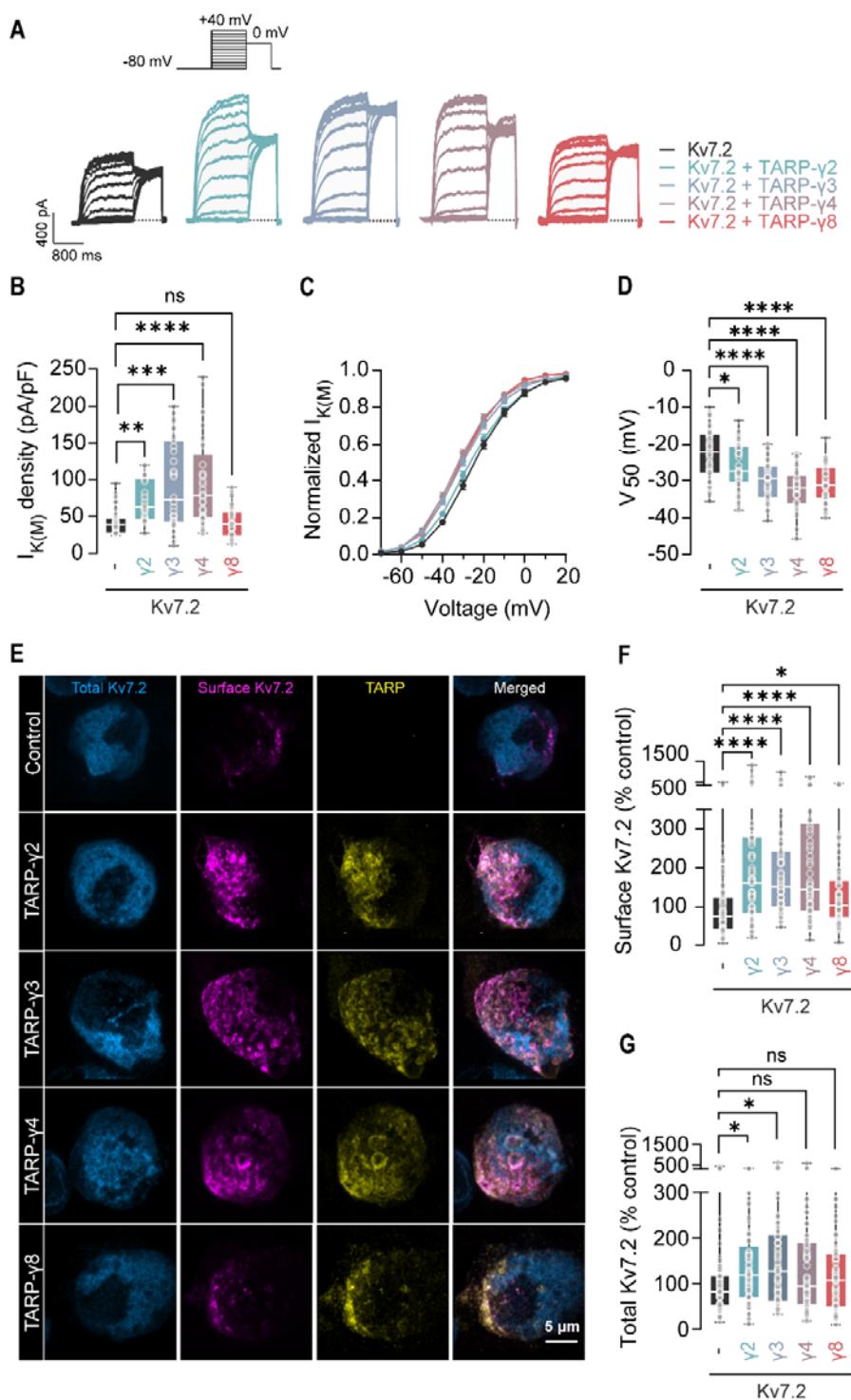
- 1442 KCNQ2-related epileptic encephalopathy displays spontaneous generalized seizures
1443 and cognitive impairment. *Epilepsia* 61, 868–878. <https://doi.org/10.1111/epi.16494>.
- 1444 25. Hamdan, F.F., Gauthier, J., Araki, Y., Lin, D.-T., Yoshizawa, Y., Higashi, K., Park, A.-
1445 R., Spiegelman, D., Dobrzeniecka, S., Piton, A., et al. (2011). Excess of De Novo
1446 Deleterious Mutations in Genes Associated with Glutamatergic Systems in
1447 Nonsyndromic Intellectual Disability. *The American Journal of Human Genetics* 88,
1448 306–316. <https://doi.org/10.1016/j.ajhg.2011.02.001>.
- 1449 26. Caldeira, G.L., Inácio, A.S., Beltrão, N., Barreto, C.A.V., Rodrigues, M.V., Rondão, T.,
1450 Macedo, R., Gouveia, R.P., Edfawy, M., Guedes, J., et al. (2022). Aberrant
1451 hippocampal transmission and behavior in mice with a stargazin mutation linked to
1452 intellectual disability. *Mol Psychiatry* 27, 2457–2469. <https://doi.org/10.1038/s41380-022-01487-w>.
- 1453
- 1454 27. Brown, D.A., and Adams, P.R. (1980). Muscarinic suppression of a novel voltage-
1455 sensitive K⁺ current in a vertebrate neurone. *Nature* 283, 673–676.
1456 <https://doi.org/10.1038/283673a0>.
- 1457
- 1458 28. Hadley, J.K., Passmore, G.M., Tatulian, L., Al-Qatari, M., Ye, F., Wickenden, A.D., and
1459 Brown, D.A. (2003). Stoichiometry of Expressed KCNQ2/KCNQ3 Potassium Channels
1460 and Subunit Composition of Native Ganglionic M Channels Deduced from Block by
1461 Tetraethylammonium. *J. Neurosci.* 23, 5012–5019.
<https://doi.org/10.1523/JNEUROSCI.23-12-05012.2003>.
- 1462
- 1463 29. Devaux, J.J., Kleopa, K.A., Cooper, E.C., and Scherer, S.S. (2004). KCNQ2 Is a Nodal
1464 K⁺ Channel. *J. Neurosci.* 24, 1236–1244. <https://doi.org/10.1523/JNEUROSCI.4512-03.2004>.
- 1465
- 1466 30. Pan, Z., Kao, T., Horvath, Z., Lemos, J., Sul, J.-Y., Cranstoun, S.D., Bennett, V.,
1467 Scherer, S.S., and Cooper, E.C. (2006). A Common Ankyrin-G-Based Mechanism
1468 Retains KCNQ and Na_v Channels at Electrically Active Domains of the Axon. *J. Neurosci.* 26, 2599–2613. <https://doi.org/10.1523/JNEUROSCI.4314-05.2006>.
- 1469
- 1470 31. Rasmussen, H.B., Frøkjær-Jensen, C., Jensen, C.S., Jensen, H.S., Jørgensen, N.K.,
1471 Misonou, H., Trimmer, J.S., Olesen, S.-P., and Schmitt, N. (2007). Requirement of
1472 subunit co-assembly and ankyrin-G for M-channel localization at the axon initial
1473 segment. *Journal of Cell Science* 120, 953–963. <https://doi.org/10.1242/jcs.03396>.
- 1474
- 1475 32. Tosaka, T., Tasaka, J., Miyazaki, T., and Libet, B. (1983). Hyperpolarization following
activation of K⁺ channels by excitatory postsynaptic potentials. *Nature* 305, 148–150.
<https://doi.org/10.1038/305148a0>.
- 1476
- 1477 33. Gu, N., Vervaeke, K., Hu, H., and Storm, J.F. (2005). Kv7/KCNQ/M and HCN/h, but not
1478 K_{ca} 2/SK channels, contribute to the somatic medium after-hyperpolarization and
1479 excitability control in CA1 hippocampal pyramidal cells. *The Journal of Physiology* 566,
689–715. <https://doi.org/10.1113/jphysiol.2005.086835>.
- 1480
- 1481 34. Brown, D.A., and Passmore, G.M. (2009). Neural KCNQ (Kv7) channels. *Br J Pharmacol* 156, 1185–1195. <https://doi.org/10.1111/j.1476-5381.2009.00111.x>.
- 1482
- 1483 35. Springer, K., Varghese, N., and Tzingounis, A.V. (2021). Flexible Stoichiometry:
1484 Implications for KCNQ2- and KCNQ3-Associated Neurodevelopmental Disorders. *Dev Neurosci* 43, 191–200. <https://doi.org/10.1159/000515495>.

