

1 Title: **Repetitive sensory stimulation potentiates and recruits sensory-evoked cortical**
2 **population activity**

3
4 Abbreviated title: **Sensory-evoked potentiation of cortical activity**

5
6 **Leena Eve Williams_{1,3}^{*}, Laura Küffer₁, Tanika Bawa_{1,2}, Elodie Husi₁, Stéphane Pagès_{1,4},**
7 **Anthony Holtmaat₁**

8 1. Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, 1 rue
9 Michel-Servet, Geneva, Switzerland 1211

10 2. Lemanic Neuroscience Doctoral School, University of Geneva, 1 rue Michel-Servet,
11 Geneva, Switzerland 1211

12 3. Current address: Centre for Brain Discovery Sciences, Simons Initiative for the
13 Developing Brain, Faculty of Medicine and Veterinary Medicine, The University of
14 Edinburgh, Hugh Robson Building, George Square, Edinburgh, UK EH8 9XD

15 4. Current address: Wyss Center for Bio and Neuroengineering, Campus Biotech, Chem.
16 des Mines 9, Geneva, Switzerland 1202

17
18 *To whom correspondence should be addressed:

19 Dr. Leena Williams leena.williams@ed.ac.uk

20 Prof. Anthony Holtmaat anthony.holtmaat@unige.ch

21
22 Number of pages: 25

23 Number of figures: 5

24 Number of words: abstract (177), introduction (667 with refs), & discussion (1477).

25
26 **Conflict of interest statement**

27 The authors declare no competing financial interests.

28
29 **Acknowledgements**

30 We thank Ronan Chéreau, Céline Dürst, and Foivos Markopoulos for their technical
31 assistance and critical evaluation of the experimental design; and Ronan Chéreau for help
32 with software and comments on the manuscript. This work was supported by the Swiss
33 National Science Foundation (grants # 31003A_153448 and 31003A_173125,
34 31003A_204562 to A.H.), and the International Foundation for Research in paraplegia (A.H.),
35 and the Brain and Behavior Research Foundation (NARSAD YIG #28782 to L.E.W), and the
36 Biotechnology and Biological Sciences Research Council (BB/V005405/1 to L.E.W).

39 **ABSTRACT**

40 Sensory experience and learning are thought to be associated with plasticity of neocortical
41 circuits. Repetitive sensory stimulation can induce long-term potentiation (LTP) of cortical
42 excitatory synapses in anesthetized mice; however, it is unclear if these phenomena are
43 associated with sustained changes in activity during wakefulness. Here we used time-lapse,
44 calcium imaging of layer (L) 2/3 neurons in the primary somatosensory cortex (S1), in awake
45 male mice, to assess the effects of a bout of rhythmic whisker stimulation (RWS) at a
46 frequency by which rodents sample objects. We found that RWS induced a 1h-increase in
47 whisker-evoked L2/3 neuronal activity. This was not observed for whiskers functionally
48 connected to distant cortical columns. We also found that RWS altered whether individual
49 neurons encoded subsequent stimulus representation by either being recruited or suppressed.
50 Vasoactive intestinal-peptide-expressing (VIP) interneurons, which promote plasticity through
51 disinhibition of pyramidal neurons, were found to exclusively elevate activity during RWS.
52 These findings indicate that cortical neurons' representation of sensory input can be
53 modulated over hours through repetitive sensory stimulation, which may be gated by activation
54 of disinhibitory circuits.

55

56 **SIGNIFICANCE STATEMENT**

57 Sensory experience and learning are thought to be associated with the plasticity of cortical
58 synaptic circuits. Here, we tested how repeated sensory stimulation changes subsequent
59 sensory-evoked responses, using the mouse somatosensory cortex as a model. This cortical
60 area processes, among others, sensory information from the whiskers. We found that rhythmic
61 whisker stimulation potentiated excitatory neuronal activity for an hour, and identified a
62 disinhibitory interneuron-mediated mechanism that could gate this plasticity. This work
63 increases our understanding of sensory learning and experience-dependent plasticity
64 processes by demonstrating that cortical representations of sensory input are dynamic and
65 are effectively modulated by repeated sensory stimulation.

66

67 **INTRODUCTION**

68 Changes in sensory experience and perceptual learning are thought to be associated with the
69 plasticity of cortical synaptic circuits (Feldman 2009; Chéreau et al. 2020). Sensory deprivation
70 experiments for example have linked cortical remapping to experience-dependent plasticity
71 and long-term potentiation (LTP) (Glazewski et al. 1996; Hardingham et al. 2008; Margolis et
72 al. 2012). The pairing of a sensory stimulus with artificially evoked neuronal spikes has been
73 shown to induce a plasticity associated with receptive field dynamics (Jacob et al. 2007;

74 Gambino and Holtmaat 2012; Pawlak et al. 2013; El-Boustani et al. 2018). High frequent and
75 tetanic sensory stimulation can increase sensory-evoked network potentials, which in humans
76 has been demonstrated to lower the response threshold to sensory stimuli (Mégevand et al.
77 2009; Frenkel et al. 2006; Clapp et al. 2005; Kalisch, Tegenthoff, and Dinse 2008; Marzoll et
78 al. 2022; Lengali et al. 2021; Han et al. 2015; Sanders et al. 2018). Whereas passive daily
79 sensory experience can cause a reduction ('habituation') in representation of the experienced
80 sensory stimuli by cortical pyramidal neurons (Kato, Gillet, and Isaacson 2015).

81 When exploring their environment rodents actively move their whiskers over surfaces
82 and objects in rhythmic sweeps ranging in frequencies from 5-15 Hz, which has been equated
83 to digital palpation and microsaccades in primates (Carvell and Simons 1990; Wolfe et al.
84 2008). Neuronal membrane potentials and spiking in the S1 are modulated in synchrony with
85 whisking frequency (Fee, Mitra, and Kleinfeld 1997; Crochet and Petersen 2006). Therefore,
86 passive sensory stimulation within natural frequencies may reveal key physiological
87 mechanisms that underpin experience-dependent plasticity. It was previously shown that,
88 under anesthesia, a brief (1min) period of rhythmic whisker stimulation (RWS) at 8Hz
89 enhances whisker-evoked local field potentials and evokes LTP in layer L2/3 pyramidal
90 neurons in S1 (Gambino et al. 2014; Mégevand et al. 2009). This sensory-evoked LTP can be
91 elicited in the absence of somatic spikes and is driven by N-methyl-D-aspartate receptor
92 (NMDAR) -mediated long-lasting depolarizations that remain subthreshold (Gambino et al.
93 2014). It remains unclear in awake conditions whether RWS leads to changes in cortical
94 population-wide activity, or how this impacts responsivity of individual neurons to subsequent
95 sensory stimulation, over what timescales, and if this is driven directly by whisker input
96 (Gambino et al. 2014; Williams and Holtmaat 2019; Mégevand et al. 2009). Furthermore, it
97 has also been shown that this plasticity may require the activation of a disinhibitory gating
98 circuit motif that involves vasoactive-intestinal-peptide-expressing (VIP) interneuron activity
99 (Williams and Holtmaat 2019). It is not known if the activity of VIP interneurons is modulated
100 during RWS.

101 To assess to what extent neuronal population activity and stimulus representation in
102 the cortex is impacted by RWS we monitored whisker-evoked calcium (Ca^{2+}) signals in L2/3
103 neurons and VIP interneurons in S1 for hours upon RWS in awake mice. In S1 whiskers are
104 functionally represented in the barrel cortex, and neurons in each barrel-related cortical
105 column (barrel column hereafter) responding best to a single whisker. We found that RWS
106 produced a potentiation of whisker-evoked responses in many L2/3 neurons (96%) that reside
107 in the parent barrel column of the stimulated whisker – termed the principal whisker (PW), and
108 which display low or moderate responses under baseline conditions. When a distant whisker
109 – termed control whisker (CW) was used for RWS, a very small (4%) high responding neuronal

110 population significantly decreased their subsequent PW-evoked activity. We also found that
111 RWS of the PW altered its representation in the parent column by preferentially recruiting or
112 retaining active neurons to the responsive pool, whereas RWS of the CW tended to suppress
113 responsivity. The potentiation of sensory-evoked activity lasted for at least 1h on average. VIP
114 interneurons displayed a sustained nonselective increase in activity during the RWS period,
115 but their PW-evoked responses after RWS were not potentiated. These findings suggest that
116 repetitive whisker stimulation, within the range of frequencies at which mice sense objects,
117 causes a selective potentiation of sensory-evoked responses and recruits' neurons to respond
118 to subsequent sensory stimulation. Moreover, this may be supported by a whisker-non-
119 selective VIP interneuron-mediated disinhibitory mechanism.

120

121 **METHODS**

122 **Experimental Model and Subject Detail.**

123 *Animals.* 5-7-week-old C57BL/6J male mice (Janvier Labs) or Vip-IRES-cre (*Vip*^{tm1(cre)Zjh}/J; The
124 Jackson Laboratory, RRID: IMSR_JAX:010908) (Taniguchi et al. 2011) were grouped housed
125 on a 12h light cycle with littermates. All procedures were conducted in accordance with the
126 guidelines of the Federal Food Safety and Veterinary Office of Switzerland and in agreement
127 with the veterinary office of the Canton of Geneva (license numbers GE/28/14, GE/61/17,
128 GE/74/18, and GE253).

129

130 **Method Details.**

131 *Surgery and virus injections.* Stereotaxic injections of adeno-associated viral (AAV) vectors
132 were carried out on 6-week-old male C57BL/6 mice. A mix of O₂ and 4% isoflurane at ~0.4l
133 min⁻¹ was used to induce anesthesia followed by an intraperitoneal injection of MMF solution,
134 consisting of 0.2mg kg⁻¹ medetomidine (Domitor, Orion Pharma), 5mg kg⁻¹ midazolam
135 (Dormicum, Roche), 0.05mg kg⁻¹ fentanyl (Fentanyl, Sintetica) diluted in sterile 0.9% NaCl.
136 AAV2-CAG-GCaMP6s-WPRE-SV40 (U Penn Vector Core, RRID: Addgene_100844, 100 nl)
137 or AAV1-hSyn-mRuby2-GSG-P2A-GCaMP6s-WPRE-pA (addgene, RRID: Addgene_50942;
138 100 nl) was delivered to L2/3 of the right barrel cortex at the approximate location of the C2
139 barrel column (1.4mm posterior, 3.5mm lateral from bregma, 300mm below the pia) (Rose et
140 al. 2016). For targeting VIP interneurons AAV1-CAG-flex-mRuby-P2AGCaMP6s-WPRE-pA
141 (addgene, RRID: Addgene_68717) was injected into the VIP-IRES-cre mouse line and was
142 repeated 3 times around the same area (3x50nL) (Rose et al. 2016). For long-term *in vivo*
143 Ca²⁺ imaging a 3-mm diameter cranial window was implanted, as described previously
144 (Holtmaat et al. 2009).

145 Two weeks after surgery, the barrel columns were mapped using intrinsic optical
146 imaging and the intrinsic optical signal (iOS) was used to confirm the barrel specific location
147 of GCaMP6s expression (Fig. 1A). Anaesthesia was induced using isoflurane (4% with ~0.4
148 L.min⁻¹ O₂) and then continued using an intraperitoneal injection of MM consisting of 0.2mg kg
149 ⁻¹ Medetomidine (Domitor, Orion Pharma), 5mg kg⁻¹ Midazolam (Dormicum, Roche) diluted in
150 sterile 0.9% NaCl. Body temperature was maintained at 37°C using a feedback-controlled
151 heating pad.

