

PeakClimber: A software tool for the accurate quantification of complex multianalyte HPLC chromatograms using the exponential Gaussian function

Joshua T. Derrick^{1,2}, Pragney Deme³, Norman Haughey³, Steven A. Farber^{1,2*}, William B. Ludington^{1,2*}

¹ Department of Biology, Johns Hopkins University, Baltimore, Maryland, United States

² Department of Embryology, Carnegie Institute for Science, Baltimore, Maryland, United States

³ Department of Neurology, JHMI, Baltimore, Maryland, United States

*Corresponding author

Keywords: HPLC, lipids, exponential Gaussian, fatty acids, drosophila, algorithm, software

1 **Abstract**

2 High-performance liquid chromatography (HPLC) is a common medium-throughput technique to
3 quantify the components of often complex mixtures like those typically obtained from biological
4 tissue extracts. However, analysis of HPLC data from complex multianalyte samples is
5 hampered by a lack of tools to accurately determine the precise analyte quantities on a level of
6 precision equivalent to mass-spectrometry approaches. To address this problem, we developed
7 a tool we call PeakClimber, that uses a sum of exponential Gaussian functions to accurately
8 deconvolve overlapping, multianalyte peaks in HPLC traces. Here we analytically show that
9 HPLC peaks are well-fit by an exponential Gaussian function, that PeakClimber more accurately
10 quantifies known peak areas than standard industry software for both HPLC and mass
11 spectrometry applications, and that PeakClimber accurately quantifies differences in triglyceride
12 abundances between colonized and germ-free fruit flies.

13

14 Introduction

15 Liquid chromatography (LC) is a series of techniques to separate individual analytes from a
16 mixture of chemicals using liquid phase solvent¹. As compared to gas chromatography (GC),
17 that uses inert gases as solvents (usually helium), liquid chromatography can separate particles
18 of larger molecular weight². Originally, liquid chromatography techniques relied on gravity for
19 solvent flux, which meant that running of individual chromatographs took hours and sometimes
20 days to complete. In the 1960s³, high-pressure (or performance) liquid chromatography (HPLC)
21 was introduced, speeding up the flow rate by forcing the solvent through an extremely narrow
22 column at high-pressure. Despite improvements in column performance, trade-offs between
23 mass transfer resistance and diffusive behaviors fundamentally limit peak resolution⁴. For many
24 HPLC applications, peak integration is sufficient, as these analyses principally are concerned
25 with presence/absence of specific peaks or with quantitation of relatively pure analytes with little
26 peak overlap. For the quantification of more complicated chemical and biological samples with
27 overlapping peaks however, integration alone is inaccurate. Historically, this meant the operator
28 spent considerable efforts to develop protocols to fully separate analyte peaks of interest,
29 something not always possible.

30 Various solutions have been proposed to this problem. Common industry software, such
31 as ThermoFisher's Chromeleon and Waters' MassLynx utilize a method known as valley-to-
32 valley,⁵ where a line is dropped from the lowest point between two peaks to the
33 chromatograph's baseline, which is determined by the rolling-ball method⁶. The two peaks are
34 then integrated on either side of the line. This method has the advantages of being neutral to
35 the underlying peak shape, independent of the surrounding peaks, and a fast runtime. However,
36 most peaks map to some variation of the Gaussian distribution^{4,7-12} and are not independent of
37 neighboring peaks with which they overlap. Two more recent open source software packages,
38 HappyTools¹³ and hplc.io¹⁴, improve on the valley-to-valley method by fitting each
39 chromatograph to a sum of Gaussian or skewed Gaussian curves, respectively. However, these
40 theoretical peak shapes are not necessarily suited to the data, and the shape of a single peak is
41 not universally agreed upon. Early quantitative models of liquid chromatography showed that
42 analytes unbind the column with an exponential decay that is convolved by Gaussian noise
43 based on their distribution along the length of the column and their diffusion in the liquid phase
44 before reaching the detector^{7,8,15-17}. While the shape of a peak depends on the amount of

45 sample loaded on the column, Langmuir surface binding kinetics usually leads to a Gaussian
46 shaped peak with tailing¹⁸.

47 In this manuscript, we show that HPLC analyte peaks are best fit with an exponential
48 Gaussian function. Our tool, PeakClimber, fits chromatographs to a sum of exponential
49 Gaussian curves. We show these curves are mathematically and empirically good fits for single
50 analyte peaks and consistent with extensive literature suggesting that this approach empirically
51 aligns with chromatography data^{7,8,19-21}. PeakClimber also makes iterative improvements in
52 denoising data, detrending data, and in reducing the runtime of the analysis. To highlight the
53 utility of PeakClimber, we compare its performance to other algorithms by analyzing coinjections
54 of three fatty-acids. Finally, PeakClimber was superior to traditional approaches in quantifying
55 the differences in lipid composition between *Drosophila melanogaster* that were reared with and
56 without bacteria.

57 **Results**

58 **Traditional chromatography analysis methods fail to accurately** 59 **quantify complex peaks**

60 Valley-to-valley integration methods produce a mismatch between the calculated and true peak
61 shape (Figure 1A). To quantify the error of this approach, we conducted a simulation with three-
62 synthetic exponential Gaussian peaks with randomized parameters that overlapped significantly.
63 Our simulations showed that the valley-to-valley method has significant error between the true
64 peak shape and the valley-to-valley integration regions, but this error is especially marked for
65 the first peak in the trace (Figure 1B). This is likely due to the undercounting of the exponential-
66 tail region of the first peak by valley-to-valley analysis.

67

68 **Single-analyte HPLC peaks fit an exponential Gaussian distribution**

69

70 We first wanted to determine what shape we should use to fit individual peaks. There is
71 extensive discussion of this question in the literature^{1,4,5,8,8–12,15–19,22}, but there is broad agreement
72 as to a generally Gaussian peak shape with some amount of tailing. To this end, we developed
73 analytical, computational, and empirical models to support the exponential Gaussian as the true
74 shape of a chromatographic peak.

75

76 **Analytical and computational solutions**

77 Consider a column of finite length, initially containing no solute. Injectant containing solute S is
78 added to the column, and S is completely bound to the column at a single location. Solvent U is
79 then run over the column. Solute S has affinity k_1 for solvent U . We assume that the reverse
80 reaction is negligible because unbound S flows away in the solvent. This behavior can be
81 described by the differential equation:

82

$$83 \quad \frac{dS}{dt} = -k_1 S \quad (1)$$

84

85 which we can solve analytically:

86
87

$$S(t) = k_1 e^{-k_1 t} \quad (2)$$

88 producing an exponential function. With an agent-based Monte-Carlo (Figure 2A, histogram)
89 simulation with parameters for S (amount of analyte), k_1 (affinity for solvent U), column length,
90 and flow rate that are relevant to common HPLC columns, we recapitulate the analytical solution
91 almost exactly (Figure 2A, red line on blue histogram).

92

93 However, this initial model contains several incorrect assumptions, most notably that column
94 binding and unbinding is a single event. In reality there are many binding and unbinding
95 steps^{10,17,23}. Thus, the distribution of analyte S will not be bound to a single site, but rather
96 spread out across the column after many unbinding and binding events. We thus represent the
97 probability of a single particle binding to location x on the column with the exponential
98 probability distribution, with λ being the average distance a particle travels in solution before
99 being absorbed into the column wall.

100

101 $c(x) = \lambda e^{-\lambda x} \quad (3)$

102

103 λ is directly dependent on the speed of the mobile phase (μ) and inversely proportional to the
104 diffusion coefficient (D) and relative affinity for the column over the solute.

105 For a single particle, this event does not happen a single time, but many times over the course
106 of column loading. To represent this for n binding/unbinding events, we can sum n exponential
107 functions together, generating an Erlang distribution²⁴.

108

109 $C(x) = \frac{\lambda^n x^{n-1}}{(n-1)!} e^{-\lambda x} \quad (4)$

110

111 At large n , the erlang distribution will converge to a normal distribution²⁴ with mean $n\lambda$ and
112 variance $n\lambda^2$.

113 $C(x) = \frac{1}{n\lambda^2\sqrt{2\pi}} e^{-\frac{(x-n\lambda)^2}{2(n\lambda^2)^2}} \quad (5)$

114 This is the probability distribution for the location of a single particle along the column. To
115 represent the probability distribution of M particles, we can multiply the distribution by M .

116

117

$$C(x) = \frac{M}{n\lambda^2\sqrt{2\pi}} e^{-\frac{(x-n\lambda)^2}{2(n\lambda^2)^2}} \quad (6)$$

118

119

120 To convert this distribution to an arrival time domain, we divide the distance x from the column
121 by the flow rate μ .

122

$$C(t) = \frac{M}{n\lambda^2\sqrt{2\pi}} e^{-\frac{(t\mu-n\lambda)^2}{2(n\lambda^2)^2}} \quad (6)$$

123

124

$$C(t) = \frac{M}{n\lambda^2\sqrt{2\pi}} e^{-\frac{(t-n\lambda/\mu)^2}{2(n\lambda^2)^2/\mu^2}} \quad (7)$$

125

126 To simplify the expression, we will define two new variables $b = n\lambda^2/\mu$ and $c = n\lambda/\mu$. These
127 variables are the spatial mean and variance from equation 5 converted to the arrival time
128 domain by dividing by the flow rate μ . This transformation yields the following equation:

129

$$C(t) = \frac{M/\mu}{b\sqrt{2\pi}} e^{-\frac{(t-c)^2}{2b^2}} \quad (8)$$

130

131 This is a Gaussian distribution, which is supported in the chromatography literature as the
132 canonical distribution for peaks in isotonic elution conditions^{8,9}. However, when performing
133 elution over a gradient of solvents, the relative affinity of the analyte for the column and mobile
134 phases shifts: encouraging single-step Langmuir kinetics at a critical point on the gradient near
135 the retention time, which results in the exponential decay behavior with no rebinding, which is
136 observed in equation 1. To combine these two effects, we can convolve the two functions.

137

138

$$Z = C * S \quad (9)$$

139

140

141

$$Z(t) = \int_0^\infty C(t - \tau) S(\tau) d\tau \quad (10)$$

142

143

$$Z(t) = \frac{M/\mu}{b\sqrt{2\pi}} k_1 \int_0^\infty e^{-\frac{(t-\tau-c)^2}{b^2}} e^{-k_1*\tau} d\tau \quad (11)$$

144

145
$$Z(t) = \frac{M*k_1/\mu}{2} e^{\frac{k_1}{2}(2c-2t+k_1b)} \operatorname{erfc}\left(\frac{c+k_1b^2-t}{b\sqrt{2}}\right) \quad (12)$$

146

147

148 This matches the standard form of the exponential gaussian function, with erfc representing the
149 inverse error function $1 - \operatorname{erf}(x)$, with $\operatorname{erf}(x) = \frac{2}{\sqrt{\pi}} \int_x^{\infty} e^{-t^2} dt$. This equation gives us several
150 insights into the factors that influence the shape of the resulting function. The amplitude, or
151 height of the exponential gaussian function is directly proportional to the number of analyte
152 molecules, and inversely proportional to the flow rate. The center c of the distribution is
153 dependent on the average travel distance of the particle during column loading and the number
154 of binding/unbinding events, whose dependency has been previously described. The width or
155 σ (b) is dependent on the same parameters but can also be affected by other minor parameters
156 such as longitudinal diffusion and column inhomogeneities, and thus is not directly proportional
157 to the distribution center. Finally, k_1 is the unbinding coefficient of the analyte from the column
158 and represents the gamma variable, γ , of the exponential Gaussian. This determines how large
159 the tails of the function are. Although our model makes several simplifying assumptions, such as
160 a constant λ during column loading and no longitudinal diffusion, it provides a sound biophysical
161 justification for use of the exponential gaussian distribution, which has been utilized in previous
162 chromatography studies^{8,20}. To verify this analytical equation, we conducted a Monte-Carlo
163 simulation recapitulating the assumptions of a period of unbinding/rebinding to the column
164 followed by a kinetic phase in which the analyte has strong affinity for the solvent. This
165 simulation fit an exponential Gaussian equation almost exactly (Figure 2B, red line on blue
166 histogram), further supporting the exponential Gaussian as a good distribution to model HPLC
167 peaks.

168 **Empirical Solution**

169 To empirically test our theoretical exponential Gaussian distribution on real data, we injected
170 single, pure fatty acid analytes (linoleic acid, arachidonic acid, and docosahexaenoic acid) onto
171 a C18 column, at individual concentrations of either 0.5mg/mL or 1 mg/mL. Analytes were eluted
172 from the column on a 3:1 methanol water to acetonitrile gradient (see methods) adapted from²⁵.
173 We then used the Python package lmfit²⁶ to fit one of four functions commonly used in
174 chromatography to each of the fatty acid peaks. A representative chromatograph of linoleic acid
175 is shown to be fit to i). a Gaussian distribution¹³, ii). an exponential Gaussian distribution, iii). a
176 Voigt distribution²⁷ and iv). a skewed Gaussian distribution¹⁴ (Figure 2C). The goodness of fit
177 was calculated using the Bayesian Information Criteria (BIC), which scores models both based

178 on its residual function and the number of parameters. The skew and exponential Gaussian
179 distributions both have an additional parameter as compared to the Gaussian and Voigt
180 functions, making this comparison necessary. The exponential Gaussian distribution had by far
181 the lowest BIC for both concentrations of analytes (Figure 2D).

182

183 **PeakClimber software package to rapidly and accurately quantifies 184 chromatography peak areas**

185 We created PeakClimber, an algorithm and python package that identifies and quantifies
186 individual peaks on a chromatographic trace by fitting a sum of exponential Gaussian functions
187 to the HPLC trace (Figure 3).

