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Abstract

High-performance liquid chromatography (HPLC) is a common medium-throughput technique to
guantify the components of often complex mixtures like those typically obtained from biological
tissue extracts. However, analysis of HPLC data from complex multianalyte samples is
hampered by a lack of tools to accurately determine the precise analyte quantities on a level of
precision equivalent to mass-spectrometry approaches. To address this problem, we developed
a tool we call PeakClimber, that uses a sum of exponential Gaussian functions to accurately
deconvolve overlapping, multianalyte peaks in HPLC traces. Here we analytically show that
HPLC peaks are well-fit by an exponential Gaussian function, that PeakClimber more accurately
guantifies known peak areas than standard industry software for both HPLC and mass
spectrometry applications, and that PeakClimber accurately quantifies differences in triglyceride

abundances between colonized and germ-free fruit flies.
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Introduction

Liguid chromatography (LC) is a series of techniques to separate individual analytes from a
mixture of chemicals using liquid phase solvent'. As compared to gas chromatography (GC),
that uses inert gases as solvents (usually helium), liquid chromatography can separate particles
of larger molecular weight?. Originally, liquid chromatography techniques relied on gravity for
solvent flux, which meant that running of individual chromatographs took hours and sometimes
days to complete. In the 1960s?, high-pressure (or performance) liquid chromatography (HPLC)
was introduced, speeding up the flow rate by forcing the solvent through an extremely narrow
column at high-pressures. Despite improvements in column performance, trade-offs between
mass transfer resistance and diffusive behaviors fundamentally limit peak resolution®. For many
HPLC applications, peak integration is sufficient, as these analyses principally are concerned
with presence/absence of specific peaks or with quantitation of relatively pure analytes with little
peak overlap. For the quantification of more complicated chemical and biological samples with
overlapping peaks however, integration alone is inaccurate. Historically, this meant the operator
spent considerable efforts to develop protocols to fully separate analyte peaks of interest,

something not always possible.

Various solutions have been proposed to this problem. Common industry software, such
as ThermoFisher's Chromeleon and Water’'s MassLynx utilize a method known as valley-to-
valley,” where a line is dropped from the lowest point between two peaks to the
chromatograph’s baseline, which is determined by the rolling-ball method®. The two peaks are
then integrated on either side of the line. This method has the advantages of being neutral to
the underlying peak shape, independent of the surrounding peaks, and a fast runtime. However,

most peaks map to some variation of the Gaussian distribution*"™*?

and are not independent of
neighboring peaks with which they overlap. Two more recent open source software packages,
HappyTools™ and hplc.io™*, improve on the valley-to-valley method by fitting each
chromatograph to a sum of Gaussian or skewed Gaussian curves, respectively. However, these
theoretical peak shapes are not necessarily suited to the data, and the shape of a single peak is
not universally agreed upon. Early quantitative models of liquid chromatography showed that
analytes unbind the column with an exponential decay that is convolved by Gaussian noise
based on their distribution along the length of the column and their diffusion in the liquid phase

before reaching the detector”®**". While the shape of a peak depends on the amount of
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sample loaded on the column, Langmuir surface binding kinetics usually leads to a Gaussian

shaped peak with tailing™®.

In this manuscript, we show that HPLC analyte peaks are best fit with an exponential
Gaussian function. Our tool, PeakClimber, fits chromatographs to a sum of exponential
Gaussian curves. We show these curves are mathematically and empirically good fits for single
analyte peaks and consistent with extensive literature suggesting that this approach empirically
aligns with chromatography data”®'**!, PeakClimber also makes iterative improvements in
denoising data, detrending data, and in reducing the runtime of the analysis. To highlight the
utility of PeakClimber, we compare its performance to other algorithms by analyzing coinjections
of three fatty-acids. Finally, PeakClimber was superior to traditional approaches in quantifying
the differences in lipid composition between Drosophila melanogaster that were reared with and

without bacteria.
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Results

Traditional chromatography analysis methods fail to accurately

guantify complex peaks

Valley-to-valley integration methods produce a mismatch between the calculated and true peak
shape (Figure 1A). To quantify the error of this approach, we conducted a simulation with three-
synthetic exponential Gaussian peaks with randomized parameters that overlapped significantly.
Our simulations showed that the valley-to-valley method has significant error between the true
peak shape and the valley-to-valley integration regions, but this error is especially marked for
the first peak in the trace (Figure 1B). This is likely due to the undercounting of the exponential-

tail region of the first peak by valley-to-valley analysis.

Single-analyte HPLC peaks fit an exponential Gaussian distribution

We first wanted to determine what shape we should use to fit individual peaks. There is
extensive discussion of this question in the literature®*>8812151922 1t there is broad agreement
as to a generally Gaussian peak shape with some amount of tailing. To this end, we developed
analytical, computational, and empirical models to support the exponential Gaussian as the true

shape of a chromatographic peak.

Analytical and computational solutions

Consider a column of finite length, initially containing no solute. Injectant containing solute S is
added to the column, and S is completely bound to the column at a single location. Solvent U is
then run over the column. Solute S has affinity k, for solvent U. We assume that the reverse
reaction is negligible because unbound S flows away in the solvent. This behavior can be

described by the differential equation:

s
a —kyS 1)

which we can solve analytically:
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86
87 S(t) = kle_klt (2)

88  producing an exponential function. With an agent-based Monte-Carlo (Figure 2A, histogram)
89  simulation with parameters for S (amount of analyte), k, (affinity for solvent U), column length,
90 and flow rate that are relevant to common HPLC columns, we recapitulate the analytical solution

91  almost exactly (Figure 2A, red line on blue histogram).