152 To illuminate the cortical surface through the cranial window, a light guide system with
153 a 700 nm (bandwidth of 20 nm) interference filter and a stable 100-W halogen light source
154 were utilized. Images were acquired using the Imager 3001F (Optical Imaging, Mountainside,
155 NJ) equipped with a large spatial 256*256 array, a fast readout, and a low read noise charge
156 coupled device (CCD) camera. The size of the imaged area was adjusted by using a
157 combination of two lenses with different focal distances (Nikon 50mm, bottom lens, 135mm,
158 upper lens, f=2.0; total magnification 2.7). The CCD camera was focused on a plane 300μm
159 below the skull surface. Mapping was started by first inserting the C2 whisker in a glass
160 capillary attached to a piezo actuator (PL-140.11 bender controlled by an E-650 driver; Physik
161 Instrumente). Whisker stimulations were triggered by a pulse stimulator (Master-8, A.M.P.I.).
162 In a typical session, 10 trials were collected per stimulus. Intrinsic signals were acquired at
163 10Hz for 5s (50 frames, 100ms per frame). Each trial lasted 5s and consisted of a 1s pre-
164 stimulus baseline period (frames 1-10), followed by a 1s stimulus period (11-20), during which
165 the whisker was deflected (1s at 8Hz), and then by a 3s post-stimulus period (frames 21-50).
166 Inter-trial intervals lasted 15 to 20s. Responses were visualized by dividing the stimulus signal
167 by the baseline signal, using the built-in Imager 3001F analysis program (Optical Imaging,
168 Mountainside, NJ). If needed, other whiskers were subsequently stimulated to generate a
169 map. An image of the surface vascular pattern was taken using green light (546 nm
170 interference filter) and superimposed onto the intrinsic signal image which created reference
171 image to the barrel map. This reference image was used later to select the appropriate PW
172 for the visualized fluorescent neurons as well as a CW that was minimally 2 rows and 2 arcs
173 away. After this procedure, a metal post was glued onto the head cap laterally to the window
174 using dental cement.

175

176 *Mice habituation.* After intrinsic imaging, mice were handled for 20-30 minutes each day. On
177 the second day they were placed in the imaging holder for 30s, with this habituation time
178 increasing over the subsequent days.

179

180 *Rhythmic Whisker Stimulation (RWS) protocol.* The whisker which produced an iOS that most
181 strongly overlapped with the location of the fluorescently labeled neurons was identified as the
182 PW (e.g. C2 in Fig. 1A,B). Mice were briefly anesthetized using isofluorane (4% with ~0.5l min
-1 O₂) to identify and mark the PW with colored nail polish. RWS was either performed using
183 the PW (PRWS), or using a CW (CRWS) that was minimally 2 rows and 2 arcs away from the
184 PW (Fig. 1B,C). The CW, therefore, had a poor anatomical and functional connectivity with
185 the PW home barrel column. The control protocol (Pre, CRWS, and Post) or test protocol (Pre,
186 PRWS, and Post) was applied with approximately 10 days in between. For all experiments pre
187 and post RWS the whisker was deflected back and forth (5 deflections lasting each 45ms @
188 20Hz) for 10min at a frequency of 0.1Hz. The whiskers were deflected with a piezoelectric
189 ceramic elements attached to a glass pipette 4 mm away from the skin. The voltage applied
190 to the ceramic was set to evoke a whisker displacement of 0.6 mm with a ramp of 7–
191 8ms. Different whiskers were independently deflected by different piezoelectric elements, one
192 for the PW and one for CW simulation. For PRWS the PW and for CRWS the CW was
193 deflected back and forth for 10min at a frequency of 8Hz.
194

195
196 *In vivo 2-photon laser-scanning microscopy (2PLSM) imaging.* Across all experiments, 2PLSM
197 imaging of Ca²⁺ signals in GCaMP6s-labeled L2/3 neurons was performed in the home barrel
198 column of the earlier identified PW, and the same field of view was imaged for both
199 experimental conditions for a single mouse. To return to the same field of view over multiple
200 imaging sessions, and to ensure accurate whisker deflection, a brightfield image of the blood
201 vessel pattern directly above the center of the fluorescence expression was taken as a
202 reference guide.

203 Ca²⁺ imaging was performed using custom built 2PLSMs
204 (<https://www.janelia.org/node/46028>), controlled by Scanimate 2016b44
205 (<http://www.scanimate.org>). Excitation light was provided by Ti:Sapphire lasers (Coherent)
206 tuned to $\lambda=910\text{nm}$ for GCaMP6s signal alone and $\lambda=980\text{ nm}$ for imaging of mRuby2 and
207 GCamp6s. For detection, we used GaAsP photomultiplier tubes (10770PB-40, Hamamatsu),
208 a 16x 0.8NA microscope objective (Olympus or Nikon, CFI75). When required, mRuby2 and
209 GCaMP6s signals were separated with a dichroic mirror (565dcxr, Chroma) and emission
210 filters (ET620/60 m and ET525/50 m, respectively, Chroma). For imaging L2/3 neurons with
211 constitutive GCaMP6s, the size of the field of view ranged from 187 μm x 187 μm to 375 μm
212 x 375 μm , while pixel size ranged from 0.7 to 1.4, and the imaging speed was set at 3.91Hz
213 (256 lines, 1ms per line). For extended depth of field imaging, the 2PLSM was equipped with
214 an 8-kHz resonant scanner and Axicon setup for Bessel beam generation. Fast volumetric
215 imaging was performed at 10 or 11.5 Hz using a piezo z-scanner (P-725 PIFOC, Physik

216 Instrumente) to move the objective over the z-axis (Meng, Zhang, and Ji 2023). Each
217 acquisition volume consisted of 2 planes P1, that was 80-120 μ m from pia, and P2 that was
218 100 μ m below (180-220 μ m respectively) of 400 x 400 μ m (512 x 256 pixels). This allowed for
219 post-hoc z-motion correction of brain motion artefacts induced by movement. Mice were
220 monitored using an infrared camera across all imaging sessions.

221
222 *Data analysis.* Images were processed using custom-written MATLAB scripts and ImageJ/Fiji
223 (<http://rsbweb.nih.gov/ij/>). Motion correction was performed using a custom strategy based on
224 the cross correlation of the first image compared to subsequent images. Remaining
225 movements were addressed by calculating in Fiji's correlation plugin another cross correlation
226 2D graph. From this, the mean value of the cross correlation (between the first image and
227 image 1,2,3...n) was calculated. If a value was outside the mean ± 2 SD, it was labelled as
228 movement, and Ca^{2+} signals during this period were not taken into account. For depth of field
229 imaging, lateral and axial motion corrections were performed and the mRuby2 signal was used
230 as a reference – as previously described using NoRMCorre (Flatiron Institute, Simons
231 Foundation, New York, NY 10010, USA, <https://github.com/flatironinstitute/NoRMCorre>)
232 (Chéreau et al. 2020; Pnevmatikakis and Giovannucci 2017). Regions of interest (ROIs) were
233 drawn by hand using the GCaMP6s channel, or the mRuby channel when present. Pixels were
234 averaged within each ROI for each image frame. For each ROI, normalized Ca^{2+} traces DF/F_0
235 were calculated as $(\text{F}-\text{F}_0)/\text{F}_0$, where F_0 is the 30th percentile of the individual mean baseline
236 fluorescence signal for the entire recording session (pre, RWS, and post). For each ROI, Ca^{2+}
237 signals were detected in Caltracer3beta, using a fluorescence intensity threshold (0.5 DF/F_0),
238 amplitude threshold (1 DF/F_0) and rise time threshold (0.256s,
239 <http://www.columbia.edu/cu/biology/faculty/yuste/methods.html>) (Ayzenshtat et al. 2016).
240 Whisker stimulations across the recording session were aligned with the Caltracer3beta
241 detected Ca^{2+} events and were considered a PW-evoked event if their rise time occurred within
242 512ms. All other events were considered spontaneous and not included in the analysis.

243 For each neuron (either pre or post-RWS), we calculated the PW-evoked Ca^{2+} signal
244 probability (P_S), the average PW-evoked Ca^{2+} signal amplitude (\bar{A}_S), and the PW-evoked
245 response strength (RS [$\text{DF}/\text{F}_0/\text{N}_{\text{stim}}$]), as follows:

246
$$P_S = N_S / N_{\text{Stim}}$$

247
$$\bar{A}_S = \frac{\sum A_S}{N_S}$$

248
$$RS = P_S \times \bar{A}_S$$

249 where N_S and N_{Stim} are the number of PW-evoked Ca^{2+} signals and the total number of stimuli
250 respectively, and A_S is the amplitude of a single evoked Ca^{2+} signal. For the mean

251 fluorescence intensity during RWS (DF/F_0) was calculated and the Ca^{2+} fluorescence intensity
252 was integrated over the baseline (20s before start of RWS) and during the RWS period (20s
253 after the start of RWS). All data are reported as mean \pm standard error of the mean (SEM) per
254 cell and per mouse (**See Table 1-1. Descriptive Statistics**). Stats were performed per mouse
255 and cell to test the robustness of the effect.

256

257 *Whisker movement index.* Whisker movements were tracked on 4 mice both pre- and post-
258 RWS (separate set from the Ca^{2+} imaging dataset). The habituation and RWS protocol were
259 as above. Whisker pads on either side of the snout were imaged from below at 112Hz using
260 a Point Grey Research USB 2.0 CCD Digital Camera (Model 00-00100-08200) and Streampix
261 9 software. To extract whisker movements, we used a custom-written MATLAB script. Here,
262 ROIs were drawn on whiskers ipsi- and contra-lateral to the capillary. For these ROIs, we first
263 calculated the correlation between each frame and the average image of the entire movie (Fig.
264 1-1A). Next, we computed the absolute derivative of this cross-correlation. We calculate the
265 absolute derivative of the cross correlation to obtain a value for the whisker movement, i.e.,
266 the movement index (MI) with arbitrary units (a.u.). Lastly, a Savitzky-Golay filter was applied
267 to the trace to smoothen it, and thus each point/value corresponds to 1 frame in the movie
268 (Fig. 1-1B). To compare the difference in whisking before and after each stimulation, we
269 calculated the average MI over 2s (224 frames) before the start and after the end of the
270 stimulation (Fig. 1-1C).

271

272 *Immunohistochemistry.* At the end of the experiment, animals were anesthetized and fixed
273 using transcardial perfusion of 4% paraformaldehyde (PFA) in saline. The brains were left in
274 4% PFA overnight (4 °C) for further fixation. Coronal brain sections (50 μ m thickness) were
275 obtained using a vibratome (Leica VT1200S; Leica Microsystems, Vienna, Austria) and initially
276 stored in PBS. Fluorescence microscopy was used to confirm the injection site. For
277 immunohistochemical detection and quantification of VIP interneurons, slices were then
278 incubated for 1h, free floating in a blocking solution of PBS (pH 7.4) containing 0.3% Triton
279 and 1% Bovine Serum Albumin (BSA). After blocking, slices were incubated overnight in
280 blocking solution containing primary antibody (VIP, rabbit polyclonal IgG, Immunostar,
281 Cat#:20077, RRID: AB_572270) at a 1:500 dilution (Williams and Holtmaat 2019). Slices were
282 washed 4 times for 10mins each in PBS and 5% BSA at room temperature. They were then
283 incubated for 1h in PBS solution containing 1% BSA and the appropriate fluorescence
284 conjugated secondary antibodies (1:400, Goat anti-Rat IgG (H+L) Cross-Adsorbed Secondary
285 Antibody, Alexa Fluor 647, Thermo Fisher Scientific, Cat#: A32733, RRID: AB_2633282).
286 Finally, slices were washed 4 times in PBS at room temperature. Cell nuclei were stained

287 using Hoechst 33342 (Invitrogen, Cat#: H1399, RRID: AB_10626776) diluted 1:5000 in PBS
288 and added for 20 mins. Lastly, slices were washed 4x in PBS and placed onto glass slides.

289 Images were generated using a confocal laser-scanning fluorescence microscope
290 (Nikon A1 R) at 20x magnification. Fluorescence intensity was measured by delineating the
291 edges of all visible cells using ImageJ software and by calculating mean fluorescence in these
292 ROIs. To avoid false-positives, two controls were performed. First, images were taken in an
293 area adjacent to injection area (i.e. cells that were not visibly expressing mRuby). ROIs were
294 drawn around anti-VIP positive cells, and fluorescence intensity in the red channel was
295 quantified. Second, images were taken within the injection area in sections on which only the
296 secondary antibody Alexa 647 was applied. ROIs were drawn around cells, and fluorescence
297 intensity in the green channel was quantified. Each of these quantifications yielded a mean
298 fluorescence – 2SD, which was subsequently used as the lower-limit on which we based the
299 overlap estimate (i.e., no. Of true positives/total no.). Intensities of the experimental cells below
300 these limits were considered as false positive in either channel.

301

302 **Experimental Design and Statistical Analysis.**

303 For all experiments, n equals the number of cells and N equals number of mice. The statistics
304 were performed over cells (grey box in figures, stats reported in the text and figure legends)
305 and over mice (black circles in figures, and stats reported in figure legends and extended data
306 Table 1-1). All statistics were performed, and graphs were created using Prism 9 or 10
307 (GraphPad Software, LLC). For all figures, significance levels were denoted as *P < 0.05, **P
308 < 0.01, ***P < 0.001, and ****P < 0.0001 and asterisks were reported per cell in the figures.
309 No statistical methods were used to estimate sample sizes. A paired t-test was performed
310 unless otherwise noted. All comparison tests were performed two-sided. All data are reported
311 as mean \pm standard error of the mean (SEM).

