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The behavior of nonlinear systems close to critical transitions has relevant implications in assessing complex
systems’ stability, transient properties, and resilience. Transient times become extremely long near phase tran-
sitions (or bifurcations) in a phenomenon generically known as critical slowing down, observed in electronic
circuits, quantum electrodynamics, ferromagnetic materials, ecosystems, and gene regulatory networks. Typ-
ically, these transients follow well-defined universal laws of the form 7 ~ |u — ,uc|ﬂ , describing how their
duration, 7, varies as the control parameter, u, approaches its critical value, u.. For instance, transients’ de-
lays right after a saddle-node (SN) bifurcation, influenced by so-called ghosts, follow 5 = —1/2. Despite
intensive research on slowing down phenomena over the past decades for single bifurcations, both local and
global, the behavior of transients when several bifurcations are close to each other remains unknown. Here, we
study transients close to two SN bifurcations collapsing into a transcritical one. To do so, we analyze a simple
nonlinear model of a self-activating gene regulated by an external signal that exhibits a mushroom bifurcation.
We also propose and study a normal form for a system with two SN bifurcations merging into a transcritical
one. For both systems, we show analytical and numerical evidence of a synergistic increase in transients due
to the coupling of the two ghosts and the transcritical slowing down. We also explore the influence of noise on
the transients in the gene-regulatory model. We show that intrinsic and extrinsic noise play opposite roles in
the slowing down of the transition allowing us to control the timing of the transition without compromising the
precision of the timing. This establishes novel molecular strategies to generate genetic timers with transients

much larger than the typical timescales of the reactions involved.
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I. INTRODUCTION

Complex systems close to a phase transition or a bifurca-
tion undergo critical slowing down [} 2], which involves an
increase of transient times. This phenomenon lengthens the
relaxation times of a system following a disturbance, indicat-
ing reduced resilience and increased susceptibility to pertur-
bations. Critical slowing down has been described in a mul-
titude of nonlinear physical systems in optics [3]], electronic
circuits [4]], circuit quantum electrodynamics [J5, 6], ferromag-
netic materials [7], magnetic quantum phase transitions [8]],
or models of charge density waves [9]. The investigation

* Equal contribution
T Corresponding authors

of critical slowing down has also been very intensive in the
field of ecology, where many works have provided evidence
of these phenomena in experimental and field data [[1} (10} [11]].

The transient time, 7, at which orbits reach a small neigh-
borhood of an equilibrium close to a bifurcation typically fol-
lows laws of the form 7 ~ |y — p.|? for deterministic sys-
tems [9) [12H15]. Here, p is the control (bifurcation) parame-
ter, and . is the critical value. The exponents /3 are univer-
sal and they are known for local bifurcations. For example,
B = —1 for pitchfork and transcritical bifurcations [14-16]],
and 8 = —1/2 for saddle-node (SN) bifurcations [12} [13],
with examples of applications in deterministic models of co-
operation [13|[17H20]. Similar power laws for transients with
exponents —1 have been recently identified for global bifur-
cations such as the trans-heteroclinic bifurcation introduced
in [21} 22]], and in bifurcations involving the destruction of
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quasineutral curves [23]. Recent research has also explored
the effects of intrinsic noise on such transients, finding more
complicated scaling laws for the SN bifurcation [24,25]. Such
delays for SN bifurcations are caused by the so-called ghosts.
This phenomenon appears right after the SN bifurcation where
the two equilibria have collapsed and moved onto the com-
plex plane. However, in the vicinity of the region where the
SN takes place, the vector field is close to zero and there-
fore the system undergoes slowing down. Here, we will study
a new scenario where the effect of transients of a transcriti-
cal bifurcation occurs concomitantly with the ghost phenom-
ena appearing in two close SN bifurcations, which produces a
nonlinear (synergistic) increase in transient times.

Phenomena involving the slowing down near SN bifurca-
tions are common in systems and synthetic biology, where
cell-type switching dynamics often involve the emergence of
bistability and bifurcations [26} [27]]. Cellular decisions in
biological processes usually require several SNs coexisting
within the same system, making it an ideal case study for
our research [28l [29]. For instance, during embryonic devel-
opment, cellular subtypes arise from the cross-repression of
genes expressed in each cell type, which together form gene
regulatory networks (GRNs). Under spatial signaling, these
networks encode the robust spatiotemporal orchestration of
cell type specification in the embryo [30-32]. Nevertheless,
there is a lack of systematic understanding of the role that dif-
ferent close bifurcations may have in the resulting timing of
cell transitions. Therefore, gaining insights into the timing
properties of critical phenomena near multiple bifurcations is
essential for fully comprehending the temporal dynamics that
govern cell decision-making processes.

Slowing down in GRNs has been achieved experimen-
tally in synthetic bistable switches in bacteria [33]. This
has opened the door to the proposal of synthetic circuits
that perform specific dynamical functions with applications
in biomedicine, such as biosensors, customized drug delivery;
or the design of responsive materials [34} 35]. Some of these
gene regulatory circuits are capable of undergoing several bi-
furcations while keeping a minimum set of molecular compo-
nents. This is the case of the AC/DC genetic circuit that ex-
hibits bistability between a stable steady state and oscillations
[36]. This multifunctional behavior is paramount in synthetic
biology where dynamical instructions need to be encoded with
a minimal set of components to avoid the metabolic overload
of the cell.

A multifunctional behavior of special interest for synthetic
biology applications arises in so-called mushroom bifurcation
diagrams, named after its mushroom shape. These diagrams
were initially observed in models for neural stem cell differ-
entiation [37,[38]], and later in heat-shock protein dynamics in
anxiety disorders [39]. The mushroom bifurcation diagram is
formed by combining two toggle switches, resulting in four
SN bifurcations and three disconnected stable branches [see
Fig. [T[b)]. The presence of a mushroom-shaped locus of
equilibria provides the system with unique hysteresis prop-
erties resulting from two different regions of bistability. Fur-
thermore, it supplies the system with emerging behaviors such
as transition-to-Isola states [40]], resettable memory, or detec-

2

tion of transient signals [41]. Some of these properties can
be related to the potential for isola bifurcation diagrams [42],
which have not yet been confirmed experimentally.

