

1 **Manuscript type:** Research Article

2 **Title: A site selection decision framework for effective kelp restoration**

3

4 **Authors:** Anita Giraldo-Ospina^{*1,2}, Tom Bell³, Mark H. Carr⁴, Jennifer E. Caselle¹

5

6 ¹ Marine Science Institute, University of California Santa Barbara, Santa Barbara, CA 93106,
7 USA

8 ² School of Biological Sciences, University of Western Australia, 35 Stirling Highway, Crawley,
9 WA 6009, Australia

10 ³ Department of Applied Ocean Physics and Engineering, Woods Hole Oceanographic
11 Institution, Woods Hole, MA, USA

12 ⁴ Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa
13 Cruz, CA, USA

14 *Corresponding author. E-mail address: anitagiraldo@ucsb.edu

15 **Key words:** Kelp, restoration, decision tree, climate change, prioritization

16

17

18

19

20

21

22 **Highlights (3-5 bullet points)**

23 ● Site selection is one of the most important factors for ecosystem restoration success

24 ● A spatial prioritization framework for application to kelp restoration in California

25 ● The framework merges kelp metrics derived from *in-situ* surveys and satellite imagery

26 ● Site prioritization classification for every kelp forest site in California

27 ● This framework can be applied to other species and regions with similar datasets

28 **Abstract**

29 We present a decision support framework in the form of a spatially explicit site classification
30 scheme to prioritize locations for conducting kelp restoration. The framework was created for the
31 entire coast of California, where kelp has been lost and restoration projects are increasingly
32 proposed, but the framework is broadly applicable to other coastal habitats or species that are
33 being considered for restoration. We first created spatial distribution models using almost two
34 decades of *in situ* kelp forest monitoring data and a comprehensive suite of environmental and
35 biological variables, and used the outputs to evaluate the historical stability of kelp forests prior
36 to a marine heatwave (MHW). We then used kelp canopy abundance data derived from satellite
37 imagery to measure the impact of the MHW (i.e. extent of forest loss) and the recent state of kelp
38 forests, including the trend of increase or decrease following the MHW. Finally, we integrated
39 these site-specific kelp metrics to construct a classification tree for prioritizing restoration sites.
40 Outputs of site prioritization are mapped across the study region, readily usable for managers and
41 restoration practitioners with site-specific recommendations for restoration approaches. The
42 framework can be updated due to knowledge of the important predictors of kelp and with new
43 satellite imagery. Further, the framework can be adapted to other species and regions with

44 similar data sets. This regional site selection framework is intended to be used in addition to
45 socio-ecological, socio-economic, and administrative considerations.

46 **Introduction**

47 Kelp forests are responsible for billions of dollars in ecosystem service provisions worldwide,
48 underpinned by very high primary production, nutrient cycling and the creation of three-
49 dimensional structure that supports a rich biodiversity (Eger et al., 2023; Reed et al., 2008). They
50 provide critical habitat for species that comprise important fisheries including finfish, abalone
51 and urchins, and are iconic marine habitats, culturally important and a major draw for tourism
52 (Bennett et al., 2016; Eger et al., 2023). All these add to the innate value of kelp forests and their
53 cultural significance for indigenous peoples and contemporary society (Eger et al., 2023;
54 Thurstan et al., 2018). However, across the globe, many kelp forests have become increasingly
55 threatened by multiple stressors that are exacerbated by climate change (Arafeh-Dalmau et al.,
56 2021; Krumhansl et al., 2016; Wernberg et al., 2016). Globally, macroalgal cover has been in
57 decline for the past 50 years (Krumhansl et al., 2016; Wernberg and Filbee-Dexter, 2019) due to
58 factors such as marine heatwaves (Beas-Luna et al., 2020; McPherson et al., 2021; Wernberg et
59 al., 2016), the decline of grazer predators with a subsequent increase in herbivory (Bosch et al.,
60 2022; Rogers-Bennett and Catton, 2019), and the flourishing of new or invasive species of
61 macroalgae (Félix-Loaiza et al., 2022; South et al., 2017). The loss of kelp forests can have
62 significant impacts on biodiversity and associated ecosystem services they provide, whose
63 economic value has been estimated to be between \$500,000 and 1,000,000 USD per kilometer of
64 coastline (Filbee-Dexter and Wernberg, 2018). Such widespread, and sometimes, dramatic loss
65 of this iconic marine habitat represents a challenge for resource managers and conservation

66 practitioners, since natural recovery may take years and it is hindered by increasing
67 anthropogenic pressures (Bell et al., 2023).

68 While losses of marine habitats and ecosystem services can sometimes be counteracted by
69 mitigating stressors, active restoration is increasing as an intervention strategy to recover
70 terrestrial and marine ecosystems worldwide, including coastal marine systems (Perring et al.,
71 2015; Saunders et al., 2020), with projects led across diverse groups such as universities, NGOs,
72 businesses and local communities (Eger et al., 2024). Indeed, the United Nations has declared
73 2021-2030 as the Decade on Ecosystem Restoration, aligning with other global environmental
74 protection challenges to be met by 2030 (e.g. 30x30; Target 3 of the Kunming-Montreal Global
75 Biodiversity Framework). A key challenge in kelp restoration is its cost, which, depending on the
76 intervention technique has been estimated at 1,000 to 1,000,000 USD per hectare (Eger et al.,
77 2022b). The expense, combined with the ever-increasing spatial scale of kelp loss, compel the
78 need for a framework that allows for scientifically informed decisions that increase the
79 likelihood of successful restoration, while taking into account the effects of a changing climate
80 (La Peyre et al., 2014; Zedler, 2007).

81 A major question driving ecosystem or species restoration success is that of where to restore
82 (Bayraktarov et al., 2016; Eger et al., 2022b). The ultimate goal of site selection in kelp
83 restoration is to identify sites where restoration actions are most likely to succeed and restored
84 forests will persist (Eger et al., 2022b; Elsäßer et al., 2013; Gann et al., 2019). Selection of areas
85 for restoration should be based on thorough analysis using the best possible information to attain
86 the maximum benefit with limited investment instead of the often *ad hoc* allocation of funds for
87 restoration projects. Prioritization of sites for restoration requires knowledge of historical
88 distribution and abundance dynamics of species targeted for restoration because, in most cases,

89 regions where species existed before their loss should be prioritized (Gann et al., 2019). Here, we
90 define restoration success as the long-term persistence of a restored kelp forest.

91 The coast of California has experienced some of the most extreme declines of kelp forests
92 documented around the world in the past decade. A marine heatwave in the Northeastern Pacific
93 ocean that extended from 2014 to 2016 (Di Lorenzo and Mantua, 2016), combined with the
94 widespread mortality of the sea star species *Pycnopodia helianthoides* (Hamilton et al., 2021), a
95 key sea urchin predator, resulted in a decrease of over 90% of *Nereocystis luetkeana*, the
96 dominant canopy-forming kelp in northern California (McPherson et al., 2021). This also
97 resulted in the closure of the recreational red abalone fishery in 2018 and disaster declaration for
98 the commercial red sea urchin fishery (Rogers-Bennett and Catton, 2019). Portions of central and
99 southern California, as well as Baja California, Mexico, whose kelp forests are dominated by the
100 giant kelp, *Macrocystis pyrifera*, also saw sharp declines, although the effect was less
101 widespread (Beas-Luna et al., 2020; Smith et al., 2024). Importantly, these kelp forests have not
102 recovered to pre-MHW conditions, and there is now increasing interest in assisting recovery of
103 these ecosystems through active restoration.

104 In this study, we integrated the outputs from models of kelp distribution and abundance in
105 California with remote sensing data and constructed a decision-making framework to identify
106 locations with the highest potential for kelp restoration success. We modeled the two primary
107 canopy-forming kelps in California, *Macrocystis pyrifera* and *Nereocystis luetkeana*.
108 Specifically, our objectives were to: 1) use the outputs of spatial models of kelp abundance and
109 distribution to estimate historical stability of kelp at sites along the California coast, 2) use
110 estimates of kelp abundance derived from remote sensing to calculate the amount of kelp lost
111 following a large MHW (2014-16 NE Pacific MHW) and the current state and trends of kelp

112 across California and 3) integrate the estimates of stability, loss and current state into a
113 classification and prioritization framework. The ultimate goal is to enable resource managers and
114 restoration practitioners to identify locations that are likely to benefit from active restoration
115 interventions and those that are more likely to show natural regeneration (Gann et al., 2019).
116 This framework can also be supported by the inclusion of socio-economic criteria and logistical
117 considerations to further inform the optimal use of resources for ecological restoration.

118 **Methods**

119 ***Study area***

120 This study encompassed the entire 1,350 km of coastal California, between the borders of
121 Mexico to Oregon, including offshore islands (Figure 1). In California, there are two dominant
122 kelp species that form a surface canopy (Carr and Reed, 2016). Bull kelp (*Nereocystis luetkeana*)
123 is an annual species with high interannual variation in forest density and area (McPherson et al.,
124 2021). Individuals are characterized by a single long stipe, up to 25 m in length that extends
125 through the water column from the subtidal rocky reef, buoyed by a large pneumatocyst
126 (Springer et al., 2010). In California, bull kelp is distributed from the Oregon border in the north
127 to Point Conception in the south. North of Monterey Bay, central California, it is the dominant
128 habitat-forming kelp, whereas in central California bull kelp usually grows in mixed forests with
129 giant kelp (*Macrocystis pyrifera*). Giant kelp is a perennial species dominant in the temperate
130 eastern Pacific and Southern Oceans (Schiel and Foster, 2015). In California, giant kelp ranges
131 predominantly from Pigeon Point in the north to the border with Mexico in the south (Carr and
132 Reed, 2016). Giant kelp abundance in California is very dynamic since individuals as well as

133 entire forests are highly susceptible to dislodgement by ocean waves (Edwards and Estes, 2006;
134 Graham, 1997).