312

313 **RESULTS**

314 **RWS modulates whisker-evoked activity of L2/3 cortical neurons.** To monitor whisker-
315 evoked activity of L2/3 neurons in the barrel cortex of S1, we expressed the genetically
316 encoded Ca^{2+} sensor GCaMP6s using adeno-associated viral vectors (AAV2-CAG-GCaMP6s
317 or AAV1hsyn-mRuby2-GSG-P2A-GCaMP6s). Single cell Ca^{2+} signals were recorded using
318 two-photon laser scanning microscopy (2PLSM) through a chronically implanted cranial
319 window (Fig. 1B). The location of GCaMP6s-expressing neurons relative to the whisker
320 representations in the barrel cortex was determined using intrinsic optical signal imaging (iOS
321 see methods; Fig. 1A). The whisker which produced an iOS that most strongly overlapped

322 with the location of the fluorescently labelled neurons was identified as their principal whisker
323 (PW, e.g. C2 in Fig. 1A).

324 We monitored the stimulus-evoked Ca^{2+} signals, always upon stimulation of the PW
325 (10 min, 0.1 Hz) pre- and post-rhythmic whisker stimulation (RWS, Fig. 1C, D). For RWS (10
326 mins, 8Hz) we used either the PW (PRWS) or a control whisker (CW; CRWS), which was
327 minimally 2 rows and 2 arcs away from the PW as defined by the iOS map (Fig. 1A, C, D).
328 The CW, therefore, had poor anatomical and functional connectivity with the PW home barrel
329 column.

330 Extracted Ca^{2+} signals were classified as PW-evoked events when their onset
331 occurred within 512 milliseconds (ms) after the start of a PW stimulus. The stimulation
332 response window was determined by acquisition frame rates and typical GCaMP6s response
333 kinetics (Chen et al. 2013). For each neuron, we calculated the PW-evoked response strength
334 (RS; hereafter simply ‘response strength’) as a product (RS $[\text{DF}/\text{F}_0/\text{N}_{\text{stim}}] = \bar{A}_S \times P_S$) of the Ca^{2+}
335 signal’s amplitude (\bar{A}_S) and whisker evoked signal probability (P_S).

336 We found that PRWS increased the mean response strength of the whole L2/3
337 neuronal population (Fig. 1E, pre-PRWS mean \pm SEM=0.06 \pm 0.007, post-PRWS=0.07 \pm 0.005,
338 n=1099 cells, P=0.0015) but not when we compared the population averages over mice (N=11
339 mice, P=0.5; for descriptive statistics over cells (n, grey square) and mice (N, black circle, see
340 extended data Table 1-1). Upon CRWS, however, the mean response strength remained
341 unchanged (Fig. 1F, pre-CRWS=0.076 \pm 0.008, post-CRWS=0.072 \pm 0.008, n=829 cells, P=0.4;
342 N=11 mice, P=0.6). The pre-PRWS response strength was somewhat lower, but not
343 significantly different from the pre-CRWS (P=0.1), which had likely resulted from different fields
344 of view for the two paradigms.

345 When we plotted the pre versus post-RWS response strength and ran a simple linear
346 regression analysis on the population data, we found for CRWS the slope only slightly deviated
347 from the identity line (slope=0.85; Fig. 1G), whereas for the PRWS the slope was significantly
348 lower (slope=0.62, P<0.0001). For PRWS the linear regression line crossed the identity line,
349 indicating that the neurons with a low baseline response strength were more likely to be
350 potentiated, whereas those that initially showed a high response strength tended to be
351 depressed. For CRWS, the neurons with a high baseline response strength also tended to be
352 depressed, but those with a low response strength were not potentiated.

353 Since the linear regression analysis suggested that the plasticity was dependent upon
354 the baseline response strength, we looked more in detail at the baseline properties. The vast
355 majority had a relatively low or moderate (96%, n=1058 cells) response strength, whereas a
356 small group of neurons showed a relatively high response strength. When we tested the mean
357 pre-RWS response strength for significant outliers (Fig. 1H, Iterative Grubb’s outlier test,

358 $\alpha=0.0001$), we found that 4% of the population exhibited an excessively high mean pre-RWS
359 response strength (pre-PRWS=0.87 \pm 0.13, n=41 cells, pre-CRWS=0.72 \pm 0.06, n=37 cells,
360 N=11 mice). We categorized those as high responders (Fig. 1H) (Margolis et al. 2012; Crochet
361 et al. 2011). All mice had high responders in their L2/3 neuronal population.

362 When we analyzed the response strength for groups separately, we found that for the
363 low & moderate responders, the PRWS increased the mean response strength (Fig. 1I, pre-
364 PRWS mean \pm SEM=0.03 \pm 0.001 DF/F₀/N_{stim}, post-PRWS=0.05 \pm 0.003, n=1058 cells,
365 P=0.0015), but not the CRWS (Fig. 1I, pre-CRWS=0.04 \pm 0.002, post-CRWS=0.045 \pm 0.004,
366 n=792 cells, P=0.3). In contrast, for the high responders, we found a significant decrease in
367 response strength for both PRWS (Fig. 1J, pre-PRWS=0.9 \pm 0.13, post-PRWS=0.6 \pm 0.09, n=41
368 cells, P=0.0008) and CRWS (pre-CRWS=0.84 \pm 0.11, post-CRWS=0.66 \pm 0.12, n=37 cells,
369 P<0.0001).

370 Further analysis revealed a significant difference in the size of the change in response
371 strength between low & moderate and high responders overall (Fig. 1K, mixed-effects model,
372 P=0.0004). For low & moderate responders, the change was significantly higher upon PRWS
373 as compared to CRWS (190.0 \pm 37.8% vs. 116.3 \pm 11.9%, Uncorrected Fisher's LSD, P=0.018).
374 Moreover, the change upon PRWS for low & moderate responders was significantly higher as
375 compared to high responders (190.0 \pm 37.8% vs. 74.7 \pm 12.9%, Uncorrected Fisher's LSD,
376 P=0.0004). There was no difference between the two groups for CRWS (74.7 \pm 12.9% vs.
377 64.2 \pm 6.24%, Uncorrected Fishers LSD, P=0.7). Overall, this suggests that PRWS induces a
378 potentiation of subsequent PW-evoked responses for the majority of the imaged L2/3 neurons,
379 dependent on the baseline whisker-evoked response strength. The low & moderate
380 responders increase their response, whereas the high responders tend to lower their
381 response. This bears similarities to experience-dependent plasticity effects upon trimming all
382 but one whisker, upon which low responders increase and high responders decrease their
383 responsiveness to the spared whisker (Margolis et al. 2012).

384 To exclude the possibility that the above effects were merely driven by changes in
385 overall whisking rates pre- and post-RWS or due to reactive whisking upon the stimulus, we
386 performed an additional experiment in which we monitored whisker movements on the
387 ipsilateral (i.e. capillary tube side) or the contralateral side during the same protocol. The mice
388 (n=4) were habituated similarly to above, but now whiskers were imaged using a CCD camera
389 (112 Hz frame rates) positioned below the whisker pads (Fig. 1-1A). Using custom software,
390 a whisker movement index (MI) was calculated 2s before and after each whisker stimulus, pre-
391 and post-RWS. We found no difference in the average MI pre versus post-RWS (Fig. 1-1B,
392 ipsi pre=1.0, post=0.98 \pm 0.03; contra pre=1.19 \pm 0.11, post=1.12 \pm 0.09, one-way ANOVA,
393 P=0.24), which strongly suggests that overall whisking rates were not affected by the protocol.

394 Furthermore, for all stimuli the before- and after-stimulus MI were highly variable and only
395 moderately correlated. Furthermore, the average before- and after-stimulus MIs in both the
396 pre- and post-RWS periods were not statistically different on either side of the snout, indicating
397 that the whisker-stimulus did on average not elicit whisking bouts (Fig. 1-1C)

398 Together, these data suggest that the changes in Ca^{2+} signals which we had observed
399 in our earlier experiments were not due to alterations in whisking behavior, which supports our
400 conclusion that they were primarily related to adaptations in sensory-cortical synaptic
401 pathways.

402

403 **RWS heterogeneously potentiates, recruits, and suppresses sensory-evoked
404 responses.** Cortical neuronal populations can show a remarkable heterogeneity in sensory-
405 evoked activity (Sato et al. 2007; Brecht, Roth, and Sakmann 2003; Crochet and Petersen
406 2006; Kerr, Greenberg, and Helmchen 2005; Margolis et al. 2012). Consistent with these
407 findings, we had identified two groups of neurons, those with low & moderate and high
408 responding profiles (see above). In addition, based on the changes in response strength that
409 we observed upon RWS, we could subdivide the low & moderate responders into subgroups.
410 We found that nearly half of the imaged neuronal population showed one or more PW-evoked
411 Ca^{2+} signals pre- and post-RWS and were therefore termed as 'persistent' cells (Fig. 2A, D).
412 The remaining neurons lacked PW-evoked Ca^{2+} signals pre- and/ or post-RWS. This group
413 was subdivided into those that lacked signals pre-RWS but displayed them at any time point
414 post-RWS – termed 'recruited' cells (Fig. 2B, D); those that displayed PW-evoked signals pre-
415 RWS but not at any time point post-RWS – termed 'suppressed' cells (Fig. 2C, D); and finally,
416 cells that showed no events at any time point – termed 'no-response' cells (Fig. 2D). We found
417 that the ratios of persistent, recruited, suppressed, no response-cells, and high responders
418 were significantly different between PRWS and CRWS (Chi square test, $P<0.0001$). For
419 PRWS we found more persistent (PRWS: 42%, CRWS: 34%) or recruited (PRWS: 28%,
420 CRWS: 16%), and less suppressed (PRWS: 19%, CRWS: 31%) or no-response (PRWS: 7%,
421 CRWS 15%) cells than for CRWS. High responders made up 4% of the total population for
422 both PRWS and CRWS.

423 Consistent with our overall findings, the persistent subpopulation exhibited a significant
424 increase in response strength upon PRWS (Fig. 2A, pre-PRWS= 0.05 ± 0.002 , post-
425 PRWS= 0.08 ± 0.006 , $n=465$, $P<0.0001$), but not upon CRWS (pre-CRWS= 0.076 ± 0.005 , post-
426 CRWS= 0.09 ± 0.009 , $n=279$ cells, $P=0.06$). For the recruited subpopulation, the mean post-
427 RWS response strength was similar for both conditions (Fig. 2C, post-PRWS= 0.05 ± 0.004 ,
428 $n=307$ cells, post-CRWS= 0.07 ± 0.001 , $n=131$ cells, Unpaired t test, $P=0.14$). For the
429 suppressed subpopulation however, the mean pre-RWS response strength was significantly

430 lower for PRWS when compared to the CRWS condition (Fig. 2D, pre-PRWS=0.03±0.002,
431 n=205 cells, pre-CRWS=0.04±0.003, n=258 cells, Unpaired t test, P<0.0001). This suggests
432 that PRWS may prevent suppression of low & moderate responding cells, whereas CRWS
433 fails to keep those cells in the responsive population.

434 Overall, we found that PRWS potentiates the PW-evoked activity of neurons that
435 persistently but moderately respond to the PW and recruits new neurons to the active pool (for
436 PRWS 28%), while selectively suppressing the activity of neurons that initially responded
437 either very weakly or very strongly to the PW (Fig. 2D, E).