- 1485 36. Hegazy, M., Cohen-Barak, E., Koetsier, J.L., Najor, N.A., Arvanitis, C., Sprecher, E.,
1486 Green, K.J., and Godsel, L.M. (2020). Proximity Ligation Assay for Detecting Protein-
1487 Protein Interactions and Protein Modifications in Cells and Tissues *in Situ*. *Curr Protoc*
1488 *Cell Biol* 89, e115. <https://doi.org/10.1002/cpcb.115>.
- 1489 37. Shah, M.M., Mistry, M., Marsh, S.J., Brown, D.A., and Delmas, P. (2002). Molecular
1490 correlates of the M-current in cultured rat hippocampal neurons. *J Physiol* 544, 29–37.
1491 <https://doi.org/10.1113/jphysiol.2002.028571>.
- 1492 38. Heilemann, M., van de Linde, S., Schüttelpehl, M., Kasper, R., Seefeldt, B., Mukherjee,
1493 A., Tinnefeld, P., and Sauer, M. (2008). Subdiffraction-Resolution Fluorescence
1494 Imaging with Conventional Fluorescent Probes. *Angew Chem Int Ed* 47, 6172–6176.
1495 <https://doi.org/10.1002/anie.200802376>.
- 1496 39. Tebo, A.G., and Gautier, A. (2019). A split fluorescent reporter with rapid and reversible
1497 complementation. *Nat Commun* 10, 2822. <https://doi.org/10.1038/s41467-019-10855-0>.
- 1498 40. Grubb, M.S., and Burrone, J. (2010). Activity-dependent relocation of the axon initial
1499 segment fine-tunes neuronal excitability. *Nature* 465, 1070–1074.
1500 <https://doi.org/10.1038/nature09160>.
- 1501 41. Safiulina, V.F., Zacchi, P., Taglialatela, M., Yaari, Y., and Cherubini, E. (2008). Low
1502 expression of Kv7/M channels facilitates intrinsic and network bursting in the
1503 developing rat hippocampus. *The Journal of Physiology* 586, 5437–5453.
1504 <https://doi.org/10.1113/jphysiol.2008.156257>.
- 1505 42. Vandenberghe, W., Nicoll, R.A., and Bredt, D.S. (2005). Interaction with the Unfolded
1506 Protein Response Reveals a Role for Stargazin in Biosynthetic AMPA Receptor
1507 Transport. *J. Neurosci.* 25, 1095–1102. <https://doi.org/10.1523/JNEUROSCI.3568-04.2005>.
- 1509 43. Bats, C., Groc, L., and Choquet, D. (2007). The Interaction between Stargazin and
1510 PSD-95 Regulates AMPA Receptor Surface Trafficking. *Neuron* 53, 719–734.
1511 <https://doi.org/10.1016/j.neuron.2007.01.030>.
- 1512 44. Chen, L., Chetkovich, D.M., Petralia, R.S., Sweeney, N.T., Kawasaki, Y., Wenthold,
1513 R.J., Bredt, D.S., and Nicoll, R.A. (2000). Stargazin regulates synaptic targeting of
1514 AMPA receptors by two distinct mechanisms. *Nature* 408, 936–943.
1515 <https://doi.org/10.1038/35050030>.
- 1516 45. Kellermayer, B., Ferreira, J.S., Dupuis, J., Levet, F., Grillo-Bosch, D., Bard, L., Linarès-
1517 Loyez, J., Bouchet, D., Choquet, D., Rusakov, D.A., et al. (2018). Differential
1518 Nanoscale Topography and Functional Role of GluN2-NMDA Receptor Subtypes at
1519 Glutamatergic Synapses. *Neuron* 100, 106-119.e7.
1520 <https://doi.org/10.1016/j.neuron.2018.09.012>.
- 1521 46. Nair, D., Hosy, E., Petersen, J.D., Constals, A., Giannone, G., Choquet, D., and
1522 Sibarita, J.-B. (2013). Super-resolution imaging reveals that AMPA receptors inside
1523 synapses are dynamically organized in nanodomains regulated by PSD95. *J Neurosci*
1524 33, 13204–13224. <https://doi.org/10.1523/JNEUROSCI.2381-12.2013>.
- 1525 47. Specht, C.G., Izeddin, I., Rodriguez, P.C., El Beheiry, M., Rostaing, P., Darzacq, X.,
1526 Dahan, M., and Triller, A. (2013). Quantitative Nanoscopy of Inhibitory Synapses:
1527 Counting Gephyrin Molecules and Receptor Binding Sites. *Neuron* 79, 308–321.
1528 <https://doi.org/10.1016/j.neuron.2013.05.013>.

