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Abstract  1 

High-performance liquid chromatography (HPLC) is a common medium-throughput technique to 2 

quantify the components of often complex mixtures like those typically obtained from biological 3 

tissue extracts. However, analysis of HPLC data from complex multianalyte samples is 4 

hampered by a lack of tools to accurately determine the precise analyte quantities on a level of 5 

precision equivalent to mass-spectrometry approaches. To address this problem, we developed 6 

a tool we call PeakClimber, that uses a sum of exponential Gaussian functions to accurately 7 

deconvolve overlapping, multianalyte peaks in HPLC traces. Here we analytically show that 8 

HPLC peaks are well-fit by an exponential Gaussian function, that PeakClimber more accurately 9 

quantifies known peak areas than standard industry software for both HPLC and mass 10 

spectrometry applications, and that PeakClimber accurately quantifies differences in triglyceride 11 

abundances between colonized and germ-free fruit flies.  12 

  13 
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Introduction 14 

Liquid chromatography (LC) is a series of techniques to separate individual analytes from a 15 

mixture of chemicals using liquid phase solvent1. As compared to gas chromatography (GC), 16 

that uses inert gases as solvents (usually helium), liquid chromatography can separate particles 17 

of larger molecular weight2. Originally, liquid chromatography techniques relied on gravity for 18 

solvent flux, which meant that running of individual chromatographs took hours and sometimes 19 

days to complete. In the 1960s3, high-pressure (or performance) liquid chromatography (HPLC) 20 

was introduced, speeding up the flow rate by forcing the solvent through an extremely narrow 21 

column at high-pressures. Despite improvements in column performance, trade-offs between 22 

mass transfer resistance and diffusive behaviors fundamentally limit peak resolution4. For many 23 

HPLC applications, peak integration is sufficient, as these analyses principally are concerned 24 

with presence/absence of specific peaks or with quantitation of relatively pure analytes with little 25 

peak overlap. For the quantification of more complicated chemical and biological samples with 26 

overlapping peaks however, integration alone is inaccurate. Historically, this meant the operator 27 

spent considerable efforts to develop protocols to fully separate analyte peaks of interest, 28 

something not always possible. 29 

 Various solutions have been proposed to this problem. Common industry software, such 30 

as ThermoFisher’s Chromeleon and Water’s MassLynx utilize a method known as valley-to-31 

valley,5 where a line is dropped from the lowest point between two peaks to the 32 

chromatograph’s baseline, which is determined by the rolling-ball method6. The two peaks are 33 

then integrated on either side of the line. This method has the advantages of being neutral to 34 

the underlying peak shape, independent of the surrounding peaks, and a fast runtime. However, 35 

most peaks map to some variation of the Gaussian distribution4,7–12 and are not independent of 36 

neighboring peaks with which they overlap. Two more recent open source software packages, 37 

HappyTools13 and hplc.io14, improve on the valley-to-valley method by fitting each 38 

chromatograph to a sum of Gaussian or skewed Gaussian curves, respectively. However, these 39 

theoretical peak shapes are not necessarily suited to the data, and the shape of a single peak is 40 

not universally agreed upon. Early quantitative models of liquid chromatography showed that 41 

analytes unbind the column with an exponential decay that is convolved by Gaussian noise 42 

based on their distribution along the length of the column and their diffusion in the liquid phase 43 

before reaching the detector7,8,15–17. While the shape of a peak depends on the amount of 44 
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sample loaded on the column, Langmuir surface binding kinetics usually leads to a Gaussian 45 

shaped peak with tailing18.  46 

 In this manuscript, we show that HPLC analyte peaks are best fit with an exponential 47 

Gaussian function. Our tool, PeakClimber, fits chromatographs to a sum of exponential 48 

Gaussian curves. We show these curves are mathematically and empirically good fits for single 49 

analyte peaks and consistent with extensive literature suggesting that this approach empirically 50 

aligns with chromatography data7,8,19–21. PeakClimber also makes iterative improvements in 51 

denoising data, detrending data, and in reducing the runtime of the analysis. To highlight the 52 

utility of PeakClimber, we compare its performance to other algorithms by analyzing coinjections 53 

of three fatty-acids. Finally, PeakClimber was superior to traditional approaches in quantifying 54 

the differences in lipid composition between Drosophila melanogaster that were reared with and 55 

without bacteria.   56 
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Results 57 

Traditional chromatography analysis methods fail to accurately 58 

quantify complex peaks  59 

Valley-to-valley integration methods produce a mismatch between the calculated and true peak 60 

shape (Figure 1A). To quantify the error of this approach, we conducted a simulation with three-61 

synthetic exponential Gaussian peaks with randomized parameters that overlapped significantly. 62 

Our simulations showed that the valley-to-valley method has significant error between the true 63 

peak shape and the valley-to-valley integration regions, but this error is especially marked for 64 

the first peak in the trace (Figure 1B). This is likely due to the undercounting of the exponential-65 

tail region of the first peak by valley-to-valley analysis.  66 

 67 

Single-analyte HPLC peaks fit an exponential Gaussian distribution  68 

 69 

We first wanted to determine what shape we should use to fit individual peaks. There is 70 

extensive discussion of this question in the literature1,4,5,8,8–12,15–19,22, but there is broad agreement 71 

as to a generally Gaussian peak shape with some amount of tailing. To this end, we developed 72 

analytical, computational, and empirical models to support the exponential Gaussian as the true 73 

shape of a chromatographic peak. 74 

 75 

Analytical and computational solutions 76 

Consider a column of finite length, initially containing no solute. Injectant containing solute � is 77 

added to the column, and � is completely bound to the column at a single location. Solvent � is 78 

then run over the column. Solute � has affinity �� for solvent �. We assume that the reverse 79 

reaction is negligible because unbound � flows away in the solvent. This behavior can be 80 

described by the differential equation: 81 

 82 

��

��
� ����  (1) 83 

 84 

which we can solve analytically: 85 
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 86 

���� � ��	����   (2) 87 

  

producing an exponential function. With an agent-based Monte-Carlo (Figure 2A, histogram) 88 

simulation with parameters for � (amount of analyte), �� (affinity for solvent �), column length, 89 

and flow rate that are relevant to common HPLC columns, we recapitulate the analytical solution 90 

almost exactly (Figure 2A, red line on blue histogram).   91 

 92 

However, this initial model contains several incorrect assumptions, most notably that column 93 

binding and unbinding is a single event. In reality there are many binding and unbinding 94 

steps10,17,23. Thus, the distribution of analyte � will not be bound to a single site, but rather 95 

spread out across the column after many unbinding and binding events. We thus represent the 96 

probability of a single particle binding to location � on the column with the exponential 97 

probability distribution, with � being the average distance a particle travels in solution before 98 

being absorbed into the column wall.  99 

 100 


��� � �	���    (3) 101 

 102 

� is directly dependent on the speed of the mobile phase (�� and inversely proportional to the 103 

diffusion coefficient (�) and relative affinity for the column over the solute.  104 

For a single particle, this event does not happen a single time, but many times over the course 105 

of column loading. To represent this for � binding/unbinding events, we can sum � exponential 106 

functions together, generating an Erlang distribution24. 107 

 108 

���� �
������

	
���!
	���    (4) 109 

 110 

At large �, the erlang distribution will converge to a normal distribution24 with mean �� and 111 

variance ��
.  112 

���� �
�


��√
� 
	

�
������

�������

�

 (5) 113 

This is the probability distribution for the location of a single particle along the column. To 114 
represent the probability distribution of � particles, we can multiply the distribution by �.   115 
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� 
	

�
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�������

�

 (6) 117 

 118 

 119 

To convert this distribution to an arrival time domain, we divide the distance � from the column 120 

by the flow rate �.  121 

���� �
�


��√
� 
	

�
�	
����

�������

�

 (6) 122 

 123 

���� �
�


��√
� 
	

�
�	���/
�

�������/
�

�

 (7) 124 

 125 

To simplify the expression, we will define two new variables  � � ��
/�   and 
 � �λ/�.  These 126 

variables are the spatial mean and variance from equation 5 converted to the arrival time 127 

domain by dividing by the flow rate �. This transformation yields the following equation: 128 

