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Generative models for protein design trained on experimentally determined structures have proven useful for a variety of design tasks.
However, such methods are limited by the quantity and diversity of structures used for training, which represent a small, biased fraction
of protein space. Here, we describe proseLM, a method for protein sequence design based on adaptation of protein language models to
incorporate structural and functional context. We show that proseLM benefits from the scaling trends of underlying language models, and that
the addition of non-protein context – nucleic acids, ligands, and ions – improves recovery of native residues during design by 4-5% across
model scales. These improvements are most pronounced for residues that directly interface with non-protein context, which are faithfully
recovered at rates >70% by the most capable proseLM models. We experimentally validated proseLM by optimizing the editing efficiency of
genome editors in human cells, achieving a 50% increase in base editing activity, and by redesigning therapeutic antibodies, resulting in a
PD-1 binder with 2.2 nM affinity.
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Introduction1

Protein sequence design aims to identify an amino acid sequence that will fold into a desired backbone and2

carry out a function of interest. The ability to design proteins with novel functions has broad applications3

in biotechnology and medicine, including the development of therapeutics, vaccines, and industrial enzymes.4

Physics-based methods, such as Rosetta (1), approach protein design as an optimization problem, searching5

for sequences that minimize an energy function. However, these methods are limited by the accuracy of6

the underlying energy function and are computationally expensive in practice. Recently, deep learning7

approaches, which learn a mapping from structure to sequence, have emerged as an alternative to physics-8

based methods (2–4). Generative models for protein design, such as ProteinMPNN (3), have proven9

successful across a variety of tasks, including design of protein binders (3), assemblies (5), diversified10

enzymes (6), and conformational switches (7). Despite their success, protein design models trained solely on11

experimentally determined structures are ultimately limited by the quantity and diversity of their training12

data. While the Protein Data Bank (PDB) (8) contains over 200,000 protein structures, this number is13

dwarfed by the number of sequences identified through genomic and metagenomic sequencing efforts. To14

overcome this disparity, predictions from AlphaFold2 (9) have been used to supplement the structures used15

for training (4). This approach has been shown to improve the performance of protein design models (4),16

but is still limited by the number of structures that can be predicted and the accuracy of the predictions.17

Protein language models present an alternative means of modeling protein sequence-function relationships.18

These models learn directly from sequences through self-supervised training objectives, such as masked19

residue prediction and next-residue prediction. With increasing numbers of parameters, protein language20

models have been shown to capture properties including structure (10, 11) and function (12, 13). Design21

with protein language models is largely a challenge of steering generation towards a desired region of22

sequence space. Steering of generated sequences is typically achieved through fine-tuning on curated datasets23

of family- or function-specific proteins. This approach has proven successful for a variety of enzyme families,24

including lysozymes (14), carbonic anhydrases, lactate dehydrogenases (15), and complex genome editing25
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Figure 1. Design of protein sequences for diverse backbones. (a) Diagram of proseLM architecture. Structural adapter layers
are placed after each layer of the pre-trained language model. In each adapter layer, structural context from the causal encoder is
combined with language model embeddings to condition sequence generation. (b) Perplexity of ProGen2 pre-trained language models
and single-chain proseLM models on the CATH 4.2 test set collected by Ingraham et al. (2). (c) Perplexity of proseLM models on the
clustered PDB dataset collected by Dauparas et al. (3). Perplexity is reported as the mean of cluster-averaged values. For all models,
perplexity decreases as additional structural and functional context is provided. (d) Perplexity with respect to total model parameters for
proseLM models trained on the PDB with increasing levels of structural and functional context provided. (e) Native sequence recovery
for fully designed sequences from proseLM models. Sequence recovery is reported as the median of cluster-averaged values. For all
models, native sequence recovery increases when structural and functional context is provided.

systems (16). However, the dependence on natural examples for fine-tuning currently limits the scope of26

design with protein language models to known protein families and functions. Further, it does not offer27

a straightforward means of incorporating precise atomistic information into the design process, instead28

relying on the model to implicitly learn these constraints from the fine-tuning data.29

In this work, we describe proseLM (protein structure-encoded language model), a method for steering30

protein language models for design tasks by providing explicit structural and functional information.31

ProseLM leverages parameter-efficient adaptation of protein language models to incorporate structural32

and functional information, including the backbone-of-interest and nearby context (proteins, nucleic acids,33

ligands, ions, etc.). ProseLM effectively incorporates this context while benefiting from the scaling trends34

of the underlying language models, enabling high rates of native sequence recovery. We experimentally35

validate proseLM by designing functionally improved genome editors and therapeutic antibodies.36

Results37

Protein structure-encoded language model. Our method for protein sequence design, proseLM, leverages38

pre-trained protein language models for structure-conditioned design. We take the ProGen2 language39

models (13) as a foundation and propose a conditional adapter for parameter-efficient incorporation of40

structural and functional context.41

Several methods have been proposed for parameter-efficient fine-tuning of large language models (17–19),42

enabling specialization of models by training a small fraction of the total parameters. In this work, we build43
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on adapters, which introduce a set of bottlenecked operations that modify the outputs of each model layer.44

For proseLM, we follow Houlsby et al (18) and introduce adapter layers that update the outputs of the45

simultaneous attention and feed-forward operations of each ProGen2 layer (Figure 1A). With sufficiently46

reduced bottleneck dimension, the number of parameters in these adapter layers are miniscule with respect47

to the pre-trained model. To inject structural information into the ProGen2 language models, we propose48

an adapter architecture that conditions in the low-rank representation using a multi-layer perceptron49

(MLP). In this way, the adapter layers maintain parameter efficiency while incorporating structural context50

throughout the depth of the language model.51

Structural context for conditioning is obtained from a pre-trained causal encoder, which is trained in a52

similar fashion to prior encoder-decoder protein design models. The causal encoder architecture consists of53

alternating message-passing (MPNN) and invariant-point message-passing (IPMP) (20) encoder layers (eight54

total) followed causally masked MPNN and IPMP layers (four total). IPMP layers modify standard MPNN55

layers by adding frame-based inter-residue features, and have been proposed as a drop-in replacement for56

protein side-chain modeling and sequence design (20). Following ProteinMPNN, the causal encoder is57

trained to decode randomly permuted sequences given a fixed backbone (3). Different from the natural58

N-to-C fixed decoding order, this formulation enables conditioning on later residues for design tasks where59

some of the sequence should remain constant. We additionally train the causal encoder with masked60

structural spans, following the span sampling scheme used for ESM-IF1 (4). When trained on the CATH61

4.2 dataset (2, 21), the causal encoder achieves a median sequence recovery of 47.24% and perplexity of62

4.76 (Table S1) on the test set. Taken together, this performance is similar to ProteinMPNN (trained63

without noise) (3), which achieves a median sequence recovery of 45.96% and perplexity of 4.61 on the same64

proteins (22).65

To implement proseLM, we combined the pre-trained causal encoder with pre-trained ProGen2 language66

models (13) using parameter-efficient adapter layers. Standard adapter layers are typically composed of a67

feed-forward network with a bottleneck dimension, expressed as (18):68

h← h + f(hWdown)Wup [1]69

where h is the language model embeddings, f is a non-linear activation function (typically ReLU), and70

Wdown and Wup are weight matrices for the down- and up-projections, respectively. For proseLM, we71

propose a conditional adapter architecture that incorporates structural context into the language model72

embeddings using an MLP. The conditional adapter layers are expressed as:73

hLM ← hLM + MLP(Concat(hLMWdown, hCE))Wup [2]74

where hLM and hCE are the language model and causal encoder embeddings, respectively. The causal encoder75

embeddings are taken from the last decoder layer, just prior to amino acid prediction. By concatenating76

the causal encoder embeddings with the low-rank language model embeddings, the conditional adapter77

maintains the parameter-efficiency of standard adapters while incorporating conditioning information.78

Conditional adapter layers are placed after each of the simultaneous attention and feed-forward layers of79

ProGen2, with separately trained weights for each adapter layer. During training, the parameters of the80

causal encoder and conditional adapter layers are updated, while the parameters of the language model are81

frozen.82

To test the effectiveness of the conditional adapters for structure-conditioned sequence modeling, we83

compared the perplexity of proseLM models trained on the CATH 4.2 dataset to their constitutive models.84