135 ***Kelp metrics to incorporate in site classification framework***

136 Three metrics of kelp dynamics formed the basis for the site classification framework. The first
137 was temporal stability of kelp abundance prior to the NE Pacific MHW estimated from the
138 historical maps obtained from spatial models of bull and giant kelp abundance (Giraldo-Ospina
139 et al., 2024). The other two metrics were calculated from satellite-derived kelp surface canopy
140 abundance and included an estimate of kelp lost after the NE Pacific MHW and the current
141 proportion (percent) of historical kelp abundance. All three metrics were calculated for each site
142 (cells of 300 x 300 m, the same resolution at which spatio-temporal maps of kelp were
143 constructed with distribution models, Giraldo-Ospina et al., 2024) along the coast of California
144 and integrated to classify each site into one of four restoration priority classes.

145 ***Reconstruction of historical kelp density - in situ data***

146 To construct maps of historical kelp density along the entire coast of California, we used spatio-
147 temporal models of bull and giant kelp density. The dependent variables in the models (density
148 of bull and giant kelp) were obtained from long-term *in situ* SCUBA monitoring surveys from
149 the Partnership for Interdisciplinary Studies of Coastal Oceans (PISCO
150 <https://www.piscoweb.org/>) and Reef Check ([https://www.reefcheck.org/country/usa-](https://www.reefcheck.org/country/usa-california/)
151 [california/](https://www.reefcheck.org/country/usa-california/)). Sea urchin abundance, used as a predictor variable in the models, was also obtained
152 from these *in situ* surveys. A suite of spatio-temporal data was obtained for variables thought to
153 be associated with processes affecting bull and giant kelp densities. These variables included sea

154 surface temperature, nitrate concentration, wave height, orbital velocity, net primary production,
155 zoospore availability, and several descriptors of seafloor terrain (Giraldo-Ospina et al., 2024).

156 We modeled the density of each species (bull and giant kelp) separately using generalized
157 additive mixed models (GAMs) (Wood, 2006) to investigate the relative contribution of
158 variables in explaining spatial and temporal variation in density of bull and giant kelp. Annual
159 maps of kelp density for each species were created by projecting the density predictions over the
160 study region using the historical spatial data of predictors selected in the best models. All
161 predictor variables were converted to 300 x 300 m resolution to produce a total of 18 annual
162 maps for each species (from 2004 to 2021). See Giraldo-Ospina et al (2024) for additional details
163 on model selection and evaluation.

164 *Calculation of kelp stability*

165 Kelp stability was estimated using the time series of kelp density for the years prior to the MHW
166 (2004 to 2013). Kelp stability was calculated for each cell (pixel) as the inverse of the coefficient
167 of variation for each cell and scaled by the mean kelp density prior to the MWH (2004-2013), so
168 that kelp beds with similar coefficients of variation would be ranked even higher if they had
169 higher kelp densities.

170

$$171 \quad S = \frac{\mu^2}{\sigma}$$

172

173 Where S is stability for each cell, μ is the mean kelp density estimated previous to the MHW
174 2004-2013, and σ is the standard deviation estimated previous to the MHW (2004-2013).

175 *Current Proportion and Kelp Loss- Satellite-derived data*

176 We generated a time series of kelp canopy cover (bull kelp) and kelp canopy biomass (giant
177 kelp) from remotely sensed imagery in order estimate the amount of kelp lost after the NE
178 Pacific MHW and to estimate the current proportion of kelp compared to a baseline period. Kelp
179 canopy area (m^2) and biomass (wet weight in kg) were derived from Landsat 5, 7, 8, and 9
180 imagery and given for individual 30 x 30 m pixels (Bell et al., 2023; Bell et al., 2020; Bell et al.,
181 2023). We extracted the maximum area for bull kelp in the northern region, and biomass for
182 giant kelp in the central and southern regions, observed in each year to obtain the maximum area
183 or biomass for each pixel per year. We then aggregated the data from 30 x 30 m pixels (Landsat
184 resolution) into 300 x 300 m pixels (our ‘site’ resolution) by summing the total maximum
185 canopy area or biomass.

186 *Current proportion of kelp compared to baseline*

187 To create a historical ‘baseline’ of kelp abundance prior to the NE Pacific MHW, we averaged
188 kelp abundance between 1985 and 2013 for every site pixel. We then calculated the current mean
189 abundance of kelp for the most recent three years for which we had data (2020-2022) and used it
190 to estimate the proportion of the historical baseline. Sometimes the current proportion of
191 historical kelp was more than 100% indicating that in the last three years the mean kelp
192 abundance was greater than the historical mean.

193 *Kelp loss post MHW disturbance (2014-2019)*

194 We first estimated the lowest kelp abundance recorded between 2014-2019. Although the MHW
195 was strongest during the years 2014 to 2016, kelp did not show a significant recovery during the

196 years immediately following the MHW and 2019 was a hotter year than normal (McPherson et
197 al., 2021; Smith et al., 2024). We then found the difference between the minimum kelp post-
198 MHW and the historical mean of kelp abundance. In cases where there was a gain of kelp
199 compared to historic baselines loss was described as zero.

200 ***Classification of sites into restoration priorities***

201 We integrated the metrics of pre-MHW stability ('stability'), current proportion of historical kelp
202 ('current proportion of baseline'), and loss during and after the MHW ('loss due to MHW') into
203 a three-dimensional space, where each metric constituted an axis (Figure 2). For each California
204 region, sites (300 x 300 m pixels) were placed into a 3D space based on the logged values of the
205 three metrics. We divided the sites into eight groupings, by finding the median of each logged
206 metric to divide each axis in two parts resulting in eight sub-cubes (Figure 2).
207 A hierarchical classification tree was then designed to classify sites according to each of the
208 three metrics compared to other sites in the same region, so that each site is assigned one of four
209 prioritization classes for restoration (Very low, Low, Mid, or High) (Figure 3). The first step in
210 the classification tree is to separate the sites with higher historical stability from those with lower
211 stability (Figure 3). The next step is to identify the magnitude of loss from the MHW at those
212 sites. The final step in the decision tree is to evaluate the current state of kelp in each site with
213 the metric of current proportion of kelp compared to a baseline. With this last question we can
214 divide sites into four classes (Figure 3 and Table 1). Very low priority sites are historically
215 unstable sites that, regardless of the effect of the MHW, currently have a lower proportion of
216 kelp compared to their historical mean. We consider very low priority sites to be the most risky
217 for an investment on restoration, as they historically have not sustained stable kelp densities and
218 are currently in an unfavorable state for kelp, potentially requiring a large investment in

219 restoration with uncertain outcomes (Figure 3). Low priority sites are those that, despite their
220 lower historical stability, have a high proportion of kelp compared to their baseline, thus may
221 also be a lower investment priority (Figure 3). Medium ‘Mid’ priority are historically stable sites
222 that may or may have not experienced high losses of kelp after the MHW, but currently have a
223 high proportion of kelp compared to their baseline (Figure 3). These sites are historically stable
224 sites that are currently doing well in terms of their kelp abundance, so they are not in urgent need
225 of an intervention but are considered mid priority for restoration and potentially high priority for
226 other actions, such as monitoring, to assess a continued recovery trajectory (Figure 3). Finally,
227 high priority sites are sites that were historically stable prior to the marine heatwave, and that
228 may or may have not experienced high kelp losses after the MHW, but currently have lower
229 proportion of kelp compared to their historical mean, and therefore are the ones that could
230 benefit the most from restoration activities (Figure 3). Table 1 describes each of the resulting
231 categories of prioritization and expands on a set of potential actions that could be employed.
232 Finally, we estimated the recent trend of kelp abundance (increasing or decreasing; most recent
233 five years). For this, we extracted mean kelp abundance data (area for the north coast and
234 biomass for central and south coasts) from Landsat from 2018 to 2022. A simple linear model
235 was fitted to the five values of kelp abundance for each pixel and classified as ‘increasing’
236 (positive slope) or ‘decreasing’ (negative slope). Sites with no slope (a slope of 0) were
237 considered decreasing as they generally depicted sites with no kelp due to previous loss. These
238 two categories of post-MHW abundance trend were used to further divide the four restoration
239 priority classes into 8 categories to provide additional information on the recent conditions of
240 kelp at each location (i.e. Very low-increasing, Very low-decreasing, Low-increasing, Low-
241 decreasing, Mid-increasing, Mid-decreasing, High-increasing, and High-decreasing).

242 **Results**

243 ***Kelp metrics for classification scheme***

244 Regions identified as high stability for bull kelp prior to the 2014-16 MHW were mostly located
245 in the shallower parts of the north coast, and extending north and south from the coastline of Fort
246 Bragg, Mendocino, and Point Arena (Figure 4a), indicating these regions have sustained dense
247 kelp forests that experienced lower variation abundance before the MHW compared to other kelp
248 forests in this region. The majority of sites (pixels) located in the deeper areas of the stability
249 map for bull kelp showed very low stability. Most sites in the north region showed some loss of
250 kelp after the MHW, however, the area between Fort Bragg and Fort Ross experienced the
251 highest losses (Figure 4b). This area also has the lowest proportion of kelp compared to the
252 historical mean kelp abundance in northern California, indicating it has not recovered from this
253 disturbance (Figure 4c).

254 Giant kelp stability in the central coast was generally high with the highest stability sites along
255 the north of Monterey Bay and from the Monterey peninsula to the Big Sur coastline (Figure 5a).
256 Kelp loss after the MHW (compared to historical mean) was high across the region with lower
257 losses north of Monterey Bay and San Luis Obispo (Figure 5b). The current proportion of kelp
258 compared to the historical mean varied along the central coast. Relative to other locations, recent
259 kelp cover remained particularly low at several locations along Santa Cruz, around and south of
260 the Monterey peninsula, Big Sur, and San Luis Obispo (Figure 5c). Other locations between San
261 Luis Obispo and Big Sur, and north of Point Conception had more kelp than their historical mean
262 (Figure 5c).

