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Abstract

Low generalization to the patient cohort and variety of experimental conditions in the
proteomic search for disease biomarkers are among the main reasons for the bumpy road of
quantitative proteomics from discovery stage to clinical validation. Only a small fraction of
biomarkers discovered so far by proteomic analysis reaches clinical trials. Here, we
presented a machine learning-based workflow for proteomics data analysis, which partially
solves some of these issues. In particular, we used a customized decision tree model, which
was regulated using a newly introduced parameter, min_cohorts_leaf, that resulted in better
generalization of trained models. Further, we analyzed the trend of feature importance’s
curve as a function of min_cohorts_leaf parameter and found that it could be used for
accurate feature selection to obtain a list of proteins with significantly improved
generalization. Finally, we demonstrated that the recently introduced DirectMS1 search
algorithm for protein identification and quantitation provides a simple, yet, a highly efficient
solution for the problem of combining multiple data sets obtained using different experimental
settings. The developed workflow was tested using five published LC-MS/MS data sets
obtained in the large consortia studies of Alzheimer’s disease brain samples. The selected
data sets consist of 535 files in total analyzed using label-free single-shot data-dependent or
data-independent acquisitions. Using the proposed modified ExtraTrees model we found that
the expressions of two proteins involved in ferroptosis Serotransferrin TRFE and DNA repair
nuclease/redox regulator APEX1, are important for explaining a lack of dementia for patients
with the presence of neuritic plaques and neurofibrillary tangles.

Introduction

Biomarkers discovery is one of the important tasks for MS-based proteomics. However, one
of the key issues in these studies is low generalization across data sets and/or patient
cohorts.1
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Big data analyses using machine learning (ML) algorithms bring new opportunities for the
biomarker discovery by MS-based proteomics.2 However, this area of research is still in its
infancy, undergoing a period of continuous development, leaving researchers with the best
methods available at a given time. A lack of standardization in proteomic data acquisition
leads to low similarity across data sets even the ones obtained for the same objects and
adds further difficulties to the biomarkers discovery based on big data analysis. Note that
targeted MS-based approaches widely employed for clinical trials and the diagnostic assays
development based on already found protein biomarker panels do not suffer from the above
issues.

Machine learning methods have multiple advantages over standard differential expression
analysis based on statistical tests for biomarker candidate discovery. Firstly, ML provides a
ready-to-use model for a panel of protein biomarkers. Secondly, intrinsically, these methods
deal better with data containing unknown heterogeneous subgroups of patients within a
group of one known pathology. Finally, the ML-based solutions can potentially uncover more
complex effects of multiple protein interactions. However, there are difficulties in both
detecting and interpreting these effects even upon being captured by the model.3

Random forest is one of the most popular choices for machine learning models in biomarker
discovery applications based on computational proteomics. In this work, we proposed a
modification of decision tree building in the random forest and ExtraTrees algorithm for better
generalization of trained models in the context of Alzheimer’s disease proteomics. The
modification allowed alternative estimation of feature importance in the trained models and
better selection of a set of proteins highly relevant to Alzheimer’s disease development.

Methods
Data.
Four proteomic data sets from large scale consortium studies of Alzheimer disease were
used. The data sets are available via the AD Knowledge Portal
(https://adknowledgeportal.org). The AD Knowledge Portal is a platform for accessing data,
analyses, and tools generated by the Accelerating Medicines Partnership (AMP-AD) Target
Discovery Program and other National Institute on Aging (NIA)-supported programs to enable
open-science practices and accelerate translational learning. Data is available for general
research use according to the following requirements for data access and data attribution
(https://adknowledgeportal.synapse.org/Data%20Access). The following data sets were
included into this study: ACT (syn5759376), Banner (syn7170616), MSSB (syn3159438) and
BLSA (syn3606086). In addition, DIA data set4 available at ProteomeXchange5 under
PXD025668 identifier was used. Brief description of all data sets is provided in Table 1. The
data were acquired for postmortem human brain samples derived from the three types of
patients: control group, Alzheimer group and Asymptomatic Alzheimer group. DIA data also
divides Alzheimer’s groups into sporadic and family forms.