188 Taking a text file of the trace as input, PeakClimber first denoises and detrends the data.
189 Denoising is accomplished using a low pass FFT filter²⁸, as well as time-averaging convolution.
190 Detrending is accomplished with a high-pass Whitaker baseline subtraction algorithm that was
191 developed for chromatography, called the peaked signal's asymmetric least squares algorithm
192 (psalsa)²⁹. Exact parameters for these detrending algorithms are input by the user. We chose
193 our default values by fitting single peaks of real HPLC data (Figure 3-1). Peaks are then
194 identified on the denoised data using scipy's peak finding algorithm, relying on prominence
195 cutoffs to determine if peaks are real or noise^{30,31}. The prominence cutoff is also user defined in
196 PeakClimber. In this paper, we use a value of 0.05, meaning peaks must be 5% above the
197 contour trough of surrounding peaks to be analyzed. Additional peaks that form shoulders on
198 more prominent peaks can be optionally identified by identifying local minima and maxima in the
199 first derivative of the HPLC trace that are close to 0 (Figure 3-2).

200 For each identified peak, an exponential Gaussian function is fit using lmfit²⁶ with default
201 parameters of the identified peak center, the identified peak height, a sigma of 0.1 minutes, and
202 an exponential decay parameter of 2. Boundaries between discrete peak regions are set where
203 the background-subtracted trace hits zero (Figure 3-3). The discrete peak regions of the graph
204 are effectively independent of each other, meaning fits can be performed independently on each
205 region without loss of accuracy. Each group of Gaussians is fit to the trace in the appropriate
206 region using a non-linear regression to minimize the least-squared distance between the
207 generated sum of functions and the underlying trace (Figure 3-4). The algorithm recombines the
208 fits for the different windows and returns a summary graph of the resulting fit, overlaid with
209 individual peaks, as well as a table with peak number, runtime, and peak area.

210 Comparison of PeakClimber to other common HPLC algorithms

211 To test the utility of PeakClimber, we compared its performance to publicly available software.
212 To generate a test dataset with known standards, we injected three fatty acids with overlapping
213 retention times: docosahexaenoic acid (12.3 minutes), arachidonic acid (12.5 minutes) and
214 linoleic acid (12.9 minutes). We ran the analytes at concentrations of either 0.5 or 1 mg/mL.
215 Thus, in each injection, the analytes were either equal concentration or one analyte was
216 double the concentration of the other two (Figure 4A). This was done to test the dynamic range
217 of PeakClimber compared to other algorithms. The raw HPLC trace was then smoothed and
218 normalized before fitting the three peaks by one of four algorithms. PeakClimber is the algorithm
219 described in this paper (Figure 4B). hplc.io¹⁴ is a python-based, chromatographic fitting software
220 that uses skewed Gaussian functions as representative of single peaks (Figure 4C). Happytools
221 is a free, standalone software package that uses Gaussian functions to fit single peaks¹³ (Figure
222 4D). Finally, valley-to-valley is an abstraction of algorithms^{5,6} used by common HPLC-software
223 such as ThermoFisher's Chromeleon, Agilent's OpenLab CDS, or Waters' MassLynx that
224 integrates the area under the curve of the trace between "valleys", the lowest points between
225 two identified peaks (Figure 4E). Fits (black line in Figure 4B-E) were performed on the entire
226 trace (red line in Figure 4B-E). Error comparisons are reported for each individual peak for each
227 of the three analytes (lower panel Figure 4B-E; analytes are DHA, ARA, and LA from left to right)
228 using root mean-squared error (RMSE). Fit peaks were recentered on the canonical single
229 analyte peaks because run times shifted to later elution times in the co-injections. PeakClimber
230 outperformed all other software regardless of peak position (Figure 4F). Particularly for the first
231 peak in the co-injection, PeakClimber has lower error than the other algorithms due to the
232 correct fitting of the tail of the peaks (Figure 4G). PeakClimber also performed better for the
233 second and third peaks (Supplemental Figure 1 A & B). When error is calculated through
234 percent error of the peak area, rather than RMSE, this pattern still holds (Supplement Figure 1
235 C-F).

236 Testing the Limits of Peak Climber

237 All algorithms, including Peak Climber, have reduced accuracy for groups of peaks under three
238 separate circumstances: high signal-to-noise ratios, small distance between peaks, and uneven
239 ratio between small and large peaks. To test these bounds specifically for PeakClimber, we
240 computationally created traces of partially overlapping peaks using the real fatty acid traces that
241 we generated in Figure 2 with different levels of noise added on top of the trace. The first and
242 second peak overlap, while the third peak is functionally independent, serving as a negative

243 control (Supplemental Figure 2). To test the fitting ability of the algorithm, rather than peak
244 finding, which is already well-tested in other works³⁰, we provided the peak locations to each
245 algorithm. The % error for each of these cases is shown in the respective subpanels of Figure 5.

246 For noise on single peaks, PeakClimber outperforms manual integration for added noise
247 with an amplitude that is 0.3 times or greater than the true peak size (Figure 5A). This is likely
248 because PeakClimber better captures the shape of the underlying peak. For the distance
249 between peaks, PeakClimber accuracy begins to drop off when the distance between peaks is
250 less than 0.25 minutes. The valley-to-valley method is similarly sensitive to peak overlap only at
251 a threshold distance of 1.5 minutes (Figure 5B). For the ratio between peaks, we held the peaks
252 a fixed distance of 1.5 minutes apart. Varying the said ratio between the first and second peaks
253 did not change the error rate for the larger first peak although PeakClimber outperformed valley-
254 to-valley at every peak ratio. For the second peak, both algorithms have large error rates at
255 ratios below 10:1 large peak:small peak. However, PeakClimber's error drops rapidly to 0 by a
256 ratio of 4:1, whereas the valley-to-valley method not only drops in error more slowly, but also
257 converges to a steady error rate of about 85% (Figure 5C). This error rate is the lower bound for
258 the valley-to-valley method for peaks with this interpeak distance (Figure 5B).

259 **Uniqueness of PeakClimber Solution**

260 PeakClimber identifies peak areas by fitting exponential gaussian functions to the underlying
261 chromatography trace using non-linear regression²⁶. We can define the error as the sum of
262 residuals between the y_i and the sum of n exponential gaussian functions $f_n(x_i)$

263

$$264 r_i = y_i - \sum_1^n f_n(x_i, \mu_n, A_n, \sigma_n, \gamma_n) \quad (13)$$

265

266 With $\mu_n, A_n, \sigma_n, \gamma_n$ being the center, amplitude, width, and decay function of each gaussian
267 respectively. This residual function will have a single solution if the second derivatives of the
268 function r are all positive, in other words, if the function is convex. When the shape is of y is
269 equivalent to the sum of exponential gaussians, this function will simplify to 0, which is trivially
270 convex, meaning there is only a single solution.

271

272 Additionally, we can empirically restrict the sample space of parameters by observing real
273 behavior of single HPLC peaks. For example, peak centers do not vary from their locations in
274 identified traces, meaning that we can effectively reduce the parameter space down to 3
275 parameters for each exponential gaussian. Kinetics and diffusion-to-flow ratios also place

276 biophysical limits on the upper and lower bounds for the γ (tail, k_1 in equation eq. 11), and σ
277 (width, b in eq. 11) parameters. In this reduced parameter space, we find a single optimum for
278 two overlapping exponential Gaussians fit to a region of the lipid profile of *D. melanogaster*
279 thought to contain only two peaks. Since the space is mapped by 6 parameters (not including
280 the fixed centers), we used dimension reduction to visualize the result as a PCA, which shows
281 only a single minimum of the residual χ^2 function (Supplementary Table 1).

282

283 **PeakClimber can be used to accurately quantify lipid differences**
284 **between biological samples**

285 To test the utility of PeakClimber on real biological data, we raised female *Drosophila*
286 *melanogaster* from the larval stage on two different microbial conditions (germ-free or
287 conventionally reared) on a standard diet. We then performed a lipid extraction and then ran the
288 isolated lipids on the HPLC, using a two-step gradient (first methanol:water to acetonitrile, then
289 acetonitrile to isopropanol) to separate lipid species by polarity and size, as adapted from²⁵.
290 Significant differences are observed by eye between germ-free and colonized animals (Figure
291 6A), especially in the triglyceride region running from 60 to 70 minutes (Figure 6A, inset).
292 Individual peaks were quantified using either the PeakClimber (Figure 6B, left panel) or
293 ThermoFisher Chromleon (Figure 6B, right panel). The two algorithms identified the same peaks
294 but produced differences in the magnitude and statistical significance between colonized and
295 germ-free animals (Figure 6C). Chromleon identifies all peaks in this region as significantly
296 different between samples, whereas PeakClimber only identifies some of these peaks as
297 differentially present. This is not due to sample variance: PeakClimber and Chromleon both
298 capture biological sample variance equally. This discrepancy is likely because the tail of the first
299 peak contributes to the area counted as the second peak by Chromleon, causing a false
300 positive when the area is counted this way. This does not occur with PeakClimber, which is able
301 to deconvolve the tail of the first peak from the rest of the second peak. This suggests that
302 PeakClimber has more utility in identifying real differential peaks as compared to standard
303 industry software.

304 To identify the lipids contained in these peaks, we first performed a lipidomic-mass spec
305 analysis of whole male and female flies to establish a dataset for canonical fly lipid compounds.
306 Then, we isolated the 8 sample peaks identified in Figure 6B and ran them through a LC-MS
307 system to determine their identities. We used the lipidomic data to verify the LC-MS results from

308 individual peaks. Many m/z numbers from the individual peak analysis were not found in
309 lipidomic-mass spec dataset so we also considered compounds that were more saturated,
310 which would increase the predicted m/z by 1 for each additional hydrogen. Individual peaks
311 were dried down in a vacuum centrifuge overnight, oxidation and subsequent increase in m/z
312 values, could have occurred. We found that except for the first peak that ran at 60.1 minutes,
313 the remaining 7 peaks were triglycerides (Table 1). These peaks were relatively rich in medium-
314 chain triglycerides, which in agreement with other literature on *Drosophila* lipids³². Additionally,
315 the specific elution time of these triglyceride peaks nicely agrees with prior HPLC data of
316 zebrafish lipid extracts that were also subject to mass spec confirmation²⁵.

317 Three out of the four significantly enriched peaks in germ-free animals contained long-chain
318 polyunsaturated fatty acids (63.6,66,67 minutes). None of the non-significant peaks contained
319 any polyunsaturated fatty acid tails, perhaps suggesting that colonized animals more readily
320 metabolize these fatty-acids, or that they are preferentially absorbed by microbes, and are thus
321 lost through feces.

322 Discussion

323 In this paper we have shown three principal findings. First, the exponential Gaussian function is
324 a good fit for HPLC peaks. We showed this both analytically, computationally with Monte-Carlo
325 simulations, and empirically by calculating the error of the fit for various common distributions
326 used in chromatography to fit single analyte peaks. Many previous works from the 1970s and
327 1980s attempt to analytically work out these solutions, and their models, also approximated an
328 exponential Gaussian distribution^{8,12,15,16,22,33,34}. HPLC peaks often do not represent single
329 compounds, but groups of compounds. This means that a single peak is often a sum of
330 individual compounds, all with behavior as described in **Figure 2**. Due to the central limit
331 theorem, this would suggest that the chromatographic traces that we observe should have more
332 of a Gaussian character, but this is not what we observe empirically.

333 Second, we demonstrated the effectiveness of PeakClimber as compared to other commercially
334 and freely available software tools to quantitatively analyze chromatography data with
335 overlapping peaks. This is due to the ability of our algorithm to capture the tail region of the first
336 peak in a group of peaks, which prevents undercounting and reduces distortion by larger
337 surrounding peaks. We also show that, given biophysical assumptions that limit the parameter

338 space, there is only a single best fit solution for the underlying trace. This is vital for accurately
339 quantifying peaks.

340 The package and documentation for PeakClimber are freely available on GitHub with an easy-
341 to-use graphic user interface (GUI). One limitation of the test data used to validate PeakClimber
342 is that it was only used to test HPLC data from lipid chromatography. Theoretically other
343 biomolecules should have the same kinetic and diffusive behaviors as lipids, and many
344 chromatographic traces present in the literature show single peaks that appear to be similar to
345 exponentially modified Gaussian functions^{7,8,35-38}. However, adapting our algorithm to
346 additionally deal with anti-Langmuir fronted peaks^{39,40} could be a promising next step.

347 Third, we demonstrated the utility of our algorithm for the analysis of biological data. While
348 mass-spectrometry will always be the gold standard for metabolic analysis⁴¹, HPLC represents
349 a lower-cost medium-throughput option than mass-spec⁴²⁻⁴⁴. Consider an experiment similar to
350 one that we set up with multiple replicates of different dietary, genetic, or microbial conditions.
351 Rather than analyze each replicate by mass spectrometry, one replicate from each group could
352 be run through mass-spec, and the rest on HPLC, where relative changes in the compounds
353 identified by MS could be much more accurately quantified with PeakClimber. The recognition of
354 HPLC as this medium-throughput bridge between MS and high-throughput methods such as
355 colorimetric kits could be one reason for the recent interest in development of tools to better
356 analyze this type of data^{2,41,43,44}.

357 The reduction in triglycerides containing long-chain fatty acids polyunsaturated fatty acids in
358 flies colonized with *Lactobacillus* and *Acetobacter* is an additional interesting finding from this
359 work. Previous work in mice^{45,46} has shown that various *Lactobacillus* species can protect
360 against obesity by acting as a sponge for fatty acids, and then being excreted in the feces.
361 These results also agree with work in the fly that shows that colonization can reduce triglyceride
362 accumulation^{47,48}. Why these bacteria reduce the presence of polyunsaturated fats in particular
363 is unclear, but could be due to composition of *Lactobacillus* membranes, which are largely
364 composed of unsaturated fatty acids⁴⁹.

365 Although we did not observe this in our dataset, neighboring peaks in HPLC are often
366 composed of extremely similar compounds that are part of biochemical pathways such as fatty
367 acid elongation or conversion between different phospholipid compounds^{50,51}. PeakClimber
368 could be used to find the precise step in these pathways that is affected by the genetic mutation,

369 diet, or colonization condition of interest. This method could provide an additional advantage
370 over alternative methods such as transcriptomic or proteomic analysis due to the ability to
371 measure actual metabolite levels rather proxies of RNA or protein levels, the activity of which
372 can both be affected by downstream processing such as translation (in the case of RNA), or
373 post-translational modifications and confirmational changes (in the case of protein).

