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Abstract

Knowledge of the targets of therapeutic compounds is vital for understanding their action
mechanisms and side effects, but such valuable data is seldom available. The multiple
complementary techniques needed for comprehensive target characterization must combine data
reliability with sufficient analysis throughput. Here, we leveraged the Proteome Integral Solubility
Alteration (PISA) assay to comprehensively characterize the targets of 67 approved drugs and
candidate compounds against lung cancer. The analysis was performed on two cell lines
representing different lung cancer phenotypes and novel targets for 77% of the tested molecules
were found. Comparison of the protein solubility shifts in lysate vs. living cells highlighted the
targets directly interacting with the compounds. As PISA analysis is now joining the arsenal of
fast and reliable target characterization techniques, the presented database, ThermoTargetMiner,

will become a useful resource in lung cancer research.
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Introduction

Lung cancer is one of the most prevalent cancer types. It remains the essential contributor
to cancer-related deaths globally, with approximately 2.2 million new cases every year resulting
in 1.8 million deaths worldwide®. There are two main forms of primary lung cancer, classified by
the type of cells that initiate it. Non-small-cell lung cancer (NSCLC) is the most common form
corresponding to 85% of all cases. NSCLC is, in turn, divided into 3 types: squamous cell
carcinoma, adenocarcinoma and large cell (undifferentiated) carcinoma?. Adenocarcinoma and
large cell carcinoma form peripheral nodules and masses, while squamous cell carcinoma is central
and endobronchial. Small-cell lung cancer (SCLC) accounts for the rest of lung cancer cases and
exhibits neuroendocrine properties. Being strongly associated with tobacco exposure, it is highly
aggressive and rapidly growing. About two-thirds of lung cancer patients have metastasis at the
time of diagnosis®.

Small-molecule chemotherapy is the main approach to managing lung cancer, although the
initial treatment is stage-specific. Surgery can effectively manage tumor removal for the majority
of early-stage NSCLC* Chemotherapy delivered before or after surgery (also known as
neoadjuvant and adjuvant chemotherapy) is widely used in stage Il and stage Il NSCLC.
Chemotherapy typically serves as the primary approach for metastatic NSCLC. Recently, definite
chemoradiotherapy combined with immune checkpoint inhibitors (ICIs) administration has
become the preferred treatment for unresectable stage 111 NSCLC. For SCLC, localized cases are
usually treated with surgery and concurrent chemoradiotherapy?. Adding ICls to the conventional
first-line platinum-based chemotherapy is the recommended approach for treating newly
diagnosed metastatic SCLC.

The survival in lung cancer, especially for advanced-stage cases, is relatively poor. The 5-
year survival of NSCLC is around 60-70% for stage | of development, 40-50% for stage 11, 5-25%
for stage 111 and less than 1% for stage IV? . SCLC is characterized by its poor prognosis and
remarkable tendency for early metastasis. Most patients respond to treatments only temporarily,
which leads to a median survival of less than two years for those with early-stage SCLC and around

one year for those with metastatic disease®.

Due to the limited survival of lung cancer patients, there is an urgent need for new drug

development in this area. In April 2024, there were 317 registered small molecule drugs for lung
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cancer and 2795 registered clinical trials for such drugs on http://clinicaltyrials.gov. Over 70% of

the clinical trials were in phase Il and phase Il1.

The primary reason for failure in both phase 1l and phase 111 is drug inefficiency °. In many
cases this failure is due to the poor knowledge of the drug action mechanism. The latter implies
possessing solid information on drug targets, including the residence time of the drug on its target®.
Another important reason for clinical trial failure is unacceptably high drug toxicity, resulting from
the engagement of unintended targets (off-targets) by the drug or its metabolites "8, Therefore, the
pharmaceutical industry pays great attention to thorough in-vitro target characterization before in-
vivo clinical trials. Several complementary analytical techniques are employed for this purpose, at
a rather high cost. To reduce the expenses and speed up drug development, the techniques for drug
target characterization should combine the reliability of produced results with a reasonably high
throughput. Another important desirable aspect of analysis is its proteome-wide nature, to reduce

the risk of overlooking important (off-)targets.

In the last 10-15 years, several system-wide methods for dissecting drug targets have
emerged. A well-known approach to probing drug-target interactions, thermal stability shift
assay>!®, has been expanded to complex in-vitro and even in-vivo settings, while its first
implementation, cellular thermal shift assay (CETSA??), required a priori knowledge of the target.
The latter drawback was overcome in Thermal Proteome Profiling (TPP* or MS-CETSA1) that
employs mass spectrometry (MS) for a system-wide search of target candidates. These techniques
detect the change in the melting temperature of a target protein upon binding to a small molecule.
The main bottleneck of these MS-based approaches was their low throughput. In contrast,
Proteome Integral Solubility Alteration (PISA) assay'?, which analyzes the shift in protein
solubility rather than that in melting temperature, offers at least an order of magnitude higher
throughput. On top of that, PISA provides the possibility to employ different solubility modulators
besides elevated temperature!?, such as, e.g., organic solvents®® and kosmotropic salts**. When
applied to a cell lysate, all the above approaches will highlight the proteins that bind directly to the
drug, while the application to living cells also reveals the downstream proteins as well as the targets
of drug metabolites®.

We have previously applied PISA for protein target identification and exploring

mechanisms of small-molecule drugs®?, biomarker discovery'®, as well as for identification and
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prioritization of enzyme substrates™?’. In the current study, we tested the PISA performance as a
higher-throughput technique for reliable drug target deconvolution on a larger set of drugs,
choosing lung cancer as the application field (Figure 1). For that purpose, we selected 67
therapeutic agents specifically designed or repurposed for lung cancer treatment and included as
disease models both NSCLC and SCLC cell lines (A549 and NCI-H82 cells, respectively). Both
the cell lysates and intact cells were treated by each drug and vehicle as control, PISA-processed,
after which the proteomes were extracted and analyzed by a combination of liquid chromatography
and tandem mass spectrometry (LC-MS/MS). The shifts of the protein PISA signals quantified
using the tandem mass tag (TMT) were then analyzed. From the previous similar efforts with drug
target identification by expression proteomics'®, we expected that the datasets for the drugs with
the same target would be found to be co-localized in hierarchical clustering, revealing similar drug
mechanisms. However, in the PISA data drugs with the same target did not necessarily cluster
together, which complicated the action mechanism determination. We then employed orthogonal
partial least squares-discriminant analysis (OPLS-DA), contrasting each drug treatment with all
other conditions, as was previously performed in expression proteomics®®. But OPLS-DA of PISA
results revealed very few significantly shifting proteins, again in stark contrast with expression
proteomics®®. These puzzling results called for innovative approaches to PISA data processing for

reliable identification of the drug targets.