Due to this interesting phenomenology, mushroom bifurca-
tions have received special attention lately, mostly in studies
trying to dissect the mechanistic rules under which the mush-
room bifurcation can emerge in genetic circuits [41} 43-46].
While these studies have focused on the specific shape of the
bifurcation diagrams, they only address the steady-state prop-
erties of the circuit, without exploring its dynamics. In par-
ticular, the possibility of controlling the proximity of two SN
bifurcations and exploiting the properties of emerging tran-
sients.

To acquire a suitable understanding of the dynamics close
to bifurcations in GRNs it is important to consider the effect
of noise. Noise may occur intrinsically due to the random
nature of biochemical reactions of gene expression, or extrin-
sically through environmental factors such as noise in cell sig-
naling or cell-cell variability [47, 48]]. Intrinsic noise sources
occur at different stages of the process of protein expression
such as stochasticity in promoter-binding, mRNA translation,
or protein degradation; leading to significant molecular het-
erogeneity [49-51]]. Despite its prevalence, molecular noise
is usually studied in the context of steady-state dynamics and
rarely in the context of transient dynamics. Therefore, further
study of the noise on the transient dynamics close to bifur-
cations is required to fully elucidate the impact of stochastic
gene expression on cellular decision-making processes.

Here, we address these questions focusing on the mush-
room bifurcation diagram found in a minimal gene regulation
circuit. In Section II, we introduce the mathematical model
for the mushroom bifurcation diagram, which models a self-
activating gene that is regulated non-monotonically by an ex-
ternal signal. In section III we explore the resulting deter-
ministic dynamics of the mushroom and its associated normal
form. We present analytical and numerical results for the scal-
ing laws, where, the synergy of two SN bifurcations close to
a transcritical bifurcation is introduced. Finally, in section IV,
the effect of intrinsic and extrinsic noise in transient times is
investigated for coupled bifurcations and compared to single
SN bifurcations. Section V is devoted to conclusions.

II. 1-D MUSHROOM MODEL
A. Deterministic mean-field description

To investigate the properties of the mushroom bifurcation
diagram, we propose a minimal nonlinear one-dimensional
system that exhibits this behavior, i.e. a model of a self-
activating gene, u, which is controlled by an external sig-
nal, s, [Fig.[I(a)]. This external signal has an activating non-
monotonic effect, inducing maximum auto-activation of u at
intermediate signals s. In the deterministic limit, this system
is described by the ordinary differential equation:

du
T =r+a(s)H(u) — u, (1)
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FIG. 1. (a) Schematic diagram of the minimal gene regulatory system studied. A gene (u) with both constitutive and self-activated expression.
The strength of the self-activation of protein u is regulated by an external signal (s). The effect of s is non-monotonic, resulting in maximum
autoactivation at intermediate values of s. (b) The resulting bifurcation diagram shows the steady-state u* as a function of the external signal
s, corresponding to Eq. (I). The choice of parameters controls the shape of the bifurcation diagram. For high values of ¢ the system shows
the mushroom bifurcation diagram (left panel with » = 0.14 and ¢ = 3.0). The neck of the mushroom becomes narrower as ¢ is reduced
to ¢ — qc, resulting in the collapse of SN1 and SN4 towards a transcritical (T) bifurcation (right panel » = 0.14 and ¢ = g, >~ 2.78). The
left panel shows the four saddle-node (SN) bifurcations characteristic of the mushroom bifurcation containing two zones of bistability (shaded
blue areas with flow direction indicated with grey arrows). The slowing down occurs close to the bifurcations (blue arrows).

Elementary process Propensities Stoichiometry Description
0 —U Wi=Q(r+ (1(57)(]2 +1 regulated protein production
1= (QQ + U2) g p p
U—10 Wy =U -1 linear protein degradation

TABLE I. Intrinsic noise model. Protein U is produced and degraded with the propensities W1 and Wa, respectively.

where u has a constant basal/leaky expression, 7, and a linear
decay (with a rate set to one without loss of generality). The
self-activation term, H (u), given by the positive Hill function

u2

Hu) = ——
W=,
is regulated by the external function a(s) = sq—s2. To ensure
bistability r must satisfy

1

1
re(0,—]).
( 3\/§>
For7“>3f

= the system is monostable, rendering it unsuit-

able for our study. The parameter ¢ controls the shape of the
signal function a(s), which remains positive (a(s) > 0) in the
interval [0, ¢]. The quadratic shape of a(s) captures the inco-
herent nature of the signal, which induces a maximum activa-
tion of u at an intermediate signal s = ¢/2, and fully represses
u self-activation at the extreme values a(0) = a(q) = 0 [see
Fig[T[(a)]. The shape of the resulting bifurcation diagram can
be controlled with parameter g. At high enough values of ¢
the system exhibits a mushroom bifurcation diagram with two
zones of bistability (Fig. b) left). As ¢ is reduced at a critical
value q., two of the SN bifurcations collide undergoing a tran-
scritical bifurcation, and after this collision, the mushroom

shape transforms into an isola which becomes disconnected
from the lower stable branch (Fig. [T[b) right, and Fig.[9).

B. Stochastic description

Intrinsic noise is studied by explicitly implementing the re-
actions of protein production and degradation controlling the
dynamics of the absolute number of proteins, U = Qu, where
the system volume, €2, captures the relevance of the fluctu-
ations. The rate functions in table [[] describe the stochastic
model. These rates result in a birth-death process of pro-
tein production and degradation with propensities W1 (U) and
W (U), respectively. In the deterministic limit, where noise
is negligible (€2 — o0), Eq. (1)) is recovered.

