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2	

Abstract 16	
  17	
Spatially resolved transcriptomics technologies enable the mapping of multiplexed gene expression 18	
profiles within tissue contexts. To explore the gene spatial patterns in complex tissues, computational 19	
methods have been developed to identify spatially variable genes within single tissue slices. However, 20	
there is a lack of methods designed to identify genes with differential spatial expression patterns 21	
(DSEPs) across multiple slices or conditions, which becomes increasingly common in complex 22	
experimental designs. The challenges include the complexity of cross-slice gene expression and spatial 23	
information modeling, scalability issues in constructing large-scale cell graphs, and mixed factors of 24	
inter-slice heterogeneity. We propose DSEP gene identification as a new task and develop River, an 25	
interpretable deep learning-based method, to solve this task. River comprises a two-branch prediction 26	
model architecture and a post-hoc attribution method to prioritize DSEP genes that explain condition 27	
differences. River's special design for modeling spatial-informed gene expression makes it scalable to 28	
large-scale spatial omics datasets. We proposed strategies to decouple the spatial and non-spatial 29	
components of River’s outcomes. We validated River's performance using simulated datasets and 30	
applied it to identify DSEP genes/proteins in diverse biological contexts, including embryo development, 31	
diabetes-induced alterations in spermatogenesis, and lupus-induced splenic changes. In a human triple-32	
negative breast cancer dataset, River identified generalizable survival-related DSEPs, validated across 33	
unseen patient groups. River does not rely on specific data distribution assumptions and is compatible 34	
with various spatial omics data types, making it a versatile method for analyzing complex tissue 35	
architectures across multiple biological conditions. 36	

  37	
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3	

Introduction 38	
The advent of spatially resolved transcriptomics technologies has revolutionized our understanding of 39	
tissue architectures by enabling gene expression profiling while preserving spatial context1,2. As these 40	
technologies become increasingly accessible, the scale of experimental data has expanded from hundreds 41	
of cells collected from a single slice or a few slices to millions of cells collected from dozens of slices across 42	
conditions or temporal stages3-7. 43	
 44	
This explosion of data has created a pressing need for computational methods that can effectively analyze 45	
complex spatial expression patterns of genes at scale8. In spatial transcriptomics, a key aspect of spatial 46	
data analysis is the identification of spatially variable genes (SVGs), which exhibit significant spatial 47	
dependencies in their expression levels9,10. SVGs play critical roles in establishing and maintaining tissue 48	
organization, and their dysregulation has been implicated in various pathological conditions11,12. Several 49	
computational methods have been developed to identify SVGs, including early methods like SpatialDE13 50	
and Trendsceek14, which utilize statistical tests to assess gene spatial variability. Later and recent methods, 51	
such as SPARK15, SPARKX16, SpatialDM17, SOMDE18, Sepal19, and others20-23, have improved the 52	
accuracy and scalability of SVG identification by introducing various spatial kernels, identifying spatially 53	
co-expressed ligand-receptor pairs, employing self-organizing maps, and using diffusion-based processes. 54	
Despite these advancements, existing methods primarily focus on identifying SVGs within a single slice. 55	
However, with the development of large-scale spatial omics technologies, comparing spatial expression 56	
patterns across multiple slices from various conditions has become critical for understanding tissue 57	
organization and function. 58	
 59	
To address this challenge, we propose a novel task: identifying genes with differential spatial expression 60	
patterns (DSEPs) in multi-slice and multi-condition spatial omics data. DSEP genes exhibit changes in 61	
spatial expression patterns across different slices, encompassing both gene expression level changes and 62	
spatial pattern changes. Existing methods, such as SVG methods and differential expression gene (DEG) 63	
methods24, are limited in their ability to identify DSEPs, as they focus on single-slice or gene expression 64	
abundance without considering spatial information. To overcome these limitations, we developed River, an 65	
interpretable deep learning-based method specifically designed to identify genes exhibiting DSEPs among 66	
multiple slices and multiple conditions in spatial omics data. River is based on the assumption that only 67	
genes with significant DSEPs across slices can contribute to the prediction of slice/condition labels.  68	
 69	
We demonstrate River's performance on carefully designed simulated datasets. We show that River-70	
identified DSEP signal can be decoupled into non-spatial and spatial components. Using a mouse E15.5 71	
embryo dataset, we demonstrate the non-spatial variations of River-identified DSEP genes and validate 72	
its generalizability in E16.5 embryos. We also developed a strategy to only pinpoint spatial variation along 73	
eight development stages based on a gene expression binarization strategy. In mouse models, River 74	
identified diabetes-induced DSEPs in spermatogenesis and lupus-induced DSEPs in the spleen. In human 75	
cancer, River identified DSEPs related to Triple-negative breast cancer subtypes, which was validated 76	
generalizable across the unseen patient groups. River is also compatible with other spatial omics data 77	
other than spatial transcriptomics, for example Multiplexed ion beam imaging by time-of-flight (MIBI-TOF)25 78	
and Co-Detection by Indexing (CODEX)26. Additionally, River's special design for modeling spatial-79	
informed gene expression makes it scalable to large-scale spatial omics datasets, making it well-suited for 80	
the rapidly accumulating spatial omics data. Our studies demonstrate River's potential to uncover novel 81	
insights into the molecular mechanisms driving spatial heterogeneity and its alterations in different 82	
biological contexts.  83	
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4	