���� �
�/�

�√
� 
	�

�	���

�
�

�

  (8) 129 

 130 

This is a Gaussian distribution, which is supported in the chromatography literature as the 131 

canonical distribution for peaks in isotonic elution conditions8,9. However, when performing 132 

elution over a gradient of solvents, the relative affinity of the analyte for the column and mobile 133 

phases shifts: encouraging single-step Langmuir kinetics at a critical point on the gradient near 134 

the retention time, which results in the exponential decay behavior with no rebinding, which is 135 

observed in equation 1. To combine these two effects, we can convolve the two functions.  136 

 137 

� � � � �      (9) 138 

 139 

 140 

���� � � ��� � ��
�

�
���� ��       (10) 141 

 142 

���� �
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�√
� 
�� � 	�

�	������


�
�

�
	����� ��     (11) 143 

 144 
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 146 

    147 

This matches the standard form of the exponential gaussian function, with 	��
 representing the 148 

inverse error function 1 � 	�����, with 	����� �



√�
� 	�����

�
�

.  This equation gives us several 149 

insights into the factors that influence the shape of the resulting function. The amplitude, or 150 

height of the exponential gaussian function is directly proportional to the number of analyte 151 

molecules, and inversely proportional to the flow rate. The center 
 of the distribution is 152 

dependent on the average travel distance of the particle during column loading and the number 153 

of binding/unbinding events, whose dependency has been previously described. The width or 154 

  ��� is dependent on the same parameters but can also be affected by other minor parameters 155 

such as longitudinal diffusion and column inhomogeneities, and thus is not directly proportional 156 

to the distribution center. Finally, �� is the unbinding coefficient of the analyte from the column 157 

and represents the gamma variable, !, of the exponential Gaussian. This determines how large 158 

the tails of the function are. Although our model makes several simplifying assumptions, such as 159 

a constant � during column loading and no longitudinal diffusion, it provides a sound biophysical 160 

justification for use of the exponential gaussian distribution, which has been utilized in previous 161 

chromatography studies8,20. To verify this analytical equation, we conducted a Monte-Carlo 162 

simulation recapitulating the assumptions of a period of unbinding/rebinding to the column 163 

followed by a kinetic phase in which the analyte has strong affinity for the solvent. This 164 

simulation fit an exponential Gaussian equation almost exactly (Figure 2B, red line on blue 165 

histogram), further supporting the exponential Gaussian as a good distribution to model HPLC 166 

peaks.  167 

Empirical Solution 168 

To empirically test our theoretical exponential Gaussian distribution on real data, we injected 169 

single, pure fatty acid analytes (linoleic acid, arachidonic acid, and docosahexaenoic acid) onto 170 

a C18 column, at individual concentrations of either 0.5mg/mL or 1 mg/mL. Analytes were eluted 171 

from the column on a 3:1 methanol water to acetonitrile gradient (see methods) adapted from25. 172 

We then used the Python package lmfit26 to fit one of four functions commonly used in 173 

chromatography to each of the fatty acid peaks. A representative chromatograph of linoleic acid 174 

is shown to be fit to i). a Gaussian distribution13, ii). an exponential Gaussian distribution, iii). a 175 

Voigt distribution27 and iv). a skewed Gaussian distribution14 (Figure 2C). The goodness of fit 176 

was calculated using the Bayesian Information Criteria (BIC), which scores models both based 177 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 7, 2024. ; https://doi.org/10.1101/2024.08.05.606689doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.05.606689
http://creativecommons.org/licenses/by-nc-nd/4.0/


on its residual function and the number of parameters. The skew and exponential Gaussian 178 

distributions both have an additional parameter as compared to the Gaussian and Voigt 179 

functions, making this comparison necessary. The exponential Gaussian distribution had by far 180 

the lowest BIC for both concentrations of analytes (Figure 2D).   181 

 182 

PeakClimber software package to rapidly and accurately quantifies 183 

chromatography peak areas 184 

We created PeakClimber, an algorithm and python package that identifies and quantifies 185 

individual peaks on a chromatographic trace by fitting a sum of exponential Gaussian functions 186 

to the HPLC trace (Figure 3). 187 

Taking a text file of the trace as input, PeakClimber first denoises and detrends the data. 188 

Denoising is accomplished using a low pass FFT filter28, as well as time-averaging convolution. 189 

Detrending is accomplished with a high-pass Whitaker baseline subtraction algorithm that was 190 

developed for chromatography, called the peaked signal's asymmetric least squares algorithm 191 

(psalsa)29. Exact parameters for these detrending algorithms are input by the user. We chose 192 

our default values by fitting single peaks of real HPLC data (Figure 3-1). Peaks are then 193 

identified on the denoised data using scipy's peak finding algorithm, relying on prominence 194 

cutoffs to determine if peaks are real or noise30,31. The prominence cutoff is also user defined in 195 

PeakClimber. In this paper, we use a value of 0.05, meaning peaks must be 5% above the 196 

contour trough of surrounding peaks to be analyzed. Additional peaks that form shoulders on 197 

more prominent peaks can be optionally identified by identifying local minima and maxima in the 198 

first derivative of the HPLC trace that are close to 0 (Figure 3-2).  199 

For each identified peak, an exponential Gaussian function is fit using lmfit26 with default 200 

parameters of the identified peak center, the identified peak height, a sigma of 0.1 minutes, and 201 

an exponential decay parameter of 2. Boundaries between discrete peak regions are set where 202 

the background-subtracted trace hits zero (Figure 3-3). The discrete peak regions of the graph 203 

are effectively independent of each other, meaning fits can be performed independently on each 204 

region without loss of accuracy. Each group of Gaussians is fit to the trace in the appropriate 205 

region using a non-linear regression to minimize the least-squared distance between the 206 

generated sum of functions and the underlying trace (Figure 3-4). The algorithm recombines the 207 

fits for the different windows and returns a summary graph of the resulting fit, overlaid with 208 

individual peaks, as well as a table with peak number, runtime, and peak area. 209 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 7, 2024. ; https://doi.org/10.1101/2024.08.05.606689doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.05.606689
http://creativecommons.org/licenses/by-nc-nd/4.0/


Comparison of PeakClimber to other common HPLC algorithms  210 

To test the utility of PeakClimber, we compared its performance to publicly available software. 211 

To generate a test dataset with known standards, we injected three fatty acids with overlapping 212 

retention times: docosahexaenoic acid (12.3 minutes), arachidonic acid (12.5 minutes) and 213 

linoleic acid (12.9 minutes). We ran the analytes at concentrations of either 0.5 or 1 mg/mL. 214 

Thus, in each injection, the analytes were either or equal concentration or one analyte was 215 

double the concentration of the other two (Figure 4A). This was done to test the dynamic range 216 

of PeakClimber compared to other algorithms. The raw HPLC trace was then smoothed and 217 

normalized before fitting the three peaks by one of four algorithms. PeakClimber is the algorithm 218 

described in this paper (Figure 4B). hplc.io14 is a python-based, chromatographic fitting software 219 

that uses skewed Gaussian functions as representative of single peaks (Figure 4C). Happytools 220 

is a free, standalone software package that uses Gaussian functions to fit single peaks13 (Figure 221 

4D). Finally, valley-to-valley is an abstraction of algorithms5,6 used by common HPLC-software 222 

such as Thermofisher’s Chromeleon, Agilent’s OpenLab CDS, or Water’s MassLynx that 223 

integrates the area under the curve of the trace between “valleys”, the lowest points between 224 

two identified peaks (Figure 4E). Fits (black line in Figure 4B-E) were performed on the entire 225 

trace (red line in Figure 4B-E). Error comparisons are reported for each individual peak for each 226 

of the three analytes (lower panel Figure 4B-E; analytes are DHA, ARA, and LA from left to right) 227 

using root mean-squared error (RMSE). Fit peaks were recentered on the canonical single 228 

analyte peaks because run times shifted to later elution times in the co-injections. PeakClimber 229 

outperformed all other software regardless of peak position (Figure 4F). Particularly for the first 230 

peak in the co-injection, PeakClimber has lower error than the other algorithms due to the 231 

correct fitting of the tail of the peaks (Figure 4G). PeakClimber also performed better for the 232 

second and third peaks (Supplemental Figure 1 A & B). When error is calculated through 233 

percent error of the peak area, rather than RMSE, this pattern still holds (Supplement Figure 1 234 