We additionally incorporate the effect of extrinsic noise as
stochastic fluctuations around a given input signal sg. To do so
we describe the stochastic dynamics of signal s as an unreg-
ulated process with a constant production rate (1) and linear
degradation rate (R/s¢). Defining the total number of signal-
ing molecules as S = sV, the signal fluctuations result from
another birth-death process where the volume parameter W
controls the intensity of the extrinsic noise (see table [I). The
deterministic limit for the extrinsic noise is also recovered in
the limit ¥ — oo where the signal remains constant (s = sg).
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4
Elementary Process  Propensities  Stoichiometry Description

00— S Vi=VR +1 constant signal production

S—0 Vo = RS/so -1 linear signal degradation

TABLE II. Extrinsic noise reactions. Both reactions with propensities V; and V5 introduce fluctuations around the state S = Ws(. Simulations

along this manuscript use R = 1.

III. DETERMINISTIC SLOWING-DOWN OF MUSHROOM
BIFURCATION DIAGRAMS

In this section, we investigate the deterministic dynamics
arising in the mushroom bifurcation diagram focusing on the
case where the lower SN bifurcations, SN1 and SN4, approach
each other Fig. |Ikb). To do so, we first introduce a normal
form displaying two SN bifurcations able to collapse into a
transcritical one. This model will be useful to obtain analyt-
ical results that will allow us to analyze the behavior of the
full genetic model described by Eq. (I). The numerical re-
sults for this section have been obtained using a 7*" — 8" or-
der Runge-Kutta-Fehlberg-Simé method with automatic time
step size control and local error tolerance 1015,

A. Normal form

For completeness, we start recalling that the normal form
of a single SN bifurcation is given by # = s + 22. In this
study, we will consider the normal form

24 )

T=c
depending on a control parameter s and a structural parameter
r. This normal form describes a dynamical system that can
exhibit two SN bifurcations that can collide into a transcriti-
cal bifurcation (see Fig.[2). For r > 0, the system has two
separate SN bifurcations. As r decreases, these SN bifurca-
tions approach each other leading to a transcritical bifurcation
at r = 0, when the SN bifurcations merge [see Fig.[2(a)]. Fi-
nally, for » < 0, there are no bifurcations, as illustrated in
Fig. 2|b).

Differentiating the right-hand side of Eq. (Z) reveals that
equilibria of the system are stable when they are located at
z < 0, and unstable for > 0. In particular, for the case r =
0, Eq. (2) simplifies to & = 22— s, containing the steady-state
branches x* = s and x* = —s. Thus, both branches exchange
stability at the origin, indicating that the system undergoes a
transcritical bifurcation.

To study the role that both SN bifurcations have on the tran-
sient times, we will consider the transition from x = —e¢ to
x = € for a fixed value of » > 0, being € an arbitrarily small
real value. The scaling law of the SN bifurcation of the nor-
mal form model [12} [13] is examined by fixing a value of
s = A4/r, leading to an analysis of the extended transients
close to each SN point, i.e. s, = —+/r (left SN point) and
st = ++/r (right SN point). Here, A ranges from —1 to 1 re-
sulting in values of s that span the full range of values between
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FIG. 2. (a) Bifurcation diagram obtained from the normal form
Eq. @). The solid and dashed lines correspond to stable and unstable
steady-state branches, respectively. (a) As r decreases (for » > 0)
two saddle-nodes (SN, circles) at a distance As = 2./7 move to-
wards each other colliding in a transcritical bifurcation at » = 0
(diagonal lines). For all values of r > 0 the system can evolve from
x < 0tox > 0 (purple arrow) with a transient time that will depend
on the location of the SN bifurcations. (b) For < 0 no bifurcations
are found.

both SN bifurcations. The duration 7 of the transients as the
parameter s — s2, (see Fig.]2), is computed using s* = A?r,
from the integral

€ 1
T:/767T—52+372dx

s=AVT ‘ 71 dx
o _er— A?r + 22
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FIG. 3. (a) Mushroom bifurcation diagram showing the steady-state u* as a function of the signal s for the self-activating gene model given
by Eq. (1) when the lower saddle-nodes SN1 and SN4 are far from each other (¢ = 5, r = 0.14) corresponding to a mushroom neck distance
Ay1 ~ 4. (b) Transient times 7 as a function of the distance signal As across the slowing-down region close to SN1 (corresponding to the
shaded zone in panel (a)). Transient times are calculated computationally as the time 7 required to reach u(7) = 0.4 from an initial state
u(0) = 0.2 (SN1 is located at u* = 0.31). (c¢) Characteristic bottleneck of ghost transients for log;,(As) = —5.6 [blue circle in panel (b)].

obtaining
(1—A%)—=0 ™

~ 7\/@%
Notably, in contrast to the normal form for a single SN bifur-

cation [52]], notice that the times have a pre-factor depen-
dent on r, specifically % which indicates that as the two SN

(r, A) 3)

bifurcations converge i.e., 7 — 07, the slowing down is sig-
nificantly amplified, thereby lengthening the transient times 7
while keeping the inverse square root law.

To assess the slowing down close to the transcritical bifur-
cation, we study a trajectory along the symmetry axis s = 0
or equivalently, the neck, between the two SN bifurcations,
while progressively approaching the SN to their convergence,
equivalently, as r — 0T, as illustrated in Fig. a). The inte-
gral representing the time scale of transient times 7(r, s) is
expressed as follows:

€ 1
T(T7S):[57T—82+x2 dz

s2<7‘ 2 €
= ————arctan | — | . 4
r— s2 <\/r—s2> @
Finally, we obtain
r +
T(r,s) Y 7r ul 4)

V= 9)(r+s) (5o —stn)
Note that we recover the scaling law for the transcritical bi-
furcation: 7 ~ (s, — s& )71, It is also noteworthy that one
could follow a similar strategy to study the transients at the
formation of the isolas [see Fig.[9(d.e)] [41] 43]). To analyze

this case, one should use the normal form:

=224+, 6)
where the value of r controls the appearance of the isolas (for
more details on a criterion to identify isolas and transcritical

bifurcations, see Appendix [A).

