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Abstract: The human parasitic fluke, Schistosoma haematobium hybridizes with the livestock
parasite S. bovis in the laboratory, but the frequency of hybridization in nature is unclear. We

analyzed 34.6 million single nucleotide variants in 162 samples from 18 African countries,
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revealing a sharp genetic discontinuity between northern and southern S. haematobium. We
found no evidence for recent hybridization. Instead the data reveal admixture events that occurred
257-879 generations ago in northern S. haematobium populations. Fifteen introgressed S. bovis
genes are approaching fixation in northern S. haematobium with four genes potentially driving
adaptation. We identified 19 regions that were resistant to introgression; these were enriched on
the sex chromosomes. These results (i) suggest strong barriers to gene flow between these
species, (ii) indicate that hybridization may be less common than currently envisaged, but (iii)
reveal profound genomic consequences of rare interspecific hybridization between schistosomes

of medical and veterinary importance.

Funding - This work was funded by NIH NIAID (RO1 Al166049).
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Introduction

Hybridization and the transfer of alleles via introgression is an important source of genetic
variation between species®. This process allows for allelic variants, which have already been
preselected in a donor species, to be introduced into the genome of a recipient species in a single
generation. By comparison, it may take multiple generations for random mutation and selection
to deliver comparable levels of genetic variation in the absence of introgression?. As a result,
introgressive hybridization, can contribute to the evolution of new genetic traits in hybridizing
species®. Hybridization between human and animal pathogens can lead to the emergence of
parasites with novel traits such as increased pathogenicity*, expanded host range®, altered
transmission dynamics® and drug resistance’. Understanding the frequency and impact of such

hybridization events is critical for devising effective disease intervention strategies.

Members of the blood fluke genus Schistosoma parasitize a range of mammal species and cause
substantial morbidity and economic loss®. Parasites in this genus have a complex life cycle: first-
stage larvae (miracidia) infect an aquatic snail intermediate host where they develop into
sporocysts. Clonally generated, motile second-stage larvae (cercariae) emerge from the
intermediate host, and actively locate and penetrate the skin of the definitive mammalian host. In
the mammal host, mature parasites form male-female pairs in the blood stream and reproduce
sexually. Eggs are excreted through the feces or urine, depending on the parasite species, which

restarts the life cycle.

One pair of species, S. haematobium, a human parasite, and S. bovis, an ungulate parasite
common in domestic livestock, are genetically divergent (3-5% and 18% divergent in the nuclear
and mitochondrial genomes respectively), but can hybridize and produce viable offspring when
given the opportunity®. Given the close proximity between humans and their livestock and the
regular use of the same water bodies, the potential for hybridization between these species is a
particular concern and a significant effort has been mounted to identify, monitor and map S.
haematobium and S. bovis hybrids!®. Multiple studies have reported mitochondrial and/or
ribosomal DNA from S. bovis in S. haematobium populations. For examples see %13, The high
frequency of individuals with discordant mitochondrial and nuclear markers has been used to
argue that hybridization is common and that the zoonotic threat of S. bovis should be considered

in human schistosomiasis control programs?4.
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69  However, several, more recent multi-marker and genomic studies using single nucleotide variants
70  (SNVs), microsatellite markers and whole genome sequence assemblies have suggested that
71  hybridization between S. haematobium and S. bovis may not occur as frequently as previously
72 postulated. Exome?®, whole genome?®, and microsatellite datal’, and others®2! failed to identify
73  evidence of contemporary hybridization in field-collected parasites. Instead, these studies indicate
74 that S. bovis and S. haematobium are genetically distinct and do not hybridize frequently but
75  evidence for historical hybridization is clearly evident within genomes of S. haematobium. As a
76  result, some S. bovis genes have introgressed into the S. haematobium population and reached
77  high frequency; evidence of a potential, adaptive introgression event®16.18.20,

78

79 In this study, we build upon previous work and try to address knowledge gaps by analyzing a
80 comprehensive dataset of 34.6 million genome-wide SNVs from S. bovis (n=21) and S.
81 haematobium (n=141) samples collected from 18 countries across the African continent. Many of
82 these samples presented discordant mitochondrial and ribosomal DNA profiles and were
83  categorized as S. haematobium-bovis hybrids. This expanded dataset, and recent availability of
84  ahigh-quality S. haematobium genome assembly??, allows for a more detailed examination of the
85  genetic relationships between these two species and the potential consequences of hybridization
86  ontheir evolution and epidemiology. Our results: (i) reveal a strong discontinuity between northern
87 and southern S. haematobium populations; (ii) define similar genomic introgression profiles in S.
88  haematobium sampled from locations 3,002 Km apart; (iii) fine-map introgressed genome regions
89 and identify putative genes driving adaptive introgression; (iv) identify two distinct lineages of S.
90  bovis-like mitochondrial DNA in northern S. haematobium, consistent with historical introgression
91 and (v) identify “introgression deserts” on the ZW chromosomes consistent with the sex
92 chromosomes maintaining species integrity. These results enhance our understanding of
93  Schistosoma spp. epidemiology, with important implications for control efforts.

94

95 Results

96

97 DNA Sequencing and Genotyping — We examined 219 Schistosoma samples from 24 countries

98  (Figure 1A). Just over 80% (n=176) of the samples were collected as part of this study with the
99 remaining 43 samples made available through open access resources. Median genome coverage
100 per sample was 29.7x. After filtering, the final dataset contained 35,817,757 total SNVs, 7,206,957
101  common (minor allele frequency; MAF>0.05%) SNVs, and 446,162 common unlinked SNVs
102  genotyped from 162 samples (141 S. haematobium and 21 S. bovis; Figure 1B). Filtered samples
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103  (n=51) were removed due to low genome coverage (mean = 9.7x) compared to passing samples
104 (mean=30.8x). NCBI Short Read Archive (SRA) accessions and sample metadata are available
105 in Supplemental Table 1.

106

107  Population structure and ancestry - We examined relationships among samples with a PCA of

108 355,715 unlinked, common, autosomal SNVs (Figure 1C). Each of our samples fell into one of 3
109 K-means clusters along PC1 and PC2. The three clusters corresponded with (a) S. haematobium
110 individuals from northern Africa, (b) southern Africa, and (c) all S. bovis samples. The northern
111  population includes samples collected in Cameroon, Cote d’ Ivoire, Egypt Gambia, Guinea
112 Bissau, Liberia, Mali, Niger, Nigeria, Senegal and Sudan. The southern population includes
113  samples collected from Angola, Eswatini, Kenya, Madagascar, Namibia, Tanzania, Uganda,
114 Zambia, and Zanzibar. In general, the equator approximately delineates the northern and
115  southern populations. The division of S. haematobium into northern and southern populations
116  was consistent among analyses with one exception. Madagascar was an intermediate population
117  in Admixture analysis (k=3) (Supplemental Figure 2). In the PCA, samples from Madagascar area
118  assigned to the southern cluster, but they form a distinct subgroup that is intermediate between
119  the remaining southern and northern samples.