C-F).  235 

Testing the Limits of Peak Climber 236 

All algorithms, including Peak Climber, have reduced accuracy for groups of peaks under three 237 

separate circumstances: high signal-to-noise ratios, small distance between peaks, and uneven 238 

ratio between small and large peaks. To test these bounds specifically for PeakClimber, we 239 

computationally created traces of partially overlapping peaks using the real fatty acid traces that 240 

we generated in Figure 2 with different levels of noise added on top of the trace. The first and 241 

second peak overlap, while the third peak is functionally independent, serving as a negative 242 
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control (Supplemental Figure 2). To test the fitting ability of the algorithm, rather than peak 243 

finding, which is already well-tested in other works30, we provided the peak locations to each 244 

algorithm. The % error for each of these cases is shown in the respective subpanels of Figure 5. 245 

For noise on single peaks, PeakClimber outperforms manual integration for added noise 246 

with an amplitude that is 0.3 times or greater than the true peak size (Figure 5A). This is likely 247 

because PeakClimber better captures the shape of the underlying peak. For the distance 248 

between peaks, PeakClimber accuracy begins to drop off when the distance between peaks is 249 

less than 0.25 minutes. The valley-to-valley method is similarly sensitive to peak overlap only at 250 

a threshold distance of 1.5 minutes (Figure 5B). For the ratio between peaks, we held the peaks 251 

a fixed distance of 1.5 minutes apart. Varying the said ratio between the first and second peaks 252 

did not change the error rate for the larger first peak although PeakClimber outperformed valley-253 

to-valley at every peak ratio. For the second peak, both algorithms have large error rates at 254 

ratios below 10:1 large peak:small peak. However, PeakClimber’s error drops rapidly to 0 by a 255 

ratio of 4:1, whereas the valley-to-valley method not only drops in error more slowly, but also 256 

converges to a steady error rate of about 85% (Figure 5C). This error rate is the lower bound for 257 

the valley-to-valley method for peaks with this interpeak distance (Figure 5B).   258 

Uniqueness of PeakClimber Solution 259 

PeakClimber identifies peak areas by fitting exponential gaussian functions to the underlying 260 

chromatography trace using non-linear regression26. We can define the error as the sum of 261 

residuals between the �� and the sum of � exponential gaussian functions ������ 262 

 263 

�� � �� 	∑ ����� , �� , 
� , �� , ���
�
�  (13) 264 

 265 

With �� , 
�, �� , �� being the center, amplitude, width, and decay function of each gaussian 266 

respectively. This residual function will have a single solution if the second derivatives of the 267 

function r are all positive, in other words, if the function is convex. When the shape is of y is 268 

equivalent to the sum of exponential gaussians, this function will simplify to 0, which is trivially 269 

convex, meaning there is only a single solution. 270 

 271 

Additionally, we can empirically restrict the sample space of parameters by observing real 272 

behavior of single HPLC peaks. For example, peak centers do not vary from their locations in 273 

identified traces, meaning that we can effectively reduce the parameter space down to 3 274 

parameters for each exponential gaussian. Kinetics and diffusion-to-flow ratios also place 275 
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biophysical limits on the upper and lower bounds for the γ (tail, �� in equation eq. 11), and � 276 

(width, � in eq. 11) parameters. In this reduced parameter space, we find a single optimum for 277 

two overlapping exponential Gaussians fit to a region of the lipid profile of D. melanogaster 278 

thought to contain only two peaks. Since the space is mapped by 6 parameters (not including 279 

the fixed centers), we used dimension reduction to visualize the result as a PCA, which shows 280 

only a single minimum of the residual �� function (Supplementary Table 1).    281 

 282 

PeakClimber can be used to accurately quantify lipid differences 283 

between biological samples  284 

To test the utility of PeakClimber on real biological data, we raised female Drosophila 285 

melanogaster from the larval stage on two different microbial conditions (germ-free or 286 

conventionally reared) on a standard diet. We then performed a lipid extraction and then ran the 287 

isolated lipids on the HPLC, using a two-step gradient (first methanol:water to acetonitrile, then 288 

acetonitrile to isopropanol) to separate lipid species by polarity and size, as adapted from25. 289 

Significant differences are observed by eye between germ-free and colonized animals (Figure 290 

6A), especially in the triglyceride region running from 60 to 70 minutes (Figure 6A, inset). 291 

Individual peaks were quantified using either the PeakClimber (Figure 6B, left panel) or 292 

Thermofisher Chromleon (Figure 6B, right panel).  The two algorithms identified the same peaks 293 

but produced differences in the magnitude and statistical significance between colonized and 294 

germ-free animals (Figure 6C). Chromeleon identifies all peaks in this region as significantly 295 

different between samples, whereas PeakClimber only identifies some of these peaks as 296 

differentially present. This is not due to sample variance: PeakClimber and Chromeleon both 297 

capture biological sample variance equally. This discrepancy is likely because the tail of the first 298 

peak contributes to the area counted as the second peak by Chromeleon, causing a false 299 

positive when the area is counted this way. This does not occur with PeakClimber, which is able 300 

to deconvolve the tail of the first peak from the rest of the second peak. This suggests that 301 

PeakClimber has more utility in identifying real differential peaks as compared to standard 302 

industry software. 303 

To identify the lipids contained in these peaks, we first performed a lipidomic-mass spec 304 

analysis of whole male and female flies to establish a dataset for canonical fly lipid compounds. 305 

Then, we isolated the 8 sample peaks identified in Figure 6B and ran them through a LC-MS 306 

system to determine their identities. We used the lipidomic data to verify the LC-MS results from 307 
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individual peaks. Many m/z numbers from the individual peak analysis were not found in 308 

lipidomic-mass spec dataset so we also considered compounds that were more saturated, 309 

which would increase the predicted m/z by 1 for each additional hydrogen. Individual peaks 310 

were dried down in a vacuum centrifuge overnight, oxidation and subsequent increase in m/z 311 

values, could have occurred. We found that except for the first peak that ran at 60.1 minutes, 312 

the remaining 7 peaks were triglycerides (Table 1). These peaks were relatively rich in medium-313 

chain triglycerides, which in agreement with other literature on Drosophila lipids32. Additionally, 314 

the specific elution time of these triglyceride peaks nicely agrees with prior HPLC data of 315 

zebrafish lipid extracts that were also subject to mass spec confirmation25. 316 

Three out of the four significantly enriched peaks in germ-free animals contained long-chain 317 

polyunsaturated fatty acids (63.6,66,67 minutes). None of the non-significant peaks contained 318 

any polyunsaturated fatty acid tails, perhaps suggesting that colonized animals more readily 319 

metabolize these fatty-acids, or that they are preferentially absorbed by microbes, and are thus 320 

lost through feces.  321 

Discussion   322 

In this paper we have shown three principal findings. First, the exponential Gaussian function is 323 

a good fit for HPLC peaks. We showed this both analytically, computationally with Monte-Carlo 324 

simulations, and empirically by calculating the error of the fit for various common distributions 325 

used in chromatography to fit single analyte peaks. Many previous works from the 1970s and 326 

1980s attempt to analytically work out these solutions, and their models, also approximated an 327 

exponential Gaussian distribution 8,12,15,16,22,33,34. HPLC peaks often do not represent single 328 

compounds, but groups of compounds. This means that a single peak is often a sum of 329 

individual compounds, all with behavior as described in Figure 2. Due to the central limit 330 

theorem, this would suggest that the chromatographic traces that we observe should have more 331 

of a Gaussian character, but this is not what we observe empirically.  332 

Second, we demonstrated the effectiveness of PeakClimber as compared to other commercially 333 

and freely available software tools to quantitatively analyze chromatography data with 334 

overlapping peaks. This is due to the ability of our algorithm to capture the tail region of the first 335 

peak in a group of peaks, which prevents undercounting and reduces distortion by larger 336 

surrounding peaks. We also show that, given biophysical assumptions that limit the parameter 337 
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space, there is only a single best fit solution for the underlying trace. This is vital for accurately 338 

quantifying peaks.  339 

The package and documentation for PeakClimber are freely available on GitHub with an easy-340 

to-use graphic user interface (GUI). One limitation of the test data used to validate PeakClimber 341 

is that it was only used to test HPLC data from lipid chromatography. Theoretically other 342 

biomolecules should have the same kinetic and diffusive behaviors as lipids, and many 343 

chromatographic traces present in the literature show single peaks that appear to be similar to 344 

exponentially modified Gaussian functions7,8,35–38. However, adapting our algorithm to 345 

additionally deal with anti-Langmuir fronted peaks39,40 could be a promising next step.  346 