LC-MS1 analysis. Data sets were analyzed using MS1-only search engine ms1searchpy (v.
2.7.3) for protein identification developed previously for ultrafast proteomics acquisition
method DirectMS16. Raw files were converted into mzML format using
ThermoRawFileParser7 (v. 1.3.4). Peptide isotopic clusters in MS1 spectra were detected
using biosaur28 (v. 0.2.23). Parameters for the search were as follows: 5% FDR, minimum 5
scan for detected peptide isotopic cluster; minimum one visible 13C isotope; charge states
from 1+ to 6+, no missed cleavage sites, carbamidomethylation of cysteine as a fixed
modification and 8 ppm initial mass accuracy, and peptide length range of 7 to 30 amino acid
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residues. DeepLC9 (v. 1.1.2) software was employed for predicting retention time of peptides.
Searches were performed against the Swiss-Prot human database, containing 20193 protein
sequence. Decoy proteins were created by built-in ms1searchpy’s method using
pseudo-shuffle method and keeping the same decoy peptides for target peptides of the same
sequence from different homologous proteins.10

Raw to mzML file conversion (ThermoRawFileParser), peptide isotopic cluster extraction
(biosaur2) and protein identification (ms1searchpy) were proceeded one-by-one for each raw
file independently. At the next step, LFQ protein values were extracted within each data set
group of files using directms1quantmulti script distributed along with ms1searchpy package
freely available at https://github.com/markmipt/ms1searchpy.

For the quantitation, all identified peptides for a given run were sorted by intensity and only
the maximum intensity was assigned to a particular combination of peptide sequence and
charge state. Among the multiple peptide charge states, the one with lowest number of
missing values in a data set (or the higher median intensity in case of equivalent number of
missing values) was considered for subsequent analysis. All peptides with more than 50%
missing values (missing value threshold) were excluded from analysis. Then, all peptide
intensities were normalized by a sum of intensities for 1000 of the most intense peptides in
the given run, and all missing values were replaced by run-specific minimal intensities. Then,
peptide fold change was estimated by intensity value divided by the median value of this
particular peptide’s intensities in the control group of the same MS batch. And finally, the
protein LFQ value was estimated as the median fold change of all peptides belonging to this
particular protein. All proteins with only a single peptide passing the missing value threshold
were excluded from analysis.

A modified decision tree code is freely available at https://github.com/markmipt/scikit-learn
under the 3-Clause BSD license. The code is a modified fork of the scikit-learn11 Python
package (v. 1.3.1).

Results and Discussion

MS1 data extraction. All the data sets were analyzed using the MS/MS-free approach
DirectMS1 described elsewhere6. There were multiple reasons for such a choice. Firstly, in
our previous study it was shown that MS1-based reanalysis of MS/MS data (both DDA and
DIA) can provide similar quantitation efficiency.12 Secondly, MS1 spectra are the most
universal way to analyze and directly compare both DIA and DDA data. Finally, the MS1
spectra-based workflow provides a low number of missing values without added complexities
from employing match-between-runs procedures when they are applied to the processing of
large data arrays including several hundreds of files.

