

== REVIEW COMMONS MANUSCRIPT ==

IMPORTANT:

- Manuscripts submitted to Review Commons are peer reviewed in a journal-agnostic way.
- Upon transfer of the peer reviewed preprint to a journal, the referee reports will be available in full to the handling editor.
- The identity of the referees will NOT be communicated to the authors unless the reviewers choose to sign their report.
- The identity of the referee will be confidentially disclosed to any affiliate journals to which the manuscript is transferred.

GUIDELINES:

- For reviewers: <https://www.reviewcommons.org/reviewers>
- For authors: <https://www.reviewcommons.org/authors>

CONTACT:

The Review Commons office can be contacted directly at: office@reviewcommons.org

2

3

4 **Differential Dynamics and Roles of FKBP51 Isoforms and**
5 **Their Implications for Targeted Therapies**

6

7 Silvia Martinelli¹, Kathrin Hafner¹, Maik Koedel¹, Janine Knauer-Arloth^{1,3}, Nils C Gassen^{1,2},
8 Elisabeth B Binder¹

9

10 ¹Department Genes and Environment, Max Planck Institute of Psychiatry, Kraepelinstr. 2-
11 10, 80804, Munich, Germany

12 ²Research Group Neurohomeostasis, Department of Psychiatry and Psychotherapy,
13 University of Bonn, Venusberg Campus 1, 53127, Bonn, Germany

14 ³Institute of Computational Biology, Helmholtz Munich, Neuherberg 85764, Germany

16

17 The expression of FKBP5, and its resulting protein FKBP51, is strongly induced by stress
18 and glucocorticoids. Numerous studies have explored their involvement in a plethora of
19 cellular processes and diseases, including psychiatric disorders, inflammatory conditions
20 and cancer. However, there is a lack of knowledge on the role of the different RNA splicing
21 variants and the two protein isoforms that originate from the human FKBP5 locus, especially
22 in response to glucocorticoids. In this study we use *in vitro* models as well as peripheral
23 blood cells of a human cohort to show that the two expressed variants are both dynamically
24 upregulated following dexamethasone. We also investigate the subcellular localization of the
25 protein isoforms, their degradation dynamics as well as their differential role in known
26 cellular pathways. The results shed light on the difference of the two variants and highlight
27 the importance of differential analyses in future studies with implications for targeted drug
28 design.

30 The FK506 binding protein 51 (FKBP51) is a ubiquitously expressed immunophilin, encoded
31 by the gene *FKBP5*, and whose function has been investigated in association with numerous
32 biological processes describing FKBP51 as a central regulator of pathways involved in
33 psychiatric and neurodegenerative disorders, immune response, inflammation,
34 cardiovascular diseases, metabolic pathways and cancer (Zannas *et al*, 2016; Blair *et al*, 2015;
35 Marrone *et al*, 2023b; Smedlund *et al*, 2021; Zannas *et al*, 2019). The most investigated role of
36 FKBP51, is its involvement in the regulation of the stress response, initially discovered in
37 squirrel monkeys where it was observed that an increased expression of FKBP51 is the cause
38 of glucocorticoid receptor (GR) resistance and high circulating cortisol levels in these
39 animals (Denny *et al*, 2000; Scammell *et al*, 2001). The critical role of FKBP5 in hypothalamus-
40 pituitary-adrenal (HPA) axis regulation is also supported by the fact that feedback control
41 of this axis is impaired in FKBP51-deficient mice. In fact, FKBP51 is an inhibitor of the GR,
42 the key effector of the hypothalamus-pituitary-adrenal (HPA) axis. On the other hand, it is
43 also a transcription target of the GR, with several glucocorticoid response elements (GREs)
44 in intronic and upstream enhancer regions and strong upregulation observed across many
45 tissues. This can lead to an ultra-short negative feedback of GR activity (Jääskeläinen *et al*,
46 2011). FKBP51 is a co-chaperone protein and interacts not only with the GR via HSP90, but
47 also with many other proteins, via direct protein-protein interactions (Taipale *et al*, 2014;
48 Martinelli *et al*, 2021). These interaction partners include heat shock proteins, steroids
49 receptors, PH domain and leucine-rich repeat protein phosphatases (PHLPP) and Akt,
50 Nuclear Factor 'Kappa-Light-Chain-Enhancer' of Activated B-Cells (NF- κ B) as well as DNA
51 methyltransferase 1, Calcineurin-NFAT signaling, Tau and others (Hähle *et al*, 2019). These
52 interactions have been shown to play a relevant role in many cell types, including cancer
53 cells (Pei *et al*, 2009; Hähle *et al*, 2019). Given the strong upregulation of FKBP51 following
54 glucocorticoid exposure and its many downstream partners and thus central role promoting
55 a cellular stress response, it is a particularly interesting potential drug target for a number
56 of diseases.