Third, we demonstrated the utility of our algorithm for the analysis of biological data. While 347 

mass-spectrometry will always be the gold standard for metabolic analysis41, HPLC represents 348 

a lower-cost medium-throughput option than mass-spec42–44. Consider an experiment similar to 349 

one that we set up with multiple replicates of different dietary, genetic, or microbial conditions. 350 

Rather than analyze each replicate by mass spectrometry, one replicate from each group could 351 

be run through mass-spec, and the rest on HPLC, where relative changes in the compounds 352 

identified by MS could be much more accurately quantified with PeakClimber. The recognition of 353 

HPLC as this medium-throughput bridge between MS and high-throughput methods such as 354 

colorimetric kits could be one reason for the recent interest in development of tools to better 355 

analyze this type of data2,41,43,44.  356 

The reduction in triglycerides containing long-chain fatty acids polyunsaturated fatty acids in 357 

flies colonized with Lactobacillus and Acetobacter is an additional interesting finding from this 358 

work. Previous work in mice45,46 has shown that various Lactobacillus species can protect 359 

against obesity by acting as a sponge for fatty acids, and then being excreted in the feces. 360 

These results also agree with work in the fly that shows that colonization can reduce triglyceride 361 

accumulation47,48. Why these bacteria reduce the presence of polyunsaturated fats in particular 362 

is unclear, but could be due to composition of Lactobacillus membranes, which are largely 363 

composed of unsaturated fatty acids49.  364 

Although we did not observe this in our dataset, neighboring peaks in HPLC are often 365 

composed of extremely similar compounds that are part of biochemical pathways such as fatty 366 

acid elongation or conversion between different phospholipid compounds50,51. PeakClimber 367 

could be used to find the precise step in these pathways that is affected by the genetic mutation, 368 
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diet, or colonization condition of interest. This method could provide an additional advantage 369 

over alternative methods such as transcriptomic or proteomic analysis due to the ability to 370 

measure actual metabolite levels rather proxies of RNA or protein levels, the activity of which 371 

can both be affected by downstream processing such as translation (in the case of RNA), or 372 

post-translational modifications and confirmational changes (in the case of protein).   373 

Limitations and comparison to other algorithms:  374 

The exponential Gaussian function will not perfectly fit some chromatography peaks, as 375 

compounds that run with anti-Langmuir kinetics will have peak fronting15,52,53, which will not fit an 376 

exponential Gaussian distribution. Peak fronting can also occur when the peak has been 377 

overloaded with analyte. Additionally, our mathematical model makes several simplifying 378 

assumptions about the geometry and flow rate of common HPLC systems. Based on 379 

complexities of experimental conditions that influence the quality of the data, more complex 380 

analysis programs could be needed. 381 

However, despite these limitations, we want to highlight the performance advantages of 382 

PeakClimber compared to other available software. Prior to PeakClimber, there was a common 383 

sentiment that overlapping peaks could only be analyzed qualitatively. Here with PeakClimber 384 

we show that we can in fact extract highly quantitative data from HPLC traces that contain 385 

overlapping peaks. Even compared to other software that attempts to tackle this problem in a 386 

similar manner, PeakClimber much more accurately quantifies areas of overlapping peaks, due 387 

to its ability to consider long peak tails. For the analysis of biological data that contain many 388 

overlapping and non-overloaded peaks, we believe that PeakClimber will prove to be invaluable.  389 

 390 

 391 

Materials and Methods  392 

Monte-Carlo simulations 393 

Exponential decay simulation: A column 1000 units long with 100 analyte particles at position 394 

1 bound to the column is instantiated. At each time step the analyte has a 5% chance of 395 

unbinding from the column (representing a k value of 0.05). Once unbound the particle arrives 396 

at the detector a fixed time later, in this case 900 time-steps. The simulation was performed 397 

10000 times and results were pooled.   398 
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Multi-step reaction simulation: A column 1000 units long with 100 analyte particles at position 399 

1 is instantiated. Particles are allowed to bind to the column with a probability of 0.5 and unbind 400 

with the same probability for 100 steps. When not bound to the column, particles move at the 401 

flow rate (1 binding site per step). After 100 steps, the probability of unbinding is reduced to 0.05, 402 

and the probability of rebinding is reduced to 0. Once unbound, these particles arrive at the 403 

detector a fixed time later, in this case 900 time-steps. The simulation was performed 10000 404 

times and results were pooled.   405 

Fatty-acid chromatography 406 

Fatty acid aliquots were obtained from Cayman Chemicals: linoleic acid (LA) (CAS 60-33-3), 407 

arachidonic acid (ARA) (CAS 506-32-1), and docosahexaenoic acid (DHA) (CAS 6217-54-5). 408 

The fatty acids were suspended in HPLC-grade isopropanol in stock concentrations of 409 

10mg/mL. Aliquots were then further diluted to either 0.5mg/mL or 1 mg/mL as individual 410 

analytes or as part of one of the four mixtures analyzed (0.5:0.5:0.5, 1:0.5:0.5, 0.5:1:0.5, 411 

0.5:0.5:1 mg/mL of DHA: ARA: LA respectively. 20 µL of each individual analyte or mixture 412 

was injected onto the HPLC system. The components of each sample were separated and 413 

detected by an HPLC system using a LPG-3400RS quaternary pump, WPS-3000TRS 414 

autosampler (maintained at 20°C), TCC-3000RS column oven (maintained at 40°C), Accucore 415 

C18 column (150 × 3.0 mm, 2.6 μm particle size), FLD-3100 fluorescence detector (8 μL flow 416 

cell maintained at 45°C), and a Dionex Corona Veo charged aerosol detector (all from Thermo 417 

Fisher Scientific). Component peaks were resolved over a 30 min time range in a multistep 418 

mobile phase gradient as follows: 0–5 min = 0.8 mL/min in 98% mobile phase A (methanol-419 

water-acetic acid, 750:250:4) and 2% mobile phase B (acetonitrile-acetic acid, 1,000:4); 5–30 420 

min = 0.8–1.0 mL/min, 98–30% A, 2–44% B, and 0–3.3% mobile phase C (2-propanol)32. HPLC-421 

grade acetic acid and 2-propanol were purchased from Fisher Scientific and HPLC-grade 422 

methanol and acetonitrile were purchased from Sigma-Aldrich. 423 

Error tolerance simulations  424 

Noise simulation: a single exponential Gaussian peak was initialized with the following 425 

parameters: amplitude between 1 and 5, γ (skew) between 2.9 and 3, and sigma between 0.1 426 

and 0.2. Noise was added to the peak between 0 and 80% of its amplitude. Peak area was 427 

calculated using PeakClimber or manual integration after denoising and compared to the known 428 

area of the generated peak.  429 
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Proximity and ratio simulations: Individual analyte traces of either linoleic acid (LA) (CAS 60-430 

33-3), arachidonic acid (ARA) (CAS 506-32-1), or docosahexanoic acid (DHA) (CAS 6217-54-431 

5) were smoothed and background subtracted as described in the body of the paper. Three 432 

copies of the corrected trace were superimposed on top of each other, and the resulting three 433 

peaks were computational separated by 0.1 to 2 minutes, or 10 minutes, respectively. The 434 

area of each of the three peaks was calculated either using PeakClimber, or the valley-to-435 

valley algorithm, and the compared to the known underlying peak. Error was calculated by 436 

dividing the chi-square function of the residual error by the total peak area. For peak ratio, the 437 

second peak was held at a constant distance of 0.75, but the relative size of the peak was 438 

scaled between 0.1 and 1 of the size of the first peak.  439 

Fly husbandry  440 

Drosophila melanogaster Canton-S flies were initially isolated from long term germ-free stocks 441 

kept in lab. The parental generation of flies was inoculated with a 7-species microbiome mixture 442 

consisting of L. plantarum, L. brevis, A. pomorum, A. orientalis, A. cerevisiae, A. sicerae, and A. 443 

tropocalis that recapitulates the microbiome found in a wild fruit fly 5 days after eclosion or 444 

maintained germ-free. Parental flies were fed a diet consisting of 10% glucose (v/v), 0.42% 445 

propionic acid (v/v), 1.2% (w/v) agar, and 5% yeast (w/v). These flies were allowed to lay eggs 446 

on their food for 3 days. The resulting offspring were raised until 10 days post eclosion before 447 

lipid extractions.  448 

Lipid extractions and chromatography for Drosophila melanogaster 449 

Groups of 8 flies were macerated using a bead beater in 500 µL of lipid extraction buffer (10 mM 450 