438
439 **Longitudinal imaging upon RWS.** Next, we tracked how the potentiated responses
440 advanced over time in individual neurons. To this end we used a bicistronic AAV construct
441 that drives the co-expression of GCaMP6s and mRuby in L2/3 neurons (AAV1-hsyn-
442 mRuby2GSG-P2A-GCaMP6s, Fig. 3A, B). Only cells in which the cell filler mRuby was present
443 at all timepoints were analyzed and cells (ROIs) were chosen in the mRuby channel. L2/3
444 neurons were imaged pre-PRWS or pre-CRWS for 10 min (-10), and at four timepoints post-
445 PRWS or post-CRWS for 10 min (at 10, 60, 120, and 180 min). We did not observe any
446 difference in imaging depth (data now shown; PRWS: 132±16.9 μ m, CRWS: 138.5±20.5,
447 Unpaired t-test, P=0.5) or mean baseline response strength between the PRWS and CRWS
448 conditions (data not shown; pre-PRWS=0.09±0.02, pre-CRWS=0.10±0.20; Unpaired t-test,
449 P=0.7). Like before, when we separated the 4% high responders from the analysis, we found
450 that the mean PW-evoked response strength for a majority of the neurons was significantly
451 increased at 10 and 60 min post PRWS, and had returned to baseline levels after 120 min
452 (Fig. 3B, Dunnett's multiple comparisons, -10min: 0.03±0.002 vs, 10: 0.045±0.005, P<0.0001;
453 or 60: 0.04±0.005, P=0.0001; or 120: 0.032±0.003, P=0.51; or 180: 0.034±0.004; P=0.4). This
454 was significantly different from the CRWS condition (PRWS n=382 cells, CRWS n=304 cells;
455 Two-way RM ANOVA,***P=0.0006) for which we found no significant prolonged increase in
456 mean PW-evoked response strength (Dunnett's multiple comparisons, -10min: 0.034±0.004
457 vs, 10: 0.034±0.005, P=0.9; or 60: 0.031±0.005, P=0.3; or 120: 0.033±0.004, P=0.7; or 180:
458 0.032±0.004; P=0.5). When comparing the individual components of response strength,
459 probability, and amplitude, we observed a significant increase in mean PW-evoked signal
460 probability (P_S) and amplitude (\bar{A}_S) at 10 and 60 min (Fig. 3C, D). For CRWS condition there
461 was no such increase in both probability (Fig. 3C, Table 1-1, PRWS n=382 cells, CRWS n=304
462 cells; Two-way RM-ANOVA, P<0.0001) and amplitude (Fig. 3D, Table 1-1, PRWS n=382 cells,
463 CRWS n=304 cells; Two-way RM-ANOVA, P=0.001), resulting in a significant difference
464 between PRWS and CRWS for these parameters as well. In a separate set of experiments,
465 we tested if the potentiation of activity was present at 24 hours post-RWS but did not find a

466 significant difference (Fig. 3E, Two-way RM-ANOVA, $P=0.36$) for PRWS ($n=162$ cells, -10min :
467 0.051 ± 0.016 , 24hrs : 0.056 ± 0.012 , Sidak's multiple comparison, $P=0.79$) as compared to
468 CRWS ($n=134$ cells pre -10 min : 0.041 ± 0.006 , 24hrs : 0.056 ± 0.01 , Sidak's multiple
469 comparison, $P=0.14$). Altogether, this indicates that PRWS drives a whisker-selective
470 potentiation of whisker-evoked responses for ~ 1 hour.

471
472 **L2/3 neuronal responses during RWS.** Next, we investigated the relationship between the
473 prolonged potentiation of the neurons' PW-evoked responses and their activity elicited during
474 the RWS period (Fig. 4). We found in a separate set of experiments that PRWS rapidly and
475 significantly increased Ca^{2+} signals when compared to a 20-sec baseline period just before
476 RWS, whereas CRWS did not (Fig. 4A, B; baseline= 0.2 ± 0.02 , PRWS= 0.3 ± 0.02 , $n=260$ cells,
477 Paired t test, $p<0.0001$; baseline= 0.47 ± 0.02 , CRWS= 0.5 ± 0.03 , $n=115$ cells, Paired t test,
478 $P=0.6$). We did not, however, find a significant correlation between the increase in Ca^{2+}
479 signals during PRWS and the size of the potentiation, despite observing a significant increase
480 in response strength post PRWS within this subset of experiments (Fig. 4C, Pearson $r=-0.06$,
481 $P=0.5$; inset, pre= 0.03 ± 0.002 & post= 0.03 ± 0.002 , Paired t test, $P=0.03$). We did on the other
482 hand, find a significant inverse correlation between the mean baseline response strength and
483 the increase in Ca^{2+} signal during PRWS (Fig. 4D; Pearson r correlation, $n=115$ cells, $r=0.35$,
484 $P=0.0001$, simple linear regression, slope= -0.008). Therefore, low & moderate responders
485 displayed the largest increase in activity during the PRWS period. Altogether, this suggests
486 that the potentiation of low & moderate responders may indeed depend on the levels of
487 activity elicited by PRWS.

488
489 **VIP interneuron activity increases during RWS.** We have previously shown that RWS
490 evoked synaptic LTP in L2/3 neurons is gated by a disinhibitory circuit motif that is dependent
491 upon VIP interneuron activity (Williams and Holtmaat 2019). This prompted the hypothesis
492 that the potentiation of L2/3 neuronal sensory-evoked responses may be facilitated by
493 increased VIP interneuron activity during RWS. To assess the activity of VIP interneurons
494 before, during, and after RWS, we injected AAV1-CAG-flex-mRuby-P2A-GCaMP6s into a VIP
495 IRES-cre transgenic mouse line (Fig. 5A). Post-hoc immunostaining analysis confirmed that
496 all mRuby-expressing cells were anti-VIP positive (Fig. 5A, $n=199$ cells, 81.41% of the cells
497 were Anti-VIP and GCaMP6s-positive, 18.59% were only Anti-VIP-positive, and 0% were only
498 GCaMP6s-positive, data not shown) (Taniguchi et al. 2011). As interneurons make up only
499 $\sim 20\%$ of the cortical neuronal population, of which $\sim 13\%$ are VIP interneurons, we employed
500 extended depth of field imaging to capture the activity of a high number of cells per imaging
501 session (Markram et al. 2004; Meng, Zhang, and Ji 2023). We imaged two planes, a superficial

502 plane 1 (P1, 80-120 μ m from pia) and a deep plane 2 (P2), with a difference of 100 μ m between
503 the center of each plane (Fig. 5F). We found that the mean baseline PW-evoked response
504 strength for VIP interneurons was significantly larger than the low & moderate responding L2/3
505 neuronal population but was significantly lower than the high responders (Fig. 5B,
506 VIP=0.11 \pm 0.009, n=302 cells, L2/3 neurons=0.03 \pm 0.001, n=1058 cells, high
507 responders=0.87 \pm 0.13, n=41 cells, Two-way ANOVA, P<0.0001). We did not observe a
508 significant change in the mean response strength when comparing VIP interneurons pre- and
509 post-PRWS (Fig. 5C, pre=PRWS=0.11 \pm 0.009, post-PRWS=0.11 \pm 0.008, n=302 cells, Paired t
510 test, P=0.7).

511 To test if VIP interneurons were activated during the repetitive sensory stimulation, we
512 measured their responses during both experimental conditions. We found that these cells
513 exhibited a significant increase in activity for at least 20s during PRWS compared to a 20s-
514 baseline period just prior (Fig. 5D, pre-PRWS=0.3 \pm 0.15, post-PRWS=0.6 \pm 0.03, n=341 cells,
515 Paired t test, P<0.0001). Surprisingly, we also found a significant increase in VIP interneuron
516 activity upon CRWS, which suggests that the activation of VIP interneurons may not be
517 whisker-selective (Fig. 5E, pre-CRWS=0.4 \pm 0.02, and post-CRWS=1.07 \pm 0.07, n=231 cells,
518 Paired t test P<0.001). Although this effect was on trend, it was not significant when analyzed
519 over mice (n=5 mice, P=0.08, Table 1-1).

520 Comparing VIP interneurons at different depths (P1 and P2), we found that PRWS
521 significantly activated deeper as compared to superficial VIP interneurons (Fig 5F,
522 P1=0.18 \pm 0.38, n=117, P2=0.35 \pm 0.04, n=224 cells, Unpaired t test, P=0.006). In contrast,
523 CRWS did not have the same effect (Fig. 5G, P1=0.52 \pm 0.92, n=53 cells; P2=0.69 \pm 0.05, n=178
524 cells, Unpaired t test, P=0.18). Overall, we found that PRWS or CRWS strongly activated VIP
525 interneurons for a sustained period (>1 min), with PRWS preferentially activating deeper VIP
526 interneurons as compared to CRWS. Initially, VIP interneurons were more responsive to PW
527 stimulation than the overall L2/3 neuronal population, yet they are less responsive than the
528 high responding L2/3 neurons. Nonetheless, VIP interneurons are not potentiated post RWS,
529 whereas a large part of the L2/3 neurons' activity is potentiated.

530

531 **DISCUSSION**

532 Repeated whisker stimulation in rodents under anesthesia potentiates local field potentials
533 and elicits long-term potentiation (LTP) of cortical excitatory synapses (Mégevand et al. 2009;
534 Gambino et al. 2014; Han et al. 2015; Williams and Holtmaat 2019). Here, we rhythmically
535 stimulated a single whisker in awake mice and demonstrated that this modulates sensory-
536 evoked population activity in L2/3 of the somatosensory cortex, as measured by somatic Ca²⁺
537 signals, which correlates with spiking rates (Zhang et al. 2023).

538 We found that a bout of repetitive whisker stimulation induces a prolonged (1h)
539 increase in subsequent whisker-evoked activity in L2/3 neurons that initially responded at low
540 and moderate levels to whisker deflections (Fig. 1-3). This effect was selective for neurons in
541 the home cortical column of the stimulated whisker (PRWS) and did not occur when a far-
542 away surround whisker was stimulated (CRWS). This selectivity rules out that it was
543 attributable to sensory stimulation protocol or the repeated imaging perse. In a separate
544 experiment, we also determined that the overall whisking rates or stimulus-evoked whisking
545 rates do not change upon the RWS protocol (extended data Fig. 1-1). Altogether, this strongly
546 suggests that the selective modulation of activity upon PRWS is due to changes in the synaptic
547 pathways that are associated with the principal whisker. The effects bear similarities to
548 electrically and sensory-evoked LTP *in vivo* and in experience-dependent plasticity paradigms
549 albeit we have not tested whether they are the direct result of the synaptic LTP mechanisms
550 that were previously observed under anesthesia (Gambino et al. 2014; Glazewski et al. 1996;
551 Margolis et al. 2012; Han et al. 2015; Williams and Holtmaat 2019).

552 PRWS recruited more cells to the whisker-responding pool, whereas CRWS led to
553 relatively more cells with suppressed activity. Nonetheless, PRWS also induced a decrease in
554 activity rates in a subgroup of neurons, even to the extent that some stopped being responsive
555 (suppressed) to whisker deflections altogether. A small population of L2/3 neurons that initially
556 responded robustly decreased their activity, irrespective of PRWS or CRWS, which is a
557 phenomenon that has also been observed in experience-dependent plasticity paradigms
558 (Margolis et al. 2012). Together, these data indicate that the neuronal population has a
559 bidirectional sensitivity to the repeated sensory stimulation. In contrast to the neurons that
560 displayed moderate baseline activity, those with either very high or very low response rates
561 were prone to lower their activity or lose it, respectively. This decrease in activity may be the
562 result of synaptic weakening or homeostatic plasticity, possibly induced by asynchronous pre
563 and postsynaptic activity in some neurons that can cause synaptic depression, or by increased
564 levels of inhibition that normalize neuronal activity, respectively (Jacob et al. 2007; Knott et al.
565 2002). Conversely, the potentiation of the sensory-evoked activity could be aided by
566 disinhibitory mechanisms, which are also known to support synaptic plasticity in the barrel
567 cortex (Gambino and Holtmaat 2012; Williams and Holtmaat 2019; Li et al. 2014; Letzkus,
568 Wolff, and Lüthi 2015). Differential effects of these opposing mechanisms may underlie the
569 different fractions of neurons with persistent and suppressed responses as observed upon
570 PRWS and CRWS. For example, for neurons with a low baseline response strength, the
571 PRWS-evoked potentiation may counteract depression or homeostatic inhibition and protect
572 them from being suppressed, whereas the CRWS, which does not potentiate responses, may
573 fail in keeping these neurons in the responsive population.

574 We found that the potentiation lasts for ~1hr on average which is relatively brief
575 compared to long-term experience-dependent forms of plasticity in the sensory cortex. For
576 example, whisker deprivation, which causes a sustained change in input to the sensory cortex
577 has been shown to result in functional and even structural plasticity lasting over days to weeks
578 (Margolis et al. 2012; Wilbrecht et al. 2010). Similarly, a period of environmental enrichment
579 occludes subsequent RWS-induced plasticity (Mégevand et al. 2009). Nonetheless, the short-
580 term plasticity that we observed might represent initial plasticity effects of an abrupt change in
581 sensory experience that could be reinforced if it were continued, leading to long-term changes
582 in the synaptic circuit.