374 **Limitations and comparison to other algorithms:**

375 The exponential Gaussian function will not perfectly fit some chromatography peaks, as
376 compounds that run with anti-Langmuir kinetics will have peak fronting^{15,52,53}, which will not fit an
377 exponential Gaussian distribution. Peak fronting can also occur when the peak has been
378 overloaded with analyte. Additionally, our mathematical model makes several simplifying
379 assumptions about the geometry and flow rate of common HPLC systems. Based on
380 complexities of experimental conditions that influence the quality of the data, more complex
381 analysis programs could be needed.

382 However, despite these limitations, we want to highlight the performance advantages of
383 PeakClimber compared to other available software. Prior to PeakClimber, there was a common
384 sentiment that overlapping peaks could only be analyzed qualitatively. Here with PeakClimber
385 we show that we can in fact extract highly quantitative data from HPLC traces that contain
386 overlapping peaks. Even compared to other software that attempts to tackle this problem in a
387 similar manner, PeakClimber much more accurately quantifies areas of overlapping peaks, due
388 to its ability to consider long peak tails. For the analysis of biological data that contain many
389 overlapping and non-overloaded peaks, we believe that PeakClimber will prove to be invaluable.

390

391

392 **Materials and Methods**

393 **Monte-Carlo simulations**

394 **Exponential decay simulation:** A column 1000 units long with 100 analyte particles at position
395 1 bound to the column is instantiated. At each time step the analyte has a 5% chance of
396 unbinding from the column (representing a k value of 0.05). Once unbound the particle arrives
397 at the detector a fixed time later, in this case 900 time-steps. The simulation was performed
398 10000 times and results were pooled.

399 **Multi-step reaction simulation:** A column 1000 units long with 100 analyte particles at position
400 1 is instantiated. Particles are allowed to bind to the column with a probability of 0.5 and unbind
401 with the same probability for 100 steps. When not bound to the column, particles move at the
402 flow rate (1 binding site per step). After 100 steps, the probability of unbinding is reduced to 0.05,
403 and the probability of rebinding is reduced to 0. Once unbound, these particles arrive at the
404 detector a fixed time later, in this case 900 time-steps. The simulation was performed 10000
405 times and results were pooled.

406 **Fatty-acid chromatography**

407 Fatty acid aliquots were obtained from Cayman Chemicals: linoleic acid (LA) (CAS 60-33-3),
408 arachidonic acid (ARA) (CAS 506-32-1), and docosahexaenoic acid (DHA) (CAS 6217-54-5).
409 The fatty acids were suspended in HPLC-grade isopropanol in stock concentrations of
410 10mg/mL. Aliquots were then further diluted to either 0.5mg/mL or 1 mg/mL as individual
411 analytes or as part of one of the four mixtures analyzed (0.5:0.5:0.5, 1:0.5:0.5, 0.5:1:0.5,
412 0.5:0.5:1 mg/mL of DHA: ARA: LA respectively. 20 μ L of each individual analyte or mixture
413 was injected onto the HPLC system. The components of each sample were separated and
414 detected by an HPLC system using a LPG-3400RS quaternary pump, WPS-3000TRS
415 autosampler (maintained at 20°C), TCC-3000RS column oven (maintained at 40°C), Accucore
416 C18 column (150 \times 3.0 mm, 2.6 μ m particle size), FLD-3100 fluorescence detector (8 μ L flow
417 cell maintained at 45°C), and a Dionex Corona Veo charged aerosol detector (all from Thermo
418 Fisher Scientific). Component peaks were resolved over a 30 min time range in a multistep
419 mobile phase gradient as follows: 0–5 min = 0.8 mL/min in 98% mobile phase A (methanol-
420 water-acetic acid, 750:250:4) and 2% mobile phase B (acetonitrile-acetic acid, 1,000:4); 5–30
421 min = 0.8–1.0 mL/min, 98–30% A, 2–44% B, and 0–3.3% mobile phase C (2-propanol)³². HPLC-
422 grade acetic acid and 2-propanol were purchased from Fisher Scientific and HPLC-grade
423 methanol and acetonitrile were purchased from Sigma-Aldrich.

424 **Error tolerance simulations**

425 **Noise simulation:** a single exponential Gaussian peak was initialized with the following
426 parameters: amplitude between 1 and 5, γ (skew) between 2.9 and 3, and sigma between 0.1
427 and 0.2. Noise was added to the peak between 0 and 80% of its amplitude. Peak area was
428 calculated using PeakClimber or manual integration after denoising and compared to the known
429 area of the generated peak.

430 **Proximity and ratio simulations:** Individual analyte traces of either linoleic acid (LA) (CAS 60-
431 33-3), arachidonic acid (ARA) (CAS 506-32-1), or docosahexanoic acid (DHA) (CAS 6217-54-
432 5) were smoothed and background subtracted as described in the body of the paper. Three
433 copies of the corrected trace were superimposed on top of each other, and the resulting three
434 peaks were computationally separated by 0.1 to 2 minutes, or 10 minutes, respectively. The
435 area of each of the three peaks was calculated either using PeakClimber, or the valley-to-
436 valley algorithm, and the compared to the known underlying peak. Error was calculated by
437 dividing the chi-square function of the residual error by the total peak area. For peak ratio, the
438 second peak was held at a constant distance of 0.75, but the relative size of the peak was
439 scaled between 0.1 and 1 of the size of the first peak.

440 **Fly husbandry**

441 *Drosophila melanogaster* Canton-S flies were initially isolated from long term germ-free stocks
442 kept in lab. The parental generation of flies was inoculated with a 7-species microbiome mixture
443 consisting of *L. plantarum*, *L. brevis*, *A. pomorum*, *A. orientalis*, *A. cerevisiae*, *A. sicerae*, and *A.*
444 *tropocalis* that recapitulates the microbiome found in a wild fruit fly 5 days after eclosion or
445 maintained germ-free. Parental flies were fed a diet consisting of 10% glucose (v/v), 0.42%
446 propionic acid (v/v), 1.2% (w/v) agar, and 5% yeast (w/v). These flies were allowed to lay eggs
447 on their food for 3 days. The resulting offspring were raised until 10 days post eclosion before
448 lipid extractions.

449 **Lipid extractions and chromatography for *Drosophila melanogaster***

450 Groups of 8 flies were macerated using a bead beater in 500 μ L of lipid extraction buffer (10 mM
451 Tris, 1mM EDTA, 7.8 pH). 400 μ L of extract was mixed with 1.5 mL 2:1 chloroform:methanol
452 (with 1 ng/mL of TopFluor cholesterol as an internal standard) and allowed to sit for 10 minutes.
453 Then 500 μ L of chloroform followed by 500 μ L of extraction buffer was added to the mixture.
454 The mixture was centrifuged at 2300 rcf for 5 minutes and the organic (bottom) phase was
455 harvested. This was evaporated to dryness under vacuum centrifugation and then resuspended
456 in 100 μ L of HPLC grade isopropanol.

457 20 μ L of the sample was injected onto the HPLC system as described earlier. Component peaks
458 were resolved over an 80 min time range in a multistep mobile phase gradient as follows: 0–5
459 min = 0.8 mL/min in 98% mobile phase A (methanol-water-acetic acid, 750:250:4) and 2%
460 mobile phase B (acetonitrile-acetic acid, 1,000:4); 5–35 min = 0.8–1.0 mL/min, 98–30% A, 2–65%

461 B, and 0–5% mobile phase C (2-propanol); 35–45 min = 1.0 mL/min, 30–0% A, 65–95% B, and
462 5% C; 45–73 min = 1.0 mL/min, 95–60% B and 5–40% C; and 73–80 min = 1.0 mL/min, 60% B,
463 and 40% C. (HPLC-grade acetic acid and 2-propanol were purchased from Fisher Scientific and
464 HPLC-grade methanol and acetonitrile were purchased from Sigma-Aldrich.)

465 For downstream LC-MS analysis, peaks were collected in the following intervals via fraction
466 collector 60-60.4 min (1), 60.4-60.9 min (2), 60.9-61.5 min (3), 61.5-63 min (4) 63.2-64 min
467 (5),64-66 min (6),66-67 min (7), 67-69 min (8). Peaks were then evaporated to dryness and
468 resuspended in 100 μ L methanol and DCM (50/50 v/v) with a concentration of 5mM ammonium
469 acetate in the final solution.

470 **Liquid Chromatography-High Resolution (Q-TOF) Mass Spectrometry Analysis**

471 Ammonium acetate, methanol, and dichloromethane (DCM) were purchased from
472 Thermo Fisher Scientific Inc. (Waltham, MA). Full scan mass spectral analyses of isolated
473 peaks were conducted using an AB Sciex Quadrupole Time of Flight Mass Spectrometer
474 controlled by Analyst 1.8 (5600 Q-TOF) (Framingham, MA). The mass spectrometer was
475 coupled to a Shimadzu ultrafast liquid chromatographic system (UFLC, Kyoto, Japan), which
476 consisted of a degasser, a quaternary pump, an autosampler, and a temperature-controlled
477 column compartment. Each individual peak fraction (20 μ L injection volume) was directly infused
478 into the mass spectrometer's electrospray ionization (ESI) source chamber through the UFLC
479 autosampler. The mobile phase comprised methanol and DCM (50/50, v/v) spiked with 5 mM
480 ammonium acetate, with a flow rate set to 100 μ L/min. ESI parameters were as follows: source
481 gases were set to 20 for Gas 1 and 30 for Gas 2, while the curtain gas was set to 30. The
482 source temperature was set to 250 °C, and the Ion Spray Voltage Floating (ISVF) was set to 5.5
483 kV. The compound decluttering potential was set to 80. The mass spectrometer operated in TOF
484 high-resolution full scan mode within an m/z scan range of 100 to 1200, with an accumulation
485 time of 0.25 seconds for one minute for each sample run. The high-resolution mass
486 spectrometer was calibrated with manufacturer solvent (PI: 4460131) to maintain mass
487 accuracy.

488
489 Canonical lipid peaks were obtained with the following method. 8 frozen *Drosophila*
490 *melanogaster* females (10 days post eclosion) were resuspended in MTBE (1mL), vortexed and
491 then transferred to an Eppendorf tube. 300 μ L of methanol with internal standard was added
492 and samples were shaken for 10 min. 200 μ L of water was added to facilitate phase separation.

493 The extracts were centrifuged at 2,000 rcf for 10 min. The top layer was removed, dried down,
494 and reconstituted in 100 μ L of IPA for analysis. Avanti's deuterated lipid mix, Equisplash, was
495 used as an internal standard. This was spiked into the methanol at 1.5 μ g/mL and used for
496 extraction. Analysis was performed using a Thermo Q Exactive Plus coupled to a Waters
497 Acquity H-Class LC. A 100 mm x 2.1 mm, 2.1 μ m Waters BEH C18 column was used for
498 separations. The following mobile phases were used: A- 60/40 ACN/H2O B- 90/10 IPA/ACN;
499 both mobile phases had 10 mM Ammonium Formate and 0.1% Formic Acid.

500
501 A flow rate of 0.2 mL/min was used. Starting composition was 32% B, which increased to 40% B
502 at 1 min (held until 1.5 min) then 45% B at 4 minutes. This was increased to 50% B at 5 min, 60%
503 B at 8 min, 70% B at 11 min, and 80% B at 14 min (held until 16 min). At 16 min the composition
504 switched back to starting conditions (32% B) and was held for 4 min to re-equilibrate the column.
505

506 **Code availability**

507 All data and Jupyter Notebooks used to generate figures in this manuscript can be found at
508 github.com/ATiredVegan/PeakClimberManuscriptRepository. The PeakClimber package and
509 use instructions can be found at github.com/ATiredVegan/PeakClimber.

510

511 **Acknowledgements**

512 The authors would like to acknowledge Dr. Brandie Ehrmann of UNC for helping with the
513 generation of the canonical fly lipid profile. The authors would also like to thank Dr. Huiqiao Pan
514 and Dr. McKenna Feltes for testing the PeakClimber GUI. Finally, the authors would like to
515 acknowledge the Farber and Ludington labs for their helpful feedback conceptually and on the
516 actual body of the manuscript.

517

518 **Author Contributions**

519 Conceptualization: JTD, SAF, WBL; HPLC: JTD; Mass-Spec: JTD, PD, NH; Fly Husbandry: JTD;
520 Simulations: JTD; Code creation and maintenance: JTD; Figure generation: JTD, WBL;
521 Manuscript drafting: JTD; Manuscript editing: JTD, WBL, SAF.

