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Abstract 

Knowledge of the targets of therapeutic compounds is vital for understanding their action 

mechanisms and side effects, but such valuable data is seldom available. The multiple 

complementary techniques needed for comprehensive target characterization must combine data 

reliability with sufficient analysis throughput. Here, we leveraged the Proteome Integral Solubility 

Alteration (PISA) assay to comprehensively characterize the targets of 67 approved drugs and 

candidate compounds against lung cancer. The analysis was performed on two cell lines 

representing different lung cancer phenotypes and novel targets for 77% of the tested molecules 

were found. Comparison of the protein solubility shifts in lysate vs. living cells highlighted the 

targets directly interacting with the compounds. As PISA analysis is now joining the arsenal of 

fast and reliable target characterization techniques, the presented database, ThermoTargetMiner, 

will become a useful resource in lung cancer research. 
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Introduction  

Lung cancer is one of the most prevalent cancer types. It remains the essential contributor 

to cancer-related deaths globally, with approximately 2.2 million new cases every year resulting 

in 1.8 million deaths worldwide1. There are two main forms of primary lung cancer, classified by 

the type of cells that initiate it. Non-small-cell lung cancer (NSCLC) is the most common form 

corresponding to 85% of all cases. NSCLC is, in turn, divided into 3 types: squamous cell 

carcinoma, adenocarcinoma and large cell (undifferentiated) carcinoma2. Adenocarcinoma and 

large cell carcinoma form peripheral nodules and masses, while squamous cell carcinoma is central 

and endobronchial. Small-cell lung cancer (SCLC) accounts for the rest of lung cancer cases and 

exhibits neuroendocrine properties. Being strongly associated with tobacco exposure, it is highly 

aggressive and rapidly growing. About two-thirds of lung cancer patients have metastasis at the 

time of diagnosis3.  

Small-molecule chemotherapy is the main approach to managing lung cancer, although the 

initial treatment is stage-specific. Surgery can effectively manage tumor removal for the majority 

of early-stage NSCLC4. Chemotherapy delivered before or after surgery (also known as 

neoadjuvant and adjuvant chemotherapy) is widely used in stage II and stage III NSCLC. 

Chemotherapy typically serves as the primary approach for metastatic NSCLC. Recently, definite 

chemoradiotherapy combined with immune checkpoint inhibitors (ICIs) administration has 

become the preferred treatment for unresectable stage III NSCLC. For SCLC, localized cases are 

usually treated with surgery and concurrent chemoradiotherapy3. Adding ICIs to the conventional 

first-line platinum-based chemotherapy is the recommended approach for treating newly 

diagnosed metastatic SCLC. 

The survival in lung cancer, especially for advanced-stage cases, is relatively poor. The 5-

year survival of NSCLC is around 60-70% for stage I of development, 40-50% for stage II, 5-25% 

for stage III and less than 1% for stage IV2 . SCLC is characterized by its poor prognosis and 

remarkable tendency for early metastasis. Most patients respond to treatments only temporarily, 

which leads to a median survival of less than two years for those with early-stage SCLC and around 

one year for those with metastatic disease3.  

Due to the limited survival of lung cancer patients, there is an urgent need for new drug 

development in this area. In April 2024, there were 317 registered small molecule drugs for lung 
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cancer and 2795 registered clinical trials for such drugs on http://clinicaltyrials.gov. Over 70% of 

the clinical trials were in phase II and phase III.  

The primary reason for failure in both phase II and phase III  is drug inefficiency 5. In many 

cases this failure is due to the poor knowledge of the drug action mechanism. The latter implies 

possessing solid information on drug targets, including the residence time of the drug on its target6. 

Another important reason for clinical trial failure is unacceptably high drug toxicity, resulting from 

the engagement of unintended targets (off-targets) by the drug or its metabolites 7,8. Therefore, the 

pharmaceutical industry pays great attention to thorough in-vitro target characterization before in-

vivo clinical trials. Several complementary analytical techniques are employed for this purpose, at 

a rather high cost. To reduce the expenses and speed up drug development, the techniques for drug 

target characterization should combine the reliability of produced results with a reasonably high 

throughput. Another important desirable aspect of analysis is its proteome-wide nature, to reduce 

the risk of overlooking important (off-)targets. 

In the last 10-15 years, several system-wide methods for dissecting drug targets have 

emerged. A well-known approach to probing drug-target interactions, thermal stability shift 

assay9,10, has been expanded to complex in-vitro and even in-vivo settings, while its first 

implementation, cellular thermal shift assay (CETSA10), required a priori knowledge of the target. 

The latter drawback was overcome in Thermal Proteome Profiling (TPP11 or MS-CETSA10) that 

employs mass spectrometry (MS) for a system-wide search of target candidates. These techniques 

detect the change in the melting temperature of a target protein upon binding to a small molecule. 

The main bottleneck of these MS-based approaches was their low throughput. In contrast, 

Proteome Integral Solubility Alteration (PISA) assay12, which analyzes the shift in protein 

solubility rather than that in melting temperature, offers at least an order of magnitude higher 

throughput. On top of that, PISA provides the possibility to employ different solubility modulators 

besides elevated temperature12, such as, e.g., organic solvents13 and kosmotropic salts14. When 

applied to a cell lysate, all the above approaches will highlight the proteins that bind directly to the 

drug, while the application to living cells also reveals the downstream proteins as well as the targets 

of drug metabolites15.  