583 PRWS could potentiate the activity of neurons even when their baseline whisker-
584 evoked activity levels were low or absent (Fig. 1), suggesting that responsivity and plasticity
585 are poorly correlated. Indeed, when comparing the level of RWS-evoked activity with the
586 increase in whisker-evoked responses post-RWS, we did not observe a significant correlation
587 (Fig. 3, 4). Instead, we found an inverse correlation between the initial whisker-evoked
588 response strength and the level of activity during RWS. This shows that the level of plasticity
589 could be independent of spike rates and that RWS can evoke plasticity in neurons that are
590 normally poorly responsive to whisker deflections. These observations are in line with previous
591 findings in that synaptic LTP can be independent of spiking and rely on sustained sub-
592 threshold depolarizations, which may not be reflected in the somatic Ca^{2+} signals detected
593 here (Golding, Staff, and Spruston 2002; Gambino et al. 2014; Lavzin et al. 2012; Bandalise
594 et al. 2022).

595 In contrast to L2/3 neurons, VIP interneurons are highly sensitive to active whisking
596 and touch (Yu et al. 2019; Lee et al. 2013), which we also observed during RWS (Fig. 5). VIP
597 interneurons form well-characterized disinhibitory motifs for pyramidal neuron dendrites
598 through inhibition of SST interneurons and may facilitate sensory-evoked LTP (Lee et
599 al. 2013; Pfeffer et al. 2013; Pi et al. 2013; Williams and Holtmaat 2019). The local disinhibition
600 of dendrites during RWS could facilitate plasticity independent of parent neuronal activity
601 levels, which provides another mechanism for the absence of a correlation between RWS-
602 evoked activity and plasticity. Interestingly, we found that in contrast to the L2/3 neurons, the
603 increase in RWS-evoked VIP interneuron activity was not whisker-selective and did not lead
604 to a potentiation of subsequent single whisker-evoked VIP interneuron responses (Fig. 5),
605 which corroborates our interpretation that the potentiation of L2/3 activity was due to changes
606 in L2/3-associated synaptic pathways, and not attributable to post-RWS alterations in active
607 whisking or active touch.

608 VIP interneuron subtypes are distributed over the cortex, hence superficial and deeper
609 cells may on average have different morphological and functional signatures and may be

610 implicated in different synaptic connectivity motifs (Prönneke et al. 2020; Jiang et al. 2015;
611 Gouwens et al. 2020). To date, intralayer differences in VIP interneuron activity during sensory
612 stimulation has not been described. Here, extended depth of field imaging has allowed us to
613 examine activity in the superficial (P1, 80-120 μ m from pia) versus a deep (P2) plane 100 μ m
614 below respectively (Fig 5). We found that the somewhat deeper VIP interneurons were more
615 strongly activated than the very superficial neurons. This deeper pool of VIP interneurons
616 could contain the L2 bipolar interneurons that constitute disinhibitory motifs (Prönneke et al.
617 2020; Georgiou et al. 2022). However, to make more precise inferences, a detailed
618 morphological, functional or connectivity analysis would have to be performed. Nonetheless,
619 the data do suggest that VIP interneurons are broadly activated and may cause disinhibition
620 over a wide area of the somatosensory cortex, which is congruent with the fact that non-
621 selective higher-order thalamocortical, cholinergic, and cortico-cortical circuits activate them
622 (Fig. 5I) (Lee et al. 2013; Pi et al. 2013; Williams and Holtmaat 2019; Fu et al. 2014; Yu et al.
623 2019; Gambino et al. 2014).

624 Altogether, our findings paint the following picture: RWS increases activity rates of L2/3
625 neurons and increases the responsivity of individual neurons to subsequent sensory
626 stimulation in a whisker-selective manner. VIP interneurons only increase their activity during
627 the RWS stimulation period in a whisker non-selective manner. The large-scale disinhibition
628 caused by the activation of VIP interneurons during RWS could open a gate for the potentiation
629 of whisker-selective synaptic circuits on L2/3 neurons. Since VIP interneurons themselves
630 were not potentiated, this excludes the possibility that protracted VIP-mediated disinhibition
631 was directly responsible for the observed increase in L2/3 neuronal activity. Considering the
632 synaptic circuits, we speculate that PRWS activates both first-order & higher-order
633 thalamocortical (TC) and feedback inputs (Fig. 5I). These combined inputs may activate
634 disinhibitory VIP interneurons and drive the potentiation of PW-evoked responses. CRWS, on
635 the other hand, may only activate higher-order TC and feedback inputs, as well as disinhibitory
636 VIP interneurons. However, this is not sufficient to drive potentiation without the activation of
637 neurons through first-order TC inputs, and thus favors the suppression of neuronal responses.

638 Overall, this work indicates that the cortical representation of sensory input is dynamic
639 and can be modulated over an extended period by repetitive sensory stimulation, via
640 mechanisms that may involve activation of whisker-independent, barrel cortex-wide
641 disinhibitory circuit motifs. In future endeavors, it will be important to test how modulating VIP
642 interneuron activity shapes these population dynamics. It will also be interesting to determine
643 if such sensory-driven mechanisms of plasticity also underly the reshaping of cortical
644 representations and receptive fields during sensory deprivation-mediated plasticity, in disease,

645 or during the formation of neuronal ensembles upon sensory learning (Hamdy et al. 1998;
646 Kowalewski et al. 2012; Rose et al. 2016).

647

648 REFERENCES

649

650 Ayzenshtat, I., M. M. Karnani, J. Jackson, and R. Yuste. 2016. 'Cortical Control of Spatial
651 Resolution by VIP+ Interneurons', *J Neurosci*, 36: 11498-509.

652 Brandalise, F., S. Carta, R. Leone, F. Helmchen, A. Holtmaat, and U. Gerber. 2022. 'Dendritic
653 Branch-constrained N-Methyl-d-Aspartate Receptor-mediated Spikes Drive Synaptic
654 Plasticity in Hippocampal CA3 Pyramidal Cells', *Neuroscience*, 489: 57-68.

655 Brecht, M., A. Roth, and B. Sakmann. 2003. 'Dynamic receptive fields of reconstructed pyramidal
656 cells in layers 3 and 2 of rat somatosensory barrel cortex', *J Physiol*, 553: 243-65.

657 Carvell, G. E., and D. J. Simons. 1990. 'Biometric analyses of vibrissal tactile discrimination in
658 the rat', *J Neurosci*, 10: 2638-48.

659 Chéreau, R., T. Bawa, L. Fodoulian, A. Carleton, S. Pagès, and A. Holtmaat. 2020. 'Dynamic
660 perceptual feature selectivity in primary somatosensory cortex upon reversal learning',
661 *Nat Commun*, 11: 3245.

662 Clapp, W. C., I. J. Kirk, J. P. Hamm, D. Shepherd, and T. J. Teyler. 2005. 'Induction of LTP in the
663 human auditory cortex by sensory stimulation', *Eur J Neurosci*, 22: 1135-40.

664 Crochet, S., and C. C. Petersen. 2006. 'Correlating whisker behavior with membrane potential in
665 barrel cortex of awake mice', *Nat Neurosci*, 9: 608-10.

666 Crochet, S., J. F. Poulet, Y. Kremer, and C. C. Petersen. 2011. 'Synaptic mechanisms underlying
667 sparse coding of active touch', *Neuron*, 69: 1160-75.

668 El-Boustani, S., J. P. K. Ip, V. Breton-Provencher, G. W. Knott, H. Okuno, H. Bito, and M. Sur.
669 2018. 'Locally coordinated synaptic plasticity of visual cortex neurons in vivo', *Science*,
670 360: 1349-54.

671 Fee, M. S., P. P. Mitra, and D. Kleinfeld. 1997. 'Central versus peripheral determinants of
672 patterned spike activity in rat vibrissa cortex during whisking', *J Neurophysiol*, 78: 1144-9.

673 Feldman, D. E. 2009. 'Synaptic mechanisms for plasticity in neocortex', *Annu Rev Neurosci*, 32:
674 33-55.

675 Frenkel, M. Y., N. B. Sawtell, A. C. Diogo, B. Yoon, R. L. Neve, and M. F. Bear. 2006. 'Instructive
676 effect of visual experience in mouse visual cortex', *Neuron*, 51: 339-49.

677 Fu, Y., J. M. Tucciarone, J. S. Espinosa, N. Sheng, D. P. Darcy, R. A. Nicoll, Z. J. Huang, and M.
678 P. Stryker. 2014. 'A cortical circuit for gain control by behavioral state', *Cell*, 156: 1139-
679 52.

680 Gambino, F., and A. Holtmaat. 2012. 'Spike-timing-dependent potentiation of sensory surround in
681 the somatosensory cortex is facilitated by deprivation-mediated disinhibition', *Neuron*, 75:
682 490-502.

683 Gambino, F., S. Pagès, V. Kehayas, D. Baptista, R. Tatti, A. Carleton, and A. Holtmaat. 2014.
684 'Sensory-evoked LTP driven by dendritic plateau potentials in vivo', *Nature*, 515: 116-9.

685 Georgiou, C., V. Kehayas, K. S. Lee, F. Brandalise, D. A. Sahlender, J. Blanc, G. Knott, and A.
686 Holtmaat. 2022. 'A subpopulation of cortical VIP-expressing interneurons with highly
687 dynamic spines', *Commun Biol*, 5: 352.

688 Glazewski, S., C. M. Chen, A. Silva, and K. Fox. 1996. 'Requirement for alpha-CaMKII in
689 experience-dependent plasticity of the barrel cortex', *Science*, 272: 421-3.

690 Golding, N. L., N. P. Staff, and N. Spruston. 2002. 'Dendritic spikes as a mechanism for
691 cooperative long-term potentiation', *Nature*, 418: 326-31.

692 Gouwens, N. W., S. A. Sorensen, F. Baftizadeh, A. Budzillo, B. R. Lee, T. Jarsky, L. Alfiler, K.
693 Baker, E. Barkan, K. Berry, D. Bertagnolli, K. Bickley, J. Bomben, T. Braun, K. Brouner,
694 T. Casper, K. Crichton, T. L. Daigle, R. Dalley, R. A. de Frates, N. Dee, T. Desta, S. D.
695 Lee, N. Dotson, T. Egger, L. Ellingwood, R. Enstrom, L. Esposito, C. Farrell, D. Feng, O.
696 Fong, R. Gala, C. Gamlin, A. Gary, A. Glandon, J. Goldy, M. Gorham, L. Graybuck, H.
697 Gu, K. Hadley, M. J. Hawrylycz, A. M. Henry, D. Hill, M. Hupp, S. Kebede, T. K. Kim, L.
698 Kim, M. Kroll, C. Lee, K. E. Link, M. Mallory, R. Mann, M. Maxwell, M. McGraw, D.
699 McMillen, A. Mukora, L. Ng, L. Ng, K. Ngo, P. R. Nicovich, A. Oldre, D. Park, H. Peng, O.