120

121 No samples were placed intermediate between the S. haematobium and S. bovis clusters which
122 would indicate F1 S. haematobium-bovis hybrids among these samples. The weighted, Weir and
123 Cockerham Fs12324 between the S. bovis and S. haematobium samples was high (FsST = 0.74-
124 0.79). We observed strong subdivision between northern and SE S. haematobium populations
125  (FsT=0.16; Figure 1C) with multiple FST peaks (Figure 2D). There were 275,657 SNVs showing
126  fixed differences (FST = 1) between S. bovis and S. haematobium (Supplemental Table 2). Mean
127  sequence divergence (dxy) between S. haematobium and S. bovis was 0.015 compared to 0.002
128  between the northern and southern S. haematobium populations (Supplemental Figure 1).

129

130  We used Admixture v1.3.0% to quantify ancestry among the samples (Figure 1D, Supplemental
131  Figure 2). We found that when k =2, S. bovis and south African S. haematobium individuals were
132 exclusively assigned with different ancestry components. By contrast S. haematobium samples
133  collected from northern Africa were a composite of the two population components including 0.5-
134  26.2% (median = 4.2%) of the S. bovis population component (Supplemental Figure 3).

135
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136  Reference biases - We tested the data for read-mapping reference biases, which could occur if

137  non-haematobium species map poorly to the Egyptian-strain S. haematobium reference
138 assembly (GCF_000699445.3), which groups with the northern population in our analyses.
139  Mapping rates were 77.7%, 82.8% and 76.3% for S. bovis, northern S. haematobium and
140  southern S. haematobium populations (Figure 1A). A t-Test failed to identify differential mapping
141 rates between S. haematobium and S. bovis (p = 0.397), suggesting that reference bias does not
142  significantly contribute to the results observed. The modest mapping rate results from the
143 complexity of the genome which contains high levels of repetitive elements?®.

144

145  Phylogenetics - The species tree generated using SVDquartets and nuclear SNVs revealed a
146  well-resolved topology. We examined 2,500,000 random quartets, representing 8.82% of all
147  possible distinct quartets. Of these, 18.5% (n = 463,571) were incompatible with the final tree
148  (Figure 3). S. haematobium and S. bovis were resolved into two clades and S. haematobium
149 individuals fell into clades reflecting geographic relationships.

150

151  Onaverage, we were able to assemble 15,558.4 bp of the mitochondrial genome for each sample,
152 4,757 of which were phylogenetically informative sites. The mitochondrial phylogeny (Figure 4)
153  reveals two major mitochondrial haplotypes, one containing S. haematobium individuals from
154  across Africa and another clade containing all of the S. bovis and 38 north African S.
155  haematobium. The presence of S. haematobium samples within a larger S. bovis clade is
156  consistent with S. bovis mitochondrial introgression into S. haematobium that has been frequently
157  reported in field samples, for example ?’. Within the S. bovis clade, all S. haematobium samples
158  with the introgressed S. bovis mitochondria fell into two monophyletic groups, clades “A” and “B”.
159  mtDNA haplotypes from these two clades were from samples widely distributed in northern Africa.
160  For example, the same clade “A” haplotype was found in samples from Egypt, Niger and Cote d’
161  lvoire (>3,300 km apart). The clade “B” haplotype was found in Niger, Nigeria and Cote d’ Ivoire,
162  a linear distance of 1,171 km. Bootstrap support for each of these major clades was strong
163  (100%). Phylogenetic trees in Newick format are available in the supplementary materials.

164

165  Hybridization and Introgression - We used four methods to identify signatures of hybridization and

166 introgression between S. haematobium and S. bovis. These methods include fs, D-statistic, local
167  ancestry assignment (RFmix?®) and phylogenetic discordance (TWISST?). First, a negative fs (N:
168 S, Sbh; f; =-0.128, SE= 0.8e3, z-score=-156.4) indicates that north African S. haematobium

169  population include S. bovis ancestry. Next, we used the D-statistic to test for introgression
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170  between S. haematobium and S. bovis while accounting for lineage sorting (Figure 2E). We
171  averaged D in 10Kb blocks. D was significantly positive (D=0.46, om=0.007, n=30,278) indicating
172 biased introgression between north African S. haematobium and S. bovis.

173

174 We examined the landscape of introgression across the genome using local ancestry with
175 RFmix. We used 38 southern African S. haematobium lacking S. bovis introgression and 13 S.
176  bovis samples to serve as reference panels for “pure” S. haematobium and S. bovis. RFmix
177  results showed that ancestry across the genome was not uniformly distributed in the north African
178  population (Figure 2A). Within the north African population, S. bovis ancestry blocks ranged in
179  frequency from 0-100% at any particular locus. Each north African S. haematobium sample
180 contained 4.1-22.0% S. bovis ancestry (median 7.0%). By comparison the median S. bovis
181  ancestry was 0.02% and 100% in the southern S. haematobium and S. bovis control samples,
182  respectively.

183

184  We used TWISST v67b9a66 as an independent method for identifying local introgression.
185  TWISST measures shifting gene tree frequencies across the genome. Trees were generated from
186 37,200 non-overlapping, 10kb, sliding windows. On average (mean) each window contained
187 657.3 SNVs. We examined the three possible topologies between northern S. haematobium,
188  southern S. haematobium and S. bovis using S. margrebowiei (GCA_944470205.2%°) as an
189  outgroup (Figure 2B). The expected species tree, with a monophyletic clade of S. haematobium,
190  sister to S. bovis was the most common with a mean weight of 0.876 across the genome. The
191  discordant topology uniting northern S. haematobium and S. bovis was the second most abundant
192  topology (weight = 0.085) compared to the topology with southern S. haematobium and S. bovis
193  (weight = 0.039).

194

195 We examined the genome for regions that are devoid of introgressed S. bovis alleles in the
196 northern S. haematobium population. There were 918 genomic deserts lacking S. bovis alleles
197 with a median size of 35.8Kb (Figure 2F). With log transformation and robust Z-scores we
198 identified 19 genomic deserts that were significant outliers in terms of length ranging from 1.13-6
199 Mb (median 1.67 MDb). Thirteen of the 19 deserts were on the ZW scaffold and accounted for 32%
200 (28.6 Mb) of its total length.

201

202  Introgression profiles in different countries - We examined the pattern of introgression in individual

203  countries of north Africa (Supplemental Figure 4) as determined by RFMix. The overall patterns
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204  of introgression across the genome were consistent between north African populations. Pairwise
205 comparisons of introgressed allele frequencies between countries were positively correlated (r =
206  0.59-0.8; Supplemental Figure 5) despite distances spanning up to 3,000 km.

207

208 Impact of introgression on nucleotide diversity and genetic differentiation of S. haematobium - We

209 masked introgressed alleles within individual genomes, and recalculated 1, FST and a PCA
210  (Figure 5). Prior to masking, mean nucleotide diversity (1), was 2.3-fold greater in the northern
211 (T =2.991 x 10®) vs southern (11 = 1.278 x 10%) S. haematobium, and 1 was 3.3-fold greater in
212 S. bovis (1m = 8.329 x 107®) than the entirety of S. haematobium (11 = 2.523 x 10°%). After masking,
213 northern African S. haematobium nucleotide diversity was reduced to nearly identical levels seen
214  in the south population: Tw = 2.991 x 10°to mnw = 1.07 x 103. By comparison, removing
215  introgressed alleles had minimal impact on FST (FST = 0.154) between northern and southern S.
216  haematobium. Additionally, the structure of the PCA was retained, demonstrating that
217  introgression makes a minimal contribution to genome-wide differentiation between northern and
218  southern populations.