There were 4325, 3477, 4661, 4154, and 9646 proteins quantified for MSSB, BLSA,
BANNER, ACT and DIA data sets, respectively. We kept only the intersection of quantified
proteins for MSSB, BLSA, BANNER and ACT data sets, which resulted in the list of 2705
proteins. DIA data set was further used for validation of the workflow and overfitting control.
Pairwise differential expression analysis for each data set, AD_vs_Control, AD_vs_AsymAD,
and AsymAD_vs_Control, was added using DirectMS1Quant algorithm10. Differentially
expressed proteins obtained in this analysis are shown in Supplementary Table S1.
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Machine learning. The ExtraTrees models13 based on the standard decision trees optimize
mathematical objectives (such as area under curve in case of binary classification task) for
the training data without regard to different groups (data sets, patients cohorts, etc.) in the
data. The result is the model which provides an optimal solution on average for all samples
within the training data. However, we believe that in biomedical applications, and, especially
in quantitative proteomics, it is more important to obtain better generalization between data
sets (cohorts) rather than just a maximal objective optimization. There are not many ways to
achieve such a generalization of developed models using standard solutions. For example,
one can use sophisticated weighing of samples within each data set or special feature
selection procedures. Here, we propose a simple modification for decision trees, which
solves the mentioned generalization issue. A new parameter, min_groups_leaf, was added to
the splitting rules of decision trees. It represents the number of groups (data sets in our
particular case) required to be presented in both left and right child nodes when decision
tree’s split happens. A hypothetical example of the proposed method is shown in Figure 1a
instead of a mathematically optimal split based on the feature “Protein10”, which results in
nodes with 3 and 4 groups, the model creates a rule based on the feature “Protein2” which
result in nodes with 4 and 4 groups when min_groups_leaf option is set to 4. Simply
speaking, the model is forced to create rules supported by all data sets used. Indeed, such a
behavior leads to a significant reduction of the overfitting, although, may suffer from the
underfitting. To reduce the latter, if the parent node contains none or only one sample of
some group (impossible to split into both child nodes), that group is considered as equally
splitted when min_groups_leaf rule is checked. That additional behavior means that the
newly introduced min_groups_leaf parameter makes more influence on the first low-depth
splits and may be completely ignored at the bottom level of the decision tree. All those rules
and new parameters were added into the decision tree code of scikit-learn package to modify
Random Forest and ExtraTrees models. We believe that the proposed approach can
potentially be added to the more complicated Gradient Boosting models like XGBoost or
LightGBM.

To test the proposed workflow we used a 4-fold cross validation scheme, in which
each fold was a data set used in the study (see Figure 1b). Three different models were
trained including AD vs AsymAD, AD vs Control, and AsymAD vs Control. Area under the
curve (AUC) was the metric to estimate a model's efficiency. Parameters for the models were
‘max_depth’=6, 'min_samples_split': 2, ‘min_samples_leaf'=1, 'n_estimators'=500,
'max_features'='sqrt', 'n_jobs'=10. Newly introduced parameter 'min_groups_leaf' was varied
from 1 and up to the maximal number of data sets used for training. The main results in the
manuscript are shown for the ExtraTrees Regressor algorithm. Random Forest Regressor
and Classifier, and ExtraTrees Classifier algorithms were also tested, yet, appeared less
efficient (results are not shown). The models with maximum number of min_groups_leaf
values show the highest AUC values estimated using 4-fold cross-validation (Table 2a). The
DIA data used for validation have shown that the best results are achieved in two of three
cases with min_groups_leaf set to 3 (Table 2b). Those results clearly demonstrate that the
proposed idea provides better generalization between data sets.
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Figure 1. Overview of machine learning approach used in the study. (a) A visual example of
proposed modification for decision trees with newly introduced parameter min_groups_leaf.
(b) K-fold validation scheme with folds done by data sets. (c-d) Impurity-based feature
importance for proteins GNAI1 (c) and IGHA1 (d) in each k-fold for different values of
min_groups_leaf parameter for “AD vs Control” model. (e) Distribution of slope coefficients
for the first k-fold iteration for “AD vs Control” model.