Results 84	

River overview 85	
River (Fig. 1A) is designed to identify genes exhibiting differential spatial expression patterns (DSEPs) 86	
among multiple slices in spatial omics data. Each “slice” can be associated with labels such as conditions, 87	
developmental stages, disease states, or treatment groups (Fig. 1B). The main idea of River can be 88	
summarized as follows: In a multi-slice dataset, DSEPs contribute to differentiate among different 89	
slices/conditions, thereby enabling a prediction model to utilize spatially resolved gene expression to 90	
distinguish between these slices/conditions. Only genes that show significant changes (spatial and/or non-91	
spatial) between different slices/conditions provide useful information for the prediction model.  92	
 93	
River (Fig. 1A) is based on interpretable deep learning, consisting of a prediction model followed by deep 94	
learning attribution methods to identify the genes contributing to the prediction. These contributions are 95	
quantified as scores to prioritize DSEP genes. The process can be broken down into the following steps: 96	
(1) designing the prediction model to fully utilize the spatial-aware gene expression features in a multi-97	
slice and multi-condition dataset, and (2) quantifying contributions of each gene to the prediction model.  98	
 99	
To aggregate spatial position and gene expression data (Fig. 1A-i) and obtain spatial-aware gene 100	
expression latent representations for each input cell, River utilizes a joint two-branch architecture. This 101	
architecture includes a position encoder (to extract features from spatial information) and a gene 102	
expression encoder (to extract features from gene expression), which independently extract features and 103	
then fuse them in the latent space (Fig. 1A-iii). Before input into position encoder, cells from different slices 104	
are spatially aligned using heterogeneous alignment methods to harmonize spatial information (Fig. 1A-ii). 105	
Above approach ensures that gene expression features in the latent space are spatial information-aware, 106	
which are then sent to subsequent modules to predict slice-level labels. The position encoder is motivated 107	
by its efficiency and scalability compared to previous graph neural network based spatial embedding 108	
methods, while maintaining information integrity, as demonstrated in previous spatial omics studies27. After 109	
the training phase, River employs multiple deep learning attribution strategies to obtain cell-level gene 110	
contribution scores, which are then aggregated to derive the final global scores (Fig. 1A-iv). Compared 111	
with direct and global-level selection methods like Lasso28, the instance-level scores reflect the high cell-112	
wise heterogeneity in spatial omics slices. A rank aggregation method synthesizes the contribution 113	
rankings provided by multiple interpretation attribution techniques. This aggregation process is critical, as 114	
it combines insights from multiple analytical perspectives and obtains a robust and reliable measure of 115	
each gene's contribution on the prediction of slice labels. More details can be found in Methods. 116	
 117	
Both the training of the prediction network and the attribution module can be conducted in mini-batch 118	
distributed computation on GPUs. Moreover, the use of non-graph spatial information embedding 119	
techniques ensures the scalability and efficiency of River on large-scale multi-slice data, which is critically 120	
important in modern large-scale biological studies.  121	
  122	
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Benchmarking analysis 123	
To evaluate the performance of River, we generated simulated datasets (Fig. 2A, see Methods). The 124	
control slice (slice 0) contained four different spatial domains. Condition slices (Slices 1 – 6) were 125	
generated based on slice 0, each with a carefully designed and distinct perturbation to control gene 126	
expression variability (Fig. 2A). This setup provided a ground truth where perturbed genes were labeled 127	
as positive (DSEP genes) and the remaining genes as negative (background or non-DSEP genes), which 128	
allowed us to evaluate the performance of various methods. We compared slice 0 with each of slices 1 – 129	
6 (resulting in datasets 1 to 6) using different methods (Fig. 2B). 130	
 131	
Since there are currently no methods for identifying differential spatial expression pattern (DSEP) genes 132	
across slices, we adapted existing methods to be compatible with the multi-slice context. Specifically, our 133	
competing methods included adapted highly variable gene (HVG) selection methods (SeuratV329, Seurat30, 134	
CellRanger) and adapted spatially variable gene (SVG) selection methods (SPARKX16, SpatialDE13, 135	
Sepal19, Moran’s I31, Geary’s C31, and BSP32). We explained how these methods can be adapted to multi-136	
slice analysis (see Methods). 137	
 138	
The performance of River and nine competing methods was summarized across six datasets (Fig. 2C). 139	
River significantly outperformed all other methods in terms of F1-score (p-value < 0.05). River ranked first 140	
with a median F1-score of around 0.59, while the second and third best methods, Sepal and SpatialDE, 141	
had median scores of approximately 0.41 and 0.32, respectively (Fig. 2C). The other methods had F1-142	
scores close to zero, indicating their inadequacy for this challenging task (Fig. 2C). Additionally, since River, 143	
Sepal, SeuratV3, Seurat, and CellRanger can output gene-wise scores, we compared the F1-scores using 144	
different top-k choices for these methods (Fig. 2D). Regardless of the selection of k, River outperformed 145	
the other methods in almost all cases (Fig. 2D). 146	
 147	
River’s attribution module (see Methods) can output meaningful scores for each gene, prioritizing those 148	
with differential spatial expression patterns. To further validate River’s attribution scoring capability, we 149	
analyzed whether River’s attribution score could differentiate true DSEP genes from background genes 150	
(Fig. 2E). We compared one of the attribution methods (see Methods), Integrated Gradient (IG) score of 151	
River with Sepal (second best method that can output gene-wise scores as shown in Fig. 2C-D). For each 152	
dataset, we plotted the gene-wise scores provided by River and Sepal (Fig. 2E). Across the six datasets, 153	
River (represented by the red curve) consistently assigned higher scores to DSEP genes compared to 154	
background genes (red dashed lines always higher than orange dashed lines across 6 datasets), with the 155	
scores exhibiting significant differences between true DSEP genes (denoted as River (pos)) and 156	
background genes (denoted as River (neg)) (p-value < 0.05) as shown in the violin plots (Fig. 2E). In 157	
contrast, Sepal (represented by the green curve) failed to differentiate DSEP genes from background 158	
genes (red solid line always overlap with orange solid line), as Sepal-computed scores did not show 159	
significant differences between the two groups, i.e., Sepal (pos) and Sepal (neg), as shown in the violin 160	
plots (Fig. 2E). Additional comparisons of other attribution methods can be found in Supplementary Fig. 2. 161	
 162	
  163	
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River detects non-biological spatial expression patterns across slices 164	
When comparing slices, differential spatial expression patterns (DSEPs) identified by River can arise from 165	
both spatial and non-spatial variations. Non-spatial variations may originate from gene expression level 166	
differences between slices, either due to biological or non-biological factors (e.g., batch effects). We used 167	
a mouse embryo dataset33 to demonstrate River's capability to identify genes with non-spatial variations 168	
among slices. Specifically, this dataset contains four replicate slices of E15.5 mouse embryos and another 169	
four replicate slices of E16.5 mouse embryos. (Fig. 3A) 170	
 171	
We applied River to detects genes that can differentiate the four slices of the E15.5 dataset. Since these 172	
slices were consecutive from the same embryo, any differential genes among them were likely attributed 173	
to non-biological factors (e.g., caused by different experimental batches or z-axis differences) 174	
(Supplementary Fig. 3A). Visualizations of the top-3 River-identified genes (Trim30a, CDK8, and Tlk1) in 175	
a stacked 3D space confirmed their distinct expression patterns across the slices (Fig. 3B). Specific 176	
regions, including liver (Fig. 3B-i), brain (Fig. 3B-ii), and heart (Fig. 3B-iii), highlighted the different 177	
expression levels evidently.  178	
 179	
To validate that River-prioritized genes can be attributed to non-biological factors, we performed Uniform 180	
Manifold Approximation and Projection (UMAP)34,35 on all cells from the four slices using different gene 181	
sets (full gene set, River-selected top-20 genes, and River-selected bottom-20 genes) as input features to 182	
assess the information contained in River-selected genes and their negative controls. When using the top-183	
20 genes ranked by River, cells from each slice clustered together and were clearly separated in the 3D 184	
UMAP space (Fig. 3C-i), indicating that these genes effectively captured the most prominent differences 185	
of the consecutive slices. Using all genes as features resulted in a less distinct separation of the slices 186	
(Fig. 3C-ii). On the negative control, using the River-selected bottom-20 genes as features completely 187	
failed to distinguish the slices (Fig. 3C-iii), confirming that these genes had the lowest inter-slice differences. 188	
 189	
We hypothesize that these top-ranked genes are also most affected by non-biological factors like batch 190	
effects in other samples. To test the generalizability of the River-selected gene sets, we applied the top-20 191	
genes identified in the E15.5 slices to four slices from the E16.5 embryo. Strikingly, the 3D UMAP using 192	
these genes effectively separated the E16.5 slices (Fig. 3D-i), demonstrating the robustness of River-193	
identified genes on different animal. The UMAP using all genes in the E16.5 slices can also separate 194	
different slices (Fig. 3D-ii). And the bottom-20 genes (negative control) from E15.5 failed to distinguish the 195	
E16.5 slices (Fig. 3D-iii). 196	
 197	
We hypothesize that these genes can be used to improve data integration. By applying Harmony36 to the 198	
top River genes, we observed a superior mixing of cells from E15.5 and E16.5 in the UMAP space 199	
compared to using all genes (Fig. 3E). We used the well-known integration benchmarking pipeline, scib37, 200	
to evaluate the integration performance using different gene sets (see Methods). The results confirmed 201	
that the top genes identified by River can substantially improve the data integration (Fig. 3F). 202	
 203	
In the above analyses, we did not try to avoid batch effects but used these signals as a sanity check to 204	
demonstrate that River can identify different gene signals across slices. We also showed that such batch 205	
effect genes exhibit similar behaviors in other samples and demonstrated the improvement in downstream 206	
data integration analyses. 207	
 208	
 209	
  210	
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River uncovers DSEP genes across developmental stages  211	
To demonstrate the diverse and generalized utility of River in identifying DSEP genes across different 212	
conditions in multi-slice datasets, we focus on another spatial omics application of interest to the research 213	
community: temporal changes38. Existing studies often focus on gene spatial patterns within the same 214	
slice, overlooking changes in spatial gene expression patterns over time. Here, we applied River to the 215	
Stereo-seq dataset of mouse embryos spanning eight development stages33 (same sectioning position in 216	
respective animals) (Fig. 4A). In this case, River-identified differential genes may be attributed to both 217	
spatial and non-spatial variations caused by development. 218	
 219	
Visualization of the top-5 genes identified by River confirmed their spatiotemporal variation along the 220	
developmental axis (Fig. 4B). To assess the effectiveness of the top genes in distinguishing different 221	
developmental stages, we performed t-distributed Stochastic Neighbor Embedding (t-SNE)39 using the 222	
top-5 genes identified by River. We found that the embedding space effectively separated cells from 223	
different stages (Fig. 4C left), with visually better separation compared to using all genes (Fig. 4C middle). 224	
In contrast, using the bottom five genes completely failed to distinguish the stages (Fig. 4C right), as the 225	
t-SNE visualization collapsed due to the gene expression value similarity. This provides a strong negative 226	
control example for the River-selected gene set. These findings were further supported by three 227	
quantitative metrics (NMI, ARI, and Cell-type LISI (cLISI) score, see Methods) on different gene set-228	
constructed embedding spaces, confirming that the top-5 genes selected by River contain the non-spatial 229	
variations (gene expression level, Supplementary Fig. 3B) to discriminate across slices (Fig. 4D). 230	
 231	
Furthermore, we used the pairwise silhouette score to measure the distance similarity for each time point 232	
in the input feature space obtained using different input gene sets. Fig. 4E shows that in the River-selected 233	
top-5 input gene set, the closer time points share more similar pairwise silhouette score patterns and show 234	
better clustering compared to the entire input gene set, indicating that the non-spatial variation captured 235	
by River contains biological signals related to development. However, it has been reported that t-SNE 236	
retains local data structure better than global data structure40-43, meaning that the cell group distance 237	
(global structure) in the t-SNE embedding recorded in the silhouette score may be blurred. To more strictly 238	
test the biological relevance of River-prioritized genes, we performed Principal component analysis (PCA), 239	
which retains global data structures, using the top-5 River genes. PCA using only the top-5 genes identified 240	
by River showed clear separation of cells from different stages, indicating that these top genes successfully 241	
captured non-spatial gene expression variations (Fig. 4F left). Interestingly, we observed that the slices 242	
arranged in a consistent order along the developmental timeline in the PCA space (Fig. 4F left), and PC1 243	
alone significantly separated the different stages in the correct order (Fig. 4F right), indicating that these 244	
non-spatial gene expression variations are not solely due to non-biological factors such as batch effects 245	
and indeed contain biological signals related to development. 246	
 247	
To demonstrate River’s capability to capture spatial pattern differences (Supplementary Fig. 3C), we 248	
decoupled the spatial and non-spatial variations using a gene expression binarization approach (see 249	
Methods). This process transforms all gene expression in the input slices into 0/1 values (0 for off and 1 250	
for on), and we used this binarized expression as input for River. The benefits of this procedure are that 251	
(1) binarized gene expression is reported to be robust to batch effects in both single cell44,45 and spatial 252	
transcriptomics46,47, and (2) binarized gene expression removes gene expression level variations and only 253	
retains spatial patterns. River with binary input (River-binary) identified the top-10 ranked pure spatial 254	
pattern shift genes, and six of these were the same as those identified using the count expression value-255	
informed River (River-count) outcome (Hbb family genes, Fig. 4B). This demonstrated River’s ability to 256	
capture spatial variations. We present the remaining four uniquely selected genes from River-binary results, 257	
all of which show significant spatial pattern shifts across the developmental stages (Fig. 4G). We further 258	
conducted gene set enrichment analysis for the gene set selected by River-binary (pure spatial pattern 259	
shift) uniquely to River-count. The results showed that these unique genes are highly enriched in two main 260	
biological processes occurring during embryo development: chemotaxis and skin morphogenesis, 261	
indicating that River can capture development-related spatial pattern changes (Fig. 4H). 262	
  263	
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River identified diabetes-induced DSEP genes in spermatogenesis 264	
Apart from applications in multi-slice developmental studies, River can also be used to analyze spatial 265	
properties in tissue samples from both normal and diseased states. This capability is crucial for uncovering 266	
complex cellular interactions and gene expression patterns associated with disease mechanisms. To 267	
illustrate this, we applied River to study the impact of diabetes on spermatogenesis in mice. The input 268	
dataset comprised testis sections from three wild-type (WT) and three leptin-deficient diabetic mice48 (Fig. 269	
5A). River utilized the WT and diabetic annotations for each slice as labels during model fitting. The top-270	
ranked genes selected by River are displayed in Fig. 5B. Notably, Prm1 and Prm2, previously associated 271	
with ES/spermatozoon loss in diabetic testes49, were identified by River. 272	
 273	
To ensure robust results, we performed gene set enrichment analysis on the top-50 genes identified by 274	
River using three reference gene sets: KEGG, Jensen TISSUE, and Elsevier Pathway Collection 275	
(https://maayanlab.cloud/Enrichr/) (Fig. 5C). The enrichment results indicated that, from both pathway and 276	
tissue composition perspectives, the River-selected genes were significantly enriched in diabetes-induced 277	
pathological changes in spermatogenesis. Specifically, the Elsevier pathway analysis showed enrichment 278	
in the male infertility pathway, while KEGG analysis revealed enrichment in the 279	
Glycolysis/Gluconeogenesis pathway, aligning with previously reported disturbances in the male 280	
reproductive system associated with diabetes50. In terms of tissue composition, the Jensen enrichment 281	
results demonstrated significant enrichment of River-selected genes in spermatogenesis-related tissue 282	
components in the testis, such as spermatids, germ cells, and seminiferous tubules. This supports that 283	
River can capture genes pertinent to spermatogenesis-related cells and tissue composition. 284	
 285	
To further validate the relevance of these genes to cell and tissue composition, we utilized the prioritized 286	
genes as input features for CellCharter27 to conduct multi-slice spatial co-clustering and identify consistent 287	
tissue compositions across all slices in the dataset (see Methods, Multi-slice Spatial Co-Clustering). The 288	
clustering results showed that Prm1 and Prm2 shared a similar spatial arrangement within the identified 289	
domain arrangement, indicating consistent spatial expression patterns among the top-ranked genes (Fig. 290	
5B). This suggests that River-selected genes can be used to identify continuous tissue compositions 291	
across slices. Additionally, we compared cell type compositions between domains 0 (red) and 1 (green) in 292	
each slice identified by CellCharter (Fig. 5D). The early round spermatids (RSs) and spermatocytes (SPCs) 293	
exhibited the most significant shift among the input slices (Fig. 5D). This shift reflects one of the 294	
spermatogenesis processes where spermatocytes divide to form round spermatids51, suggesting that 295	
River-identified diabetes-induced pathological change-related genes reveal tissue compositions related to 296	
spermatogenesis.  297	
  298	
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9	