219

220 Dating Introgression - We used the size of introgressed haplotype blocks to estimate the number

221  of generations since hybridization for each S. haematobium sample in north Africa (Supplemental
222 Figure 6). This gave estimated hybridization dates of ~257-879 generations ago (Median — 426
223 generations, 95% confidence intervals = 281.6-764 generations). S. haematobium generation
224  time varies from 3-43! months in lab populations, but is estimated to be 6-12 months in wild
225  populations®. These generation times imply that admixture between S. haematobium and S.
226  bovis occurred ~106 years ago assuming four generations per year (high transmission) or 426
227  years assuming one generation per year (low and / or seasonal transmission). Dating estimates
228  varied between countries: median estimates are lowest in Egypt (286.9) and highest in Nigeria
229  (565) despite their relatively close proximity. A one-way ANOVA indicated significant differences
230 in the number of generations since hybridization between countries (p-value = 1.3e9;
231  Supplemental Figure 6).

232

233  Selection and adaptive introgression - We examined S. haematobium and S. bovis populations

234  for signatures of selection using normalized, xpEHH (Figure 2C). We found 996 statistically
235  significant xpEHH values after multiple test correction. We combined values within 1Mb to identify

236 15 genome regions with signatures of positive selection in the northern population and five in the
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237  southern population (Supplemental Table 3). The median normalized xpEHH in each of these
238  regions was >|6| and the windows ranged in size from 3 bp to 709,928 bp (mean 139,942 bp).
239

240 We combined selection and introgression analyses to identify genome regions showing evidence
241  for adaptive introgression of S. bovis alleles into the northern S. haematobium population. These
242 regions contained outlier values for selection (xpEHH), elevated Patterson’s D (D = 0) indicative
243  of introgression, high levels of S. bovis ancestry (>95%) and significant differentiation from
244  southern S. haematobium (FST = 95™ percentile). Two genome regions met these criteria;
245 chromosome  four (NC_067199.1:28,476,500-28,813,500) and chromosome five
246 (NC_067200.1:9,773,000-10,447,000). These genome regions span 1.01 Mb and 15 genes; eight
247  on chr four and seven on chr five (Table 1). Of the 74,955 SNVs in these regions, 989 are
248  nonsense or missense mutations. We found 37 missense SNVs where the S. bovis allele is at or
249  near fixation in the northern population (Supplemental Table 4). All of these variants are on chr
250 four and fall within four genes; leishmanolysin-like peptidase, a Rho GTPase-activating protein
251 35, Jumonji domain-containing protein six (JMJD6_4), and Jumonji domain-containing protein six
252 (JMJID6_3).

253

254  Discussion

255  Our analysis of >38 million SNVs provides compelling evidence that S. haematobium and S. bovis
256  are genetically well differentiated. This conclusion is supported by multiple lines of evidence: high
257  FsT values (FsST = 0.74-0.79; Figure 1C; Figure 2D), distinction by PCA (Figure 1C), strong
258 differentiation by ancestry components in Admixture analyses (Figure 1D) and well supported
259  monophyletic clades in the nuclear species tree (Figure 3). The agreement between these
260 approaches suggests that strong barriers to gene flow exist between these two species.

261

262  Our analysis revealed that northern African S. haematobium are genetically differentiated (FST =
263  0.16) from the southern population. The boundary between these populations appears to extend
264  from Cameroon, Gabon, the Central African Republic, South Sudan, and Ethiopia (Figure 5A) and
265 approximately follows the equator. When introgressed S. bovis alleles were removed from
266  genomic data, FST between these populations is only marginally affected (FST = 0.154). Hence,
267  introgressed S. bovis alleles have a minimal impact on genetic differences between the northern
268  and southern populations.

269
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270  Our results suggest barriers to gene flow exist between northern and southern S. haematobium.
271  The southern S. haematobium clade is nested within a larger clade of northern African S.
272 haematobium (Figure 3). This indicates that S. haematobium originated in one of the northern
273 African countries and is consistent with previous work that identified the Arabian Peninsula/Asia
274  as a potential ancestral source population®,. It is possible that the two populations are defined by
275  the distribution of their intermediate hosts. Regional differences in parasite compatibility with their
276  intermediate snail hosts can occur within limited geographical areas®. S. haematobium is
277  primarily transmitted by members of the Bulinus truncatus/tropicus complex from North Africa and
278  the Middle East are primarily transmitted by the Bulinus truncatus/tropicus species complex and
279  parasites from the Afro-tropical region are transmitted by snails of the Bulinus globosus and
280 member of the africanus species group®®, although exceptions to this rule exist®®. S. bovis by
281 comparison is transmitted by many of the same snail species including members of the B.
282  truncatus/tropicus and africanus species groups, and B. forskalii?t. Other, less frequently studied
283  species may influence these dynamics as well*”8, If a barrier exists that is related to the
284  intermediate snail hosts, it has important implications for our understanding of the ecological and
285  epidemiological factors that shape the distribution and dynamics of these two parasite
286  populations. Further investigation at the population boundaries may provide new insights into
287  biological differences and incompatibilities between northern and southern S. haematobium
288  populations. We note that the existence of northern and southern populations of S. haematobium
289  based on the use of snail intermediate hosts was suggested in the last century®.

290

291  Four aspects of our results support a historical introgression hypothesis. First, each of the north
292  African S. haematobium samples contain low levels of S. bovis ancestry with the exception of the
293  sole Cameroonian sample. Percentages of S. bovis ancestry per individual are similar across
294  multiple analyses: introgressed haplotype blocks from RFMix account for 4.1-22% of individual
295 genomes in the northern S. haematobium population, while the population component associated
296  with S. bovis in Admixture ranges from 5-26.2% at K=2.

297

298  Second, the landscape of introgressed alleles across the genome is consistent across north
299  African samples (Supplemental Figure 4) and positively correlated (Supplemental Figure 5)
300 despite being separated by <3,000 Km. For this profile to be conserved across such a broad
301 distance suggests (A) it occurred in an ancestor of the north African S. haematobium or (B)
302 introgressed alleles provided a selective advantage that spread throughout the north African

303 population. Our data support the later with the nuclear phylogeny (Figure 3). The southern

10
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304  population is a monophyletic clade that lacks introgressed S. bovis alleles, although the limitations
305 of a bifurcating tree should be considered under scenarios of introgression. We also observe that
306 some introgressed alleles have reached high frequency in the north African population and show
307  signs of selection (Figure 2). Finally, our data suggest that there is a barrier to gene flow/migration
308 between northern and southern S. haematobium populations, restricting dispersal of introgressed
309 alleles to the southern population.