92

93  However, this initial model contains several incorrect assumptions, most notably that column
94  binding and unbinding is a single event. In reality there are many binding and unbinding

95 steps'®*"®. Thus, the distribution of analyte S will not be bound to a single site, but rather

96 spread out across the column after many unbinding and binding events. We thus represent the
97  probability of a single particle binding to location x on the column with the exponential

98  probability distribution, with A being the average distance a particle travels in solution before

99  Dbeing absorbed into the column wall.

100

101 c(x) = 2™ (3)

102

103  Ais directly dependent on the speed of the mobile phase (1) and inversely proportional to the

104  diffusion coefficient (D) and relative affinity for the column over the solute.

105 For a single particle, this event does not happen a single time, but many times over the course
106  of column loading. To represent this for n binding/unbinding events, we can sum n exponential

107  functions together, generating an Erlang distribution®.

108
109 Clx) = 22 o-ax 4

(=20 (4)
110

111  Atlarge n, the erlang distribution will converge to a normal distribution® with mean nA and

112  variance nA?.

_ (x—na) 2
113 Cx) = ﬁe 2(nA2)? (5)

114  This is the probability distribution for the location of a single particle along the column. To
115 represent the probability distribution of M particles, we can multiply the distribution by M.
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116
Iy _ (x—na) 2
117 C(X) = We 2(na?)? (6)
118
119

120  To convert this distribution to an arrival time domain, we divide the distance x from the column

121 by the flow rate p.

M _(tp—na)?
122 C(t) = PN 2(nA2)2 (6)
123

M __(t=ni/p) 2
124 C(t) = nﬂzme 2(na2)2 /u2 (7)
125

126  To simplify the expression, we will define two new variables b = n4%/u and ¢ = nA/u. These
127  variables are the spatial mean and variance from equation 5 converted to the arrival time

128 domain by dividing by the flow rate u. This transformation yields the following equation:

_(t=0)?

129 C(t) = %e 252 8)
130

131  This is a Gaussian distribution, which is supported in the chromatography literature as the

132  canonical distribution for peaks in isotonic elution conditions®®. However, when performing

133  elution over a gradient of solvents, the relative affinity of the analyte for the column and mobile
134  phases shifts: encouraging single-step Langmuir kinetics at a critical point on the gradient near
135 the retention time, which results in the exponential decay behavior with no rebinding, which is

136 observed in equation 1. To combine these two effects, we can convolve the two functions.

137
138 Z=Cx*S 9)

139

140

141 Z(t) = [ C(t—7)S(r)dr (10)
142

143 26) = 2 gy f e et g (11)

144
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c+k,b?—t

_ Mski/u Elc-2t+kyb)
145 Z(t) ==—;Fe? erfe, 5

(12)
146
147

148  This matches the standard form of the exponential gaussian function, with erfc representing the

149  inverse error function 1 — erf(x), with erf(x) = %fxw e~t*dt. This equation gives us several

150 insights into the factors that influence the shape of the resulting function. The amplitude, or

151  height of the exponential gaussian function is directly proportional to the number of analyte

152  molecules, and inversely proportional to the flow rate. The center ¢ of the distribution is

153  dependent on the average travel distance of the particle during column loading and the number
154  of binding/unbinding events, whose dependency has been previously described. The width or
155 o (b) is dependent on the same parameters but can also be affected by other minor parameters
156  such as longitudinal diffusion and column inhomogeneities, and thus is not directly proportional
157  to the distribution center. Finally, k, is the unbinding coefficient of the analyte from the column
158 and represents the gamma variable, y, of the exponential Gaussian. This determines how large
159 the tails of the function are. Although our model makes several simplifying assumptions, such as
160 a constant A during column loading and no longitudinal diffusion, it provides a sound biophysical
161  justification for use of the exponential gaussian distribution, which has been utilized in previous
162  chromatography studies®?°. To verify this analytical equation, we conducted a Monte-Carlo

163  simulation recapitulating the assumptions of a period of unbinding/rebinding to the column

164  followed by a kinetic phase in which the analyte has strong affinity for the solvent. This

165 simulation fit an exponential Gaussian equation almost exactly (Figure 2B, red line on blue

166  histogram), further supporting the exponential Gaussian as a good distribution to model HPLC
167  peaks.

168 Empirical Solution

169 To empirically test our theoretical exponential Gaussian distribution on real data, we injected
170  single, pure fatty acid analytes (linoleic acid, arachidonic acid, and docosahexaenoic acid) onto
171  a C18 column, at individual concentrations of either 0.5mg/mL or 1 mg/mL. Analytes were eluted
172 from the column on a 3:1 methanol water to acetonitrile gradient (see methods) adapted from?>.
173  We then used the Python package Imfit® to fit one of four functions commonly used in

174  chromatography to each of the fatty acid peaks. A representative chromatograph of linoleic acid
175 is shown to be fit to i). a Gaussian distribution®?, ii). an exponential Gaussian distribution, iii). a
176  Voigt distribution?” and iv). a skewed Gaussian distribution** (Figure 2C). The goodness of fit

177  was calculated using the Bayesian Information Criteria (BIC), which scores models both based
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on its residual function and the number of parameters. The skew and exponential Gaussian
distributions both have an additional parameter as compared to the Gaussian and Voigt
functions, making this comparison necessary. The exponential Gaussian distribution had by far

the lowest BIC for both concentrations of analytes (Figure 2D).