For ProGen2 models, perplexity scaled with model size, with ProGen2-xlarge (6.4B parameters) approaching85

the performance of the structure-aware causal encoder (Figure 1b). For proseLM models, perplexity further86

improved over the causal encoder, following the same scaling trend as the underlying language models. We87

next compared the native sequence recovery of proseLM models to the causal encoder. Native sequence88

recovery is defined as the percentage of designed residues that match the native sequence for a particular89

structure. Native sequence recovery increased with proseLM model scale, with proseLM-XL achieving90
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a 3.59% higher median recovery rate than the causal encoder (Figure S2a). This increase in sequence91

discovery was distributed across surface and core residues (Figure S2b) and was most dramatic for larger92

proteins (Figure S2c).93

Training structure-conditioned sequence design methods with Gaussian noise applied to the coordinates94

has been shown to increase robustness of single-sequence AlphaFold2 predictions, which can serve as a95

proxy for design quality (3). To assess the impact of training with coordinate noise on proseLM, we trained96

an additional set of causal encoder and proseLM models with 0.1 Å Gaussian noise added to the backbone97

coordinates. As reported for ProteinMPNN, we found that all proseLM models trained with coordinate98

noise achieved higher rates of single-sequence prediction structure prediction success with AlphaFold2 (9)99

and yielded more confident structures (Figure S3). Interestingly, these improvements were most pronounced100

for the causal encoder and smaller proseLM models, suggesting that the larger models are more robust to101

structural noise.102

Functional context constrains design space. Protein function depends on interactions with other molecules,103

ranging from recognition of specific DNA sequences to coordination of metal ions. While historically these104

interactions have been modeled through physics-based methods (1), they have largely been neglected in105

recent protein sequence design models. For proseLM, we sought to incorporate functional context beyond the106

backbone to include not only protein-protein interactions, but also interactions with arbitrary non-protein107

molecules (e.g., nucleic acids, ligands, ions, etc.). We started by extending the causal encoder to consider108

protein complexes, which was achieved by simply expanding the existing protein graph to include multiple109

chains.110

Non-protein context is represented as an atomistic graph, with each atom represented as a node with111

an associated reference frame. Each atomic frame is constructed using the atom-of-interest and its two112

nearest neighbors (Figure S1b). Nodes are initialized with the types of each atom encoded as node features,113

along with the distances between the central atom and its neighbors. To incorporate information from114

the non-protein context graph into the causal encoder, we introduced an IPMP layer for updating the115

atomistic features, followed by a cross-graph IPMP layer for updating the protein residue features. The116

cross-graph IPMP layer is similar to the standard IPMP layer, but uses a different set of weights for protein117

and atomistic nodes, and does not update the atomistic features. The context-aware causal encoder and118

corresponding proseLM models were trained on the multi-chain dataset used for ProteinMPNN (3) in the119

same fashion as the single-chain versions, except the causal encoder parameters were frozen during proseLM120

training to reduce memory requirements.121

We first evaluated proseLM on the subset of the PDB test set that contained protein complexes and122

interactions with some non-protein entity (Table S3). For each protein chain, we computed the perplexity123

given increasing levels of context: backbone only, with other protein chains, and with full context. In124

each scenario, perplexity decreased as more context was provided (Figure 1c). This trend held across125

model scales, suggesting that even the largest language models benefit from explicit functional information126

(Figure 1d). We next evaluated the capabilities of proseLM for design on the test set structures that had127

any protein or non-protein interactions. We computed the median native sequence recovery for designs128

with proseLM when given the backbone only or full context. Increases in sequence recovery from scaling129

models and providing functional context were largely additive, with proseLM models achieving a consistent130

4-5% increase in sequence recovery with full context (Figure 1e).131

The most significant increases in native sequence recovery were for residues within 5 Å of nucleic132

acids, ligands, and ions (Figure 2a). The causal encoder, which is the most directly comparable to133

recently developed models (23, 24) for context-aware protein sequence design, achieves sequence recovery134

(with/without context) of 44.44%/54.90%, 50.00%/64.00%, and 46.15%/66.67% for residues near nucleic135

acids, ligands, and ions, respectively. These results are similar to those reported for CARBonAra (24) and136

LigandMPNN (23).137

With the addition of language model components, proseLM models achieve further increases in native138

sequence recovery in the vicinity of functional context (Table S3). For ligand and ion interactions, these139
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Figure 2. Modeling protein functional context and fitness. (a) Median native sequence recovery for residues near nucleic acids,
small-molecule ligands, and ions. (b) Change in native sequence recovery with and without structural and functional context as a function
of distance from provided context. Smaller models show the largest increases in recovery near the provided context, while all models
converge towards lower overall increases in recovery as distance increases. (c) Sequence recovery as a function of residue burial for
protein complex targets. When designed with backbone only (single chain) or with protein context, recovery is largely determined by
degree of burial. (d) Evaluation of fitness prediction, measured as normalized discounted cumulative gain, for proseLM models. Overall
performance is averaged over landscape categories: stability, binding, activity, expression, and organismal fitness.

increases were mostly localized to residues within 5 Å of the provided context (Figure 2b). For nucleic acid140

interactions, smaller models showed the largest increases in sequence recovery near the provided context,141

while larger models showed more consistent improvements at greater distances. This suggests that while142

smaller models benefit from the direct influence of nucleic acid context for local sequence recovery, larger143

models may be leveraging evolutionary information from pre-training to improve sequence recovery at144

greater distances. For protein-protein interactions, the effects of context were observable up to 11 Å away,145

largely due to changes in burial of residues across the designed protein chains (Figure 2c).146

Structure improves modeling of protein fitness. Protein language models trained on evolutionarily diverse147

sequences are strong zero-shot predictors (i.e., without labeled data) of protein function, with performance148

on some landscapes benefiting from increased model scale (12, 13, 25). To investigate the impact of149

structural conditioning on language model fitness prediction, we evaluated proseLM models on a set of150
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201 deep mutational scan (DMS) datasets curated for ProteinGym (25). We limited our analysis to151

datasets where the protein sequence length was less than 1024 residues, which was the context length152

used for training ProGen2 models. Log likelihoods were computed for proseLM models trained on the153

CATH 4.2 (backbone-only) and PDB (full context) datasets using AlphaFold2-predicted (9) structures from154

ProteinGym. Datasets are coarsely categorized as stability, binding, activity, expression, or organismal155

fitness, according to the property measured. Following ProteinGym, we report an overall performance as156

the average of performance over each category to avoid emphasizing imbalances in the number of datasets157

available for each fitness type. We additionally report performance for two recent methods – ESM-IF1 (4)158

and ProteinMPNN (3) – to contextualize the performance of proseLM models.159

We quantify fitness prediction performance according to the normalized discounted cumulative gain160

(NDCG) at ten percent (Figure S5) and the Spearman’s rank correlation coefficient (Figure S6). Although161

Spearman values are more commonly reported for performance across entire fitness landscapes, the NDCG162

metric, which focuses on a model’s ability to prioritize the highest-fitness sequences, is more aligned with163

practical protein engineering settings. Overall, proseLM models achieve higher NDCG values than the164

causal encoder and ProGen2 models (Figure 2d). Interestingly, the largest improvements in NDCG are165

for smaller language models, while larger proseLM models often performed comparable to the underlying166

ProGen2 models. This suggests that larger models gain less new information from structural context,167

consistent with prior work showing that larger protein language models build increasingly accurate internal168

representations of structure (11).169

For stability landscapes, we observed opposing trends between structure-conditioned and standard170

language models. The causal encoder was a better predictor of high-stability proteins, while proseLM171

models showed degraded performance with increased scale. For binding-related fitness landscapes, proseLM172

models outperformed the causal encoder and underlying ProGen2 models. Interestingly, the backbone-only173

proseLM models trained on the CATH 4.2 dataset consistently outperformed those trained on the full PDB174

with additional context. This discrepancy highlights a tradeoff between models that learn to implicitly175

model functional context and those that explicitly incorporate given context. While the proseLM models176

trained on the PDB are able to effectively leverage binding partners for prediction, they appear less capable177

of inferring binding from protein structure alone.178

Experimental validation of functional protein design. Given the compelling performance of proseLM on in179

silico protein design and fitness prediction tasks, we next sought to test its practical utility for functional180

protein design. Towards this goal, we focused on structure- and function-guided optimization of two broadly181

relevant protein systems: genome editors and antibodies.182

Genome editor design. Genome editing technologies repurposed from bacterial anti-phage defense systems183

have revolutionized life science research and are being actively developed for agricultural and therapeutic184

applications. In particular, the Cas9 protein from Streptococcus pyogenes (SpCas9) has formed the foundation185

of several downstream editing technologies, including the targeted editing of base pairs in the genome (26).186