We have previously applied PISA for protein target identification and exploring 

mechanisms of small-molecule drugs6,12, biomarker discovery16, as well as for identification and 
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prioritization of enzyme substrates15,17. In the current study, we tested the PISA performance as a 

higher-throughput technique for reliable drug target deconvolution on a larger set of drugs, 

choosing lung cancer as the application field (Figure 1). For that purpose, we selected 67 

therapeutic agents specifically designed or repurposed for lung cancer treatment and included as 

disease models both NSCLC and SCLC cell lines (A549 and NCI-H82 cells, respectively). Both 

the cell lysates and intact cells were treated by each drug and vehicle as control, PISA-processed, 

after which the proteomes were extracted and analyzed by a combination of liquid chromatography 

and tandem mass spectrometry (LC-MS/MS). The shifts of the protein PISA signals quantified 

using the tandem mass tag (TMT) were then analyzed. From the previous similar efforts with drug 

target identification by expression proteomics18, we expected that the datasets for the drugs with 

the same target would be found to be co-localized in hierarchical clustering, revealing similar drug 

mechanisms. However, in the PISA data drugs with the same target did not necessarily cluster 

together, which complicated the action mechanism determination. We then employed orthogonal 

partial least squares-discriminant analysis (OPLS-DA), contrasting each drug treatment with all 

other conditions, as was previously performed in expression proteomics18. But OPLS-DA of PISA 

results revealed very few significantly shifting proteins, again in stark contrast with expression 

proteomics19. These puzzling results called for innovative approaches to PISA data processing for 

reliable identification of the drug targets.  

We addressed this unexpected problem as follows. First, from the distribution of proteins’ 

main OPLS coordinates we estimated for each protein the p-value of being a statistical outlier in 

that distribution. Then, using the fact that each TMT set had a sample treated with a control drug 

methotrexate (MTX), a p-value threshold was chosen so that all such samples co-localized most 

tightly in hierarchical clustering. The outliers in the samples treated with other drugs (typically 

≈5% of all quantified proteins) were then considered candidate targets (‘pro-targets’) of a given 

drug. For validation of the target candidates, we examined the whole dataset: if the same candidate 

appeared for the same drug in a different type of PISA sample (lysate vs. in-cell, or NSCLC vs 

SCLC cells), it was considered validated. 
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Figure 1. Workflow for PISA-based target identification. The drugs with various known targets 

and potential mechanisms were chosen from the ongoing chemotherapy-based lung cancer clinical 

trials. SCLC and NSCLC cell lines were selected as the disease model. PISA analysis was 

performed both in cell lysate and intact cells. After thermal treatment and ultracentrifugation, 

proteins were digested, and peptides were labeled with TMT. Samples were then pooled and 

analyzed by LC-MS/MS. The protein PISA signal shifts compared to vehicle-treated control were 

visualized on a heat map and processed by OPLS-DA. Upon choosing a proper threshold, a 

statistical model based on the main OPLS-DA coordinate was used for identification of potential 

protein targets and hierarchical clustering of the drugs. 
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Results and Discussion 

PISA analysis  

After the selection of cell lines and drug panel (see methods), cells and cell lysates were 

treated with the drugs and PISA-analyzed.  The number of proteins identified in at least one PISA 

analysis in A549 cell or lysate samples was 10,632, out of which 9,570 proteins were quantified 

with at least 2 peptides, excluding potential contaminants. For the H82 cell line, 10,823 proteins 

and 9,736 proteins were quantified, respectively.  

Figure 2 shows the Venn diagram of the overlap between all four datasets encompassing 

15 TMT sets. On average, 44% of the proteins detected without missing values were common in 

all datasets. In A549 cell lysate and cells, 5,063 and 4,626 common proteins were quantified, 

respectively, while the respective numbers for H82 were 5,650 and 5,756 proteins.  

In the first round of analysis, three biological replicates were used to determine the fold-

change of the PISA shifts and the respective p-value for each protein under each drug/vehicle 

condition. By combining log2 transformed fold-changes and -log10 transformed p-values, we 

generated four volcano plots for each drug (Supplementary Figure 1-71). The common proteins 

in a dataset were used for creating a heatmap by hierarchical clustering. As an example, Figure 

3A shows a heatmap for the shared proteins from A549 lysate. Heatmaps for the other datasets are 

shown in Supplementary Figure 72-73. The first look at the heatmap revealed the already 

mentioned problem – not all drugs with common known targets co-localized on that heatmap. For 

instance, selumetinib, trametinib, and binimetinib that all target MEK (MAP2K) were not found 

in close proximity to each other. At the same time, the PISA shifts of MAP2K1 and MAP2K2 for 

the three drugs were both strong and statistically significant (Table 1), which testifies to the 

validity of the PISA analysis.   
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Table 1. Fold-changes in PISA and the corresponding p-values of MEK proteins in A549 lysate 

treated with selumetinib, trametinib or binimetinib vs. DMSO. 

 
Selumetinib Trametinib Binimetinib 

Fold-change p-value Fold-change p-value Fold-change p-value 

MEK1 (MAP2K1) 2.3 ± 0.2 2.4 ×10-3 2.1 ± 0.1 3.5 ×10-4 2.4 ± 0.1 1.6 ×10-4 

MEK2 (MAP2K2) 3.8 ± 0.4 4.9 ×10-3 2.4 ± 0.3 1.8 ×10-2 4.3 ± 0.5 5.7×10-3 

 

Examination of the MTX-treated samples (the positive control in each experiment) 

revealed that they did not cluster together either. The cause of the problem was the specificity of 

the solubility shift in PISA that affected very few target proteins, while the shifts in the absolute 

majority of proteins were to a large extent due to statistical fluctuations. Removing this noise and 

“purifying” the true targets turned out to be a nontrivial but necessary task. 