The new parameter provides an opportunity for novel feature selection procedure, which
takes into account machine learning feature generalization. Within each trained model and
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for every protein the feature importance trend can be estimated using linear regression. The
examples are shown for proteins GNAI1 and IGHA1 in Figure 1c and 1d. GNAI1 increases its
importance with increasing min_groups_leaf value for all k-folds, which can be interpreted as
a useful protein feature for better model generalization. On the contrary, IGHA1 decreases its
importance with increasing min_groups_leaf value. The latter means that the ExtraTrees
model creates more splitting rules which are not universal for all data sets when IGHA1
protein is involved. However, standard feature selection procedures based on impurity-based
or permutation feature importances do not filter out such proteins. Moreover, IGHA1 is
reported in the results of standard differential expression analysis for ACT data set. However,
this is important when the task is generalization for big data analysis in proteomics, where
acquisition schemes, experimental setups, sample preparation and data analysis are
constantly evolving. To accurately estimate the feature importance for better generalization
we propose probability based scoring. First, all slope coefficients within each k-fold iteration
are estimated for all proteins. An example of slope coefficient distribution is shown in Figure
1e. These slope coefficients are fitted with normal distribution to obtain mean shift and
standard deviation. By assuming that most proteins are not important and, thus, they
provides random values for slope coefficients, the probability of chosen protein j to be
randomly important in iteration i can be estimated using the following equation:

(1),𝑃𝑟𝑜𝑏
𝑖,𝑗

 = 𝑆𝐹 (
(𝑎

𝑗
 − 𝑚

𝑖
)

σ
𝑖

) 

where SF is survival function of normal distribution, aj is a slope coefficient of protein j, mi and
σi are mean shift and standard deviation of fitted normal distribution, respectively, and i is the
k-fold iteration.

Then, the probability of protein to be randomly important in all iterations is:

(2).𝑃𝑟𝑜𝑏𝐹𝑖𝑛𝑎𝑙
𝑗
 =  1 −  

𝑖=1

3

∏  (1 −  𝑃𝑟𝑜𝑏
𝑖, 𝑗

)

These final probabilities were calculated for all proteins and were adjusted using
Benjamini-Hochberg correction. 18, 6 and 3 proteins with adjusted values of less than 0.05
were selected as important for models “AD_vs_Control”, “AsymAD_vs_Control”, and
“AD_vs_AsymAD”, respectively (Table 3).
The AUC values estimated using 4-fold cross-validation and validation DIA data set are
shown in Table 2c and Table 2d, respectively. There is no optimal min_groups_leaf value for
all models suggesting that this parameter is not required with small and carefully selected
subsets of proteins for training.

To further analyze the proteins reported in the proposed machine learning approach, we
checked if those proteins were reported in standard differential expression analysis on the
same data (see Supplementary Figure S1). 9 (of 18), 5 (of 6) and 1 (of 3) of ML-obtained
proteins were unique in the machine learning approach for “AD_vs_Control”,
“AsymAD_vs_Control” and “AD_vs_AsymAD”, respectively. LFQ values distributions for
proteins highlighted by machine approach are shown in Supplementary Figures S2-S4.
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Alternative models. Asymptomatic Alzheimer group containing cognitively normal people
with presence of neuritic plaques and neurofibrillary tangles is important for studying
Alzheimer disease. The classification of this group of individuals as belonging to the diseased
or healthy patient cohort remains a subject of debate.14 This is because there is no definitive
answer to the questions: whether the preclinical stage of Alzheimer's disease will progress to
clinical dementia during their lifetime, and whether this neurodegeneration is a distinguishing
feature of Alzheimer's disease or a manifestation of normal aging? It is likely that
mechanisms exist preventing the development of clinical stages of Alzheimer's disease or
other neurological disorders in this group of patients. We developed special models to better
reveal the insight on the mentioned topic. Instead of simple training for classification between
the patient groups, we utilized Braak (neurofibrillary tangles localization) and CERAD
(neuritic plaques localization) scores available with the data. Indeed, the available data is
highly unbalanced. For example, 80% samples within the AD group have the highest Braak
scores (5 or 6) in our data sets. On the contrary, only 19% of samples have those scores in
the AsymAD group. That may result in that standard group-based model “AD_vs_AsymAD”
gives a higher importance to the group of proteins which distinguish low and high
Braak/CERAD scores rather than Asymptomatic vs Dementia Alzheimer patients. To deal
with this problem, we used a special scheme for targets found by machine learning (Figure
2a). The idea is that the ML algorithm should produce higher training error for AD and
AsymAD samples with highest Braak/CERAD values, while the samples with low
Braak/CERAD values should be less important. Other parameters and training procedures
were the same as described above. Using the probabilities calculated by Eq.2, we found 9
proteins reported as important by either of the considered here alternative training models,
Braak- or CERAD-based: MAP1B (Braak and CERAD), RP3A (Braak and CERAD), STXB1
(Braak), GNAI1 (Braak), TRFE (Braak), EF1A3 (Braak), E41L3 (CERAD), RTN4 (CERAD)
and K1045 (CERAD). The predicted values for the DIA data set using the models trained on
all four Synapse’s DDA data sets are shown in Figures 2,b and c for min_groups_leaf=4 and
min_groups_leaf=1 parameters, respectively. Braak-based and CERAD-based models
trained with min_groups_leaf option correlate better than standard ExtraTrees model
(min_groups_leaf=1). The Asymptomatic Alzheimer group was clearly divided into two
subgroups close to either control or AD samples, further supporting the existing
Asymptomatic Alzheimer theories. To deeper analyze detected proteins, the LFQ values
grouped by Braak stage and Condition (AD, AsymAD, and Control) were shown in Figure 3.
We see that most of these proteins (STXB1, RTN4, K1045, GNAI1, and RP3A) decrease in
concentration for both AD and AsymAD groups with the increase in Braak stage. We believe
that these proteins do not really differentiate AD and AsymAD groups. Protein EF1A3 has a
more interesting pattern: it increases back to Control values at Braak stage 6 for both AD and
AsymAD groups. Proteins E41L3 and MAP1B both decrease in AD group, but remain stable
in Control and AsymAD group (except Braak 6 stage). The remaining protein TRFE
decreases in AD, remains stable in Control and increases in AsymAD group (except Braak 6
stage).
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Figure 2. (a) Custom targets for machine learning based on braak and CERAD stages;
Braak-based and CERAD-based model predictions for DIA data samples using
min_groups_leaf=4 (b) and min_groups_leaf=1 (c) options.
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Figure 3. Label-free quantitation in log scale of proteins reported for RankedBraak and
RankedCerad models grouped by Braak stage and condition.