As an RNA-guided endonuclease, the functional activity of SpCas9 is highly dependent on interactions187

with its guide RNA and the target DNA. We reasoned that the incorporation of structural and functional188

context into protein language models could enable the local optimization of SpCas9 for increased activity in189

human cells.190

To design variants of SpCas9 with proseLM while maintaining functional activity, we utilized a multi-state191

conditioning strategy (Figure 3a) that included both the binary and catalytic states of the protein in192

complex with guide RNA (and DNA for catalytic state). We additionally found it helpful to incorporate193

evolutionary and functional information in the form of residue-wise conservation patterns from aligned194

natural sequences and experimental mutation-scanning data, respectively. When combined with multi-state195

conditioning, this design strategy enabled sampling of low-perplexity sequences within 200 mutations of the196

wild type sequence (Figure S7). We selected a set of seven designs to test for genome editing in HEK293T197

cells via co-transfection of the designed proteins and single-guide RNAs (sgRNA) targeting one of three198
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Figure 3. Optimization of genome editors with proseLM. (a) Methodology for design of SpCas9 nuclease variants. Sequences were
generated from ProseLM with conditioning on the binary and catalytic states from PDB IDs 4ZT0 and 7Z4J, respectively, and positional
residue frequencies from natural sequences (MSA) and experimental data (DMS). The PAM-interacting domain residues were fixed to
maintain compatibility with SpCas9 target sites. (b) Editing efficiency of seven designed Cas9 variants across three target sites, with
comparisons to parental SpCas9. Five of seven designs showed some activity across at least two guides. (c) Distribution of mutations
across SpCas9 domains for two high-activity nuclease designs, with 102 and 59 total mutations. (e) Structure of adenosine base editor
(PDB ID 6VPC), with deaminase active site highlighted. (e) Maximum A-to-G editing efficiency for deaminases with design focused on
active site or non-active site residues. The parental deaminase activity is indicated by open circles, while active and inactive designs are
indicated by blue and gray circles, respectively. The editing efficiencies of three deaminases designed through directed evolution (26, 27)
are indicated by purple markers. (f) Number of mutations from parental deaminase for experimentally tested active site designs. Number
of designs with observable and improved activity are indicated by light and dark blue bars, respectively. (g) Number of mutations from
parental deaminase for experimentally tested non-active site designs. Number of designs with observable and improved activity are
indicated by light and dark blue bars, respectively. (h) Structural model of active site six mutations that resulted in highest A:G editing
efficiency. Parental residues and mutations are shown in gray and green, respectively. (i) Positions of 19 mutations at non-active site
positions that resulted in highest A:G editing efficiency.

previously characterized target sites. Across all three sites, we observed a wide range of editing efficiencies,199

with a subset of variants showing activity on-par or higher than SpCas9 (Figure 3b). The most active200

variant, Variant-2, showed a significant increase in editing compared to wild-type SpCas9 at two of three201

target sites. Notably, this variant contained considerable mutational load in the REC-1 and HNH domains202

(Figure 3c), which may facilitate higher on-target editing through reduced specificity and increased nuclease203

activity.204

We next considered the design of base editors, which are fusions of a deaminase domain to a Cas9 nickase205

scaffold (26) (Figure 3d). Adenine base editors enable the targeted conversion of A:T base pairs to G:C base206

pairs in the genome, and have been used to correct pathogenic mutations in human cells (27). As a testbed207

for optimization with proseLM, we selected a deaminase domain previously designed using protein language208

models (16) with editing activity on par with early base editors derived from the natural E. coli TadA209
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protein (26). We created a structural model of the base editor functional state by aligning an AlphaFold2210

(9) prediction of the dimeric deaminase complex to the previously solved structure of ABE8e (28). Using211

proseLM, we then focused design on active site residues (within 5 Å of the bound adenine) or non-active site212

residues (outside 5 Å and not in the deaminase dimer interface). We tested 40 designs from each strategy213

for A-to-G editing efficiency in HEK293T cells and found that both strategies yielded base editors with214

nearly 50% higher editing efficiency than the parental deaminase (Figure 3e). Among the active site designs,215

improvements in editing efficiency were achieved with as few as three mutations, while the best design216

featured six mutations (Figure 3f). For non-active site designs, which ranged from 13 to 27 mutations, fewer217

designs retained editing efficiency and only one showed improvement over the parental sequence (Figure 3g).218

In Figure 3h, the set of six active-site mutations yielding a 50% relative improvement in editing efficiency219

are depicted on the predicted structure of the parental deaminase. While it is difficult to ascertain the220

precise contribution of each mutation, the design contains several non-conservative mutations, representing221

a significant reworking of functionally important residues. Meanwhile, the non-active site design with the222

highest editing efficiency contained 19 mutations distributed across the surface and core of the deaminase223

(Figure 3i), which may facilitate increased editing through stabilization of the domain.224

Therapeutic antibody design. Antibodies are a class of immune proteins that have been developed for a225

wide range of research and clinical applications. The design of specific and biophysically well-behaved226

antibodies has been a long-standing challenge, due in large part to the complexity and sensitivity of protein-227

protein interactions typical of antibody-antigen complexes. Recently, protein language models (including228

antibody-specific models) have been used for targeted optimization of particular antibody attributes, such229

as stability (29) or immunogenicity (30). However, prior approaches have primarily focused on sequence-230

based optimization, ignoring the structural context of antibody binding, and focusing on mutations to the231

framework region. We reasoned that by explicitly modeling the antibody-antigen interface, proseLM would232

be well-suited for optimization of the binding affinity of therapeutic antibodies.233

Although proseLM models effectively recovered native residues at protein-protein interfaces, neither the234

causal encoder nor the ProGen2 models were exposed to significant numbers of antibody sequences during235

training. To address this limitation, we trained proseLM-Ab (based on adaptation of the ProGen2-OAS236

model) on a set of antibody structures from the Structural Antibody Database (SAbDab) (31). We237

compared the perplexity of ProGen2 and proseLM models on a held-out set of antibodies and found that238

proseLM-Ab achieved lower perplexity than proseLM models trained on the PDB, including those with239

significantly more parameters (Figure 4a). These improvements came despite the underlying ProGen2-OAS240

model assigning relatively high perplexity to the held-out antibodies, likely due to an under-representation241

of light chains in its training corpus (13, 32). When provided antigen context, all proseLM models assigned242

lower perplexity to the antibody sequences (Figure 4b) and typically achieved higher rates of native sequence243

recovery (Figure 4c). For heavy and light chain framework regions, we observed a scaling trend in sequence244

recovery, with larger models achieving higher recovery rates (Figure 4d). For CDR regions, we observed a245

similar trend, although the recovery rates were generally lower than for the framework regions. ProseLM-Ab246

frequently achieved the highest rates of recovery for CDR loops, but showed the largest improvements in247

the framework regions, demonstrating the utility of adapting antibody-specific language models trained on248

diverse antibody sequences.249

To test the design capabilities of proseLM models, we first considered affinity optimization of the250

therapeutic antibody nivolumab, which targets the PD-1 antigen. We focused mutations in either the251

complementarity-determining regions (CDRs) or the framework regions. For CDR-directed designs, we252

considered all single and double mutations (excluding mutations to or from cysteine or proline) at positions253

within 8 Å of the antigen (Figure S9). For framework variants, we redesigned the entire heavy and light254

chain variable fragments, conditioned on the residues within 8 Å of the antigen (Figure S10). Designs from255

both strategies were scored using an ensemble of proseLM models and the best 55 CDR-directed and 40256

framework-directed variants were selected for experimental characterization. We tested for binding to PD-1257

via surface plasmon resonance (SPR) and obtained KD values for 25.4% of CDR-directed designs and 92.5%258
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Figure 4. Design of therapeutic antibodies with proseLM. All perplexity and sequence recovery values are reported as the mean and
median, respectively, of cluster-averaged values. (a) Perplexity of proseLM models on the antibody dataset collected from SAbDab. For
all models, perplexity decreases when antigen context is provided. (b) Perplexity with respect to total model parameters for proseLM
models with and without antigen context provided. Blue lines and purple points represent performance of PDB-trained (proseLM [PDB])
and SAbDab-trained (proseLM-Ab) models, respectively. (c) Native sequence recovery for fully designed heavy and light chain variable
fragment sequences, with and without antigen context. (d) Sequence recovery for designed heavy and light chain variable fragments by
structural region. (e) Percentage of experimentally tested nivolumab variants that retained PD-1 binding for each design strategy. (f)
Binding affinity (-log(KD), higher better) for nivolumab variants that retained PD-1 binding. Horizontal line indicates the binding affinity of
the parental nivolumab antibody. (g) Structural model of mutations for highest affinity nivolumab variant from CDR-directed optimization
strategy. The locations of the two mutations in the Fv are shown as red spheres, with potential novel interactions highlighted. (h) Position
of mutations for highly diversified secukinumab variant, with 31 positions mutated across the heavy and light chains.

of framework-directed designs (Figure 4e). Among these, we observed a wide range of binding affinities,259

with the most improved variants from each strategy achieving a nearly three-fold increase in binding affinity260

relative to nivolumab (Figure 4f). The most improved CDR-directed variant contained two mutations near261

the antigen interface, which likely facilitated tighter binding through improved rigidification of the paratope262