 

 

Figure 2. Number of proteins identified in all four PISA datasets and their overlap. 3253 

proteins (expected number is 1872) without missing values were shared across four datasets.  
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Optimal p-value threshold 

    To address this problem, we first applied the OPLS-DA analysis that has demonstrated 

its utility in the ProTargetMiner expression proteomics database of drug target candidates18. Here, 

the PISA shifts for each drug of interest were contrasted with those for all other drugs and controls 

(an example for olaparib is shown in Figure 3B, lower panel). The coordinates of each protein 

along the main axis correspond to a specific solubility increase with drug treatment (positive 

values) or its decrease (negative values). Compared to the raw PISA shifts, the main OPLS-DA 

coordinates provide an enhanced specificity, as the shifts common for many drugs obtain a 

relatively small coordinate value compared to the shifts of similar magnitude that are specific for 

a given treatment 18. We thus expected that the main OPLS-DA coordinate would provide more 

meaningful clustering of the treatments. There was indeed an improvement, but not sufficient, as 

the sporadic PISA shifts of unrelated proteins were still posing a problem. It became clear that 

these unrelated proteins needed to be down-prioritized, so that only proteins passing a certain 

threshold for statistical significance (outliers) would be used for clustering.  

    In order to identify the threshold for such statistical outliers, a distribution of the OPLS-

DA coordinates was assessed for each model. One example is the OPLS-DA model comparing 

olaparib vs. all other drugs treated H82 intact cells (Figure 3B). The dispersion of OPLS-DA 

coordinates was determined, and the p-value for each outlier was calculated using the error 

function. The latter assumed Gaussian distribution, but the exact shape of the distribution was not 

critical for the final results. The horizontal axis was then transformed into -log10(p) values (Figure 

3C).  

    Our strategy was to use in further data processing only the PISA shifts for the outliers, 

zeroing all other PISA shifts that were assumed to be noise. Such an approach required evidence-

based determination of the optimal threshold for p-values (dashed vertical line in Figure 3C). For 

the threshold determination, we used the data on MTX-treated samples that were present in all 

individual TMT sets (5 such samples in each PISA analysis type). A figure of merit (FoM) function 

was created corresponding to the average distance in all four types of PISA analysis between the 

positions of the neighboring MTX samples in hierarchical clustering of all samples of a given type. 

The tighter the cluster that MTX-treated samples created, the lower FoM was obtained. As Figure 

3D shows, the minimal FoM is observed at the value of 4.5. This value was accepted as the optimal 
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-log10(p) threshold for the whole dataset, and the outlying proteins exceeding this threshold, as in 

Figure 3C, were taken as pro-targets (drug target candidates).   

 

Figure 3. Data processing for drug target identification. A. Heatmap based on clustering of 

log2 transformed PISA fold-changes for 4,626 shared proteins in the A549 lysate dataset. B. Lower 
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panel: The loading plot of an OPLS-DA model comparing olaparib to all other drugs in H82 cell 

dataset. Upper panel: the density distribution of protein’s x-coordinates in the loading plot. 

Olaparib’s known target PARP1 exhibits the next-highest x-coordinate.  C. The transformed x-

coordinates correspond to -log10(p) of the 39 proteins above the threshold value (dashed vertical 

line). The top 10 proteins are represented as red/green circles if they became more/less soluble 

upon olaparib treatment. D. Selection of the optimal cut-off threshold. Distance is the average 

distance between control MTX datasets in hierarchical clustering of all data. Insert shows that the 

curve reaches its minimum at x=4.5, chosen as optimal cut-off value. 

 

Drug clustering 

With the PISA shifts of all below-threshold proteins set to zero, the hierarchical clustering 

data became much more meaningful. While the MTX samples clustered tightly as expected (see 

Figures 4A, B as examples), many drugs with similar targets were also found close together. For 

example, in the A549 lysate dendrogram, the three MEK inhibitors, selumetinib, trametinib and 

binimetinib, are found next to each other, similar to the potent PTK2 inhibitors brigatinib20 and 

defactinib21. With a meaningful clustering achieved, we moved to the identification of the pro-

targets and their validation.   

 

Drug target candidates (pro-targets) 

With the optimal threshold of 4.5 for -log10(p), the median number of target candidates for 

different drugs was 27.5 for A549 lysate and 20 for intact A549 cells, while for H82 cells the 

median numbers were 24 and 43, respectively. These numbers represent 6.0% of all quantified 

proteins for A549 lysate and 4.0 % for intact A549 cells, as well as 4.2% for H82 cell lysates and 

7.5% for intact cells. For pro-target validation, we applied the following principle: if the same 

candidate appears in k>1 dataset for the same drug, it is considered validated at the k-th level. All 

validated pro-targets of 67 drugs are listed in Table 2. On average, we found 3 pro-targets per drug 

with k=2 (overlaps in two datasets), 0.4 pro-targets with k=3 and 0.2 pro-targets with k=4. For 

control of the false discovery rate (FDR), the ‘candidates’ were selected at random; the numbers 

of such spurious overlaps were 1.3 proteins with k=2, 4.4×10-3 with k=3 and 5.5×10-6 with k=4. 
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While these numbers indicate that, strictly speaking, only pro-targets with k≥3 are statistically 

reliable, we decided to consider also the pro-targets with k=2 to minimize the number of false 

negatives. The pro-targets shared between the lysate and intact cell analysis of the same cell line, 

which is a more reliable subset of k=2 pro-targets, are shown in Supplementary Figure 74-145. 

As an example of pro-target analysis, pevonedistat (also known as MLN4924) treatment in 

A549 lysate produced 127 target candidates, 18 candidates for intact A549 cells, 45 for H82 lysate 

and 66 for intact H82 cells (Figure 4C). Of these, 11 pro-targets were found in 2 datasets. 

Importantly, 2 candidates (NAE1 and UBA3) were found in all 4 datasets, while the anticipated 

number of randomly shared proteins for k=4 is only 1.7×10-5.  These two proteins, NAE1 and 

UBA3 (the latter is also known as NAE2), are two subunits of the known target of that drug - 

NEDD8-activating enzyme E1 (NAE)22. Seven other proteins were shared in two PISA analyses 

of intact cells. Of these, DCAF7, CRBN and CTNNB1 are found to be co-expressed with NAE23. 