263 The south coast and islands showed a more patchy distribution of high stability sites for giant
264 kelp, compared to the north and central regions. High stability of kelp was observed at all the
265 island sites, and some mainland sites like Palos Verdes and San Diego (Figure 6a). All other
266 areas showed low historical stability with the very low stability sites located along the mainland
267 coast (Figure 6a). Loss of kelp biomass after the MHW was widespread across the region, with
268 the highest losses observed around Santa Barbara, San Diego and the Channel Islands (Figure
269 6b). The current proportion of kelp compared to the historical mean in the region was less than
270 20% for several locations that showed high stability previous to the marine heatwave, such as
271 San Miguel and Santa Rosa Islands, and San Diego indicating that these previously stable sites,
272 have not recovered from the NE Pacific MHW (Figure 6c).

273

274 *Results of site classification scheme*

275 In the north coast, the shallower portions of the coastline from Fort Ross to Fort Bragg presented
276 the most sites which were classified as high priority for bull kelp restoration, while deeper sites
277 were classified as low or very low priority (Figure 7a). Sites north of Fort Bragg were generally
278 classified as a mix of high and mid priority sites. South of Fort Ross all sites were classified as
279 low or very low priority, reflecting their lower stability compared to others in the region (Figure
280 7a). In the central coast, several regions like the Monterey peninsula had the most sites classified
281 as high priority for giant kelp restoration, indicating these were sites with higher stability
282 compared to others in the region, and which currently exhibit lower proportions of historical kelp
283 densities (Figure 7b). Sites in the south coast classified as high priority for giant kelp restoration
284 are visibly clustered around San Miguel and Santa Rosa Islands, while other high priority sites
285 were located west of Santa Barbara, and in the San Diego region near La Jolla and Point Loma

286 (Figure 7c). See close-up maps of site classification in Appendix A for visual identification of
287 site-specific restoration categories.

288 ***Kelp restoration classes and protection status***

289 Approximately a quarter of all kelp sites in California fell into each of the four main restoration
290 priority classes, a consequence of the choice to split categories at the median values of the
291 metrics (Figure 8a). However, regionally, we see differences in number sites falling into different
292 prioritization levels. The south region had the highest proportion of sites with high and mid
293 priority for kelp restoration, followed by the north region. As a simple example of how one could
294 layer other factors onto the classification scheme, we calculated the proportion of sites currently
295 located in Marine Protected Areas in California for each classification. For sites located inside
296 MPAs, 19% were categorized as high priority and 25% as mid priority for restoration across the
297 state (Figure 8b). The north region had the highest proportion of high priority sites located in
298 MPAs, followed by the south region (Figure 8b). The result of recent trend of kelp abundance
299 observed in the north coast over the past five years was of ‘no change’ for most sites (Appendix
300 B, Figure B1). Sites with an increasing trend were mostly located south of Mendocino, and sites
301 with a decreasing trend were mostly located north of Mendocino. Most sites in the central coast
302 showed a decreasing trend (Appendix B, Figure B1). In the south coast, areas west of Santa
303 Barbara, the northern Channel Islands, and San Diego contained multiple sites with decreasing
304 kelp abundance in the past five years (Appendix B, Figure B1).

305 **Discussion**

306 Globally, kelp forests are increasingly threatened by a wide variety of stressors, including
307 climate change, directly diminishing the biodiversity they sustain and the ecosystem services

308 they provide. Restoration of kelp forests has been increasingly used as an intervention to mitigate
309 ecosystem degradation (Eger et al., 2022a). The consideration of site selection has been found to
310 be more important for marine ecosystem restoration success than the magnitude of financial
311 investment (Bayraktarov et al., 2016). Here, we created an ecologically-focused, spatially-
312 explicit site classification framework to help managers and restoration practitioners prioritize
313 among potential sites for restoration. The framework uses the best available ecological datasets
314 to enable managers and others to consider, identify, and weigh the predicted abundance, stability
315 and persistence of restored forests among alternative restoration sites. The decision framework
316 was designed for the two canopy-forming species in California, giant kelp (*Macrocystis pyrifera*)
317 and bull kelp (*Nereocystis luetkeana*). By including both species, the outputs of this framework
318 are spatially scalable from local to regional, to statewide decision processes. Together with the
319 many other considerations required to inform kelp forest restoration decisions (e.g. community
320 support and input, fisheries consequences, logistical constraints, funding availability; Gleason et
321 al., 2021), this knowledge can inform the relative values of where, when and how restoration
322 might be pursued at potential or proposed restoration sites. The framework can also help
323 practitioners better understand and contextualize the results - successes and failures - of ongoing
324 restoration projects that were placed without consideration of ecological and environmental
325 conditions. Most importantly, by emphasizing the role of forest stability, restoration can be
326 prioritized at those sites where restored forests are more likely to persist longer into the future.
327 By considering post-MHW trends and current forest state relative to pre-MHW forest states,
328 differences in potential enhancement (i.e. increased forest area and abundance) can be weighed
329 among sites. This study combined *in situ* diver surveys of kelp forest communities allowing for
330 co-located and simultaneously captured data of urchin and kelp densities. When combined with

331 remotely sensed kelp canopy abundance the site classification scheme can be updated in almost
332 real time, by estimating the metric of current proportion of kelp with the most up-to-date kelp
333 imagery available (Cavanaugh et al., 2023). This means of revising the prioritization classes
334 annually is key for the two species with high natural variability, like bull and giant kelp
335 (McPherson et al., 2021; Rodriguez et al., 2013) and aligns with the decision-making timelines
336 faced by restoration practitioners.

337

338 ***The site prioritization scheme***

339 Methods for ranking sites are common in conservation planning (Klein et al., 2010; Leslie,
340 2005), but are now being applied to ecological restoration (Eger, 2020). The priority scheme
341 enabled us to suggest alternative restoration actions, which include no action, watch/monitor,
342 defend extant patches, or restore (Table 1). This result enables those interested in forest
343 restoration to consider a broader range of actions, tailor actions to the history and state of a
344 forest, and further prioritize intervention where it could be most cost-effective. Restoration of
345 historically unstable forests to their pre-MHW levels is less likely to persist into the future,
346 suggesting that restoration might best be pursued elsewhere. High or mid priority forests that are
347 exhibiting a trajectory of recovery may warrant less investment than high priority forests that
348 exhibit no trend of recovery. Instead of active restoration interventions, high and mid priority
349 forests that are exhibiting a trajectory of recovery may benefit from monitoring to ensure they
350 remain on a positive trajectory and consider intervention if that changes. In our framework,
351 forests that were historically stable but experienced high losses and have yet to recover are more
352 likely to exhibit greater and more durable benefits from restoration. Nonetheless, the ultimate

353 decision on where to restore will depend on the specific objectives of each restoration project
354 and many other considerations that may include community support, fisheries consequences,
355 logistical constraints, funding availability.

356 Site prioritization schemes require knowledge about organism's distribution and spatial
357 variability in abundance (Johnston et al., 2015). Occurrence or persistence data is frequently used
358 for site prioritization in marine ecosystem restoration (Elsäßer et al., 2013; Johnston et al., 2015).
359 However, presence and abundance may display different patterns of spatial and temporal
360 variation (Gaston and He, 2011; Oliver et al., 2012). Our classification scheme benefits from
361 access to spatially explicit abundance estimates and historical stability of kelp. The high and mid
362 priority classes always include stable forests, while the very low and low priority classes always
363 include unstable forests. The emphasis on stability ensures that kelp restoration is prioritized in
364 sites where restored kelp forests are more likely to be persistent and abundant into the future,
365 hence applying resources where they can have the greatest benefits. We recognize that many
366 locations will not have access to the wealth of data that exists in California but suggest that the
367 concepts of the framework will translate well to other forms of information on stability including
368 community, traditional and indigenous knowledge.

369 Notably, our framework identifies the relative, not absolute, importance for restoration across the
370 array of conditions that are observed at the time of the site classification. If this framework is
371 applied in a period when forests across all sites have high abundance of kelp, the classification
372 would still result in some sites being classified as 'high' priority sites relative to others. For that
373 reason, further evaluation of 'high' priority sites is needed to confirm they warrant restoration, or
374 if other actions are more appropriate, such as conservation. The framework assumes that
375 functional relationships between abundance and the key drivers will remain similar into the

376 future. If true, then the models used in this framework should accurately reproduce kelp
377 dynamics across the state into the future. If these functional relationships change, for example
378 with changing climate, new models and projections will be needed.

379 ***Incorporating other considerations into decision making***

380 There are many other considerations to the design and implementation of kelp restoration
381 projects. The dynamic nature of kelp ecosystems, complex and regionally specific drivers of kelp
382 loss, and predicted climate-related changes for California waters make for a complicated
383 decision context for knowing when, where and how to intervene to maintain or actively restore
384 kelp forest ecosystems. This framework used ecological and environmental models to inform
385 multiple aspects of those decisions. The spatial prioritization scheme created here can inform
386 multiple steps of a structured decision making (SDM) process when combined with additional
387 information such as logistics (Puckett et al., 2018, Gleason et al., 2021), socio-economic factors
388 (Gouezo et al., 2021) and legal constraints such as permitting.

389 For example, choosing kelp restoration sites within marine protected areas (MPAs) may improve
390 survival and kelp recruitment due to the increased protection from other stressors (Cebrian et al.,
391 2021) and result in additional benefits (e.g., enhanced fish stocks) (Hopf et al., 2022) yet in many
392 locations, including California, restoration in protected areas is not currently allowed ((Filbee-
393 Dexter et al., 2024).). In our study, up to a quarter of the total kelp sites classified as high
394 priority were within an MPA, highlighting the need to review MPA management plans regularly
395 to ensure they adapt to climate change.