57 In humans, four transcription variants (variant 1-4) of *FKBP5* have been annotated, coding
58 for two different isoforms (isoform 1 and 2) of the protein FKBP51. In mice, a species from
59 which a large body of current knowledge on FKBP5/51 is derived, only one isoform
60 (corresponding to the human isoform 1) of FKBP51 is annotated. The human transcription
61 variant 1 (ENST00000357266.8) differs in the 5'UTR from variants 2
62 (ENST00000536438.5) and 3 (ENST00000539068.5) and all three code for the 475 amino

a much shorter transcript and codes for the “truncated” isoform 2 (Q13451-2) of 268 aa (see Fig. 1 a and b). Gene expression data (Lonsdale et al, 2013, www.gtexportal.org) indicate that *FKBP5* is ubiquitously expressed with particularly high expression levels in tibial nerve, skeletal muscle and esophagus (Fig. 1 c). Variant 1 is more strongly expressed than the other variants, suggesting that in all experiments conducted without distinguishing between the different variants, the overall expression levels mirror mainly the ones of variant 1. Variant 2 appears to be the least expressed, while it doesn’t seem to be a quantitative difference between variant 3 and 4, but rather a tissue-specific differential expression.

At the protein level, FKBP51 isoform 1 has two N-terminal FK506-binding (FK) domains and three tetratricopeptide repeat (TPR) motifs at the C-terminus (Fig. 1 b). Isoform 2 of FKBP51 shows sequence identity with isoform 1 for the first 222 aa, corresponding to the FK domains. The sequence ranging from aa 223 to its C-terminus (aa 268) is unique and, so far, uncharacterized. Missing the rest of isoform 1’s C-terminal region, isoform 2, therefore, lacks the TPR motifs (Fig. 1 b). The first FK domain, FK 1, is the binding site of the immunosuppressive drug FK506, from which the protein gets its name. FK1 also exerts a peptidyl-prolyl cis-trans isomerase (PPIase) or rotamase activity (Schiene & Fischer, 2000), characteristic of all immunophilins. The pocket in FK1 is also the binding site for another drug, rapamycin. This drug, in complex with FKBP51, exerts immunosuppressive and anticancer effects, mediated via the selective inhibition of the mechanistic target of rapamycin or mTOR (Sabatini, 2006). Downstream, adjacent to FK1, is the second FK domain, FK2, that is presumably derived from a duplication event of the FK1 domain and shares 32% sequence homology with it (Cioffi et al, 2011), but lacks measurable rotamase activity (Sinars et al, 2003) and does not bind FK506. Instead, it might have cooperative functions with the TPR motifs (Sinars et al, 2003). The TPR motifs at the C-terminus promote protein-protein interactions (Russell et al, 1999), in particular with chaperone proteins such as HSP90 and heat shock protein 70 (HSP70) (Dorman et al, 2003). Furthermore, Li and colleagues showed that the TPR motifs are also responsible for the interaction with the serine-threonine phosphatase calcineurin (CaN) (Li et al, 2002). This phosphatase activates nuclear transcription factors of activated T lymphocytes (NFAT), responsible for the expression of interleukin-2 (IL2) and several T cell specific activators, regulating thereby the clonal expansion of T cells after stimulation by an antigen (Li et al, 2002). Thus far, only a few studies carried out by the group of M.F. Romano at the University of Naples, Italy, have described different functions of the human isoforms, with isoform 2 associated to the development of melanoma and glioma ((Romano et al, 2015; D’Arrigo et al, 2017)). Given the

99 **Substantial structural difference of the *FKBP5* isoforms and the scarcity of studies**
100 regarding their differential roles, we decided to investigate possible differential functions of
101 *FKBP51* isoforms. We first mapped transcript and isoform differences in the expression
102 dynamics following induction by glucocorticoids and then probed functional differences in
103 key pathways. A better understanding of the function of different isoforms may help
improving the development of *FKBP51*-targeting drugs.

104 **Results**

105 **Expression and degradation dynamics of *FKBP5* / *FKBP51***

106 In order to characterize the expression dynamics of *FKBP5*, we first determined the
107 expression via reverse transcription quantitative polymerase chain reaction (RT-qPCR) in
108 HeLa cells. Results evidenced the absence of significant expression of variants 2 and 3. The
109 probes covering all *FKBP5* variants yielded the strongest signal, while variant 4 showed
110 lower yet measurable levels (Fig. 2a, S1). This indicates that large part of this signal derives
111 from variant 1 expression. Given the key role of *FKBP5* in the stress response, we were
112 interested in the differential expression dynamics of the transcription variants upon GR
113 activation. For this purpose, we stimulated HeLa cells with 100 nM of the GR agonist
114 dexamethasone (Dex) for 2, 4, 6, 12 and 24 hours. Transcription levels of the different mRNA
115 variants were subsequently analyzed via RT-qPCR (Fig. 2 b). Due to the lack of sequence
116 uniqueness for variant 1, probes spanning variants 1, 2 and 3 were used. Considering the
117 absence of variants 2 and 3, the observed signal was assumed to correspond to variant 1 and
118 will be referred to as variant 1 from here on. The expression of both variant 1 and 4 was
119 significantly increased in response to Dex across time (Two-way ANOVA, time effect $p <$
120 0.0001) and a significant difference between variants over time (two-way ANOVA, time x
121 variant effect $p < 0.0005$). Interestingly, despite having lower expression at basal levels,
122 variant 4 showed an increased response ratio over vehicle compared to variant 1 at early time
123 points (significant difference at 2 and 4 hours). Furthermore variant 4 showed a more rapid
124 response to Dex than variant 1: variant 4 levels were significantly increased already after two
125 hours of treatment while at the same time point variant 1 was still expressed at baseline
126 levels. After 6 hours treatment and until the end of the treatment period at 24 hours, both
127 variants showed a significantly increased expression compared to baseline but with no
128 difference between each other: variant 4 follows a steady slope after 6 hours treatment, while
129 variant 1 expression reflects in a slowly increasing curve up to 24 hours.