Another notable example is ganetespib (STA9090), for which 33, 41, 21 and 33 targets 

candidates were found in the four datasets, respectively. Of these, 9 proteins (expected number – 

0.8) were shared in 2 datasets, 1 protein (2.3×10-3 proteins expected) in 3 datasets and 2 proteins, 

HSP90 subunits HSP90AA1 and HSP90AB1, were shared in all datasets (expected number - 

2.3×10-6). As ganetespib is designed to be an HSP90 inhibitor24,25, this result clearly demonstrates 

the analytical power of the ThermoTargetMiner approach in drug target identification.  
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Figure 4. Pro-target-based clustering of the PISA datasets from drug-treated samples together with 

all MTX-treated controls from the lysates of A549 (A) and H82 (B) cells upon application of the 

common optimal threshold of 4.5. Venn diagrams show the overlap of the identified pro-targets of 

pevonedistat (C) and sunitinib (D). 
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These and other target candidates are listed in Table 2. The largest number of PISA datasets 

(20 in total) was obtained for MTX. The DrugBank25 lists three MTX targets: TYMS, ATIC, 

DHFR. Of these, only DHFR is consistently revealed as a pro-target by ThermoTargetMiner. 

TYMS is an outlier in the MTX-treated intact cells, but not in lysates (Figure 5), which is similar 

to our previous PISA results12. ATIC showed a similar tendency. An explanation for the 

phenomenon is that, unlike direct binding of MTX to DHFR, MTX needs first to be transformed 

into MTX polyglutamates (MTXPGs) to exert effects on TYMS and ATIC26. Apparently, MTX 

binding to TYMS and ATIC requires intact cellular environment which provides functional 

enzymes and substrates. This result confirmed the sufficiently high reliability of the pro-targets 

identified by PISA for the ThermoTargetMiner database. 

 

 

Figure 5. Fold-changes in PISA and p-values of the three MTX targets listed in Drugbank 25: 

DHFR, TYMS and ATIC. 

 

Novel targets 

Sunitinib is designed to target receptor tyrosine kinases (RTK), such as vascular endothelial 

growth factor (VEGF) receptor and platelet-derived growth factor (PDGF)27. However, these 
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transmembrane proteins were not identified in our PISA analysis, likely due to their poor 

solubility. Instead, 22 other proteins were shared between at least two datasets (Figure 4D). 

Among these pro-targets, NMT1 and NMT2, which have been found overexpressed in cancers and 

thus hinted to be potential anticancer targets28, were found in 4 and 3 ThermoTargetMiner datasets, 

respectively. Previous work18 of our group has discovered that sunitinib treatment induces 

significant NMT1 downregulation, supporting the current PISA finding.  

Another protein that exhibited significant PISA shift in all four sunitinib datasets was 

TTC38 (tetratricopeptide repeat domain 38), which has not been linked to sunitinib binding. Given 

the very low a priory probability of being an outlier with k=4 (only 3.7×10-5 such events are 

expected by pure chance), it is highly likely that TTC38 is a cognate target of sunitinib. To a large 

extent, the same applies to CAMK2D which was significantly solubilized by sunitinib treatment 

in three out of four datasets. Of relevance is that the activity of the related protein CaMKII has 

been significantly elevated following chronic sunitinib treatment, which suggested a mechanism 

for sunitinib-mediated cardiovascular dysfunction29. Furthermore, our results validated the 

previously reported sunitinib binding to STK2430, AAK131, CSNK1A132, RPS6KB1, STK3, and 

STK433.  

Phenethyl isothiocyanate (PEITC) is a natural anti-cancer compound that is present in 

many cruciferous vegetables. It is believed to suppress cancer progression through diverse 

mechanisms like cell cycle arrest at the mitotic phase and induction of apoptosis34. On the 

molecular level, PEITC hinders tubulin polymerization and alters tubulin secondary and tertiary 

structures35. However, there is no validated target of PEITC in the Drugbank25. In 

ThermoTargetMiner, PAFAH1B3, one of the most frequently overexpressed metabolic enzymes 

in human tumors36, is found as the sole pro-target across all four datasets (the expected number of 

such events is 6.7×10-6). Also, tubulin-specific chaperone D (TBCD) that plays a crucial role in 

tubulin complex assembly37, was an outlier in three datasets (6.3×10-3 such events are expected). 

TBCD is a validated pro-target of one other drug in our database. The drug is KOS-862 (also 

known as epothilone D or desoxyepothilone B), a tubulin stabilizer known to arrest the cell cycle 

at the mitotic phase38. Interestingly, the effect of KOS-862 on microtubules is opposite to that of 

PEITC: while PEITC blocks microtubule polymerization35, KOS-862 promotes the latter process, 

facilitating the formation of multipolar spindles38. Consistent with that, in PISA analysis these two 
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drugs demonstrate opposite effects on TBCD’s solubility: PEITC treatment increases it, whereas 

KOS-862 lowers TBCD’s solubility. 

 

Mechanism of action 

Napabucasin (BBI-608) is a novel STAT3 signaling inhibitor that binds to STAT’s hinge 

pocket and diminishes STAT3 DNA binding affinity39. In ThermoTargetMiner, multiple oxidative 

stress-related proteins, including ADO, ADI1, PRDX5 and ETHE1, showed significant solubility 

alteration in at least three datasets. Moreover, napabucasin impacted two pivotal regulators of 

redox homeostasis in humans, thioredoxin and the glutathione system40, as both thioredoxin 

reductase TXNRD2 and glutathione peroxidase GPX1 demonstrated decreased solubility in the 

two cell lysates. Therefore, we hypothesized that napabucasin acts as an anticancer compound by 

inducing oxidative stress on cancer cells. 