397 Although we use the term ‘prioritization’ for simplicity, there may be other (non-ecological)
398 ways for stakeholders to prioritize locations to conduct restoration, and these will depend on the
399 goals of a project. For example, community involvement may be a major goal of a kelp
400 restoration project, and might be weighted equally with likelihood of long-term kelp recovery.
401 Incorporating the outputs from this framework into broader decisions regarding kelp restoration
402 may increase the probability of restoration success. Notably, this framework could be replicated
403 to other geographies, other coastal habitats or species and can be adapted for other forms of data
404 and knowledge.

405 ***Acknowledgements***

406 We thank the numerous individuals who contributed to data collection as part of the long-term
407 kelp forest monitoring programs of Partnership for Interdisciplinary Studies of Coastal Oceans
408 (PISCO) and Reef Check California. We thank K. Elsmore from the California Department of
409 Fish and Wildlife and M. Esgro from California Ocean Protection Council for their continuous
410 feedback during this project. We also thank D. Malone, A. Parsons-Field for assistance with data
411 curation and J. Freiwald for assistance with Reef Check data acquisition. This research was
412 funded by California Sea Grant (R/HCEOPC-18) as part of the California state-wide Kelp
413 Recovery Research Program in collaboration with the California Ocean Protection Council. We
414 also wish to thank M. Yeager, the Caselle lab members and Passionate Women in Science
415 (PWIS) team for the fruitful discussions and support. This is Publication number XXX from
416 PISCO.

417

418

419 ***CRediT***

420 ***Anita Giraldo-Ospina***: Conceptualization, Formal analysis, Methodology, Visualization,
421 Writing - original draft, Writing -review and editing. ***Tom Bell***: Conceptualization, Funding
422 acquisition, Methodology, Data curation, Writing - review and editing. ***Mark Carr***:
423 Conceptualization, Funding acquisition, Methodology, Writing - review and editing. ***Jennifer***
424 ***Caselle***: Project administration, Conceptualization, Funding acquisition, Methodology, Writing -
425 review and editing.

426 ***Data availability***

427 Data are available in DataOne at
428 doi:10.25494/P6/When_where_and_how_kelp_restoration_guidebook_2.

429 ***Declaration of competing interest***

430 The authors have no conflicts of interest to declare.

431

432 ***References***

433 Arafah-Dalmau, N., Cavanaugh, K.C., Possingham, H.P., Munguia-Vega, A., Montaño-
434 Moctezuma, G., Bell, T.W., Cavanaugh, K., Micheli, F., 2021. Southward decrease in the
435 protection of persistent giant kelp forests in the northeast Pacific. Communications Earth &
436 Environment 2, 1–7. <https://doi.org/10.1038/s43247-021-00177-9>
437 Bayraktarov, E., Saunders, M.I., Abdullah, S., Mills, M., Beher, J., Possingham, H.P., Mumby,
438 P.J., Lovelock, C.E., 2016. The cost and feasibility of marine coastal restoration. Ecol.
439 Appl. 26, 1055–1074. <https://doi.org/10.1890/15-1077>
440 Beas-Luna, R., Micheli, F., Woodson, C.B., Carr, M., Malone, D., Torre, J., Boch, C., Caselle,
441 J.E., Edwards, M., Freiwald, J., Hamilton, S.L., Hernandez, A., Konar, B., Kroeker, K.J.,
442 Lorda, J., Montaño-Moctezuma, G., Torres-Moye, G., 2020. Geographic variation in
443 responses of kelp forest communities of the California Current to recent climatic changes.
444 Glob. Chang. Biol. 26, 6457–6473. <https://doi.org/10.1111/gcb.15273>
445 Bell, T., Cavanaugh, K., Siegel, D., 2023. SBC LTER: Time series of quarterly NetCDF files of
446 kelp biomass in the canopy from Landsat 5, 7 and 8, since 1984 (ongoing).
447 <https://doi.org/10.6073/pasta/41f330ccf66fa8c05fc851862e69b1da>
448 Bell, T.W., Allen, J.G., Cavanaugh, K.C., Siegel, D.A., 2020. Three decades of variability in
449 California's giant kelp forests from the Landsat satellites. Remote Sens. Environ. 238,

450 110811. <https://doi.org/10.1016/j.rse.2018.06.039>

451 Bell, T.W., Cavanaugh, K.C., Saccomanno, V.R., Cavanaugh, K.C., Houskeeper, H.F., Eddy, N.,
452 Schuetzenmeister, F., Rindlaub, N., Gleason, M., 2023. Kelpwatch: A new visualization and
453 analysis tool to explore kelp canopy dynamics reveals variable response to and recovery
454 from marine heatwaves. *PLoS One* 18, e0271477.
455 <https://doi.org/10.1371/journal.pone.0271477>

456 Bennett, S., Wernberg, T., Connell, S.D., Hobday, A.J., Johnson, C.R., Poloczanska, E.S., 2016.
457 The “Great Southern Reef”: social, ecological and economic value of Australia’s
458 neglected kelp forests. *Mar. Freshwater Res.* 67, 47–56. <https://doi.org/10.1071/MF15232>

459 Bosch, N.E., McLean, M., Zarco-Perello, S., Bennett, S., Stuart-Smith, R.D., Vergés, A.,
460 Pessarodona, A., Tuya, F., Langlois, T., Spencer, C., Bell, S., Saunders, B.J., Harvey, E.S.,
461 Wernberg, T., 2022. Persistent thermally-driven shift in the functional trait structure of
462 herbivorous fishes: evidence of top-down control on the rebound potential of temperate
463 seaweed forests? *Glob. Chang. Biol.* <https://doi.org/10.1111/gcb.16070>

464 Carr, M.H., Reed, D.C., 2016. Chapter 17: Shallow rocky reefs and kelp forests, in: Mooney, H.,
465 Zavaleta, E. (Eds.), *Ecosystems of California*. University of California Press, Berkeley, pp.
466 311–336.

467 Cavanaugh, K.C., Cavanaugh, K.C., Pawlak, C.C., Bell, T.W., Saccomanno, V.R., 2023.
468 CubeSats show persistence of bull kelp refugia amidst a regional collapse in California.
469 *Remote Sens. Environ.* 290, 113521. <https://doi.org/10.1016/j.rse.2023.113521>

470 Cebrian, E., Tamburello, L., Verdura, J., Guarnieri, G., Medrano, A., Linares, C., Hereu, B.,
471 Garrabou, J., Cerrano, C., Galobart, C., Fraschetti, S., 2021. A Roadmap for the Restoration
472 of Mediterranean Macroalgal Forests. *Frontiers in Marine Science* 8, 1456.
473 <https://doi.org/10.3389/fmars.2021.709219>

474 Di Lorenzo, E., Mantua, N., 2016. Multi-year persistence of the 2014/15 North Pacific marine
475 heatwave. *Nat. Clim. Chang.* 6, 1042–1047. <https://doi.org/10.1038/nclimate3082>

476 Edwards, M.S., Estes, J.A., 2006. Catastrophe, recovery and range limitation in NE Pacific kelp
477 forests: a large-scale perspective. *Mar. Ecol. Prog. Ser.* 320, 79–87.
478 <https://doi.org/10.3354/meps320079>

479 Eger, A., Aguirre, J.D., Altamirano, M., Arafeh-Dalmau, N., Arroyo, N.L., Bauer-Civello,
480 A.M., Beas-Luna, R., Bekkby, T., Bellgrove, A., Bennett, S., Bernal, B., Blain, C.O.,
481 Boada, J., Branigan, S., Bursic, J., Cevallos, B., Choi, C., Connell, S.D., Cornwall, C.E.,
482 Earp, H.S., Eddy, N., Ennis, L.-A., Falace, A., Ferreira, A.M., Filbee-Dexter, K., Forbes,
483 H., Francis, P., Franco, J.N., Geisler, K.G., Giraldo-Ospina, A., Gonzalez, A.V., Hingorani,
484 S., Hohman, R., Iveša, L., Kaleb, S., Keane, J.P., Koch, S.J.I., Krumhansl, K., Ladah, L.,
485 Lafont, D.J., Layton, C., Le, D.M., Lee, L.C., Ling, S.D., Lonhart, S.I., Malpica-Cruz, L.,
486 Mangialajo, L., McConnell, A., McHugh, T.A., Micheli, F., Miller, K.I., Monserrat, M.,
487 Montes-Herrera, J., Moreno, B., Neufeld, C.J., Orchard, S., Peabody, B., Peleg, O.,
488 Pessarodona, A., Pocklington, J.B., Reeves, S.E., Ricart, A.M., Ross, F., Schanz, F.R.,
489 Schreider, M., Sedarat, M., Smith, S.M., Starko, S., Strain, E.M.A., Tamburello, L.,
490 Timmer, B., Toft, J.E., Uribe, R.A., van den Burg, S.W.K., Vásquez, J.A., Veenhof, R.J.,
491 Wernberg, T., Wood, G., Zepeda-Domínguez, J.A., Vergès, A., 2024. The Kelp Forest
492 Challenge: A collaborative global movement to protect and restore 4 million hectares of
493 kelp forests. *J. Appl. Phycol.* 36, 951–964. <https://doi.org/10.1007/s10811-023-03103-y>

494 Eger, A., Layton, C., McHugh, T.A., Gleason, M., Eddy, N., 2022a. Kelp Restoration
495 Guidebook: Lessons Learned from Kelp Projects Around the World.