130 Having seen a difference in the response to Dex between variant 1 and variant 4 in cell
131 culture, we decided to assess whether this finding holds true in a different tissue *in vivo*. For

145 After having observed a different expression dynamic of variant 1 and 4 over time in
146 response to Dex, we investigated the half-life of the respective protein isoforms: isoform 1
147 and 2. For this purpose, a pulse-chase approach was used. HeLa cells were transfected with
148 HaloTag®-tagged plasmids coding for either isoform 1 or 2. Twenty-four hours later, cells
149 were tagged with a cell permeable halogenated fluorophore 16, 8, 4 and 2 hours before
150 harvesting. After harvesting the cells, proteins were extracted and subjected to western blot,
151 and fluorescence intensity was measured on nitrocellulose membrane. Results indicated
152 that both isoforms are degraded throughout the 24 hours (two-way ANOVA time effect $p =$
153 0.0001) at a significantly different rate (two-way ANOVA isoform effect $p < 0.0001$ and time
154 x isoform effect $p < 0.0001$). The degradation of isoform 2 is faster with a half-life of four
155 hours, while isoform 1 reached 50% of degradation only after 8 hours (Fig. 2d).

156 These results suggest a faster turnover of variant 4/isoform 2 with an increased and faster
157 responsiveness to Dex and a shorter half-life of the protein compared to variant 1/ isoform
158 1.

159

160 **Differential regulation of cellular pathways**

161 **Subcellular location of the two isoforms**

162 To better understand possible differences in their functions, we analyzed the intracellular
163 localization of the two isoforms. Overall, the information about FKBP51's intracellular
164 localization appears to be highly dependent on antibodies used for detection, and no
165 information is available for the different isoforms. To avoid potential artefacts deriving from
166 immunocytochemical processing, HeLa cells were transfected with plasmids coding for

167 GFP-tagged isoforms 1 and 2. A transient expression vector was used as control cells were
168 live imaged 24 hours after transfection. Resulting images (Fig. 3 a) showed ubiquitous signal
169 from the control-transfected cells. Isoform 1 presented a cytoplasmic accumulation, while
170 isoform 2 showed a distinct subnuclear localization. In support of this result, a motif analysis
171 performed with the Expasy Prosite database (<https://prosite.expasy.org/>) revealed a
172 possible bipartite nuclear localization signal (NLS) between aa 232 and 246 (supplementary
173 Fig. S4), which corresponds to the region of the protein that is unique for isoforms 2
174 compared to isoform 1. In fact, despite having a low confidence level (score 3.000), the same
175 analysis performed on isoform 1 could not detect any NLS (supplementary Fig. S2).
176 Given the structural and sub cellular localization differences, we investigated whether these
177 have a functional effect. To this aim, we investigated different cellular pathways that are
178 known to be regulated by FKBP51, and analyzed the differential role of the two isoforms on
179 them.

180 Differential effects on GR activity

181 As one of the best-known functions, we first analyzed the negative regulation of the two
182 isoforms on GR. Activity of the different isoforms on GR was assessed via Glucocorticoid
183 Response Element (GRE)-driven reporter gene assays. HeLa cells were co-transfected with
184 MMTV-Luc, a GRE-driven luciferase, and with a plasmid coding for either isoform 1, isoform
185 2 or an empty vector as a control (ctr vector). Cells were then treated with increasing
186 concentrations of Dex, and luminescence was measured 48 hours after transfection (Fig.
187 3b). As expected, GRE activity was enhanced in proportion of Dex concentration in the
188 presence of both isoforms and the control vector (two-way ANOVA Dex effect $p < 0.0001$).
189 Cells overexpressing isoform 1 showed a significantly lower dose-response curve compared
190 to cells overexpressing either isoform 2 or the control plasmid (two-way ANOVA isoform
191 effect $p < 0.0001$ and isoform x Dex effect $p < 0.0001$), which, in turn, were perfectly
192 overlapping. Isoform 1 reduces the activity of GR, meaning that higher concentrations of
193 Dex are required to evoke GR activation. To confirm these findings, the reporter-gene assay
194 was repeated with FKBP51 KO cells. A CRISPR-Cas 9 approach followed by clonal selection
195 was used to generate cells lacking isoform 1 only (iso 1 KO) or both isoforms (full KO) in
196 HeLa cells using a pool of different guide RNAs (see materials section and supplementary
197 Fig. S4). With all genotypes we saw, as expected, a dose-dependent curve in response to Dex
198 (two-way ANOVA Dex effect $p < 0.0001$). The curve resulting from the luciferase assay in
199 the full KO overlapped with the one from isoform 1-KO (*i.e.* still containing isoform 2). Both
200 KO lines showed an overall increased activity with lower Dex doses as compared to WT (two-
201 way ANOVA isoforms effect $p = 0.0008$). This result suggests that the lack of isoform 1

203 increases the sensitivity of GR to Dex, and isoform 1 alone does not rescue this effect (Fig. 3c). Taken together, the results of both reporter-gene
204 assays indicate that isoform 1 alone, and not isoform 2, has an inhibitory function on GR.