B. Gene regulatory system

We now study the dynamics of the minimal genetic system
introduced in Eq. (I) [see Fig.[I{a)], regarding transients and
their scaling properties.

Without loss of generality, we will focus on transient times
close to SN1. To study how delays are affected by nearby
bifurcations, we will study the change in transient times as
SN1 and SN4 approach each other. To do so, we introduce
the quantities As s — sgn1, and Ay g SSN4 — SSN1,
where sgn1 and sgy4 denote the values of the signal s at
which the bifurcations SN1 and SN4 occur respectively [see
Fig.[B(a)]. The magnitude As allows us to analyze the effect
of a given signal relative to the value at which SN1 occurs.
This is the basis for examining the scaling law in a single SN
bifurcation and understanding how other bifurcations affect
the transient times. On the other hand, Ay ; controls the prox-
imity of SN1-SN4, allowing us to study synergistic effects
between both SNs and the transcritical bifurcation occurring
when Ay ; approaches 0. As Ay; — 01 we can derive the
power law with exponent —1, associated with the transcritical
bifurcation. This behavior is affected by SN1 and SN4, by
introducing pre-factors that extend their respective timescales
(see Appendix [B). The neck width A4 ; can be controlled by
keeping r constant and decreasing parameter ¢, changing the
signaling effect on the autoactivation.

As expected, when both SN bifurcations are far from each
other (A4;; > 1), numerical analysis of the transient time
shows the well-known inverse square-root power-law scaling
for transient times (7 ~ As~1/2) [see Fig. b)]. That is,
just after the bifurcation, the orbits experience delays and long
plateaus associated with delayed transitions [Fig.[3(c)] (912
13/ 30]]. For an analytical study of the SN bifurcation scaling
law in the self-activating gene model, see Appendix [C]

We posit that the ghosts corresponding to SN1 and SN4,
which are influenced by the slowing down associated with the
transcritical bifurcation, will have a non-linear influence on
each other so that transient times will increase synergistically.
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FIG. 4. (a) Mushroom bifurcation diagram computed from Eq. (]I[) with a very narrow neck using log,o(As41) =~
—6.62. (b) Transient times as a function of As for different neck sizes (from bottom to up) log;(A41) =

{0.62, —0.54, —1.63, —2.63, —3.63, —4.63, —5.63, —6.34, —6.62}, other parameters and conditions are the same as in Fig. The
results show a -1/2 scaling law with transient times longer than what would be expected by the additive effect of two independent SNs (blue
line, obtained by doubling the time expected by a single SN in the case of a wide-neck mushroom). (Inset) The same scaling law is obtained
for the transient times as a function of neck width for a fixed value of log,,(As) = —7.5 (vertical green line and dots). (c) Time series for the
same neck sizes and conditions as in panel (b) for a fixed signal value log;,(As) = —6.7, corresponding to the vertical blue line in panel
(b). (d) Transient times keeping As = A4,1/2 shown in log-linear scales. Three examples are displayed: (i) ¢ = 5; (ii) ¢ = 2.786; and (iii)
¢ = qc + 107, corresponding to log,(A4,1) = 0.62, log,o(A4,1) = —1.12, and log,,(A4,1) = —6.62, respectively. The color maps
indicate the duration of transients in the gap between SN1 and SN4, which is computed by dividing this gap into 10? equal intervals.

To validate this hypothesis, we examined the slowing down at
signal values close to SN1 (As < 1) for scenarios in which
the neck of the mushroom is very narrow [A, ; < 1, see Fig.
Ma)]. The resulting slowing down is much longer than what
we would expect from a simple additive effect of two SNs.
This synergistic amplification can be seen in Fig. [@(b,c) where
transients are displayed for different mushroom necks (Ay 7).
By comparing the resulting transients with the expected val-
ues from simply adding the transient times of two independent
SN (blue line in Fig.f[b,c), and Fig.[B-T), we observe that the
resulting transients can be orders of magnitude longer. In Sec-
tion[B]in the Appendix we compare the delays for single local
bifurcations and consider additivity in transient times with the
multiple bifurcations described above.

Furthermore, the smaller the gap (smaller values of A4,1),

the slower the transition, deviating further from additivity.
This reveals a synergistic amplification of transients. On the
other hand, the scaling law 7 ~ As~— /2 is preserved, sug-
gesting that the slower transient results in an increase in the
prefactor of the scaling law that cannot be explained merely
by the appearance of the transcritical bifurcation but requires
the proximity of both SNs.

In an attempt to clarify the behavior of the prefactor and
understand better the synergistic effects, we analyzed the pref-
actor in the scaling law. We did so by studying the increase
of the transients as the width of the neck varies for a fixed
value of As [green dots and inset in Fig. [d(b)]. This analysis
showed that the prefactor also follows an inverse square-root
power-law behavior. Such behavior is consistent with the re-
sults of the normal form [Eq. (Z)] found in the previous sec-
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mushroom neck Ay ; = 0.6 (¢ = 2.85) at asignal A; = Ay 1 /2. Simulations are performed using Gillespie algorithm [53] using the reaction

schemes described in tables[lland

tion. Furthermore, it can be derived analytically for the mush-
room model of Eq. (C6) (see Appendix [C).