- 1529 48. Zhang, J., Carver, C.M., Choveau, F.S., and Shapiro, M.S. (2016). Clustering and
1530 Functional Coupling of Diverse Ion Channels and Signaling Proteins Revealed by
1531 Super-resolution STORM Microscopy in Neurons. *Neuron* 92, 461–478.
1532 <https://doi.org/10.1016/j.neuron.2016.09.014>.
- 1533 49. Louros, S.R., Hooks, B.M., Litvina, L., Carvalho, A.L., and Chen, C. (2014). A Role for
1534 Stargazin in Experience-Dependent Plasticity. *Cell Reports* 7, 1614–1625.
1535 <https://doi.org/10.1016/j.celrep.2014.04.054>.
- 1536 50. Di Pasquale, E., Keegan, K.D., and Noebels, J.L. (1997). Increased excitability and
1537 inward rectification in layer V cortical pyramidal neurons in the epileptic mutant mouse
1538 Stargazer. *J Neurophysiol* 77, 621–631. <https://doi.org/10.1152/jn.1997.77.2.621>.
- 1539 51. Grigorov, A.O., Moskalyuk, A.A., Fedulova, S.A., and Veselovskii, N.S. (2006).
1540 Differentiation of potassium currents in cultured inhibitory interneurons of the rat
1541 hippocampus (identification of the potassium M-type current). *Neurophysiology* 38,
1542 163–168. <https://doi.org/10.1007/s11062-006-0040-z>.
- 1543 52. Hoshi, N., Zhang, J.-S., Omaki, M., Takeuchi, T., Yokoyama, S., Wanaverbecq, N.,
1544 Langeberg, L.K., Yoneda, Y., Scott, J.D., Brown, D.A., et al. (2003). AKAP150 signaling
1545 complex promotes suppression of the M-current by muscarinic agonists. *Nat Neurosci*
1546 6, 564–571. <https://doi.org/10.1038/nn1062>.
- 1547 53. Van Erum, J., Van Dam, D., and De Deyn, P.P. (2019). PTZ-induced seizures in mice
1548 require a revised Racine scale. *Epilepsy Behav* 95, 51–55.
1549 <https://doi.org/10.1016/j.yebeh.2019.02.029>.
- 1550 54. Arikkath, J., and Campbell, K.P. (2003). Auxiliary subunits: essential components of the
1551 voltage-gated calcium channel complex. *Curr Opin Neurobiol* 13, 298–307.
1552 [https://doi.org/10.1016/s0959-4388\(03\)00066-7](https://doi.org/10.1016/s0959-4388(03)00066-7).
- 1553 55. Jacobi, E., and Von Engelhardt, J. (2017). Diversity in AMPA receptor complexes in the
1554 brain. *Current Opinion in Neurobiology* 45, 32–38.
1555 <https://doi.org/10.1016/j.conb.2017.03.001>.
- 1556 56. Marionneau, C., Carrasquillo, Y., Norris, A.J., Townsend, R.R., Isom, L.L., Link, A.J.,
1557 and Nerbonne, J.M. (2012). The Sodium Channel Accessory Subunit Nav β 1 Regulates
1558 Neuronal Excitability through Modulation of Repolarizing Voltage-Gated K $^{+}$ Channels. *J
1559 Neurosci* 32, 5716–5727. <https://doi.org/10.1523/JNEUROSCI.6450-11.2012>.
- 1560 57. Nguyen, H.M., Miyazaki, H., Hoshi, N., Smith, B.J., Nukina, N., Goldin, A.L., and
1561 Chandy, K.G. (2012). Modulation of voltage-gated K $^{+}$ channels by the sodium channel
1562 β 1 subunit. *Proc Natl Acad Sci U S A* 109, 18577–18582.
1563 <https://doi.org/10.1073/pnas.1209142109>.
- 1564 58. Ávalos Prado, P., Häfner, S., Comoglio, Y., Wdziekonski, B., Duranton, C., Attali, B.,
1565 Barhanin, J., and Sandoz, G. (2021). KCNE1 is an auxiliary subunit of two distinct ion
1566 channel superfamilies. *Cell* 184, 534-544.e11.
1567 <https://doi.org/10.1016/j.cell.2020.11.047>.
- 1568 59. Shah, M.M., Migliore, M., Valencia, I., Cooper, E.C., and Brown, D.A. (2008).
1569 Functional significance of axonal Kv7 channels in hippocampal pyramidal neurons.
1570 *Proceedings of the National Academy of Sciences* 105, 7869–7874.
1571 <https://doi.org/10.1073/pnas.0802805105>.