(Figure 4g), despite one mutation (HC S32H) ablating binding and the other (LC N93S) only moderately263

improving affinity in isolation. The most improved framework-directed variant contained seven mutations264

that may have indirectly improved binding through stabilization of the framework (33).265

Given the success of targeted optimization of nivolumab binding affinity, we next considered a more266

aggressive redesign strategy for a more structurally challenging therapeutic antibody. For this task, we267

selected secukinumab, which binds the IL-17A cytokine through contacts mediated by an extended 18-residue268
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CDR H3 loop. Rather than target specific residues for redesign, we used proseLM to directly redesign the269

entire heavy and light chain variable fragments of secukinumab (Figure S11). Due to the relative ease of270

recovering framework residues, the majority of variation was focused within the CDR loops (particularly271

CDR H3). We tested 96 designs for binding to IL-17A via SPR and found two variants that retained binding272

(Figure 4h). These variants contained 18 and 31 mutations and bound with 135 nM and 102 nM affinity,273

respectively. While further optimization of these variants would be necessary to achieve therapeutically274

relevant binding affinities, these results demonstrate the potential of proseLM for the diversification of275

structurally challenging therapeutic antibodies.276

Discussion277

Recent generative models for structure-based protein design have shown promise for a variety of design tasks278

(3), but are ultimately limited by the quantity and diversity of structures used for training (4). Protein279

language models, which learn directly from sequences, have been shown to implicitly capture the structural280

and functional constraints of proteins (11, 13) and are capable of generating functional proteins (14–16).281

However, steering protein language models towards a particular fold or function typically requires curation282

of natural examples for fine-tuning, which may be limited or non-existent for some design tasks. In this283

work, we presented proseLM, a method for providing explicit structural and functional context to protein284

language models for structure-conditioned design and showed that the sequence generation capabilities of285

proseLM benefit from the scaling trends of the underlying language models. Prior work has attempted286

to circumvent the paucity of experimental structure data by leveraging highly accurate protein structure287

prediction models, such as AlphaFold2 (9), to generate synthetic training data for protein design models288

(4). While this approach yielded higher native sequence recovery, the usage of synthetic data may introduce289

biases that limit the practical utility of the resulting models (34). By contrast, proseLM leverages the wealth290

of protein sequence data directly, enabling more efficient post hoc incorporation of structural awareness.291

In validating proseLM, we selected design tasks where functional context was not only critical, but also292

where recapitulating the native sequence was not sufficient for success. For optimization of SpCas9, this293

entailed navigating the local fitness landscape of a protein that is already highly performant. Here, we found294

that proseLM designs largely retained activity, in some cases improving on-target editing efficiency. Further295

testing is required to determine the off-target editing profile of these variants, but these results suggest that296

proseLM can be used to identify functionally relevant mutations in complex protein-nucleic acid systems.297

For base editor optimization, our starting point was a generated deaminase with activity that already does298

not exist in nature (deamination of single-stranded DNA). Here, we found that proseLM could be used to299

directly redesign the active site of the deaminase, yielding variants with significantly increased activity.300

These results suggest that proseLM can be used in design settings where function deviates from nature,301

provided a reasonable structural hypothesis. Finally, for antibody design tasks, we began with therapeutic302

antibodies that are already highly optimized for their intended functions. Against this strong baseline, we303

found that proseLM could be used to improve binding affinity through CDR-directed or framework-directed304

optimization, as well as to diversify the binding region of a structurally complex antibody. Overall, these305

results demonstrate the utility of proseLM for a variety of functional protein design tasks.306

Language models have excelled at functional protein design by implicitly modeling structural and307

functional constraints through fine-tuning on curated examples. As we move towards making these308

constraints explicit, we anticipate trade offs will emerge in cases where it is difficult to precisely and309

sufficiently specify the desired functional behavior. In this work, we saw evidence of this tradeoff for fitness310

prediction, where proseLM models trained with only the protein backbone outperformed those that were311

explicitly conditioned on functional context during training. This discrepancy was most pronounced for312

binding datasets, for which fitness is directly tied to an interaction with a specific partner. In light of this,313

we expect that backbone-only proseLM models will be more useful for design settings where the desired314

function is challenging to specify structurally, but is consistent with natural evolutionary constraints of the315

protein family. Meanwhile, for tasks where the desired function is novel or highly specific, we anticipate that316
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explicit conditioning on functional context will be necessary. In the future, models that can incorporate317

categorical or partial structural conditioning may facilitate the design of proteins with more complex318

functional requirements.319
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Safety and ethics337

Computational protein design carries the dual potential to accelerate development of novel therapeutics and338

other society-improving molecules, while providing parallel capabilities for nefarious uses, such as engineering339

of bioweapons. When bolstered by current and future iterations of generative AI, these capabilities are340

heightened and expected to grow further. The global protein design community has begun to establish341

appropriate regulations and guidelines towards the continued beneficial development and application of342

these technologies. In support of these efforts, J.A.R. and A.M. have joined as signatories on a set of343

community values, guiding principles, and commitments for the responsible development of AI for protein344

design (https://responsiblebiodesign.ai/). Gene synthesis represents a critical step in the actualization345

of designed protein sequences. The International Gene Synthesis Consortium (IGSC) unites major gene346

synthesis providers under a commitment to screen all incoming orders against known pathogens and347

potentially dangerous sequences. As a concrete step towards safe application of protein design technology,348

all gene synthesis work in support of the present study was performed with IGSC members. For all349

protein design projects, we urge researchers to maintain ethical oversight throughout project initiation,350

experimental characterization, and subsequent deployment phases to ensure safety and avoid unintended351

harmful outcomes.352

Methods353

Protein structure datasets. Three datasets were assembled for training proseLM models: single-chain354

proteins, protein complexes with non-protein context, and antibody complexes. For training on diverse355

single-chain proteins, we used the CATH 4.2 dataset constructed by Ingraham et al. (2), which has356

been widely adopted as a benchmark for single-chain protein design methods (3, 22, 35). For training on357
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protein complexes with non-protein context, we adapted the dataset used to train multi-chain variants of358

ProteinMPNN (3). This dataset was originally constructed by clustering the entire PDB – as of August359

2, 2021 – at 40% sequence identity and identifying clusters for testing that did not include proteins that360

co-occurred in biological assemblies with proteins used for training. We extended this dataset by extracting361

non-protein context within 5 Å of the protein chains. For training on antibody complexes, we collected all362

antibody structures from SAbDab (31) – as of July 1, 2023 – and performed clustering at 80% identity on363

the concatenated heavy and light chain variable fragment sequences with MMseqs2 (36). These clusters364

were used to divide the dataset into training, validation, and test splits, such that roughly 80%, 10%, and365

10% of clusters were allocated to each split, respectively.366

Model architecture.367

Structure featurization. We formulate protein structures as nearest-neighbor graphs, with residues as nodes368

and inter-residue relationships as edges. The graph adjacency matrix is defined by the proximity of residues369

in sequential and three-dimensional space. For each residue, we first we take the six closest residues along370

the sequence then the next thirty closest residues according to Cα distance, for a total of 36 neighbors. The371

nodes are featurized only with a binary indicator of whether the residue has a backbone structure (i.e., N,372

Cα, and C atoms). The edges are featurized by the inter-residue distances between pairs of backbone atoms373

(N, Cα, C, O, and virtual Cβ) and an embedding indicating the relative position of neighboring residues374

along the sequence, up to a maximum of 32 positions in either direction. For inter-chain residue pairs, we375

set the relative positional embedding to a constant value indicating no sequential relationship, but all other376

features remain the same.377

For atomic-level representation of non-protein context, we adopt a similar graph representation, with378

individual atoms as nodes and inter-atomic relationships as edges. The adjacency matrix for the atomic379

graph is constructed by selecting the ten nearest atoms in three-dimensional space. Each atom is represented380

as a node with an associated reference frame formed by the atom-of-interest and its two nearest neighbors.381

The nodes are initialized with the types of each atom, along with the distances between the primary atom382

and its neighbors. The edges of the atomic graph are featurized by the inter-atomic distances between these383

triplets of atoms. Finally, to incorporate information from the atomic graph into the protein graph, we384

construct a cross-graph adjacency matrix between each protein residue and the nearest thirty atoms (up to385

12 Å away) in the atomic graph. The edges for the protein-atomic graph are featurized by the pairwise386

distances between the backbone atoms of the protein residues and the atom triplets of the atomic graph.387