We addressed this unexpected problem as follows. First, from the distribution of proteins’
main OPLS coordinates we estimated for each protein the p-value of being a statistical outlier in
that distribution. Then, using the fact that each TMT set had a sample treated with a control drug
methotrexate (MTX), a p-value threshold was chosen so that all such samples co-localized most
tightly in hierarchical clustering. The outliers in the samples treated with other drugs (typically
~5% of all quantified proteins) were then considered candidate targets (‘pro-targets”) of a given
drug. For validation of the target candidates, we examined the whole dataset: if the same candidate
appeared for the same drug in a different type of PISA sample (lysate vs. in-cell, or NSCLC vs
SCLC cells), it was considered validated.
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Figure 1. Workflow for PISA-based target identification. The drugs with various known targets
and potential mechanisms were chosen from the ongoing chemotherapy-based lung cancer clinical
trials. SCLC and NSCLC cell lines were selected as the disease model. PISA analysis was
performed both in cell lysate and intact cells. After thermal treatment and ultracentrifugation,
proteins were digested, and peptides were labeled with TMT. Samples were then pooled and
analyzed by LC-MS/MS. The protein PISA signal shifts compared to vehicle-treated control were
visualized on a heat map and processed by OPLS-DA. Upon choosing a proper threshold, a
statistical model based on the main OPLS-DA coordinate was used for identification of potential

protein targets and hierarchical clustering of the drugs.
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Results and Discussion
PISA analysis

After the selection of cell lines and drug panel (see methods), cells and cell lysates were
treated with the drugs and PISA-analyzed. The number of proteins identified in at least one PISA
analysis in A549 cell or lysate samples was 10,632, out of which 9,570 proteins were quantified
with at least 2 peptides, excluding potential contaminants. For the H82 cell line, 10,823 proteins

and 9,736 proteins were quantified, respectively.

Figure 2 shows the Venn diagram of the overlap between all four datasets encompassing
15 TMT sets. On average, 44% of the proteins detected without missing values were common in
all datasets. In A549 cell lysate and cells, 5,063 and 4,626 common proteins were quantified,

respectively, while the respective numbers for H82 were 5,650 and 5,756 proteins.

In the first round of analysis, three biological replicates were used to determine the fold-
change of the PISA shifts and the respective p-value for each protein under each drug/vehicle
condition. By combining log2 transformed fold-changes and -log10 transformed p-values, we
generated four volcano plots for each drug (Supplementary Figure 1-71). The common proteins
in a dataset were used for creating a heatmap by hierarchical clustering. As an example, Figure
3A shows a heatmap for the shared proteins from A549 lysate. Heatmaps for the other datasets are
shown in Supplementary Figure 72-73. The first look at the heatmap revealed the already
mentioned problem — not all drugs with common known targets co-localized on that heatmap. For
instance, selumetinib, trametinib, and binimetinib that all target MEK (MAP2K) were not found
in close proximity to each other. At the same time, the PISA shifts of MAP2K1 and MAP2K2 for
the three drugs were both strong and statistically significant (Table 1), which testifies to the

validity of the PISA analysis.
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Table 1. Fold-changes in PISA and the corresponding p-values of MEK proteins in A549 lysate
treated with selumetinib, trametinib or binimetinib vs. DMSO.

Selumetinib Trametinib Binimetinib

Fold-change | p-value Fold-change | p-value Fold-change | p-value
MEK1 (MAP2K1) 23+0.2 2.4 x10° 21101 3.5 x10* 24+0.1 1.6 x10*
MEK2 (MAP2K2) 3.8+04 4.9 x10° 24 +0.3 1.8 x107 43+05 5.7x1073

Examination of the MTX-treated samples (the positive control in each experiment)
revealed that they did not cluster together either. The cause of the problem was the specificity of
the solubility shift in PISA that affected very few target proteins, while the shifts in the absolute
majority of proteins were to a large extent due to statistical fluctuations. Removing this noise and

“purifying” the true targets turned out to be a nontrivial but necessary task.

A549_cell H82_lysate

207
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442
 (6.0%)
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Figure 2. Number of proteins identified in all four PISA datasets and their overlap. 3253

proteins (expected number is 1872) without missing values were shared across four datasets.


https://doi.org/10.1101/2024.08.06.606599
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.08.06.606599; this version posted August 6, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Optimal p-value threshold

To address this problem, we first applied the OPLS-DA analysis that has demonstrated
its utility in the ProTargetMiner expression proteomics database of drug target candidates®®. Here,
the PISA shifts for each drug of interest were contrasted with those for all other drugs and controls
(an example for olaparib is shown in Figure 3B, lower panel). The coordinates of each protein
along the main axis correspond to a specific solubility increase with drug treatment (positive
values) or its decrease (negative values). Compared to the raw PISA shifts, the main OPLS-DA
coordinates provide an enhanced specificity, as the shifts common for many drugs obtain a
relatively small coordinate value compared to the shifts of similar magnitude that are specific for
a given treatment 18, We thus expected that the main OPLS-DA coordinate would provide more
meaningful clustering of the treatments. There was indeed an improvement, but not sufficient, as
the sporadic PISA shifts of unrelated proteins were still posing a problem. It became clear that
these unrelated proteins needed to be down-prioritized, so that only proteins passing a certain

threshold for statistical significance (outliers) would be used for clustering.

In order to identify the threshold for such statistical outliers, a distribution of the OPLS-
DA coordinates was assessed for each model. One example is the OPLS-DA model comparing
olaparib vs. all other drugs treated H82 intact cells (Figure 3B). The dispersion of OPLS-DA
coordinates was determined, and the p-value for each outlier was calculated using the error
function. The latter assumed Gaussian distribution, but the exact shape of the distribution was not
critical for the final results. The horizontal axis was then transformed into -log10(p) values (Figure
3C).

Our strategy was to use in further data processing only the PISA shifts for the outliers,
zeroing all other PISA shifts that were assumed to be noise. Such an approach required evidence-
based determination of the optimal threshold for p-values (dashed vertical line in Figure 3C). For
the threshold determination, we used the data on MTX-treated samples that were present in all
individual TMT sets (5 such samples in each PISA analysis type). A figure of merit (FoOM) function
was created corresponding to the average distance in all four types of PISA analysis between the
positions of the neighboring MTX samples in hierarchical clustering of all samples of a given type.
The tighter the cluster that MTX-treated samples created, the lower FOM was obtained. As Figure

3D shows, the minimal FoM is observed at the value of 4.5. This value was accepted as the optimal
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-log10(p) threshold for the whole dataset, and the outlying proteins exceeding this threshold, as in

Figure 3C, were taken as pro-targets (drug target candidates).
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Figure 3. Data processing for drug target identification. A. Heatmap based on clustering of
log2 transformed PISA fold-changes for 4,626 shared proteins in the A549 lysate dataset. B. Lower
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panel: The loading plot of an OPLS-DA model comparing olaparib to all other drugs in H82 cell
dataset. Upper panel: the density distribution of protein’s x-coordinates in the loading plot.
Olaparib’s known target PARP1 exhibits the next-highest x-coordinate. C. The transformed x-
coordinates correspond to -log10(p) of the 39 proteins above the threshold value (dashed vertical
line). The top 10 proteins are represented as red/green circles if they became more/less soluble
upon olaparib treatment. D. Selection of the optimal cut-off threshold. Distance is the average
distance between control MTX datasets in hierarchical clustering of all data. Insert shows that the

curve reaches its minimum at x=4.5, chosen as optimal cut-off value.

Drug clustering

With the PISA shifts of all below-threshold proteins set to zero, the hierarchical clustering
data became much more meaningful. While the MTX samples clustered tightly as expected (see
Figures 4A, B as examples), many drugs with similar targets were also found close together. For
example, in the A549 lysate dendrogram, the three MEK inhibitors, selumetinib, trametinib and
binimetinib, are found next to each other, similar to the potent PTK2 inhibitors brigatinib®® and
defactinib?’. With a meaningful clustering achieved, we moved to the identification of the pro-

targets and their validation.