PeakClimber software package to rapidly and accurately quantifies
chromatography peak areas

We created PeakClimber, an algorithm and python package that identifies and quantifies
individual peaks on a chromatographic trace by fitting a sum of exponential Gaussian functions
to the HPLC trace (Figure 3).

Taking a text file of the trace as input, PeakClimber first denoises and detrends the data.
Denoising is accomplished using a low pass FFT filter®®, as well as time-averaging convolution.
Detrending is accomplished with a high-pass Whitaker baseline subtraction algorithm that was
developed for chromatography, called the peaked signal's asymmetric least squares algorithm
(psalsa)®. Exact parameters for these detrending algorithms are input by the user. We chose
our default values by fitting single peaks of real HPLC data (Figure 3-1). Peaks are then
identified on the denoised data using scipy's peak finding algorithm, relying on prominence
cutoffs to determine if peaks are real or noise®**!. The prominence cutoff is also user defined in
PeakClimber. In this paper, we use a value of 0.05, meaning peaks must be 5% above the
contour trough of surrounding peaks to be analyzed. Additional peaks that form shoulders on
more prominent peaks can be optionally identified by identifying local minima and maxima in the
first derivative of the HPLC trace that are close to 0 (Figure 3-2).

For each identified peak, an exponential Gaussian function is fit using Imfit*® with default
parameters of the identified peak center, the identified peak height, a sigma of 0.1 minutes, and
an exponential decay parameter of 2. Boundaries between discrete peak regions are set where
the background-subtracted trace hits zero (Figure 3-3). The discrete peak regions of the graph
are effectively independent of each other, meaning fits can be performed independently on each
region without loss of accuracy. Each group of Gaussians is fit to the trace in the appropriate
region using a non-linear regression to minimize the least-squared distance between the
generated sum of functions and the underlying trace (Figure 3-4). The algorithm recombines the
fits for the different windows and returns a summary graph of the resulting fit, overlaid with

individual peaks, as well as a table with peak number, runtime, and peak area.
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210 Comparison of PeakClimber to other common HPLC algorithms

211  To test the utility of PeakClimber, we compared its performance to publicly available software.
212  To generate a test dataset with known standards, we injected three fatty acids with overlapping
213  retention times: docosahexaenoic acid (12.3 minutes), arachidonic acid (12.5 minutes) and

214  linoleic acid (12.9 minutes). We ran the analytes at concentrations of either 0.5 or 1 mg/mL.

215 Thus, in each injection, the analytes were either or equal concentration or one analyte was

216  double the concentration of the other two (Figure 4A). This was done to test the dynamic range
217  of PeakClimber compared to other algorithms. The raw HPLC trace was then smoothed and
218 normalized before fitting the three peaks by one of four algorithms. PeakClimber is the algorithm
219  described in this paper (Figure 4B). hplc.io* is a python-based, chromatographic fitting software
220 that uses skewed Gaussian functions as representative of single peaks (Figure 4C). Happytools
221 is afree, standalone software package that uses Gaussian functions to fit single peaks*® (Figure
222  4D). Finally, valley-to-valley is an abstraction of algorithms®® used by common HPLC-software
223  such as Thermofisher’'s Chromeleon, Agilent’'s OpenLab CDS, or Water’'s MassLynx that

224  integrates the area under the curve of the trace between “valleys”, the lowest points between
225 two identified peaks (Figure 4E). Fits (black line in Figure 4B-E) were performed on the entire
226  trace (red line in Figure 4B-E). Error comparisons are reported for each individual peak for each
227  of the three analytes (lower panel Figure 4B-E; analytes are DHA, ARA, and LA from left to right)
228  using root mean-squared error (RMSE). Fit peaks were recentered on the canonical single

229  analyte peaks because run times shifted to later elution times in the co-injections. PeakClimber
230 outperformed all other software regardless of peak position (Figure 4F). Particularly for the first
231  peak in the co-injection, PeakClimber has lower error than the other algorithms due to the

232  correct fitting of the tail of the peaks (Figure 4G). PeakClimber also performed better for the

233  second and third peaks (Supplemental Figure 1 A & B). When error is calculated through

234  percent error of the peak area, rather than RMSE, this pattern still holds (Supplement Figure 1
235 C-F).

236 Testing the Limits of Peak Climber

237  All algorithms, including Peak Climber, have reduced accuracy for groups of peaks under three
238  separate circumstances: high signal-to-noise ratios, small distance between peaks, and uneven
239  ratio between small and large peaks. To test these bounds specifically for PeakClimber, we

240 computationally created traces of partially overlapping peaks using the real fatty acid traces that
241  we generated in Figure 2 with different levels of noise added on top of the trace. The first and

242  second peak overlap, while the third peak is functionally independent, serving as a negative
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243  control (Supplemental Figure 2). To test the fitting ability of the algorithm, rather than peak
244  finding, which is already well-tested in other works®, we provided the peak locations to each

245  algorithm. The % error for each of these cases is shown in the respective subpanels of Figure 5.

246 For noise on single peaks, PeakClimber outperforms manual integration for added noise
247  with an amplitude that is 0.3 times or greater than the true peak size (Figure 5A). This is likely
248  because PeakClimber better captures the shape of the underlying peak. For the distance

249  between peaks, PeakClimber accuracy begins to drop off when the distance between peaks is
250 less than 0.25 minutes. The valley-to-valley method is similarly sensitive to peak overlap only at
251 athreshold distance of 1.5 minutes (Figure 5B). For the ratio between peaks, we held the peaks
252  afixed distance of 1.5 minutes apart. Varying the said ratio between the first and second peaks
253  did not change the error rate for the larger first peak although PeakClimber outperformed valley-
254  to-valley at every peak ratio. For the second peak, both algorithms have large error rates at

255  ratios below 10:1 large peak:small peak. However, PeakClimber’s error drops rapidly to O by a
256  ratio of 4:1, whereas the valley-to-valley method not only drops in error more slowly, but also
257  converges to a steady error rate of about 85% (Figure 5C). This error rate is the lower bound for

258  the valley-to-valley method for peaks with this interpeak distance (Figure 5B).