Causal encoder architecture. The causal encoder takes as input the protein and atomic context graphs388

featurized as described above. All discrete node and edge features (binary structural indicator, relative389

positional embedding, etc.) are one-hot encoded. All distance-based edge features are encoded by sets of390

sixteen Gaussian radial basis functions (RBFs) equally spaced between 0 and 20 Å. The respective features391

for nodes and edges are concatenated then processed by two-layer MLPs to bring them to appropriate392

dimensionality. As in prior work (2, 3), the causal encoder is composed of a series of sequence-agnostic393

encoder layers followed by a series of causally masked decoder layers that are ultimately used to predict394

the amino acid sequence (Algorithm 1). Complete hyperparameters for the causal encoder are provided in395

Table 1.396

The encoder and decoder layers are parameterized by graph neural networks (GNNs), specifically taking397

the form of message-passing neural network (MPNN) layers (2, 3) and invariant point message-passing398

(IPMP) layers (20). Our instantiation of MPNN and IPMP layers differ only in the features used to form399

messages for updating node and edge embeddings. For MPNN layers, messages are formed by concatenating400

node and edge embeddings for neighbors in the graph topology (Algorithm 2). For IPMP layers, we add to401

these embeddings the set of five invariant components proposed by Randolph et al. (20) (Algorithm 3). To402

obtain these components, we predict a set of invariant points in the local frame of each node, then compute403

the following for each pair of neighboring nodes in the graph (Algorithm 4):404
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Algorithm 1 Causal encoder
Require: nprot

i , eprot
ij ▷ Protein node and edge embeddings

Require: natom
i , eatom

ij ▷ Atomic node and edge embeddings
Require: eprot-atom

ij ▷ Protein-atomic edge embeddings
Require: Tprot

i , Tatom
i ▷ Rigid transforms for protein and atomic nodes

Require: N prot, N atom, N prot-atom ▷ Topology of protein, atomic, and protein-atomic graphs
Require: sprot

i ▷ Amino acid sequence

for l ∈ Nenc_layers do
# Update protein nodes and edges
nprot

i , eprot
ij ← ProteinMPNNLayer(l)(nprot

i , eprot
ij ,N prot)

nprot
i , eprot

ij ← ProteinIPMPLayer(l)(nprot
i , eprot

ij , Tprot
i ,N prot)

if Exists(natom
i , eatom

ij , eprot-atom
ij ) then

# Update atomic nodes and edges
natom

i , eatom
ij ← AtomIPMPLayer(l)(natom

i , eatom
ij ,N atom)

# Update protein nodes and protein-atomic edges
nprot

i , eprot-atom
ij ← CrossIPMPLayer(l)(nprot

i , natom
i , eprot-atom

ij , Tatom
i , Tatom

i ,N prot-atom)

sprot
ij ← CausalMask(Linear(sprot

i ,N prot)) ▷ Embed sequence on edges and causally mask
eprot

ij ← eprot
ij + Linear(Concat(eprot

ij , sprot
ij )) ▷ Update protein edges with sequence embedding

for l ∈ Ndec_layers do
# Update protein nodes and edges for decoding
nprot

i , eprot
ij ← ProteinMPNNLayer(l)(nprot

i , eprot
ij ,N prot)

nprot
i , eprot

ij ← ProteinIPMPLayer(l)(nprot
i , eprot

ij , Tprot
i ,N prot)

s̃i ← Linear(nprot
i ) ▷ Predict amino acid sequence

return s̃i, nprot
i ▷ Return predicted sequence and causally informed protein nodes
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Table 1. Causal encoder hyperparameters.

Category Hyperparameter Value
Graph topology Protein sequential neighbors 6

Protein spatial neighbors 30
Atomic spatial neighbors 30
Protein-atomic spatial neighbors 30

Architecture Number of encoder layers, Nenc_layers 3
Number of decoder layers, Ndec_layers 3

All GNN layers Node message MLP layers 3
Edge message MLP layers 3
Node update MLP layers 2
Edge update MLP layers 2

Protein GNN layers Node embedding dimension 128
Edge embedding dimension 128
Node message MLP hidden dimension 128
Edge message MLP hidden dimension 128
Node update MLP hidden dimension 512
Edge update MLP hidden dimension 128
IPMP invariant points 8

Atomic GNN layers Node embedding dimension 16
Edge embedding dimension 16
Node message MLP hidden dimension 16
Edge message MLP hidden dimension 16
Node update MLP hidden dimension 64
Edge update MLP hidden dimension 16
IPMP invariant points 4

Protein-atomic GNN layers Node embedding dimension 128
Edge embedding dimension 16
Node message MLP hidden dimension 16
Edge message MLP hidden dimension 16
Node update MLP hidden dimension 64
Edge update MLP hidden dimension 16
IPMP invariant points 4

1. Node i’s invariant points in node i’s local frame405

2. Distances from node i’s invariants points to the origin of node i’s local frame406

3. Node j’s invariant points in node i’s local frame407

4. Distances from node j’s invariant points to the origin of node i’s local frame408

5. Distances between node i’s invariant points and node j’s invariant points in the global frame409

After assembling the message features pij for MPNN or IPMP layers, we pass those features through a410

set of common operations to update node then edge embeddings. For the node embeddings, we compute411

a set of messages mij for each neighboring node j ∈ N using a three-layer MLP and aggregate them by412

taking the mean across all neighbors. These messages are then added to the original node embeddings and413

passed through a layer normalization. The updated node embeddings are further processed by a two-layer414

MLP, with the outputs added back to the previously updated node embeddings with layer normalization.415

For the edges, we follow a similar procedure but omit the aggregation step and instead directly update the416

embeddings using the messages.417

To enable the decoder layers to predict the amino acid sequence residue-by-residue at inference time, we418

provide the ground truth (or presently decoded) sequence through causally masked edge embeddings (2).419

Specifically, for neighboring nodes i>j, the protein sequence sprot
i is embedded and added to the protein420

edges. For node and edge updates, we form messages in a causally consistent manner for neighboring nodes421

i and j by selectively using encoder node embeddings for node j when i<j and decoder node embeddings422

when i>j. The final node embeddings are used to predict the amino acid sequence through a linear layer.423
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Algorithm 2 MPNN layer
Require: ni, eij ▷ Node and edge embeddings
Require: N ▷ Topology of graph specifying neighbors of each node

# Node update
pij ← Concatj∈N (i)(ni, nj , eij)
mij ← NodeMessageMLP(pij)
mi ← Meanj(mij)
ni ← LayerNorm(ni + mi)
ni ← LayerNorm(ni + NodeUpdateMLP(ni))

# Edge update
pij ← Concatj∈N (i)(ni, nj , eij)
mij ← EdgeMessageMLP(pij)
eij ← LayerNorm(eij + mij)
eij ← LayerNorm(eij + EdgeUpdateMLP(eij))

return ni, eij

Algorithm 3 IPMP layer
Require: ni, eij ▷ Node and edge embeddings
Require: Ti ▷ Rigid transforms
Require: N ▷ Topology of graph specifying neighbors of each node

# Node update
pij ← IPMPMessageFn(ni, eij , Ti,N )
mij ← NodeMessageMLP(pij)
mi ← Meanj(mij)
ni ← LayerNorm(ni + mi)
ni ← LayerNorm(ni + NodeUpdateMLP(ni))

# Edge update
pij ← IPMPMessageFn(ni, eij , Ti,N )
mij ← EdgeMessageMLP(pij)
eij ← LayerNorm(eij + mij)
eij ← LayerNorm(eij + EdgeUpdateMLP(eij))

return ni, eij
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Algorithm 4 Invariant point message features
Require: ni, eij ▷ Node and edge embeddings
Require: Ti ▷ Rigid transforms
Require: N ▷ Topology of graph specifying neighbors of each node

xi ← Linear(ni) ▷ Invariant points in i’s local frame
dorigin

i ← ∥xi∥2 ▷ Distances from i’s points to i’s origin
xij ← T−1

i ◦Tj ◦ xj ▷ Node j’s points in i’s local frame
dorigin

ij ← ∥T−1
i ◦Tj ◦ xj∥2 ▷ Distances from j’s points in i’s local frame to i’s origin

dpoints
ij ← ∥Ti ◦ xi −Tj ◦ xj∥2 ▷ Distances between i’s points and j’s points in global frame

pij ← Concatj∈N (i)(ni, nj , eij , xi, dorigin
i , xij , dorigin

ij , dpoints
ij )

return pij

Causal encoder models were trained for 80 epochs on the CATH 4.2 and PDB datasets with an effective424

batch size of 32 using the Adam optimizer (37). The learning rate was increased linearly over 4,000 warmup425

steps to a maximum value of 1e-4, then decayed according to an inverse-square-root schedule. An additional426

set of models were trained in the same manner but with 0.1 Ã Gaussian noise added to the protein backbone427

coordinates. The final models were chosen according to validation set loss.428

ProseLM architecture. For proseLM models, we combine a pre-trained causal encoder with a pre-trained429