Drug target candidates (pro-targets)

With the optimal threshold of 4.5 for -log10(p), the median number of target candidates for
different drugs was 27.5 for A549 lysate and 20 for intact A549 cells, while for H82 cells the
median numbers were 24 and 43, respectively. These numbers represent 6.0% of all quantified
proteins for A549 lysate and 4.0 % for intact A549 cells, as well as 4.2% for H82 cell lysates and
7.5% for intact cells. For pro-target validation, we applied the following principle: if the same
candidate appears in k>1 dataset for the same drug, it is considered validated at the k-th level. All
validated pro-targets of 67 drugs are listed in Table 2. On average, we found 3 pro-targets per drug
with k=2 (overlaps in two datasets), 0.4 pro-targets with k=3 and 0.2 pro-targets with k=4. For
control of the false discovery rate (FDR), the ‘candidates’ were selected at random; the numbers

of such spurious overlaps were 1.3 proteins with k=2, 4.4x10° with k=3 and 5.5x10° with k=4.
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While these numbers indicate that, strictly speaking, only pro-targets with k>3 are statistically
reliable, we decided to consider also the pro-targets with k=2 to minimize the number of false
negatives. The pro-targets shared between the lysate and intact cell analysis of the same cell line,
which is a more reliable subset of k=2 pro-targets, are shown in Supplementary Figure 74-145.

As an example of pro-target analysis, pevonedistat (also known as MLN4924) treatment in
A549 lysate produced 127 target candidates, 18 candidates for intact A549 cells, 45 for H82 lysate
and 66 for intact H82 cells (Figure 4C). Of these, 11 pro-targets were found in 2 datasets.
Importantly, 2 candidates (NAE1 and UBA3) were found in all 4 datasets, while the anticipated
number of randomly shared proteins for k=4 is only 1.7x10°. These two proteins, NAE1 and
UBAZ3 (the latter is also known as NAE?2), are two subunits of the known target of that drug -
NEDDS8-activating enzyme E1 (NAE)?2. Seven other proteins were shared in two PISA analyses
of intact cells. Of these, DCAF7, CRBN and CTNNB1 are found to be co-expressed with NAEZ,

Another notable example is ganetespib (STA9090), for which 33, 41, 21 and 33 targets
candidates were found in the four datasets, respectively. Of these, 9 proteins (expected number —
0.8) were shared in 2 datasets, 1 protein (2.3x10° proteins expected) in 3 datasets and 2 proteins,
HSP90 subunits HSP90OAAL and HSP90ABL, were shared in all datasets (expected number -
2.3x10°®). As ganetespib is designed to be an HSP90 inhibitor??, this result clearly demonstrates

the analytical power of the ThermoTargetMiner approach in drug target identification.
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Figure 4. Pro-target-based clustering of the PISA datasets from drug-treated samples together with
all MTX-treated controls from the lysates of A549 (A) and H82 (B) cells upon application of the
common optimal threshold of 4.5. Venn diagrams show the overlap of the identified pro-targets of
pevonedistat (C) and sunitinib (D).
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These and other target candidates are listed in Table 2. The largest number of PISA datasets
(20 in total) was obtained for MTX. The DrugBank?® lists three MTX targets: TYMS, ATIC,
DHFR. Of these, only DHFR is consistently revealed as a pro-target by ThermoTargetMiner.
TYMS is an outlier in the MTX-treated intact cells, but not in lysates (Figure 5), which is similar
to our previous PISA results?2. ATIC showed a similar tendency. An explanation for the
phenomenon is that, unlike direct binding of MTX to DHFR, MTX needs first to be transformed
into MTX polyglutamates (MTXPGs) to exert effects on TYMS and ATIC?®. Apparently, MTX
binding to TYMS and ATIC requires intact cellular environment which provides functional
enzymes and substrates. This result confirmed the sufficiently high reliability of the pro-targets
identified by PISA for the ThermoTargetMiner database.
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Figure 5. Fold-changes in PISA and p-values of the three MTX targets listed in Drugbank %:
DHFR, TYMS and ATIC.

Novel targets

Sunitinib is designed to target receptor tyrosine kinases (RTK), such as vascular endothelial

growth factor (VEGF) receptor and platelet-derived growth factor (PDGF)?’. However, these
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transmembrane proteins were not identified in our PISA analysis, likely due to their poor
solubility. Instead, 22 other proteins were shared between at least two datasets (Figure 4D).
Among these pro-targets, NMT1 and NMT2, which have been found overexpressed in cancers and
thus hinted to be potential anticancer targets?®, were found in 4 and 3 ThermoTargetMiner datasets,
respectively. Previous work'® of our group has discovered that sunitinib treatment induces

significant NMT1 downregulation, supporting the current PISA finding.

Another protein that exhibited significant PISA shift in all four sunitinib datasets was
TTC38 (tetratricopeptide repeat domain 38), which has not been linked to sunitinib binding. Given
the very low a priory probability of being an outlier with k=4 (only 3.7x10° such events are
expected by pure chance), it is highly likely that TTC38 is a cognate target of sunitinib. To a large
extent, the same applies to CAMK2D which was significantly solubilized by sunitinib treatment
in three out of four datasets. Of relevance is that the activity of the related protein CaMKII has
been significantly elevated following chronic sunitinib treatment, which suggested a mechanism
for sunitinib-mediated cardiovascular dysfunction®®. Furthermore, our results validated the
previously reported sunitinib binding to STK24%*°, AAK13!, CSNK1A1%*?, RPS6KB1, STK3, and
STK4%,

Phenethyl isothiocyanate (PEITC) is a natural anti-cancer compound that is present in
many cruciferous vegetables. It is believed to suppress cancer progression through diverse
mechanisms like cell cycle arrest at the mitotic phase and induction of apoptosis®*. On the
molecular level, PEITC hinders tubulin polymerization and alters tubulin secondary and tertiary
structures®®. However, there is no validated target of PEITC in the Drugbank®. In
ThermoTargetMiner, PAFAH1B3, one of the most frequently overexpressed metabolic enzymes
in human tumors®, is found as the sole pro-target across all four datasets (the expected number of
such events is 6.7x10®). Also, tubulin-specific chaperone D (TBCD) that plays a crucial role in
tubulin complex assembly®’, was an outlier in three datasets (6.3x107 such events are expected).
TBCD is a validated pro-target of one other drug in our database. The drug is KOS-862 (also
known as epothilone D or desoxyepothilone B), a tubulin stabilizer known to arrest the cell cycle
at the mitotic phase®. Interestingly, the effect of KOS-862 on microtubules is opposite to that of
PEITC: while PEITC blocks microtubule polymerization®®, KOS-862 promotes the latter process,
facilitating the formation of multipolar spindles®. Consistent with that, in PISA analysis these two
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drugs demonstrate opposite effects on TBCD’s solubility: PEITC treatment increases it, whereas
KOS-862 lowers TBCD’s solubility.

Mechanism of action

Napabucasin (BBI-608) is a novel STAT3 signaling inhibitor that binds to STAT’s hinge
pocket and diminishes STAT3 DNA binding affinity®. In ThermoTargetMiner, multiple oxidative
stress-related proteins, including ADO, ADI1, PRDX5 and ETHE1, showed significant solubility
alteration in at least three datasets. Moreover, napabucasin impacted two pivotal regulators of
redox homeostasis in humans, thioredoxin and the glutathione system®, as both thioredoxin
reductase TXNRD2 and glutathione peroxidase GPX1 demonstrated decreased solubility in the
two cell lysates. Therefore, we hypothesized that napabucasin acts as an anticancer compound by

inducing oxidative stress on cancer cells.