Tris, 1mM EDTA, 7.8 pH). 400 µL of extract was mixed with 1.5 mL 2:1 chloroform:methanol 451 

(with 1 ng/mL of TopFluor cholesterol as an internal standard) and allowed to sit for 10 minutes. 452 

Then 500 µL of chloroform followed by 500 µL of extraction buffer was added to the mixture. 453 

The mixture was centrifuged at 2300 rcf for 5 minutes and the organic (bottom) phase was 454 

harvested. This was evaporated to dryness under vacuum centrifugation and then resuspended 455 

in 100 µL of HPLC grade isopropanol.  456 

20 µL of the sample was injected onto the HPLC system as described earlier. Component peaks 457 

were resolved over an 80 min time range in a multistep mobile phase gradient as follows: 0–5 458 

min = 0.8 mL/min in 98% mobile phase A (methanol-water-acetic acid, 750:250:4) and 2% 459 

mobile phase B (acetonitrile-acetic acid, 1,000:4); 5–35 min = 0.8–1.0 mL/min, 98–30% A, 2–65% 460 
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B, and 0–5% mobile phase C (2-propanol); 35–45 min = 1.0 mL/min, 30–0% A, 65–95% B, and 461 

5% C; 45–73 min = 1.0 mL/min, 95–60% B and 5–40% C; and 73–80 min = 1.0 mL/min, 60% B, 462 

and 40% C. (HPLC-grade acetic acid and 2-propanol were purchased from Fisher Scientific and 463 

HPLC-grade methanol and acetonitrile were purchased from Sigma-Aldrich.) 464 

For downstream LC-MS analysis, peaks were collected in the following intervals via fraction 465 

collector 60-60.4 min (1), 60.4-60.9 min (2), 60.9-61.5 min (3), 61.5-63 min (4) 63.2-64 min 466 

(5),64-66 min (6),66-67 min (7), 67-69 min (8). Peaks were then evaporated to dryness and 467 

resuspended in 100 µL methanol and DCM (50/50 v/v) with a concentration of 5mM ammonium 468 

acetate in the final solution.  469 

Liquid Chromatography-High Resolution (Q-TOF) Mass Spectrometry Analysis 470 

Ammonium acetate, methanol, and dichloromethane (DCM) were purchased from 471 

Thermo Fisher Scientific Inc. (Waltham, MA). Full scan mass spectral analyses of isolated 472 

peaks were conducted using an AB Sciex Quadrupole Time of Flight Mass Spectrometer 473 

controlled by Analyst 1.8 (5600 Q-TOF) (Framingham, MA). The mass spectrometer was 474 

coupled to a Shimadzu ultrafast liquid chromatographic system (UFLC, Kyoto, Japan), which 475 

consisted of a degasser, a quaternary pump, an autosampler, and a temperature-controlled 476 

column compartment. Each individual peak fraction (20 µL injection volume) was directly infused 477 

into the mass spectrometer's electrospray ionization (ESI) source chamber through the UFLC 478 

autosampler. The mobile phase comprised methanol and DCM (50/50, v/v) spiked with 5 mM 479 

ammonium acetate, with a flow rate set to 100 µL/min. ESI parameters were as follows: source 480 

gases were set to 20 for Gas 1 and 30 for Gas 2, while the curtain gas was set to 30. The 481 

source temperature was set to 250 °C, and the Ion Spray Voltage Floating (ISVF) was set to 5.5 482 

kV. The compound decluttering potential was set to 80. The mass spectrometer operated in TOF 483 

high-resolution full scan mode within an m/z scan range of 100 to 1200, with an accumulation 484 

time of 0.25 seconds for one minute for each sample run. The high-resolution mass 485 

spectrometer was calibrated with manufacturer solvent (PI: 4460131) to maintain mass 486 

accuracy. 487 

 488 

Canonical lipid peaks were obtained with the following method. 8 frozen Drosophila 489 

melanogaster females (10 days post eclosion) were resuspended in MTBE (1mL), vortexed and 490 

then transferred to an Eppendorf tube. 300 µL of methanol with internal standard was added 491 

and samples were shaken for 10 min. 200 µL of water was added to facilitate phase separation. 492 
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The extracts were centrifuged at 2,000 rcf for 10 min. The top layer was removed, dried down, 493 

and reconstituted in 100 µL of IPA for analysis. Avanti’s deuterated lipid mix, Equisplash, was 494 

used as an internal standard. This was spiked into the methanol at 1.5 µg/mL and used for 495 

extraction. Analysis was performed using a Thermo Q Exactive Plus coupled to a Waters 496 

Acquity H-Class LC. A 100 mm x 2.1 mm, 2.1 µm Waters BEH C18 column was used for 497 

separations. The following mobile phases were used: A- 60/40 ACN/H20 B- 90/10 IPA/ACN; 498 

both mobile phases had 10 mM Ammonium Formate and 0.1% Formic Acid. 499 

 500 

A flow rate of 0.2 mL/min was used. Starting composition was 32% B, which increased to 40% B 501 

at 1 min (held until 1.5 min) then 45% B at 4 minutes. This was increased to 50% B at 5 min, 60% 502 

B at 8 min, 70% B at 11 min, and 80% B at 14 min (held until 16 min). At 16 min the composition 503 

switched back to starting conditions (32% B) and was held for 4 min to re-equilibrate the column. 504 

 505 

Code availability 506 

All data and Jupyter Notebooks used to generate figures in this manuscript can be found at 507 

github.com/ATiredVegan/PeakClimberManuscriptRepository. The PeakClimber package and 508 

use instructions can be found at github.com/ATiredVegan/PeakClimber.  509 
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Figure 1: The problem of peak quantification. (A). A cartoon depiction of a common inaccuracy in peak 
quantification. When three analytes are well-separated, their area is accurately calculated by peak integration. When 
three analytes have overlap in the trace, the valley-to-valley area calculation algorithm will not accurately determine 
peak areas due to overlap of the tails. (B). A simulation of three overlapping peaks. The shaded region represents the 
integration regions identified by the valley-to-valley algorithm; the solid lines represent the true peaks. The difference 
between the two is quantified by Root Mean Squared Error (RMSE) (n=1000, Mann-Whitney followed by Wilcoxon 
Ranked Test, ****p<1e-04).  
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Figure 2: Individual HPLC analyte peaks correspond to an exponential Gaussian distribution. (A 
and B). Monte Carlo simulation of solute arrival time at the detector without (A) or with (B) rebinding (blue) fit to an 
exponential distribution (A) or exponential Gaussian distribution (B) (red) (n=10000 simulations consisting of 100 
analyte molecules each). (C). Empirical fits of (left to right) Gaussian, exponential Gaussian, skew Gaussian, and 
Voigt distributions to a single linoleic acid peak (D). Bayesian Information Criteria (BIC) of the fit of above distributions 
on pooled arachidonic acid (triangle), docosahexaenoic acid (circle), and linoleic acid (square) single peaks. Analytes 
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are grouped by injection volume.  (n=12 [4 experimental replicates of each of the 3 fatty-acids], Mann-Whitney U-test 
with Bonferroni correction, ***: p<1e-03; ****: p<1e-04). 