ProGen2 protein language model (13) using a set of parameter-efficient conditional adapters (Algorithm 5).430

The causal encoder is used to encode the protein and atomic structures, as well as the causally masked431

amino acid sequence, into a set of node embeddings nprot
i . These embeddings are then used to condition the432

outputs of the simultaneous attention and feedforward layers of the language model through a set of MLP433

adapters (Algorithm 6). The node embeddings are shifted by one position, such that the language model434

is conditioned on the structural information of the next residue to be predicted, rather than the current435

residue encoded in the sequence. The adapter layers first down-project the language model embeddings to436

a reduced dimensionality, then condition on the node embeddings through a two-layer MLP, and finally437

up-project the conditioned embeddings back to the original dimensionality. Importantly, the linear layer438

responsible for up-projecting the embeddings is initialized with weights near zero such that the entire439

adapter layer approximates an identity operation when training begins. The conditioned embeddings are440

ultimately added back to the original language model embeddings and passed through the pre-trained layer441

normalization of the language model. Hyperparameters for conditional adapters for each proseLM model442

are provided in Table 2.443

ProseLM models were trained for 5 epochs on the CATH 4.2 dataset and 15 epochs on the PDB dataset444

with an effective batch size of 64 using the Adam optimizer (37). The learning rate was set to a fixed value445

of 2e-4. An additional set of models were trained in the same manner but with 0.1 Ã Gaussian noise added446

to the protein backbone coordinates. The final models were chosen according to validation set loss.447

Table 2. ProseLM hyperparameters.

Model Language model LM embed. dim. Reduction factor Low-rank embed. dim.
proseLM-S ProGen2-small 1024 64 16
proseLM-M ProGen2-medium 1536 96 16
proseLM-L ProGen2-large 2048 128 16
proseLM-XL ProGen2-xlarge 4096 256 16
proseLM-Base ProGen2-base 1536 96 16
proseLM-Ab ProGen2-OAS 1536 96 16
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Algorithm 5 proseLM
Require: nprot

i , eprot
ij ▷ Protein node and edge embeddings

Require: natom
i , eatom

ij ▷ Atomic node and edge embeddings
Require: eprot-atom

ij ▷ Protein-atomic edge embeddings
Require: Tprot

i , Tatom
i ▷ Rigid transforms for protein and atomic nodes

Require: N prot, N atom, N prot-atom ▷ Topology of protein, atomic, and protein-atomic graphs
Require: sprot

i ▷ Amino acid sequence

# Encode protein and atomic context
N ← {N prot,N atom,N prot-atom}
_, nprot

i ← CausalEncoder(nprot
i , eprot

ij , natom
i , eatom

ij , eprot-atom
ij , Tprot

i , Tatom
i ,N , sprot

i )

# Language modeling layers
hi ← Linear(sprot

i ) ▷ Embed protein sequence
for l ∈ NLM_layers do

hupd
i ← Attention(l)(hi) + FFNN(l)(hi) ▷ Simultaneous attention and feedforward layers

hupd
i ← MLPAdapter(l)(hupd

i , nprot
i+1 ) ▷ Condition on next structure residue

hi ← LayerNorm(l)(hi + hupd
i )

s̃i ← Linear(hi) ▷ Predict amino acid sequence

return s̃i

Algorithm 6 MLP adapter

Require: hupd
i ▷ Language model embeddings

Require: nprot
i ▷ Protein node embeddings

hlr
i ← Lineardown(hupd

i ) ▷ Down-project language model embeddings
nlr

i ← Lineardown(nprot
i ) ▷ Down-project node embeddings

hcond
i ← MLP(Concat(hlr

i , nlr
i+1)) ▷ Condition on next structure residue

hcond
i ← Linearup(hcond

i ) ▷ Up-project language model embeddings

hupd
i ← hupd

i + hcond
i

return hupd
i
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Comparison to LM-Design. The most conceptually similar method to proseLM is LM-Design, which448

adapts masked language models for structure-conditioned sequence design (38). While proseLM generates449

sequences autoregressively for a given backbone structure, LM-Design adopts a strategy more akin to450

sequence refinement using language models given an initial guess. Architecturally, the conditional adapter451

of proseLM uses significantly few parameters per layer (80K-300K) than LM-Design (5M per layer). This452

discrepancy enables proseLM to maintain parameter-efficiency while incorporating adapters after every453

layer of the language model, whereas LM-Design only incorporates adapters after the final layer. To assess454

the impact of these architectural differences, we compared proseLM to LM-Design on the CATH 4.2 test455

set (Table S1). The most apt comparison to the reported LM-Design performance is proseLM-M, which456

contains a similar number of pre-trained language model parameters. We found that proseLM-M achieves457

lower perplexity, while LM-Design achieves higher native sequence recovery. This discrepancy likely arises458

from the different modeling objectives, with proseLM sampling sequences autoregressively and LM-Design459

iteratively updating sequences by sampling from position-wise marginal distributions. Autoregressive460

modeling directly captures the co-evolution between pairs of residues, which is critical for protein function,461

but may yield designs with lower native sequence recovery.462

Design of genome editors.463

Nuclease optimization. To design optimized SpCas9 nucleases with proseLM, we trained proseLM-Base by464

adapting the ProGen2-base model and training on the PDB dataset. This was necessary in order to model465

the complete 1,368-residue SpCas9 sequence, which extends beyond the maximum length supported by466

other ProGen2 and proseLM models. For design, we utilized a multi-state conditioning strategy, selecting467

two structures for conditioning that represented the binary (PDB ID 4ZT0) and catalytic (PDB ID 7Z4J)468

states of SpCas9. To account for missing residues in the structures, we used AlphaFold2 to predict the469

structures with each state provided as a template. The predicted structures were aligned with sub-Å470

RMSD into the experimental complexes, yielding structurally complete representations of the binary and471

catalytic states. Using these structures, we designed 1,600 sequences (T = 1.0). All sequences were had the472

PAM-interacting domain and known catalytic residues fixed to their natural identities.473

To generate sequences closer to the natural SpCas9 sequence, we introduced positional residue frequencies474

derived from evolutionary and experimental data. Evolutionary data was obtained from a multiple-sequence475

alignment of phylogenetically related Cas9 proteins, which were used to create a position-specific scoring476

matrix (PSSM). Experimental data was obtained from a deep mutational scanning study of SpCas9, which477

measured the on- and off-target impacts of single amino acid mutations (39). We combined the PSSM and478

normalized DMS data to create a amino acid bias term for each residue in the SpCas9 sequence. This bias479

was added to the logits of proseLM-Base and used to generate an additional 4,400 sequences (T = 0.1). We480

selected the seven designs from this set for experimental characterization according to the criteria used for481

OpenCRISPR (16).482

Base editor optimization. For base editor optimization, we selected a deaminase domain previously designed483

using protein language models fine-tuned on the TadA family (16). We predicted the structure of the484

deaminase dimer using the ABE8e structure (PDB ID 6VPC) as a template, then aligned our predicted485

structure into the functional state of the ABE8e complex with sub-Å RMSD. We divided our designs486

across two strategies, focusing separately on active site or non-functional scaffolding residues. For active487

site designs, we selected all residues within 5 Å of the single-stranded DNA or Cas9 nuclease, excluding488

positions at the termini or within 5 Å of the dimeric interface, and kept all other residues fixed. For489

non-active site designs, we selected all residues further than 5 Å from the single-stranded DNA or Cas9490

nuclease and further than 5 Å from the dimeric interface, and kept all other residues fixed. When generating491

designs, we provided the fixed residues to the causal encoder as context by reordering the residue indices,492

effectively conditioning proseLM on future positions. We generated 300 active site designs (T = 1.0) and493

200 non-active site designs (T = 0.5) with proseLM-S. The 40 best designs from each strategy according to494

perplexity were selected for experimental characterization.495
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Design of therapeutic antibodies.496

Nivolumab optimization. To optimize the binding affinity of the therapeutic antibody nivolumab, we used497

the crystal structure of nivolumab bound to PD-1 (PDB ID 5WT9). We divided our designs across two498

strategies, focusing separately on the complementarity-determining regions (CDRs) and the framework499

regions. For CDR-directed designs, we enumerated all possible single- and double-mutations to residues500

within 8 Å of the antigen, excluding mutations to or from cysteine or proline. In total, this set included501