To test this hypothesis, we performed GO enrichment analysis on the PISA data from
napabucasin treated A549 cells. The response to oxidation was found to be the most significantly
involved biological process (Figure 6A). In agreement with that, it has been reported that
napabucasin’s induction of ROS in multiple cell lines* is one of the anti-tumor action mechanisms
of this drug. In the same study, napabucasin was found to be a substrate of another oxidoreductase,
NAD(P)H dehydrogenase [quinone] 1 (NQO1)*. In our A549 lysate and intact cell data, NQO1
was one of the most shifting proteins (Figure 6B and 6C). In H82 data, NQO1 was not quantified,
possibly because its transcription level in A549 cells is much higher than that in H82 cells (2554
vs. 12 transcripts per million)*>#3, In addition to NQO1, multiple key proteins responsible for the
maintenance of cellular redox homeostasis, such as PRDX5, PRDX6 and GPX2 were among the
top 0.6% shifting proteins in napabucasin-treated A549 intact cells, and in A549 lysate, the p-
values of GPX1 and NQO1 ranked as 10" and 11" lowest, respectively.
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Figure 6. A. GO term enrichment in biological pathways of 66 proteins that pass the threshold
value of 3 (top 1.4%) in napabucasin treated A549 cells. B. Positions on the transformed opls-x

scale for A549 cells of the proteins involved in cellular redox homeostasis. C. Same for A549

lysate.
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Table 2. The list of pro-targets validated through our data and ProTargetMiner'® for 67 compounds

profiled in this study along with clinical phase information and targets of these compounds in

DrugBank .
Drug name Clinical | Known Targets in DrugBank | Position in %% | Pro-targets (shared in 4 TTM
Trail from top (+) or | datasets, 3 datasets, and 2 datasets
Phase bottom (-) in in cell or only in lysate)
ProTargetMiner
18
7- 2 PDPK1 ROCK1%, STK3%, STK4 4,
hydroxystaurosp MAP2K®6, GSK3B, PRKCI,
orine CTPS1, PRKAR2A, PAK4 %,
CAMK2D#
Acalabrutinib 2 BTK CIRBP
Alisertib 2 AURKA SPR, ATIC*, IDH1%, IVD
Anlotinib 3 KIT, VEGFR, PDGFR, BICD2, AFTPH, CHAF1B,
FGFR PDE6D, ASAH1
Apatinib 4 KDR ANAPC5
AZD1775 2 WEE1 CLPP, ECH1, ADK
AZD5363 2 AKT QTRT1, MAP2K6
Berzosertib 2 ATR, ATM PIP4K2C, PIP4K2B, CTSC,
GSK3A, PSIP1
Bexarotene 3 RXRA, RXRB, RXRG XPO7, ACAD9, TFB2M, CSELL,
GSTM2, SARS?2
Binimetinib 2 IL6, TNF, IL1B, MAP3K1,
MAP2K2
Brigatinib 3 ALK, EGFR, ABL1, IGF1R, DUSP23, PTK2%, DNAJC13
FLT3, INSR, MET, ERBB4,
ERBB2
Cabozantinib 2 MET, KDR, RET GLUD1 PIP4K2C*, GLUD1
(1.0%+)
Cilengitide 2 ? WDR5
Crizotinib 3 ALK, MET HEBP1, ASAH1
Dabrafenib 4 BRAF, RAF1, SIK1, NEK11, PMPCA, CDK5%, CSK*, ENOL1,
LIMK1 RNMT, CDK2*
Defactinib 2 PTK2 PTK22%, CDK5, RPS6KA3,
MAPK 14 MAPK3* PDXK
Desipramine 2 SLC6A2, ADRB2, SLC6A4,
HTR2A, ADRB1, SMPD1,
HRH1, CHRM1, CHRM2,
CHRM3, CHRM4, CHRMS5,
HTR1A, HTR2C, DRD2
Dichloroacetate | 2 ?
Dihydroartemisi | 2 ? WDR54, PTGR2, HS1BP3
nin
Docetaxel 2 TUBB1, BCL2, MAP2,
MAP4, MAPT, NR1I2,
Entrectinib 2 NTRK1, NTRK2, NTRKS, DPH5, PLIN2, PTAR1, PTK2%,
ROS1, JAK2, TNK2 IGF1R“®
Epirubicin 3 TOP2A, DNA SSRP1 (3.6%-) | SSRP1, FAU
Etalocib 2 LTB4R, PPARG NIPSNAP1, HIBCH, HADHA
Everolimus 3 MTOR UBQLN1, UBQLN4, GLMN,
MTOR?*®, ZWINT
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Exisulind 2 PDE4D, PDEA4C, PDE5SA, DPP3, ZYG11B
PDE2A, GSTP1, AKR1B1,
AKR1B10,
Fludarabine 2 RRM1, POLA1L, DNA, DCK, NUDT4
Ganetespib 2 HSP90 PA2G4, CHORDC1, TP53RK,
HSP90AB2P?, HSP90AB4P?,
YARS, SPR, HSP90B1?%,
HSP90AB1?4, HSP90AA1%,
CEP112
Gefitinib 3 EGFR FAM96B*, CORO1C
Gossypol 3 BCL2L1 HYOU1, PPCS, IWS1,
CHAMP1, GMPPA, SETD7,
PITRM1, KARS, RCN2, EIF3A,
G3BP1, HMGCSL, PCYTI1A,
ACADSB, PSMC4, MSH2,
LRPPRC, GTF2E2, NSF,
EWSR1
Guadecitabine 2 DNMT QTRTD1, PGM1, CSTA
Imatinib 2 BCR, KIT, RET, NTRK1,
CSF1R, PDGFRA, DDR1,
ABL1, PDGFRB
Iniparib 2 ?
Itacitinib 2 JAK1 DPH5
KOS-862 2 TUB DLGAP4, SLIRP, TBCD,
RABGGTA, PITRM1, LGALSL,
CAMSAP2, PDE6D
L-alanosine 2 ADSS, ADSSL1, pyrB
Lapatinib 2 EGFR, ERBB2 ZYG11B, FECH
Lonafarnib 3 FNTA, FNTB TIALL, EFNTAM
Metformin 2 PRKAB1, ETFDH, GPD1, COPS7A
MTOR
MTX1-5 4 TYMS, ATIC, DHFR DCPS, GSS, DHFR %%, DCK53
Napabucasin 3 ? XPNPEP1, C120rf10, CAAP1,
NLN, ADI1, MRI1, ADO,
COA7, NHLRC2, MVK,
PRDX5%, MPST, DTYMK,
IMPDH2, HARS, APP, ETHEL],
HAT1, CTSD, TXNRD2, GPX15%
Navarixin 2 CXCR1, CXCR2
Obatoclax 3 BCL2 NUP133, NUP107, HADHB,
Mesylate NUP98, CARS
Olaparib 3 PARP1, PARP2, PARP3 PARP15%
Palbociclib 2 CDK4, CDK®6 NUDT1, CDK4%
Pazopanib 2 FLT1, KDR, FLT4, ETNK1, CMBL, ECH1, CHKA,
PDGFRA, PDGFRB, KIT, STX2
FGFR3, ITK, FGF1, SH2B3
Pevonedistat 2 NAE ANAPC4, KLHL11, ETNK1,
UBA3%, KCTD9, KCTD1,
MORF4L2, NAE1%, DCAF7,
CTNNB1, POLD1, CRBN
Phenethyl 2 ? POLDIP2, USP22, FN3K,