259 Uniqueness of PeakClimber Solution
260 PeakClimber identifies peak areas by fitting exponential gaussian functions to the underlying
261  chromatography trace using non-linear regression®. We can define the error as the sum of

262  residuals between the y; and the sum of n exponential gaussian functions f,,(x;)

263

264 1 =Y — 21 o (X by Any Oy Vi) (13)

265

266  With u,, A, 0,, ¥, being the center, amplitude, width, and decay function of each gaussian
267  respectively. This residual function will have a single solution if the second derivatives of the
268 function r are all positive, in other words, if the function is convex. When the shape is of y is
269  equivalent to the sum of exponential gaussians, this function will simplify to 0, which is trivially

270  convex, meaning there is only a single solution.

271

272  Additionally, we can empirically restrict the sample space of parameters by observing real
273  behavior of single HPLC peaks. For example, peak centers do not vary from their locations in
274  identified traces, meaning that we can effectively reduce the parameter space down to 3

275  parameters for each exponential gaussian. Kinetics and diffusion-to-flow ratios also place
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biophysical limits on the upper and lower bounds for the Y (tail, k; in equation eq. 11), and o

(width, b in eq. 11) parameters. In this reduced parameter space, we find a single optimum for
two overlapping exponential Gaussians fit to a region of the lipid profile of D. melanogaster
thought to contain only two peaks. Since the space is mapped by 6 parameters (not including

the fixed centers), we used dimension reduction to visualize the result as a PCA, which shows

only a single minimum of the residual ¥ function (Supplementary Table 1).

PeakClimber can be used to accurately quantify lipid differences
between biological samples

To test the utility of PeakClimber on real biological data, we raised female Drosophila
melanogaster from the larval stage on two different microbial conditions (germ-free or
conventionally reared) on a standard diet. We then performed a lipid extraction and then ran the
isolated lipids on the HPLC, using a two-step gradient (first methanol:water to acetonitrile, then
acetonitrile to isopropanol) to separate lipid species by polarity and size, as adapted from?.
Significant differences are observed by eye between germ-free and colonized animals (Figure
6A), especially in the triglyceride region running from 60 to 70 minutes (Figure 6A, inset).
Individual peaks were quantified using either the PeakClimber (Figure 6B, left panel) or
Thermofisher Chromleon (Figure 6B, right panel). The two algorithms identified the same peaks
but produced differences in the magnitude and statistical significance between colonized and
germ-free animals (Figure 6C). Chromeleon identifies all peaks in this region as significantly
different between samples, whereas PeakClimber only identifies some of these peaks as
differentially present. This is not due to sample variance: PeakClimber and Chromeleon both
capture biological sample variance equally. This discrepancy is likely because the tail of the first
peak contributes to the area counted as the second peak by Chromeleon, causing a false
positive when the area is counted this way. This does not occur with PeakClimber, which is able
to deconvolve the tail of the first peak from the rest of the second peak. This suggests that
PeakClimber has more utility in identifying real differential peaks as compared to standard

industry software.

To identify the lipids contained in these peaks, we first performed a lipidomic-mass spec
analysis of whole male and female flies to establish a dataset for canonical fly lipid compounds.
Then, we isolated the 8 sample peaks identified in Figure 6B and ran them through a LC-MS

system to determine their identities. We used the lipidomic data to verify the LC-MS results from
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individual peaks. Many m/z numbers from the individual peak analysis were not found in
lipidomic-mass spec dataset so we also considered compounds that were more saturated,
which would increase the predicted m/z by 1 for each additional hydrogen. Individual peaks
were dried down in a vacuum centrifuge overnight, oxidation and subsequent increase in m/z
values, could have occurred. We found that except for the first peak that ran at 60.1 minutes,
the remaining 7 peaks were triglycerides (Table 1). These peaks were relatively rich in medium-
chain triglycerides, which in agreement with other literature on Drosophila lipids®. Additionally,
the specific elution time of these triglyceride peaks nicely agrees with prior HPLC data of

zebrafish lipid extracts that were also subject to mass spec confirmation®.

Three out of the four significantly enriched peaks in germ-free animals contained long-chain
polyunsaturated fatty acids (63.6,66,67 minutes). None of the non-significant peaks contained
any polyunsaturated fatty acid tails, perhaps suggesting that colonized animals more readily
metabolize these fatty-acids, or that they are preferentially absorbed by microbes, and are thus

lost through feces.

Discussion

In this paper we have shown three principal findings. First, the exponential Gaussian function is
a good fit for HPLC peaks. We showed this both analytically, computationally with Monte-Carlo
simulations, and empirically by calculating the error of the fit for various common distributions
used in chromatography to fit single analyte peaks. Many previous works from the 1970s and
1980s attempt to analytically work out these solutions, and their models, also approximated an

8121516223334 Hp| C peaks often do not represent single

exponential Gaussian distribution
compounds, but groups of compounds. This means that a single peak is often a sum of
individual compounds, all with behavior as described in Figure 2. Due to the central limit
theorem, this would suggest that the chromatographic traces that we observe should have more

of a Gaussian character, but this is not what we observe empirically.