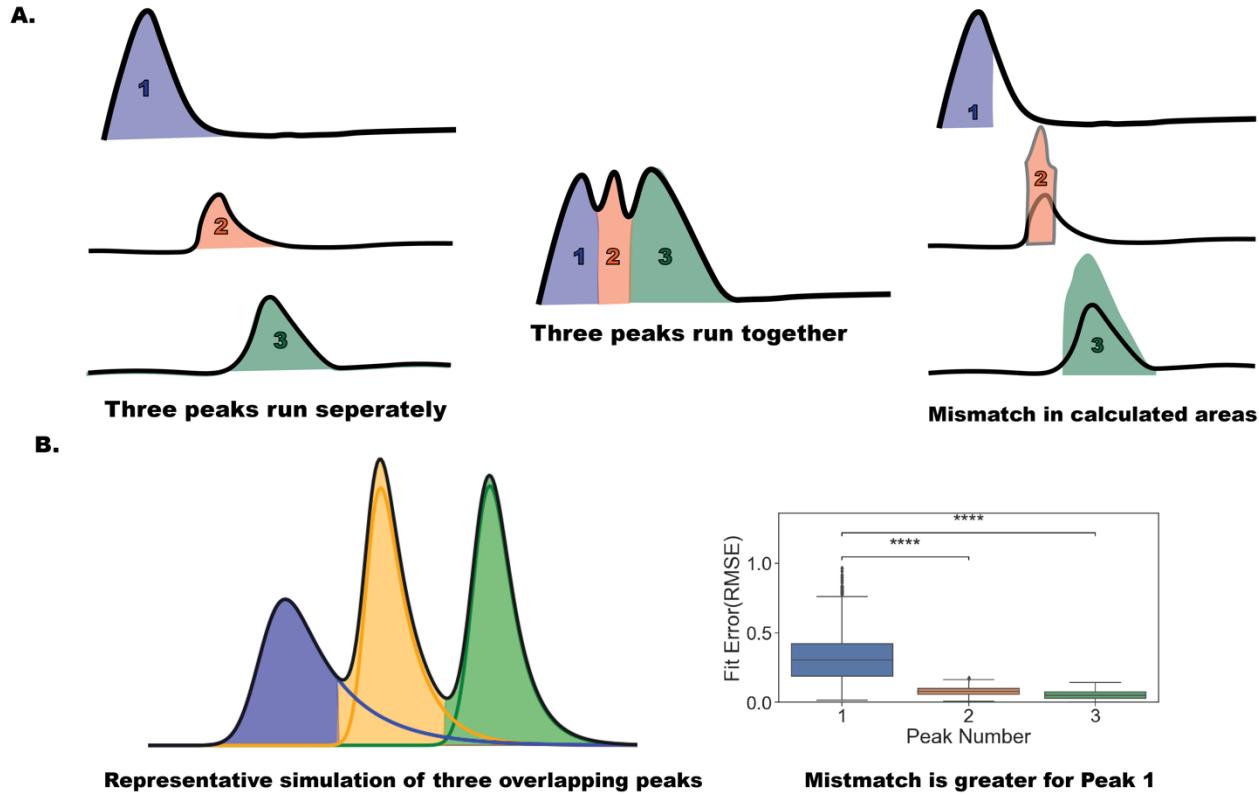
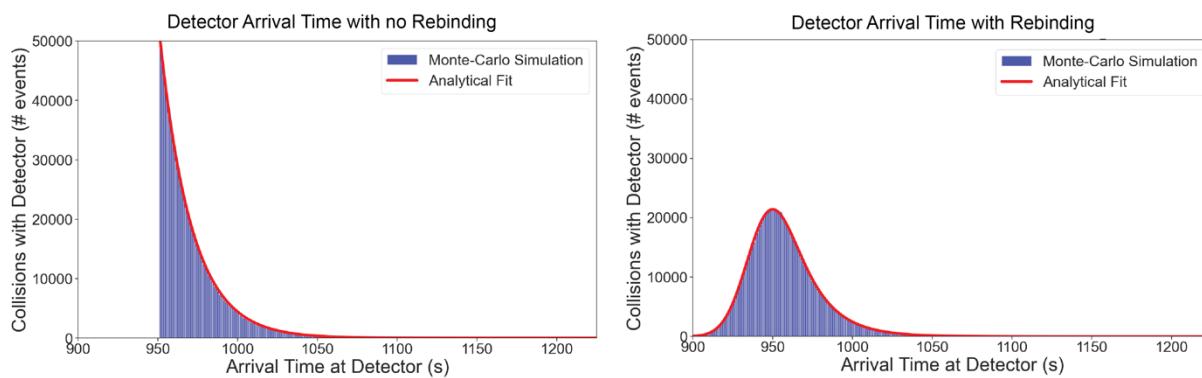
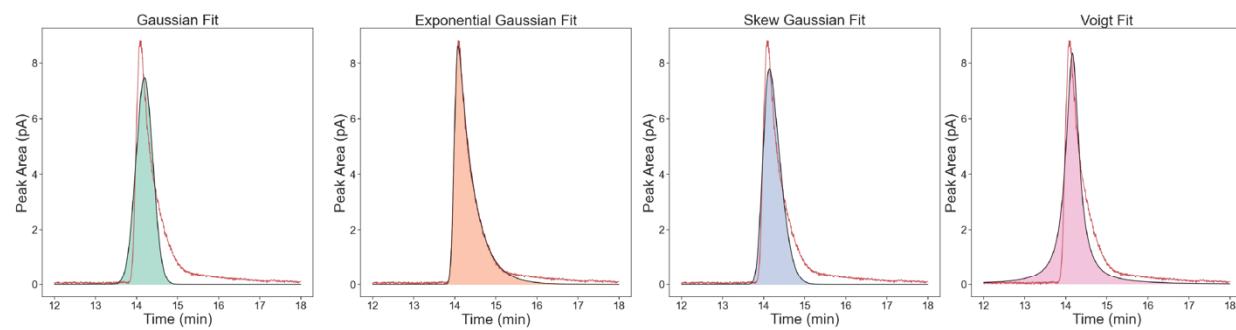


Figure 1: The problem of peak quantification. (A). A cartoon depiction of a common inaccuracy in peak quantification. When three analytes are well-separated, their area is accurately calculated by peak integration. When three analytes have overlap in the trace, the valley-to-valley area calculation algorithm will not accurately determine peak areas due to overlap of the tails. (B). A simulation of three overlapping peaks. The shaded region represents the integration regions identified by the valley-to-valley algorithm; the solid lines represent the true peaks. The difference between the two is quantified by Root Mean Squared Error (RMSE) ($n=1000$, Mann-Whitney followed by Wilcoxon Ranked Test, $****p<1e-04$).

A.



C.



D.

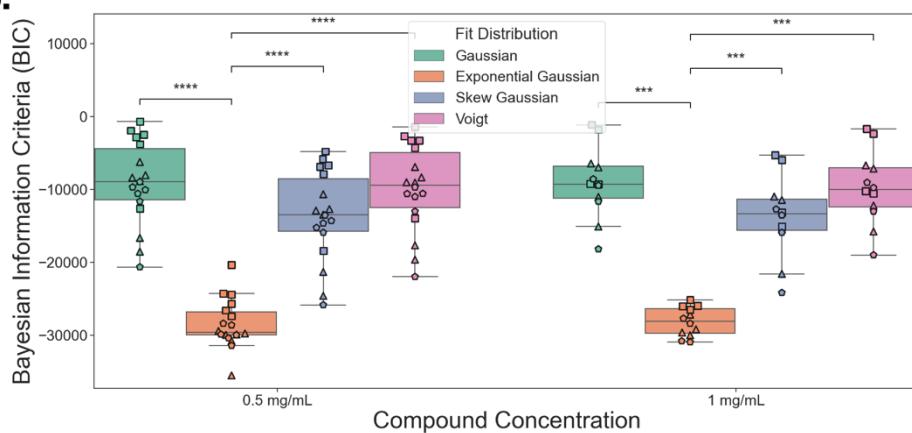


Figure 2: Individual HPLC analyte peaks correspond to an exponential Gaussian distribution. (A and B). Monte Carlo simulation of solute arrival time at the detector without (A) or with (B) rebinding (blue) fit to an exponential distribution (A) or exponential Gaussian distribution (B) (red) (n=10000 simulations consisting of 100 analyte molecules each). (C). Empirical fits of (left to right) Gaussian, exponential Gaussian, skew Gaussian, and Voigt distributions to a single linoleic acid peak (D). Bayesian Information Criteria (BIC) of the fit of above distributions on pooled arachidonic acid (triangle), docosahexaenoic acid (circle), and linoleic acid (square) single peaks. Analytes

are grouped by injection volume. (n=12 [4 experimental replicates of each of the 3 fatty-acids], Mann-Whitney U-test with Bonferroni correction, ***: p<1e-03; ****: p<1e-04).

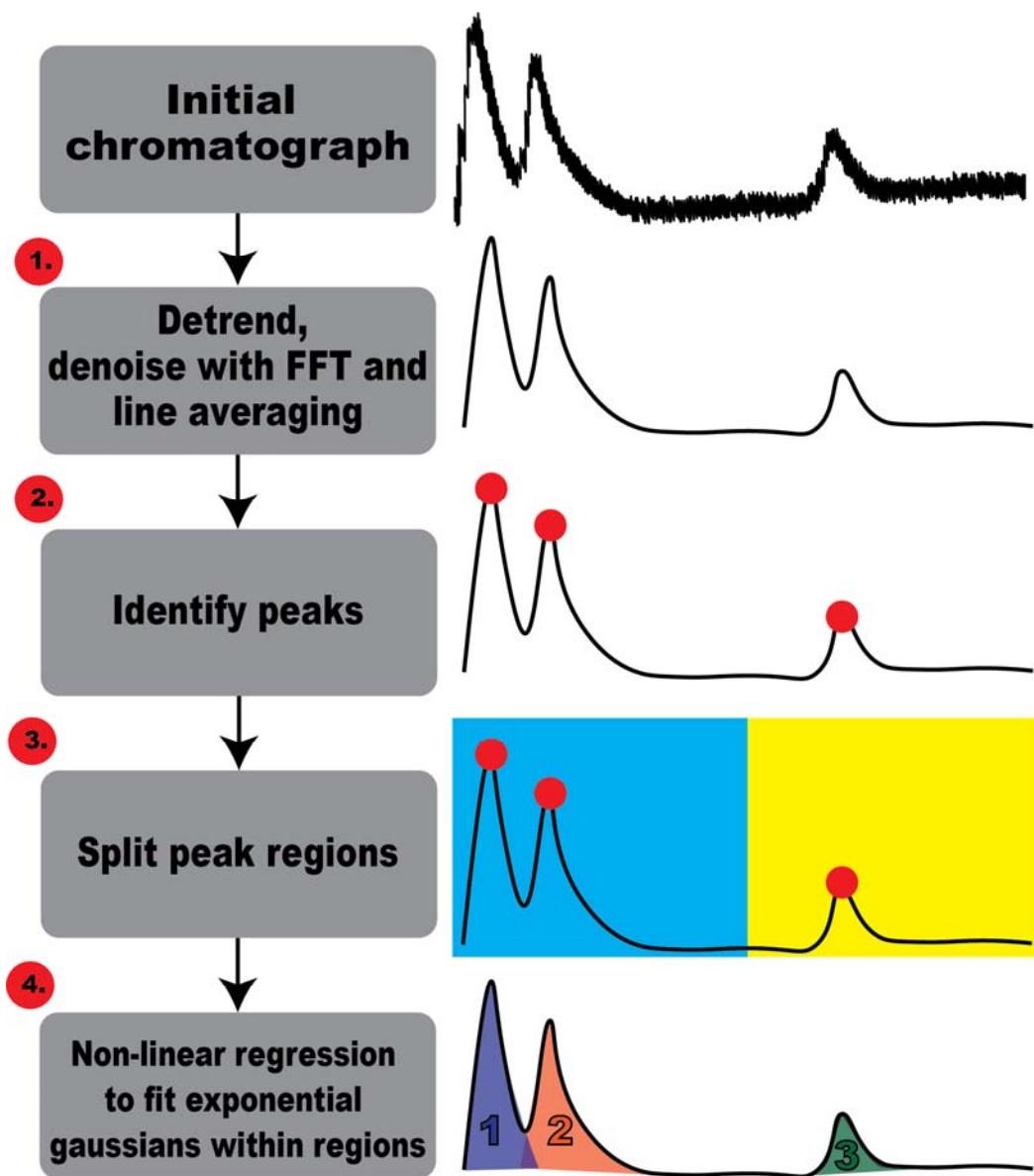


Figure 3: The PeakClimber workflow. (1) PeakClimber first denoises (FFT) and detrends chromatography data before (2) identifying peaks using prominence cutoffs. (3) To decrease runtime, peaks are split into regions based on intersections of the trace with the x-axis. (4) Within each region, peaks are fit to an exponential Gaussian distribution.

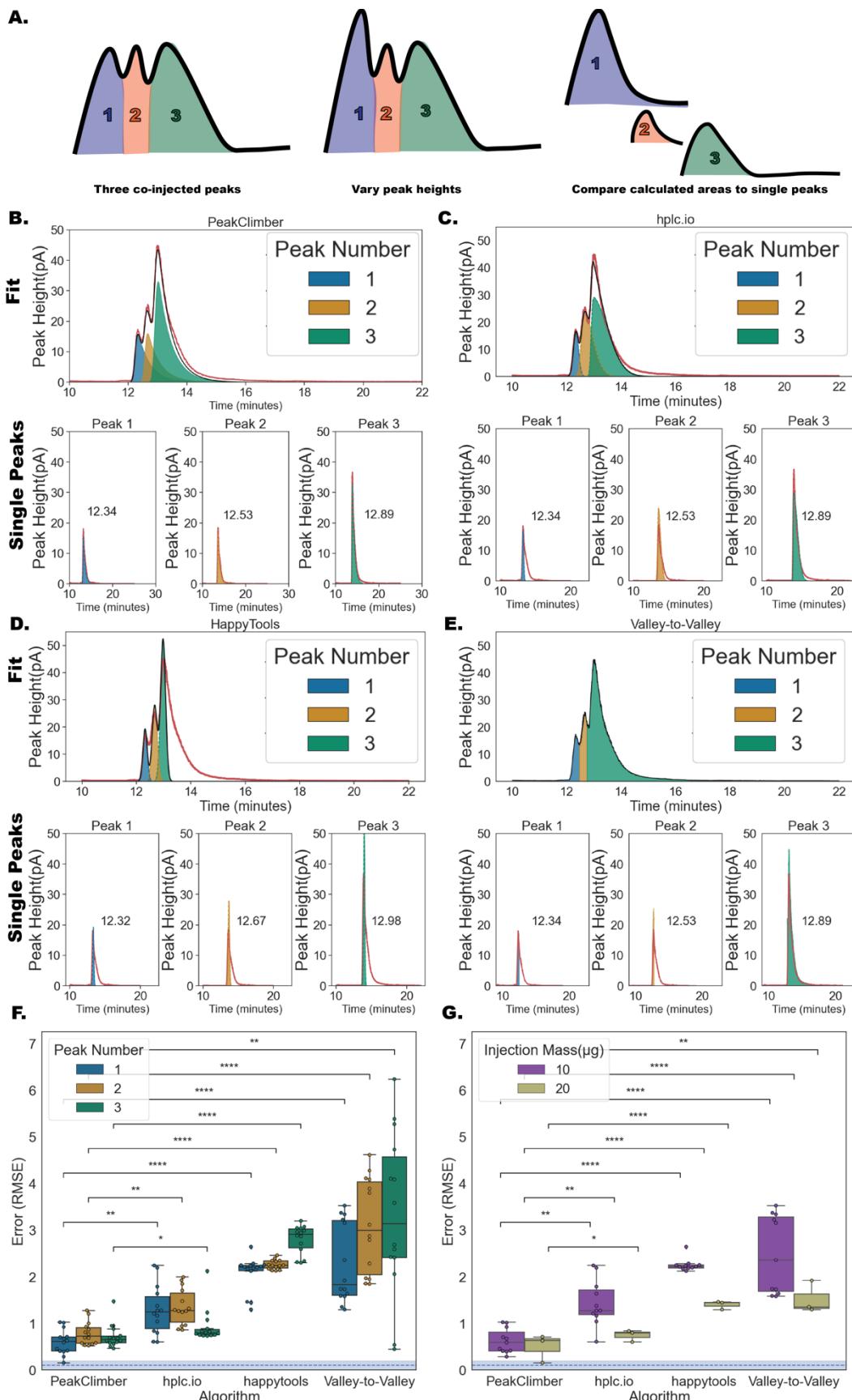


Figure 4: PeakClimber is more accurate and precise than Industry Software (A). Schematic of the experiment performed in this figure. Three overlapping fatty-acid peaks were injected at either a ratio of 1:1:1, 1:2:1, 2:1:1, or 1:1:2. The calculated areas (using the algorithms listed below) were compared to the real injected areas of the individual peaks. **(B)** PeakClimber fit to a chromatograph of a coinjection of C18:1, C20:4 and C22:6 mixed in a 1:2:1 ratio. Red trace: raw data, black trace: predicted sum of peak areas, blue, orange, green shaded regions: predicted individual peak areas. **(C-E)** Fits to the same data in **B** by **(C)** hplc.io, **(D)** the valley-to-valley algorithm (ThermoFisher and Waters), and **(E)** HappyTools. Bottom subpanels show the fits to each individual peak. **(F)** Quantification of error rates by RMSE of pooled coinjections of C18:1, C20:4 and C22:6 depending on peak position by above algorithms. Blue dotted line represents minimum RMSE error obtained from the single-peak fits. **(G)** Quantification of error rates for peak 1 alone comparing 10 µg and 20 µg injections. (Kruskal-Wallis Test with Bonferroni correction for subpanels **F** and **G**, n=12, 3 biological replicates each with 4 experimental replicates, *: p<5e-02**: p<1e-02, **: p <1e-03, ***: p < 1e-04).