isothiocyanate

TBCD®, IPO4, HEATRS3,
PAFAH1B3, ALDHOAL, HTT,
ALDH1B1%, ME2, PHGDH,
CLUH
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Pictilisib 2 PIK3AP1 PIK3R1%
Pioglitazone 2 PPARG, MAOB ADH5
Pirfenidone 4 FURIN
Ponatinib 2 ABL1, BCR, KIT, RET, SLK (0.1%-) SLK®2 CDK5, CSK®, DCK,
TEK, FLT3, FGFR, FGFR2, MAP4K4
FGFR3, FGFR4, LCK, SRC,
LYN, KDR, PDGFRA
Prexasertib 2 CHEK1 FECH, PAK4
Prinomastat 2 MMP XPNPEP1, ZDHHCS5, PMPCA,
RAB4A, IMPA2
Regorafenib 3 FLT1, KDR, FLT4, KIT, CDK12, GSK3B, ALDH1B1,
PDGFRA, PDGFRB, ALDH2, PDE6D
FGFR1, FGFR2, TEK,
DDR2, NTRK1, EPHA2,
RAF1, BRAF, MAPK11,
FRK, ABL1, RET
R04929097 2 PSENEN, APH1A, APH1B DPP8, RPS21, SH3BGRL
Ruxolitinib 2 JAK?2
Salirasib 2 ICMT
Seliciclib 2 CDK1, CDK2, CDK?7,
CDK9, MAPK1, MAPK3,
CSNKI1E
Selumetinib 2 MEK1, MEK?2
Sorafenib 2 BRAF, RAF1, FLT4, KDR, RNMT
FLT3, PDGFRB, KIT,
FGFR1, RET, FLT1
Sunitinib 2 PDGFRB, FLT1, KIT, KDR, NMT1(0.1%-) BCLAF1, AHCTF1, TTC38,
FLT4, FLT3, CSFIR, STK3%, STK433 RPS6KA3,
PDGFRA CSNK1A1% NMT1,
RPS6KB1%, NMT2, NME4,
CAMK?2D, STK?24%0 AAK 13!
TAK-931 2 CDC7 RIOK1, TP53RK, PRPF4B,
CSNK1A1, CSNK2A2
Topotecan 3 TOP1, TOP1IMT, DNA CBR3 (4.4%-) CBR1, CBR3
Trametinib 4 MAP2K1, MAP2K?2 THEM4, MAP2K 1% PRMT5
Vorinostat 2 HDAC1, HDAC2, HDACS3, HDAC6, XPNPEP1, GPATCH1,
HDAC6, HDACS, acuC1 HDAC?2% HDAC1, MTA2
YM155 2 BIRC5 UQCRFS1, CSTB
ZD4054 2 EDNRA
Discussion

Identifying drug targets is crucial in drug discovery and development. Direct / affinity-

based methods are widely used to validate the physical binding of a drug to its target. These

methods usually require modification of the drug or the target protein. In addition, direct affinity-

based methods lack an intracellular environment. Without the existence of protein complexes, the

proteins’ structures can be different, thus, the direct bindings between small molecules and proteins

are less trustworthy. Moreover, off-target effects are not considered in such experiments, resulting
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in a lack of knowledge of the drug’s potential side effects. Compared to other target identification
technologies, proteomics methods do not require the target proteins to be abundant, synthesized
probes or pull-downs. Especially, PISA can demonstrate drug-protein interactions in a protein-
complexes-containing environment. This unbiased assay increased the efficiency by an order of
magnitude compared to TPP, providing a relatively economic solution for finding drug on-target

and off-target engagements.

ThermoTargetMiner provides a universal analytical methodology for large-scale PISA data.
For a long time, PISA has been used for studies that only include a few conditions and the data
was processed by computing fold-changes and p-values. The rationale for applying the same data
processing approach to more complex data remains to be verified. Two research groups have tried
to push PISA to large-scale experiments. Olsen group used g-value < 0.05 and an absolute log2-
transformed fold-change > 0.5 as the cut-offs®. Alternatively, Gygi group acquired data from two
replicates and chose cut-offs based on log2-transformed fold-changes and standard deviations®’.
Extra biochemical assays were usually used to validate the drug targets. ThermoTargetMiner, on
the contrary, found out that fold-changes and p-values allow noise from irrelevant proteins to
significantly fluctuate the determination of drug targets. Hereby, we introduced OPLS-DA
followed by normalization to minimize the impact of such noise. In addition to that, we encourage
cross-validating the targets between PISA datasets, meaning that no more experiments need to be

conducted to validate a single protein target.

ThermoTargetMiner is a useful drug targets database. In our previous work
ProTargetMiner, we demonstrated that FITEXP is a useful assay to reveal protein targets based on
drug-induced expression regulation®. Though the majority of approved drugs’ well-defined
targets are proteins®®, not all of these drugs work through regulating protein expression. For
instance, kinase inhibitors are a large group of antineoplastic drugs that would inhibit the
phosphorylation on signaling proteins. It is also well-known that small-molecule binding to protein
can result in conformational changes®®. PISA, as a supplementary assay for FITExP, is able to
detect changes in protein solubility induced by modifications and structure alterations. In this work,
we further developed PISA into a standard pipeline that is customized for large-scale drug
screening. ThermoTargetMiner provides reliable data that includes novel targets for 67 FDA-
approved anticancer compounds, enabling prediction and interpretation on side effects. The
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bindings of small-molecule drugs to proteins that were never reported before could also inspire

drug repurposing.

Conclusions

This study illustrates how higher-throughput PISA analysis can validate known targets,
provide new target information, and help explain the mechanism of drug action. This approach
offers a valuable framework for forecasting potential side effects and repurposing drugs for
prospective indications. Last but not least, the wealth of target information provided in the
ThermoTargetMiner resource holds broader implications beyond lung cancer, and can be

extrapolated to various cancer types, to the benefit of a wider oncological community.

Methods
Selection of molecules

Clinical trial data for lung cancer were downloaded from https://clinicaltrials.gov/. Only

compounds under clinical phase Il and above were considered. The complete list of compounds is
shown in Table 1. 14 compounds found in ProTargetMiner (crizotinib, docetaxel, ponatinib,
sorafenib, sunitinib, gefitinib, lapatinib, pazopanib, ruxolitinib, apatinib, cabozantinib,
fludarabine, topotecan and epirubicin)® were selected, along with 53 compounds chosen based on
commercial availability and diversity of targets (at least one drug against each known target was
included).

Selection of cell lines

A549 lung adenocarcinoma cells representing NSCLC and NCI-H82 [H82] cells
representing SCLC were selected as model systems. A549 is a widely used lung cancer model
system that was employed in at least 485,000 studies reported in Google Scholar, including
ProTargetMiner!8. NCI-H82 [H82] was chosen as a classic model of SCLC, because it is adherent
and can be grown in the same medium (DMEM) as A549 cells. As this cell line is derived from a

metastatic site, it is a good candidate for comparison of the results with A549 cells. None of these
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cell lines are found in the Register of Misidentified Cell Lines (https://iclac.org/databases/cross-

contaminations/).