205 **Differential effects on macroautophagy**

206 Next, we proceeded with the analysis of the main macroautophagy markers, since it has
207 been shown that this pathway is regulated by FKBP51 (Gassen *et al*, 2014). Upstream
208 regulation of autophagy is tightly controlled by the kinase AKT. AKT (activated when
209 phosphorylated) inactivates the autophagy initiator BECN1 via phosphorylation. In turn,
210 AKT can be inactivated through dephosphorylation by the phosphatase PHLPP. This latter
211 process is mediated by FKBP51 (Gassen *et al*, 2014). Isoform 1, 2 or an empty vector as
212 control were overexpressed in HeLa cells, and the key markers of macroautophagy were
213 analyzed via western blot. Quantifications of pAKT showed that overexpression of both
214 isoform 1 and 2 led to a decreased phosphorylation of AKT (pAKT) compared to control
215 (Fig. 3d, e). Decreased pAKT leads to an enhanced autophagy, therefore we analyzed the
216 main autophagic markers: BECN1, upstream regulator of autophagy which is modulated
217 directly by AKT, ATG12, involved in the expansion of autophagosomes being covalently
218 bound to ATG5 and targeted to autophagosome vesicles (ATG12-ATG5), and LC3B-II
219 (lipidated form of LC3B-I), marker of autolysosome formation. Overexpression of isoform
220 1 led to an increase of BECN1 and ATG12-ATG5 (Fig. 3d, f, g). Interestingly, overexpression
221 of isoform 1 did not lead to an increase of LC3BII (normalized on LC3BI) (Fig. 3d, h).
222 Furthermore, overexpression of isoform 2 did not affect levels of BECN1, but led to
223 increased ATG12-ATG5 and LC3BII/I (Fig. 3d, f-h).

224 **Differential effects on DNA methyltransferase 1**

225 As we have previously shown, FKBP51 modulates DNA methyltransferase 1 (DNMT1)
226 activity via phosphorylation in response to antidepressants, affecting genome-wide
227 methylation levels (Gassen *et al*, 2015). To test the effect of the two FKBP51 isoforms on the
228 phosphorylation (*i.e.* activation) levels of DNMT1 (pDNMT1), isoforms 1 or 2 of FKBP51
229 were again overexpressed in HeLa cells. pDNMT1 was detected via western blot analysis and
230 normalized to total DNMT1. Quantifications indicated a large reduction of pDNMT1 in the
231 presence of isoform 1 overexpression (Fig. 3d, i). Contrarily overexpression of isoform 2 did
232 not affect DNMT1 phosphorylation compared to control (Fig. 3d, i).

233

234 **Differential effects on Calcineurin-NFAT signaling**

235 FKBP51 has also been shown to be involved in the regulation of the immune response
236 through Calcineurin-NFAT signaling (Li *et al*, 2002). We analyzed the effect of FKBP51

238 proper immune response, we used the immortalized human T lymphocyte cell line Jurkat
239 for this purpose. Plasmids coding for isoforms 1 or 2 of FKBP51 were overexpressed in Jurkat
240 cells and pNFAT levels were analyzed via western blot. Quantifications revealed an increase
241 of pNFAT when overexpressing isoform 1 (Fig. 3d, j). Conversely, overexpression of isoform
242 2 did not affect pNFAT levels compared to control (Fig. 3d, j).

243 Overall, these data revealed that the two FKBP51 isoforms can have equivalent or opposite
244 effects. The reasons behind this and the possible implications will be examined in the
245 discussion part.

246 247 Discussion

248 With this study we highlighted both commonalities as well as fundamental differences
249 between the two isoforms of the human FKBP51 protein. Using targeted assays, we were able
250 to map differences in Dex responsiveness and half-life of the two isoforms. In fact, in
251 cultured cells as well as in human blood samples, the short variant 4/isoform 2 appears to
252 have a faster turnover, with a more rapid increase in expression upon dexamethasone
253 treatment and a faster protein degradation rate *in vitro*. The faster dynamic that we observe
254 in blood samples compared to HeLa cells, with a return to baseline levels after 23 hours of
255 Dex intake, is most probably due to a metabolization of Dex that occurs *in vivo* but not *in*
256 *vitro* (Menke *et al*, 2016). The general faster responsiveness of variant 4 mirrors the findings
257 of Marrone and colleagues (Marrone *et al*, 2023a), albeit in a different context, where they
258 observe a similar rapid response of variant 4 when stimulating T cell proliferation as
259 compared to variant 1. Notably, the authors also report a nuclear localization of variant 4,
260 which aligns with our own observations (Fig. 3a). In silico analyses performed with the
261 ExPasy Prosite database (<https://prosite.expasy.org/>) revealed the presence of a putative
262 nuclear localization signal (NLS) inside the unique C-terminal sequence of isoform 2
263 (supplementary Fig. S1), validating the hypothesis of a selective nuclear localization and
264 function of isoform 2 compared to isoform 1. Collectively, these corroborative findings
265 suggest a potentially unexplored and important role for variant 4 in immediate-response
266 transcriptional processes, warranting further investigation.