310

311  Third, mitochondrial DNA provides insights into a minimal number of hybridization events. 58% of
312  northern S. haematobium samples contain introgressed S. bovis mitochondria (Figure 4). If the
313  introgressed S. bovis mitochondria were the result of contemporary hybridization, we would
314  expect sister relationships between S. bovis and S. haematobium at the terminal branches of the
315 tree. However, we find that introgressed S. haematobium individuals with introgressed S. bovis
316  mitochondrial genomes form two monophyletic clades. Clade “A” contains samples from Egypt,
317 Niger, and Cote d’ Ivoire, and Clade “B” contains samples from Niger, Nigeria, and Cote d’ lvoire;
318 each clade spanning >1,000 Km. The most parsimonious interpretation of the phylogeny is that
319 theintrogressed S. bovis mitochondria share two distinct origins and imply at least two admixture
320 events resulting from mating between a S. bovis female and S. haematobium male that occurred
321 in the distant past. We note that laboratory crosses between S. haematobium are often
322 asymmetric, and may only produce offspring when male S. haematobium are mated with female
323  S. bovis *° or produce more male offspring®!. As females are the heterogametic sex, F1 females
324  are expected to show reduced fitness as predicted by Haldane’s rule*!. This may contribute to the
325 limited number of S. bovis mtDNA lineages observed in S. haematobium populations.

326

327  Fourth, introgressed S. bovis nuclear loci are heavily fragmented within the S. haematobium
328 genomes indicating multiple generations since introgression. Our estimates of time since
329  introgression span 257-879 generations ago (95% confidence interval). Introgressed loci were
330 measured in tens of kilobases (median = 76.3 Kb) and the largest blocks extended into the
331 megabases (max = 4.05 Mb). This contrasts with early generation hybrids which would have
332  introgressed block lengths spanning, or nearly spanning entire chromosomes*? which range in
333 size from 19,481 Kb — 93,306 Kb. One Nigerian sample contained ~25% introgressed DNA,
334  consistent with expectations for a F2 backcross. However, the maximum introgressed fragment
335 size in a Nigerian sample was only 2.83 Mb and median block size in these samples ranged from
336  47.1-97.6 Kb indicating multiple recombination events. We found that the time since introgression

337 was significantly different between multiple countries (Figure 6). For example, neighboring
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338  countries Niger (453 generations) and Nigeria (565 generations) were not significantly different,
339  butintrogression in Cote d’ Ivoire (385 generations) appears to have occurred more recently. The
340  variation in the estimates of generations since introgression are consistent with several regional
341 introgression events. Alternatively, variation in age estimates between countries could reflect
342  extrinsic factors like seasonality or intervention strategies that could lengthen or reduce
343  generation times within sub-populations. If this were the cause, it is possible that the number of
344  generations that have lapsed since an introgression event may vary between countries. Nigerian
345  samples contained, significantly higher levels of introgression than other countries (Kruskal-Wallis
346  H test statistic = 7915, P-value = 0.0049; Supplemental Figure 3): further analyses of Nigerian
347  samples will be of considerable interest.

348

349  Two caveats are needed. First, our age estimates are based on the size of introgressed fragments
350 and assume neutrality. This assumption is violated, because we see some introgressed segments
351  are under positive selection, while others are purged resulting in introgression deserts. Violation
352  of the neutrality assumption may add uncertainly to our age estimates. Second, given that
353  hybridization and introgression has occurred in the past, and that hybridization can be staged in
354 the laboratory*®, we might expect that hybridization events may also be ongoing. One
355 interpretation of the fragmented landscape of introgressed S. bovis DNA within S. haematobium
356  genomes is that this results from an equilibrium between newly introgressed DNA, and selective
357 removal (or selection for) introgressed DNA. Importantly, with both the historical and equilibrium
358 models, the small size of introgressed fragments is clearly consistent with rare introgression, and
359 levels of resulting interspecific gene flow are insufficient to reduce high levels of genetic
360 differentiation between these species.

361

362  S. bovis shows 3.3-fold higher diversity than S. haematobium, while genetic diversity (1) is 2.3-
363 fold greater in the north S. haematobium population than in the south African S. haematobium
364  population. When the introgressed S. bovis alleles are removed from the analyses, this difference
365 in genetic diversity between the north and south S. haematobium populations is reduced to just
366  1.05-fold and 17 is not significantly different (Figure 5B). By contrast, FST values between northern
367 and southern S. haematobium are consistent whether introgressed alleles are considered (FsST =
368 0.16) or not (FST = 0.154) and the relationship among samples in the PCAs is nearly identical
369 when introgressed alleles are included or excluded. These results indicate (i) that the elevated 1

370  in northern African S. haematobium results from S. bovis introgression and (ii) that northern and
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371  southern S. haematobium populations are well differentiated even after removing introgressed S.
372 bovis alleles.

373

374  Given that introgressed S. bovis alleles have persisted in the northern S. haematobium
375  population, we examined the data for signals of adaptive introgression. We found two introgressed
376  genome regions with signals of positive selection in the northern population on chr four
377 (NC_067199.1:28,348,440-28,877,530) and chr five (NC_067200.1:9,712,340-10,514,400).
378  Despite the convergence of signals to these regions, we were not able to identify variants driving
379  selection in these regions. We found 37 missense SNVs where the S. bovis allele was nearly
380 fixed in the northern population, but none withstood multiple test correction for directional
381 selection. These variants occur in four genes (WormBaseParaSite v18.0%), a Rho GTPase-
382  activating protein 35 (nsnvs = 30; MS3_00007803) a Leishmanolysin-like peptidase (nsnvs = 4;
383 MS3 00007802), and two members of the Jumonji domain-containing protein 6 family; IMJD6_4
384 (nsnwvs = 1; MS3.00010935) and JMJID6_3 (nswws = 2; MS3_00010934). The same
385 Leishmanolysin-like peptidase (Table 1) has been identified as a candidate for adaptive
386 introgression from S. bovis into S. haematobium in two previous studies’®%. Genes in same
387 invadolysin gene family are known to modulate the snail host immune system in Schistosoma
388  mansoni*>#® and this particular gene has been associated with cell migration and invasion in other
389  parasitic taxa®’.

390

391 We also observed genomic regions on three chromosomes of the S. haematobium samples
392 where S. bovis introgression is rare or absent (Figure 2F). These introgression deserts may
393  contain hybrid incompatibility loci that result in reduced fitness of early generation hybrids and
394  present barriers to further introgression. Thirteen of the 19 regions occur on the scaffold
395 representing the Z and W sex chromosomes. Eight of the deserts, including the largest occurs
396  within the non-recombining Z-specific region of the sex chromosome. This is consistent with the
397  purging of introgressed blocks containing deleterious alleles in non-recombining regions of the
398  sex chromosomes*® which could lead to female sterility as predicted by Haldane’s rule.

399

400 Understanding hybridization and introgression between S. haematobium and S. bovis is important
401  for disease control. If hybridization between these species is infrequent, then there may be
402  minimal benefit in linking strategies that manage both human (S. haematobium) and livestock (S.
403  bovis) Schistosoma species. Consistent with this, our results from these samples suggest that

404  hybridization between these species is rare, and gene flow between these species is limited.
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405  However, adaptive introgression has introduced S. bovis alleles into S. haematobium populations.
406 This is a clear example of alleles being transferred between livestock and human parasites
407  through introgression. Some S. bovis alleles have reached high frequency and are likely
408  selectively advantageous. Future work should aim to understand how the introgressed S. bovis
409 variants contribute to the fithess of S. haematobium individuals. The strong differentiation
410 between northern S. haematobium populations, carrying introgressed S. bovis alleles and
411  southern S. haematobium populations, with no introgression, is of particular interest. Additionally,
412 future work should examine differences between northern and southern S. haematobium
413  populations, and test whether they are reproductively isolated.