- 1572 60. Battefeld, A., Tran, B.T., Gavrilis, J., Cooper, E.C., and Kole, M.H.P. (2014).
1573 Heteromeric Kv7.2/7.3 channels differentially regulate action potential initiation and
1574 conduction in neocortical myelinated axons. *J Neurosci* 34, 3719–3732.
1575 <https://doi.org/10.1523/JNEUROSCI.4206-13.2014>.
- 1576 61. Nappi, P., Miceli, F., Soldovieri, M.V., Ambrosino, P., Barrese, V., and Tagliafata, M.
1577 (2020). Epileptic channelopathies caused by neuronal Kv7 (KCNQ) channel
1578 dysfunction. *Pflugers Arch* 472, 881–898. <https://doi.org/10.1007/s00424-020-02404-2>.
- 1579 62. Soldovieri, M.V., Cilio, M.R., Miceli, F., Bellini, G., Miraglia del Giudice, E., Castaldo, P.,
1580 Hernandez, C.C., Shapiro, M.S., Pascotto, A., Annunziato, L., et al. (2007). Atypical
1581 Gating Of M-Type Potassium Channels Conferred by Mutations in Uncharged
1582 Residues in the S4 Region of KCNQ2 Causing Benign Familial Neonatal Convulsions.
1583 *J Neurosci* 27, 4919–4928. <https://doi.org/10.1523/JNEUROSCI.0580-07.2007>.
- 1584 63. Abidi, A., Devaux, J.J., Molinari, F., Alcaraz, G., Michon, F.-X., Sutera-Sardo, J., Becq,
1585 H., Lacoste, C., Altuzarra, C., Afenjar, A., et al. (2015). A recurrent KCNQ2 pore
1586 mutation causing early onset epileptic encephalopathy has a moderate effect on M
1587 current but alters subcellular localization of Kv7 channels. *Neurobiol Dis* 80, 80–92.
1588 <https://doi.org/10.1016/j.nbd.2015.04.017>.
- 1589 64. Frye, R.E., Casanova, M.F., Fatemi, S.H., Folsom, T.D., Reutiman, T.J., Brown, G.L.,
1590 Edelson, S.M., Slattery, J.C., and Adams, J.B. (2016). Neuropathological Mechanisms
1591 of Seizures in Autism Spectrum Disorder. *Front Neurosci* 10, 192.
1592 <https://doi.org/10.3389/fnins.2016.00192>.
- 1593 65. Tracy, G.C., Wilton, A.R., Rhodes, J.S., and Chung, H.J. (2022). Heterozygous
1594 Deletion of Epilepsy Gene KCNQ2 Has Negligible Effects on Learning and Memory.
1595 *Front. Behav. Neurosci.* 16, 930216. <https://doi.org/10.3389/fnbeh.2022.930216>.
- 1596 66. Vilela, J., Martiniano, H., Marques, A.R., Santos, J.X., Rasga, C., Oliveira, G., and
1597 Vicente, A.M. (2022). Disease similarity network analysis of Autism Spectrum Disorder
1598 and comorbid brain disorders. *Front. Mol. Neurosci.* 15, 932305.
1599 <https://doi.org/10.3389/fnmol.2022.932305>.
- 1600 67. Wu, Y., Li, Y., Zhu, J., and Long, J. (2022). Shared genetics and causality underlying
1601 epilepsy and attention-deficit hyperactivity disorder. *Psychiatry Research* 316, 114794.
1602 <https://doi.org/10.1016/j.psychres.2022.114794>.
- 1603 68. Streng, M.L., Tetzlaff, M.R., and Krook-Magnuson, E. (2021). Distinct Fastigial Output
1604 Channels and Their Impact on Temporal Lobe Seizures. *J. Neurosci.* 41, 10091–
1605 10107. <https://doi.org/10.1523/JNEUROSCI.0683-21.2021>.
- 1606 69. Stieve, B.J., Richner, T.J., Krook-Magnuson, C., Netoff, T.I., and Krook-Magnuson, E.
1607 (2023). Optimization of closed-loop electrical stimulation enables robust cerebellar-
1608 directed seizure control. *Brain* 146, 91–108. <https://doi.org/10.1093/brain/awac051>.
- 1609 70. Yu, W., Walling, I., Smith, A.B., Ramirez-Zamora, A., Pilitsis, J.G., and Shin, D.S.
1610 (2016). Deep Brain Stimulation of the Ventral Pallidum Attenuates Epileptiform Activity
1611 and Seizing Behavior in Pilocarpine-Treated Rats. *Brain Stimulation* 9, 285–295.
1612 <https://doi.org/10.1016/j.brs.2015.11.006>.
- 1613 71. Wicker, E., Beck, V.C., Kulick-Soper, C., Kulick-Soper, C.V., Hyder, S.K., Campos-
1614 Rodriguez, C., Khan, T., N'Gouemo, P., and Forcelli, P.A. (2019). Descending