Applications on spatial proteomics datasets 299	
We applied River to two spatial proteomics datasets to test its generalization potential on platforms other 300	
than spatial transcriptomics. First, we used a triple-negative breast cancer (TNBC) spatial proteomics 301	
dataset52 measured by MIBI-TOF. The dataset featured three patient groups associated with significantly 302	
different survivals: Mixed (high immune infiltration), Compartmentalized (distinct tumor and immune cell 303	
regions), and Cold (low immune cell presence) (Fig. 5E). For each patient group, we selected one patient 304	
to train River and used the River score to prioritize the protein set. We visualized the top-ranked proteins—305	
Vimentin, Beta-catenin, and CD45—on each patient in Fig. 5F. Each of these proteins exhibited distinctive 306	
spatial patterns across patients. For instance, CD45, a marker of immune cells, showed denser expression 307	
patterns in both Mixed and Compartmentalized conditions. Meanwhile, Beta-catenin and Vimentin, 308	
markers of TNBC tumor cells, displayed a more scattered distribution in Mixed conditions and a dense, 309	
centralized distribution in Compartmentalized conditions, reflecting the characteristics of immune 310	
infiltration and separation52. Additionally, we performed t-SNE visualizations for the top-5 proteins identified 311	
by River, showing similar separation than using the full protein set (Fig. 5G). 312	
 313	
Despite the original study's efforts to handle batch effects in MIBI-TOF data generation (Supplementary 314	
Fig. 4A), batch effects might still persist. To validate the biological significance of the signals captured by 315	
River, we tested whether River-identified DSEPs contain biological variations applicable to unseen patients. 316	
We employed the genes ranked in the different top-k (k=[2, 4, 6, 8, 10]) identified on one patient and tested 317	
on unseen patients. This selected protein set was used to compute the mean expression value as a patient-318	
level feature. We then analyzed this feature using three classifiers (Support Vector Classifier (SVC), Linear 319	
Regression (LR), and Random Forest (RF)) with 5-fold validation. The results, shown in Fig. 5H, indicate 320	
that the selected genes maintained comparable predictive power to the original full gene set and remained 321	
robust to the selection of k parameter, with consistent improvements compared to the random selection. 322	
 323	
Next, we tested River on a second dataset. This dataset contains spatial proteomics (CODEX) data 324	
measured on lupus spleen mouse model with two condition labels: WT and lupus26 (Fig. 5I). We followed 325	
the same setup as the previous TNBC dataset, choosing one slice from each condition to train River and 326	
select top proteins. The visualizations of the River-selected top-ranked proteins (CD44, MHC class II, 327	
CD90) abundance on the chosen slice are shown in Fig. 5J. Previous studies have identified MHC class 328	
II as associated with lupus susceptibility53. Specifically, in mice, the MHC class II locus directly contributes 329	
to lupus disease susceptibility, similar to observations in humans. Additionally, CD44, a surface marker of 330	
T-cell activation and memory, was overexpressed in T cells of lupus spleen54. CD90, a marker of T cells, 331	
also showed significant changes in the T cell niche between lupus and WT conditions55. These proteins 332	
reflect the properties of lupus at both molecular and cell niche interaction levels. 333	
 334	
We repeated the visualization procedure from the previous TNBC experiment, performing t-SNE 335	
visualizations for the full protein panel and the River-prioritized proteins (Fig. 5K). To further validate the 336	
predictive power of the River-selected panel on hold-out unseen slices, we conducted quantitative 337	
prediction tasks. Following the same settings as the TNBC experiment, we trained SVC, LR, and RF using 338	
the mean value of the chosen panel for different top-k (k=[2, 4, 6, 8, 10]) in the hold-out unseen slices with 339	
five-fold validation. The results showed that River-prioritized proteins obtained comparable accuracy with 340	
the full protein panel, better than random baseline (Fig. 5L). 341	
 342	
 343	
  344	
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Scalability and reproducibility 345	
River's non-graph design greatly enhances its scalability for handling large-scale spatial datasets. Contrary 346	
to most existing methods that rely on graph structures to model cell-cell spatial relationships and suffer 347	
from scalability issues with large graphs (e.g., when a slice contains a vast number of cells), River 348	
efficiently manages such challenges. We demonstrated this using a brain spatial transcriptomics dataset 349	
measured by MERSCOPE (https://vizgen.com/resources/using-merscope-to-generate-a-cell-atlas-of-the-350	
mouse-brain-that-includes-lowly-expressed-genes/), which contains three replicates (Supplementary Fig. 351	
1A). Each slice comprises more than 70,000 cells, posing significant computational hurdles for many 352	
existing methods, as previously highlighted56-58. However, River processes each replicate in ~ 7 minutes 353	
(machine information in Methods), showcasing its efficiency. Furthermore, the three replicates allowed us 354	
to test River’s reproducibility, and we observed that River consistently assigned gene-wise scores across 355	
the replicates (Supplementary Fig. 1B). 356	
 357	
  358	
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Discussions 359	

Scalable spatial omics technologies have enabled the generation of large-scale multi-slice and multi-360	
condition datasets. One key insight from such datasets is the identification of differences in spatial gene 361	
expression patterns across different conditions, which had previously been overlooked. We propose a new 362	
concept: Differential Spatial Expression Patterns (DSEPs). DSEPs refer to changes in a gene's spatial 363	
expression pattern across different slices or conditions, encompassing changes in spatial arrangement, 364	
gene expression level, or both. This concept is more suitable for characterizing gene spatial properties in 365	
large-scale multi-slice studies than previous concepts, such as Differential Gene Expression (DEG) 366	
analysis and Spatially Variable Genes (SVGs) analysis. 367	
 368	
We developed River, a method that uses interpretable deep learning to identify DSEPs across slices. Our 369	
results demonstrate that River can effectively identify DSEPs genes across extensive multi-slice and multi-370	
condition spatial omics datasets, making it the first method to do so at scale. River is not simply another 371	
differential gene expression or SVG identification method but is specifically designed to identify DSEPs 372	
without being limited by single-slice and cell-independent hypotheses. Furthermore, we have 373	
demonstrated River’s biomedical significance using various biological cases such as development and 374	
disease, which cannot be done with previous methods. 375	
 376	
River’s novel point, which transforms the differential spatial expression pattern identification problem into 377	
a solvable computational task with interpretable deep learning, holds potential for future studies, especially 378	
those aiming to uncover factors significantly contributing to certain condition labels. This includes 379	
identifying cell states responding to certain perturbations and pinpointing microenvironments exclusive to 380	
certain diseases59-61. Additionally, River’s use of non-graph data structures to model cell-cell spatial 381	
relationships offers valuable insights for future spatial omics data modeling. 382	
 383	
Several areas for future improvement remain. One major concern in comparing different slices and 384	
conditions is the batch effect. In this study, we eliminated this using two approaches: (1) a gene expression 385	
binarization method and (2) utilizing batch-effect-free datasets pre-processed by the original studies. 386	
Future research could enhance this framework by incorporating contrastive modules to create an end-to-387	
end solution. Another potential enhancement involves using single-cell foundation models62-66 to replace 388	
River's gene expression encoder, known for their robustness against batch effects. In cases where different 389	
slices and conditions originate from various spatial platforms and resolutions, employing recently proposed 390	
rasterization techniques67,68 could be beneficial. This would allow the direct comparison of data from 391	
different resolutions within the same spatial framework and make the analysis scalable to very large-scale 392	
datasets. 393	
 394	