Second, we demonstrated the effectiveness of PeakClimber as compared to other commercially
and freely available software tools to quantitatively analyze chromatography data with
overlapping peaks. This is due to the ability of our algorithm to capture the tail region of the first
peak in a group of peaks, which prevents undercounting and reduces distortion by larger

surrounding peaks. We also show that, given biophysical assumptions that limit the parameter
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338 space, there is only a single best fit solution for the underlying trace. This is vital for accurately

339 quantifying peaks.

340 The package and documentation for PeakClimber are freely available on GitHub with an easy-
341  to-use graphic user interface (GUI). One limitation of the test data used to validate PeakClimber
342 isthatit was only used to test HPLC data from lipid chromatography. Theoretically other

343  biomolecules should have the same kinetic and diffusive behaviors as lipids, and many

344  chromatographic traces present in the literature show single peaks that appear to be similar to
345  exponentially modified Gaussian functions”®*%. However, adapting our algorithm to

39,40

346  additionally deal with anti-Langmuir fronted peaks could be a promising next step.

347  Third, we demonstrated the utility of our algorithm for the analysis of biological data. While

348 mass-spectrometry will always be the gold standard for metabolic analysis*', HPLC represents
349  alower-cost medium-throughput option than mass-spec**. Consider an experiment similar to
350 one that we set up with multiple replicates of different dietary, genetic, or microbial conditions.
351 Rather than analyze each replicate by mass spectrometry, one replicate from each group could
352  be run through mass-spec, and the rest on HPLC, where relative changes in the compounds
353 identified by MS could be much more accurately quantified with PeakClimber. The recognition of
354  HPLC as this medium-throughput bridge between MS and high-throughput methods such as
355 colorimetric kits could be one reason for the recent interest in development of tools to better

356 analyze this type of data®***3%,

357  The reduction in triglycerides containing long-chain fatty acids polyunsaturated fatty acids in
358 flies colonized with Lactobacillus and Acetobacter is an additional interesting finding from this
359  work. Previous work in mice***® has shown that various Lactobacillus species can protect

360 against obesity by acting as a sponge for fatty acids, and then being excreted in the feces.

361 These results also agree with work in the fly that shows that colonization can reduce triglyceride
362  accumulation®”*®. Why these bacteria reduce the presence of polyunsaturated fats in particular
363  is unclear, but could be due to composition of Lactobacillus membranes, which are largely

364 composed of unsaturated fatty acids®.

365  Although we did not observe this in our dataset, neighboring peaks in HPLC are often
366 composed of extremely similar compounds that are part of biochemical pathways such as fatty
367 acid elongation or conversion between different phospholipid compounds®**. PeakClimber

368 could be used to find the precise step in these pathways that is affected by the genetic mutation,
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369 diet, or colonization condition of interest. This method could provide an additional advantage
370 over alternative methods such as transcriptomic or proteomic analysis due to the ability to

371 measure actual metabolite levels rather proxies of RNA or protein levels, the activity of which
372  can both be affected by downstream processing such as translation (in the case of RNA), or

373  post-translational modifications and confirmational changes (in the case of protein).

374 Limitations and comparison to other algorithms:

375 The exponential Gaussian function will not perfectly fit some chromatography peaks, as

195253 '\which will not fit an

376  compounds that run with anti-Langmuir kinetics will have peak fronting
377  exponential Gaussian distribution. Peak fronting can also occur when the peak has been
378 overloaded with analyte. Additionally, our mathematical model makes several simplifying
379  assumptions about the geometry and flow rate of common HPLC systems. Based on

380 complexities of experimental conditions that influence the quality of the data, more complex

381 analysis programs could be needed.

382  However, despite these limitations, we want to highlight the performance advantages of

383 PeakClimber compared to other available software. Prior to PeakClimber, there was a common
384  sentiment that overlapping peaks could only be analyzed qualitatively. Here with PeakClimber
385 we show that we can in fact extract highly quantitative data from HPLC traces that contain

386 overlapping peaks. Even compared to other software that attempts to tackle this problem in a
387 similar manner, PeakClimber much more accurately quantifies areas of overlapping peaks, due
388 toits ability to consider long peak tails. For the analysis of biological data that contain many

389 overlapping and non-overloaded peaks, we believe that PeakClimber will prove to be invaluable.

390

391
392 Materials and Methods

393 Monte-Carlo simulations

394  Exponential decay simulation: A column 1000 units long with 100 analyte particles at position
395 1 bound to the column is instantiated. At each time step the analyte has a 5% chance of

396 unbinding from the column (representing a k value of 0.05). Once unbound the particle arrives
397 atthe detector a fixed time later, in this case 900 time-steps. The simulation was performed

398 10000 times and results were pooled.
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399  Multi-step reaction simulation: A column 1000 units long with 100 analyte particles at position
400 1lis instantiated. Particles are allowed to bind to the column with a probability of 0.5 and unbind
401  with the same probability for 100 steps. When not bound to the column, particles move at the
402 flow rate (1 binding site per step). After 100 steps, the probability of unbinding is reduced to 0.05,
403  and the probability of rebinding is reduced to 0. Once unbound, these particles arrive at the

404  detector a fixed time later, in this case 900 time-steps. The simulation was performed 10000

405 times and results were pooled.