267 On a functional level, our experiments also revealed a partially distinct role for the two
268 isoforms in the different cellular pathways. The two isoforms were found to exert distinct
269 regulatory effects on GR, NFAT and DNMT1 signaling. The regulation of these pathways
270 depends on the interaction of FKBP51 with HSP90. It is therefore not surprising that isoform

1 **Interaction of GR and phosphorylated FKBP51 with DNM1L**. While isoform 2 does
2 not have any effect on their function since it lacks the TPR domain responsible for the
3 interaction with HSP90. On the other hand, the autophagic pathway, which is regulated via
4 the interaction of FKBP51 with AKT and PHLPP, is modulated by both isoforms, since the
5 interaction is dependent on the FK1 domain. The immediate consequence of FKBP51's
6 interaction to AKT and PHLPP is the dephosphorylation of AKT. Interestingly, while AKT
7 dephosphorylation is equally regulated by the two isoforms (Fig. 3 a), downstream effects,
8 such as increase of autophagy markers, are not (Fig. 3 e, f). This finding suggests the
9 existence of an additional mechanism for which isoform 2 has a decreased effect on
10 autophagy activation. Presumably, isoform 2 has a lower binding affinity for BECN1.
11 Interestingly, though, isoform 2 appears to have a stronger effect in later stages of the
12 autophagic pathway (autophagosome expansion and autolysosome formation), suggesting
13 an alternative pathway, or a faster activity of isoform 2 compared to isoform 1. Once again,
14 these results suggest different functional roles for the two isoforms. Considering the
15 different functions related to the different domains, it would be of particular interest to
16 explore the functions related to the unique C-terminal sequence of 46 aa of isoform 2. While
17 our results show quite distinct functional roles of the two isoforms, the much lower
18 expression of isoform 2 needs to be considered when interpreting overall effects. However,
19 the distinct time dynamic to stimuli, such as activation via glucocorticoids and possibly also
20 other inducers may open time windows in which isoform 2 is present at substantial levels
21 compared to isoform 1. As mentioned above, the functional role of the distinct subcellular
22 location also remains to be explored, as this could also differentially affect biochemical
23 processes in different cellular compartments.

24 The identification of functional disparities and differences in their dynamic regulation
25 following stimulation between FKBP51 isoforms carries significant weight for future
26 research on FKBP5/51 and for drug design. The understanding that isoform 1 and isoform 2
27 not only exhibit different responses to dexamethasone but also have distinct roles in
28 regulating the GR suggests that targeted therapies could be developed to modulate these
29 isoforms selectively and the urgency of future studies to address this difference. In terms of
30 future research on FKBP51, these findings emphasize the need for a comprehensive
31 understanding of the roles of different isoforms in various cellular and subcellular contexts
32 and disease states. While animal models have proven invaluable for understanding FKBP5's
33 role in both physiological and pathological processes, the absence of isoform 2 in rodents
34 may have created a shortsighted gap in our comprehensive understanding of this scaffold
35 protein. Further investigation into the mechanisms underlying the differential functions of

306 isoform 1 and isoform 2, including their interactions with cellular partners and
307 (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
308 available under aCC-BY 4.0 International license.
309
310
311
312

314 **Reagents and Tools**

315 **Antibodies**

316 The following primary antibodies were used for western blot: BECN1 (1:1000, Cell
317 Signaling, #3495), ATG12 (1:1000, Cell Signaling, #2010), LC3B-II/I (1:1000, Cell
318 Signaling, #2775), FKBP51 (1:1000, Bethyl, A301-430A and Abcam ab46002), FKBP51
319 specific for isoform 2 (generously provided by the Maria-Fiammetta Romano lab, Federico
320 II University), AKT (1:1000, Cell Signaling, #4691), pAKT (Ser473 1:1000, Cell Signaling,
321 #4058 and #9275), Actin (1:5000, Santa Cruz Biotechnology, sc-1616), GAPDH (1:8000,
322 Millipore CB1001)

323 **Plasmids**

324 FKBP51-FLAG as described in Wochnik et al, 2005).

325 The following expression vectors were purchased from Promega: FKBP5-pFN21A
326 #FHC02776, GAPDH-pFN21A #FHC02698, HaloTag®-pFN21AB8354 #FHC02776,
327 pFN21A HaloTag® CMV Flexi Vector #9PIG282.

328 HT-FKBP51 isoform 2 expressing plasmid was generated by enzymatic cloning of the
329 coding sequence (ENST00000542713.1) into the pFN21A HaloTag® CMV Flexi Vector.