414

415  Several limitations to our study and its conclusions should be noted. First, recombination rates
416  have not been quantified in S. haematobium so our estimates of age of admixture are based on
417  recombination rates measured in Schistosoma mansoni*®. To improve the accuracy of these
418  estimates, direct measures of recombination rates from S. haematobium genetic crosses are
419 needed. Second, our results pertain to S. haematobium and S. bovis. Extant hybridization
420 between other schistosome species (S. haematobium/S. guineensis and S. bovis/S. curassoni)
421  have been documented in field collected samples with genomic data®®5!. Our results suggest that
422  Schistosoma species pairs may form a spectrum in hybridization frequency and compatibility.
423  Future work to understand the factors that impact hybridization and present barriers to gene flow
424  between schistosomes species pairs will be of great interest, and can provide a more nuanced
425 understanding of hybridization and potential implications for schistosome control.

426

427  Online Methods

428

429  Sample collection: description, ethics, and identification — We used samples or data from three

430 sources. i) The first dataset was generated from samples provided by the Schistosomiasis
431  Collection At the Natural History Museum®? which is housed at the Natural History Museum
432  (London). SCAN samples consisted of individual miracidia and cercariae preserved on Whatman
433  FTAcards **. We analyzed 114 S. haematobium and S. bovis samples from 123 individual hosts
434  (snails or humans) and 12 Africa countries. ii) In addition to the SCAN samples, we collected nine
435  adult Schistosome worms, presumed to be S. bovis, from the intestines of routinely slaughtered
436 cattle from meat vendors at three abattoirs located in Auchi, Benin City, and Enugu in Nigeria. In
437  the laboratory, the mesenteric vessels of each purchased intestines were visually inspected for

438  schistosome parasites. Adult schistosomes were recovered using forceps and washed in saline
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439  solution. Adult pairs were separated into males and females before being stored in 96% ethanol
440  for subsequent DNA isolation analyses. iii) Finally, for the third source of data we used whole
441  genome sequence data from NCB|*%16:18:22.26.30,

442

443  Samples provided by the SCAN repository were originally collected in accordance with protocols
444  approved by local, state, and national authorities, including the Ministry of Health. The Imperial
445  College Research Ethics Committee (ICREC) at Imperial College London, in conjunction with
446  ongoing Schistosomiasis Control Initiative (SCI) activities, provided additional ethical guidance
447  for samples collected through the CONTRAST program. Ethical clearance and study protocols
448  for Nigerian samples were approved by the National Health Research Ethics Committee of Nigeria
449 (NHREC) (protocol number: NHREC/01/01/2007— 30/10/2020 and approval number:
450 NHREC/01/01/2007—-29/03/2021) and the Institutional Review Board (IRB) of University of Texas
451 Health, San Antonio Texas, United States of America (protocol number: HSC20180612H).
452  Informed consent was obtained from all participants, with processes tailored to ensure
453  understanding and voluntary participation. All data were anonymized to protect participant
454  privacy, and schistosomiasis-positive individuals were treated with a single dose of praziquantel
455 (40 mg/kg). For livestock parasite collection, approval was secured from local veterinarians. No
456  animals were euthanized for research purposes; Schistosoma samples were collected during
457  routine activities at abattoirs. Further details on collection methods, ethical approvals, and data
458  availability for public samples can be found in their respective publications documented in
459  Supplemental Table 1.

460

461  Provisional species identifications were assigned to cercariae and miracidia based on sampled
462 host. For example, miracidia hatched from eggs collected from human urine samples were
463  assumed to be S. haematobium while miracidia hatched from eggs in cattle feces were assumed
464 to be S. bovis. Cercariae collected from snails were identified by Sanger sequencing the
465  mitochondrial coxl region and the ribosomal internal transcribed spacer (ITS) rDNA region as
466  previously described?!. Downstream genetic analysis with whole genome SNVs was used to
467  confirm and reassign species identifications where necessary.

468

469  Library prep and sequencing — DNA from single parasites stored on FTA cards was subjected to

470  whole-genome amplification (WGA) using methods previously described in %3. DNA was extracted
471  from single male adult S. bovis worms using the DNeasy® Blood and Tissue kit before

472  subsequent WGA. We quantified amount of schistosome DNA in each WGA sample by real time
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473  quantitative PCR (qPCR) reactions using the single copy gene a-tubulin 1 gene markers primers
474  (S. haematobium: forward [GGT GGT ACT GGT TCT GGT TT], reverse [AAA GCA CAA TCC
475  GAA TGT TCT AA]; S. bovis: forward [ATG GCC TCG TTA TCA ACC AT], reverse [TGG CCT
476  CGT TAT CAA CCA TA] following previously described protocol in 3. DNA sequencing libraries
477  were generated from 500 ng of DNA per sample using the KAPA Hyperplus kit protocol with the
478  following modifications: i) enzymatic fragmentation at 37°C for 10 minutes, ii) adapter ligation at
479  20°C for an hour, and iii) 4 cycles of library PCR amplification. After gPCR quantification of each
480 library with KAPA Library Quantification Kits, samples with similar concentrations were combined
481 into pools for sequencing at 4nM, while samples with disparate concentrations were equalized in
482 10 mM Tris-HCI pH 8.5 before pooling. Libraries were sequenced with 150 bp paired-end reads
483  on two lllumina NovaSeq flowcell. All resulting reads were deposited in the NCBI Short Read
484  Archive under BioProject PRINA636746 and are documented in Supplemental Table 1.

485

486  Computing environment - Analyses were conducted on the Texas Biomedical Research Institute's
487  high-performance computing cluster, with worker nodes containing 96 cores and 1 TB of memory.
488  Computational environments were managed using Conda v22.9.0. Environmental recipe files,
489  Jupyter notebooks, and other code can is archived on GitHub
490  (github.com/nealplatt/sch_hae_scan v0.1z) and at https://doi.org/10.5281/zenodo0.13124719.
491

492  Read filtering and Mapping - Raw reads were quality trimmed with trimmomatic v0.39 ** using the
493 following parameters: LEADING:10, TRAILING:10, SLIDINGWINDOW:4:15, MINLEN:36,
494  ILLUMINACLIP:2:30:10:1:true. This command removed low quality bases at the beginning and

495 ends of the reads, removed portions of the read where quality dropped below a minimum
496 threshold, trimmed adapter sequences and discarded reads <36 nts. We then mapped the
497  trimmed reads to the Egyptian-strain S. haematobium reference genome, GCF_000699445.322,
498  with BBMap v38.18%. On average the S. haematobium and S. bovis (GCA_944470425.1)
499 genome assemblies are ~97% similar across their genomes*® which should minimally affect
500 reference biases when mapping short reads. However, to avoid reference biases we used the
501 ‘vslow’ and ‘minid=0.8" options with BBMap and discarded ambiguously mapping reads
502  (‘ambig=toss’).