  395	
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Method  396	

Overview of River 397	
River can be considered as a combination of two main functional modules. The first module is the 398	
prediction model, which utilizes spatial omics (transcriptomics/proteomics and other modalities; for 399	
simplicity, we refer to the input feature as gene expression in the following content) features and spatial 400	
location (represented by spatial coordinates) for each single cell as input. This module is made up of a 401	
Multi-Layer Perceptron (MLP) due to its representative capability. The training target of the model is 402	
predicting the condition label for each input cell, defined by the corresponding original slice-level condition 403	
label for each cell. 404	
 405	
After training the prediction model, River applies multiple attribution methods to determine the genes 406	
contributing to the model's prediction behavior for the corresponding label in each input cell. After cell-level 407	
normalization, River provides multiple cell-wise gene scores to measure the relevance of each cell to its 408	
corresponding label in different aspects. River then combines the multiple cell-wise gene score to obtain 409	
a global summary statistic for each gene in the input cell population, resulting in a final rank for the input 410	
gene list for each attribution method. Finally, River adopts rank aggregation methods to combine the 411	
different ranks obtained by various attribution methods to produce a final gene rank. 412	
 413	
Alignment for multiple input slices 414	
River requires spatial location coordinates as the predictive model input. When handling input slices from 415	
different spatial coordinate systems where the spatial locations have not been previously registered, the 416	
Spatial-Linked Alignment Tool (SLAT)69 is selected for its flexibility and scalability. In experiments involving 417	
two slices, a single SLAT alignment is performed. 418	
 419	
For experiments with more than two slices, one slice is designated as the base slice, and SLAT alignment 420	
is then conducted for each of the remaining slices relative to this base slice. The outcome of the SLAT 421	
algorithm is a matching list, which identifies the corresponding cells of the remaining slices concerning the 422	
base slice. This matching list enables the projection of the remaining slices' coordinates into the same 423	
spatial coordinate system as the base slice. Formally, given the input slice 𝐾 with 𝑛!  cell/spots, and the 424	
corresponding spatial coordinate matrix 𝐶!,  we choose slice 0 as the base slice. Thus, we will have the 425	
matching list obtained from SLAT for the remaining slice 𝑚!, and we have the new aligned coordinates for 426	
each input slice k as the input for River: 427	
 428	

𝐶!"#$ =	𝐶% ∗ 	𝑚! 429	

Prediction model architecture 430	
Given the multi-slice annotated dataset, the input of the River prediction model is composed of gene 431	
expression 𝑥&   for each cell and the corresponding label 𝑦& as a one-hot vector for the cell of its belonging 432	
slice label, the aligned coordinates 	𝑐&"#$. The prediction model encoder is composed of two parts: the 433	
gene expression encoder, which extracts the feature from 𝑥&, and the position encoder, which extracts the 434	
spatial information from 	𝑐&"#$. We utilize two MLPs as the position encoder 𝑓'() and expression 435	
encoder 𝑓#*' separately. River adopts the double-branch architecture to encode the position information 436	
and the expression information separately and then combines them in the latent space to obtain the spatial-437	
aware gene expression latent. We have the position latent vector 𝑧&

'(): 438	

𝑧&
'() =	𝑓'()+,!"#$- 439	

 440	
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And the gene expression latent vector 𝑧&
#*' : 441	

𝑧&
#*' =	𝑓#*'(*!) 442	

River then concatenates the two latent vectors to get the spatial-aware gene expression latent vector 𝑍& 443	
 for the input cell: 444	

𝑧& = .𝑧&
#*', 𝑧&

'()0 445	

This latent vector is then sent into a following MLP classifier to get prediction logits 𝑦&
'0#1: 446	

𝑦'0#1& =	𝑓23)(4!) 447	

And the model is trained using the cross-entropy objective 𝐿2# with the provided cell-level label 𝑦&: 448	

𝐿2# =	−3𝑦& log7𝑦&
'0#18	 449	

Attribution methods 450	
As aforementioned in the River framework composition, apart from the prediction model part, another 451	
important component of River is the attribution module. River’s ability to identify DSEP genes is based on 452	
the assumption that only genes with significant spatial expression pattern shifts across multiple slices can 453	
contribute to the prediction model's ability to classify different slices. Thus, the attribution module aims to 454	
select the genes that contribute the most to the model's decision process. In other words, River rank each 455	
gene using a post-hoc attribution method based on each gene’s spatial expression pattern. 456	
 457	
River employs three state-of-the-art attribution methods: Integrated Gradients70, DeepLift71, and 458	
GradientShap72. River applies these three attribution methods to attribute the model’s prediction logits on 459	
ground-truth class 𝑠&(𝑥&) back to the input features 𝑥&, yielding a weight vector 𝑤&5#67(1 for each gene in 460	
each input cell that signifies the importance of each input gene. 461	
 462	
One of the simplest attribution methods for deep learning is the Gradient * Input technique, initially 463	
proposed to enhance the clarity of attribution maps71. This method calculates attribution by partial 464	
derivatives of the output corresponds to the input and then multiplying these derivatives by the input. 465	
However, Gradient * Input is insufficient for handling complex scenarios. Therefore, we utilize three tailored 466	
attribution methods from modern deep learning to address these complexities. 467	
 468	
For Integrated Gradient, we utilize x> represents the baseline input. we choice the all zero gene expression 469	
input vector as the baseline in all the following methods, in cell i we have 470	

																								w8
9: =	∫ A;<%('()

;=>%
|=>?=@A	C(=%D=@)dαE

E
C?% 	 ∗ (x8–	x>)  471	

 472	

Integrated Gradient similarly to Gradient * Input, computes the partial derivatives of the output with respect 473	
to each input feature. However, while Gradient * Input computes a single derivative, Integrated Gradients 474	
computes the average gradient while the input varies along a linear path from a baseline  𝑥̅  to 𝑥&. 475	

As for GradientShap, it approximates SHAP values by computing the expectations of gradients by 476	
randomly sampling gradients since the exact SHAP value calculation is too expensive and cannot scale to 477	
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large-scale cell datasets. In River, we apply the GradientShap method by adding white noise to each input 478	
gene expression n (n=5 in River default parameters) times, 479	

𝑥Ḟ = 𝑥& + 	𝜀,			𝜀 ∼ 	𝑁(0, 1)  480	

And then construct a random point 𝑞& along the path between the baseline and the noisy input with scale 481	
parameter 𝜆: 482	

																	𝑞& = 𝜆𝑥Ḟ + (1 − 𝜆)	𝑥̅  483	

 484	

Then we compute the gradient of outputs with respect to those selected random points and get the final 485	
attribution score 𝑤&	GH: 486	

																					𝑤&	GH = 	𝐸 R
I)!*+!,
IJ!

S ∗ 	 (𝑥&–	𝑥̅)  487	

 488	

DeepLIFT is an attribution recursive prediction explanation method for neural networks that proceeds in a 489	
backward fashion. The importance for DeepLIFT is based on propagating activation differences on each 490	
neural unit in the neural network. Thus, compared with the previous two methods, DeepLIFT is proposed 491	
only for neural network attribution. For the sake of convenience, we utilize the modified chain rule notation 492	
introduced in  Given two neural units (𝑎, 𝑏) in the multi-layer perceptron, there must exist a path set 𝑃 from 493	
𝑎 to 𝑏 in the neural network due to the fully-connected property of the MLP. We can define a modified chain 494	
rule based on this path set 𝑃KL: 495	

𝜕M𝑥K
𝜕𝑥L

= 3 AX𝑤'X𝑔(𝑧)'E
('∈	O-.)

	 496	

Where 𝑧 indicates the linear transformation for each neural unit. For the neural input unit 𝑗 and the output 497	
unit 𝑖, we have the output 𝑧P: 498	

𝑧P =	3𝑤&P	𝑥&
&

 499	

And g can be any other nonlinear transformation function. When g is the original non-linear activation 500	
function in the model, this modified chain rule will be equal to the partial differential. 501	

With this notation, given the baseline and input gene expression, we have 𝑤&QR: 502	

																								𝑤&QR =
I/)!*0!,
I*!