700 Penn, T. Pham, A. Pom, Z. Popović, L. Potekhina, R. Rajanbabu, S. Ransford, D. Reid,
701 C. Rimorin, M. Robertson, K. Ronellenfitch, A. Ruiz, D. Sandman, K. Smith, J. Sulc, S. M.
702 Sunkin, A. Szafer, M. Tieu, A. Torkelson, J. Trinh, H. Tung, W. Wakeman, K. Ward, G.
703 Williams, Z. Zhou, J. T. Ting, A. Arkhipov, U. Sümbül, E. S. Lein, C. Koch, Z. Yao, B.
704 Tasic, J. Berg, G. J. Murphy, and H. Zeng. 2020. 'Integrated Morphoelectric and
705 Transcriptomic Classification of Cortical GABAergic Cells', *Cell*, 183: 935-53.e19.
706 Hamdy, S., J. C. Rothwell, Q. Aziz, K. D. Singh, and D. G. Thompson. 1998. 'Long-term
707 reorganization of human motor cortex driven by short-term sensory stimulation', *Nat
708 Neurosci*, 1: 64-8.
709 Han, Y., M. D. Huang, M. L. Sun, S. Duan, and Y. Q. Yu. 2015. 'Long-Term Synaptic Plasticity in
710 Rat Barrel Cortex', *Cereb Cortex*, 25: 2741-51.
711 Hardingham, N., N. Wright, J. Dachtler, and K. Fox. 2008. 'Sensory deprivation unmasks a PKA-
712 dependent synaptic plasticity mechanism that operates in parallel with CaMKII', *Neuron*,
713 60: 861-74.
714 Holtmaat, A., T. Bonhoeffer, D. K. Chow, J. Chuckowree, V. De Paola, S. B. Hofer, M. Hübener,
715 T. Keck, G. Knott, W. C. Lee, R. Mostany, T. D. Mrsic-Flogel, E. Nedivi, C. Portera-
716 Cailliau, K. Svoboda, J. T. Trachtenberg, and L. Wilbrecht. 2009. 'Long-term, high-
717 resolution imaging in the mouse neocortex through a chronic cranial window', *Nat Protoc*,
718 4: 1128-44.
719 Jacob, V., D. J. Brasier, I. Erchova, D. Feldman, and D. E. Shulz. 2007. 'Spike timing-dependent
720 synaptic depression in the in vivo barrel cortex of the rat', *J Neurosci*, 27: 1271-84.
721 Jiang, Xiaolong, Shan Shen, Cathryn R. Cadwell, Philipp Berens, Fabian Sinz, Alexander S.
722 Ecker, Saumil Patel, and Andreas S. Tolias. 2015. 'Principles of connectivity among
723 morphologically defined cell types in adult neocortex', *Science*, 350: aac9462.
724 Kalisch, T., M. Tegenthoff, and H. R. Dinse. 2008. 'Improvement of sensorimotor functions in old
725 age by passive sensory stimulation', *Clin Interv Aging*, 3: 673-90.
726 Kato, H. K., S. N. Gillet, and J. S. Isaacson. 2015. 'Flexible Sensory Representations in Auditory
727 Cortex Driven by Behavioral Relevance', *Neuron*, 88: 1027-39.
728 Kerr, J. N., D. Greenberg, and F. Helmchen. 2005. 'Imaging input and output of neocortical
729 networks in vivo', *Proc Natl Acad Sci U S A*, 102: 14063-8.
730 Knott, G. W., C. Quairiaux, C. Genoud, and E. Welker. 2002. 'Formation of dendritic spines with
731 GABAergic synapses induced by whisker stimulation in adult mice', *Neuron*, 34: 265-73.
732 Kowalewski, R., J. C. Kattenstroth, T. Kalisch, and H. R. Dinse. 2012. 'Improved acuity and
733 dexterity but unchanged touch and pain thresholds following repetitive sensory
734 stimulation of the fingers', *Neural Plast*, 2012: 974504.
735 Lavzin, M., S. Rapoport, A. Polksy, L. Garion, and J. Schiller. 2012. 'Nonlinear dendritic
736 processing determines angular tuning of barrel cortex neurons in vivo', *Nature*, 490: 397-
737 401.
738 Lee, S., I. Kruglikov, Z. J. Huang, G. Fishell, and B. Rudy. 2013. 'A disinhibitory circuit mediates
739 motor integration in the somatosensory cortex', *Nat Neurosci*, 16: 1662-70.
740 Lengali, L., J. Hippe, C. Hatlestad-Hall, T. W. Rygvold, M. H. Snee, and S. Andersson. 2021.
741 'Sensory-Induced Human LTP-Like Synaptic Plasticity - Using Visual Evoked Potentials
742 to Explore the Relation Between LTP-Like Synaptic Plasticity and Visual Perceptual
743 Learning', *Front Hum Neurosci*, 15: 684573.
744 Letzkus, Johannes J., Steffen B. E. Wolff, and Andreas Lüthi. 2015. 'Disinhibition, a circuit
745 mechanism for associative learning and memory', *Neuron*, 88: 264-76.
746 Li, L., M. A. Gainey, J. E. Goldbeck, and D. E. Feldman. 2014. 'Rapid homeostasis by
747 disinhibition during whisker map plasticity', *Proc Natl Acad Sci U S A*, 111: 1616-21.
748 Margolis, D. J., H. Lütcke, K. Schulz, F. Haiss, B. Weber, S. Kügler, M. T. Hasan, and F.
749 Helmchen. 2012. 'Reorganization of cortical population activity imaged throughout long-
750 term sensory deprivation', *Nat Neurosci*, 15: 1539-46.
751 Markram, H., M. Toledo-Rodriguez, Y. Wang, A. Gupta, G. Silberberg, and C. Wu. 2004.
752 'Interneurons of the neocortical inhibitory system', *Nat Rev Neurosci*, 5: 793-807.
753 Marzoll, A., K. Shibata, T. Toyoizumi, I. Chavva, and T. Watanabe. 2022. 'Decrease in signal-
754 related activity by visual training and repetitive visual stimulation', *iScience*, 25: 105492.

755 Mégevand, Pierre, Edgardo Troncoso, Charles Quairiaux, Dominique Muller, Christoph M.
756 Michel, and Jozsef Z. Kiss. 2009. 'Long-Term Plasticity in Mouse Sensorimotor Circuits
757 after Rhythmic Whisker Stimulation', *The Journal of Neuroscience*, 29: 5326-35.
758 Meng, Guanghan, Qinrong Zhang, and Na Ji. 2023. 'High-Speed Neural Imaging with Synaptic
759 Resolution: Bessel Focus Scanning Two-Photon Microscopy and Optical-Sectioning
760 Widefield Microscopy.' in Eirini Papagiakoumou (ed.), *All-Optical Methods to Study
761 Neuronal Function* (Springer US: New York, NY).
762 Pawlak, V., D. S. Greenberg, H. Sprekeler, W. Gerstner, and J. N. Kerr. 2013. 'Changing the
763 responses of cortical neurons from sub- to suprathreshold using single spikes in vivo',
764 *Elife*, 2: e00012.
765 Pfeffer, C. K., M. Xue, M. He, Z. J. Huang, and M. Scanziani. 2013. 'Inhibition of inhibition in
766 visual cortex: the logic of connections between molecularly distinct interneurons', *Nat
767 Neurosci*, 16: 1068-76.
768 Pi, H. J., B. Hangya, D. Kvitsiani, J. I. Sanders, Z. J. Huang, and A. Kepecs. 2013. 'Cortical
769 interneurons that specialize in disinhibitory control', *Nature*, 503: 521-4.
770 Pnevmatikakis, E. A., and A. Giovannucci. 2017. 'NoRMCorre: An online algorithm for piecewise
771 rigid motion correction of calcium imaging data', *J Neurosci Methods*, 291: 83-94.
772 Prönneke, A., M. Witte, M. Möck, and J. F. Staiger. 2020. 'Neuromodulation Leads to a Burst-
773 Tonic Switch in a Subset of VIP Neurons in Mouse Primary Somatosensory (Barrel)
774 Cortex', *Cereb Cortex*, 30: 488-504.
775 Rose, T., J. Jaepel, M. Hübener, and T. Bonhoeffer. 2016. 'Cell-specific restoration of stimulus
776 preference after monocular deprivation in the visual cortex', *Science*, 352: 1319-22.
777 Sanders, P. J., B. Thompson, P. M. Corballis, M. Maslin, and G. D. Searchfield. 2018. 'A review
778 of plasticity induced by auditory and visual tetanic stimulation in humans', *Eur J Neurosci*,
779 48: 2084-97.
780 Sato, T. R., N. W. Gray, Z. F. Mainen, and K. Svoboda. 2007. 'The functional microarchitecture
781 of the mouse barrel cortex', *PLoS Biol*, 5: e189.
782 Taniguchi, H., M. He, P. Wu, S. Kim, R. Paik, K. Sugino, D. Kvitsiani, Y. Fu, J. Lu, Y. Lin, G.
783 Miyoshi, Y. Shima, G. Fishell, S. B. Nelson, and Z. J. Huang. 2011. 'A resource of Cre
784 driver lines for genetic targeting of GABAergic neurons in cerebral cortex', *Neuron*, 71:
785 995-1013.
786 Wilbrecht, Linda, Anthony Holtmaat, Nick Wright, Kevin Fox, and Karel Svoboda. 2010.
787 'Structural plasticity underlies experience-dependent functional plasticity of cortical
788 circuits', *J. Neurosci*, 30: 4927-32.
789 Williams, L. E., and A. Holtmaat. 2019. 'Higher-Order Thalamocortical Inputs Gate Synaptic
790 Long-Term Potentiation via Disinhibition', *Neuron*, 101: 91-102.e4.
791 Wolfe, J., D. N. Hill, S. Pahlavan, P. J. Drew, D. Kleinfeld, and D. E. Feldman. 2008. 'Texture
792 coding in the rat whisker system: slip-stick versus differential resonance', *PLoS Biol*, 6:
793 e215.
794 Yu, J., H. Hu, A. Agmon, and K. Svoboda. 2019. 'Recruitment of GABAergic Interneurons in the
795 Barrel Cortex during Active Tactile Behavior', *Neuron*, 104: 412-27.e4.
796 Zhang, Yan, Márton Rózsa, Yajie Liang, Daniel Bushey, Ziqiang Wei, Jihong Zheng, Daniel
797 Reep, Gerard Joey Broussard, Arthur Tsang, Getahun Tsegaye, Sujatha Narayan,
798 Christopher J. Obara, Jing-Xuan Lim, Ronak Patel, Rongwei Zhang, Misha B. Ahrens,
799 Glenn C. Turner, Samuel S. H. Wang, Wyatt L. Korff, Eric R. Schreiter, Karel Svoboda,
800 Jeremy P. Hasseman, Ilya Kolb, and Loren L. Looger. 2023. 'Fast and sensitive GCaMP
801 calcium indicators for imaging neural populations', *Nature*, 615: 884-91.
802
803

804 **FIGURE LEGENDS**

805 **Figure 1: PRWS potentiates whisker-evoked responses in L2/3 neurons. (A)** Left,
806 examples of averaged baseline & stimulus-related raw iOS images, evoked by one train of
807 whisker deflections. Right, example barrel map overlayed over a brightfield image of the blood
808 vessels. Green dots represent the location of GCaMP6s-expressing cells in the C2 barrel

809 column. **(B)** Average 2PLSM image of GCaMP6s-expressing neurons. **(C)** Experimental
810 design: the PW, which corresponds to the barrel column containing the GCaMP6s-expressing
811 cells, is always used to read out the sensory stimulus-evoked response. The PW for PRWS
812 (blue) or a control far-away whisker (CW) for CRWS (orange) is stimulated during rhythmic
813 whisker stimulation (RWS, 8Hz, 10min). **(D)** Experimental protocol: the PW is stimulated at
814 0.1 Hz for 10 min pre- and post-RWS. RWS (8 Hz, 10 min) is performed on either the PW
815 (PRWS, blue) or a far-away CW (CRWS, orange). Whisker movement index during the
816 stimulus protocol can be found in Figure 1-1. **(E & F)** Left, example trace of the GCaMP6s
817 fluorescence, in response to PW stimulation (0.1 Hz, 10 min) pre- and post-PRWS **(E)** or
818 CRWS **(F)**. The signals in **E** are from the cell circled in **B**. Right, the PW-evoked response
819 strength (RS, amplitude X whisker-evoked signal probability, $(\Delta F/F_0)/N_{stim}$) pre- and post-
820 PRWS **(E**, n=1099 cells, **P=0.002, N=11 mice, P=0.5, full descriptive statistics can be found
821 in Table 1-1) or CRWS **(F**, n=829 cells, P=0.4; N=11 mice, P=0.6). Grey lines, paired
822 responses. Violin plots depict median (solid) and quartiles (dotted) bars. Squares, the mean
823 over cells ($\pm SEM$). Circles, the mean over mice ($\pm SEM$). **(G)** Pre- versus post-RWS RS
824 ($(\Delta F/F_0)/N_{stim}$) with the simple linear regression for PRWS (blue, n=1099 cells) and CRWS
825 (orange, n=829 cells). Comparing slopes (PRWS=0.62 \pm 0.014, CRWS=0.85 \pm 0.019, F=92.9,
826 DF_n=1, DF_d=1924, ****P<0.0001). **(H)** Frequency distribution of the pre-RWS RS for PRWS
827 & CRWS, bin size 0.01($\Delta F/F_0$)/N_{stim}. High responders (resp) were identified as outliers (dots
828 above, Iterative Grubb's outlier test, α =0.0001). **(I & J)** Violin plot of the RS pre- and post-
829 PRWS and CRWS, for low & moderate responders **(I**, PRWS, n=1058 cells, ****P<0.0001;
830 N=11 mice, P=0.006; CRWS, n=792 cells, P=0.3; N=11 mice, P=0.7), and for high responders
831 **(J**, PRWS, paired t-test, n=41 cells, ***P=0.0008; N=11 mice, P=0.04; CRWS, n=37 cells,
832 ****P<0.0001; N=11 mice, P=0.0001). **(K)** The pre-RWS/post-RWS ratio (in %) for PRWS and
833 CRWS low & moderate, and high responders (mixed effects model, N=11 mice, P=0.0004;
834 multiple comparisons: PRWS low & moderate vs high, ***P=0.0004; CRWS low & moderate
835 vs high, P=0.1; Low & moderate PRWS vs CRWS, *P=0.018; High PRWS vs CRWS, P=0.7).
836