To further study the effect of the coupling between both
SN bifurcations as they approach each other, we studied the
slowing down for signals exactly at the middle point between
both saddle nodes As = Ay 1/2 for different values of Ay ;
[Fig. @(d)]. Similar results were found, where for a narrower
mushroom neck (log;,(A41) ~ —6.6), transient times are
seven orders of magnitude slower compared to a wider neck.
This observation reiterates the significant influence of the in-
teraction between the two collapsing SN bifurcations. Fig-
ure Ekd) shows (in log-linear scale) how the delays increase as
the width of the mushroom neck closes. This curve follows the
scaling behavior with a power exponent —1 associated with
the transcritical bifurcation (see the case with black data in
Fig. for the same results in the log-log scale). This indi-
cates that the slowing down effect on the system is influenced
not only by the two ghosts but also by the transcritical bifurca-
tion. An alternative approach to derive this result is to express
7 as a coupling of the SN slowing down as a function of a in
Eq. (I), along with the decreasing slope of a(s). Specifically,
we can write 7 ~ (a(s) — ac(s))fl/2 ~ (s — s.)7!, using
the fact that near the transcritical bifurcation, a’(s) = 0 and
a’(s) <O0.

IV. STOCHASTIC DYNAMICS IN MUSHROOM
BIFURCATIONS

To investigate the effect of noise on transients in the self-
activating gene model we will initially consider separately
the effects of intrinsic (demographic) and extrinsic (environ-
mental) noise following the reaction schemes developed in ta-
bles[[land[[l] Then, we will study the system considering both
sources of noise simultaneously.

A. Intrinsic noise

Intrinsic noise results in fluctuations of u, which can in-
duce switching in the bistable zones of the mushroom [s €
(Ssn,,Ssn,) and s € (Sgn,,Ssns). See blue areas in
Fig.[I(b)]. Thus, intrinsic noise leads to an expansion of the
signal values over which gene expression levels can transition
to the upper branch of the mushroom (starting with the ini-
tial condition v = 0). This effect is observed in any genetic
bistable switch [30, [54]. In our particular case, this implies
that our study for transient times needs to expand to signals
beyond the regions studied in the deterministic scenario. Fig-
ure [5[a) shows the transition times calculated as first passage
times towards the upper branch of the mushroom. For all val-
ues of signal and noise intensities, intrinsic noise accelerates
the transient concerning the deterministic scenario. This ef-
fect is more dramatic close to the SN bifurcations where the
deterministic times diverge while there is still a finite stochas-
tic transient time. For larger noise intensities (lower €2) the
transients are shorter. This leads to an almost constant tran-
sition time along the whole mushroom neck for high intrinsic
noise (€2 = 10). This behavior is in line with the fact that
intrinsic noise allows the system to overcome the ghost, es-
caping the regime for which u ~ 0. Studying the coefficient
of variation (the standard deviation of the mean first passage
time divided by its mean), we observe that the precision of the
distributions decreases with noise. This suggests that intrinsic
noise can be detrimental to encoding precise transient times.

As in the deterministic case, constricting the neck of the
mushroom results in longer transients that are not erased by
intrinsic noise, even in scenarios with high intrinsic noise [Fig.
Blc)]. Similarly, the trend of decreasing precision of transient
times with noise intensity is also preserved.
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Transition times, 7, for the mushroom under the same parameters and conditions as in Fig. [5] Deterministic transients (black

solid line) are compared with stochastic transients for different extrinsic noise intensities: ¥ = 10 (blue), ¥ = 20 (cyan), ¥ = 50 (red),
and ¥ = 100 (yellow). (a) Transition times at different As. (b,c) Histograms showing probability distributions of transient times for two

mushroom neck sizes Ay ;1 = 1.15 and Ay 1 = 0.6.

B. Extrinsic noise

Alternatively, we can study the role of extrinsic noise by
considering noise in the signal, while keeping the determinis-
tic dynamics of the gene regulation (no intrinsic noise). Inter-
estingly, for signal regimes between the SNs, extrinsic noise
significantly slows down the transient compared to the deter-
ministic scenario [see Fig. [6(a)], in opposition to what was
observed for intrinsic noise. This stochastic slowing down in-
creases with increasing extrinsic noise intensity (lower values
of W). However, as in the intrinsic noise scenario, extrinsic
noise also expands the signal region over which gene expres-
sion can transit toward the upper branch of the mushroom.
Consequently, close to the SNs where the deterministic tran-
sient time diverges, extrinsic noise accelerates the transient.

Analysis of the distribution of transient times under extrin-
sic noise shows a similar effect to intrinsic noise in which
higher noise is translated into a higher coefficient of variation.
Nevertheless, for a large range of noise intensities the coef-
ficient of variation remains very low (below 0.1), suggesting
that extrinsic noise does not have a high impact on the vari-
ability of the transients [see Fig. [6(b)]. High coefficients of
variation (C.V.>0.5) are only observed in limit cases with nar-
row mushroom necks and high extrinsic noise [see Fig. @c)].

C. Full stochastic model

Given the opposite effects of intrinsic and extrinsic noise
within the neck of the mushroom Ay ;, we sought to inves-
tigate the behavior of the system when both sources of noise
are introduced simultaneously, a situation expected to happen
in a real experimental setup. To do so, we analyzed the tran-
sient times for different combinations of intrinsic and extrin-
sic noise (Fig[7). The results show that mean transient times
can be faster or slower than the deterministic time, depending
on the combination of intrinsic and extrinsic noise intensities.
Notably, one can keep the same timing as the deterministic
scenario by balancing both sources of noise over a wide range
of values of noise intensities [Figb)]. However, this rela-
tionship is different for the coefficient of variation of the tim-

ings, where the precision is primarily controlled by the intrin-
sic noise intensity [Fig[7(c)]. This suggests a mechanism by
which one can achieve a specific transient timing with a pre-
scribed precision by balancing the intrinsic and extrinsic noise
intensities.