	 ∗ (𝑥&–	𝑥̅)  503	

Where  504	
																𝑔	 = S(4)–	S(4̅)

4	–	4̅
  505	

And f is the prediction model’s original activation function, (ReLU73 in our default setting), and 𝑧̅	indicates 506	
the baseline corresponding 𝑧. 507	
 508	
After multiple attributions, we can have the cell-level attribution score vector for each method.  River 509	
normalizes them per cell-wise. The motivation here is to follow per-cell gene expression normalization 510	
preprocess, which can normalize different cells’ score on the same scale while maintaining heterogeneity. 511	
River normalizes each cell’s absolute weight vector using L2 normalization: 512	
 513	

𝑤"(05K3&4#1!
5#67(1 =

|𝑤&5#67(1|
\𝑤&5#67(1\V

 514	

Then, River computes the global attribution vector for each method by averaging the normalized vectors: 515	
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𝑤M3(LK35#67(1 =	]
1
𝐾^37𝑤"(05K3&4#1!

5#67(1 8
W

&?E

 516	

Finally, River ranks the genes based on their global attribution scores to determine their relative importance: 517	
𝑅𝑎𝑛𝑘7𝑤M3(LK35#67(18 = 	 𝑠𝑜𝑟𝑡1#)2+X/12.-1

3#4526- 518	

 519	
River further tries to aggregate these three different methods ranks into one final rank. 520	
 521	
Rank aggregation for multiple-attribution 522	
Given the global weight vector for each gene derived from three state-of-the-art attribution methods 523	
(Integrated Gradient, DeepLIFT, and GradientShap), River aims to aggregate the attribution results for 524	
each method to obtain robust and stable attribution results since the three attributions indicate three 525	
different attribution perspectives (average gradient, estimated SHAP value, and neural unit activation). 526	
Here, each method provides a rank of genes based on their contribution to the prediction model’s 527	
predictions. To aggregate these rankings into a final comprehensive ranking, we employ the Borda count 528	
method74. 529	
 530	
The procedure for applying the Borda count method to our context is as follows: for each attribution method, 531	
assign a score to each gene based on its rank. If a gene is ranked first, it receives a score equal to the 532	
total number of genes N; the second-ranked gene receives N−1, and so on, with the lowest-ranked gene 533	
receiving a score of 1. We then aggregate the scores for each gene across all attribution methods: 534	
 535	

𝐵𝑜𝑟𝑑𝑎𝑆𝑐𝑜𝑟𝑒(𝑔) = 	 3 𝑆𝑐𝑜𝑟𝑒5#67(1(M)
5#67(1

 536	

where 𝑆𝑐𝑜𝑟𝑒5#67(1(M) is the score assigned to gene g by the ranking from a particular method. Finally, the 537	
final rank of the genes can be obtained based on aggregated Borda scores: 538	

𝐹𝑖𝑛𝑎𝑙𝑅𝑎𝑛𝑘	 = 	 𝑠𝑜𝑟𝑡1#)2+Y(01KH2(0#(M)-. 539	

This Borda count aggregation method ensures that the final ranking reflects a balanced consensus across 540	
the different attribution methods, taking into account the unique perspectives each method offers on gene 541	
importance. 542	
 543	
Simulation dataset 544	
Data generation 545	

To generate the simulated dataset, we first created a control slice consisting of a square region with four 546	
distinct spatial domains using SRTsim75: domain A, domain B, domain C, and domain D. The gene 547	
expression in this slice was simulated using the SRTsim reference-free simulation procedure. Specifically, 548	
the simulated slice was composed of 980 randomly placed cells in a square shape. We initially divided the 549	
slice into domains A, B, C, and D with square shapes. SRTsim generated gene expression counts for 1100 550	
genes by sampling from a ZINB distribution with the following parameters: zero percentage 0.05, 551	
dispersion 0.5, and mean value 2, and then randomly assigned them to 980 generated spatial locations in 552	
the square slice. 553	
 554	
Furthermore, to mimic the true distribution on a real slice, SRTsim was applied to generate domain-specific 555	
differential genes for each given domain. After this procedure, the 1100 genes were split into three groups: 556	
higher signal genes (100 genes), lower signal genes (100 genes), and background genes (900 genes). 557	
Higher signal genes showed higher fold-changes in each domain with the domain-specific fold-change 558	
ratios (1.0 for domain A, 2.0 for domain B, 1.5 for domain C, and 3.0 for domain D). Meanwhile, the lower 559	
signal genes exhibited lower fold-changes in each domain with the same predefined domain-specific fold-560	
change ratios. Finally, background genes maintained the same expression pattern as the original 561	
generation distribution. 562	
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 563	
We regarded this simulated slice as the control slice for our subsequent condition-perturbed slice 564	
generation. Here, we aimed to perturb the background genes to generate differential spatial expression 565	
patterns across the condition and control slices. The reason for not utilizing the signal genes was that the 566	
Spatially Variable Gene (SVG) property on the original slice would influence the perturbation efficiency. 567	
The signal genes acted as distractors to improve the benchmarking difficulty, as we did not modify the 568	
signal genes across the condition and control slices. 569	
 570	
For the perturbation process, we first randomly chose 200 target genes from the background genes for 571	
each perturbation. The perturbation process consisted of two main parts. The first part involved the random 572	
permutation of the spatial locations for the chosen target gene expression values for each cell. For each 573	
pair of spatial location and target gene expression in each cell, we randomly permuted the corresponding 574	
relation. Each cell was assigned a new target gene expression value that originally belonged to another 575	
cell in the slice. This procedure ensured that only the spatial pattern of the chosen target genes was 576	
influenced, while the expression levels of other genes remained unchanged. In the second step, we altered 577	
the fold-change ratio for the chosen target genes only in specifically chosen domains by applying a twofold 578	
change on the permuted slice. We obtained the final version of the condition slice after this step. The two 579	
perturbation steps ensured that the spatial gene expression pattern of the chosen target genes in the 580	
condition slice differed from the control slice in both spatial distribution and gene expression value. 581	
 582	
We generated our benchmarking dataset using two target gene sets and three chosen domains (domain 583	
B, domain C, domain D), resulting in a total of six simulated benchmarking datasets. 584	
 585	
Implementation details of River 586	

We introduce the implementation details of River for benchmark experiments and subsequent real data 587	
experiments. 588	
 589	
For the benchmark dataset, because the condition slice is simulated based on the control slice, their spatial 590	
coordinates are located in the same space. Thus, pre-alignment of the two input slices is not needed. The 591	
prediction model part of River comprises a gene expression encoder, a position encoder, and the final 592	
classifier, forming three main parts. All of them are two-layer MLPs with the ReLU function as the activation 593	
function. The two encoders have the same hidden dimension of 64, while the classifier has a hidden 594	
dimension of 32. Dropout regularization is added during model training to avoid overfitting, with a dropout 595	
ratio of 0.3. For model training, the Adam optimizer is utilized with a commonly-used learning rate of 0.001 596	
and a weight decay rate of 0.0001. The model is trained for 100 epochs, and the last epoch model is used 597	
as the attributed model. The batch size is set to 4096 to ensure efficiency and fast convergence. For the 598	
attribution part, the captum package is adopted to implement the three attribution methods, utilizing the 599	
default parameters of the official package to obtain stable attribution results. River selects the top-200 600	
ranked genes, corresponding to the predefined target gene number in the benchmark experiment. 601	
 602	
For other real data experiments requiring pre-alignment, SLAT is utilized as the pre-alignment tool. For 603	
spatial transcriptomics data, the PCA value of the gene expression is used as the input for SLAT, and the 604	
raw profiled expression value of the spatial proteomics is used as input due to its relatively lower dimension 605	
(less than 100). After choosing a base slice for each experiment, every slice is subsampled to the same 606	
cell number as the base slice to ensure each cell has a corresponding aligned coordinate in the base slice. 607	
The neighborhood graph is then constructed using the K-nearest cells (K=20), and the preprocessed data 608	
is sent into SLAT to get the aligned coordinates for non-base slices. Apart from the alignment procedure, 609	
real data experiments use the same model parameters as mentioned in the benchmark dataset section. 610	
 611	
Competing methods 612	

In this study, we compared three main categories of methods to identify the differential spatial expression 613	
patterns between condition and control slices in six different simulation benchmark datasets. 614	
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The first category of methods includes the previously highly variable genes (HVGs) selection methods. 615	
We adopted the most commonly used HVGs selection methods - Seurat, Seurat v3, and CellRanger as 616	
the baseline methods. In each experiment, given the condition and control slice gene expression as 617	
input, we defined the selected gene number as 200 (equal to the target gene number). The 618	
implementation of these three methods utilized the scanpy24 package with the default parameters. 619	

The second category includes the conventional Spatially Variable Genes (SVGs) selection methods. 620	
However, as mentioned previously, these SVGs methods cannot handle multi-slice input. Therefore, 621	
modifications were made to these methods to enable them to perform the same task. For the 622	
significance-based methods, due to the difficulty in comparing the output significant statistics among 623	
slices, we utilized the absolute difference value (to ensure non-negative input) of the same position cells 624	
in two slices as the input for the following test-based SVGs methods. The motivation here is that the 625	
spatial variance of the difference value can reflect the spatial expression pattern to an extent. We utilized 626	
four commonly used methods: SPARKX, SpatialDE, Moran's I, and Geary's C as the test-based SVGs 627	
method baseline. Default parameters were utilized for both methods, and significant genes (p-value < 628	
0.05) were regarded as detected positive genes, with the remaining as negative. 629	