496 Eger, A., Marzinelli, E.M., Christie, H., Fagerli, C.W., Fujita, D., Gonzalez, A.P., Hong, S.W.,
497 Kim, J.H., Lee, L.C., McHugh, T.A., Nishihara, G.N., Tatsumi, M., Steinberg, P.D., Vergés,
498 A., 2022b. Global kelp forest restoration: past lessons, present status, and future directions.
499 *Biological Reviews*. <https://doi.org/10.1111/brv.12850>

500 Eger, A.M., Marzinelli, E.M., Beas-Luna, R., Blain, C.O., Blamey, L.K., Byrnes, J.E.K., Carnell,
501 P.E., Choi, C.G., Hessing-Lewis, M., Kim, K.Y., Kumagai, N.H., Lorda, J., Moore, P.,
502 Nakamura, Y., Pérez-Matus, A., Pontier, O., Smale, D., Steinberg, P.D., Vergés, A., 2023.
503 The value of ecosystem services in global marine kelp forests. *Nat. Commun.* 14, 1894.
504 <https://doi.org/10.1038/s41467-023-37385-0>

505 Elsäßer, B., Fariñas-Franco, J.M., Wilson, C.D., Kregting, L., Roberts, D., 2013. Identifying
506 optimal sites for natural recovery and restoration of impacted biogenic habitats in a special
507 area of conservation using hydrodynamic and habitat suitability modelling. *J. Sea Res.* 77,
508 11–21. <https://doi.org/10.1016/j.seares.2012.12.006>

509 Félix-Loaiza, A.C., Rodríguez-Bravo, L.M., Beas-Luna, R., Lorda, J., de La Cruz-González, E.,
510 Malpica-Cruz, L., 2022. Marine heatwaves facilitate invasive algae takeover as foundational
511 kelp. *Botanica Marina* 65, 315–319. <https://doi.org/10.1515/bot-2022-0037>

512 Filbee-Dexter, K., Starko, S., Pessarrodona, A., Wood, G., Norderhaug, K.M., Piñeiro-Corbeira,
513 C., Wernberg, T., 2024. Marine protected areas can be useful but are not a silver bullet for
514 kelp conservation. *J. Phycol.* <https://doi.org/10.1111/jpy.13446>

515 Filbee-Dexter, K., Wernberg, T., 2018. Rise of turfs: A new battlefield for globally declining
516 kelp forests. *Bioscience* 68, 64–76. <https://doi.org/10.1093/biosci/bix147>

517 Gann, G.D., McDonald, T., Walder, B., Aronson, J., Nelson, C.R., Jonson, J., Hallett, J.G.,
518 Eisenberg, C., Guariguata, M.R., Liu, J., Hua, F., Echeverría, C., Gonzales, E., Shaw, N.,
519 Decler, K., Dixon, K.W., 2019. International principles and standards for the practice of
520 ecological restoration. Second edition. *Restor. Ecol.* 27. <https://doi.org/10.1111/rec.13035>

521 Gaston, K.J., He, F., 2011. Species occurrence and occupancy, in: Magurran, A.E., McGill,
522 B.J. (Eds.), *Biological Diversity: Frontiers in Measurement and Assessment*. Oxford
523 University Press, New York, New York, USA, pp. 141–151

524 Giraldo-Ospina, A., Bell, T., Carr, M.H., Caselle, J.E., 2024. Drivers of spatio-temporal
525 variability in a marine foundation species. *bioRxiv*.
526 <https://doi.org/10.1101/2024.06.25.600483>

527 Gleason, M., Caselle, J.E., Heady, W.N., Saccomanno, V.R., Cimberman, J., McHugh, T.A.,
528 Eddy, N., 2021. A structured approach for kelp restoration and management decisions. The
529 Nature Conservancy, Arlington, Virginia.

530 Gouezo, M., Fabricius, K., Harrison, P., Golbuu, Y., Doropoulos, C., 2021. Optimizing coral reef
531 recovery with context-specific management actions at prioritized reefs. *J. Environ. Manage.*
532 295, 113209. <https://doi.org/10.1016/j.jenvman.2021.113209>

533 Graham, M.H., 1997. Factors determining the upper limit of giant kelp, *Macrocystis pyrifera*
534 Agardh, along the Monterey Peninsula, central California, USA. *J. Exp. Mar. Bio. Ecol.*
535 218, 127–149. [https://doi.org/10.1016/S0022-0981\(97\)00072-5](https://doi.org/10.1016/S0022-0981(97)00072-5)

536 Hamilton, S.L., Saccomanno, V.R., Heady, W.N., Gehman, A.L., Lonhart, S.I., Beas-Luna, R.,
537 Francis, F.T., Lee, L., Rogers-Bennett, L., Salomon, A.K., Gravem, S.A., 2021. Disease-
538 driven mass mortality event leads to widespread extirpation and variable recovery potential
539 of a marine predator across the eastern Pacific. *Proc. Biol. Sci.* 288, 20211195.
540 <https://doi.org/10.1098/rspb.2021.1195>

541 Hopf, J.K., Caselle, J.E., White, J.W., 2022. No-take marine protected areas enhance the benefits

542 of kelp-forest restoration for fish but not fisheries. *Ecol. Lett.*
543 <https://doi.org/10.1111/ele.14023>

544 Johnston, A., Fink, D., Reynolds, M.D., Hochachka, W.M., Sullivan, B.L., Bruns, N.E.,
545 Hallstein, E., Merrifield, M.S., Matsumoto, S., Kelling, S., 2015. Abundance models
546 improve spatial and temporal prioritization of conservation resources. *Ecol. Appl.* 25, 1749–
547 1756.

548 Klein, C.J., Steinback, C., Watts, M., Scholz, A.J., Possingham, H.P., 2010. Spatial marine
549 zoning for fisheries and conservation. *Front. Ecol. Environ.* 8, 349–353.
550 <https://doi.org/10.1890/090047>

551 Krumhansl, K.A., Okamoto, D.K., Rassweiler, A., Novak, M., Bolton, J.J., Cavanaugh, K.C.,
552 Connell, S.D., Johnson, C.R., Konar, B., Ling, S.D., Micheli, F., Norderhaug, K.M., Pérez-
553 Matus, A., Sousa-Pinto, I., Reed, D.C., Salomon, A.K., Shears, N.T., Wernberg, T.,
554 Anderson, R.J., Barrett, N.S., Buschmann, A.H., Carr, M.H., Caselle, J.E., Derrien-Courtel,
555 S., Edgar, G.J., Edwards, M., Estes, J.A., Goodwin, C., Kenner, M.C., Kushner, D.J., Moy,
556 F.E., Nunn, J., Steneck, R.S., Vásquez, J., Watson, J., Witman, J.D., Byrnes, J.E.K., 2016.
557 Global patterns of kelp forest change over the past half-century. *Proc. Natl. Acad. Sci. U. S.*
558 A. 113, 13785–13790. <https://doi.org/10.1073/pnas.1606102113>

559 La Peyre, M., Furlong, J., Brown, L.A., Piazza, B.P., Brown, K., 2014. Oyster reef restoration in
560 the northern Gulf of Mexico: Extent, methods and outcomes. *Ocean Coast. Manag.* 89, 20–
561 28. <https://doi.org/10.1016/j.ocecoaman.2013.12.002>

562 Leslie, H.M., 2005. A synthesis of marine conservation planning approaches. *Conserv. Biol.* 19,
563 1701–1713. <https://doi.org/10.1111/j.1523-1739.2005.00268.x>

564 McPherson, M.L., Finger, D.J.I., Houskeeper, H.F., Bell, T.W., Carr, M.H., Rogers-Bennett, L.,
565 Kudela, R.M., 2021. Large-scale shift in the structure of a kelp forest ecosystem co-occurs
566 with an epizootic and marine heatwave. *Commun Biol* 4, 298.
567 <https://doi.org/10.1038/s42003-021-01827-6>

568 Oliver, T.H., Gillings, S., Girardello, M., Rapacciulo, G., Brereton, T.M., Siriwardena,
569 G.M., Roy, D.B., Pywell, R., Fuller, R.J., 2012. Population density but not stability can be
570 predicted from species distribution models. *J. Appl. Ecol.* 49, 581–590.

571 Perring, M.P., Standish, R.J., Price, J.N., Craig, M.D., Erickson, T.E., Ruthrof, K.X., Whiteley,
572 A.S., Valentine, L.E., Hobbs, R.J., 2015. Advances in restoration ecology: rising to the
573 challenges of the coming decades. *Ecosphere* 6, art131. <https://doi.org/10.1890/ES15-00121.1>

575 Puckett, B.J., Theuerkauf, S.J., Eggleston, D.B., Guajardo, R., Hardy, C., Gao, J., Luettich, R.A.,
576 2018. Integrating Larval Dispersal, Permitting, and Logistical Factors Within a Validated
577 Habitat Suitability Index for Oyster Restoration. *Frontiers in Marine Science* 5.
578 <https://doi.org/10.3389/fmars.2018.00076>

579 Reed, D.C., Rassweiler, A., Arkema, K.K., 2008. Biomass rather than growth rate determines
580 variation in net primary production by giant kelp. *Ecology* 89, 2493–2505.
581 <https://doi.org/10.1890/07-1106.1>

582 Rodriguez, G.E., Rassweiler, A., Reed, D.C., Holbrook, S.J., 2013. The importance of
583 progressive senescence in the biomass dynam of giant kelp (*Macrocystis pyrifera*). *Ecology*
584 94, 1848–1858. <https://doi.org/10.1890/12-1340.1>

585 Rogers-Bennett, L., Catton, C.A., 2019. Marine heat wave and multiple stressors tip bull kelp
586 forest to sea urchin barrens. *Sci. Rep.* 9, 15050. <https://doi.org/10.1038/s41598-019-51114-y>

588 Saunders, M.I., Doropoulos, C., Bayraktarov, E., Babcock, R.C., Gorman, D., Eger, A.M.,
589 Vozzo, M.L., Gillies, C.L., Vanderklift, M.A., Steven, A.D.L., Bustamante, R.H., Silliman,
590 B.R., 2020. Bright Spots in Coastal Marine Ecosystem Restoration. *Curr. Biol.* 30, R1500–
591 R1510. <https://doi.org/10.1016/j.cub.2020.10.056>