Some of the timing dynamics for the noisy system for the
mushroom bifurcation can be attributed to the existence of SN
bifurcations independently of the mushroom bifurcation dia-
gram. To understand the coupling effect of the SNs character-
istic of the mushroom we compared the transient average time
and precision with the case in which a single SN is present
(Fig. [7). Specifically, we studied a bifurcation diagram cor-
responding to a traditional bistable switch built by keeping
the mushroom bifurcation diagram up to its symmetry point
As = A4 1/2 and fixing a constant steady state for higher val-
ues of the signal (see Appendix D|for details). Before consid-
ering the case with mixed noises we can study the effect that
intrinsic and extrinsic noise have independently on the tran-
sient times of the bistable switch. As expected, intrinsic noise
transient is unaffected for values of As < Ay, 1/2, where the
transients of the mushroom and bistable switch are identical
[Fig. Eka)]. On the other hand, intrinsic noise transients are
independent of the signal for As > Ay /2 [Fig. a)]. These
results confirm that intrinsic noise effects only depend on the
steady states available at a particular value As, independently
of the bifurcation diagram. This is not true for extrinsic noise,
where mushroom and bistable switch transients are different
for all values of As, including values As < Ay /2 for which
both bifurcation diagrams are identical [Fig. [§(b)]. This is the
result of extrinsic noise allowing the system to sample differ-
ent signal values, and thereby affected by localized slowing
down effects near the SNs. Since the effect of the SNs is to
slow the transients, extrinsic noise is slowing both the bistable
switch and the mushroom bifurcation. This effect is stronger
for the mushroom where two SNs contribute to the slowing
down dynamics [Fig. [§(b)]. As the width of the neck in-
creases, it is expected that the difference in transition times
between both diagrams will decrease, as a signal will have a
lower probability of attaining values close to the SNs.

Next, we aim to understand whether balancing intrinsic and
extrinsic noise to control the mean transient time and precision
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is a specific property of the mushroom configuration as shown
above, or if it can also be achieved in the bistable switch.
Comparison of the transition times for different noise intensity
combinations (Figs. mi—f) show that at Ay ; /2, the transient
times in the bistable switch diverge from the deterministic
case with a similar trend to the one observed in the mushroom.
However, the change in transition time is much larger for the
mushroom bifurcation. In particular, the mushroom allows
for a more dramatic slowing down of the transition, achieving
transient timescales that can be twice slower than the deter-
ministic time. Meanwhile, when comparing the coefficient of
variation between the mushroom and the bistable switch, we
find that the coefficient of variation does not change signifi-
cantly across the models [cf. Figs. [7[c,f)]. All in all this sug-
gests that the mushroom bifurcation allows for a better control
of the slowing down dynamics in stochastic scenarios.

V.  CONCLUSIONS

Transients are known to become extremely long close to
critical transitions in a phenomenon known as critical slow-
ing down. This phenomenon has implications in physical
and biological systems introducing dynamics much slower

than the timescale of the rates composing the system [T}, 3
[11]. The transient times T near deterministic bifur-
cations typically follow universal scaling laws of the form
T ~ | — pel? O [12]. Such exponents have been identi-
fied in both local and global bifurcations. De-
spite critical slowing down and transients’ scaling phenomena
have been widely investigated over the past decades for single
bifurcations, either local or global, how dynamical systems
behave close to nearby bifurcations remains unexplored.

In this article, we have studied critical slowing down in sys-
tems exhibiting mushroom bifurcation diagrams. This bifur-
cation diagram is usually found in mathematical models of
gene regulation [41, [43146] and, for appropriate parameter
values, has four saddle-node (SN) bifurcations. The simple
model presented considers a gene that self-activates itself and
is regulated by an external signal. By tuning biochemical pa-
rameters it is possible to arbitrarily control the distance of the
two SN bifurcations forming the neck of the mushroom. By
further reducing this distance, the neck of the mushroom even-
tually closes until both SN bifurcations collapse into a trans-
critical one. For this system, we show that the slowing down
found right after a SN bifurcation largely increases when the
two SN bifurcations approach each other. Moreover, the in-
verse square-root scaling law remains preserved, as shown for
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FIG. 8.  Transient times at different signal values for the mush-

room bifurcation (blue lines) and the bistable switch (red lines) with
r = 0.14, ¢ = 2.851i.e., As;;1 = 0.6. The symmetry axis of the
mushroom where the bistable switch and mushroom start to differ is
located at As = Ay41/2 = 0.3 (dotted grey line). Transients of
the corresponding simulations in the deterministic case are also plot-
ted for reference (dashed lines). (a) Comparison of deterministic and
stochastic transition times for a system with intrinsic noise. (b) Com-
parison of deterministic and stochastic transition times for a system
with extrinsic noise.

SN bifurcations studied with delay differential equations [18]].
We also provide analytical and numerical evidence of this syn-
ergistic effect by examining a normal form with the same phe-
nomenology i.e., two SN bifurcations merge into a transcriti-
cal one.

In the context of gene regulatory networks (GRNs), our
findings provide a mechanism to control the timing of an
event, achieving timescales slower than those of protein pro-
duction and degradation. This suggests a novel approach to
constructing genetic timers. Traditionally, GRN transients are
overlooked in systems biology, with a primary focus on steady
states. However, the timing of transitions is crucial for under-
standing GRN function. For example, differences in embry-
onic developmental timing between species often arise from
the same reaction networks with nearly identical rates, high-
lighting the importance of understanding time control in de-

10

velopmental processes [55].

One of the defining features of GRNSs is the significant im-
pact of noise due to the low number of molecules involved.
Our study demonstrates that specific bifurcation diagrams,
which can be achieved with minimal GRN topologies, not
only exploit these transients but also buffer the effects of
noise. Importantly, we show that intrinsic and extrinsic noise
have opposite effects on timing. This discovery enables the
achievement of specific timings with prescribed precision by
controlling intrinsic noise (e.g., through plasmid number reg-
ulation in synthetic circuits) and extrinsic noise (e.g., by mod-
ulating signal noise).