- 1615 projections from the *substantia nigra pars reticulata* differentially control seizures. Proc.
1616 Natl. Acad. Sci. U.S.A. 116, 27084–27094. <https://doi.org/10.1073/pnas.1908176117>.
- 1617 72. Lévesque, M., and Avoli, M. (2021). The subiculum and its role in focal epileptic
1618 disorders. Reviews in the Neurosciences 32, 249–273.
1619 <https://doi.org/10.1515/revneuro-2020-0091>.
- 1620 73. Noebels, J.L., Qiao, X., Bronson, R.T., Spencer, C., and Davisson, M.T. (1990).
1621 Stargazer: a new neurological mutant on chromosome 15 in the mouse with prolonged
1622 cortical seizures. Epilepsy Res 7, 129–135. [https://doi.org/10.1016/0920-1623\(90\)90098-g](https://doi.org/10.1016/0920-1623(90)90098-g).
- 1624 74. Li, B., Suutari, B.S., Sun, S.D., Luo, Z., Wei, C., Chenouard, N., Mandelberg, N.J.,
1625 Zhang, G., Wamsley, B., Tian, G., et al. (2020). Neuronal Inactivity Co-opts LTP
1626 Machinery to Drive Potassium Channel Splicing and Homeostatic Spike Widening. Cell
1627 181, 1547-1565.e15. <https://doi.org/10.1016/j.cell.2020.05.013>.
- 1628 75. Lopez, J.P., Lücken, M.D., Brivio, E., Karamihalev, S., Kos, A., De Donno, C.,
1629 Benjamin, A., Yang, H., Dick, A.L.W., Stoffel, R., et al. (2022). Ketamine exerts its
1630 sustained antidepressant effects via cell-type-specific regulation of Kcnq2. Neuron 110,
1631 2283-2298.e9. <https://doi.org/10.1016/j.neuron.2022.05.001>.
- 1632 76. Xue, S.-G., He, J.-G., Lu, L.-L., Song, S.-J., Chen, M.-M., Wang, F., and Chen, J.-G.
1633 (2023). Enhanced TARP- γ 8-PSD-95 coupling in excitatory neurons contributes to the
1634 rapid antidepressant-like action of ketamine in male mice. Nat Commun 14, 7971.
1635 <https://doi.org/10.1038/s41467-023-42780-8>.
- 1636 77. Lois, C., Hong, E.J., Pease, S., Brown, E.J., and Baltimore, D. (2002). Germline
1637 Transmission and Tissue-Specific Expression of Transgenes Delivered by Lentiviral
1638 Vectors. Science 295, 868–872. <https://doi.org/10.1126/science.1067081>.
- 1639 78. Soldovieri, M.V., Castaldo, P., Iodice, L., Miceli, F., Barrese, V., Bellini, G., Del Giudice,
1640 E.M., Pascotto, A., Bonatti, S., Annunziato, L., et al. (2006). Decreased Subunit
1641 Stability as a Novel Mechanism for Potassium Current Impairment by a KCNQ2 C
1642 Terminus Mutation Causing Benign Familial Neonatal Convulsions. Journal of
1643 Biological Chemistry 281, 418–428. <https://doi.org/10.1074/jbc.M510980200>.
- 1644 79. Schroeder, B.C., Kubisch, C., Stein, V., and Jentsch, T.J. (1998). Moderate loss of
1645 function of cyclic-AMP-modulated KCNQ2/KCNQ3 K⁺ channels causes epilepsy.
1646 Nature 396, 687–690. <https://doi.org/10.1038/25367>.
- 1647 80. Jackson, A.C., Milstein, A.D., Soto, D., Farrant, M., Cull-Candy, S.G., and Nicoll, R.A.
1648 (2011). Probing TARP Modulation of AMPA Receptor Conductance with Polyamine
1649 Toxins. J. Neurosci. 31, 7511–7520. <https://doi.org/10.1523/JNEUROSCI.6688-10.2011>.
- 1651 81. Cox, J., and Mann, M. (2008). MaxQuant enables high peptide identification rates,
1652 individualized p.p.b.-range mass accuracies and proteome-wide protein quantification.
1653 Nat Biotechnol 26, 1367–1372. <https://doi.org/10.1038/nbt.1511>.
- 1654 82. Thomas, P.D., Campbell, M.J., Kejariwal, A., Mi, H., Karlak, B., Daverman, R., Diemer,
1655 K., Muruganujan, A., and Narechania, A. (2003). PANTHER: A Library of Protein
1656 Families and Subfamilies Indexed by Function. Genome Res. 13, 2129–2141.
1657 <https://doi.org/10.1101/gr.772403>.