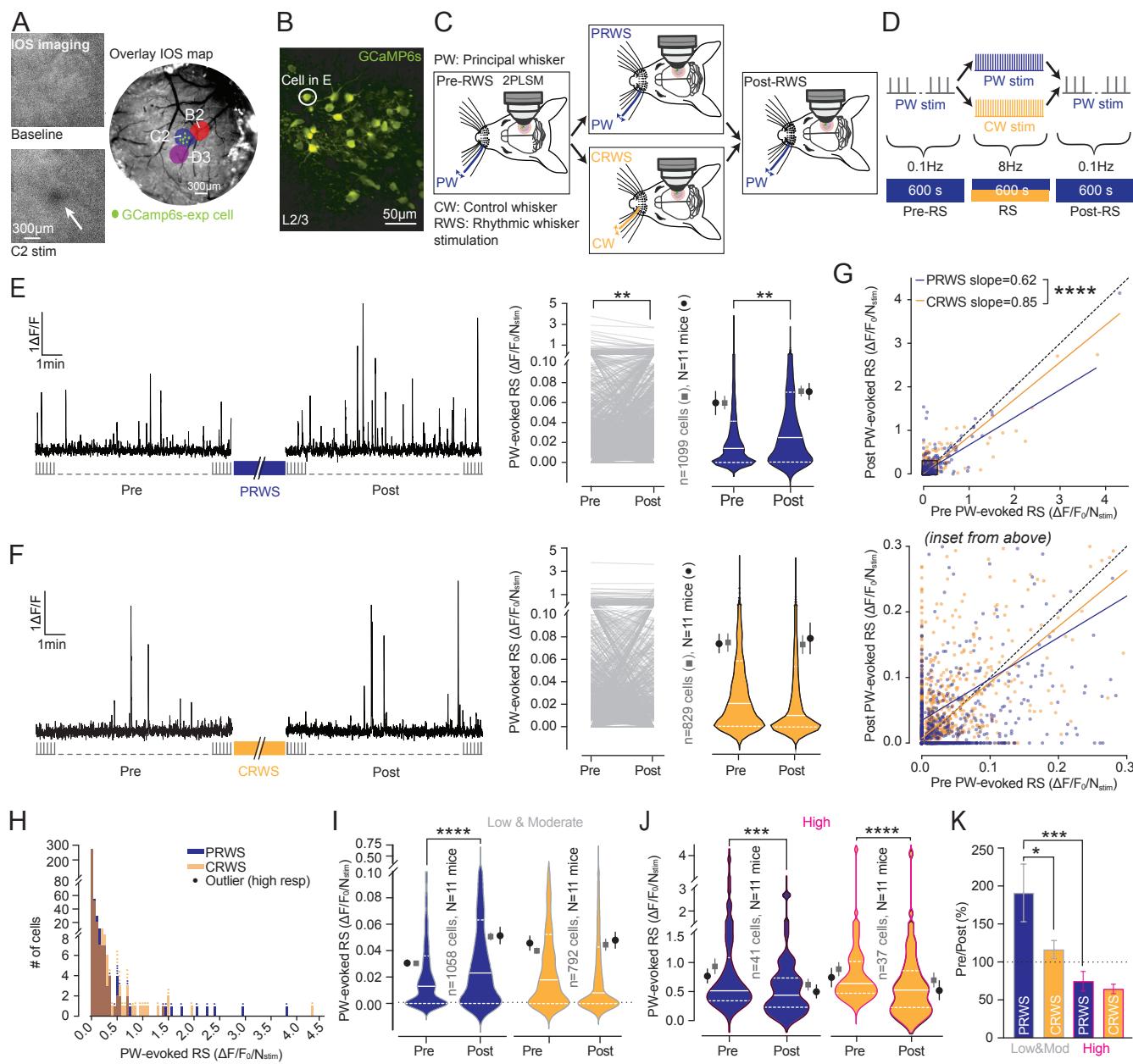
837 **Figure 2: PRWS recruits L2/3 neurons to the active pool. (A)** Left, example trace of
838 GCaMP6s fluorescence from a neuron showing persistent PW-evoked responses (0.1 Hz, 10
839 min) pre- and post-PRWS. Right, violin and pairwise representation of pre- and post-PRWS
840 (n=465 cells, ****P<0.0001; N=11 mice, P=0.003) or CRWS (Paired t test, n=279 cells,
841 P=0.06; N=11 mice, P=0.2). **(B&C)** Left, example trace of GCaMP6s fluorescence from
842 neurons of which responses were recruited **(B)** or suppressed **(C)** post-PRWS. **(B)** Right, the
843 mean PW-evoked response strength (RS) of recruited neurons, post-PRWS (n=307 cells) &
844 CRWS (Unpaired t test, n=131 cells, P=0.1; N=11 mice, P=0.5). **(C)** Right, the mean response

845 strength of suppressed neurons pre-PRWS (n=205 cells) & CRWS (Unpaired t test, n=258
846 cells, ****P<0.0001; N=11 mice P=0.037). **(D)** Pie charts with the percentages (%) of persistent
847 (grey), recruited (red), suppressed (blue), no response (white), and high (pink) responders for
848 PRWS (n=1099 cells) & CRWS (n=829 cells, Chi-square=19.8, DF=4, ***P<0.0001).

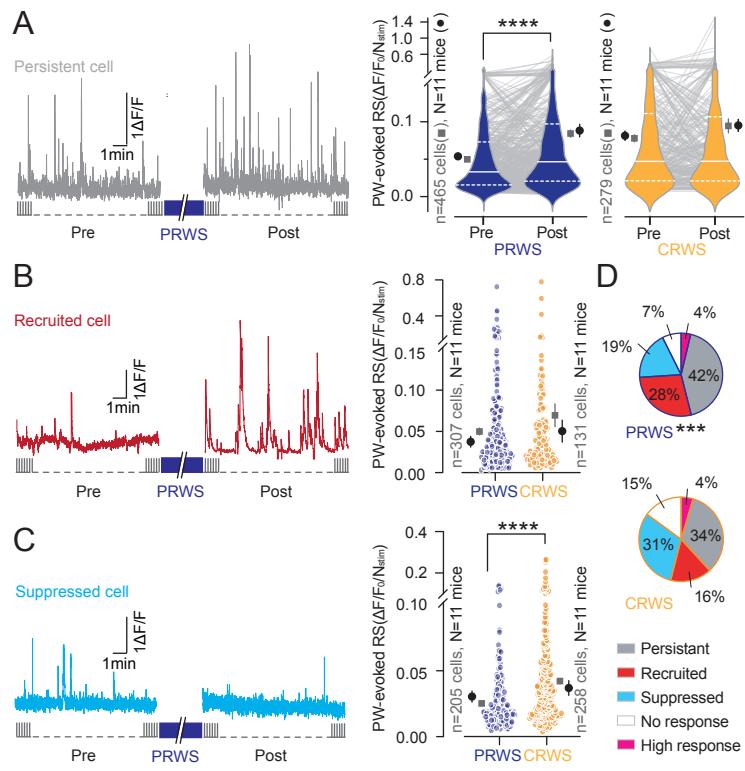
849

850 **Figure 3: Longitudinal imaging upon RWS.** **(A)** Raster plot of GCaMP6s fluorescence
851 intensity ($\Delta F/F_0$) for PRWS at each acquisition for pre-PRWS (-10 min) and post-PRWS (10,
852 60, 120, & 180 min). Neurons sorted from top to bottom by decreasing response strength pre-
853 vs post-PRWS (n=410 cells). Arrowheads, examples of the five subpopulations: persistent
854 (persist.), recruited (recruit.), suppressed (suppr.), no response (no resp.), and high (hi resp.)
855 responders. **(B)** Top, example 2PLSM images of neurons expressing AAV1-hSyn-
856 mRubyGSG-P2A-GCaMP6s across the longitudinal experimental protocol -10 min pre-PRWS,
857 & 10, 60, 120, & 180 min post-PRWS. mRuby (red) serves as an activity-independent marker,
858 whereas GCaMP6s (green) reports Ca^{2+} signals upon PW-stimulation. The lower images
859 represent high magnifications of the cells in the square inset on top. **(B)** Bottom, PW-evoked
860 RS pre-PRWS (-10 min) or CRWS and post-PRWS or CRWS (10, 60, 120, & 180 min) (PRWS
861 n=382 cells, or CRWS n=304 cells; Two-way RM ANOVA, ***P=0.0006; N=6 mice, P=0.026).
862 Multiple comparisons for PRWS (Dunnett's, -10 min vs, 10 ****P<0.0001; or 60 ***P=0.0001).
863 **(C)** PW-evoked Ca^{2+} signal probability ($P_s[\# \text{events}/\text{Nstim}]$) (PRWS n=382 cells, CRWS n=304
864 cells; Two-way RM ANOVA, ****P<0.0001; N=6 mice, P=0.026). Multiple comparisons for
865 PRWS (Dunnett's, -10 min vs, 10****P<0.0001; or 60 **P=0.001; or 120 P=0.7; or 180 P=0.99)
866 & CRWS (-10 min vs, 10 P=0.99; or 60, P=0.3; or 120 P=0.2; or 180 P=0.3). **(D)** PW-evoked
867 Ca^{2+} signal amplitudes ($\bar{A}_s [\Delta F/F_0]$) (PRWS n=382 cells, CRWS n=304 cells; Two-way RM
868 ANOVA, ****P<0.0001; N=6, P=0.25). Multiple comparisons for PRWS (Dunnett's, -10 min vs,
869 10 *P=0.01; or 60 **P=0.002; or 120 P=0.8; or 180 P=0.4) & CRWS (-10min vs, 10 P=0.2; or
870 60 P=0.6; or 120 P=0.1; or 180 P=0.5). **(E)** PW-evoked response strength, pre- and 24 hrs
871 post-PRWS or CRWS (PRWS n=162 cells, CRWS n=134 cells; Two-way RM ANOVA, P=0.36;
872 PRWS 3 mice, CRWS 2 mice, P=0.054).