Furthermore, while our study explores the one-dimensional
case, it opens the door for future research to investigate sce-
narios involving multiple genes. Examining how different bi-
furcations interact could unveil new dynamical regimes not
observed before, providing deeper insights into the complex-
ity and robustness of GRNs in synthetic biology. These ad-
vancements not only enhance our understanding of biological
timing mechanisms but also pave the way for innovative ap-
plications in the design of synthetic biological systems.
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APPENDIX A: ISOLA FORMATION CRITERION

Consider the case where ¢ < q., where g. denotes the value
of ¢ at which the transcritical bifurcation occurs (Fig. Ekb),
right panel). For smaller values of ¢, an isola [40] appears.
Equivalently, for Egs. (), when considering r < 0, the isola
appears and for r = 0, we locally observe a point in the bifur-
cation diagram, showing its collapse (see Fig. [J). The exis-
tence of this isola in the deterministic mushroom bifurcation
diagram, together with the existence of the transcritical bifur-
cation, can be analytically demonstrated through the applica-
tion of the Morse Lemma [56]:

Theorem 1 (Morse Lemma). Let f : U — R be a C? func-
tion defined on an open set U C R™. Suppose z¢g € U is
a non-degenerate critical point (equilibrium point) of f with
index s. Then, there exists a C! diffeomorphic immersion
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G : V. — U, where V C R™ is an open set, such that
g= foG:V — Ris of the form
g(x) = flzo) — 2% — ... —a2 + 22, + ...+ 22
From Morse Lemma, the following corollary can be de-
rived, which provides a criterion for distinguishing between
the formation of isolas and transcritical bifurcations based on

the sign of the determinant of the Hessian matrix at the critical
point.

Corollary 2. (Isola formation and transcritical bifurcation
emergence). If the determinant of the Hessian matrix of
a smooth function f(x,\), where \ is the parameter at a
non-degenerate critical point is positive (negative), then the
function exhibits isolas (transcritical bifurcations) in a small
neighborhood around the critical point.

Proof. By hypothesis, the Hessian matrix H of f is positive,
therefore, H is non-degenerate, as it is not zero. By apply-
ing the Morse Lemma, we can assert that there exists a local
diffeomorphism

h: (0,0) eJi xJyo— Iy x Ay > (l‘o,)\o)
(J1,d2) = (z,A)

such that h(0,0) = (w9, \g) and (f o h) (j1, jo) = 7% + j2,
where we assume without loss of generality that 0., f > 0,

in case it was negative, we define f o h(j1,j2) = —ji — j3.
Distinctly as in the case of the transcritical bifurcation, here
the level of curve f(x,\) = 0 is just a point. The set of
points satisfying the equation f o h(j1, j2) = 0 forms a set of
isolas in the j;-j2 plane. Since the transformation £ is a local
diffeomorphism, these isolas map to a set of isolas in the z-A
plane.

The equation (foh)(j1,j2) = 0implies j+ 53 = 0, which
corresponds to the point (0,0). Now, if we look at a small
neighborhood around (0, 0), the equation (f o h)(j1,72) = ¢
for small ¢ > 0 describes a set of points forming a circle with
radius /c around the origin. This is because for small ¢ > 0,
j2+ 72 = c corresponds to a circle with radius /c in the j;-jo
plane.

When these circles are transformed by h into the z-) plane,
they form isolas in a small neighborhood around the critical
point (g, Ag). This is possible because the transformation &
preserves the topology of the small neighborhood around the
origin, and thus the isolas in the j;-j2 plane become isolas in
the x-\ plane.

Therefore, if the determinant of the Hessian matrix of a
smooth function f(x, \) at a non-degenerate critical point is
positive, then the function exhibits isolas in a small neighbor-
hood around the critical point. This argument relies on the lo-
cal structure of the function around the critical point, captured
by the Morse Lemma, and the positive determinant of the Hes-
sian matrix ensuring a non-degenerate critical point. O
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FIG. B.1. Transient times 7 close to the bifurcation value (in log-log
scale) for six cases given by the: normal form (NF) of the SN bifur-
cation (blue triangles); twice the times for the NF of the SN (violet
triangle); transcritical NF (open blue circles); sum of the times for the
transcritical NF plus twice the times of the SN NF (solid green cir-
cles); NF of the coupled SN bifurcations collapsing into the transcrit-
ical one [Eq. (2)] (orange circles); and the mushroom model given by
Eq. (1) (black circles). The inset compares these times (in log-linear
scales) for the mushroom NF (orange) and the times assuming ad-
ditivity of two independent SNs with the transcritical slowing down
using their NFs (green).

APPENDIX B: COMPARISON OF THE TRANSIENT TIMES
FOR ISOLATED AND MULTIPLE NEARBY
BIFURCATIONS

In this section, we compare the transient times close to sev-
eral bifurcations by inspecting six different cases. To facilitate
this comparison, we define the distance to the bifurcation in a
general way as AJ = |p—p.|, where p is the control parameter
and p, denotes the bifurcation value. The transients have been
computed choosing initial conditions passing through the de-
laying regions for each case [57] e.g., for SN bifurcations we
have chosen initial conditions passing through the bottleneck
of the ghosts. By doing so, we aim to compare such times to
show that the dynamics close to multiple bifurcations, such as
the ones studied for the mushroom bifurcations diagrams, are
non-additive. As we show below, not only are the effects on
transients in the mushroom bifurcation non-additive but also
they show a coupling effect of both SN1-SN4 when approach-
ing the transcritical bifurcation. That is, a resonance effect of
these bifurcations produces a synergistic slowing down. We
first show the results for transients close to a single SN bi-
furcation using the normal form & = a + 22 (blue triangles
in Fig. [B.T)) and the transients obtained by the sum of times
for two independent and distant SN bifurcations (violet rect-
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angles in Fig. [B.T). These later results will be compared with
the multiple nearby bifurcations as a case to look for additiv-
ity in the resulting transient times. For this case, transients
are measured from x(0) = —0.1 to z = 0.1. Then, the same
results are obtained for the normal form of the transcritical bi-
furcation, # = ax — 22 (open blue circles in Fig. . The
green data in Fig. which appear overlapped to the results
for the transcritical bifurcation, show the times for the tran-
scritical case plus twice the time of a SN bifurcation. In a
linear additive scenario, transient mushroom dynamics phe-
nomena should follow such times. Then, we compute these
transients times for the normal form Eq. (Z) (orange circles in
Fig. and the gene circuit system given by Eq. (I (black
circles in Fig. . For these two models, we set s = 0
and adjusted the opening gap such that AJ corresponds to the
distance Ad = |s — ssn1| = |ssn1|- For Eq. (I) we used
r = 0.14. For the normal form and model of the mushroom
bifurcation, transient times were measured for z(0) = —0.1
to z = 0.1, and from »(0) = 0.2 to u = 0.4, respectively.