503

504  Genotyping, phasing, and filtering - Mapped reads were sorted with SAMtools v1.13% and

505 checked for duplicates with GATK v4.2.0.0’s®” mark_duplicates. Then single nucleotide variants

506  (SNVs) were genotyped with HaplotypeCaller and GenotypeGVCFs. To make the dataset more
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507 manageable, we genotyped each chromosome separately using the -L option. Next, we removed
508 all indels and hard filtered SNVs based on QualByDepth ("QD < 2.0"), RMSMappingQuality (MQ
509 < 30.0), FisherStrand (FS > 60.0), StrandOddsRation (SOR > 3.0), MappingQualityRankSumTest
510 (MQRankSum < -12.5), and ReadPosRankSumTest (ReadPosRankSum < -8.0) with GATK’s
511  VariantFiltration. We removed multi-allelic sites, and sites with genotype quality (GQ) <20 or read
512  depth (DP) <8 with VCFtools v0.1.16%. After these filters were applied we removed genomic
513  sites that were genotyped in <50% of individuals and then any individuals that were genotyped at
514  <50% of sites.

515

516 SNVs on each chromosome were phased using Beagle v 5.2_21Apr21.304%° in windows of 20
517 c¢M and a 10 cM overlap. Currently there are no direct measures of recombination rate in S.
518 haematobium. The best available data is from S. mansoni*® which has and a map length of 1134.8
519 cM and an estimated recombination rate (physical-to-map distance) of 244.2 Kb/cM. The genome
520 assemblies for S. mansoni (GCA_000237925.5) and S. haematobium (GCF_000699445.3) are
521  similar in length, 391 Mb vs 400 Mb respectively so assuming a uniform recombination rate similar
522  to S. mansoni across the genome, these values are comparable to a 4.88 Mb window and a 2.4
523  Mb step size*®. We used a burn in of 20 iterations and 60 iterations for the phasing run. All phased
524  chromosome VCFs were combined into a single file using vefcombine from vcflib v1.0.3% before
525  an additional round of post-phase filtering.

526

527 In some cases, multiple miracidia were analyzed from a single host potentially adding highly
528 related samples to our dataset and skewing the downstream results. To remove these, we
529 examined kinship coefficients in our samples using the autosomal chromosomes and the “—
530 unrelated” function in king v2.2.7%. This parameter identifies second-degree relatives within the
531 dataset that can be removed prior to downstream analyses. Next, we generated a set of SNVs
532  that were common (minor allele frequency; MAF > 0.05) and unlinked. Unlinked loci were filtered
533  with Plink v1.90b6.21%2 by removing linked SNVs with a pairwise r? > 0.2. This filter was applied
534 in 25 Kb sliding windows with a 5kb steps. Finally, we used SnpEff v5.1%, to identify the impact
535 of these SNVs on the amino acid sequence in coding regions. To do this we imported the S.
536 haematobium reference genome (GCF_000699445.3) along with the associated GenBank
537  annotations to create a custom database.

538

539  Principal Component Analyses - We used a series of tools to explore population structure in our

540 data sets. We used common (minor allele frequency; MAF>0.05), unlinked, autosomal SNVs and
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541  Plink v1.90b6.21%2 to generate a principal component analysis (PCA) to examine relationships
542  among the samples. We used a K-means clustering algorithm to assign each sample to between
543 1 and 10 populations with the Kmeans() function in sklearn.cluster v1.2.0%. We then used the
544  Elbow method® to examine distortion in the model and determine the optimal number of clusters
545 inthe data. Once we identified the optimal number of clusters, we assigned each sample within
546  acluster, and those designations were used to differentiate the S. haematobium populations using
547  analyses as below. These cluster assignments were also used validate the assumed species
548 identify of each sample.

549

550 Admixture - We examined the ancestry of each sample with Admixture v1.3.0%® and the same
551 unlinked, autosomal SNV dataset from the PCA analyses. However, we further thinned the SNV
552  data with VCFtools v0.1.16%8 ensuring that no two SNVs were within 10kb of each other. This step
553  minimizes any potential effects of linkage on the results. We ran Admixture v1.3.0%, allowing for
554 2 to 20 possible population components, and used the cross-validation error to determine the
555  optimal range®. Additionally, we randomly selected individuals with 299.999% S. bovis or S.
556  haematobium ancestry in the k=2 analysis to serve as reference samples for each species in
557  downstream analyses.

558

559  Nucleotide diversity (11), Sequence divergence (dxy), and Fixation index (FST) - We used scikit-

560 allel v1.3.5 ®’ to calculate nucleotide diversity (1T), sequence divergence (dxy), and the fixation
561 index (FsT) in sliding windows of 10 kb using autosomal SNVs allel.windowed_diversity(),
562  allele.windowed_divergence, and allel.windowed_weir_cockerham_fst() functions. The weighted,
563  Weir-Cockerham Fs12324 was measured between species (S. haematobium vs. S. bovis) and
564  between the K-means populations. Next, we used the reference panel, described above, to
565 identify ancestry informative sites between the S. haematobium and S. bovis samples. We used
566  scikit-allel v1.3.5's®” allel.weir_cockerham_fst() to calculate FsST at individual sites. Only sites
567  where FST = 1 were retained.

568

569  Biogeography — S. haematobium was split into two groups based on the K-means clustering
570 analysis of the PCA results. At k=2 Admixture differentiated S. haematobium and S. bovis
571  samples, but at k=3 Admixture broadly confirmed the presence of two different S. haematobium
572 populations. We used the admixture proportion (Q) from k=3, to visualize how the populations
573  were distributed across Africa. The presence of this ancestry component was extrapolated into

574 unsampled geographic regions using the OrdinaryKriging() function implemented in pykrige
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575  v1.7.0 with a linear variogram model®®. Geographic distances between samples were calculated
576  with the haversine() v2.8.0 function (https://pypi.org/project/haversine/).

577

578 Genome-wide tests for introgression - We used a series of tests to explore the presence of

579 introgression between S. bovis and the S. haematobium populations. First, we used
580 average_patterson_f3() from scikit-allel v1.3.5%" to calculate a normalized fs%° averaged across
581 blocks of 500 SNVs. Next, we tested for gene flow using the D-statistic, also known as the ABBA
582 BABA test '°. We used S. margrebowiei (GCA_944470205.2%°) as the outgroup (O), S. bovis as
583  the donor population (P3), and the S. haematobium K-means populations as the recipients (P1
584 and P2). We measured D across the genome in 500 SNV blocks with moving_patterson_d() in
585  scikit-allel v1.3.5%. Introgressed loci were defined when D>0+20.

586

587  Local Ancestry Assignment - For local ancestry assignment, we used RFMix v2.03-r0?® and

588  TWISST v67b9a66%°. RFMix v2.03-r0? uses a random forest approach to assign local ancestry
589  to genomic segments by comparing samples to reference panels. For this, we used the reference
590 samples selected from the Admixture analyses. We generated a genetic map using a uniform
591  recombination rate estimated from S. mansoni crosses (1 centimorgan = 287,000 bp*®). The
592  remainder of the parameters were set to the default.