414,477 variants with mutations across 54 positions. For framework-directed designs, we generated designs502

with conditioning on the CDRs by fixing residues within 6 Å of the antigen. We generated 2,000 designs each503

from proseLM-Ab and proseLM-Base (T = 1.0). Half of the sequences had the heavy chain designed first,504

with the light chain successively designed based on the designed heavy, and the other half used the reverse505

chain order. We selected 55 CDR-directed and 40 framework-directed designs according to an ensemble of506

proseLM models (causal encoder, proseLM-S, proseLM-Base, proseLM-XL, and proseLM-Ab), using the507

product of perplexities as a selection criterion. For CDR-directed designs, we selected 15 single mutations508

and 40 double mutations. For framework-directed designs, we selected 20 designs with 1-10 mutations and509

20 designs with 11-20 mutations. For each strategy, we ensured that no particular mutation appeared more510

than ten times in the final set. In total, 95 designs were selected for experimental characterization.511

Secukinumab diversification. For diversification of the therapeutic antibody secukinumab, we used the crystal512

structure of secukinumab bound to IL-17A (PDB ID 6WIO). We generated full heavy and light chain513

variable fragments with 2,000 designs each from proseLM-Ab and proseLM-Base (T = 1.0). Half of the514

sequences had the heavy chain designed first, with the light chain successively designed based on the515

designed heavy, and the other half used the reverse chain order. From each model’s designs, we selected516

16 designs with 1-24 mutations, 16 designs with 25-29 mutations, and 16 designs with 30-34 mutations517

according to an ensemble of proseLM models (causal encoder, proseLM-S, proseLM-Base, proseLM-XL, and518

proseLM-Ab), using the product of perplexities as a selection criterion In total, 96 designs were selected for519

experimental characterization.520

Characterization of genome editors.521

DNA oligonucleotides and plasmid assembly. Oligonucleotides used in this study were synthesized by IDT522

with standard desalting. All natural and AI-generated nuclease and deaminase sequences were purchased as523

synthetic gene fragments (Twist Bioscience), human codon-optimized using the Twist codon optimization524

tool, and cloned into CMV-driven expression plasmids using HiFi DNA Assembly (New England Biolabs).525

Single-guide RNA (sgRNA) sequences were cloned into a human U6 (hU6)-driven expression plasmid526

that also contains a CMV-driven GFP transfection reporter using HiFi DNA Assembly (New England527

Biolabs). All plasmids were sequence-verified by whole plasmid Nanopore sequencing (Primordium) prior528

to downstream applications.529

HEK293T cell culture and transient transfection. HEK293T cells (ATCC) were cultured at 37°C and 5% (v/v)530

CO2 in high glucose DMEM with 4 mM L-glutamine, 1 mM sodium pyruvate and phenol red pH indicator531

(Gibco), supplemented with 10% FBS and 1X penicillin-streptomycin. 24 hours prior to transfection, cells532

were seeded at a density of 1x103 cells/well in 96-well tissue culture-treated plates (Nunc™ Edge™, Thermo533

Fisher Scientific).534

For each transfection well, 50 ng of sgRNA plasmid and 50 ng of nuclease or base editor-expressing535

plasmid were added to 5 µL of Opti-MEM (Gibco). 0.2 µL of TransIT®-2020 transfection reagent (Mirus536

Bio) was diluted into 4 µL of Opti-MEM. Plasmid and TransIT®-2020 mixtures were combined, incubated537

for 15-30 min at room temperature, and added to HEK293T cells in a dropwise manner. Plates were gently538

rocked to mix and incubated for 72 hours.539

Targeted-amplicon sequencing and analysis. Cell lysates were generated by washing the cells with 1X PBS and540

adding 25 µL of lysis buffer (100 mM Tris-HCl, pH 7.5; 0.05% SDS; 25 µg/mL Proteinase K) per well. Plates541
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with lysis buffer were incubated at 37°C for 1 hour, and then 25 µL of nuclease-free water was added per well.542

The lysates were transferred to 96-well PCR plates and boiled at 98°C for 15 min. Locus-specific primers543

were used to amplify regions of interest from cell lysates by PCR (Q5® High-Fidelity DNA Polymerase).544

After PCR, the resulting amplicons were purified (Mag-Bind® RxnPure Plus, Omega Bio-tek), DNA yields545

were quantified (QuantiFluor® kit, Promega), and DNA concentrations were normalized to 2 ng/100 bp546

of amplicon length and submitted for Sanger sequencing with the appropriate forward PCR primer. We547

quantified the activity of base editors and nucleases using the software tools BEAT (40) and Synthego ICE548

v1.2.0 (41), respectively, with default parameters.549

Characterization of antibodies.550

Antibody production. Antibody heavy and light chain variable fragment sequences were synthesized as gene551

fragments and cloned into the pTwist CMV vectors. Nivolumab variants were cloned into IgG4 (heavy chain)552

and IgK (light chain) vectors. Secukinumab variants were cloned into IgG1 (heavy chain) and IgK (light553

chain) vectors. Antibodies were expressed in 1mL HEK293 mammalian cultures and the supernatant was554

used for binding affinity measurements. Gene synthesis and expression was performed by Twist Bioscience.555

Binding affinity measurements. Binding studies were performed in HBSTE running buffer (10mM HEPES,556

150mM NaCl, 3mM EDTA, 0.0% Tween-20) at 25degC. Six-point antigen dilution series were prepared557

in running buffer starting at 200 nM with a 2.5-fold serial dilution (200-2.0nM). Antibodies were first558

captured on a Carterra HC30M sensor chip with immobilized goat anti-human Fc pAb. Following 8-10559

buffer injection cycles, increasing antigen concentrations were injected over the Ab-captured surfaces with a560

5 min of association phase and a 10 min of dissociation phase. The chip surface was finally regenerated561

and antibodies were recaptured for subsequent antigen binding studies. Double reference subtracted data562

containing antigen binding at varying concentrations were globally fit using 1:1 binding model. Binding563

affinity measurements and analyses were performed by Twist Bioscience.564
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Supplementary information636

Table S1. CATH 4.2 benchmark. Comparison of recent protein design models on the CATH 4.2 test set from (2). Perplexity is reported
over all residues in the test set. † indicates results cited from (22). ‡ indicates results cited from (38).

Model Train / Total Param. Perplexity (↓) Median Recovery (%, ↑)
†Structured Transformer (2) 1.6M / 1.6M 6.63 35.82
†GVP-GNN (42) 1.0M / 1.0M 5.36 39.47
†ProteinMPNN (3) 1.9M / 1.9M 4.61 45.96
†PiFold (22) 6.6M / 6.6M 4.55 51.66
‡ProteinMPNN-CMLM (38) 1.9M / 1.9M 5.03 48.62
‡LM-Design (ProteinMPNN-CMLM) (38) 6.9M / 659M (1.0%) 4.63 53.26
‡LM-Design (PiFold) (38) 11.9M / 664M (1.7%) 4.52 55.65
Causal encoder 4.1M / 4.1M 4.76 47.24
proseLM-S 5.1M / 156M (3.3%) 3.89 49.00
proseLM-Base 7.3M / 772M (0.9%) 3.34 49.6
proseLM-M 7.3M / 772M (0.9%) 3.29 50.00
proseLM-L 10.8M / 2.8B (0.4%) 3.23 50.34
proseLM-XL 13.3M / 6.5B (0.2%) 2.67 50.83

Table S2. PDB benchmark. Comparison of proseLM models on PDB test set derived from (3). Metrics are for proteins that are part of
a complex or have interactions with some non-protein entity. Performance is reported for both backbone-only and full-context inputs
(backbone / full). For protein complexes, all other chains are provided as context for the target chain.

Model Train / Total Param. Mean Perplexity (↓) Median Recovery (%, ↑)
Causal encoder 4.2M / 4.2M 4.17 / 3.64 54.36 / 58.15
proseLM-S 988K / 155M (0.6%) 3.77 / 3.34 55.63 / 59.57
proseLM-M 3.2M / 772M (0.4%) 3.32 / 3.00 57.00 / 61.20
proseLM-L 6.6M / 2.8B (0.2%) 3.39 / 3.05 56.89 / 61.53
proseLM-XL 9.2M / 6.5B (0.1%) 2.80 / 2.57 59.58 / 64.41

Table S3. Sequence recovery near non-protein context. Comparison of proseLM models on PDB test set derived from (3). Metrics
are for residues within 5 Å of nucleic acids, ligands, or ions. Performance is reported for both backbone-only and full-context inputs
(backbone / full).

Median Recovery (%, ↑)
Model Nucleic Acid Ligand Ion
Causal encoder 44.44 / 54.90 50.00 / 64.00 46.15 / 66.67
proseLM-S 48.94 / 58.06 57.14 / 70.59 60.00 / 76.00
proseLM-M 64.24 / 70.87 66.67 / 75.93 70.97 / 82.61
proseLM-L 62.88 / 71.13 66.67 / 76.47 70.59 / 82.61
proseLM-XL 70.59 / 76.10 74.19 / 82.35 77.78 / 87.50
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Table S4. SAbDab antibody benchmark. Comparison of proseLM models on antibody test set from SAbDab. Sequence recovery
is reported as the median of cluster-averaged values for all antigen-bound heavy (n = 361) and light (n = 300) chains in the test set.
Performance is reported for both antibody-only and full-complex inputs (antibody / complex).