Dose and duration of treatment

As compound screening assays for hit discovery are typically run at 1-10 pM?8, the same
concentration of 10 uM was used for all the compounds. The incubation time in the lysate
experiments was 30 min, while the cells were treated for 1 h to allow extra time for drug import

or diffusion through the cell membrane.
Proteomics experimental design

In each experiment, two types of controls were used: cells treated with vehicle (DMSO)
and with methotrexate (MTX). MTX targets the dihydrofolate reductase (DHFR) protein, which
is readily identified in both PISA'? and FITExP. The assignment of each TMT channel to each

treatment is shown in Supplementary Table 1.
PISA in lysate

PISA experiments were performed using the previously published method?. A549 and
H82 cells were cultured in 175 cm? flasks, and were then detached, washed twice with PBS, and
resuspended in PBS. The cell suspensions were freeze-thawed in liquid nitrogen 5 times, and then
centrifuged at 10,000 g for 10 min to remove the cell debris. The protein concentration in the lysate
was measured using Pierce BCA assay (Thermo). The cleared lysate was then aliquoted in 3
replicates and treated with the drugs for 30 min at 37°C in 300 pL reaction volume. After the
reaction, the samples from each replicate were aliquoted into 10 wells in a 96-well plate and heated
for 3 min in an Eppendorf gradient thermocycler (Eppendorf; Mastercycler X50s) in the
temperature range of 48-59°C. Samples were then cooled for 3 min at room temperature (RT) and
afterwards snap frozen and kept on ice. Samples from each replicate were then combined and
transferred into polycarbonate thickwall tubes and centrifuged for 20 min at 100,000 g and 4°C.

The soluble protein fraction was transferred to new Eppendorf tubes. Protein concentration
was measured in all samples using Pierce BCA Protein Assay Kit (Thermo), the volume
corresponding to 25 pg of protein was transferred from each sample to new tubes and urea was

added to a final concentration of 4 M. Dithiothreitol (DTT) was added to a final concentration of
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10 mM and samples were incubated for 1 h at RT. Subsequently, iodoacetamide (IAA) was added
to a final concentration of 50 mM and samples were incubated at RT for 1 h in the dark. The
reaction was quenched by adding an additional 10 mM of DTT. No protein precipitation was
performed, to avoid losing short semi-tryptic peptides at this stage. Lysyl endopeptidase (LysC;
Wako) was added at a 1:75 w/w ratio and samples incubated at RT overnight. Samples were diluted
with 20 mM EPPS to the final urea concentration of 1 M, and trypsin was added at a 1:75 w/w
ratio, followed by incubation for 6 h at RT. Acetonitrile (ACN) was added to a final concentration
of 20% and TMT reagents were added 4x by weight (200 pg) to each sample, followed by
incubation for 2 h at RT. The reaction was quenched by addition of 0.5% hydroxylamine. Samples
within each replicate were combined, acidified by TFA, cleaned using Sep-Pak cartridges (Waters)
and dried using DNA 120 SpeedVac Concentrator (Thermo). The pooled samples were
resuspended in 20 mM ammonium hydroxide and separated into 96 fractions on an XBrigde BEH
C18 2.1x150 mm column (Waters; Cat#186003023), using a Dionex Ultimate 3000 2DLC system
(Thermo Scientific) over a 48 min gradient of 1-63% B (B=20 mM ammonium hydroxide in
acetonitrile) in three steps (1-23.5% B in 42 min, 23.5-54% B in 4 min and then 54-63% B in 2
min) at 200 puL min flow. Fractions were then concatenated into 12 samples in sequential order

(e.g., fractions 1, 13, 25, ..., and 85 were combined).
PISA in cells

Cells were cultured in 6-well plates to a density of 250,000 cells per plate. A day later, cells
were treated with the drugs for 1 h. The cells were then washed with PBS, scraped off and
resuspended in PBS. The cells were then aliquoted into 10 in PCR plates and heated like above.
The cells were then snap-frozen and kept on ice. The samples from each replicate were then pooled
and 0.4% final concentration of NP40 was added. The rest of the protocol was identical to PISA

in lysate.
LC-MS/MS analysis and data acquisition

Orbitrap Fusion and Lumos mass spectrometers were used online with an Ultimate 3000
RSLC nanoUPLC system (Thermo Scientific). Sample fractions were dried and resuspended in
Buffer A (0.1% FA and 2% acetonitrile in water) to a theoretical peptide concentration of 0.3
Mo/pL. Resuspended peptides were loaded onto a Acclaim PepMap 100 C18 HPLC column (75
um internal diameter, 3 um beads, 100 A pore size, Thermo, Cat#164535) for 5 min at a flow rate
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of 4 uL/min. Peptides were transferred through an EASY-Spray column (75 um internal diameter,
2 um beads, 100 A pore; Cat#ES903) connected to the Easy-Spray source (Thermo; Cat#ES082).
Subsequently, the peptides were eluted with a buffer B (0.1% FA and 2% water in acetonitrile)
gradient at a flow rate of 300 nL min ™. The elution gradient was from 4% B to 28% B for 150
min, to 34% B for 15 min, increasing to 95% B in the next 3 min and staying at 95% for 4 min.
Mass spectra were acquired with an Orbitrap Fusion Tribrid mass spectrometer (Thermo;
Cat#IQLAAEGAAPFADBMBCX) in the data-dependent mode with MS1 analysis at 120,000,
and MS2 at 50,000 resolution, in the m/z range from 400 to 1600. Peptide fragmentation was

performed via higher-energy collision dissociation at 35% normalized collision energy.
Protein identification and data analysis

Raw LC-MS/MS data were processed for protein identification and quantification using
MaxQuant software (2.5.0.0) with the UniProt human proteome database (UP000005640_ 9606
and UP000005640 9606 _additional). No more than two missed cleavages were allowed. And the
results were filtered to a 1% false discovery rate. Data post-processing was performed in R and
OPLS-DA models were built using SIMCA 17 (Sartorius).

Statistics

Only proteins that were identified with two or more unique peptides and without potential
contaminations were included in the final dataset. To calculate the fold-changes of the PISA
signals, abundances of TMT reporters (peptide abundances) were first normalized to the total
abundance in each TMT channel, followed by the protein abundances being calculated as the
average of all normalized peptide abundances. Thereafter the protein abundances were normalized
to those in the DMSO-treated samples (occupying the TMT126 channel in each TMT set, see
Supplementary Table 1). The fold-changes were then calculated as the ratios of the protein
abundances in treated samples vs those of the controls. Batch effects among three biological
replicates were removed using Limma package®®. For each protein, the median fold-change was
used for further analysis, and the p-values were calculated by the two-sided Student’s t-test on the
normalized abundances in treated samples vs those in controls. In OPLS-DA analysis, protein
coordinates were normalized first to the coordinates of the drug, and then to the standard deviation
(SD) of the distribution of proteins’ x-coordinates. The OPLS-DA-derived p-values were the
GAUSS error function calculated for each protein based on its SD-normalized coordinate.
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Data availability

The LC-MS/MS raw data files and extracted peptides and protein abundances are deposited
in the PRIDE repository of the ProteomeXchange Consortium’™ under the dataset identifier
PXDO054158 with no restrictions. The source data underlying Supplementary Figures 1-71, and
Supplementary Figures 74-145 are provided as a Source Data file. All other data are available from

the corresponding authors on request.

Acknowledgements

This work was supported by Cancerfonden (grants 19 0558 Pj and 22 1967 Pj to RAZ).
We would like to acknowledge Akos Végvari and Xuepei Zhang for their assistance in LC-MS/MS
analysis and Marie Stahlberg and Carina Palmberg for their general assistance in lab work. We
also appreciate Karolinska Institutet for open access funding. RAZ also acknowledges support
from The Ministry of Science and Higher Education of RF (agreement Ne 075-15-2020-899), as
well as RUDN project Ne 033322-2-000.

Author contributions

The concept, resources, experimental design, and methodology by R.A.Z., protocols and
training by A.A.S.; sample preparation by H.L., A.A.S., B.S., A.V., and B.N.; LC-MS/MS analysis
by H.L. and Z.M.; data analysis and visualization by H.L. and H.G.; writing - original draft by
H.L. and R.A.Z., with editing by A.A.S. and reviewing by all other co-authors.