593

594 TWISST v67b9a662° uses gene trees sampled from across the genome to identify potentially
595 introgressed loci. It does this by iteratively sampling subtrees from the gene tree and calculating
596 relative support for each of the possible species trees. We generated gene trees from loci
597  containing 500, phased, common (MAF >0.05) SNVs with RAXML-NG v1.1"%. For each locus we
598 searched for the 10 best trees and then bootstrapped the best tree for 100 replicates using the
599 GTR+ASC_LEWIS substitution model and S. margrebowiei as an outgroup. Nodes supported in
600 <10 bootstrap replicates were collapsed with Newick Utilities v1.672. The collapsed trees were
601  used as input for TWISST v67b9a662°. Samples were assigned to their K-means population.

602

603  Selection - We compared selection in the S. haematobium intra populations using cross-
604  population extended haplotype homozygosity (xpEHH®). Unphased xpEHH was measured with
605  selscan v2.0.0"4. The resulting unphased xpEHH values were normalized with norm v1.3.0 and
606  the ‘--xpehh flag’. Bonferroni corrected p-values were assigned to each site. Sites with a corrected
607  p-value < 0.01 were considered to be experiencing putative directional selection between the two

608 S. haematobium populations.
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609
610 Identifying putative adaptive introgression —We searched the genome for regions with FsT,

611  Patterson’s D, local ancestry, and xpEHH values indicative of adaptive introgression. To do this
612  we examined how these values were distributed across the genome in sliding windows of 337 Kb
613 and 3,370 bp step size; values equivalent to 1% and 0.01% of the autosomal genome.
614  Specifically, we were looking for regions of the genome that are among the most highly
615 differentiated between the two schistosome populations (FST >= 95™ percentile), with statistically
616  significant signals of introgression (Patterson’s D > 0) and directional selection (xpEHH p-value <
617 0.01), and the S. bovis alleles are at high frequency in the northern or southern S. haematobium
618  populations (>95%). Patterson’s D was measured under the assumed 4-taxon tree (((southern
619  S. haematobium, northern S. haematobium), S. bovis), S. margrebowiei). Windows that met these
620  criteria were then merged together if they were within 10Kb of each other to identify loci containing
621  signals of adaptive introgression.

622

623  Autosomal Species Tree - To better understand the relationships among the samples, used

624  SVDquartets”® as implemented in PAUP* v4.0.a.build1667® to generate a species tree.
625  SVDQuartets has been shown to perform well in the presence of gene flow as was suspected
626  here’’. We examined 2.5m random quartets along with 100 standard bootstrap replicates. Nodes
627 in the gene trees supported by <10% of bootstrap replicates were collapsed Newick Utilities
628 v1.6"2,

629

630  Dating introgression - Recombination acts to continuously break down introgressed haplotypes.

631 As a result, the size of introgressed haplotype blocks is directly related to the number or
632  generations since hybridization’®. This can be roughly estimated with the formula G=1/LP where
633 G is generations, L is the average length of introgression haplotypes in Morgans, and P is the
634  proportion of the genome from the major parent’®. We identified introgressed blocks and their
635 lengths (L) for each individual with RFMix v2.03-r0® and P was estimated using Admixture
636  (represented as g). A one-way ANOVA was used to identify differences in age estimates between
637  populations (countries).

638

639 Introgression Deserts — Some regions of the genome may be resistant to introgression. This could

640 present as large regions lacking introgressed alleles. We used the RFMix results to identify

641  regions of the genome where S. bovis ancestry was 0% in the north African S. haematobium
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642  populations. We log-transformed the length of each region and assigned robust Z-scores. Putative
643  introgression deserts were regions with robust Z-scores > 3.

644

645  Mitochondrial genome assembly and phylogeny - We used GetOrganelle v1.7.7.0% to de novo

646  assemble mitochondrial genomes. Specifically, we used the animal_mt model and 10 rounds of
647  assembly with k-mer sizes of 21, 45, 65, 85, and 105. The mitochondrial contigs were then
648  scaffolded with RagTag v2.1.08182 and RAXML-NG v1.17* was used to generate a maximum
649 likelihood tree of the mitochondrial genomes. We used a GTR+G substitution model to and 100
650  starting trees. Nodal support was assessed with 1,000 bootstrap replicates.

651
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Figure 1. — Sampling localities, sample summary and the population structure of Schistosoma
haematobium and S. bovis. (A) Collection locations for samples used in this study. Where exact
coordinates for samples were not readily available we used the country capital as the collection locality.
Two populations of S. haematobium were identified; northern and southern. The southern population in
red-yellow and the northern population in blue to green. (B) A description of species, hosts, and countries
sampled in this study. (C) A principal component analysis of 355,715 unlinked, common (MAF>0.05),
autosomal variants. The three clusters correspond to S. bovis, and the northern and southern S.
haematobium populations. Weighted, Weir-Cockerham FsT values between these populations are shown.
(D) A supervised admixture analysis (k=2) was used to assign ancestry to each sample. This analysis
shows almost all of the northern S. haematobium samples contained low levels of S. bovis. Country Codes
are as follows: "AGO": Angola, "CMR": Cameroon, "CIV": Cote d' Ivoire, "EGY": Egypt, "SWZ": Eswanti,
"ETH" Ethiopia, "GMB": Gambia, "GNB": Guinea Bissau, "KEN": Kenya, "LBR": Liberia, "MDG":
Madagascar, "MLI": Mali, "NAM": Namibia, "NER": Niger, "NGA": Nigeria, "SEN": Senegal, "SDN": Sudan,
"TZA": Tanzania, "UGA": Uganda, "ZMB": Zambia, "ZAN": Zanzibar.
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Figure 2. — Local measurements of differentiation, introgression and selection across the genome.
(A) The frequency of S. bovis ancestry across the genome in the northern S. haematobium population was
estimated using RFmix. While the percentage of S. bovis alleles in the population is low overall, the S. bovis
alleles are at or near fixation at loci on Chr4 and Chr5. (B) Gene tree topology weightings across the
genome depicting the possible relationships between the northern and south S. haematobium populations
and S. bovis using TWISST. Each locus across the genome is shown as stacked bar plots. While both tools
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921 use different methods to depict the relationships between these taxa they recover similar results. (C)
922 Differential selection between S. haematobium populations was measured across the genome with
923 extended haplotype homozygosity (xpEHH). Positive values indicate positive selection in the northern
924  population and negative values indicate positive selection in the southern population. Significant xpEHH
925  values (p<0.05) after multiple test correction are highlighted in red. (D) The weighted Weir-Cockerham
926 fixation index (FST) between northern and southern Africa, S. haematobium populations was measured
927 across the genome in 10Kb windows. These results indicated multiple, highly differentiated regions
928 between the two populations. (E) Patterson’s D statistic was measured to determine if high FST regions
929  were the result of introgressed S. bovis alleles present in northern populations using a test tree of
930 (((southern S. haematobium, northern S. haematobium), S. bovis), S. margrebowiei). D measured across
931 the genome was significantly positive indicating the presence of gene flow between S. bovis and north
932  African S. haematobium populations. (F) Multiple regions of the northern African S. haematobium genome
933 lacked introgressed S. bovis alleles. Introgression desserts that are longer than expected by chance are
934  shown (Z-scorerength > 3) in red. The grey box represents the Z-specific region of the sex chromosome.
935 Results for FST and Patterson’s D are shown after Gaussian smoothing (sigma=3). Pink vertical lines
936 indicate putative regions of adaptive introgression.
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Figure 3 — Species tree of S. haematobium and S. bovis populations — SVDquartets species tree
generated from autosomal SNVs. All nodes were supported by >95% of bootstrap replicates. Phylogenetic
relationships between the species can be used to differentiate extant vs ancestral hybridization (inset). The
tree shows that both S. haematobium and S. bovis are monophyletic. Biogeographic partitioning within the
tree indicates that S. haematobium originated in northern Africa and expanded into southern Africa.
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Figure 4. Mitochondrial tree of S. haematobium and S. bovis - A gene tree was recovered from