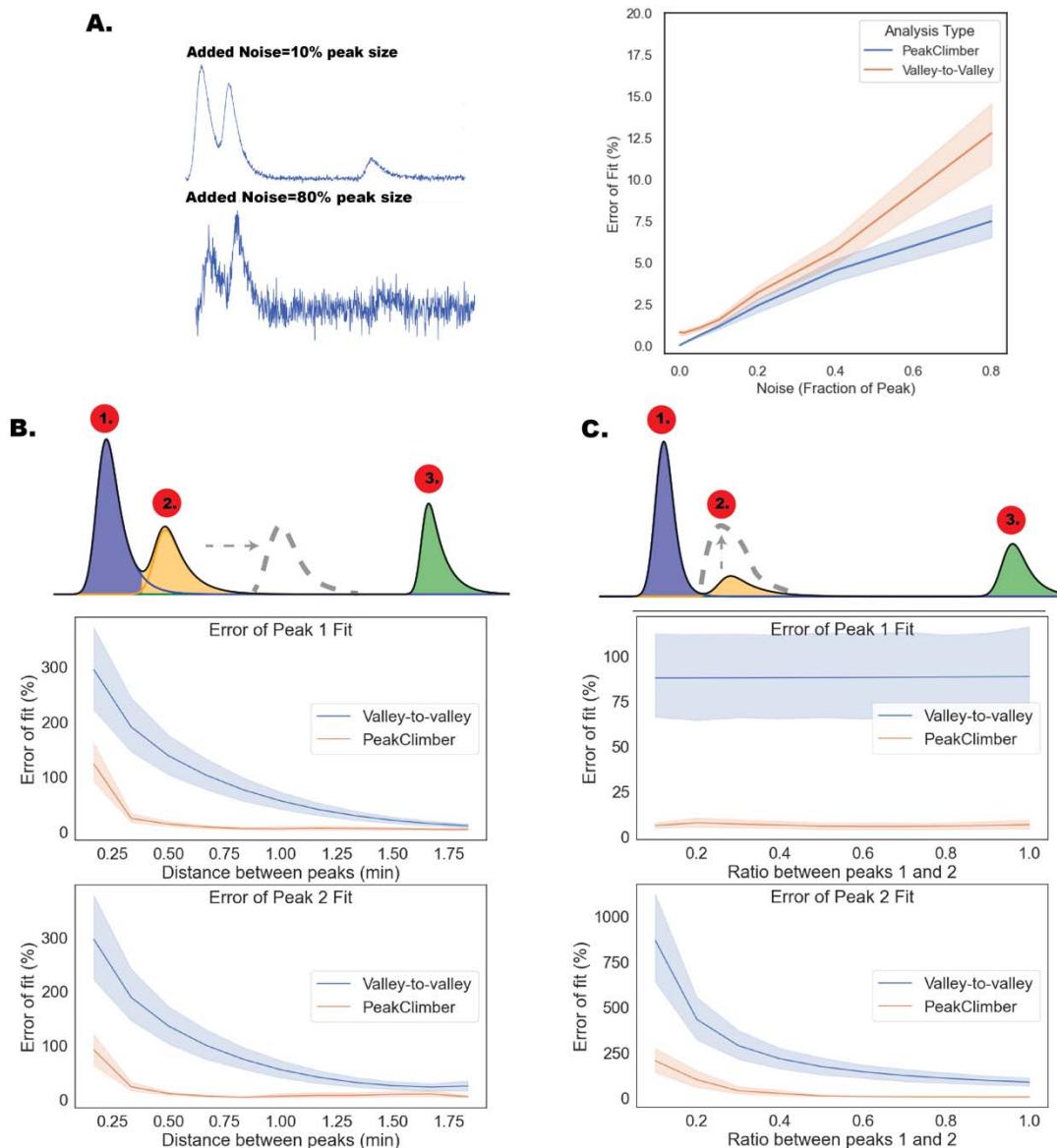
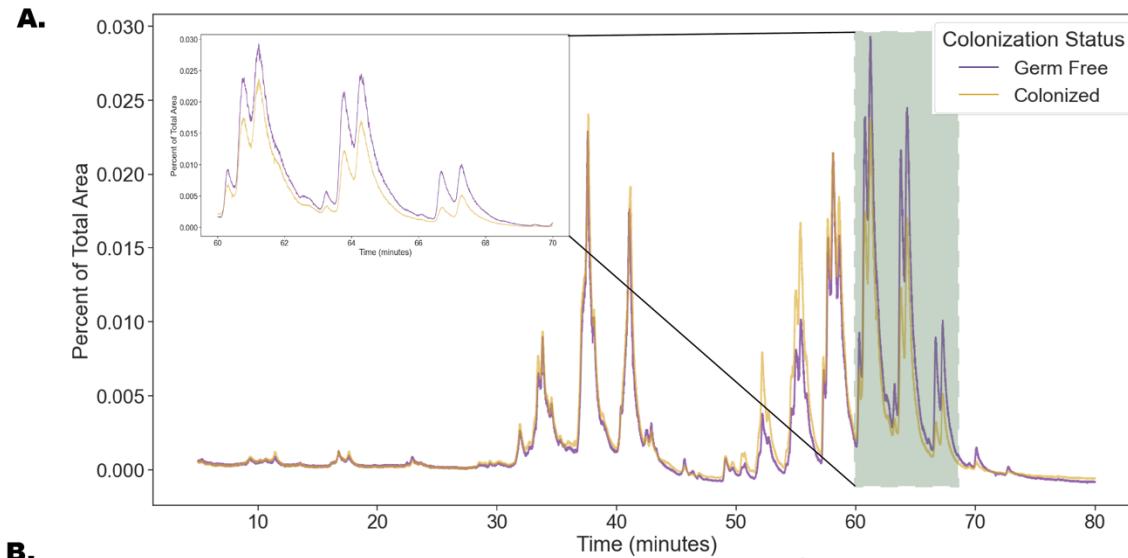


Figure 5: PeakClimber is more robust to noise and peak overlap than industry software. (A) Schematic: Gaussian noise as a fraction of the peak amplitude is added to a single synthetically generated peak with

amplitude between 1 and 2, σ between 0.1 and 0.2, γ between 2.9 and 3 and center at 1. This noise is detrended and removed using the PeakClimber algorithm and then the resulting peak area is either found by fitting (PeakClimber) or integration with the valley-to-valley method. The calculated area is compared to the known area. (B) Three analyte curves are superimposed and shifted 0.1-2 min (peak 2) or 10 min later (peak 3). Curves are generated from real traces of arachidonic acid, docosahexaenoic acid, and linoleic acid (C). Using the same parameters for exponential Gaussians as in A, but with a fixed distance of 0.75 minutes between peaks 1 and 2, and 10 minutes between peaks 1 and 3, the ratio between peak 1 and 2 was varied between 0.1 and 1 (n=24 [4 experimental replicates of each of the 3 fatty-acids at 2 concentrations]).



B. **PeakClimber** **Chromeleon**

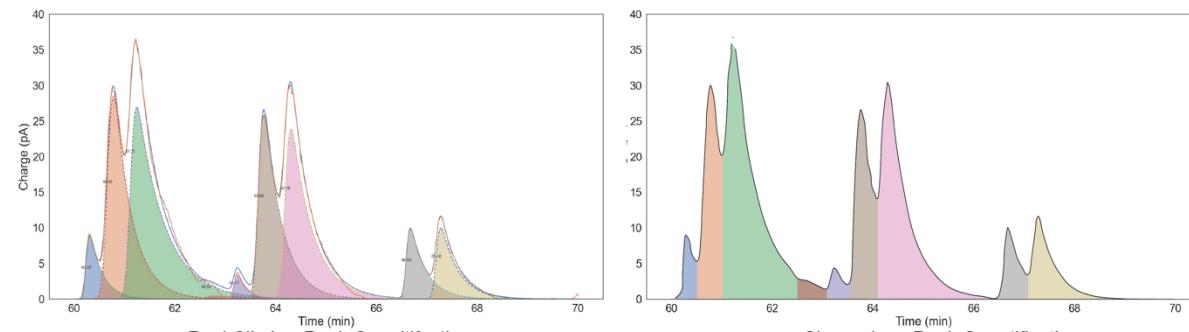
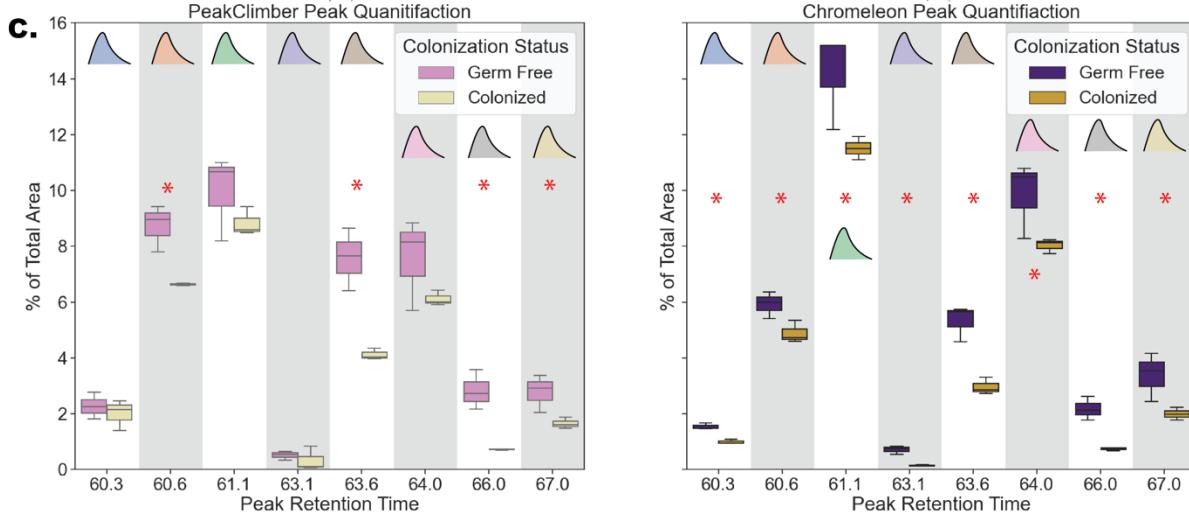


Figure 6: PeakClimber more accurately quantifies biological differences between germ-free

Retention Time	Measured m/z	Predicted unsaturated m/z	Compound ID	Significant
60.3	654.27/846.67	654.56/834.6 (-12 H)	TG(36:1)+NH4, PC (40:6)+H	No
60.6	820.66	818.72 (-2 H)	TG(16:1,16:1,16:1)+NH4	Yes
61.1	794.65	790.69 (-4 H)	TG(14:1,16:1,16:1)+NH4	No
63.1	768.64	768.7	TG(14:0,14:0,16:0)+NH4	No
63.6	848.69	846.75 (-2 H)	TG(18:3,16:0,16:0)+H	Yes
64.0	822.68	820.73 (-2 H)	TG(16:0,16:1,16:1)+NH4	No
66.0	876.72	869.75 (-7 H)	TG(21:4,16:0,16:0)+NH4	Yes
67.0	850.70	848.77 (-2 H)	TG(14:0,14:0,18:2)+NH4	Yes

and colonized flies. (A) A lipid profile for germ free (purple) or colonized (yellow) female fruit flies normalized to total chromatograph area. Highlighted regions in green are shown in higher resolution in the inset are quantified below in **(B)**. Algorithmic fit of the highlighted regions above using PeakClimber (left) and ThermoFisher Chromeleon (right) on the germ-free trace. **(C)**. Quantitation of peak areas for selected peaks in the highlighted region (Kruskal-Wallis rank-sum: *: p< 0.05 n=3, 8 flies per sample).

Table 1: Mass-spec analysis and identification of *Drosophila* lipids eluted from the triglyceride region of the total lipid chromatograph. The retention time (column 1), measured m/z value (column 2), predicted unsaturated m/z value (column 3), and compound identity (column 4), and PeakClimber significance (Kruskal-Wallis rank-sum: *: p< 0.05 n=3, 8 flies per sample) for each peak in the 60-70 minute region of the fly lipid profile (TG=Triglyceride, PC=phosphatidylcholine).