- 1658 83. Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T.,
1659 Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B., et al. (2012). Fiji: an open-source
1660 platform for biological-image analysis. *Nat Methods* 9, 676–682.
1661 <https://doi.org/10.1038/nmeth.2019>.
- 1662 84. Levet, F., Hosy, E., Kechkar, A., Butler, C., Beghin, A., Choquet, D., and Sibarita, J.-B.
1663 (2015). SR-Tesseler: a method to segment and quantify localization-based super-
1664 resolution microscopy data. *Nat Methods* 12, 1065–1071.
1665 <https://doi.org/10.1038/nmeth.3579>.
- 1666 85. Levet, F., and Sibarita, J.-B. (2023). PoCA: a software platform for point cloud data
1667 visualization and quantification. *Nat Methods* 20, 629–630.
1668 <https://doi.org/10.1038/s41592-023-01811-4>.
- 1669 86. Kaech, S., and Bunker, G. (2006). Culturing hippocampal neurons. *Nat Protoc* 1, 2406–
1670 2415. <https://doi.org/10.1038/nprot.2006.356>.
- 1671 87. Candiano, G., Bruschi, M., Musante, L., Santucci, L., Ghiggeri, G.M., Carnemolla, B.,
1672 Orecchia, P., Zardi, L., and Righetti, P.G. (2004). Blue silver: A very sensitive colloidal
1673 Coomassie G-250 staining for proteome analysis. *ELECTROPHORESIS* 25, 1327–
1674 1333. <https://doi.org/10.1002/elps.200305844>.
- 1675 88. Chen, N., Koopmans, F., Gordon, A., Paliukhovich, I., Klaassen, R.V., van der Schors,
1676 R.C., Peles, E., Verhage, M., Smit, A.B., and Li, K.W. (2015). Interaction proteomics of
1677 canonical Caspr2 (CNTNAP2) reveals the presence of two Caspr2 isoforms with
1678 overlapping interactomes. *Biochimica et Biophysica Acta (BBA) - Proteins and
1679 Proteomics* 1854, 827–833. <https://doi.org/10.1016/j.bbapap.2015.02.008>.
- 1680 89. Sainlos, M., Tigaret, C., Poujol, C., Olivier, N.B., Bard, L., Breillat, C., Thiolon, K.,
1681 Choquet, D., and Imperiali, B. (2011). Biomimetic divalent ligands for the acute
1682 disruption of synaptic AMPAR stabilization. *Nat Chem Biol* 7, 81–91.
1683 <https://doi.org/10.1038/nchembio.498>.
- 1684 90. Soldovieri, M.V., Ambrosino, P., Mosca, I., De Maria, M., Moretto, E., Miceli, F., Alaimo,
1685 A., Iraci, N., Manocchio, L., Medoro, A., et al. (2016). Early-onset epileptic
1686 encephalopathy caused by a reduced sensitivity of Kv7.2 potassium channels to
1687 phosphatidylinositol 4,5-bisphosphate. *Sci Rep* 6, 38167.
1688 <https://doi.org/10.1038/srep38167>.
- 1689 91. Gibson, D.G., Young, L., Chuang, R.-Y., Venter, J.C., Hutchison, C.A., and Smith, H.O.
1690 (2009). Enzymatic assembly of DNA molecules up to several hundred kilobases. *Nat
1691 Methods* 6, 343–345. <https://doi.org/10.1038/nmeth.1318>.
- 1692 92. Jiang, M., Deng, L., and Chen, G. (2004). High Ca²⁺-phosphate transfection efficiency
1693 enables single neuron gene analysis. *Gene Ther* 11, 1303–1311.
1694 <https://doi.org/10.1038/sj.gt.3302305>.
- 1695 93. Yamasaki, M., Fukaya, M., Yamazaki, M., Azechi, H., Natsume, R., Abe, M., Sakimura,
1696 K., and Watanabe, M. (2016). TARP γ -2 and γ -8 Differentially Control AMPAR Density
1697 Across Schaffer Collateral/Commissural Synapses in the Hippocampal CA1 Area. *J.
1698 Neurosci.* 36, 4296–4312. <https://doi.org/10.1523/JNEUROSCI.4178-15.2016>.
- 1699 94. Tom Dieck, S., Kochen, L., Hanus, C., Heumüller, M., Bartnik, I., Nassim-Assir, B.,
1700 Merk, K., Mosler, T., Garg, S., Bunse, S., et al. (2015). Direct visualization of newly