 

Figure 3: The PeakClimber workflow. (1) PeakClimber first denoises (FFT) and detrends chromatography 
data before (2) identifying peaks using prominence cutoffs. (3) To decrease runtime, peaks are split into regions 
based on intersections of the trace with the x-axis. (4) Within each region, peaks are fit to an exponential Gaussian 
distribution.   
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Figure 4: PeakClimber is more accurate and precise than Industry Software (A). Schematic of the 
experiment performed in this figure. Three overlapping fatty-acid peaks were injected at either a ratio of 1:1:1, 1:2:1, 
2:1:1, or 1:1:2. The calculated areas (using the algorithms listed below) were compared to the real injected areas of 
the individual peaks. (B) PeakClimber fit to a chromatograph of a coinjection of C18:1, C20:4 and C22:6 mixed in a 
1:2:1 ratio. Red trace: raw data, black trace: predicted sum of peak areas, blue, orange, green shaded regions: 
predicted individual peak areas. (C-E) Fits to the same data in B by (C) hplc.io, (D) the valley-to-valley algorithm 
(Thermofisher and Waters), and (E) HappyTools. Bottom subpanels show the fits to each individual peak. (F) 
Quantification of error rates by RMSE of pooled coinjections of C18:1, C20:4 and C22:6 depending on peak position 
by above algorithms. Blue dotted line represents minimum RMSE error obtained from the single-peak fits. (G) 
Quantification of error rates for peak 1 alone comparing 10 µg and 20 µg injections. (Kruskal-Wallis Test with 
Bonferroni correction for subpanels F and G, n=12, 3 biological replicates each with 4 experimental replicates, *: 
p<5e-02**: p<1e-02, ***: p <1e-03, ****: p < 1e-04). 

 

 

 

Figure 5: PeakClimber is more robust to noise and peak overlap than industry software. (A) 
Schematic: Gaussian noise as a fraction of the peak amplitude is added to a single synthetically generated peak with 
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amplitude between 1 and 2,  � between 0.1 and 0.2, γ between 2.9 and 3 and center at 1. This noise is detrended 
and removed using the PeakClimber algorithm and then the resulting peak area is either found by fitting 
(PeakClimber) or integration with the valley-to-valley method. The calculated area is compared to the known area. (B) 
Three analyte curves are superimposed and shifted 0.1-2 min (peak 2) or 10 min later (peak 3). Curves are 
generated from real traces of arachidonic acid, docosahexaenoic acid, and linoleic acid (C). Using the same 
parameters for exponential Gaussians as in A, but with a fixed distance of 0.75 minutes between peaks 1 and 2, and 
10 minutes between peaks 1 and 3, the ratio between peak 1 and 2 was varied between 0.1 and 1 (n=24 [4 
experimental replicates of each of the 3 fatty-acids at 2 concentrations]). 
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Figure 6: PeakClimber more accurately quantifies biological differences between germ-free 

and colonized flies. (A) A lipid profile for germ free (purple) or colonized (yellow) female fruit flies normalized to 
total chromatograph area. Highlighted regions in green are shown in higher resolution in the inset are quantified 
below in (B). Algorithmic fit of the highlighted regions above using PeakClimber (left) and Thermofisher Chromeleon 
(right) on the germ-free trace. (C). Quantitation of peak areas for selected peaks in the highlighted region (Krukskal-
Wallis rank-sum: *: p< 0.05 n=3, 8 flies per sample). 

 

 

 

Table 1: Mass-spec analysis and identification of Drosophila lipids eluted from the triglyceride region of the 
total lipid chromatograph. The retention time (column 1), measured m/z value (column 2), predicted unsaturated 
m/z value (column 3), and compound identity (column 4), and PeakClimber significance (Krukskal-Wallis rank-sum: *: 
p< 0.05 n=3, 8 flies per sample) for each peak in the 60-70 minute region of the fly lipid profile (TG=Triglyceride, 
PC=phosphatidylcholine).  

 

References 
(1) Morley, R.; Minceva, M. Liquid–Liquid Chromatography: Current Design Approaches and 

Future Pathways. Annu. Rev. Chem. Biomol. Eng. 2021, 12 (1), 495–518. 

https://doi.org/10.1146/annurev-chembioeng-101420-033548. 

(2) Ovbude, S. T.; Sharmeen, S.; Kyei, I.; Olupathage, H.; Jones, J.; Bell, R. J.; Powers, R.; Hage, D. 

S. Applications of Chromatographic Methods in Metabolomics: A Review. J. Chromatogr. B 

2024, 1239, 124124. https://doi.org/10.1016/j.jchromb.2024.124124. 

(3) Ito, Y.; Weinstein, M.; Aoki, I.; Harada, R.; Kimura, E.; Nunogaki, K. The Coil Planet Centrifuge. 

Nature 1966, 212 (5066), 985–987. https://doi.org/10.1038/212985a0. 

(4) Van Deemter, J. J.; Zuiderweg, F. J.; Klinkenberg, A. Longitudinal Diffusion and Resistance to 

Mass Transfer as Causes of Nonideality in Chromatography. Chem. Eng. Sci. 1956, 5 (6), 271–

289. https://doi.org/10.1016/0009-2509(56)80003-1. 

Retention Time Measured m/z Predicted 
unsaturated m/z 

Compound ID Significant 

60.3 654.27/846.67 654.56/834.6 (-12 H) TG(36:1)+NH4, PC 

(40:6)+H 

No 

60.6 820.66 818.72 (-2 H) TG(16:1,16:1,16:1)+NH4 Yes 

61.1 794.65 790.69 (-4 H) TG(14:1,16:1,16:1)+NH4 No 

63.1 768.64 768.7 TG(14:0,14:0,16:0)+NH4 No 

63.6 848.69 846.75 (-2 H) TG(18:3,16:0,16:0)+H Yes 

64.0 822.68 820.73 (-2 H) TG(16:0,16:1,16:1)+NH4 No 

66.0 876.72 869.75 (-7 H) TG(21:4,16:0,16:0)+NH4 Yes 

67.0 850.70 848.77 (-2 H) TG(14:0,14:0,18:2)+NH4 Yes 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 7, 2024. ; https://doi.org/10.1101/2024.08.05.606689doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.05.606689
http://creativecommons.org/licenses/by-nc-nd/4.0/


(5) Dyson, N. A. Chromatographic Integration Methods; Royal Society of Chemistry, 1998; Vol. 3. 

(6) Sternberg. Biomedical Image Processing. Computer 1983, 16 (1), 22–34. 

https://doi.org/10.1109/MC.1983.1654163. 

(7) Steffen, B.; Müller, K. P.; Komenda, M.; Koppmann, R.; Schaub, A. A New Mathematical 

Procedure to Evaluate Peaks in Complex Chromatograms. J. Chromatogr. A 2005, 1071 (1–2), 

239–246. https://doi.org/10.1016/j.chroma.2004.11.073. 

(8) Felinger, A. Data Analysis and Signal Processing in Chromatography; Data handling in 

science and technology; Elsevier: Amsterdam Lausanne New York [etc.], 1998. 

(9) Martin, A. J. P.; Synge, R. L. M. A New Form of Chromatogram Employing Two Liquid Phases. 

Biochem. J. 1941, 35 (12), 1358–1368. https://doi.org/10.1042/bj0351358. 

(10) Giddings, J. C.; Eyring, H. A Molecular Dynamic Theory of Chromatography. J. Phys. Chem. 

1955, 59 (5), 416–421. https://doi.org/10.1021/j150527a009. 

(11) Craig, L. C.; Columbic, C. Identification of Small Amounts of Organic Compounds by 

Distribution Studies; Use of a Solid Phase. Science 1946, 103 (2680), 587–589. 

(12) Guiochon, G. Fundamentals of Preparative and Nonlinear Chromatography, 2nd ed.; 

Elsevier Science & Technology: Chantilly, 2006. 

(13) Jansen, B. C.; Hafkenscheid, L.; Bondt, A.; Gardner, R. A.; Hendel, J. L.; Wuhrer, M.; 

Spencer, D. I. R. HappyTools: A Software for High-Throughput HPLC Data Processing and 

Quantitation. PLOS ONE 2018, 13 (7), e0200280. 

https://doi.org/10.1371/journal.pone.0200280. 

(14) Chure, G.; Cremer, J. Hplc-Py: A Python Utility For Rapid Quantification ofComplex 

Chemical Chromatograms. J. Open Source Softw. 2024, 9 (94), 6270. 

https://doi.org/10.21105/joss.06270. 

(15) Amundson, N. R. The Mathematics of Adsorption in Beds. III. Radial Flow. Leon,Lapidus. J. 

Phys. Colloid Chem. 1950, 54 (6), 821–829. https://doi.org/10.1021/j150480a011. 

(16) Frey, G. L.; Grushka, E. Numerical Solution of the Complete Mass Balance Equation in 

Chromatography. Anal. Chem. 1996, 68 (13), 2147–2154. 

https://doi.org/10.1021/ac960220o. 