406 Fatty-acid chromatography

407  Fatty acid aliquots were obtained from Cayman Chemicals: linoleic acid (LA) (CAS 60-33-3),
408 arachidonic acid (ARA) (CAS 506-32-1), and docosahexaenoic acid (DHA) (CAS 6217-54-5).
409  The fatty acids were suspended in HPLC-grade isopropanol in stock concentrations of

410 10mg/mL. Aliquots were then further diluted to either 0.5mg/mL or 1 mg/mL as individual

411  analytes or as part of one of the four mixtures analyzed (0.5:0.5:0.5, 1:0.5:0.5, 0.5:1:0.5,

412  0.5:0.5:1 mg/mL of DHA: ARA: LA respectively. 20 pL of each individual analyte or mixture
413  was injected onto the HPLC system. The components of each sample were separated and
414  detected by an HPLC system using a LPG-3400RS quaternary pump, WPS-3000TRS

415  autosampler (maintained at 20°C), TCC-3000RS column oven (maintained at 40°C), Accucore
416  C18 column (150 x 3.0 mm, 2.6 um particle size), FLD-3100 fluorescence detector (8 pL flow
417  cell maintained at 45°C), and a Dionex Corona Veo charged aerosol detector (all from Thermo
418  Fisher Scientific). Component peaks were resolved over a 30 min time range in a multistep
419  mobile phase gradient as follows: 0-5 min = 0.8 mL/min in 98% mobile phase A (methanol-
420  water-acetic acid, 750:250:4) and 2% mobile phase B (acetonitrile-acetic acid, 1,000:4); 5-30
421  min = 0.8-1.0 mL/min, 98-30% A, 2—-44% B, and 0—3.3% mobile phase C (2-propanol)®*’. HPLC-
422  grade acetic acid and 2-propanol were purchased from Fisher Scientific and HPLC-grade

423  methanol and acetonitrile were purchased from Sigma-Aldrich.

424 Error tolerance simulations

425 Noise simulation: a single exponential Gaussian peak was initialized with the following

426  parameters: amplitude between 1 and 5, y (skew) between 2.9 and 3, and sigma between 0.1
427 and 0.2. Noise was added to the peak between 0 and 80% of its amplitude. Peak area was

428  calculated using PeakClimber or manual integration after denoising and compared to the known

429  area of the generated peak.
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430 Proximity and ratio simulations: Individual analyte traces of either linoleic acid (LA) (CAS 60-
431  33-3), arachidonic acid (ARA) (CAS 506-32-1), or docosahexanoic acid (DHA) (CAS 6217-54-
432  5) were smoothed and background subtracted as described in the body of the paper. Three
433  copies of the corrected trace were superimposed on top of each other, and the resulting three
434  peaks were computational separated by 0.1 to 2 minutes, or 10 minutes, respectively. The
435  area of each of the three peaks was calculated either using PeakClimber, or the valley-to-
436  valley algorithm, and the compared to the known underlying peak. Error was calculated by
437  dividing the chi-square function of the residual error by the total peak area. For peak ratio, the
438 second peak was held at a constant distance of 0.75, but the relative size of the peak was

439  scaled between 0.1 and 1 of the size of the first peak.

440 Fly husbandry

441  Drosophila melanogaster Canton-S flies were initially isolated from long term germ-free stocks
442  keptin lab. The parental generation of flies was inoculated with a 7-species microbiome mixture
443  consisting of L. plantarum, L. brevis, A. pomorum, A. orientalis, A. cerevisiae, A. sicerae, and A.
444  tropocalis that recapitulates the microbiome found in a wild fruit fly 5 days after eclosion or

445  maintained germ-free. Parental flies were fed a diet consisting of 10% glucose (v/v), 0.42%

446  propionic acid (v/v), 1.2% (w/v) agar, and 5% yeast (w/v). These flies were allowed to lay eggs
447  on their food for 3 days. The resulting offspring were raised until 10 days post eclosion before

448 lipid extractions.
449 Lipid extractions and chromatography for Drosophila melanogaster

450 Groups of 8 flies were macerated using a bead beater in 500 pL of lipid extraction buffer (10 mM
451  Tris, ImM EDTA, 7.8 pH). 400 pL of extract was mixed with 1.5 mL 2:1 chloroform:methanol
452  (with 1 ng/mL of TopFluor cholesterol as an internal standard) and allowed to sit for 10 minutes.
453  Then 500 pL of chloroform followed by 500 pL of extraction buffer was added to the mixture.
454  The mixture was centrifuged at 2300 rcf for 5 minutes and the organic (bottom) phase was

455  harvested. This was evaporated to dryness under vacuum centrifugation and then resuspended
456  in 100 pL of HPLC grade isopropanol.

457 20 pL of the sample was injected onto the HPLC system as described earlier. Component peaks
458  were resolved over an 80 min time range in a multistep mobile phase gradient as follows: 0-5

459  min = 0.8 mL/min in 98% mobile phase A (methanol-water-acetic acid, 750:250:4) and 2%

460 mobile phase B (acetonitrile-acetic acid, 1,000:4); 5-35 min = 0.8—1.0 mL/min, 98-30% A, 2—-65%
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461 B, and 0-5% mobile phase C (2-propanol); 35-45 min = 1.0 mL/min, 30-0% A, 65-95% B, and
462 5% C; 45-73 min = 1.0 mL/min, 95-60% B and 5-40% C; and 73—80 min = 1.0 mL/min, 60% B,
463 and 40% C. (HPLC-grade acetic acid and 2-propanol were purchased from Fisher Scientific and

464 HPLC-grade methanol and acetonitrile were purchased from Sigma-Aldrich.)

465  For downstream LC-MS analysis, peaks were collected in the following intervals via fraction
466  collector 60-60.4 min (1), 60.4-60.9 min (2), 60.9-61.5 min (3), 61.5-63 min (4) 63.2-64 min
467 (5),64-66 min (6),66-67 min (7), 67-69 min (8). Peaks were then evaporated to dryness and
468 resuspended in 100 pL methanol and DCM (50/50 v/v) with a concentration of 5mM ammonium