To test this hypothesis, we performed GO enrichment analysis on the PISA data from 

napabucasin treated A549 cells. The response to oxidation was found to be the most significantly 

involved biological process (Figure 6A). In agreement with that, it has been reported that 

napabucasin’s induction of ROS in multiple cell lines41 is one of the anti-tumor action mechanisms 

of this drug. In the same study, napabucasin was found to be a substrate of another oxidoreductase, 

NAD(P)H dehydrogenase [quinone] 1 (NQO1)41. In our A549 lysate and intact cell data, NQO1 

was one of the most shifting proteins (Figure 6B and 6C). In H82 data, NQO1 was not quantified, 

possibly because its transcription level in A549 cells is much higher than that in H82 cells (2554 

vs. 12 transcripts per million)42,43. In addition to NQO1, multiple key proteins responsible for the 

maintenance of cellular redox homeostasis, such as PRDX5, PRDX6 and GPX2 were among the 

top 0.6% shifting proteins in napabucasin-treated A549 intact cells, and in A549 lysate, the p-

values of GPX1 and NQO1 ranked as 10th and 11th lowest, respectively. 
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Figure 6. A. GO term enrichment in biological pathways of 66 proteins that pass the threshold 

value of 3 (top 1.4%) in napabucasin treated A549 cells. B. Positions on the transformed opls-x 

scale for A549 cells of the proteins involved in cellular redox homeostasis. C. Same for A549 

lysate.  
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Table 2. The list of pro-targets validated through our data and ProTargetMiner18 for 67 compounds 

profiled in this study along with clinical phase information and targets of these compounds in 

DrugBank 25.  

Drug name Clinical 

Trail 

Phase 

Known Targets in DrugBank Position in %% 

from top (+) or 

bottom (-) in 

ProTargetMiner 
18 

Pro-targets (shared in 4 TTM 

datasets, 3 datasets, and 2 datasets 

in cell or only in lysate) 

7-

hydroxystaurosp

orine 

2 PDPK1  ROCK144, STK344, STK4 44, 

MAP2K6, GSK3B, PRKCI, 

CTPS1, PRKAR2A, PAK4 44, 

CAMK2D 44 

Acalabrutinib 2 BTK  CIRBP 

Alisertib 2 AURKA  SPR, ATIC45, IDH145, IVD 

Anlotinib 3 KIT, VEGFR, PDGFR, 

FGFR 

 BICD2, AFTPH, CHAF1B, 

PDE6D, ASAH1 

Apatinib 4 KDR  ANAPC5 

AZD1775 2 WEE1  CLPP, ECH1, ADK 

AZD5363 2 AKT  QTRT1, MAP2K6 

Berzosertib 2 ATR, ATM  PIP4K2C, PIP4K2B, CTSC, 

GSK3A, PSIP1 

Bexarotene 3 RXRA, RXRB, RXRG  XPO7, ACAD9, TFB2M, CSE1L, 

GSTM2, SARS2 

Binimetinib 2 IL6, TNF, IL1B, MAP3K1, 

MAP2K2 

  

Brigatinib 3 ALK, EGFR, ABL1, IGF1R, 

FLT3, INSR, MET, ERBB4, 

ERBB2 

 DUSP23, PTK220, DNAJC13 

Cabozantinib 2 MET, KDR, RET GLUD1 

(1.0%+) 

PIP4K2C46, GLUD1 

Cilengitide 2 ?  WDR5 

Crizotinib 3 ALK, MET  HEBP1, ASAH1 

Dabrafenib 4 BRAF, RAF1, SIK1, NEK11, 

LIMK1 

 PMPCA, CDK544, CSK44, ENO1, 

RNMT, CDK244 

Defactinib 2 PTK2  PTK221, CDK5, RPS6KA3, 

MAPK147, MAPK347, PDXK 

Desipramine 2 SLC6A2, ADRB2, SLC6A4, 

HTR2A, ADRB1, SMPD1, 

HRH1, CHRM1, CHRM2, 

CHRM3, CHRM4, CHRM5, 

HTR1A, HTR2C, DRD2 

  

Dichloroacetate 2 ?   

Dihydroartemisi

nin 

2 ?  WDR54, PTGR2, HS1BP3 

Docetaxel 2 TUBB1, BCL2, MAP2, 

MAP4, MAPT, NR1I2, 

  

Entrectinib 2 NTRK1, NTRK2, NTRK3, 

ROS1, JAK2, TNK2 

 DPH5, PLIN2, PTAR1, PTK248, 

IGF1R 48 

Epirubicin 3 TOP2A, DNA SSRP1 (3.6%-) SSRP1, FAU 

Etalocib 2 LTB4R, PPARG  NIPSNAP1, HIBCH, HADHA 

Everolimus 3 MTOR  UBQLN1, UBQLN4, GLMN, 

MTOR49, ZWINT 
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Exisulind 2 PDE4D, PDE4C, PDE5A, 

PDE2A, GSTP1, AKR1B1, 

AKR1B10, 

 DPP3, ZYG11B 

Fludarabine 2 RRM1, POLA1, DNA, DCK,  NUDT4 

Ganetespib 2 HSP90  PA2G4, CHORDC1, TP53RK, 

HSP90AB2P24, HSP90AB4P24, 

YARS, SPR, HSP90B124, 

HSP90AB124, HSP90AA124, 

CEP112 

Gefitinib 3 EGFR  FAM96B50, CORO1C 

Gossypol 3 BCL2L1  HYOU1, PPCS, IWS1, 

CHAMP1, GMPPA, SETD7, 

PITRM1, KARS, RCN2, EIF3A, 

G3BP1, HMGCS1, PCYT1A, 

ACADSB, PSMC4, MSH2, 

LRPPRC, GTF2E2, NSF, 

EWSR1 

Guadecitabine 2 DNMT  QTRTD1, PGM1, CSTA 

Imatinib 2 BCR, KIT, RET, NTRK1, 

CSF1R, PDGFRA, DDR1, 

ABL1, PDGFRB 

  

Iniparib 2 ?   