330 FKBP51 CRISPR/Cas9 KO Plasmid (h), sc-401560, consisting of a pool of 3 plasmids, each
331 encoding the Cas9 nuclease and a target-specific 20 nt guide RNA (gRNA) designed for
332 maximum knockout efficiency. Of the 3 plasmids, one contains gRNA targeting exon 11,
333 specific for variant 1, 2 and 3 but not 4, and the other two plasmids contain gRNAs
334 targeting exon 7 and 4, present in all variants.

335 **RT-qPCR primers**

336 *FKBP5* variants 1-3 (Exon 11-12), IDT Hs.PT.58.813038: forward primer:
337 AAAAGGCCAAGGAGGCACAAAC
338 reverse primer: TTGAGGAGGGGCCGAGTTC

339 *FKBP5* all variants (Exon 5-6), IDT Hs.PT.58.20523859 forward primer:
340 GAACCATTGTCTTAGTCTGGC
341 reverse primer: CGAGGGAATTTAGGGAGACTG

343 **GAGAAGACCACGACATTCCA**

344 reverse primer: AGCCTGCTCCAATTCTTCTTG

345 *YWHAZ* (Exon 9-10), IDT Hs.PT.58.4154200: forward primer:

346 GTCATACAAAGACAGCACGCTA reverse primer: CCTTCTCCTGCTTCAGCTTC

347 **Methods and Protocols**

348 **Cell culture**

349 The HeLa cell line was cultured at 37°C, 6% CO₂ in Dulbecco's Modified Eagle Medium
350 (Gibco) high glucose with GlutaMAX (Thermo Fisher, 31331-028), supplemented with 10%
351 fetal bovine serum (Thermo Fisher, 10270-106) and 1% antibiotic- antimycotic (Thermo
352 Fisher, 15240-062).

353 The Jurkat cell line was cultured at 37°C, 6% CO₂ in RPMI (Gibco) supplemented with
354 10% FCS and 1% Antibiotic/Antimycotic (Thermo Fisher scientific Inc., Schwerte,
355 Germany)

356 **Transfections**

357 Jurkat cells (2 × 10⁶; suspension cells), or with 1x trypsin-EDTA (gibco, 15400-054)
358 detached HeLa cells (2 × 10⁶) were resuspended in 100 µl of transfection buffer [50 mM
359 Hepes (pH 7.3), 90 mM NaCl, 5 mM KCl, and 0.15 mM CaCl₂]. Up to 2 µg of plasmid DNA
360 was added to the cell suspension, and electroporation was carried out using the Amaxa 2B-
361 Nucleofector system (Lonza). Cells were replated at a density of 105 cells/cm².

362 For the intracellular localization experiments, Hela cells were transfected with
363 Lipofectamine 3000 transfection reagent (Thermo Fisher, L3000001) according to the
364 supplier's protocol.

365

366 **Imaging**

367 HeLa cells were seeded on cover cover glasses (Paul Marienfeld, 0117530) and transfected
368 the next day. 24 hours after transfection, cells were live imaged with a Zeiss epifluorescent
369 microscope.

371 Protein extracts were obtained by lysing cells in 62.5 mM Tris, 2% SDS, and 10% sucrose,
372 supplemented with protease (Sigma, P2714) and phosphatase (Roche, 04906837001)
373 inhibitor cocktails. Samples were sonicated and heated at 95 °C for 5 min. Proteins were
374 separated by SDS-PAGE and electro-transferred onto nitrocellulose membranes. Blots
375 were placed in Tris- buffered saline solution supplemented with 0.05% Tween (Sigma,
376 P2287) (TBS-T) and 5% non- fat milk for 1 hour at room temperature and then incubated
377 with primary antibody (diluted in TBS-T) overnight at 4 °C. Subsequently, blots were
378 washed and probed with the respective horseradish-peroxidase- or fluorophore-conjugated
379 secondary antibody for 1 hour at room temperature. The immuno-reactive bands were
380 visualized either using ECL detection reagent (Millipore, WBKL0500) or directly by
381 excitation of the respective fluorophore. Recording of the band intensities was performed
382 with the ChemiDoc MP system from Bio-Rad.

383 **Quantification**

384 All protein data were normalized to Actin or GAPDH, which was detected on the same blot.
385 In the case of AKT phosphorylation, the ratio of pAKTS473 to total AKT was calculated.
386 Similarly, the direct ration of LC3BII over LC3BI is also provided, as well as the ratio over
387 Actin.

388 **Real time quantitative polymerase chain reaction (RT-qPCR)**

389 **HeLa cells**

390 Total RNA was isolated from HeLa cells with the RNeasy mini kit (Qiagen, 74104)
391 following the manufacturer's protocols. Reverse transcription was performed using
392 SuperScript II reverse transcriptase (Thermo Fisher, 18064014). Subsequently, the cDNA
393 was amplified in triplicates with the LightCycler 480 Instrument II (Roche, Mannheim,
394 Germany) using primers from IDT and TaqManTM Fast Advanced Master Mix (Thermo
395 Fisher, 4444964).