(17) Gotmar, G.; Fornstedt, T.; Guiochon, G. Peak Tailing and Mass Transfer Kinetics in Linear 

Chromatography. J. Chromatogr. A 1999, 831 (1), 17–35. https://doi.org/10.1016/S0021-

9673(98)00648-7. 

(18) Langmuir, I. THE CONSTITUTION AND FUNDAMENTAL PROPERTIES OF SOLIDS AND 

LIQUIDS. PART I. SOLIDS. J. Am. Chem. Soc. 1916, 38 (11), 2221–2295. 

https://doi.org/10.1021/ja02268a002. 

(19) Naish, P. J.; Hartwell, S. Exponentially Modified Gaussian Functions—A Good Model for 

Chromatographic Peaks in Isocratic HPLC? Chromatographia 1988, 26 (1), 285–296. 

https://doi.org/10.1007/BF02268168. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 7, 2024. ; https://doi.org/10.1101/2024.08.05.606689doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.05.606689
http://creativecommons.org/licenses/by-nc-nd/4.0/


(20) Grushka, Eli. Characterization of Exponentially Modified Gaussian Peaks in 

Chromatography. Anal. Chem. 1972, 44 (11), 1733–1738. 

https://doi.org/10.1021/ac60319a011. 

(21) Lan, K.; Jorgenson, J. W. A Hybrid of Exponential and Gaussian Functions as a Simple 

Model of Asymmetric Chromatographic Peaks. J. Chromatogr. A 2001, 915 (1–2), 1–13. 

https://doi.org/10.1016/S0021-9673(01)00594-5. 

(22) Golshan-Shirazi, Sadroddin.; Guiochon, Georges. Analytical Solution for the Ideal Model 

of Chromatography in the Case of a Langmuir Isotherm. Anal. Chem. 1988, 60 (21), 2364–

2374. https://doi.org/10.1021/ac00172a010. 

(23) McQuarrie, D. A. On the Stochastic Theory of Chromatography. J. Chem. Phys. 1963, 38 

(2), 437–445. https://doi.org/10.1063/1.1733677. 

(24) Leemis, L. M.; McQueston, J. T. Univariate Distribution Relationships. Am. Stat. 2008, 62 

(1), 45–53. https://doi.org/10.1198/000313008X270448. 

(25) Quinlivan, V. H.; Wilson, M. H.; Ruzicka, J.; Farber, S. A. An HPLC-CAD/Fluorescence 

Lipidomics Platform Using Fluorescent Fatty Acids as Metabolic Tracers. J. Lipid Res. 2017, 58 

(5), 1008–1020. https://doi.org/10.1194/jlr.D072918. 

(26) Newville, M.; Stensitzki, T.; Allen, D. B.; Ingargiola, A. LMFIT: Non-Linear Least-Square 

Minimization and Curve-Fitting for Python, 2014. https://doi.org/10.5281/ZENODO.11813. 

(27) Reilly, J. T.; Walsh, J. M.; Greenfield, M. L.; Donohue, M. D. Analysis of FT-IR 

Spectroscopic Data: The Voigt Profile. Spectrochim. Acta Part Mol. Spectrosc. 1992, 48 (10), 

1459–1479. https://doi.org/10.1016/0584-8539(92)80154-O. 

(28) Brigham, E. O.; Morrow, R. E. The Fast Fourier Transform. IEEE Spectr. 1967, 4 (12), 63–70. 

https://doi.org/10.1109/MSPEC.1967.5217220. 

(29) Oller-Moreno, S.; Pardo, A.; Jimenez-Soto, J. M.; Samitier, J.; Marco, S. Adaptive 

Asymmetric Least Squares Baseline Estimation for Analytical Instruments. 2014 IEEE 11th Int. 

Multi-Conf. Syst. Signals Devices SSD14 2014, 1–5. 

https://doi.org/10.1109/SSD.2014.6808837. 

(30) Virtanen, P.; Gommers, R.; Oliphant, T. E.; Haberland, M.; Reddy, T.; Cournapeau, D.; 

Burovski, E.; Peterson, P.; Weckesser, W.; Bright, J.; Van Der Walt, S. J.; Brett, M.; Wilson, J.; 

Millman, K. J.; Mayorov, N.; Nelson, A. R. J.; Jones, E.; Kern, R.; Larson, E.; Carey, C. J.; Polat, 

İ.; Feng, Y.; Moore, E. W.; VanderPlas, J.; Laxalde, D.; Perktold, J.; Cimrman, R.; Henriksen, I.; 

Quintero, E. A.; Harris, C. R.; Archibald, A. M.; Ribeiro, A. H.; Pedregosa, F.; Van Mulbregt, P.; 

SciPy 1.0 Contributors; Vijaykumar, A.; Bardelli, A. P.; Rothberg, A.; Hilboll, A.; Kloeckner, A.; 

Scopatz, A.; Lee, A.; Rokem, A.; Woods, C. N.; Fulton, C.; Masson, C.; Häggström, C.; 

Fitzgerald, C.; Nicholson, D. A.; Hagen, D. R.; Pasechnik, D. V.; Olivetti, E.; Martin, E.; Wieser, 

E.; Silva, F.; Lenders, F.; Wilhelm, F.; Young, G.; Price, G. A.; Ingold, G.-L.; Allen, G. E.; Lee, G. 

R.; Audren, H.; Probst, I.; Dietrich, J. P.; Silterra, J.; Webber, J. T.; Slavič, J.; Nothman, J.; 

Buchner, J.; Kulick, J.; Schönberger, J. L.; De Miranda Cardoso, J. V.; Reimer, J.; Harrington, J.; 

Rodríguez, J. L. C.; Nunez-Iglesias, J.; Kuczynski, J.; Tritz, K.; Thoma, M.; Newville, M.; 

Kümmerer, M.; Bolingbroke, M.; Tartre, M.; Pak, M.; Smith, N. J.; Nowaczyk, N.; Shebanov, 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 7, 2024. ; https://doi.org/10.1101/2024.08.05.606689doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.05.606689
http://creativecommons.org/licenses/by-nc-nd/4.0/


N.; Pavlyk, O.; Brodtkorb, P. A.; Lee, P.; McGibbon, R. T.; Feldbauer, R.; Lewis, S.; Tygier, S.; 

Sievert, S.; Vigna, S.; Peterson, S.; More, S.; Pudlik, T.; Oshima, T.; Pingel, T. J.; Robitaille, T. P.; 

Spura, T.; Jones, T. R.; Cera, T.; Leslie, T.; Zito, T.; Krauss, T.; Upadhyay, U.; Halchenko, Y. O.; 

Vázquez-Baeza, Y. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. 

Nat. Methods 2020, 17 (3), 261–272. https://doi.org/10.1038/s41592-019-0686-2. 

(31) Kirmse, A.; De Ferranti, J. Calculating the Prominence and Isolation of Every Mountain in 

the World. Prog. Phys. Geogr. Earth Environ. 2017, 41 (6), 788–802. 

https://doi.org/10.1177/0309133317738163. 

(32) Palm, W.; Sampaio, J. L.; Brankatschk, M.; Carvalho, M.; Mahmoud, A.; Shevchenko, A.; 

Eaton, S. Lipoproteins in Drosophila Melanogaster—Assembly, Function, and Influence on 

Tissue Lipid Composition. PLoS Genet. 2012, 8 (7), e1002828. 

https://doi.org/10.1371/journal.pgen.1002828. 

(33) Pauls, R. E.; Rogers, L. B. Band Broadening Studies Using Parameters for an Exponentially 

Modified Gaussian. Anal. Chem. 1977, 49 (4), 625–628. 

https://doi.org/10.1021/ac50012a030. 

(34) Kalambet, Y.; Kozmin, Y.; Mikhailova, K.; Nagaev, I.; Tikhonov, P. Reconstruction of 

Chromatographic Peaks Using the Exponentially Modified Gaussian Function. J. Chemom. 

2011, 25 (7), 352–356. https://doi.org/10.1002/cem.1343. 

(35) Huang, Z.; Fish, W. P. Development of Simple Isocratic HPLC Methods for siRNA 

Quantitation in Lipid-Based Nanoparticles. J. Pharm. Biomed. Anal. 2019, 172, 253–258. 

https://doi.org/10.1016/j.jpba.2019.04.026. 