Apart from the test-based SVGs methods, there is another type of SVGs method: score-based SVGs 630	
detection. This method provides a score for each gene as output, indicating the spatially related situation 631	
for each gene, making comparison between slices possible. Here, we utilized Sepal as the baseline 632	
method in the score-based SVGs methods. The original code in the Sepal package was used. 633	
Transformation was applied to convert our input slice into spot-level data like Visium, since Sepal only 634	
accepts such format input. The official transformation function provided in Sepal was used to convert the 635	
slice into a spot-like arrangement, and Sepal was then applied to the two control and condition slices 636	
independently. The output scores were normalized into the range [0,1], making the scores among the 637	
two slices comparable. The absolute difference value for each gene was then calculated, and the spatial 638	
pattern change was ranked by this absolute difference score, with a higher value indicating a larger 639	
difference. As with the previous HVGs methods, a selected gene number k was set to select the top-k 640	
highest score genes, using k=200 as with HVG methods. 641	

The final category comparison method is the 3D SVGs identification methods. These methods aim to find 642	
the genes which show significant spatial expression patterns considering 3-dimensional spatial 643	
information. We utilized the recently proposed BSP as our 3D SVGs baseline. The control and condition 644	
slices were stacked to obtain a pseudo-3D slice dataset, setting the z-coordinate for all control slices as 645	
0 and condition slices as 1. The official version of BSP was then applied to this pseudo-3D input slice 646	
with its predefined 3D format. The output of BSP is also the significant statistics. Thus, significant genes 647	
(p-value < 0.05) were regarded as positive genes, with the remaining as negative genes. 648	

 649	

Evaluation metrics 650	

We utilized the F1-score as the metric to measure each model’s performance in identifying Differential 651	
Spatial Expression Pattern (DSEP) genes. The reason for not adopting recall and precision as additional 652	
metrics is that, for the k selected methods (e.g., River, Sepal, and HVGs methods), the F1-scores are the 653	
same as recall and precision. Regarding the perturbed target genes as the positively labeled genes and 654	
the method selecting positive genes, we have the F1-score: 655	

𝐹1	𝑠𝑐𝑜𝑟𝑒	 = 	
𝑇𝑃

k𝑇𝑃	 + 12 (𝐹𝑃	 + 	𝐹𝑁)m
 656	

 657	
Furthermore, to evaluate the robustness of the k selected methods, the performance among k selected 658	
methods is compared by the F1 score on different k values. 659	
 660	
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Analysis of the Stereo-seq mouse embryo dataset on batch-related genes. 661	

Dataset overview 662	

We utilized the Stereo-seq mouse embryo multi-slice dataset, which is composed of eight different 663	
development stages at near single-cell resolution. Each development stage consists of different depth 3D 664	
slices from the same replicates. We utilized the E15.5 development stage as the input multi-slice dataset 665	
for River. This developmental time point slice is composed of four continuous depth slices along the z-axis, 666	
similar to the E16.5 development stage. We used the depth for each slice as the slice-level label and 667	
selected the slice with the lowest depth as the base slice, with 10,000 subsampled cells for each slice for 668	
alignment. River then applied fitting and selection on the input depth-informed cells dataset. 669	
 670	
Slice integration and evaluation  671	

In the visualization of the River-selected top-ranked genes, we observed that the top-ranked genes are 672	
highly related to the depth for input cells. In other words, it is possible to integrate the input cells from 673	
different batches to the same depth by using such depth information-preserved genes as input features. 674	
We used only the River selected top-20 genes as input to conduct the integration across two development 675	
stages (E15.5 and E16.5). It is worth noting that River did not see any E16.5 cells during training. Therefore, 676	
this integration not only supports that depth information-preserved genes can help integrate cells at the 677	
same depth but also provides evidence of the River-selected genes’ generalization. We utilized Harmony 678	
as our integration method due to its efficiency and accuracy and then evaluated the integration results 679	
using the scib package. This package first conducts a fine-grained search for the best clustering resolution 680	
of Leiden clustering and then utilizes the best cluster outcome to evaluate both biological-preserved 681	
metrics (Normalized Mutual Information (NMI), Adjusted Rand Index (ARI)) and batch-removal metrics 682	
(Graph Connectivity (GC), Integration LISI (iLISI) graph score). Specifically, we utilized depth as the 683	
biological information variable and the different development stages (E15.5, E16.5) as the batch variable. 684	
 685	
NMI compares the overlap of two clustering: 686	
 687	
 688	

𝑁𝑀𝐼 =
𝐼(𝑃; 𝑇)

q𝐻(𝑃)𝐻(𝑇)
 689	

 690	
Where	𝑃 and 𝑇 are categorical distributions for the predicted and real clustering,  𝐼 is the mutual entropy, 691	
and 𝐻 is the Shannon entropy. 692	
 693	
As for ARI, it considers both correct clustering overlaps while also counting correct disagreements between 694	
two clustering: 695	
 696	

𝐴𝑅𝐼 =
𝑅𝐼 − 𝐸(𝑅𝐼)

max(𝑅𝐼) – 	𝐸(𝑅𝐼) 697	

 698	
Where Rand Index (RI) computes a similarity score between two clustering assignments by considering 699	
matched and unmatched assignment pairs. Both of them evaluate whether the integrated embedding can 700	
capture biological information properly. 701	
 702	
As for the batch-removal metrics, iLISI and cLISI are adopted from the Local Inverse Simpson’s Index 703	
(LISI) for the batch-related and biological preservation metrics. Here, we utilize the iLISI modified version 704	
in scib. 705	
 706	

LISI scores are computed from neighborhood lists per node from integrated kNN graphs. Specifically, the 707	
inverse Simpson’s index is used to determine the number of cells that can be drawn from a neighbor list 708	
before one batch is observed twice. Thus, LISI scores range from 1 to B, where B is the total number of 709	
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batches in the dataset, indicating perfect separation and perfect mixing, respectively, and scib rescales 710	
them to the range of 0 to 1. Given the total batch label-based LISI score set X, we have: 711	
 712	

𝑖𝐿𝐼𝑆𝐼 = 	𝑚𝑒𝑑𝑖𝑎𝑛	𝑓(𝑥)			𝑥	 ∈ 	𝑋	 713	
 714	
Where x indicates the previous LISI score for each batch label, we have   715	
 716	

𝑓(𝑥) 	= 	 (𝑥 − 1)	/	(𝐵 − 1) 717	
 718	
With higher iLISI indicating a better batch mix situation. 719	
 720	
For cLISI, we need to modify the 𝑓(𝑥) into 𝑔(𝑥): 721	
 722	

𝑔(𝑥) 	= (𝐵 − 𝑥)	/	(𝐵 − 1) 723	
 724	
Where B here indicates the total cell type number and x indicates the LISI score for each cell type, and X is 725	
the total cell type-based LISI score set. We have: 726	
 727	

𝑐𝐿𝐼𝑆𝐼 = 	𝑚𝑒𝑑𝑖𝑎𝑛	𝑔(𝑥)			𝑥	 ∈ 	𝑋	 728	
 729	
The GC metric quantifies the connectivity of the subgraph per cell type label. The final score is the average 730	
for all cell type labels C according to the equation: 731	
 732	

𝐶	 =
1
|𝐶|		3

|𝐿𝐶𝐶(𝑠𝑢𝑏𝑔𝑟𝑎𝑝ℎ2)|
|𝑐|

2∈,

 733	

 734	
Where |𝐿𝐶𝐶(𝑠𝑢𝑏𝑔𝑟𝑎𝑝ℎ2)| stands for all cells in the largest connected component in the dataset, and |𝑐| 735	
stands for all cell numbers of cell type c. 736	
 737	
These metrics examine the integrated embedding’s batch information mixture situation. Higher values 738	
indicate better batch removal performance. 739	
 740	
Analysis of the Stereo-seq mouse embryo dataset on development-related genes. 741	

Dataset overview 742	

We utilized the Stereo-seq mouse embryo multi-slice dataset, which is composed of eight different 743	
development stages at near single-cell resolution. Each development stage is composed of different depth 744	
3D slices on the same replicates. We utilized the eight development stages at the same depth as the input 745	
multi-slice dataset for River. The input multi-slice dataset is composed of [E9.5, E10.5, E11.5, E12.5, E13.5, 746	
E14.5, E15.5, E16.5] eight slices in the first layer for each time point 3D slice. We used the time point for 747	
each slice as the slice level label and selected the slice with the E9.5 as the base slice with 5000 748	
subsampled cells for each slice for alignment. River then applied fitting and selection on the input 749	
development-informed cells dataset. 750	
Pairwise silhouette score 751	

To measure whether distance biological information preserves the condition in different input gene panel 752	
situations, i.e., whether the cell’s distance in the development timeline can be reflected in the latent space 753	
distance acquired from different input genes, we calculated the silhouette score pairwise for each cell pair 754	
of development stages.  755	
Given any two development stage 𝑝 and 𝑞 pair, we have pairwise silhouette score 𝑆(𝑝, 𝑞): 756	
 757	

𝑆(𝑝, 𝑞) 	=
1
|𝑝|		3

(𝑑J(𝑖) − 𝑑'(𝑖))
max	(𝑑J(𝑖), 	𝑑'(𝑖))&∈'

 758	
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 759	
Where	|𝑝| indicates the cell number in p development stage and  𝑑'(𝑖) denotes the mean L1 distance of 760	
cell i  to all cell in distance p of input gene expression: 761	
 762	

𝑑'(𝑖) 	=
1
|𝑝|		3𝐿1(𝑖, 𝑗)

P∈'

 763	

 764	
A smaller silhouette score indicates a shorter distance between two groups of cells in the gene expression 765	
space. After calculating the silhouette score for each development pair combination, hierarchical clustering 766	
can be conducted on the silhouette score vector for each development stage to determine the similarity 767	
situation for the development stage in the gene expression space. 768	
 769	
Embedding evaluation based clustering 770	