469  acetate in the final solution.
470 Liquid Chromatography-High Resolution (Q-TOF) Mass Spectrometry Analysis

471 Ammonium acetate, methanol, and dichloromethane (DCM) were purchased from
472  Thermo Fisher Scientific Inc. (Waltham, MA). Full scan mass spectral analyses of isolated
473  peaks were conducted using an AB Sciex Quadrupole Time of Flight Mass Spectrometer
474  controlled by Analyst 1.8 (5600 Q-TOF) (Framingham, MA). The mass spectrometer was
475  coupled to a Shimadzu ultrafast liquid chromatographic system (UFLC, Kyoto, Japan), which
476  consisted of a degasser, a quaternary pump, an autosampler, and a temperature-controlled
477  column compartment. Each individual peak fraction (20 pL injection volume) was directly infused
478 into the mass spectrometer's electrospray ionization (ESI) source chamber through the UFLC
479  autosampler. The mobile phase comprised methanol and DCM (50/50, v/v) spiked with 5 mM
480 ammonium acetate, with a flow rate set to 100 pL/min. ESI parameters were as follows: source
481 gases were set to 20 for Gas 1 and 30 for Gas 2, while the curtain gas was set to 30. The
482  source temperature was set to 250 °C, and the lon Spray Voltage Floating (ISVF) was set to 5.5
483  kV. The compound decluttering potential was set to 80. The mass spectrometer operated in TOF
484  high-resolution full scan mode within an m/z scan range of 100 to 1200, with an accumulation
485 time of 0.25 seconds for one minute for each sample run. The high-resolution mass
486  spectrometer was calibrated with manufacturer solvent (Pl: 4460131) to maintain mass

487  accuracy.

488

489  Canonical lipid peaks were obtained with the following method. 8 frozen Drosophila

490 melanogaster females (10 days post eclosion) were resuspended in MTBE (1mL), vortexed and
491 then transferred to an Eppendorf tube. 300 pL of methanol with internal standard was added

492  and samples were shaken for 10 min. 200 pL of water was added to facilitate phase separation.
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493  The extracts were centrifuged at 2,000 rcf for 10 min. The top layer was removed, dried down,
494  and reconstituted in 100 pL of IPA for analysis. Avanti's deuterated lipid mix, Equisplash, was
495  used as an internal standard. This was spiked into the methanol at 1.5 pg/mL and used for

496  extraction. Analysis was performed using a Thermo Q Exactive Plus coupled to a Waters

497  Acquity H-Class LC. A 100 mm x 2.1 mm, 2.1 um Waters BEH C18 column was used for

498  separations. The following mobile phases were used: A- 60/40 ACN/H20 B- 90/10 IPA/ACN;

499  both mobile phases had 10 mM Ammonium Formate and 0.1% Formic Acid.

500

501 A flow rate of 0.2 mL/min was used. Starting composition was 32% B, which increased to 40% B
502 at 1 min (held until 1.5 min) then 45% B at 4 minutes. This was increased to 50% B at 5 min, 60%
503 B at 8 min, 70% B at 11 min, and 80% B at 14 min (held until 16 min). At 16 min the composition
504  switched back to starting conditions (32% B) and was held for 4 min to re-equilibrate the column.
505

506 Code availability

507 All data and Jupyter Notebooks used to generate figures in this manuscript can be found at
508 github.com/ATiredVegan/PeakClimberManuscriptRepository. The PeakClimber package and
509 use instructions can be found at github.com/ATiredVegan/PeakClimber.

510
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Figure 1: The problem of peak quantification. (A). A cartoon depiction of a common inaccuracy in peak
quantification. When three analytes are well-separated, their area is accurately calculated by peak integration. When
three analytes have overlap in the trace, the valley-to-valley area calculation algorithm will not accurately determine
peak areas due to overlap of the tails. (B). A simulation of three overlapping peaks. The shaded region represents the
integration regions identified by the valley-to-valley algorithm; the solid lines represent the true peaks. The difference

between the two is quantified by Root Mean Squared Error (RMSE) (n=1000, Mann-Whitney followed by Wilcoxon
Ranked Test, ****p<le-04).
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Figure 2: Individual HPLC analyte peaks correspond to an exponential Gaussian distribution. (A
and B). Monte Carlo simulation of solute arrival time at the detector without (A) or with (B) rebinding (blue) fit to an
exponential distribution (A) or exponential Gaussian distribution (B) (red) (h=10000 simulations consisting of 100
analyte molecules each). (C). Empirical fits of (left to right) Gaussian, exponential Gaussian, skew Gaussian, and
Voigt distributions to a single linoleic acid peak (D). Bayesian Information Criteria (BIC) of the fit of above distributions
on pooled arachidonic acid (triangle), docosahexaenoic acid (circle), and linoleic acid (square) single peaks. Analytes
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are grouped by injection volume. (n=12 [4 experimental replicates of each of the 3 fatty-acids], Mann-Whitney U-test
with Bonferroni correction, ***: p<le-03; ****: p<le-04).