(36) Ksas, B.; Havaux, M. Determination of ROS-Induced Lipid Peroxidation by HPLC-Based 

Quantification of Hydroxy Polyunsaturated Fatty Acids. In Reactive Oxygen Species in Plants; 

Mhamdi, A., Ed.; Methods in Molecular Biology; Springer US: New York, NY, 2022; Vol. 2526, 

pp 181–189. https://doi.org/10.1007/978-1-0716-2469-2_13. 

(37) Mant, C. T.; Chen, Y.; Yan, Z.; Popa, T. V.; Kovacs, J. M.; Mills, J. B.; Tripet, B. P.; Hodges, R. 

S. HPLC Analysis and Purification of Peptides. In Peptide Characterization and Application 

Protocols; Fields, G. B., Ed.; Walker, J. M., Series Ed.; Methods in Molecular BiologyTM; 

Humana Press: Totowa, NJ, 2007; Vol. 386, pp 3–55. https://doi.org/10.1007/978-1-59745-

430-8_1. 

(38) Zhang, Y.; Wu, M.; Xi, J.; Pan, C.; Xu, Z.; Xia, W.; Zhang, W. Multiple-Fingerprint Analysis 

of Poria Cocos Polysaccharide by HPLC Combined with Chemometrics Methods. J. Pharm. 

Biomed. Anal. 2021, 198, 114012. https://doi.org/10.1016/j.jpba.2021.114012. 

(39) Seelinger, F.; Wittkopp, F.; Von Hirschheydt, T.; Frech, C. Anti-Langmuir Elution Behavior 

of a Bispecific Monoclonal Antibody in Cation Exchange Chromatography: Mechanistic 

Modeling Using a pH-Dependent Self-Association Steric Mass Action Isotherm. J. 

Chromatogr. A 2023, 1689, 463730. https://doi.org/10.1016/j.chroma.2022.463730. 

(40) Williamson, Y.; Davis, J. M. Modeling of Anti-Langmuirian Peaks in Micellar Electrokinetic 

Chromatography: Benzene and Naphthalene. ELECTROPHORESIS 2005, 26 (21), 4026–4042. 

https://doi.org/10.1002/elps.200500245. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 7, 2024. ; https://doi.org/10.1101/2024.08.05.606689doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.05.606689
http://creativecommons.org/licenses/by-nc-nd/4.0/


(41) Schrimpe-Rutledge, A. C.; Codreanu, S. G.; Sherrod, S. D.; McLean, J. A. Untargeted 

Metabolomics Strategies—Challenges and Emerging Directions. J. Am. Soc. Mass Spectrom. 

2016, 27 (12), 1897–1905. https://doi.org/10.1007/s13361-016-1469-y. 

(42) Kao, D. J.; Lanis, J. M.; Alexeev, E.; Kominsky, D. J. HPLC-Based Metabolomic Analysis of 

Normal and Inflamed Gut. In Gastrointestinal Physiology and Diseases; Ivanov, A. I., Ed.; 

Methods in Molecular Biology; Springer New York: New York, NY, 2016; Vol. 1422, pp 63–75. 

https://doi.org/10.1007/978-1-4939-3603-8_7. 

(43) Perez De Souza, L.; Alseekh, S.; Scossa, F.; Fernie, A. R. Ultra-High-Performance Liquid 

Chromatography High-Resolution Mass Spectrometry Variants for Metabolomics Research. 

Nat. Methods 2021, 18 (7), 733–746. https://doi.org/10.1038/s41592-021-01116-4. 

(44) Jacob, M.; Lopata, A. L.; Dasouki, M.; Abdel Rahman, A. M. Metabolomics toward 

Personalized Medicine. Mass Spectrom. Rev. 2019, 38 (3), 221–238. 

https://doi.org/10.1002/mas.21548. 

(45) Jang, H. R.; Park, H.-J.; Kang, D.; Chung, H.; Nam, M. H.; Lee, Y.; Park, J.-H.; Lee, H.-Y. A 

Protective Mechanism of Probiotic Lactobacillus against Hepatic Steatosis via Reducing Host 

Intestinal Fatty Acid Absorption. Exp. Mol. Med. 2019, 51 (8), 1–14. 

https://doi.org/10.1038/s12276-019-0293-4. 

(46) Chung, H.; Yu, J. G.; Lee, I.; Liu, M.; Shen, Y.; Sharma, S. P.; Jamal, M. A. H. M.; Yoo, J.; Kim, 

H.; Hong, S. Intestinal Removal of Free Fatty Acids from Hosts by Lactobacilli for the 

Treatment of Obesity. FEBS Open Bio 2016, 6 (1), 64–76. https://doi.org/10.1002/2211-

5463.12024. 

(47) Newell, P. D.; Douglas, A. E. Interspecies Interactions Determine the Impact of the Gut 

Microbiota on Nutrient Allocation in Drosophila Melanogaster. Appl. Environ. Microbiol. 

2014, 80 (2), 788–796. https://doi.org/10.1128/AEM.02742-13. 

(48) McMullen, J. G.; Peters-Schulze, G.; Cai, J.; Patterson, A. D.; Douglas, A. E. How Gut 

Microbiome Interactions Affect Nutritional Traits of Drosophila Melanogaster. J. Exp. Biol. 

2020, 223 (19), jeb227843. https://doi.org/10.1242/jeb.227843. 

(49) Veerkamp, J. H. Fatty Acid Composition of Bifidobacterium and Lactobacillus Strains. J. 

Bacteriol. 1971, 108 (2), 861–867. https://doi.org/10.1128/jb.108.2.861-867.1971. 

(50) Bernhard, W.; Linck, M.; Creutzburg, H.; Postle, A. D.; Arning, A.; Martincarrera, I.; 

Sewing, K. F. High-Performance Liquid Chromatographic Analysis of Phospholipids from 

Different Sources with Combined Fluorescence and Ultraviolet Detection. Anal. Biochem. 

1994, 220 (1), 172–180. https://doi.org/10.1006/abio.1994.1315. 

(51) Huang, X.; Guo, X.-F.; Wang, H.; Zhang, H.-S. Analysis of Catecholamines and Related 

Compounds in One Whole Metabolic Pathway with High Performance Liquid 

Chromatography Based on Derivatization. Arab. J. Chem. 2019, 12 (7), 1159–1167. 

https://doi.org/10.1016/j.arabjc.2014.11.038. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 7, 2024. ; https://doi.org/10.1101/2024.08.05.606689doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.05.606689
http://creativecommons.org/licenses/by-nc-nd/4.0/


(52) Mollerup, J. M. A Review of the Thermodynamics of Protein Association to Ligands, 

Protein Adsorption, and Adsorption Isotherms. Chem. Eng. Technol. 2008, 31 (6), 864–874. 

https://doi.org/10.1002/ceat.200800082. 

(53) Westerberg, K.; Broberg Hansen, E.; Degerman, M.; Budde Hansen, T.; Nilsson, B. 

Model-Based Process Challenge of an Industrial Ion-Exchange Chromatography Step. Chem. 

Eng. Technol. 2012, 35 (1), 183–190. https://doi.org/10.1002/ceat.201000560. 

 522 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 7, 2024. ; https://doi.org/10.1101/2024.08.05.606689doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.05.606689
http://creativecommons.org/licenses/by-nc-nd/4.0/


.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 7, 2024. ; https://doi.org/10.1101/2024.08.05.606689doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.05.606689
http://creativecommons.org/licenses/by-nc-nd/4.0/


.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 7, 2024. ; https://doi.org/10.1101/2024.08.05.606689doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.05.606689
http://creativecommons.org/licenses/by-nc-nd/4.0/


.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 7, 2024. ; https://doi.org/10.1101/2024.08.05.606689doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.05.606689
http://creativecommons.org/licenses/by-nc-nd/4.0/


.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 7, 2024. ; https://doi.org/10.1101/2024.08.05.606689doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.05.606689
http://creativecommons.org/licenses/by-nc-nd/4.0/


.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 7, 2024. ; https://doi.org/10.1101/2024.08.05.606689doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.05.606689
http://creativecommons.org/licenses/by-nc-nd/4.0/


.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 7, 2024. ; https://doi.org/10.1101/2024.08.05.606689doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.05.606689
http://creativecommons.org/licenses/by-nc-nd/4.0/