Results interpretation.
Note that not all differentially expressed proteins detected in the Alzheimer group are really
interesting. There are a lot of possible reasons for many proteins to be changed, sometimes
significantly, as a consequence of cognitive issue development rather than being directly
related. Table 4 shows all possible theoretical outcomes for protein expression for the study
design used in this manuscript. Indeed, expression changes unique for the AD group may be
explained by effects of patient treatment, issues with nutrition or hygiene, etc. Another
ambiguous case is the protein expression change correlation between AsymAD and AD
samples. Indeed, these changes are most likely a consequence of the presence of
neurofibrillary tangles and neuritic plaques and do not provide much insight into the
underlying biological mechanisms. Here, we focused on the protein expression changes
unique for AsymAD group. After manual inspection of 27 proteins reported by RankedBraak,
RankedCerad or AD_vs_AsymAD models (Figure 3 and Supplementary Figure S4), we found
that only two proteins meet our criteria: TRFE (Serotransferrin) and APEX1 (DNA repair
nuclease/redox regulator APEX1) (see Figure 4). APEX1 was not detected in standard
differential expression analysis using DirectMS1Quant (Supplementary Table S1) and TRFE
was detected only in two cases: AD_vs_AsymAD for ACT data set and AsymAD_vs_Control
for BLSA data set.
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Figure 4. Label-free quantitation in log scale for TRFE and APEX1 proteins in DDA (left) and
DIA (right) data grouped by Braak stage and condition. Note, that metainformation for DIA
data contains B scores instead of Braak stages: B score 3 is equivalent to 5th and 6th Braak
stages, 2 is 3rd and 4th stages, and 1 is 1st and 2nd stages.