- 1701 synthesized target proteins in situ. Nat Methods 12, 411–414.
1702 <https://doi.org/10.1038/nmeth.3319>.
- 1703 95. Valdor, M., Wagner, A., Röhrs, V., Berg, J., Fechner, H., Schröder, W., Tzschentke, T.M., Bahrenberg, G., Christoph, T., and Kurreck, J. (2018). RNA interference-based functional knockdown of the voltage-gated potassium channel Kv7.2 in dorsal root ganglion neurons after in vitro and in vivo gene transfer by adeno-associated virus vectors. Mol Pain 14, 174480691774966. <https://doi.org/10.1177/1744806917749669>.
- 1708 96. Pousinha, P.A., Mouska, X., Bianchi, D., Temido-Ferreira, M., Rajão-Saraiva, J., Gomes, R., Fernandez, S.P., Salgueiro-Pereira, A.R., Gandin, C., Raymond, E.F., et al. (2019). The Amyloid Precursor Protein C-Terminal Domain Alters CA1 Neuron Firing, Modifying Hippocampus Oscillations and Impairing Spatial Memory Encoding. Cell Reports 29, 317-331.e5. <https://doi.org/10.1016/j.celrep.2019.08.103>.
- 1713 97. Racine, R.J. (1972). Modification of seizure activity by electrical stimulation: II. Motor seizure. Electroencephalography and Clinical Neurophysiology 32, 281–294. [https://doi.org/10.1016/0013-4694\(72\)90177-0](https://doi.org/10.1016/0013-4694(72)90177-0).
- 1716 98. Thevenaz, P., Ruttimann, U.E., and Unser, M. (1998). A pyramid approach to subpixel registration based on intensity. IEEE Trans. on Image Process. 7, 27–41. <https://doi.org/10.1109/83.650848>.
- 1719