Itacitinib 2 JAK1  DPH5 

KOS-862 2 TUB  DLGAP4, SLIRP, TBCD, 

RABGGTA, PITRM1, LGALSL, 

CAMSAP2, PDE6D 

L-alanosine 2 ADSS, ADSSL1, pyrB   

Lapatinib 2 EGFR, ERBB2  ZYG11B, FECH 

Lonafarnib 3 FNTA, FNTB  TIAL1, FNTA51 

Metformin 2 PRKAB1, ETFDH, GPD1, 

MTOR 

 COPS7A 

MTX1-5 4 TYMS, ATIC, DHFR  DCPS, GSS, DHFR 52, DCK53 

Napabucasin 3 ?   XPNPEP1, C12orf10, CAAP1, 

NLN, ADI1, MRI1, ADO, 

COA7, NHLRC2, MVK, 

PRDX554, MPST, DTYMK, 

IMPDH2, HARS, APP, ETHE1, 

HAT1, CTSD, TXNRD2, GPX155 

Navarixin 2 CXCR1, CXCR2   

Obatoclax 

Mesylate 

3 BCL2  NUP133, NUP107, HADHB, 

NUP98, CARS 

Olaparib 3 PARP1, PARP2, PARP3  PARP156 

Palbociclib 2 CDK4, CDK6  NUDT1, CDK457 

Pazopanib 2 FLT1, KDR, FLT4, 

PDGFRA, PDGFRB, KIT, 

FGFR3, ITK, FGF1, SH2B3 

 ETNK1, CMBL, ECH1, CHKA, 

STX2 

Pevonedistat 2 NAE  ANAPC4, KLHL11, ETNK1, 

UBA358, KCTD9, KCTD1, 

MORF4L2, NAE158, DCAF7, 

CTNNB1, POLD1, CRBN 

Phenethyl 

isothiocyanate 

2 ?  POLDIP2, USP22, FN3K, 

TBCD59, IPO4, HEATR3, 

PAFAH1B3, ALDH9A1, HTT, 

ALDH1B160, ME2, PHGDH, 

CLUH 
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Pictilisib 2 PIK3AP1  PIK3R161 

Pioglitazone 2 PPARG, MAOB  ADH5 

Pirfenidone 4 FURIN   

Ponatinib 2 ABL1, BCR, KIT, RET, 

TEK, FLT3, FGFR, FGFR2, 

FGFR3, FGFR4, LCK, SRC, 

LYN, KDR, PDGFRA 

SLK (0.1%-) SLK62, CDK5, CSK63, DCK, 

MAP4K4 

Prexasertib 2 CHEK1  FECH, PAK4 

Prinomastat 2 MMP  XPNPEP1, ZDHHC5, PMPCA, 

RAB4A, IMPA2 

Regorafenib 3 FLT1, KDR, FLT4, KIT, 

PDGFRA, PDGFRB, 

FGFR1, FGFR2, TEK, 

DDR2, NTRK1, EPHA2, 

RAF1, BRAF, MAPK11, 

FRK, ABL1, RET 

 CDK12, GSK3B, ALDH1B1, 

ALDH2, PDE6D 

RO4929097 2 PSENEN, APH1A, APH1B  DPP8, RPS21, SH3BGRL 

Ruxolitinib 2 JAK2   

Salirasib 2 ICMT   

Seliciclib 2 CDK1, CDK2, CDK7, 

CDK9, MAPK1, MAPK3, 

CSNK1E 

  

Selumetinib 2 MEK1, MEK2   

Sorafenib 2 BRAF, RAF1, FLT4, KDR, 

FLT3, PDGFRB, KIT, 

FGFR1, RET, FLT1 

 RNMT 

Sunitinib 2 PDGFRB, FLT1, KIT, KDR, 

FLT4, FLT3, CSF1R, 

PDGFRA 

NMT1(0.1%-) BCLAF1, AHCTF1, TTC38, 

STK333, STK433, RPS6KA3, 

CSNK1A132, NMT1, 

RPS6KB133, NMT2, NME4, 

CAMK2D, STK2430, AAK131 

TAK-931 2 CDC7  RIOK1, TP53RK, PRPF4B, 

CSNK1A1, CSNK2A2 

Topotecan 3 TOP1, TOP1MT, DNA CBR3 (4.4%-) CBR1, CBR3 

Trametinib 4 MAP2K1, MAP2K2  THEM4, MAP2K164, PRMT5 

Vorinostat 2 HDAC1, HDAC2, HDAC3, 

HDAC6, HDAC8, acuC1 

 HDAC6, XPNPEP1, GPATCH1, 

HDAC265, HDAC1, MTA2 

YM155 2 BIRC5  UQCRFS1, CSTB 

ZD4054 2 EDNRA   

 

Discussion 

Identifying drug targets is crucial in drug discovery and development. Direct / affinity-

based methods are widely used to validate the physical binding of a drug to its target. These 

methods usually require modification of the drug or the target protein. In addition, direct affinity-

based methods lack an intracellular environment.  Without the existence of protein complexes, the 

proteins’ structures can be different, thus, the direct bindings between small molecules and proteins 

are less trustworthy. Moreover, off-target effects are not considered in such experiments, resulting 
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in a lack of knowledge of the drug’s potential side effects. Compared to other target identification 

technologies, proteomics methods do not require the target proteins to be abundant, synthesized 

probes or pull-downs. Especially, PISA can demonstrate drug-protein interactions in a protein-

complexes-containing environment. This unbiased assay increased the efficiency by an order of 

magnitude compared to TPP, providing a relatively economic solution for finding drug on-target 

and off-target engagements.  