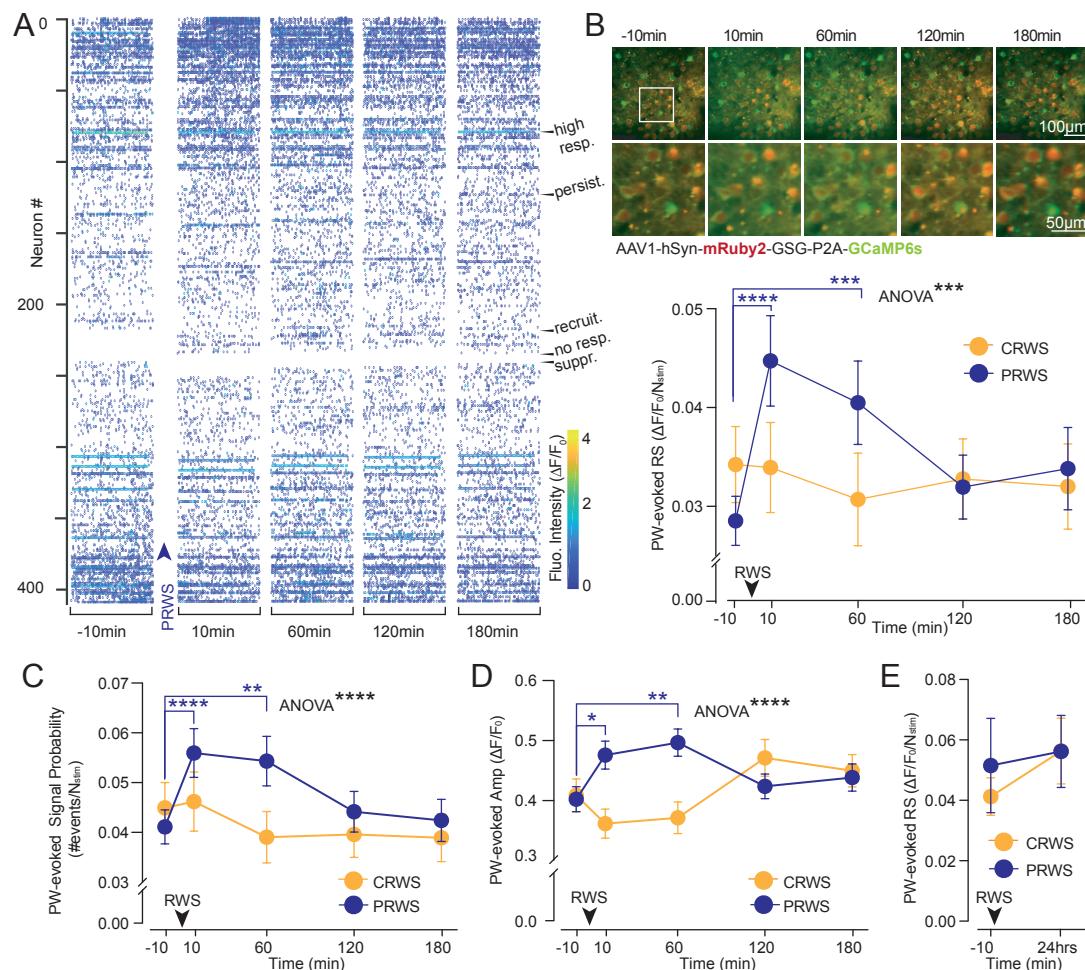
873

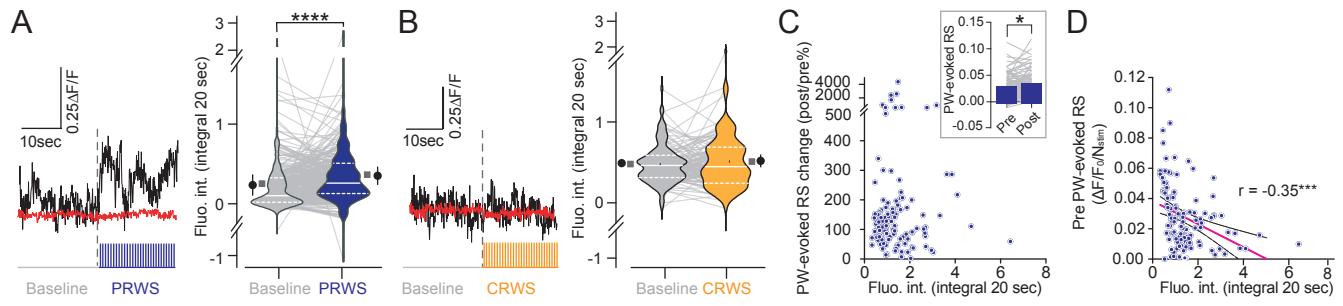

874 **Figure 4: RWS selectively activates L2/3 neurons.** **(A, B, Left)** Example traces of
875 GCaMP6s (black) or mRuby fluorescence (red) for a 20-sec baseline before and during PRWS
876 or CRWS. Violin and pairwise representation of fluorescence intensities (integrated over 20s)
877 (violin plot median: white bar, quartiles: dotted bars) baseline vs PRWS (n=290 cells, Paired t
878 test, ****P<0.0001; N=3 mice, P=0.027) or CRWS (n=115 cells, Paired t test, P=0.6; N=3 mice,
879 P=0.8). **(C)** Fluorescence intensity (integrated over 20s) during PRWS vs PW-evoked
880 response strength change (post/pre), (n=115 cells, Pearson r correlation, r=0.0002, P=1.0).

881 Inset, pre- and post-PRWS response strength (n=115 cells, pre=0.027±0.002,
882 post=0.031±0.002, Paired t test, P=0.027). **(D)** Fluorescence intensity during PRWS
883 (integrated over 20s) vs pre-PRWS. Pink line simple linear regression, black dotted lines 95%
884 confidence intervals. (n=115 cells, Pearson r correlation, r=-0.35, ***P=0.0001; simple linear
885 regression, slope=-0.008, non-zero? P=0.0001).


886
887 **Figure 5: RWS non-selectively activates VIP interneurons. (A) Left**, Example 2PLSM
888 image of flex.mRuby.GCaMP6s-expressing VIP interneurons in the VIP-Cre mouse line.
889 **Right**, representative confocal image after post-hoc anti-VIP immunocytochemistry on slices
890 of barrel cortex from 2PLSM imaged VIP-Cre mice (green, anti-VIP; red,
891 AAV1.CAG.Flex.mRuby.P2A.GCaMP6s; blue, Hoechst staining). **(B)** Pre-RWS PW-evoked
892 response strength (RS) of VIP interneurons (n=341 cells, N=7 mice), and low & moderate
893 (n=1058 cells, N=11 mice) and high (n=41, N=11 mice, one-way ANOVA, ****P<0.0001)
894 responding L2/3 neurons. Squares and circles represent the means ± SEM over cells and
895 mice, respectively. **(C) Left**, example trace of GCaMP6s (black) or mRuby fluorescence from
896 a VIP interneuron, pre- and post-PRWS. **Right**, pre- and post-PRWS PW-evoked RS of VIP
897 neurons (Paired t test, n=341 cells, P=0.2; N=7 mice, P=0.45). Grey lines, paired responses.
898 Violin plots depict median (solid) and quartiles (dotted) bars. **(D, E), Left**, example trace of
899 GCaMP6s fluorescence (black) or mRuby (integrated over 20s) from a VIP interneuron before
900 and during PRWS **(D)** or CRWS **(E)**. **Right**, paired response and violin plots of normalized
901 fluorescence intensity (norm.) during baseline, PRWS (Paired t-test, n=341 cells,
902 ****P<0.0001; N=7 mice, P=0.047) or CRWS (Paired t-test, n=231 cells, ****P<0.0001; N=5
903 mice, P=0.08). **(F)** VIP interneurons were imaged at two planes in upper layers of S1, plane
904 (P) 1 is closest to the pia and P2 is 100µm below. **(G, H) Left**, average VIP interneuron
905 GCaMP6s fluorescence for P1 (darker green) and P2 (light green) for baseline (integrated
906 over 20s) and during PRWS **(G)** or CRWS **(H)**. **Right**, normalized integrated fluorescence
907 intensities during PRWS **(G)**, P1 vs P2, Paired t test, **P=0.006) or CRWS **(H)**, P1 vs P2, Paired
908 t test, P=0.18). **(I)** Circuit diagram summarizing the RWS-evoked plasticity model. PRWS
909 (blue) activates first-order thalamocortical (TC; red) as well as higher-order TC and feedback
910 inputs (green), which activate disinhibitory VIP interneurons (grey). These combined inputs
911 drive a potentiation of PW-evoked responses and a recruitment of neuronal responsiveness
912 (28%). CRWS (orange) may only activate higher-order TC and feedback inputs, also activating
913 disinhibitory VIP interneurons, but this is not sufficient to drive potentiation and favors
914 suppression of neurons (30%).

915


916 **Figure 1-1: Whisker movements during the stimulus protocol. (A)** Calculating the whisker
917 movement index (MI, arbitrary units, a.u.). Whiskers ipsi- (purple) and contralateral (pink) to
918 the capillary tube were imaged at 112 Hz using a CCD digital camera placed under the snout
919 of mice. To extract whisker movement, ROIs were drawn, from which the whisker position of
920 each individual frame (orange) was correlated to the average whisker position across the
921 entire movie (green). **(B)** Calculating mean overall whisker movement. Top, MI of the ipsi- and
922 contralateral whiskers across the 10-minute protocol pre (red) and post RWS (blue) for 1
923 mouse. Stimulations are marked in grey. Bottom, normalized mean MI for the ipsi- and
924 contralateral whiskers of 4 mice Pre- and Post-RWS. (ipsi pre=1.0, post=0.98±0.03; contra
925 pre=1.19±0.11, post=1.12±0.09, one-way ANOVA, P=0.24). **(C)** Calculating stimulus-evoked
926 whisker movement pre- and post-RWS. Top, schematic illustrating the calculation of the
927 average MI 2 (s, 224 frames) before the start of a stimulus (from dashed box in B) and 2s after
928 the end of the stimulus. Middle, normalized mean MI for each mouse for ipsi- (left, pre
929 before=1.0, after=0.86±0.06; post before=0.93±0.01, after=0.90±0.07, one-way ANOVA,
930 P=0.25) and contralateral (right, pre before=1.0, after=0.93±0.05; post before=0.95±0.05,
931 after=0.89±0.06, one-way ANOVA, P=0.44) whiskers. Bottom left, scatterplot comparing the
932 MI of ipsilateral whiskers before and after stimulus presentation pre- (n=236 stims, r=0.47,
933 P<0.0001) and post-RWS (n=236 stims, r=0.47, P<0.0001). Bottom right, scatterplot
934 comparing the MI of contralateral whiskers before and after stimulus presentation pre- (n=236
935 stims, r=0.43, P<0.0001) and post-RWS (n=236 stims, r = 0.44, P<0.0001).
936


Figure 1

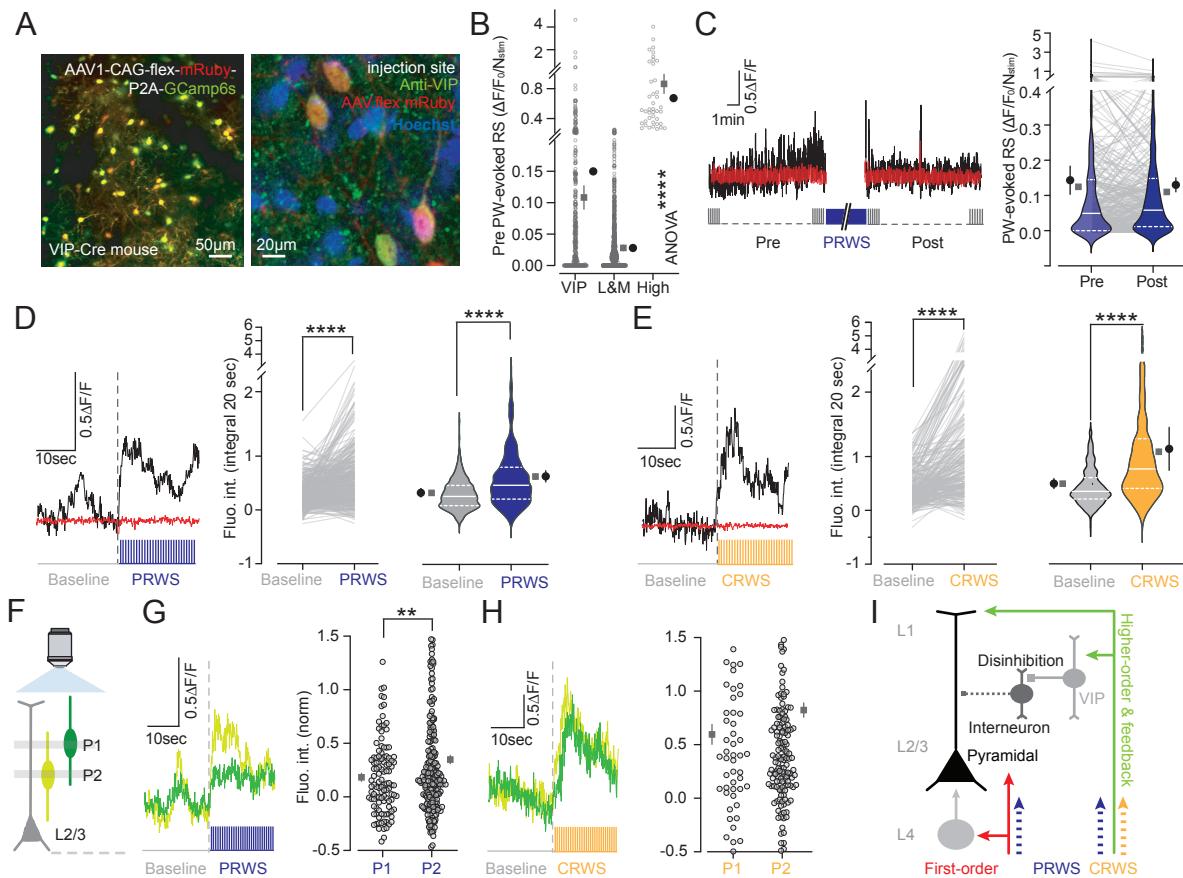

Figure 2

Figure 3

Figure 4

Figure 5