396 **Human samples**

397 Total RNA was isolated from whole blood from healthy, all male donors aged 20 to 30
398 years, administered 1.5 mg dexamethasone per os at 12 pm. Blood draws (Pax-Gene RNA
399 tubes) were repeated right before Dex administration (12 pm) as well as 1, 3, 6 and 23h

401 Reverse transcription was performed using SuperScript II reverse transcriptase (Thermo
402 Fisher, 18064014). Subsequently, the cDNA was amplified in triplicates with the
403 LightCycler 480 Instrument II (Roche, Mannheim, Germany) using primers from IDT and
404 TaqManTM Fast Advanced Master Mix (Thermo Fisher, 4444964). The 130 samples
405 corresponding to the five time points of the 26 participants were distributed for RT-qPCR
406 to have all the time points for each participant on the same plate and the same assay on the
407 same plate. Samples were run in technical triplicates and standards were run on each plate
408 to calculate the efficiency. Quality control of the raw data and were efficiency-corrected
409 $\Delta\Delta\text{CP}$ method published by Pfaffl (Pfaffl, 2001) were performed with R studio (version
410 2021.09.1, RStudio Team (2021). RStudio: Integrated Development Environment for R.
411 RStudio, PBC, Boston, MA URL <http://www.rstudio.com/>). Statistical analyses were
412 performed Prism version 9.0.0 (GraphPad Software, La Jolla California USA,
413 www.graphpad.com)

414 **CRISPR-Cas9 KO generation**

415 Generation of *FKBP5* KO HeLa cell line: using Lipofectamine 3000 transfection reagent
416 (Thermo Fisher, L3000001), cells were transfected with a pool of three CRISPR/Cas9
417 plasmids containing gRNA targeting human *FKBP5* and a GFP reporter (Santa Cruz, sc-
418 401560). 48 hours post transfection, cells were FACS sorted for GFP as single cells into a
419 96-well plate using BD FACS ARIA III) in FACS medium [PBS, 0.5% BSA Fraction V, 2
420 mM EDTA, 20mM Glucose, and 100 U/mL Penicillin-Streptomycin]. Single clones were
421 expanded and western blotting was used to validate the knockouts and variants-specific
422 knockouts were selected based on western blot analyses using antibodies specific for
423 Isoform 1 or 2 as detailed above.

424 **Reporter gene assays**

425 For the MMTV-luc reporter gene assay, cells were seeded in 96 well plates in medium
426 containing 10% charcoal-stripped, steroid-free serum and cultured for 24 h before
427 transfection using Lipofectamine 2000 as described by the manufacturer. Unless indicated
428 otherwise, the amounts of transfected plasmids per well were 60 ng of steroid responsive
429 luciferase reporter plasmid MMTV-Luc, 5–7.5 ng of Gaussia-KDEL expression vector as
430 control plasmid, and up to 300 ng of plasmids expressing FKBP51-HTv1; FKBP51-HTv4. If
431 needed, empty expression vector was added to the reaction to equal the total amount of
432 plasmid in all transfections. 24 h after transfection, cells were cultured in fresh medium

434 gene activity cells were washed once with PBS and lysed in 50 μ l passive lysis buffer (0.2%
435 Triton X-100, 100 mM K₂HPO₄/KH₂PO₄ pH 7.8). Firefly and Gaussia luciferase activities
436 were measured in the same aliquot using an automatic luminometer equipped with an
437 injector device (Tristar, Berthold). Firefly activity was measured first by adding 50 μ l
438 Firefly substrate solution (3 mM MgCl₂, 2.4 mM ATP, 120 μ M D-Luciferin) to 10 μ l lysate
439 in black microtiter plates. By adding 50 μ l Gaussia substrate solution (1.1 M NaCl, 2.2 mM
440 Na₂EDTA, 0.22 M K₂H PO₄/KH₂PO₄, pH 5.1, 0.44 mg/ml BSA, Coelenterazine 3 μ g/ml)
441 the firefly reaction was quenched and Gaussia luminescence was measured after a 5 s
442 delay. Firefly activity data represent the ratio of background corrected Firefly to Gaussia
443 luminescence values. The fold stimulation reached at saturating concentrations of
444 hormone was about 3 nM, which is in the range of previous publications (Touma *et al*, 2011;
445 Schülke *et al*, 2010).

446 **Pulse chase assay**

447 48 hours after transfection with HaloTag®-tagged plasmids, cells were labeled with HT
448 fluorescent ligands (HaloTag® R110Direct Ligand, Promega) for 24 hours after which the
449 fluorescent ligand was washed off (chase) for the indicated amounts of time. Cells were
450 harvested, proteins extracted minimizing light exposure and western blots were
451 performed. Fluorescence was successively measured on membrane with the ChemiDoc MP
452 system from Bio-Rad.

453

454 **Ethics approval and consent to participate**

455 All studies with human samples were approved by the local ethics committee of the
456 Medical School of the Ludwig Maximilians University, and all participants gave informed
457 consent.