Figure 3: The PeakClimber workflow. (1) PeakClimber first denoises (FFT) and detrends chromatography
data before (2) identifying peaks using prominence cutoffs. (3) To decrease runtime, peaks are split into regions
based on intersections of the trace with the x-axis. (4) Within each region, peaks are fit to an exponential Gaussian
distribution.
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Figure 4: PeakClimber is more accurate and precise than Industry Software (A). Schematic of the
experiment performed in this figure. Three overlapping fatty-acid peaks were injected at either a ratio of 1:1:1, 1:2:1,
2:1:1, or 1:1:2. The calculated areas (using the algorithms listed below) were compared to the real injected areas of
the individual peaks. (B) PeakClimber fit to a chromatograph of a coinjection of C18:1, C20:4 and C22:6 mixed in a
1:2:1 ratio. Red trace: raw data, black trace: predicted sum of peak areas, blue, orange, green shaded regions:
predicted individual peak areas. (C-E) Fits to the same data in B by (C) hplc.io, (D) the valley-to-valley algorithm
(Thermofisher and Waters), and (E) HappyTools. Bottom subpanels show the fits to each individual peak. (F)
Quantification of error rates by RMSE of pooled coinjections of C18:1, C20:4 and C22:6 depending on peak position
by above algorithms. Blue dotted line represents minimum RMSE error obtained from the single-peak fits. (G)
Quantification of error rates for peak 1 alone comparing 10 pg and 20 ug injections. (Kruskal-Wallis Test with
Bonferroni correction for subpanels F and G, n=12, 3 biological replicates each with 4 experimental replicates, *:
p<5e-02**: p<le-02, ***: p <1le-03, ****: p < 1e-04).

>
B

Analysis Type
—— PeakClimber
Valley-to-Valley

3
5]

Added Noise=10% peak size

&
o

B
o

X )
v
\
A"

| /™,
e e e

Added Noise=80% peak size

!
N WWMMMWW

Error of Fit (%)
a0~ B
o (5] o

N
o

0.0

00 02 04 06 08
Noise (Fraction of Peak)

A

Error of Peak 1 Fit Error of Peak 1 Fit
_ 300 _ 100
® 2
& S5
= 200 —— Valley-to-valley e — Valley-to-valley
o PeakClimber 2 50 PeakClimber
5 > 5
(& 100 e iy
S 25
—
0 0
025 050 075 100 125 150 175 0.2 04 0.6 0.8 1.0
Distance between peaks (min) Ratio between peaks 1 and 2
Error of Peak 2 Fit Error of Peak 2 Fit
1000
300 . &
£ \ £ 750 \
E 200 Valley-to-valley E \ —— Valley-to-valley
o PeakClimber © 500 \ PeakClimber
g <) o~
= = A
w 100 W o50 e
-\.\_“‘ \-»_\‘k_\_‘_
0 0
025 050 075 1.00 1.25 1.50 1.75 0.2 0.4 0.6 08 1.0
Distance between peaks (min) Ratio between peaks 1 and 2

Figure 5: PeakClimber is more robust to noise and peak overlap than industry software. (a)
Schematic: Gaussian noise as a fraction of the peak amplitude is added to a single synthetically generated peak with
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amplitude between 1 and 2, o between 0.1 and 0.2, y between 2.9 and 3 and center at 1. This noise is detrended
and removed using the PeakClimber algorithm and then the resulting peak area is either found by fitting
(PeakClimber) or integration with the valley-to-valley method. The calculated area is compared to the known area. (B)
Three analyte curves are superimposed and shifted 0.1-2 min (peak 2) or 10 min later (peak 3). Curves are
generated from real traces of arachidonic acid, docosahexaenoic acid, and linoleic acid (C). Using the same
parameters for exponential Gaussians as in A, but with a fixed distance of 0.75 minutes between peaks 1 and 2, and
10 minutes between peaks 1 and 3, the ratio between peak 1 and 2 was varied between 0.1 and 1 (n=24 [4
experimental replicates of each of the 3 fatty-acids at 2 concentrations]).
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Figure 6: PeakClimber more accurately quantifies biological differences between germ-free

Retention Time Measured m/z Predicted Compound ID Significant
unsaturated m/z
60.3 654.27/846.67 654.56/834.6 (-12 H) | TG(36:1)+NH4, PC No
(40:6)+H
60.6 820.66 818.72 (-2 H) TG(16:1,16:1,16:1)+NH4 | Yes
61.1 794.65 790.69 (-4 H) TG(14:1,16:1,16:1)+NH4 | No
63.1 768.64 768.7 TG(14:0,14:0,16:0)+NH4 | No
63.6 848.69 846.75 (-2 H) TG(18:3,16:0,16:0)+H Yes
64.0 822.68 820.73 (-2 H) TG(16:0,16:1,16:1)+NH4 | No
66.0 876.72 869.75 (-7 H) TG(21:4,16:0,16:0)+NH4 | Yes
67.0 850.70 848.77 (-2 H) TG(14:0,14:0,18:2)+NH4 | Yes

and colonized flies. (A) Alipid profile for germ free (purple) or colonized (yellow) female fruit flies normalized to
total chromatograph area. Highlighted regions in green are shown in higher resolution in the inset are quantified
below in (B). Algorithmic fit of the highlighted regions above using PeakClimber (left) and Thermofisher Chromeleon
(right) on the germ-free trace. (C). Quantitation of peak areas for selected peaks in the highlighted region (Krukskal-
Wallis rank-sum: *: p< 0.05 n=3, 8 flies per sample).

Table 1: Mass-spec analysis and identification of Drosophila lipids eluted from the triglyceride region of the
total lipid chromatograph. The retention time (column 1), measured m/z value (column 2), predicted unsaturated
m/z value (column 3), and compound identity (column 4), and PeakClimber significance (Krukskal-Wallis rank-sum: *:
p< 0.05 n=3, 8 flies per sample) for each peak in the 60-70 minute region of the fly lipid profile (TG=Triglyceride,
PC=phosphatidylcholine).
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