To evaluate the latent space’s embedding quantitatively, we adopted the scib37 pipeline to conduct the 771	
Leiden clustering with the best resolution search for each input gene set. The resolution search is in the 772	
(0.0, 1.0) range with 0.1 increasing each resolution. Then the embedding for each gene set is compared 773	
by the best NMI, ARI, and Cell-type LISI (cLISI) score values in the previous search pipeline. Higher NMI 774	
and ARI indicate better development stage information preservation and less noise information content for 775	
the input gene set 776	
 777	
Binarize spatial gene expression  778	
To evaluate River's capability to identify pure spatial pattern shift genes across slices, we binarized the 779	
input gene expression data when fitting the prediction model (after the pre-alignment process). Specifically, 780	
for all input gene expressions, values greater than 0 were transformed into 1, while 0 values remained 781	
unchanged. This binarization process removes the influence of gene expression values and preserves 782	
only the spatial expression patterns, which we refer to as the pure spatial pattern. Apart from this 783	
binarization process, other parameters and settings remained the same as in the normal format. 784	
 785	
After identifying the top-k binarized pure spatial pattern shift genes, we compared them with the previous 786	
top-k expression value-informed selected genes. We then selected the genes found only in the pure spatial 787	
pattern shift list as the unique pure spatial pattern shift genes for downstream analysis. 788	
 789	
Gene set enrichment analysis 790	
We conducted gene set enrichment analysis for the top-50 unique pure spatial pattern shift genes using 791	
the Enrichr API in the gseapy Python package, with GO Biological Process 2023 as the reference gene 792	
set. The cutoff for significantly enriched gene sets was an FDR-adjusted p-value of less than 0.05. 793	
 794	
Analysis of diabetes-induced and WT mouse testis 795	

Dataset Overview 796	

We applied River to disease-related spatial transcriptomics multi-slice datasets to demonstrate the 797	
application diversity of River. The dataset is composed of six Slide-seq slices from three leptin-deficient 798	
diabetic mice (Diabetes) and three matching wild-type (WT) mice. The WT-1 sample was selected as the 799	
base slice, and each slice was subsampled into 10,000 cells for alignment. The Diabetes and WT 800	
phenotypes for each slice were used as the corresponding slice labels. 801	
 802	
Multi-slice spatial co-clustering 803	
We applied CellCharter to the top-200 genes selected by River to achieve consistent spatial domain 804	
clustering on the input slices. CellCharter is a deep learning-based method that incorporates single-cell 805	
dimension reduction techniques to remove batch effects among slices and utilizes spatial coordinates to 806	
form a spatial graph. It then conducts automatic resolution-selected clustering based on a batch-integrated 807	
embedding spatial graph to obtain consistent spatial domain clustering across multiple input slices. 808	
 809	
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Following the CellCharter official tutorial for spatial transcriptomics data, we used the top-200 genes 810	
selected by River as input, employing scVI76 for dimension reduction with default parameters. We chose a 811	
clustering resolution range from 2 to 10, performing the clustering process 10 times with CellCharter's 812	
AutoK process to ensure robust results. 813	
 814	
Gene set enrichment analysis: 815	
We conducted gene set enrichment analysis for the top-50 DSEP genes using the Enrichr API in the 816	
gseapy Python package, with KEGG, Jensen TISSUES, and Elsevier Pathway Collection as reference 817	
gene sets. The cutoff for significantly enriched gene sets was an FDR-adjusted p-value of less than 0.05. 818	
 819	
Analysis of the human TNBC MIBI and mouse lupus CODEX dataset  820	

Dataset Overview 821	

We applied River on two disease-related spatial proteomics multi-slice datasets to show the modality-822	
agnostic property of River and its further potential in clinical applications. The first disease spatial 823	
proteomics dataset is the human Triple Negative Breast Cancer (TNBC) MIBI dataset. The dataset is 824	
composed of 41 slices with three different TNBC subtypes featured by the immune cell infiltration condition: 825	
15 Mixed (high immune infiltration) slices, 19 Compartmentalized (distinct tumor and immune cell regions) 826	
slices, and 5 Cold (low immune cell presence) slices. We randomly chose one slice from each subtype as 827	
the fitting multi-slice dataset for River and the remaining 38 slices as the hold-out slices. The chosen Mixed 828	
slice was regarded as the base slice, and every slice was subsampled into 2000 cells to conduct alignment. 829	
The second spatial proteomics multi-slice dataset is composed of nine CODEX mouse lupus spleen 830	
samples (3 WT and 6 lupus mouse samples). We selected one slice in each condition randomly and 831	
preserved the remaining 6 slices as the hold-out slices. The WT slice was regarded as the base slice and 832	
subsampled into 20,000 cells in each slice for alignment. 833	
 834	
Panel Generalization Evaluation 835	

In the disease-related proteomics multi-slice dataset, to evaluate the River-selected panel generalization 836	
and clinic application potential, it is assumed that the River selected top panel can be utilized in the unseen 837	
slice phenotype identification. The mean value of the selected panel expression on the slice is utilized as 838	
the input feature, and the predictive power of the panel feature is evaluated by conducting 5-fold cross-839	
validation on hold-out slices in the original dataset with different baseline classifiers. We utilized the default 840	
parameters for three commonly used models (Support Vector Classifier (SVC), Logistic Regression (LR), 841	
and Random Forest (RF)) as the baseline classifiers. The 5-fold accuracy is compared for different panel 842	
selected situations (different top-k [2, 4, 6, 8, 10]) of River selected panel, randomly selected panel, and 843	
full panel. 844	
 845	
Computational resources 846	
All experiments were performed on a server running Ubuntu 22.04 with a 32-core Intel(R) Xeon(R) Gold 847	
6338 CPU @ 2.00GHz and an Nvidia A800 (80G) GPU. 848	
 849	
Data availability.  850	
The Stereo-seq mouse embryo development dataset33 can be obtained from: 851	
https://db.cngb.org/search/project/CNP0001543 852	
The Slide-seq mouse diabetes dataset48 can be obtained from: 853	
https://www.dropbox.com/s/ygzpj0d0oh67br0/Testis_Slideseq_Data.zip?dl=0 854	
The CODEX mouse lupus dataset26 can be obtained from: 855	
https://data.mendeley.com/datasets/zjnpwh8m5b/1 856	
The MIBI human TNBC dataset52 can be obtained from: 857	
https://mibi-share.ionpath.com 858	
The MERSCOPE mouse brain dataset can be obtained from: 859	
https://vizgen.com/resources/using-merscope-to-generate-a-cell-atlas-of-the-mouse-brain-that-includes-860	
lowly-expressed-genes/  861	
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 862	
Code availability  863	
The Python implementation and tutorial of River is available at https://github.com/C0nc/River. 864	
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Fig. 1 | Workflow of River.  1 

A Workflow of the River process for identifying the differential spatial expression pattern (DSEP) genes in 2 

multi-slice and multi-condition spatial omics data, where each slice is annotated with a slice-level label, 3 

e.g., development stage or disease. River is composed of two main modules: prediction model and post-4 

hoc attribution. River first fits the prediction model by inputting spatial omics and then utilizes the post-hoc 5 

attribution to quantify each gene’s contribution to the prediction. The input spatial omics data for River 6 

contains each cell’s expression vector and spatial location, and River utilizes each individual cell's gene 7 

expression incorporated with spatial coordinates as prediction model input. For multi-slice data within 8 

different coordinate systems, River applies heterogeneous alignment to ensure a consistent coordinate 9 

system for each input cell. River assigns the cell-level input label based on the slice annotation to which it 10 

belongs, which is used as supervised information for prediction model training. (i) River utilizes each 11 

individual cell as model input instead of using the entire slice as in previous work. River adapts the spatial 12 

information by incorporating gene expression with spatial location coordinates in the original slices. (ii) 13 

Slices from different spatial coordinates are aligned into the same coordinate space to ensure comparable 14 

input spatial coordinates. (iii) The prediction model in River is composed of three parts: position encoder, 15 

gene expression encoder, and classifier. The position encoder and gene expression encoder individually 16 

encode the input gene expression and spatial coordinates for each cell, obtaining spatial and gene 17 

expression latent embeddings, which are concatenated as classifier input spatial-aware gene expression 18 

latent. (iv) River utilizes three attribution methods to score the contribution of each gene in the prediction 19 

of the target cell-level label based on the fitted prediction model. The outcome of this tentative attribution 20 

process is three independent gene score vectors. River utilizes rank aggregation to combine the multiple 21 

attribution results to form a final gene rank list. B, River can be utilized in diverse multi-slice scenarios, 22 

including consecutive slices, development stages, and disease conditions. 23 

 24 
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Fig. 2 | Simulation benchmarking.  27 

A, 6 different perturbations were applied on the control slice (slice 0) in silico, obtaining 6 new slices (details 28 

in Methods). B, The control slice (slice 0) was compared with each of slice 1 to slice 6 using River. C, 29 

Benchmarking outcome for each method on six datasets. The performance of different methods is 30 

evaluated by F1-scores. River achieves the highest F1 score across six experiments with statistical 31 

significance (p value < 0.05, rank-sum test). D, Benchmarking results summary for top k parameter 32 

dependency methods among different k values in F1 scores. X-axis: different k choices. Y-axis: F1-score. 33 