APEX1 is a multifunctional protein that plays a central role in the cellular response to
oxidative stress. Reportedly, APEX1 is a key inhibitor of cell death through ferroptosis.15 The
latter is a recently proposed iron-dependent mechanism of cell death.16,17 It was noted that
the level of iron significantly increases in the brain in case of cognitive dysfunctions.18 It was
also shown that ferroptosis is accompanied with an increase in concentration of Fe2+ and Fe3+

ions in general and a decrease in the ratio of Fe3+/Fe2+.19 The latter study also showed 2.3-
and 7.9-fold increase in Fe2+ and Fe3+ ion concentrations in mice brains with AD. The iron
ions accumulate exclusively around Aβ amyloids which is explained by ion diffusion from
surrounding cells. It was also shown that ferroptosis is a key mechanism of
neurodegeneration in the familial form of AD in mice caused by mutations in presenilin 1 or
2.20 Finally, serotransferrin is responsible for the transport of iron ions as many studies
suggest a correlation between its levels in plasma, serum and CSF with Alzheimer's
disease.21–23

To further elaborate on the ferroptosis’s AD’s hypothesis, we looked at the quantitation
results for glutathione peroxidase 4 (GPX4), which is considered as a key ferroptosis
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inhibitor.24 Its concentration decreases for both AD and AsymAD groups with an increase in
Braak stage (see Supplementary Figure S5), thus advocating for the ferroptosis being
involved in the pathological process. Also note that GPX4 does not show any difference
between AD and AsymAD groups, unlike the mentioned TRFE and APEX1. We hypothesize
that the increase in TRFE and APEX1 in the AsymAD group represents a compensatory
mechanism essential for neuronal survival in the face of accumulating misfolded proteins and
the initiation of neurodegenerative processes. Supporting this hypothesis, aberrant iron
distribution in the brain precedes tissue damage in both AsymAD and AD patients. This
aberrant iron distribution, in turn, enhances the activity of ferroptosis as a cell death
mechanism. Consequently, the increase in both TRFE and APEX1 likely acts as a key
protective mechanism against the cell death in the AsymAD, potentially preventing the
transition from the preclinical to clinical stages in Alzheimer's disease pathogenesis. Thus,
our findings demonstrate that ferroptosis takes place in brain tissue during the early stages of
Alzheimer's disease and that the regulatory mechanisms of ferroptosis may represent key
events in the development of clinical forms. Therefore, early diagnosis and the development
of novel targeted therapies involving ferroptosis may potentially extend the prodromal phase
in AsymAD patients.

As a final comment, there are a few contradictory points in our findings. Firstly, the LFQ
values for both TRFE and APEX1 in AsymAD group with Braak stage 6 are close to the ones
in the AD group. In response, we may cautiously suggest that these samples may belong to
the AD group but the patients died before exhibiting the cognitive dysfunction. Indeed,
according to clinical guidelines25, Braak stages 5 and 6 are typically correlated with clinical
dementia and are often classified as AD. Our observations for TRFE and APEX1 proteins
advocate for the assignment of AsymAD with the Braak 6 stage to the AD group. However,
the AsymAD group with the Braak 5 stage is more ambiguous and similar to the other
AsymAD with Braak 3 and 4 stages. Secondly, the LFQ values grouped by data sets show
that not all our findings are supported by the data sets studied, in particular,
TRFE-AsymAD-MSSB, APEX1-AsymAD-BLSA, and APEX1-AD-DIA.

Supporting Information:

Supplementary information file includes upset plots for proteins reported as important by
standard differential expression analysis and by machine learning approach; Label-free
quantitation in log scale for different proteins grouped by data set and condition. (pdf)

Supplementary Table S1 contains the lists of differentially expressed proteins including their
fold changes calculated by DirectMS1Quant for standard DE analysis. (xlsx)
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Table 1. The number of samples per condition in the data sets used in study. AD - Alzheimer
group; AsymAD - Asymptomatic Alzheimer group (cognitively normal with presence of
neuritic plaques and neurofibrillary tangles);