592 Schiel, D.R., Foster, M.S., 2015. The biology and ecology of giant kelp forests. University of
593 California Press.

594 Smith, J.G., Malone, D., Carr, M.H., 2024. Consequences of kelp forest ecosystem shifts and
595 predictors of persistence through multiple stressors. *Proc. Biol. Sci.* 291, 20232749.
596 <https://doi.org/10.1098/rspb.2023.2749>

597 South, P.M., Floerl, O., Forrest, B.M., Thomsen, M.S., 2017. A review of three decades of
598 research on the invasive kelp *Undaria pinnatifida* in Australasia: An assessment of its
599 success, impacts and status as one of the world's worst invaders. *Mar. Environ. Res.* 131,
600 243–257. <https://doi.org/10.1016/j.marenvres.2017.09.015>

601 Springer, Y.P., Hays, C.G., Carr, M.H., Mackey, M.R., 2010. Toward ecosystem-based
602 management of marine macroalgae—the bull kelp, *nereocystis luetkeana*, in: *Oceanography*
603 and *Marine Biology*. Chapman and Hall/CRC, pp. 1–42.
604 <https://doi.org/10.1201/ebk1439821169-1>

605 Thurstan, R.H., Brittain, Z., Jones, D.S., Cameron, E., Dearnaley, J., Bellgrove, A., 2018.
606 Aboriginal uses of seaweeds in temperate Australia: an archival assessment. *J. Appl.*
607 *Phycol.* 30, 1821–1832. <https://doi.org/10.1007/s10811-017-1384-z>

608 Wernberg, T., Bennett, S., Babcock, R.C., de Bettignies, T., Cure, K., Depczynski, M., Dufois,
609 F., Fromont, J., Fulton, C.J., Hovey, R.K., Harvey, E.S., Holmes, T.H., Kendrick, G.A.,
610 Radford, B., Santana-Garcon, J., Saunders, B.J., Smale, D.A., Thomsen, M.S., Tuckett,
611 C.A., Tuya, F., Vanderklift, M.A., Wilson, S., 2016. Climate-driven regime shift of a
612 temperate marine ecosystem. *Science* 353, 169–172.

613 Wernberg, T., Filbee-Dexter, K., 2019. Missing the marine forest for the trees. *Mar. Ecol. Prog.*
614 Ser. 612, 209–215. <https://doi.org/10.3354/meps12867>

615 Wood, S., 2006. *Generalized additive models: An introduction with R*. CRC Press, Boca Raton,
616 Florida.

617 Zedler, J.B., 2007. Success: An Unclear, Subjective Descriptor of Restoration Outcomes. *Ecol.*
618 *Restor.* 25, 162–168. <https://doi.org/10.3368/er.25.3.162>

619

620

621

622

623

624

625 **Tables**

626 **Table 1.** Description of the classifications resulting from the tree in Figure 3 (Very Low, Low,
627 Mid and High). Color coding of priority classes corresponds to classes in Figure 3. Potential
628 suggested actions for each class are described.

629

Pre MHW stability	Loss due to the MHW	Current proportion of kelp	Priority class	Description	Potential actions
Lower	High loss	Low proportion	Very low	Historically unstable kelp beds that were highly impacted by the MHW and have not recovered.	No action: Considered to be a risky investment. Due to historical instability, the probability of restoration success may be very low and the investment required may be high. Monitoring and defense of kelp beds are unwarranted.
Lower	High loss	High proportion	Low	Historically unstable kelp beds that were highly impacted by the MHW but have recovered and currently have a high proportion of kelp	No action: These sites are doing well. Investment for restoration currently unwarranted. Due to historical instability, the probability of restoration success may be very low

				compared to their historical mean.	but restoration is not needed currently. <i>Monitoring and defense</i> may be of interest since kelp at these sites recovered from MHW impacts.
Lower	Low loss	Low proportion	Very low	Historically unstable kelp beds that resisted the MHW but currently have a low proportion of kelp compared to historical means.	<i>No action:</i> Considered to be a risky investment. Due to historical instability, the probability of restoration success may be very low and the investment required may be high. Monitoring and defense of kelp beds are unwarranted.
Lower	Low loss	High proportion	Low	Historically unstable kelp beds that resisted the effects of the MHW and currently have a high proportion of kelp compared to their historical mean.	<i>No action:</i> These sites are doing well. Investment for restoration currently unwarranted. Due to historical instability, the probability of restoration success may be very low but restoration is not

					needed currently. <i>Monitoring and defense</i> may be of interest since kelp at these sites recovered from MHW impacts.
Higher	High loss	Low proportion	High	Historically stable kelp beds that were highly impacted by the MHW and have not recovered.	Restore: These sites were high density and stable kelp beds. Considered to benefit the most from restoration intervention and to have a high probability of success due to historically high stability.
Higher	High loss	High proportion	Mid	Historically stable kelp beds that were highly impacted by the MHW but have recovered and currently have a high proportion of kelp compared to their historical mean.	These sites are iconic, dense kelp beds that recovered from the MHW disturbance. <i>Monitor</i> these sites for triggers that may warrant intervention. <i>Defend</i> these sites from current or future threats. <i>Study</i> these sites to understand the mechanisms of resilience

					to the MHW.
Higher	Low loss	Low proportion	High	Historically stable kelp beds that resisted the MHW but currently have a low proportion of kelp compared to historical means.	Restore: These sites were iconic, dense kelp beds. Considered to benefit the most from restoration intervention and to have a high probability of success due to historical high stability.
Higher	Low loss	High proportion	Mid	Historically stable kelp beds that resisted the effects of the MHW and currently have a high proportion of kelp compared to their historical mean.	These sites are iconic, dense kelp beds that resisted from the MHW disturbance. <i>Monitor</i> these sites for triggers that may warrant intervention. <i>Defend</i> these sites from current or future threats. <i>Study</i> these sites to understand the mechanisms of resistance from the MHW.

630

631

632 **Figure legends**

633 **FIGURE 1.** Map of California showing the three biogeographic regions: Northern, Central, and
634 Southern, which includes the Channel Islands. Bull kelp is the dominant species in forests of the
635 Northern region, while giant kelp dominates forests in the central and southern regions.

636 **FIGURE 2.** Three dimensional space formed by ‘stability’ in the x axis, ‘current proportion of
637 baseline’ in the y axis, and ‘loss due to MHW’ in the z axis. The colored cubes show the
638 characteristics of a site according to where it is located in the three dimensional space. For
639 graphical purposes, we divided each axis by the median of the logged values of each metric to
640 depict axes split in half. Sites to the left (light blue) showed lower stability than sites to the right
641 (dark blue). Sites to the front of the cube showed low kelp loss (orange) compared to the ones at
642 the back (dark red). Sites on the lower part of the cube currently have a lower proportion than their
643 historical average abundance (light green) and the ones on top of the cube have a higher proportion
644 than their historical average (dark green).

645 **FIGURE 3.** Classification tree to prioritize sites for kelp restoration activities in the state of
646 California. The classification uses the values of the three metrics to assign sites into one of four
647 prioritization classes: Very low (blue cubes), Low (green cubes), Mid (yellow cubes), High (red
648 cubes). The prioritization takes into consideration the historical stability of kelp density prior to
649 the NE Pacific MHW derived from modeled predictions of kelp density using the environmental
650 predictors in combination with kelp loss after the NE Pacific MHW and current proportion of kelp
651 compared to a historical baseline derived from Landsat imagery.

652

653 **FIGURE 4.** Maps of a) stability (log scale; years), b) kelp loss after 2014-16 marine heatwave
654 (log scale; area), and c) current proportion (%) of kelp compared to baseline of bull kelp in the
655 north coast.

656 **FIGURE 5.** Maps of a) stability (log scale; years), b) kelp biomass loss after 2014-16 marine
657 heatwave (log scale; biomass), and c) current proportion (%) of kelp compared to baseline of
658 giant kelp in the central coast.

659 **FIGURE 6.** Maps of a) stability (log scale; years), b) kelp biomass loss after 2014-16 marine
660 heatwave (log scale; biomass), and c) current proportion (%) of kelp compared to baseline of
661 giant kelp in the south coast.

662 **FIGURE 7.** Maps of restoration priority classes for a) bull kelp in the north coast, b) giant kelp
663 in the central coast, and c) giant kelp in the south coast.

664 **FIGURE 8.** a) Proportion of sites within each restoration priority class in all California and for
665 each region. b) Proportion of sites within MPAs for each restoration priority class in for all
666 California MPAs and in each region of the state.