26


https://doi.org/10.1101/2024.08.06.606599
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.08.06.606599; this version posted August 6, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

References

1. Thai, A. A., Solomon, B. J., Sequist, L. V., Gainor, J. F. & Heist, R. S. Lung cancer. The
Lancet 398, 535-554 (2021).

2. Zappa, C. & Mousa, S. A. Non-small cell lung cancer: Current treatment and future
advances. Transl Lung Cancer Res (2016) doi:10.21037/tlcr.2016.06.07.

3. Rudin, C. M., Brambilla, E., Faivre-Finn, C. & Sage, J. Small-cell lung cancer. Nat Rev
Dis Primers 7, 3 (2021).

4. Duma, N., Santana-Davila, R. & Molina, J. R. Non—-Small Cell Lung Cancer:
Epidemiology, Screening, Diagnosis, and Treatment. Mayo Clin Proc 94, 1623-1640
(2019).

5. Harrison, R. K. Phase Il and phase 111 failures: 2013-2015. Nat Rev Drug Discov 15, 817—
818 (2016).

6. Sabatier, P., Beusch, C. M., Meng, Z. & Zubarev, R. A. System-Wide Profiling by
Proteome Integral Solubility Alteration Assay of Drug Residence Times for Target
Characterization. Anal Chem 94, 15772-15780 (2022).

7. Sun, D., Gao, W., Hu, H. & Zhou, S. Why 90% of clinical drug development fails and
how to improve it? Acta Pharm Sin B 12, 3049-3062 (2022).

8. Lin, A. et al. Off-target toxicity is a common mechanism of action of cancer drugs
undergoing clinical trials. Sci Transl Med 11, (2019).

9. Vedadi, M. et al. Chemical screening methods to identify ligands that promote protein
stability, protein crystallization, and structure determination. Proc Natl Acad Sci U S A
103, 15835-15840 (2006).

10. Molina, D. M. et al. Monitoring drug target engagement in cells and tissues using the
cellular thermal shift assay. Science (1979) 341, 84-87 (2013).

11.  Savitski, M. M. et al. Tracking cancer drugs in living cells by thermal profiling of the
proteome. Science (1979) (2014) doi:10.1126/science.1255784.

12.  Gaetani, M. et al. Proteome Integral Solubility Alteration: A High-Throughput Proteomics
Assay for Target Deconvolution. J Proteome Res 18, 4027-4037 (2019).

13.  Zhang, X. et al. Solvent-Induced Protein Precipitation for Drug Target Discovery on the
Proteomic Scale. Anal Chem 92, 1363-1371 (2020).

14.  Beusch, C. M., Sabatier, P. & Zubarev, R. A. lon-Based Proteome-Integrated Solubility
Alteration Assays for Systemwide Profiling of Protein—Molecule Interactions. Anal Chem
94, 70667074 (2022).

15.  Saei, A. A. et al. System-wide identification and prioritization of enzyme substrates by
thermal analysis. Nat Commun 12, 1-13 (2021).

27


https://doi.org/10.1101/2024.08.06.606599
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.08.06.606599; this version posted August 6, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

16.  Saei, A. A. et al. Massive Solubility Changes in Neuronal Proteins upon Simulated
Traumatic Brain Injury Reveal the Role of Shockwaves in Irreversible Damage. Molecules
28, 6768 (2023).

17.  Saei, A. A. et al. Mapping the GALNT1 substrate landscape with versatile proteomics
tools. bioRxiv 2022.08.24.505189 (2022) d0i:10.1101/2022.08.24.505189.

18. Saei, A. A. et al. ProTargetMiner as a proteome signature library of anticancer molecules
for functional discovery. Nat Commun (2019) doi:10.1038/s41467-019-13582-8.

19.  Chernobrovkin, A., Marin-Vicente, C., Visa, N. & Zubarev, R. A. Functional
Identification of Target by Expression Proteomics (FITEXP) reveals protein targets and
highlights mechanisms of action of small molecule drugs. Scientific Reports 2015 5:1 5,
1-9 (2015).

20. Zhang, S. et al. The potent ALK inhibitor brigatinib (AP26113) overcomes mechanisms
of resistance to first- and second-generation ALK inhibitors in preclinical models. Clinical
Cancer Research 22, 5527-5538 (2016).

21.  Gerber, D. E. et al. Phase 2 study of the focal adhesion kinase inhibitor defactinib (VS-
6063) in previously treated advanced KRAS mutant non-small cell lung cancer. Lung
Cancer 139, 60-67 (2020).

22. Wolenski, F. S. et al. The NAE inhibitor pevonedistat (MLN4924) synergizes with TNF-a
to activate apoptosis. Cell Death Discovery 2015 1:1 1, 1-9 (2015).

23.  Szklarczyk, D. et al. The STRING database in 2023: protein-protein association networks
and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids
Res 51, D638-D646 (2023).

24.  Shimamura, T. et al. Ganetespib (STA-9090), a Non-Geldanamycin HSP90 Inhibitor, has
Potent Antitumor Activity in In Vitro and In Vivo Models of Non-Small Cell Lung
Cancer. Clin Cancer Res 18, 4973 (2012).

25.  Wishart, D. S. et al. DrugBank: a knowledgebase for drugs, drug actions and drug targets.
Nucleic Acids Res 36, (2008).

26. Rajagopalan, P. T. R. et al. Interaction of dihydrofolate reductase with methotrexate:
Ensemble and single-molecule kinetics. Proc Natl Acad Sci U S A 99, 13481 (2002).

27. Mendel, D. B. et al. In Vivo Antitumor Activity of SU11248, a Novel Tyrosine Kinase
Inhibitor Targeting Vascular Endothelial Growth Factor and Platelet-derived Growth
Factor Receptors: Determination of a Pharmacokinetic/Pharmacodynamic Relationship.

28.  Beauchamp, E. et al. Targeting N-myristoylation for therapy of B-cell lymphomas. Nature
Communications 2020 11:1 11, 1-16 (2020).

28


https://doi.org/10.1101/2024.08.06.606599
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.08.06.606599; this version posted August 6, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

29.  Mooney, L., Skinner, M., Coker, S. J. & Currie, S. Effects of acute and chronic sunitinib
treatment on cardiac function and calcium/calmodulin-dependent protein kinase I1. Br J
Pharmacol 172, 4342 (2015).

30. Modi, V. & Dunbrack, R. L. Defining a new nomenclature for the structures of active and
inactive kinases. Proc Natl Acad Sci U S A 116, 6818-6827 (2019).

31. Karaman, M. W. et al. A quantitative analysis of kinase inhibitor selectivity. Nature
Biotechnology 2008 26:1 26, 127-132 (2008).

32.  Wang, X,, Zhang, Y., Han, Z. G. & He, K. Y. Malignancy of Cancers and Synthetic
Lethal Interactions Associated With Mutations of Cancer Driver Genes. Medicine 95,
(2016).

33.  Anastassiadis, T., Deacon, S. W., Devarajan, K., Ma, H. & Peterson, J. R. Comprehensive
assay of kinase catalytic activity reveals features of kinase inhibitor selectivity. Nat
Biotechnol 29, 1039-1045 (2011).

34. Gupta, P., Wright, S. E., Kim, S. H. & Srivastava, S. K. Phenethyl Isothiocyanate: A
comprehensive review of anti-cancer mechanisms. Biochim Biophys Acta 1846, 405
(2014).

35. Mi, L. etal. Covalent Binding to Tubulin by Isothiocyanates: A MECHANISM OF
CELL GROWTH ARREST AND APOPTOSISFS. J Biol Chem 283, 22136 (2008).