References

- (1) Morley, R.; Minceva, M. Liquid–Liquid Chromatography: Current Design Approaches and Future Pathways. *Annu. Rev. Chem. Biomol. Eng.* **2021**, *12* (1), 495–518. <https://doi.org/10.1146/annurev-chembioeng-101420-033548>.
- (2) Ovbude, S. T.; Sharmeen, S.; Kyei, I.; Olupathage, H.; Jones, J.; Bell, R. J.; Powers, R.; Hage, D. S. Applications of Chromatographic Methods in Metabolomics: A Review. *J. Chromatogr. B* **2024**, *1239*, 124124. <https://doi.org/10.1016/j.jchromb.2024.124124>.
- (3) Ito, Y.; Weinstein, M.; Aoki, I.; Harada, R.; Kimura, E.; Nunogaki, K. The Coil Planet Centrifuge. *Nature* **1966**, *212* (5066), 985–987. <https://doi.org/10.1038/212985a0>.
- (4) Van Deemter, J. J.; Zuiderweg, F. J.; Klinkenberg, A. Longitudinal Diffusion and Resistance to Mass Transfer as Causes of Nonideality in Chromatography. *Chem. Eng. Sci.* **1956**, *5* (6), 271–289. [https://doi.org/10.1016/0009-2509\(56\)80003-1](https://doi.org/10.1016/0009-2509(56)80003-1).

- (5) Dyson, N. A. *Chromatographic Integration Methods*; Royal Society of Chemistry, 1998; Vol. 3.
- (6) Sternberg. Biomedical Image Processing. *Computer* **1983**, *16* (1), 22–34.
<https://doi.org/10.1109/MC.1983.1654163>.
- (7) Steffen, B.; Müller, K. P.; Komenda, M.; Koppmann, R.; Schaub, A. A New Mathematical Procedure to Evaluate Peaks in Complex Chromatograms. *J. Chromatogr. A* **2005**, *1071* (1–2), 239–246. <https://doi.org/10.1016/j.chroma.2004.11.073>.
- (8) Felinger, A. *Data Analysis and Signal Processing in Chromatography*; Data handling in science and technology; Elsevier: Amsterdam Lausanne New York [etc.], 1998.
- (9) Martin, A. J. P.; Synge, R. L. M. A New Form of Chromatogram Employing Two Liquid Phases. *Biochem. J.* **1941**, *35* (12), 1358–1368. <https://doi.org/10.1042/bj0351358>.
- (10) Giddings, J. C.; Eyring, H. A Molecular Dynamic Theory of Chromatography. *J. Phys. Chem.* **1955**, *59* (5), 416–421. <https://doi.org/10.1021/j150527a009>.
- (11) Craig, L. C.; Columbic, C. Identification of Small Amounts of Organic Compounds by Distribution Studies; Use of a Solid Phase. *Science* **1946**, *103* (2680), 587–589.
- (12) Guiochon, G. *Fundamentals of Preparative and Nonlinear Chromatography*, 2nd ed.; Elsevier Science & Technology: Chantilly, 2006.
- (13) Jansen, B. C.; Hafkenscheid, L.; Bondt, A.; Gardner, R. A.; Hendel, J. L.; Wuhrer, M.; Spencer, D. I. R. HappyTools: A Software for High-Throughput HPLC Data Processing and Quantitation. *PLOS ONE* **2018**, *13* (7), e0200280.
<https://doi.org/10.1371/journal.pone.0200280>.
- (14) Chure, G.; Cremer, J. Hplc-Py: A Python Utility For Rapid Quantification of Complex Chemical Chromatograms. *J. Open Source Softw.* **2024**, *9* (94), 6270.
<https://doi.org/10.21105/joss.06270>.
- (15) Amundson, N. R. The Mathematics of Adsorption in Beds. III. Radial Flow. Leon, Lapidus. *J. Phys. Colloid Chem.* **1950**, *54* (6), 821–829. <https://doi.org/10.1021/j150480a011>.
- (16) Frey, G. L.; Grushka, E. Numerical Solution of the Complete Mass Balance Equation in Chromatography. *Anal. Chem.* **1996**, *68* (13), 2147–2154.
<https://doi.org/10.1021/ac960220o>.
- (17) Gotmar, G.; Fornstedt, T.; Guiochon, G. Peak Tailing and Mass Transfer Kinetics in Linear Chromatography. *J. Chromatogr. A* **1999**, *831* (1), 17–35. [https://doi.org/10.1016/S0021-9673\(98\)00648-7](https://doi.org/10.1016/S0021-9673(98)00648-7).
- (18) Langmuir, I. THE CONSTITUTION AND FUNDAMENTAL PROPERTIES OF SOLIDS AND LIQUIDS. PART I. SOLIDS. *J. Am. Chem. Soc.* **1916**, *38* (11), 2221–2295.
<https://doi.org/10.1021/ja02268a002>.
- (19) Naish, P. J.; Hartwell, S. Exponentially Modified Gaussian Functions—A Good Model for Chromatographic Peaks in Isocratic HPLC? *Chromatographia* **1988**, *26* (1), 285–296.
<https://doi.org/10.1007/BF02268168>.

(20) Grushka, Eli. Characterization of Exponentially Modified Gaussian Peaks in Chromatography. *Anal. Chem.* **1972**, *44* (11), 1733–1738. <https://doi.org/10.1021/ac60319a011>.

(21) Lan, K.; Jorgenson, J. W. A Hybrid of Exponential and Gaussian Functions as a Simple Model of Asymmetric Chromatographic Peaks. *J. Chromatogr. A* **2001**, *915* (1–2), 1–13. [https://doi.org/10.1016/S0021-9673\(01\)00594-5](https://doi.org/10.1016/S0021-9673(01)00594-5).

(22) Golshan-Shirazi, Sadroddin.; Guiochon, Georges. Analytical Solution for the Ideal Model of Chromatography in the Case of a Langmuir Isotherm. *Anal. Chem.* **1988**, *60* (21), 2364–2374. <https://doi.org/10.1021/ac00172a010>.

(23) McQuarrie, D. A. On the Stochastic Theory of Chromatography. *J. Chem. Phys.* **1963**, *38* (2), 437–445. <https://doi.org/10.1063/1.1733677>.

(24) Leemis, L. M.; McQueston, J. T. Univariate Distribution Relationships. *Am. Stat.* **2008**, *62* (1), 45–53. <https://doi.org/10.1198/000313008X270448>.

(25) Quinlivan, V. H.; Wilson, M. H.; Ruzicka, J.; Farber, S. A. An HPLC-CAD/Fluorescence Lipidomics Platform Using Fluorescent Fatty Acids as Metabolic Tracers. *J. Lipid Res.* **2017**, *58* (5), 1008–1020. <https://doi.org/10.1194/jlr.D072918>.

(26) Newville, M.; Stensitzki, T.; Allen, D. B.; Ingargiola, A. LMFIT: Non-Linear Least-Square Minimization and Curve-Fitting for Python, 2014. <https://doi.org/10.5281/ZENODO.11813>.

(27) Reilly, J. T.; Walsh, J. M.; Greenfield, M. L.; Donohue, M. D. Analysis of FT-IR Spectroscopic Data: The Voigt Profile. *Spectrochim. Acta Part Mol. Spectrosc.* **1992**, *48* (10), 1459–1479. [https://doi.org/10.1016/0584-8539\(92\)80154-O](https://doi.org/10.1016/0584-8539(92)80154-O).

(28) Brigham, E. O.; Morrow, R. E. The Fast Fourier Transform. *IEEE Spectr.* **1967**, *4* (12), 63–70. <https://doi.org/10.1109/MSPEC.1967.5217220>.

(29) Oller-Moreno, S.; Pardo, A.; Jimenez-Soto, J. M.; Samitier, J.; Marco, S. Adaptive Asymmetric Least Squares Baseline Estimation for Analytical Instruments. *2014 IEEE 11th Int. Multi-Conf. Syst. Signals Devices SSD14* **2014**, 1–5. <https://doi.org/10.1109/SSD.2014.6808837>.

(30) Virtanen, P.; Gommers, R.; Oliphant, T. E.; Haberland, M.; Reddy, T.; Cournapeau, D.; Burovski, E.; Peterson, P.; Weckesser, W.; Bright, J.; Van Der Walt, S. J.; Brett, M.; Wilson, J.; Millman, K. J.; Mayorov, N.; Nelson, A. R. J.; Jones, E.; Kern, R.; Larson, E.; Carey, C. J.; Polat, İ.; Feng, Y.; Moore, E. W.; VanderPlas, J.; Laxalde, D.; Perktold, J.; Cimrman, R.; Henriksen, I.; Quintero, E. A.; Harris, C. R.; Archibald, A. M.; Ribeiro, A. H.; Pedregosa, F.; Van Mulbregt, P.; SciPy 1.0 Contributors; Vijaykumar, A.; Bardelli, A. P.; Rothberg, A.; Hilboll, A.; Kloeckner, A.; Scopatz, A.; Lee, A.; Rokem, A.; Woods, C. N.; Fulton, C.; Masson, C.; Häggström, C.; Fitzgerald, C.; Nicholson, D. A.; Hagen, D. R.; Pasechnik, D. V.; Olivetti, E.; Martin, E.; Wieser, E.; Silva, F.; Lenders, F.; Wilhelm, F.; Young, G.; Price, G. A.; Ingold, G.-L.; Allen, G. E.; Lee, G. R.; Audren, H.; Probst, I.; Dietrich, J. P.; Silterra, J.; Webber, J. T.; Slavič, J.; Nothman, J.; Buchner, J.; Kulick, J.; Schönberger, J. L.; De Miranda Cardoso, J. V.; Reimer, J.; Harrington, J.; Rodríguez, J. L. C.; Nunez-Iglesias, J.; Kuczynski, J.; Tritz, K.; Thoma, M.; Newville, M.; Kümmerer, M.; Bolingbroke, M.; Tartre, M.; Pak, M.; Smith, N. J.; Nowaczyk, N.; Shebanov,

N.; Pavlyk, O.; Brodtkorb, P. A.; Lee, P.; McGibbon, R. T.; Feldbauer, R.; Lewis, S.; Tygier, S.; Sievert, S.; Vigna, S.; Peterson, S.; More, S.; Pudlik, T.; Oshima, T.; Pingel, T. J.; Robitaille, T. P.; Spura, T.; Jones, T. R.; Cera, T.; Leslie, T.; Zito, T.; Krauss, T.; Upadhyay, U.; Halchenko, Y. O.; Vázquez-Baeza, Y. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. *Nat. Methods* **2020**, *17* (3), 261–272. <https://doi.org/10.1038/s41592-019-0686-2>.

(31) Kirmse, A.; De Ferranti, J. Calculating the Prominence and Isolation of Every Mountain in the World. *Prog. Phys. Geogr. Earth Environ.* **2017**, *41* (6), 788–802. <https://doi.org/10.1177/0309133317738163>.

(32) Palm, W.; Sampaio, J. L.; Brankatschk, M.; Carvalho, M.; Mahmoud, A.; Shevchenko, A.; Eaton, S. Lipoproteins in *Drosophila Melanogaster*—Assembly, Function, and Influence on Tissue Lipid Composition. *PLoS Genet.* **2012**, *8* (7), e1002828. <https://doi.org/10.1371/journal.pgen.1002828>.

(33) Pauls, R. E.; Rogers, L. B. Band Broadening Studies Using Parameters for an Exponentially Modified Gaussian. *Anal. Chem.* **1977**, *49* (4), 625–628. <https://doi.org/10.1021/ac50012a030>.

(34) Kalambet, Y.; Kozmin, Y.; Mikhailova, K.; Nagaev, I.; Tikhonov, P. Reconstruction of Chromatographic Peaks Using the Exponentially Modified Gaussian Function. *J. Chemom.* **2011**, *25* (7), 352–356. <https://doi.org/10.1002/cem.1343>.

(35) Huang, Z.; Fish, W. P. Development of Simple Isocratic HPLC Methods for siRNA Quantitation in Lipid-Based Nanoparticles. *J. Pharm. Biomed. Anal.* **2019**, *172*, 253–258. <https://doi.org/10.1016/j.jpba.2019.04.026>.

(36) Ksas, B.; Havaux, M. Determination of ROS-Induced Lipid Peroxidation by HPLC-Based Quantification of Hydroxy Polyunsaturated Fatty Acids. In *Reactive Oxygen Species in Plants*; Mhamdi, A., Ed.; Methods in Molecular Biology; Springer US: New York, NY, 2022; Vol. 2526, pp 181–189. https://doi.org/10.1007/978-1-0716-2469-2_13.

(37) Mant, C. T.; Chen, Y.; Yan, Z.; Popa, T. V.; Kovacs, J. M.; Mills, J. B.; Tripet, B. P.; Hodges, R. S. HPLC Analysis and Purification of Peptides. In *Peptide Characterization and Application Protocols*; Fields, G. B., Ed.; Walker, J. M., Series Ed.; Methods in Molecular BiologyTM; Humana Press: Totowa, NJ, 2007; Vol. 386, pp 3–55. https://doi.org/10.1007/978-1-59745-430-8_1.

(38) Zhang, Y.; Wu, M.; Xi, J.; Pan, C.; Xu, Z.; Xia, W.; Zhang, W. Multiple-Fingerprint Analysis of *Poria Cocos* Polysaccharide by HPLC Combined with Chemometrics Methods. *J. Pharm. Biomed. Anal.* **2021**, *198*, 114012. <https://doi.org/10.1016/j.jpba.2021.114012>.

(39) Seelinger, F.; Wittkopp, F.; Von Hirschheydt, T.; Frech, C. Anti-Langmuir Elution Behavior of a Bispecific Monoclonal Antibody in Cation Exchange Chromatography: Mechanistic Modeling Using a pH-Dependent Self-Association Steric Mass Action Isotherm. *J. Chromatogr. A* **2023**, *1689*, 463730. <https://doi.org/10.1016/j.chroma.2022.463730>.

(40) Williamson, Y.; Davis, J. M. Modeling of Anti-Langmuirian Peaks in Micellar Electrokinetic Chromatography: Benzene and Naphthalene. *ELECTROPHORESIS* **2005**, *26* (21), 4026–4042. <https://doi.org/10.1002/elps.200500245>.