667
668

669

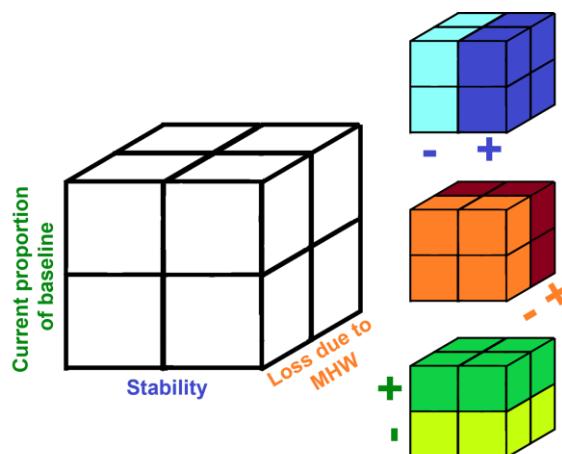
670

671

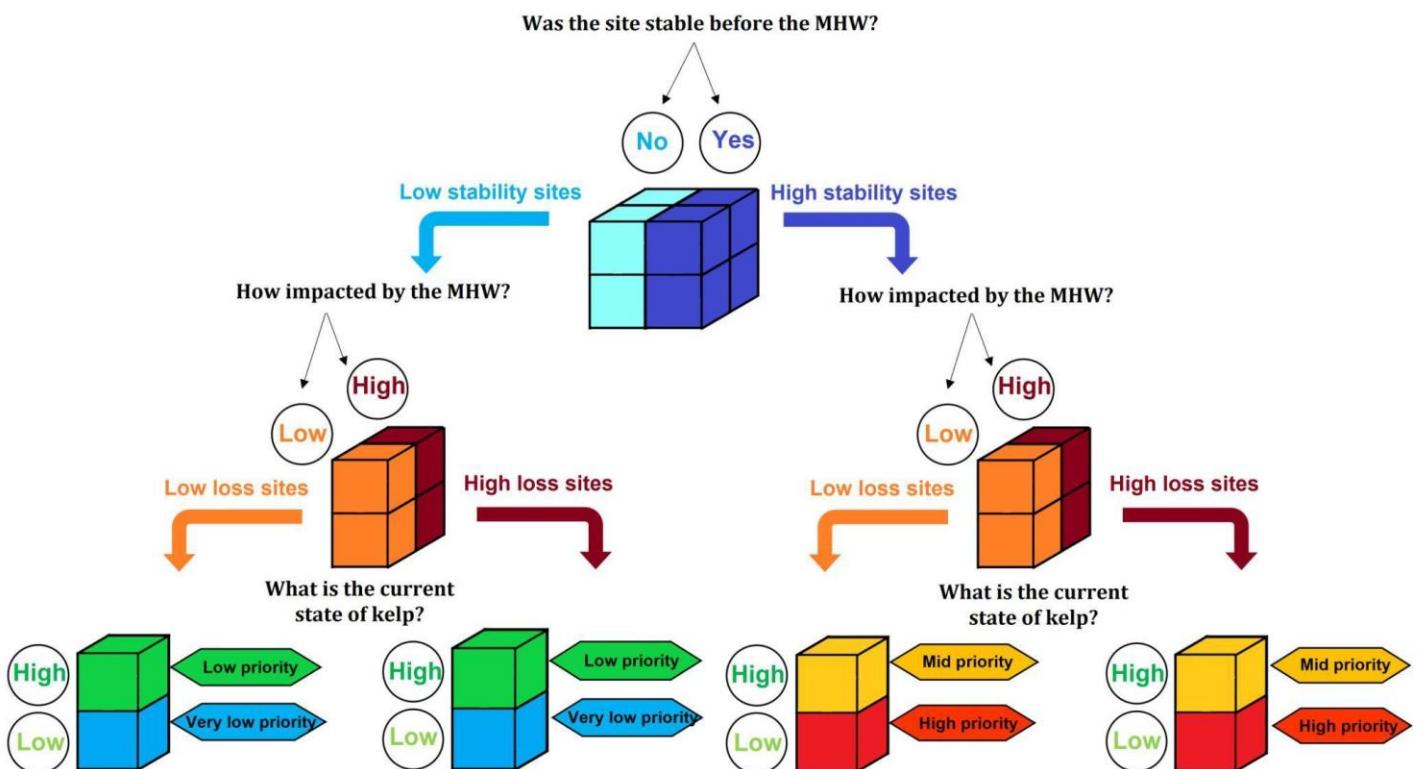
672

673

674 **Figures**

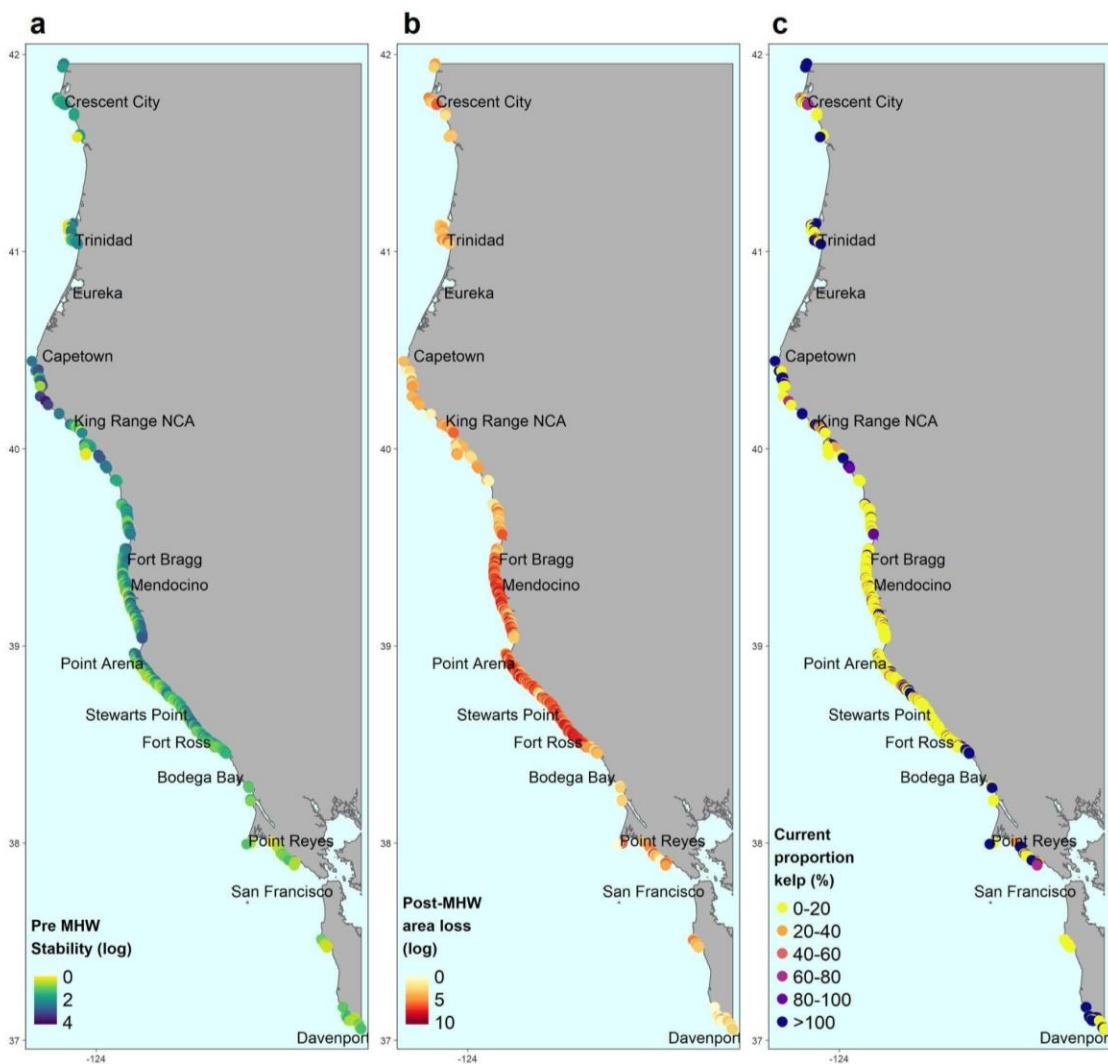

675 **Figure 1.**

676


677

678 **Figure 2.**

679


680 **Figure 3.**

681

682

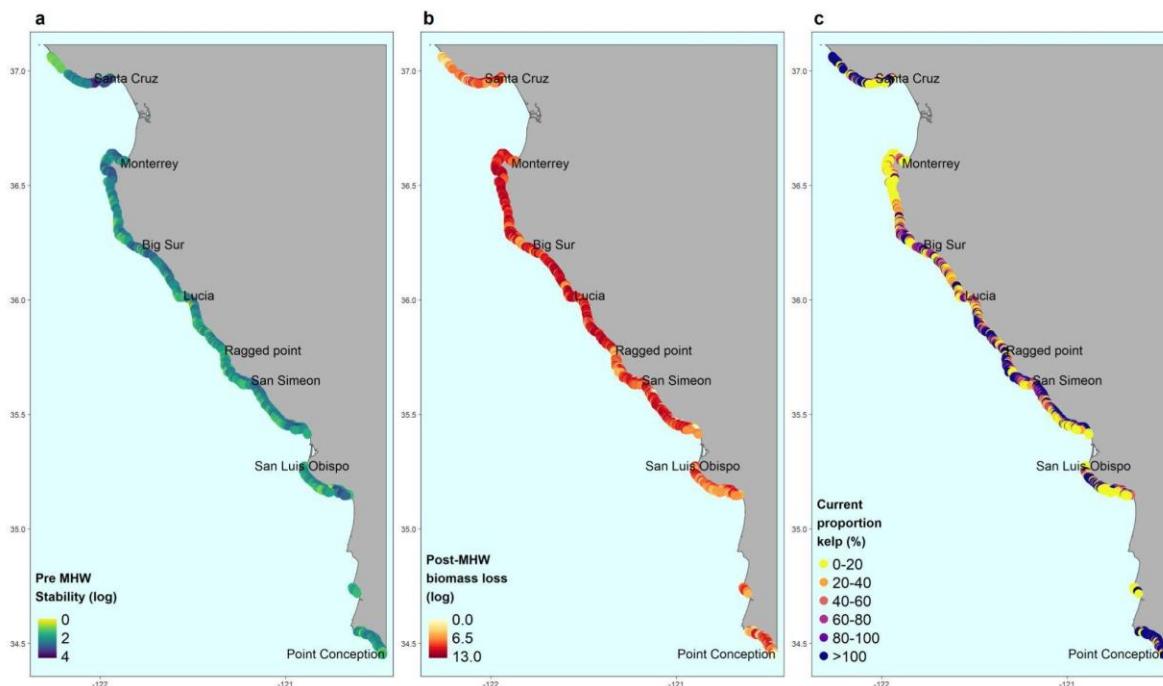