36.  Nilsson, R. et al. Metabolic enzyme expression highlights a key role for MTHFD2 and the
mitochondrial folate pathway in cancer. Nature Communications 2014 5:1 5, 1-10 (2014).

37.  Edvardson, S. et al. Infantile neurodegenerative disorder associated with mutations in
TBCD, an essential gene in the tubulin heterodimer assembly pathway. Hum Mol Genet
25, 4635-4648 (2016).

38.  Goodin, S., Kane, M. P. & Rubin, E. H. Epothilones: Mechanism of action and biologic
activity. Journal of Clinical Oncology 22, 2015-2025 (2004).

39. WO02017023866 METHOD OF TARGETING STAT3 AND OTHER NON-
DRUGGABLE PROTEINS.
https://patentscope.wipo.int/search/en/detail.jsf?docld=W02017023866.

40. Holmgren, A. Thioredoxin and Glutaredoxin Systems. Journal of Biological Chemistry
264, 13963-13966 (1989).

41.  Froeling, F. E. M. et al. Bioactivation of napabucasin triggers reactive oxygen species—
mediated cancer cell death. Clin Cancer Res 25, 7162 (2019).

42. Jin, H. et al. Systematic transcriptional analysis of human cell lines for gene expression
landscape and tumor representation. Nat Commun 14, (2023).

43.  Cell line - NQO1 - The Human Protein Atlas.
https://www.proteinatlas.org/ENSG00000181019-

29


https://doi.org/10.1101/2024.08.06.606599
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.08.06.606599; this version posted August 6, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

44,
45.

46.

47.

48.

49,

50.

51.
52.

53.

54,

55.

56.

S57.

58.

59.

available under aCC-BY-NC-ND 4.0 International license.

NQO1/cell+line#lung_cancerhttps://www.proteinatlas.org/ENSG00000181019-
NQOZ1/cell+line#lung_cancer.

Klaeger, S. et al. The target landscape of clinical kinase drugs. Science 358, (2017).

Ren, B. J. et al. Alisertib Induces Cell Cycle Arrest, Apoptosis, Autophagy and
Suppresses EMT in HT29 and Caco-2 Cells. Int J Mol Sci 17, (2016).

Kléger, S. E. Chemical Proteomics Reveals the Target Landscape of Clinical Kinase
Inhibitors.

Peng, K. et al. Development of combination strategies for Focal Adhesion Kinase
inhibition in Diffuse Gastric Cancer. Clin Cancer Res 29, 197 (2023).

Ardini, E. et al. Entrectinib, a Pan-TRK, ROS1, and ALK inhibitor with activity in
multiple molecularly defined cancer indications. Mol Cancer Ther 15, 628-639 (2016).

Witzig, T. E. et al. The mTORCL inhibitor everolimus has antitumor activity in vitro and
produces tumor responses in patients with relapsed T-cell lymphoma. Blood 126, 328-335
(2015).

Hansen, N. T., Brunak, S. & Altman, R. B. Generating Genome-Scale Candidate Gene
Lists for Pharmacogenomics. Clin Pharmacol Ther 86, 183 (2009).

Dhillon, S. Lonafarnib: First Approval. Drugs 81, 283 (2021).

Rajagopalan, P. T. R. et al. Interaction of dihydrofolate reductase with methotrexate:
Ensemble and single-molecule kinetics. Proc Natl Acad Sci U S A 99, 13481 (2002).

Uga, H. et al. A New Mechanism of Methotrexate Action Revealed by Target Screening
with Affinity Beads. Mol Pharmacol 70, 1832—-1839 (2006).

Cao, X. et al. ROS-mediated hypomethylation of PRDX5 promotes STAT3 binding and
activates the Nrf2 signaling pathway in NSCLC. Int J Mol Med 47, 573 (2021).

Froeling, F. E. M. et al. Bioactivation of Napabucasin Triggers Reactive Oxygen Species-
Mediated Cancer Cell Death. Clin Cancer Res 25, 7162-7174 (2019).

Marchetti, C. et al. Olaparib, PARP1 inhibitor in ovarian cancer. Expert Opin Investig
Drugs 21, 1575-1584 (2012).

Braal, C. L. et al. Inhibiting CDK4/6 in Breast Cancer with Palbociclib, Ribociclib, and
Abemaciclib: Similarities and Differences. Drugs 81, 317 (2021).

Czuczman, N. M. et al. Pevonedistat, a NEDD8-activating enzyme inhibitor, is active in
mantle cell lymphoma and enhances rituximab activity in vivo. Blood 127, 1128 (2016).

Mi, L. et al. Covalent Binding to Tubulin by Isothiocyanates: A MECHANISM OF
CELL GROWTH ARREST AND APOPTOSISFS. J Biol Chem 283, 22136 (2008).

30


https://doi.org/10.1101/2024.08.06.606599
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.08.06.606599; this version posted August 6, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

60. Upadhyaya, B., Liu, Y. & Dey, M. Phenethyl Isothiocyanate Exposure Promotes
Oxidative Stress and Suppresses Spl Transcription Factor in Cancer Stem Cells. Int J Mol
Sci 20, (2019).

61.  Sarker, D. et al. First-in-human Phase I study of Pictilisib (GDC-0941), a potent pan-class
I phosphatidylinositol-3-kinase (PI3K) inhibitor, in patients with advanced solid tumors.
Clin Cancer Res 21, 77 (2015).

62. Hnatiuk, A. P. et al. Reengineering Ponatinib to Minimize Cardiovascular Toxicity.
Cancer Res 82, 2777 (2022).

63. Liu, C. etal. Ponatinib Inhibits Proliferation and Induces Apoptosis of Liver Cancer Cells,
but Its Efficacy Is Compromised by Its Activation on PDK1/Akt/mTOR Signaling.
Molecules 24, (2019).

64. Lugowska, I., Koseta-Paterczyk, H., Kozak, K. & Rutkowski, P. Trametinib: a MEK
inhibitor for management of metastatic melanoma. Onco Targets Ther 8, 2251 (2015).

65. Richon, V. M. Cancer biology: mechanism of antitumour action of vorinostat
(suberoylanilide hydroxamic acid), a novel histone deacetylase inhibitor. British Journal
of Cancer 2006 95:1 95, S2-S6 (2006).

66. Batth, T. S. etal. STREAMLINED PROTEOME-WIDE IDENTIFICATION OF DRUG
TARGETS INDICATES ORGAN-SPECIFIC ENGAGEMENT. bioRxiv
2024.02.08.578880 (2024) doi:10.1101/2024.02.08.578880.

67. Vranken, J. G. Van et al. Large-scale characterization of drug mechanism of action using
proteome-wide thermal shift assays. bioRxiv (2024) doi:10.1101/2024.01.26.577428.

68. Eder, J., Sedrani, R. & Wiesmann, C. The discovery of first-in-class drugs: origins and
evolution. Nature Reviews Drug Discovery 2014 13:8 13, 577-587 (2014).

69. Ayaz, P. et al. Structural mechanism of a drug-binding process involving a large
conformational change of the protein target. Nature Communications 2023 14:1 14, 1-15
(2023).

70.  Vizcaino, J. A. et al. ProteomeXchange provides globally coordinated proteomics data
submission and dissemination. Nature Biotechnology Preprint at
https://doi.org/10.1038/nbt.2839 (2014).

31


https://doi.org/10.1101/2024.08.06.606599
http://creativecommons.org/licenses/by-nc-nd/4.0/