Median Recovery (%, ↑)
Model Heavy Fv Light Fv
Causal encoder 75.90 / 77.37 75.68 / 77.48
proseLM-S 78.56 / 78.94 77.57 / 78.06
proseLM-M 79.91 / 79.96 79.61 / 79.44
proseLM-L 80.71 / 82.04 82.14 / 83.17
proseLM-XL 80.60 / 81.57 80.09 / 81.02
proseLM-Ab 79.80 / 82.42 83.11 / 83.02

Table S5. SAbDab bound antibody benchmark. Comparison of proseLM models on antibody test set from SAbDab. Sequence
recovery is reported as the median of cluster-averaged values for all antigen-bound heavy (n = 361) and light (n = 300) chains in the test
set. Performance is reported for both antibody-only and full-complex inputs (antibody / complex). CDR loops are defined according to the
IMGT numbering scheme.

Median Recovery (%, ↑)
Model Heavy Fr CDR H1 CDR H2 CDR H3 Light Fr CDR L1 CDR L2 CDR L3
Causal encoder 83.23 / 82.73 67.22 / 69.23 55.56 / 60.00 50.00 / 60.00 81.01 / 82.28 65.00 / 66.67 62.50 / 62.50 56.25 / 59.09
proseLM-S 85.42 / 84.70 69.23 / 72.48 60.00 / 63.65 52.51 / 57.70 82.28 / 82.28 63.64 / 66.20 62.50 / 68.75 56.36 / 60.42
proseLM-M 87.50 / 87.57 69.23 / 69.23 60.00 / 62.60 52.66 / 58.82 84.81 / 84.21 66.67 / 66.67 66.67 / 75.00 57.78 / 60.00
proseLM-L 88.62 / 88.10 69.41 / 74.03 60.00 / 66.67 52.63 / 62.83 86.00 / 86.08 68.18 / 68.18 75.00 / 75.00 65.08 / 66.67
proseLM-XL 88.39 / 88.11 69.23 / 70.19 60.00 / 68.93 50.00 / 60.56 84.54 / 85.53 69.23 / 71.10 71.43 / 75.00 59.26 / 62.50
proseLM-Ab 89.09 / 89.70 69.23 / 71.43 59.44 / 63.33 50.00 / 60.41 86.71 / 86.71 66.67 / 72.73 75.00 / 75.00 62.50 / 66.67
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Fig. S1. Visualization of protein and atomic graph components. (a) Each protein residue is represented as a rigid body frame
with the Cα atom at the origin and the frame’s orientation defined by the positions of the N and C atoms. (b) Non-protein atoms are
represented as rigid body frames with the primary atom at the origin and the two closest atoms defining the frame’s orientation. (c)
Protein and atomic graphs are processed by alternating MPNN and IPMP (20) layers. MPNN layers operate on the graph nodes
and edges, while IPMP layers additionally incorporate frame-based geometric features. (d) Visualization of the edge connectivity for
the protein-only residue graph (left), atomic-only graph (upper right), and protein-atomic graph (lower right). Black lines illustrate the
connectivity between nodes in the graph.
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Fig. S2. Performance of proseLM models on CATH 4.2 benchmark. Evaluation of proseLM model performance on the CATH 4.2 test
set curated by Ingraham et al. (2). Aggregate sequence recovery values are reported as the median across all proteins (or subsets when
appropriate). (a) Recovery of native sequence residues for proseLM models. (b) Recovery of native sequence residues for proseLM
models binned by residue burial, calculated as the average Cβ distance to the nearest eight neighbors (lower is more buried). All models
achieve highest rates of native sequence recovery among buried residues and reduced recovery at less-buried surface positions. (c)
Recovery of native sequence residues for proseLM models, binned by sequence length. Longer sequences exhibit higher rates of native
sequence recovery, with larger proseLM models having particularly high recovery for large proteins. (d) Relationship between perplexity
and sequence recovery for proseLM models. Spearman correlation coefficients are reported for each model. Larger models show less
correlation between perplexity and sequence recovery.
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Fig. S3. Impact of coordinate noise on single-sequence structure prediction. Evaluation of proseLM model performance on
the CATH 4.2 test set with and without Gaussian noise added to coordinates. Structure prediction accuracy and confidence are for
single-sequence predictions using AlphaFold2 (9). (a) Fraction of designed sequences that are predicted to successfully recapitulate
the input structure (lDDT > 90). Models trained with 0.1 Å of Gaussian noise added to coordinates achieve higher structure prediction
success. Larger models approach the lower level of structure prediction success of the native sequences (Horizontal line) (b) Structure
prediction success rates for noised models relative to un-noised for several lDDT thresholds. Larger models show less sensitivity to
coordinate noise (lower relative success rates). (c) Fraction of designed sequences that yield highly confident structure predictions
(pLDDT > 90). Models trained with coordinate noise yield high-confidence structures more frequently. Larger models approach the lower
level of confident structure prediction rates for the native sequences (Horizontal line). (d) Confidence in structure prediction for noised
models relative to un-noised for several pLDDT thresholds. Larger models show less sensitivity to coordinate noise (lower relative rates
of confident predictions).
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Fig. S4. Perplexity of masked structural spans. Evaluation of proseLM model perplexity on contiguous structurally masked spans
of twenty residues. Perplexity for structurally masked residues (dashed lines) increases significantly over the same residues without
masking (solid lines). Compared to the respective ProGen2 models, proseLM models achieve lower perplexity for structurally masked
residues, indicating that the surrounding context is effectively incorporated when predicting for masked positions.
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Fig. S5. Fitness prediction measured by normalized discounted cumulative gain. Comparison of proseLM and recent structure-
conditioned sequence design models (ESM-IF1 and ProteinMPNN) for prediction of mutational fitness landscapes. Performance is
reported as normalized discounted cumulative gain for the top ten percent of samples according to experimental fitness (NDCG10%).
The metric is relevant for protein design tasks, where it is important to accurately prioritize the highest fitness sequences for experimental
characterization.
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Fig. S6. Fitness prediction measured by Spearman’s rank correlation coefficient. Comparison of proseLM and recent structure-
conditioned sequence design models (ESM-IF1 and ProteinMPNN) for prediction of mutational fitness landscapes. Performance is
reported as Spearman’s rank correlation coefficients. The metric indicates how well model scores rank sequences according to fitness
across the entire dataset.
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Fig. S7. Model scores for SpCas9 variants. Mutational hamming distance from SpCas9 and proseLM model perplexities for designed
SpCas9 variants. Mutation distances and model scores are shown for generations directly from proseLM (light gray), generations from
proseLM augmented with position-specific residue propensities from deep mutational scans and multiple-sequence alignments (dark
gray), and the subset selected for experimental validation (blue). Model scores for SpCas9 are indicated by vertical black lines.
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Fig. S8. Model scores for adenine base editor variants. Mutational hamming distance from parental deaminase and proseLM model
perplexities for designed deaminase variants. Mutation distances and model scores for the complete set of generations and the subset
selected for experimental validation are shown in gray and blue, respectively. Model scores for the parental deaminase are indicated
by vertical black lines. (a) Positions of all mutated residues among selected active site variants (red spheres). (b) Mutation and score
distributions for active site variants. (c) Positions of all mutated residues among selected non-active site variants (red spheres). (d)
Mutation and score distributions for non-active site variants.
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Fig. S9. Model scores for nivolumab CDR variants. Mutational hamming distance from parental nivolumab and proseLM model
perplexities for designed nivolumab CDR loop variants. Mutation distances and model scores for the complete set of generations and the
subset selected for experimental validation are shown in gray and blue, respectively. Model scores for nivolumab are indicated by vertical
black lines. Y-axis is shown on a log scale.
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Fig. S10. Model scores for nivolumab framework variants. Mutational hamming distance from parental nivolumab and proseLM
model perplexities for designed nivolumab framework variants. Mutation distances and model scores for the complete set of generations
and the subset selected for experimental validation are shown in gray and blue, respectively. Model scores for nivolumab are indicated by
vertical black lines. Y-axis is shown on a log scale.
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Fig. S11. Model scores for diversified secukinumab variants. Mutational hamming distance from parental secukinumab and proseLM
model perplexities for designed secukinumab variants. Mutation distances and model scores for the complete set of generations and the
subset selected for experimental validation are shown in gray and blue, respectively. Model scores for secukinumab are indicated by
vertical black lines. Y-axis is shown on a log scale.
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