E, Comparison of score distribution between River and Sepal. River’s attribution method is IG for this figure, 34 

other two methods are also compared with Sepal in Supplementary Fig. 2. For each dataset, the left line 35 

chart indicates the score value for each gene, where positive genes (Ground truth DSEP genes) are 36 

expected to obtain larger scores compared with remaining negative genes. The right violin plot indicates 37 

the score distribution for the two methods between the DSEP and non-DESP genes. P-values are obtained 38 

using rank-sum test.  39 

 40 
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Fig. 3 | Analysis of Stereo-seq mouse embryo datasets E15.5 and E16.5. 43 

A, Dataset: Stereo-seq mouse embryo dataset in E15.5 and E16.5 development time, each with four 44 

continuous depth slices. River utilizes the depth as the slice level label and fits the model on the E15.5 45 

dataset. B, 3D visualization of the spatial gene expression pattern of River-selected top-3 genes at the 46 

E15.5 timepoint: Trim30a, Cdk8, and Tlk1. C, 3D UMAP visualization of River-selected top-20 genes, full 47 

gene panels, and River-selected bottom-20 genes on E15.5 timepoint data for each cell. Points in the 48 

figure are colored by each cell’s slices id. D, 3D UMAP visualization of River-selected top-20 genes (fitted 49 

in E15.5), full gene panels, and River-selected bottom-20 genes on E15.5 timepoint data for each cell. 50 

Points in the figure are colored by each cell’s slice id. E, 2D UMAP visualization of Harmony integrated 51 

datasets (development stage as batch key) used in Fig. 3A, using River-selected top genes (left) and full 52 

genes (right). F, Batch integration metrics comparison among different River-selected top-k 53 

(k=[5,10,15,20]). River-selected genes with bottom genes and full genes. The metrics include ARI, NMI, 54 

Graph Connectivity (GC) and iLISI. 55 
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Fig. 4 | Analysis of Stereo-seq mouse embryo datasets with 8 development stages. 64 

A, Dataset: Stereo-seq mouse embryo dataset across eight development stages ([E9.5, E10.5, E11.5, 65 

E12.5, E13.5, E14.5, E15.5, E16.5]). B, Visualization of River-identified top-5 genes using count 66 

expression values. C, t-SNE visualization of different gene set inputs (River-selected top-5 genes, full 67 

genes, and River-selected bottom-5 genes). Notably, the bottom-5 genes' t-SNE is collapsed in the t-SNE 68 

embedding space due to the lack of information, providing a negative control for River-selected genes. D, 69 

Unsupervised clustering results comparison between different input gene sets (top-5 genes, full genes, 70 

and bottom-5 genes) using NMI, ARI, and cLISI metrics. E, Pairwise silhouette score across eight 71 

development stages for different input gene sets. The pairwise silhouette score reflects the distance 72 

between two clusters in the t-SNE space in Fig. 4C. F, Principal Component Analysis for River-selected 73 

top-5 genes colored by development stages. The right panel shows the principal components' distribution 74 

change tendency along with developmental changes. G, Visualization of River-identified top genes using 75 

binary expression values (unique to the gene set of River-count). H, Significant enriched (FDR adjusted p 76 

value < 0.05) gene sets uniquely identified by River-binary in GO biological process reference. 77 
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Fig. 5 | Applications in 3 disease cases (Slide-seq, MIBI-TOF, and CODEX datasets). 79 

A, Slide-seq Dataset: 6 mouse testis Slide-seq slices (3 Diabetes and 3 WT). River utilized the 80 

Diabetes/WT condition label to select the diabetes-induced pathological changes related genes. B, The 81 

visualization of cell type, spatial expression gene pattern of River-selected top-ranked genes (Prm1, Prm2), 82 

and CellCharter co-clustering results based on River-selected top-200 genes for input 6 slices. C, 83 

Significantly enriched gene sets (FDR adjusted p-value < 0.05) in gene set enrichment results for River-84 

selected top-50 genes on three reference gene sets: KEGG, Jensen TISSUE, and Elsevier Pathway 85 

Collection. D, Cell composition shift between CellCharter identified domain 0 and domain 1 in each of the 86 

six individual slices. Round spermatids (RSs) and spermatocytes (SPCs) composition. E, MIBI-TOF 87 

Dataset: MIBI data from 41 patients with 19 Mixed (high immune infiltration), 15 Compartmentalized 88 

(distinct tumor and immune cell regions), and 6 Cold (low immune cell presence). We randomly chose one 89 

sample per category to fit River. Remaining hold-out slices were utilized for the validation of River-selected 90 

biomarker panel generalization. F, Visualization of River-selected top-3 panel, showing significant spatial 91 

expression pattern shifts across three TNBC subtypes. G, t-SNE visualization of cells using the River-92 

selected top-5 panel and full original panel as input features. Cells are colored according to patient label. 93 

H, The validation results of the River-selected panel generalization on hold-out slices. We conducted 5-94 

fold validation on the hold-out slices for three baseline classifiers (Support Vector Classifier, Random 95 

Forest, and Logistic Regression) with different top-k parameters in both River, randomly chosen baseline, 96 

and full panel. The line chart shows the 5-fold accuracy on the validation set with mean and confidence 97 

interval for different k ([2, 4, 6, 8, 10]). I, CODEX Dataset: CODEX data from 9 mice with 3 WT and 6 lupus 98 

spleens. We randomly chose one sample per category to fit River. Remaining hold-out slices were utilized 99 

for the validation of the River-selected biomarker panel generalization. J, Visualization of the River-100 

selected top-3 panel and cell type, showing significant spatial expression pattern shifts across WT and 101 

lupus, and high relevance to specific cell types (e.g., CD90 with T-cells). K, t-SNE visualization of cells 102 

using the River-selected top-5 panel and full original panel as input features. Cells are colored according 103 

to patient label. L, The validation results of the River-selected panel generalization on hold-out slices. We 104 

conducted 5-fold validation on the hold-out slices for three baseline classifiers (Support Vector Classifier, 105 

Random Forest, and Logistic Regression) with different top-k parameters in both River, randomly chosen 106 

baseline, and full panel. The line chart shows the 5-fold accuracy on the validation set with mean and 107 

confidence interval for different k ([2, 4, 6, 8, 10]). 108 
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Supplementary Fig. 1 | Scalability and reproducibility of River on MERSCOPE mouse brain 113 

dataset. 114 

A, Dataset: MERSCOPE mouse brain dataset composed of three replicates with two sectioning positions 115 

in the whole mouse brain, each slice containing > 70,000 cells. B, The River score (IG) distribution for 116 

each gene in three replicates experiment, showing high consistency. 117 

 118 

 119 

Supplementary Fig. 2 | Separation of DSEP and background genes using River score (associated 120 

with Fig. 2E).  121 

A, Comparison of score distribution between River and Sepal. River’s attribution method is DeepLift. For 122 

each dataset, the left line chart indicates the score value for each gene, where positive genes (Ground 123 

truth DSEP genes) are expected to obtain larger scores compared with remaining negative genes. The 124 

right violin plot indicates the score distribution for the two methods between the DSEP and non-DESP 125 

genes. P-values are obtained using rank-sum test. B, Comparison of score distribution between River and 126 

Sepal. River’s attribution method is GradientShap. For each dataset, the left line chart indicates the score 127 

value for each gene, where positive genes (Ground truth DSEP genes) are expected to obtain larger scores 128 

compared with remaining negative genes. The right violin plot indicates the score distribution for the two 129 

methods between the DSEP and non-DESP genes. P-values are obtained using rank-sum test.  130 

 131 

 132 

Supplementary Fig. 3 | Factors contributing to differential spatial gene expressions. 133 

A, Associated with Fig. 3, where non-biology signals is the major variation. B, Associated with Fig. 4B-F, 134 

where the non-spatial signals is the major variation. C, Associated with Fig. 4G-H, where the spatial signals 135 

is the major variation. 136 

 137 

 138 

Supplementary Fig. 4 | UMAP of all cells in spatial proteomics datasets  139 

A, The TNBC MIBI-TOF dataset. B, The spleen CODEX dataset. Cells are labeled according to cell types 140 

in original papers. 141 
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Supplemental figure 4
A B Cell type (Spleen data, all slices)Cell type (TNBC data, all patients)

B220(+) DN T cells
B cells
CD3(+) other markers (-)
CD4(+) T cells
CD4(+)CD8(-)cDC
CD4(+)MHCII(+)
CD4(-)CD8(+)cDC
CD4(-)CD8(-) cDC
CD8(+) T cells
CD11c(+) B cells
CD31(hi) vascular
CD106(+)CD16/32(+)CD31(+) stroma
CD106(+)CD16/32(+)CD31(-)Ly6C(-) stroma
CD106(+)CD16/32(-)Ly6C(+)CD31(+)

CD106(-)CD16/32(+)Ly6C(+)CD31(-)
CD106(-)CD16/32(-)Ly6C(+)CD31(+) stroma
ERTR7(+) stroma
F4/80(+) mphs
FDCs
NK cells
capsule
dirt
erythroblasts
granulocytes
marginal zone mphs
megakaryocytes
noid
plasma cells

B
CD3 T
CD4 T
CD8 T
DC
DC/Mono
Endothelial
Keratin+ tumor
Macrophages

Mesenchymal like
Mono/Neu
NK
Neutrophils
Other immune
Tregs
Tumor
Unidentified

U
M

AP
2

UMAP1

U
M

AP
2

UMAP1

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 7, 2024. ; https://doi.org/10.1101/2024.08.04.606512doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.04.606512
http://creativecommons.org/licenses/by/4.0/

	Figure1
	Fig2
	Fig3
	Fig4
	figure5 V2
	supp1-1
	supp2
	supp3
	supp4
	Article File
	Captions of Figures and Supplementary Figures
	Figures and Supplementary Figures