(41) Schrimpe-Rutledge, A. C.; Codreanu, S. G.; Sherrod, S. D.; McLean, J. A. Untargeted Metabolomics Strategies—Challenges and Emerging Directions. *J. Am. Soc. Mass Spectrom.* **2016**, *27* (12), 1897–1905. <https://doi.org/10.1007/s13361-016-1469-y>.

(42) Kao, D. J.; Lanis, J. M.; Alexeev, E.; Kominsky, D. J. HPLC-Based Metabolomic Analysis of Normal and Inflamed Gut. In *Gastrointestinal Physiology and Diseases*; Ivanov, A. I., Ed.; Methods in Molecular Biology; Springer New York: New York, NY, 2016; Vol. 1422, pp 63–75. https://doi.org/10.1007/978-1-4939-3603-8_7.

(43) Perez De Souza, L.; Alseekh, S.; Scossa, F.; Fernie, A. R. Ultra-High-Performance Liquid Chromatography High-Resolution Mass Spectrometry Variants for Metabolomics Research. *Nat. Methods* **2021**, *18* (7), 733–746. <https://doi.org/10.1038/s41592-021-01116-4>.

(44) Jacob, M.; Lopata, A. L.; Dasouki, M.; Abdel Rahman, A. M. Metabolomics toward Personalized Medicine. *Mass Spectrom. Rev.* **2019**, *38* (3), 221–238. <https://doi.org/10.1002/mas.21548>.

(45) Jang, H. R.; Park, H.-J.; Kang, D.; Chung, H.; Nam, M. H.; Lee, Y.; Park, J.-H.; Lee, H.-Y. A Protective Mechanism of Probiotic *Lactobacillus* against Hepatic Steatosis via Reducing Host Intestinal Fatty Acid Absorption. *Exp. Mol. Med.* **2019**, *51* (8), 1–14. <https://doi.org/10.1038/s12276-019-0293-4>.

(46) Chung, H.; Yu, J. G.; Lee, I.; Liu, M.; Shen, Y.; Sharma, S. P.; Jamal, M. A. H. M.; Yoo, J.; Kim, H.; Hong, S. Intestinal Removal of Free Fatty Acids from Hosts by *Lactobacilli* for the Treatment of Obesity. *FEBS Open Bio* **2016**, *6* (1), 64–76. <https://doi.org/10.1002/2211-5463.12024>.

(47) Newell, P. D.; Douglas, A. E. Interspecies Interactions Determine the Impact of the Gut Microbiota on Nutrient Allocation in *Drosophila Melanogaster*. *Appl. Environ. Microbiol.* **2014**, *80* (2), 788–796. <https://doi.org/10.1128/AEM.02742-13>.

(48) McMullen, J. G.; Peters-Schulze, G.; Cai, J.; Patterson, A. D.; Douglas, A. E. How Gut Microbiome Interactions Affect Nutritional Traits of *Drosophila Melanogaster*. *J. Exp. Biol.* **2020**, *223* (19), jeb227843. <https://doi.org/10.1242/jeb.227843>.

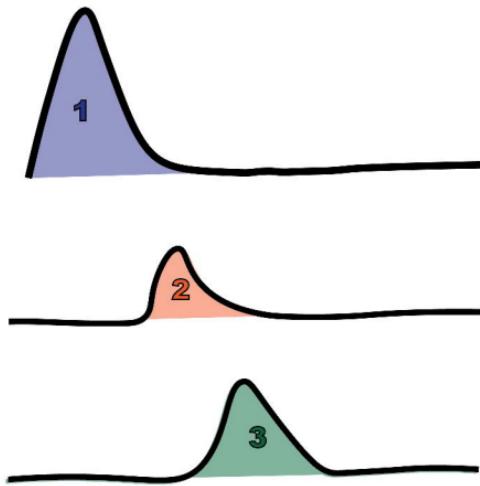
(49) Veerkamp, J. H. Fatty Acid Composition of *Bifidobacterium* and *Lactobacillus* Strains. *J. Bacteriol.* **1971**, *108* (2), 861–867. <https://doi.org/10.1128/jb.108.2.861-867.1971>.

(50) Bernhard, W.; Linck, M.; Creutzburg, H.; Postle, A. D.; Arning, A.; Martincarrera, I.; Sewing, K. F. High-Performance Liquid Chromatographic Analysis of Phospholipids from Different Sources with Combined Fluorescence and Ultraviolet Detection. *Anal. Biochem.* **1994**, *220* (1), 172–180. <https://doi.org/10.1006/abio.1994.1315>.

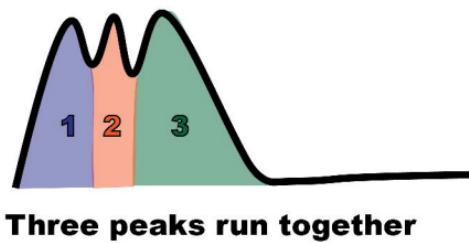
(51) Huang, X.; Guo, X.-F.; Wang, H.; Zhang, H.-S. Analysis of Catecholamines and Related Compounds in One Whole Metabolic Pathway with High Performance Liquid Chromatography Based on Derivatization. *Arab. J. Chem.* **2019**, *12* (7), 1159–1167. <https://doi.org/10.1016/j.arabjc.2014.11.038>.

(52) Mollerup, J. M. A Review of the Thermodynamics of Protein Association to Ligands, Protein Adsorption, and Adsorption Isotherms. *Chem. Eng. Technol.* **2008**, *31* (6), 864–874. <https://doi.org/10.1002/ceat.200800082>.

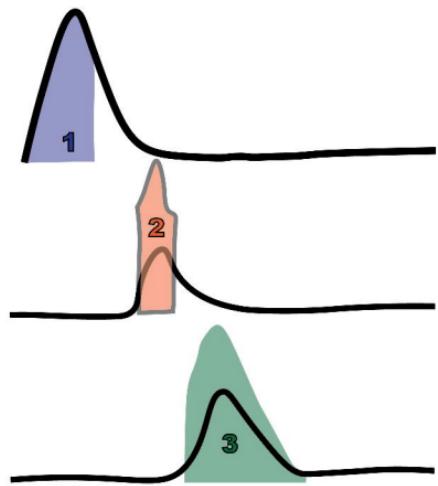
(53) Westerberg, K.; Broberg Hansen, E.; Degerman, M.; Budde Hansen, T.; Nilsson, B. Model-Based Process Challenge of an Industrial Ion-Exchange Chromatography Step. *Chem. Eng. Technol.* **2012**, *35* (1), 183–190. <https://doi.org/10.1002/ceat.201000560>.

A.

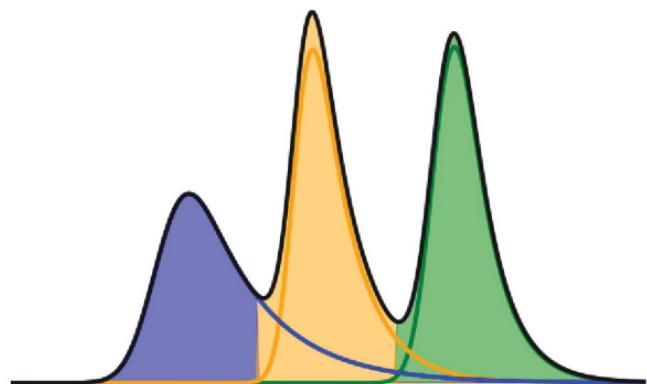
Three peaks run separately



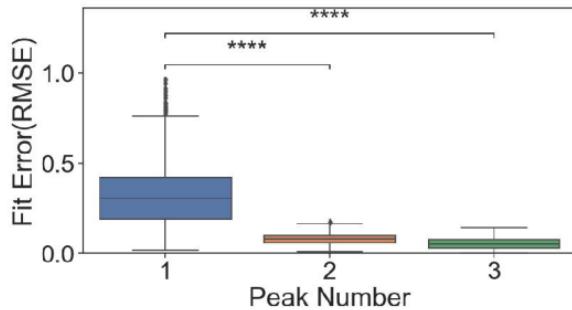
Three peaks run together



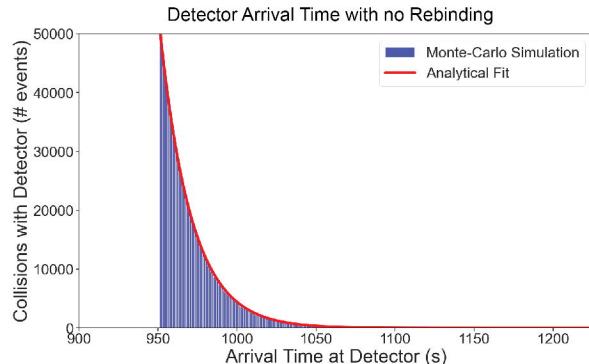
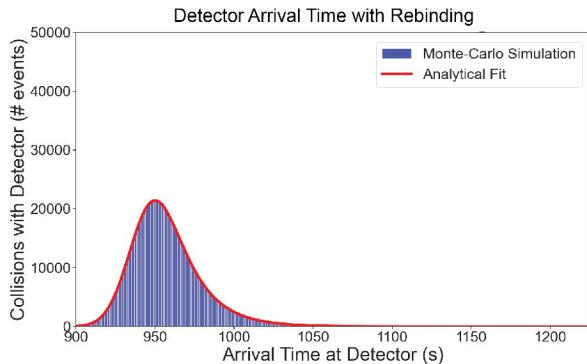
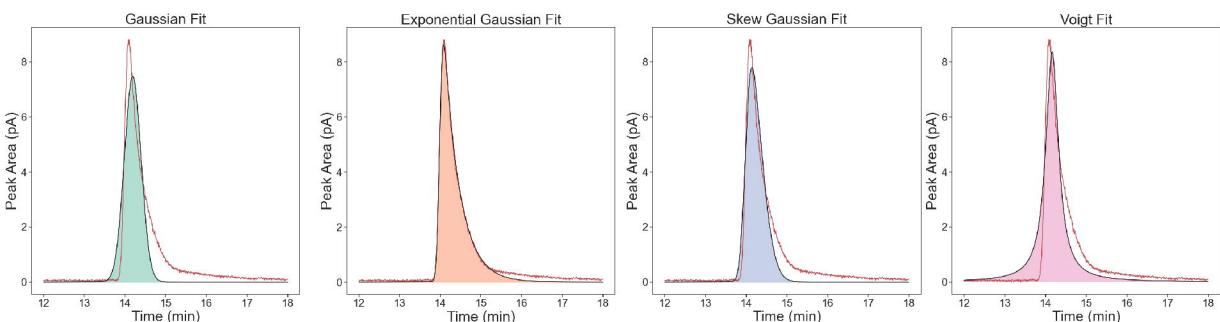
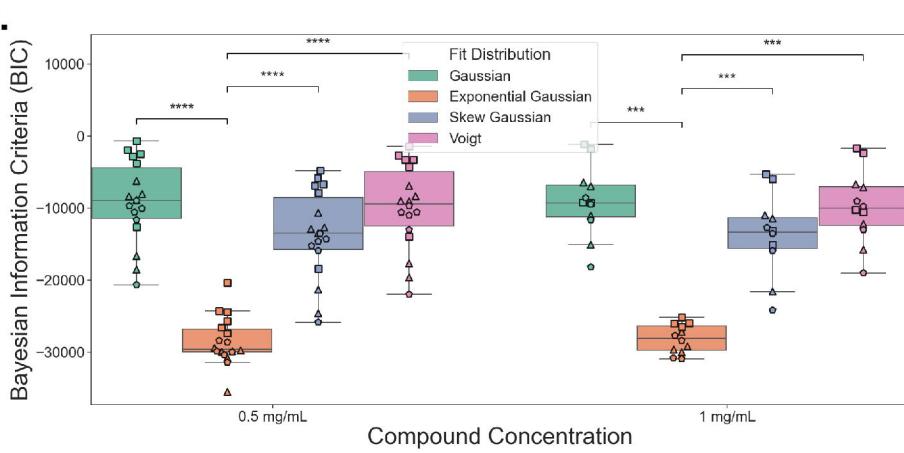
Mismatch in calculated areas

B.