683 **Figure 4.**

684

685

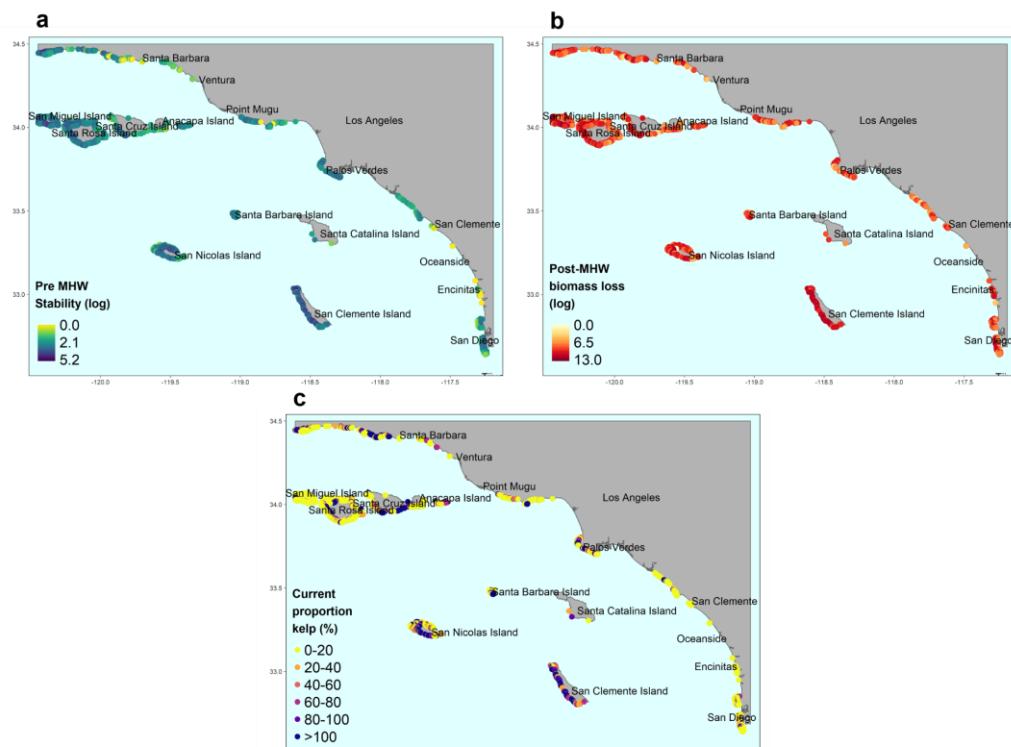
686

687

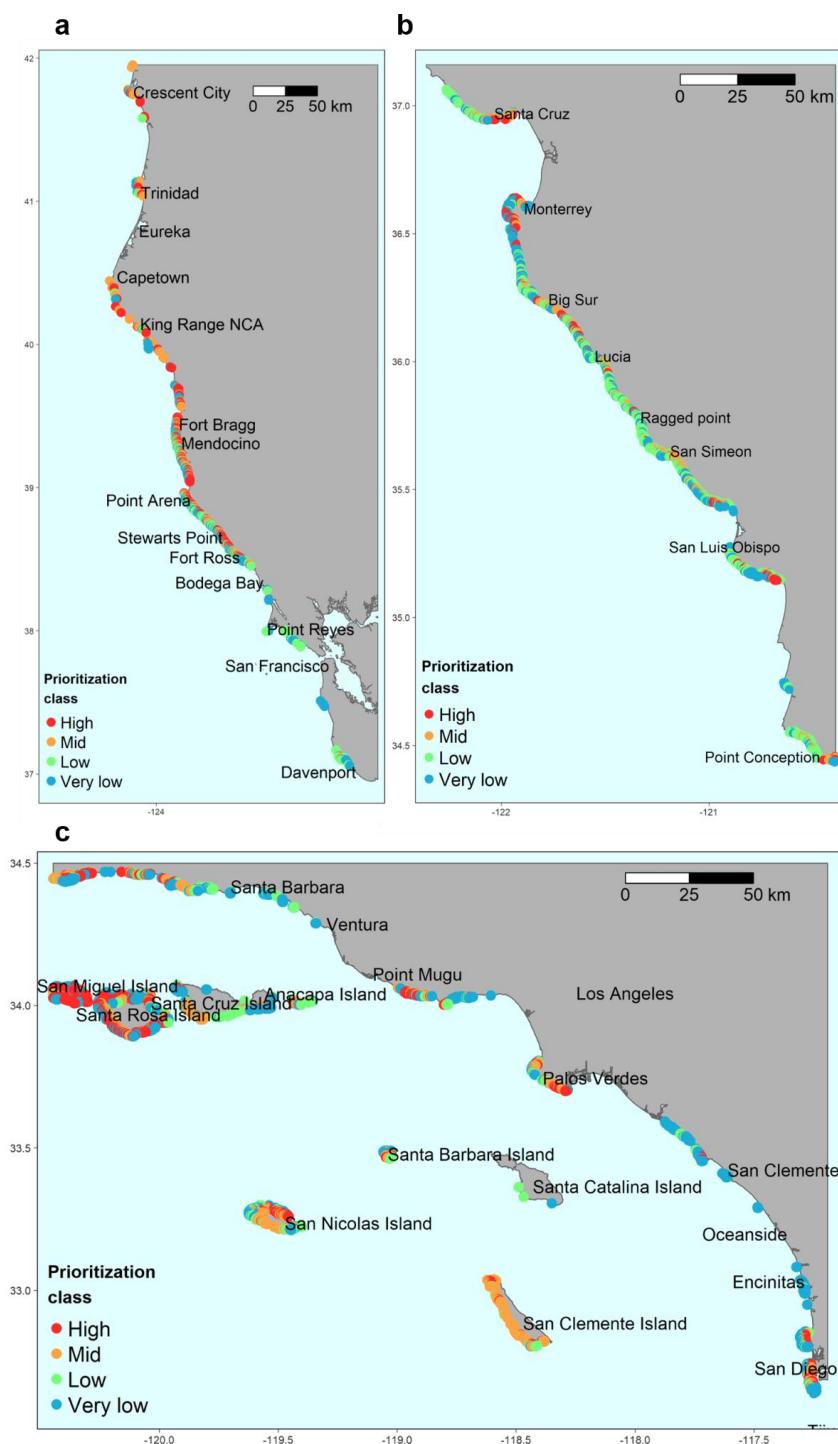

688

689

690


691

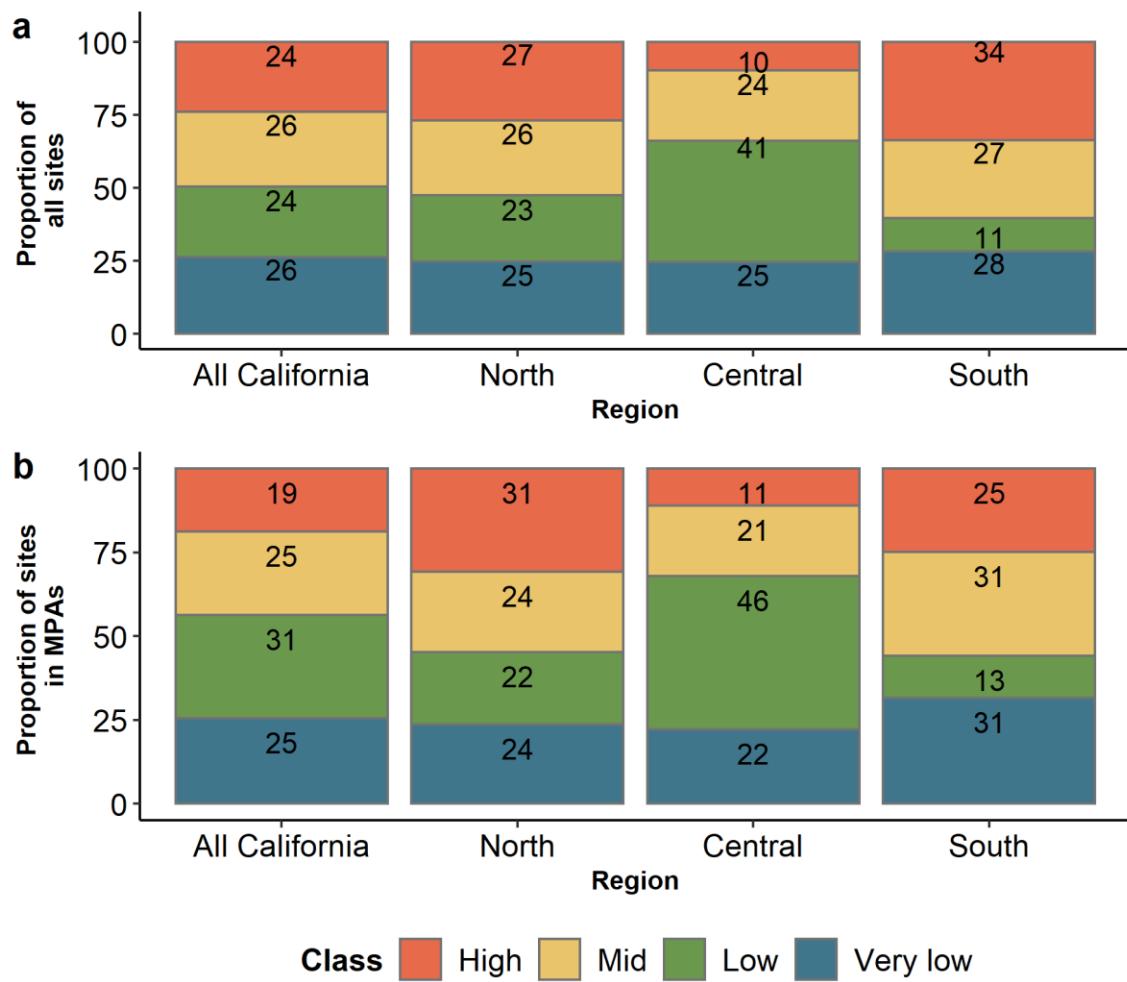
692 **Figure 5.**


693

694 **Figure 6.**

695

696 **Figure 7.**



697

698

699

700 **Figure 8.**

701