ThermoTargetMiner provides a universal analytical methodology for large-scale PISA data. 

For a long time, PISA has been used for studies that only include a few conditions and the data 

was processed by computing fold-changes and p-values. The rationale for applying the same data 

processing approach to more complex data remains to be verified. Two research groups have tried 

to push PISA to large-scale experiments. Olsen group used q-value ≤ 0.05 and an absolute log2-

transformed fold-change ≥ 0.5 as the cut-offs66. Alternatively, Gygi group acquired data from two 

replicates and chose cut-offs based on log2-transformed fold-changes and standard deviations67. 

Extra biochemical assays were usually used to validate the drug targets. ThermoTargetMiner, on 

the contrary, found out that fold-changes and p-values allow noise from irrelevant proteins to 

significantly fluctuate the determination of drug targets. Hereby, we introduced OPLS-DA 

followed by normalization to minimize the impact of such noise. In addition to that, we encourage 

cross-validating the targets between PISA datasets, meaning that no more experiments need to be 

conducted to validate a single protein target.  

ThermoTargetMiner is a useful drug targets database. In our previous work 

ProTargetMiner, we demonstrated that FITExP is a useful assay to reveal protein targets based on 

drug-induced expression regulation18. Though the majority of approved drugs’ well-defined 

targets are proteins68, not all of these drugs work through regulating protein expression. For 

instance, kinase inhibitors are a large group of antineoplastic drugs that would inhibit the 

phosphorylation on signaling proteins. It is also well-known that small-molecule binding to protein 

can result in conformational changes69. PISA, as a supplementary assay for FITExP, is able to 

detect changes in protein solubility induced by modifications and structure alterations. In this work, 

we further developed PISA into a standard pipeline that is customized for large-scale drug 

screening. ThermoTargetMiner provides reliable data that includes novel targets for 67 FDA-

approved anticancer compounds, enabling prediction and interpretation on side effects. The 
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bindings of small-molecule drugs to proteins that were never reported before could also inspire 

drug repurposing. 

 

Conclusions 

This study illustrates how higher-throughput PISA analysis can validate known targets, 

provide new target information, and help explain the mechanism of drug action. This approach 

offers a valuable framework for forecasting potential side effects and repurposing drugs for 

prospective indications. Last but not least, the wealth of target information provided in the 

ThermoTargetMiner resource holds broader implications beyond lung cancer, and can be 

extrapolated to various cancer types, to the benefit of a wider oncological community. 

 

Methods 

Selection of molecules 

Clinical trial data for lung cancer were downloaded from https://clinicaltrials.gov/. Only 

compounds under clinical phase II and above were considered. The complete list of compounds is 

shown in Table 1. 14 compounds found in ProTargetMiner (crizotinib, docetaxel, ponatinib, 

sorafenib, sunitinib, gefitinib, lapatinib, pazopanib, ruxolitinib, apatinib, cabozantinib, 

fludarabine, topotecan and epirubicin)18 were selected, along with 53 compounds chosen based on 

commercial availability and diversity of targets (at least one drug against each known target was 

included).  

Selection of cell lines 

A549 lung adenocarcinoma cells representing NSCLC and NCI-H82 [H82] cells 

representing SCLC were selected as model systems. A549 is a widely used lung cancer model 

system that was employed in at least 485,000 studies reported in Google Scholar, including 

ProTargetMiner18. NCI-H82 [H82] was chosen as a classic model of SCLC, because it is adherent 

and can be grown in the same medium (DMEM) as A549 cells. As this cell line is derived from a 

metastatic site, it is a good candidate for comparison of the results with A549 cells. None of these 
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cell lines are found in the Register of Misidentified Cell Lines (https://iclac.org/databases/cross-

contaminations/). 

Dose and duration of treatment  

As compound screening assays for hit discovery are typically run at 1–10 µM18, the same 

concentration of 10 µM was used for all the compounds. The incubation time in the lysate 

experiments was 30 min, while the cells were treated for 1 h to allow extra time for drug import 

or diffusion through the cell membrane. 

Proteomics experimental design 

In each experiment, two types of controls were used: cells treated with vehicle (DMSO) 

and with methotrexate (MTX). MTX targets the dihydrofolate reductase (DHFR) protein, which 

is readily identified in both PISA12 and FITExP19. The assignment of each TMT channel to each 

treatment is shown in Supplementary Table 1.  

PISA in lysate  

PISA experiments were performed using the previously published method12. A549 and 

H82 cells were cultured in 175 cm2 flasks, and were then detached, washed twice with PBS, and 

resuspended in PBS. The cell suspensions were freeze-thawed in liquid nitrogen 5 times, and then 

centrifuged at 10,000 g for 10 min to remove the cell debris. The protein concentration in the lysate 

was measured using Pierce BCA assay (Thermo). The cleared lysate was then aliquoted in 3 

replicates and treated with the drugs for 30 min at 37°C in 300 μL reaction volume. After the 

reaction, the samples from each replicate were aliquoted into 10 wells in a 96-well plate and heated 

for 3 min in an Eppendorf gradient thermocycler (Eppendorf; Mastercycler X50s) in the 

temperature range of 48-59°C. Samples were then cooled for 3 min at room temperature (RT) and 

afterwards snap frozen and kept on ice. Samples from each replicate were then combined and 

transferred into polycarbonate thickwall tubes and centrifuged for 20 min at 100,000 g and 4°C.  