Representative simulation of three overlapping peaks



Mismatch is greater for Peak 1

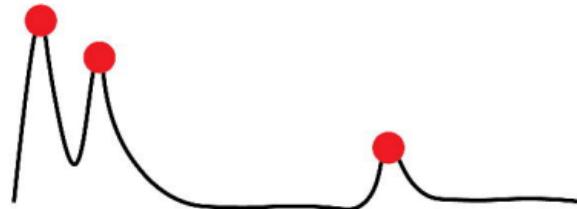
A.**B.****C.****D.**

Initial chromatograph

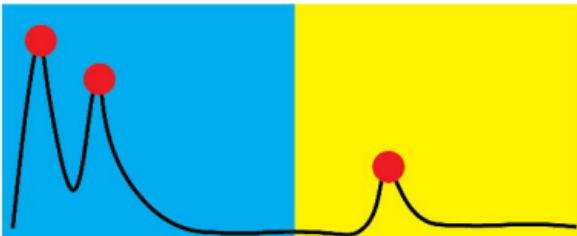


1. **Detrend, denoise with FFT and line averaging**

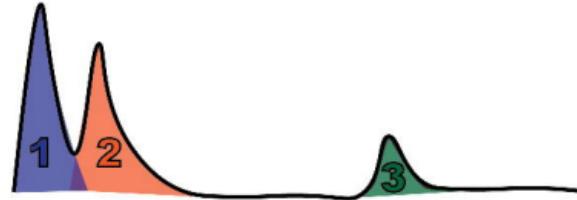
2. **Identify peaks**

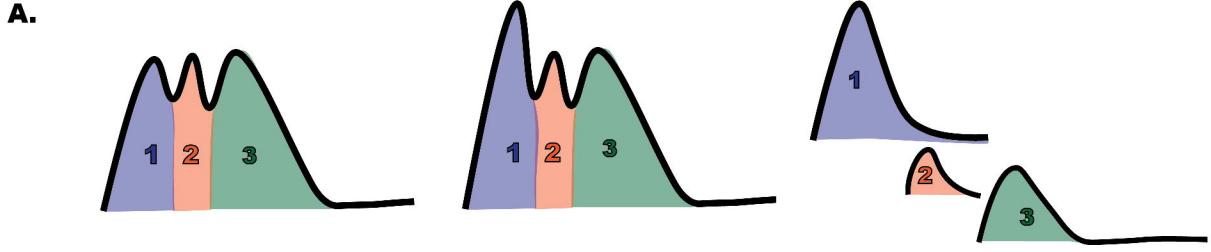
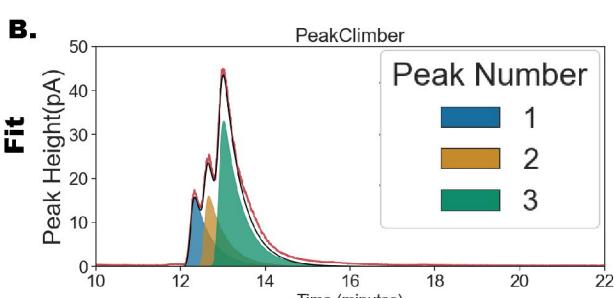
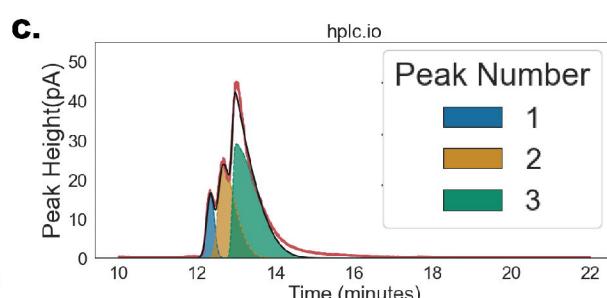
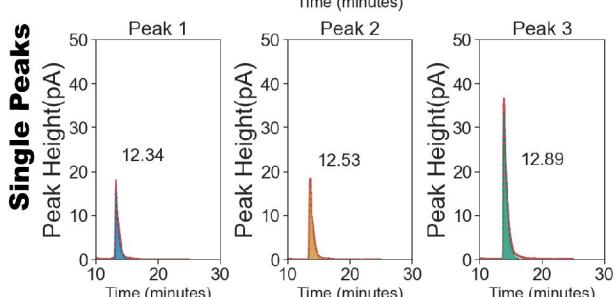
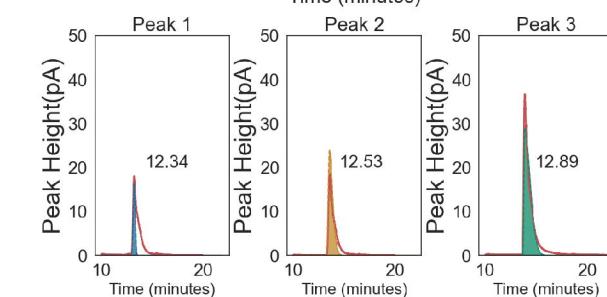
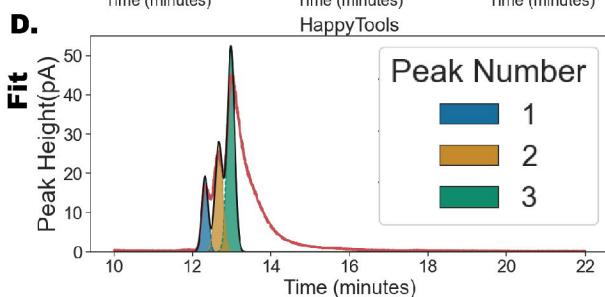
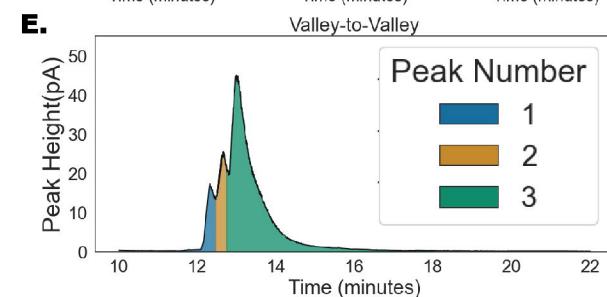
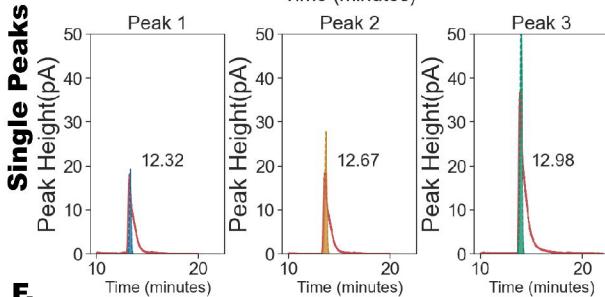
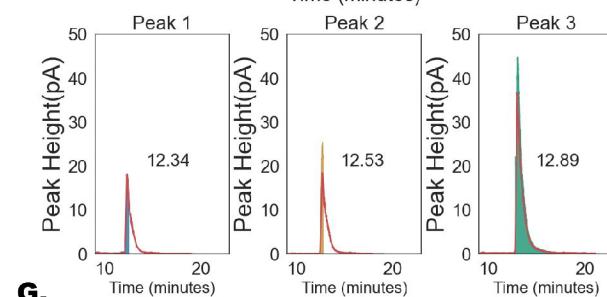
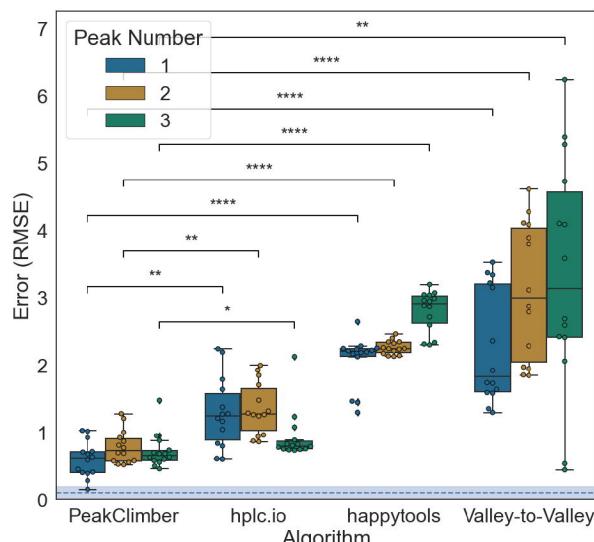
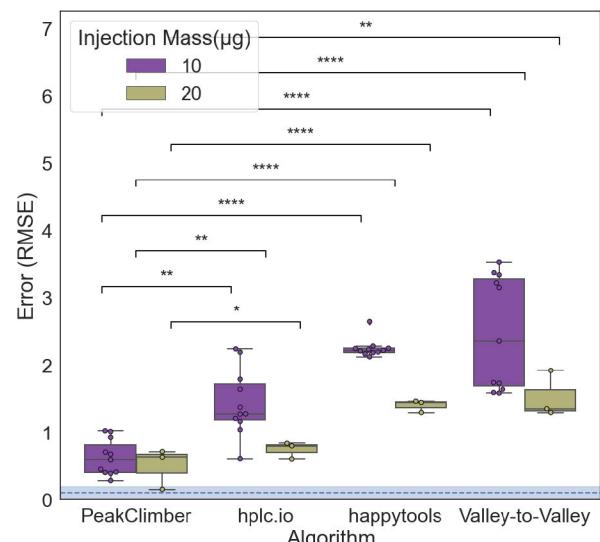


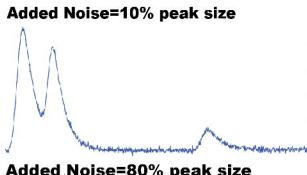
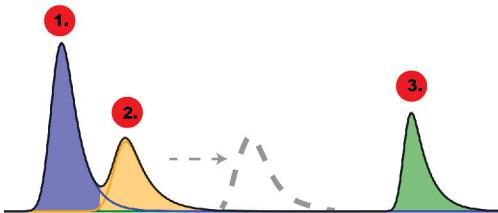
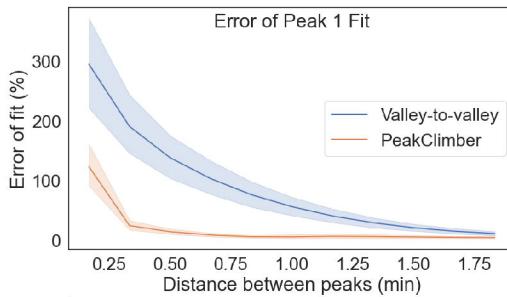
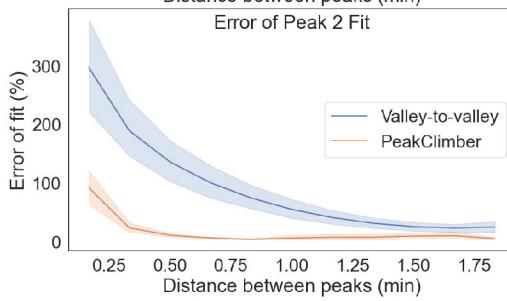
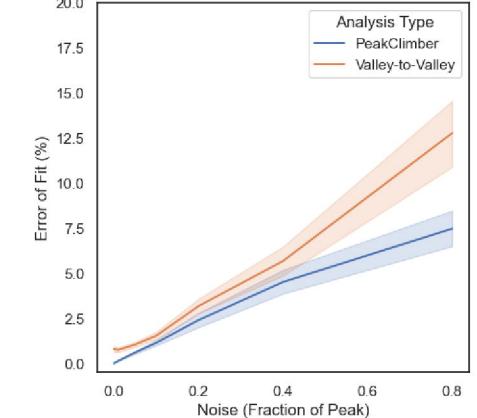
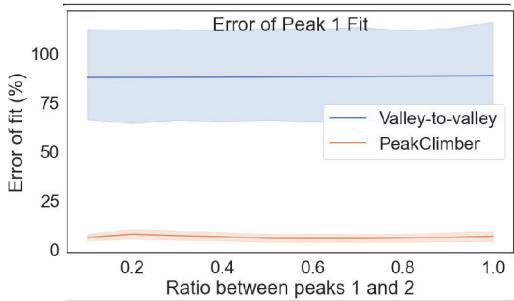
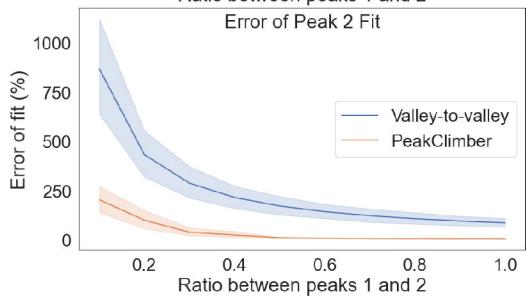
3. **Split peak regions**

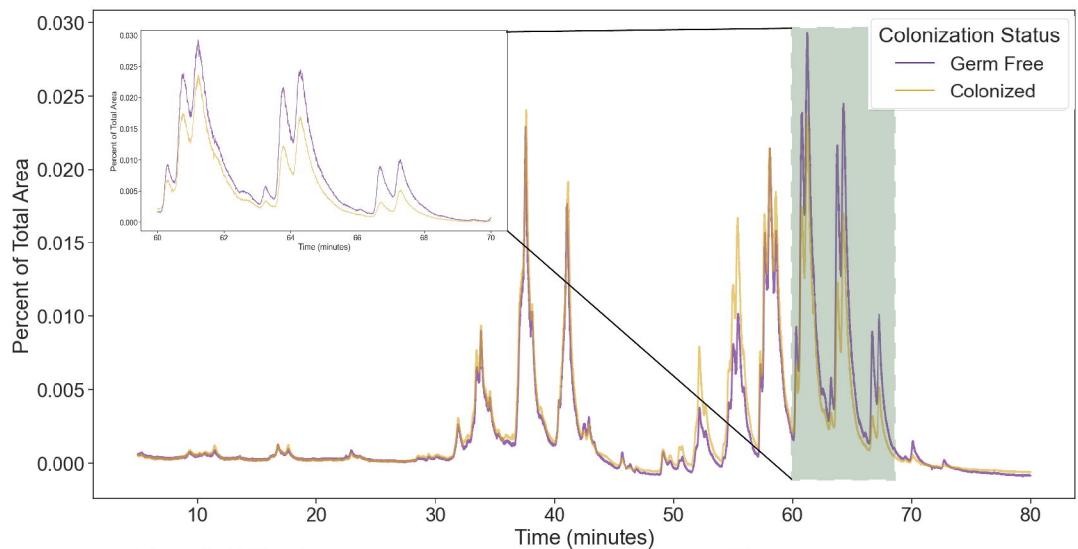
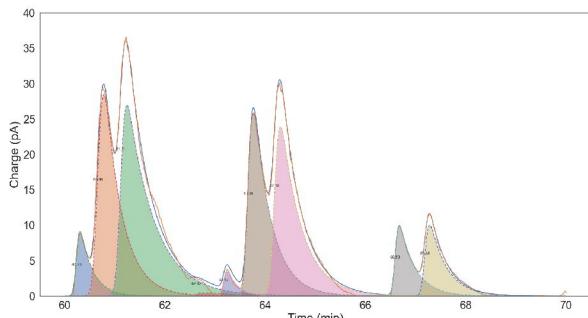
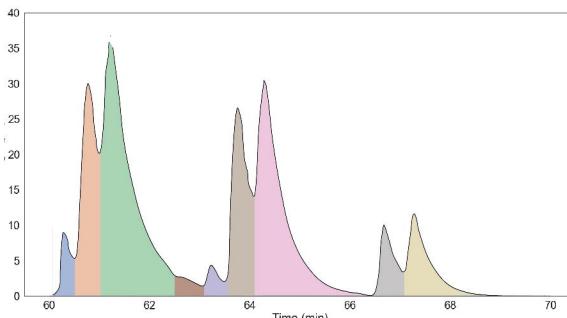


4. **Non-linear regression to fit exponential gaussians within regions**





A.**B.****C.****C.**

A.**B.****PeakClimber****Chromeleon****C.**