FIGURE 1

FIGURE 2

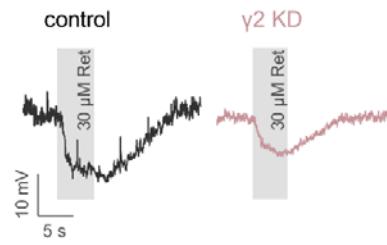


FIGURE 3

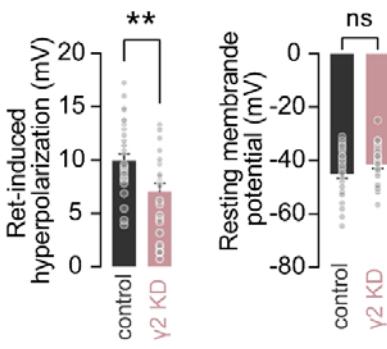
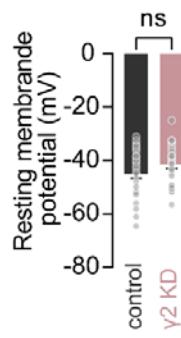
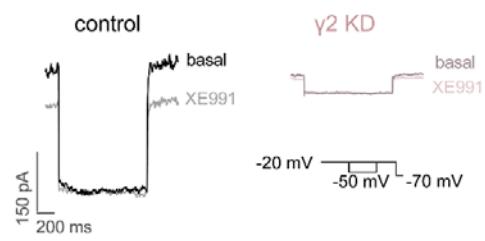
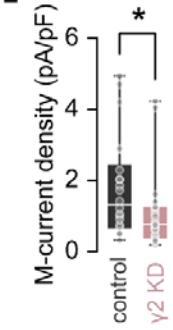
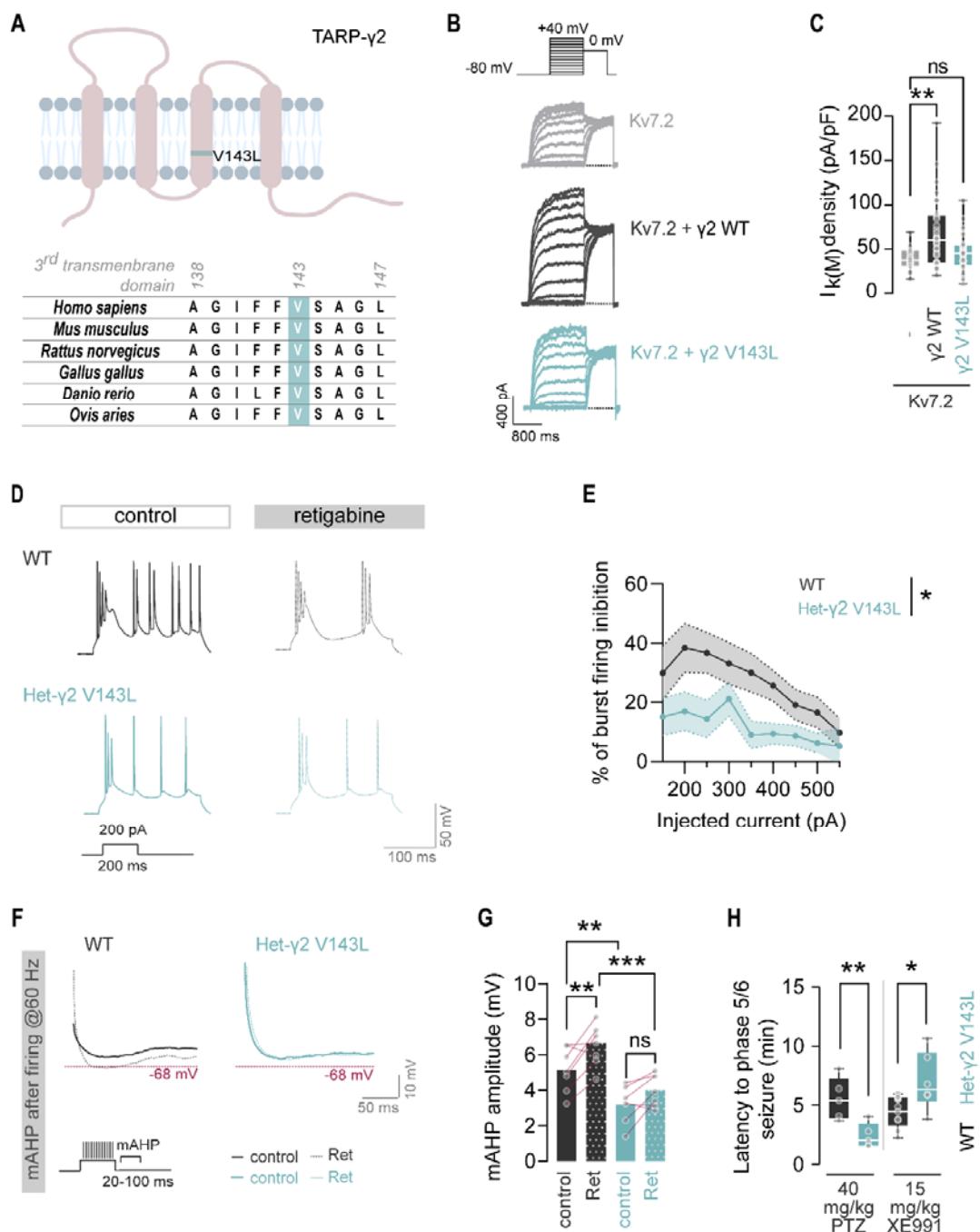


FIGURE 4


A


B


C


D

E

FIGURE 5