ACT Banner BLSA MSSB DIA

# Cases
AD 40 94 20 114 42

AsymAD 14 58 13 21 11

Control 11 26 11 53 9

brain region unknown prefrontal
cortex

prefrontal
cortex

frontal
pole

SMTG

mass-spectrometer Q-Exactiv
e Plus

Q-Exactiv
e Plus

Q-Exactiv
e Plus

Q-Exactiv
e Plus

Fusion
Lumos

# of MS batches 1 4 1 7 4

acquisition mode DDA DDA DDA DDA DIA

LC gradient 120 min 120 min 120 min 120 min 110 min
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Table 2a. Average AUC values estimated using testing splits in 4-fold cross-validation for
models trained with all 2705 protein features. Bold font represents the best results.

min_groups_leaf Model

AD_vs_AsymAD AD_vs_Control AsymAD_vs_Control

1 0.644 0.914 0.738

2 0.665 0.922 0.757

3 0.688 0.926 0.783

Table 2b. AUC values estimated using validation DIA data set for model trained using all 4
training data sets and all 2705 protein features. Bold font represents the best results.

min_groups_leaf Model

AD_vs_AsymAD AD_vs_Control AsymAD_vs_Control

1 0.861 0.968 0.838

2 0.864 0.981 0.828

3 0.872 0.984 0.848

4 0.874 0.968 0.838

Table 2c. Average AUC values estimated using testing splits in 4-fold cross-validation for
models trained with proposed feature selection. Bold font represents the best results.

min_groups_leaf Model

AD_vs_AsymAD
(3 protein features)

AD_vs_Control
(18 protein features)

AsymAD_vs_Control
(6 protein features)

1 0.746 0.957 0.805

2 0.754 0.957 0.821

3 0.742 0.950 0.839

Table 2d. AUC values estimated using validation DIA data set for model trained using all 4
training data sets and all 2705 protein features. Bold font represents the best results.

min_groups_leaf Model

AD_vs_AsymAD
(3 protein features)

AD_vs_Control
(18 protein features)

AsymAD_vs_Control
(6 protein features)

1 0.848 0.976 0.939

2 0.853 0.974 0.909

3 0.855 0.974 0.899

4 0.857 0.968 0.869
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Table 3. List of proteins with significant p-value reported by any of five ML-based models
used in the study.

p-value

dbname gene
AD_vs_Co

ntrol
AsymAD_vs_Co

ntrol
AD_vs_Asy

mAD
RankedBra

ak
RankedCE

RAD

P63096 GNAI1 0 0 0

P05067 A4 0 0

Q9Y2J0 RP3A 0 0 1.1e-09 0

P08754 GNAI3 0

Q16181 SEPT7 0

Q9NQC3 RTN4 0 0.0055

P14136 GFAP 2.9e-10

P04792 HSPB1 8.7e-08 0.00013

P31146 COR1A 6.1e-06

Q99719 SEPT5 9.8e-06

P60201 MYPR 8.7e-05

P60763 RAC3 0.00011

Q13153 PAK1 0.0026

Q16623 STX1A 0.003

Q8WYJ6 SEPT1 0.0041

P04899 GNAI2 0.0089 0.014

P02686 MBP 0.0094

P06744 G6PI 0.035

Q8NFI4 F10A5 0.0068

Q9UJZ1 STML2 0

P27695 APEX1 0.0019

P12036 NFH 0.05

P46821 MAP1B 0 0.00027

P61764 STXB1 0.00011

P02787 TRFE 0.00043

Q5VTE0 EF1A3 0.0052

Q9Y2J2 E41L3 0.00082

Q9UPV7 K1045 0.0087
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Table 4. All possible outcomes for protein expression in different groups. 0 means no
changes, + and - mean increase and decrease, respectively. Note that all protein LFQ values
in our study were normalized to the Control group, which means only the “0” label could be
used for the Control group.

Group Comment

Control AsymAD AD

0 0 0

0 0 + Not interesting:
cannot be
distinguished from
treatment
side-effects, nutrition
problems, etc.

0 0 -

0 + + Not interesting:
does not help to find
any mechanism
unique for AsymAD
group

0 - -

0 + 0 Interesting: may
explain why
AsymAD group
patients are
cognitively normal
during life

0 - 0

0 + -

0 - +
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