mitochondrial genome assemblies from each sample. Bootstrap support at select nodes is shown.
Phylogenetic relationships between the species can be used to differentiate extant vs ancestral
hybridization (inset). Two well supported clades of S. haematobium contain an introgressed S. bovis
mitotype, designated as “A” and “B”. Both the “A” and “B” clades contain samples from north Africa. All
south African samples are found within a single clade of the remaining S. haematobium samples
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Figure 5 Biogeography of S. haematobium is not determined by introgressed S. bovis alleles. S.
haematobium samples were split into two populations by PCA, Admixture and phylogenetic analyses. (A)
We used Kriging interpolation to examine the distribution of these populations across Africa using the
population component that differentiates the S. haematobium populations from one another (B) Nucleotide
diversity (m) was calculated in 10kb sliding windows after masking introgressed S. bovis alleles present in
the northern S. haematobium population. T is higher in the northern African S. haematobium compared to
the southern population. When introgressed S. bovis alleles are masked, 7 is similar for both the southern
and northern populations. (C) After masking introgressed S. bovis alleles the PCA is similar to Figure 1C.
The similarity between the two PCAs show that the genetic differentiation between the northern and
southern S. haematobium populations is not driven by introgressed S. bovis alleles.
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964 Supplemental Figure 1. Sequence divergence (dxv) between S. bovis and S. haematobium. We
965 examined dxy across the genome in 10Kb windows. Sequence divergence was the same across all
966 comparisons between S. haematobium samples and S. bovis regardless of the population tested (dxy
967 means = 0.0144-0.0148). By comparison sequence divergence between northern and southern S.
968 haematobium populations was nearly 7x lower (mean dxy =0.002).
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Supplemental Figure 2. Whole genome ancestry assignment with Admixture. We examined multiple
different population (k) sizes with Admixture. (A) At k=2, S. haematobium and S. bovis were separated, and
two general populations were identified within the S. haematobium samples corresponding to a northern
and southern population. We also partitioned the data into (B) three populations (k=3) and (C) four
populations. (D) Five populations (k=5) was the optimum number according (Evanno et al. 2005). Here the
samples show clear distinctions between the two S. haematobium populations. Country Codes are as
follows: "AGQO™: Angola, "CMR": Cameroon, "CIV": Cote d' Ivoire, "EGY": Egypt, "SWZ": Eswanti, "ETH":
Ethiopia, "GMB": Gambia, "GNB": Guinea Bissau, "KEN": Kenya, "LBR": Liberia, "MDG": Madagascar,
"MLI": Mali, "NAM": Namibia, "NER": Niger, "NGA": Nigeria, "SEN": Senegal, "SDN": Sudan, "TZA"
Tanzania, "UGA": Uganda, "ZMB": Zambia, "ZAN": Zanzibar.
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983

984 Supplemental Figure 3. Comparison of non-S. haematobium ancestry calculated from Admixture
985 (k=2) in each north African sample — Ancestry of each sample was assigned to up to two different
986 population components with Admixture. These two components were maximized in samples from southern
987 Africa or S. bovis samples. By comparison, north African samples were a composite of these two
988 populaitions with low, but varying levels fo the S. bovis compponent found in each individual. The
989  population component corresponding to S. bovis ancestry was significanly higher in Nigerian that in other
990 north African countries (Kruskal-Wallis H test statistic = 7.915, P-value = 0.0049).
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Supplemental Figure 4. S. bovis allele frequency across the genome within S. haematobium
samples from Northern African countries - The frequency of S. bovis ancestry across the genome is
shown for each of the northwest African countries. In general, the distribution of S. bovis alleles is similar
for each population. This consistency is an indicator of historic introgression event(s). The dotted line
indicates 95% allele frequency.
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1001 Supplemental Figure 5. Pairwise comparison of introgressed S. bovis allele frequencies within
1002 northern S. haematobium samples by country — Introgressed S. bovis allele frequency is positivliey
1003  correlated between countries. Pearson’s correlation coefficient (R) is >0.586 in all comparisons. The
1004  correlation of introgressed allele freugencies between populations up to 3,338 Km apart is consistent with
1005 older introgression events. .
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1008 Supplemental Figure 6 — Estimated number of generations since admixture with S. bovis. We
1009  estimated the number of generations since admixture for each sample in the northern S. haematobium
1010  population by examining the length of introgressed S. bovis loci with in the genomes. Individual estimates
1011 for each sample for each country are shown as two grey points, one for each haplotype. Results from a
1012 one-way ANOVA indicated that age estimates varied significantly between countries. Countries with a
1013 single individual (two haplotypes) are shown in blue and were not included in the ANOVA analyses. A “*”
1014 indicates p-values < 0.05. Differences in ages may indicate multiple introgression events.

1015
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Tablel. Genes containing outlier loci.

Chrom Location Gene_ID Gene Name
Chr4 NC_067199.1:28466881-28497752 MS3_00007802 Leishmanolysin-like peptidase
Chrd NC_067199.1:28497929-28529268 MS3_00007803 MS3_00007803
Chr4 NC_067199.1:28531133-28546611 MS3_00007804 RAD50
Chrd NC_067199.1:28562068-28562732 MS3_00000457 JMJD6_1
Chr4 NC_067199.1:28571061-28634110 MS3_00010935 JMJD6_4
Chrd NC_067199.1:28662329-28782419 MS3_00010934 JMJD6_3
Chr4 NC_067199.1:28742276-28747614 MS3_00007805 TY3BI_12
Chrd NC_067199.1:28785057-28816546 MS3_00010936 JMJD6_5
Chr5 NC_067200.1:9933321-9974793 MS3_00011123 MS3_00011123
Chr5 NC _067200.1:9989479-10043873 MS3 00011124 AK2 3
Chr5 NC_067200.1:10117557-10118821 MS3_00011125 MS3_00011125
Chr5 NC_067200.1:10187316-10209172 MS3 00011126 TSC2
Chr5 NC_067200.1:10219534-10229257 MS3 00009120 MDP1_1
Chr5 NC_067200.1:10245731-10246840 MS3_00000691 MS3_00000691

Chr5

NC_067200.1:10414911-10585361

MS3_00011127

MS3_00011127
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