The soluble protein fraction was transferred to new Eppendorf tubes. Protein concentration 

was measured in all samples using Pierce BCA Protein Assay Kit (Thermo), the volume 

corresponding to 25 µg of protein was transferred from each sample to new tubes and urea was 

added to a final concentration of 4 M. Dithiothreitol (DTT) was added to a final concentration of 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 6, 2024. ; https://doi.org/10.1101/2024.08.06.606599doi: bioRxiv preprint 

https://iclac.org/databases/cross-contaminations/
https://iclac.org/databases/cross-contaminations/
https://doi.org/10.1101/2024.08.06.606599
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

24 
 

10 mM and samples were incubated for 1 h at RT. Subsequently, iodoacetamide (IAA) was added 

to a final concentration of 50 mM and samples were incubated at RT for 1 h in the dark. The 

reaction was quenched by adding an additional 10 mM of DTT. No protein precipitation was 

performed, to avoid losing short semi-tryptic peptides at this stage. Lysyl endopeptidase (LysC; 

Wako) was added at a 1:75 w/w ratio and samples incubated at RT overnight. Samples were diluted 

with 20 mM EPPS to the final urea concentration of 1 M, and trypsin was added at a 1:75 w/w 

ratio, followed by incubation for 6 h at RT. Acetonitrile (ACN) was added to a final concentration 

of 20% and TMT reagents were added 4x by weight (200 μg) to each sample, followed by 

incubation for 2 h at RT. The reaction was quenched by addition of 0.5% hydroxylamine. Samples 

within each replicate were combined, acidified by TFA, cleaned using Sep-Pak cartridges (Waters) 

and dried using DNA 120 SpeedVac Concentrator (Thermo). The pooled samples were 

resuspended in 20 mM ammonium hydroxide and separated into 96 fractions on an XBrigde BEH 

C18 2.1x150 mm column (Waters; Cat#186003023), using a Dionex Ultimate 3000 2DLC system 

(Thermo Scientific) over a 48 min gradient of 1-63% B (B=20 mM ammonium hydroxide in 

acetonitrile) in three steps (1-23.5% B in 42 min, 23.5-54% B in 4 min and then 54-63% B in 2 

min) at 200 µL min-1 flow. Fractions were then concatenated into 12 samples in sequential order 

(e.g., fractions 1, 13, 25, …, and 85 were combined).  

PISA in cells 

Cells were cultured in 6-well plates to a density of 250,000 cells per plate. A day later, cells 

were treated with the drugs for 1 h. The cells were then washed with PBS, scraped off and 

resuspended in PBS. The cells were then aliquoted into 10 in PCR plates and heated like above. 

The cells were then snap-frozen and kept on ice. The samples from each replicate were then pooled 

and 0.4% final concentration of NP40 was added. The rest of the protocol was identical to PISA 

in lysate. 

LC-MS/MS analysis and data acquisition 

Orbitrap Fusion and Lumos mass spectrometers were used online with an Ultimate 3000 

RSLC nanoUPLC system (Thermo Scientific). Sample fractions were dried and resuspended in 

Buffer A (0.1% FA and 2% acetonitrile in water) to a theoretical peptide concentration of 0.3 

µg/µL. Resuspended peptides were loaded onto a Acclaim PepMap 100 C18 HPLC column (75 

µm internal diameter, 3 µm beads, 100 Å pore size, Thermo, Cat#164535) for 5 min at a flow rate 
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of 4 μL/min. Peptides were transferred through an EASY-Spray column (75 µm internal diameter, 

2 µm beads, 100 Å pore; Cat#ES903) connected to the Easy-Spray source (Thermo; Cat#ES082). 

Subsequently, the peptides were eluted with a buffer B (0.1% FA and 2% water in acetonitrile) 

gradient at a flow rate of 300 nL min−1. The elution gradient was from 4% B to 28% B for 150 

min, to 34% B for 15 min, increasing to 95% B in the next 3 min and staying at 95% for 4 min. 

Mass spectra were acquired with an Orbitrap Fusion Tribrid mass spectrometer (Thermo; 

Cat#IQLAAEGAAPFADBMBCX) in the data-dependent mode with MS1 analysis at 120,000, 

and MS2 at 50,000 resolution, in the m/z range from 400 to 1600. Peptide fragmentation was 

performed via higher-energy collision dissociation at 35% normalized collision energy.  

Protein identification and data analysis 

Raw LC-MS/MS data were processed for protein identification and quantification using 

MaxQuant software (2.5.0.0) with the UniProt human proteome database (UP000005640_9606 

and UP000005640_9606_additional). No more than two missed cleavages were allowed. And the 

results were filtered to a 1% false discovery rate. Data post-processing was performed in R and 

OPLS-DA models were built using SIMCA 17 (Sartorius).  

Statistics 

Only proteins that were identified with two or more unique peptides and without potential 

contaminations were included in the final dataset. To calculate the fold-changes of the PISA 

signals, abundances of TMT reporters (peptide abundances) were first normalized to the total 

abundance in each TMT channel, followed by the protein abundances being calculated as the 

average of all normalized peptide abundances. Thereafter the protein abundances were normalized 

to those in the DMSO-treated samples (occupying the TMT126 channel in each TMT set, see 

Supplementary Table 1). The fold-changes were then calculated as the ratios of the protein 

abundances in treated samples vs those of the controls. Batch effects among three biological 

replicates were removed using Limma package66. For each protein, the median fold-change was 

used for further analysis, and the p-values were calculated by the two-sided Student’s t-test on the 

normalized abundances in treated samples vs those in controls. In OPLS-DA analysis, protein 

coordinates were normalized first to the coordinates of the drug, and then to the standard deviation 

(SD) of the distribution of proteins’ x-coordinates. The OPLS-DA-derived p-values were the 

GAUSS error function calculated for each protein based on its SD-normalized coordinate. 
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Data availability  

The LC-MS/MS raw data files and extracted peptides and protein abundances are deposited 

in the PRIDE repository of the ProteomeXchange Consortium70 under the dataset identifier 

PXD054158 with no restrictions. The source data underlying Supplementary Figures 1-71, and 

Supplementary Figures 74-145 are provided as a Source Data file. All other data are available from 

the corresponding authors on request. 
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