The results show that the longest transients are found for
the self-activating gene model Eq. (T)) and the normal form (2)).
These results also show that the slowing down obtained for the
multiple bifurcations models departs from an additive effect
of individual local bifurcations. For instance, the times ob-
tained with the normal form of the mushroom model and the
gene model are much longer than the times obtained by sum-
ming up the delays tied to the transcritical bifurcation plus the
delays of two independent SN bifurcations. Finally, the times
for the multiple bifurcations are about 3-4 orders of magnitude
longer than the ones for two single and far away SN bifurca-
tions, either computed separately or additively.

APPENDIX C: ANALYTICAL STUDY OF THE SCALING
LAWS IN THE MUSHROOM BIFURCATION

To analytically study the saddle-node (SN) scaling law for
Eq. (D), it is sufficient to investigate general non-degenerate
SN bifurcations.

Theorem 3. (Implicit Function Theorem [58]). Let f be a
function of class C? (with p > 0) defined on an open set U
of R? and taking values in R. Let (29, o) be a point in U
such that f(xo,yo) = 0 and such that the partial derivative of
f with respect to the second variable is non-zero at (xq, yo).
There exists a real function ¢ of class C?, defined on an open
real interval V' containing ¢, and an open neighborhood € of
(70,%0) in U such that, for all (x,y) € R?:

((x,y) € Qand f(z,y) =0) & (z € Vandy = p(z)) .

Applying Theorem [3] to the studied model, we can define
the following proposition to describe the factorization of the
function f:

Proposition 4. Suppose f(z,r) is a smooth function with
respect to x € R in a neighborhood of x = 0 such that
. 92
£(0,0) =0, %(0,0) £ 0, g—ﬁ(o,p) =0, and %(.0,0) £ 0.
Then, there exists a smooth function p(r, ) which is nonzero
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in a neighborhood near the origin N = [—§, §]2, such that f
can be locally expressed as:
f(CC,T) :p(x,r)(r—i—a(x)), (ChH

where a(z) satisfies a(0) = a’(0) = 0 and o’ (0) # 0.

Proof. Given the condition f(x,r) = 0 and the orders of van-
ishing according to each variable for the saddle-node bifurca-
tion through the function f, we can apply the Implicit Func-
tion Theorem. The saddle-node bifurcation diagram is gener-
ated by

r=r(z) = —a(x), (C2)

and

fa,r) = f(a,r) -

/
-/
/

f(z,r(z))

(z,tr+ (1 —t)r(z))] dt

or | d
o (wtr+ (1 =t)r(2)) -
& (ot o+ (L= 1)r(@)) di-(r— r(a)
;) (r = r(x)).

(C3)

This demonstrates the factorization of f. Furthermore, evalu-
ating at the origin and considering that a(0) = 0, we get

a
dr

_dc

-1
= -0+ p(0,0)

=p(0,0).

(0,0) (0,0)

Therefore, at the origin, the derivative of f concerning r
equals the value of the function p(z,r) at the same point.
Moreover, the system’s dynamics in the r direction at the ori-
gin are governed by the factor p(z, 1), as expected.

Finally, the function a(z) is a smooth function of degree 2,
as derived from Eq. (C2), satisfying a(0) = a/(0) = 0 and
a”(0) # 0. O

Given these conditions, the scaling behavior near a generic
non-degenerate SN bifurcation such as Eq.(C1| with p(0,0) >
0 and a”(0) > 0 can be characterized through the following
inequality:

1 [ 1 0 1
— ——dz < dx
p2 J_s 1+ aza? _s p(r,x)(r + a(z)x?)

101
<— | ——da (C4)
P1LJ_sTH+arx

[tr + (1 —t)r(z)] dt

13

Therefore:

J 1 1 /[? 1
_s p(r + az?) pr) s 1+ (/%)
1 arctan(,/%z)

1 a
o \/g . p\f \anrctan <\/;5> (C5)

Asr — 07, the asymptotic behavior of the system, or equiva-
lently, the scaling law on the transients time near an SN bifur-
cation is given by

C(p,a) T 1
T ~ = — 5
VT pJayr
where C(p,a) denotes a constant pre-factor depending on p
and a. This approximation validates that the integral demon-

strates a consistent scaling behavior as r — 0%, which is in-
dependent of the form of the function p(z, ).

(Co)

APPENDIX D: BISTABLE SWITCH MODEL

Similar to the mushroom model given in Section[Il, we here
introduce a bistable switch model to help uncouple the differ-
ence between the effects of a single SN bifurcation and multi-
ple.

We use the same simple regulatory model as for the mush-
room

du
o =r+a(s)H(u) — u, (D1)

but with a modified external signal a(s)

~Jsqg—s?
als) = {q2/4

The stochastic models for the bistable switch are the same
as for the mushroom bifurcation (see tables [I| and |lI) with a
change only in transition rate W; which is dependent on the
new external signal function. In the intrinsic noise case, the
signal can be rewritten as

if s < q/2,

. (D2)
otherwise.

D3)
4%22 otherwise. (

a(s) {W(SQ S?) if S < Q/2,
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