- 458 bioRxiv preprint doi: <https://doi.org/10.1101/2024.08.03.606475>; this version posted August 4, 2024. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.
- 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508
- References**
- Blair LJ, Baker JD, Sabbagh JJ & Dickey CA (2015) The emerging role of peptidyl-prolyl isomerase chaperones in tau oligomerization, amyloid processing, and Alzheimer's disease. *J Neurochem* 133: 1–13
- Cioffi DL, Hubler TR & Scammell JG (2011) Organization and function of the FKBP52 and FKBP51 genes. *Curr Opin Pharmacol* 11: 308–313
- D'Arrigo P, Russo M, Rea A, Tufano M, Guadagno E, Del Basso De Caro ML, Pacelli R, Hausch F, Staibano S, Ilardi G, *et al* (2017) A regulatory role for the co-chaperone FKBP51s in PD-L1 expression in glioma. *Oncotarget* 8: 68291–68304
- Denny WB, Valentine DL, Reynolds PD, Smith DF & Scammell JG (2000) Squirrel Monkey Immunophilin FKBP51 Is a Potent Inhibitor of Glucocorticoid Receptor Binding¹. *Endocrinology* 141: 4107–4113
- Dornan J, Taylor P & Walkinshaw M (2003) Structures of Immunophilins and their Ligand Complexes. *Curr Top Med Chem* 3: 1392–1409
- Gassen NC, Fries GR, Zannas AS, Hartmann J, Zschocke J, Hafner K, Carrillo-Roa T, Steinbacher J, Preißinger SN, Hoeijmakers L, *et al* (2015) Chaperoning epigenetics: FKBP51 decreases the activity of DNMT1 and mediates epigenetic effects of the antidepressant paroxetine. *Sci Signal* 8
- Gassen NC, Hartmann J, Zschocke J, Stepan J, Hafner K, Zellner A, Kirmeier T, Kollmannsberger L, Wagner K V., Dedic N, *et al* (2014) Association of FKBP51 with Priming of Autophagy Pathways and Mediation of Antidepressant Treatment Response: Evidence in Cells, Mice, and Humans. *PLoS Med* 11: e1001755
- Hähle A, Merz S, Meyners C & Hausch F (2019) The Many Faces of FKBP51. *Biomolecules* 9: 35
- Jääskeläinen T, Makkonen H & Palvimo JJ (2011) Steroid up-regulation of FKBP51 and its role in hormone signaling. *Curr Opin Pharmacol* 11: 326–331
- Li T-K, Baksh S, Cristillo AD & Bierer BE (2002) Calcium- and FK506-independent interaction between the immunophilin FKBP51 and calcineurin. *J Cell Biochem* 84: 460–471
- Lonsdale J, Thomas J, Salvatore M, Phillips R, Lo E, Shad S, Hasz R, Walters G, Garcia F, Young N, *et al* (2013) The Genotype-Tissue Expression (GTEx) project. *Nat Genet* 45: 580–585
- Marrone L, D'Agostino M, Cesaro E, di Giacomo V, Urzini S, Romano MF & Romano S (2023a) Alternative splicing of *FKBP5* gene exerts control over T lymphocyte expansion. *J Cell Biochem*
- Marrone L, D'Agostino M, Giordano C, Giacomo V DI, Urzini S, Malasomma C, Gammella MP, Tufano M, Romano S & Romano MF (2023b) Scaffold proteins of cancer signaling networks: The paradigm of FK506 binding protein 51 (FKBP51) supporting tumor intrinsic properties and immune escape. *Oncol Res* 31: 423–436
- Martinelli S, Anderzhanova EA, Bajaj T, Wiechmann S, Dethloff F, Weckmann K, Heinz DE, Ebert T, Hartmann J, Geiger TM, *et al* (2021) Stress-primed secretory autophagy promotes extracellular BDNF maturation by enhancing MMP9 secretion. *Nat Commun* 12
- Menke A, Arloth J, Best J, Namendorf C, Gerlach T, Czamara D, Lucae S, Dunlop BW, Crowe TM, Garlow SJ, *et al* (2016) Time-dependent effects of dexamethasone plasma concentrations on glucocorticoid receptor challenge tests. *Psychoneuroendocrinology* 69: 161–171
- Pei H, Li L, Fridley BL, Jenkins GD, Kalari KR, Lingle W, Petersen G, Lou Z & Wang L (2009) FKBP51 Affects Cancer Cell Response to Chemotherapy by Negatively Regulating Akt. *Cancer Cell* 16: 259–266
- Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. *Nucleic Acids Res* 29: 45e–445
- Romano S, D'Angelillo A, Staibano S, Simeone E, D'Arrigo P, Ascierto PA, Scalvenzi M, Mascolo M, Ilardi G, Merolla F, *et al* (2015) Immunomodulatory pathways regulate expression of a spliced FKBP51 isoform in lymphocytes of melanoma patients. *Pigment Cell Melanoma Res* 28: 442–452

- 509 Russel J, Wauson M, Schucker M (2011) Identification of Conserved Residues
510 Required for the Binding of a Tetra peptide Repeat Domain to Heat Shock Protein 90.
511 *Journal of Biological Chemistry* 274: 20060–20063
- 512 Sabatini DM (2006) mTOR and cancer: insights into a complex relationship. *Nat Rev Cancer* 6:
513 729–734
- 514 Scammell JG, Denny WB, Valentine DL & Smith DF (2001) Overexpression of the FK506-Binding
515 Immunophilin FKBP51 Is the Common Cause of Glucocorticoid Resistance in Three New
516 World Primates. *Gen Comp Endocrinol* 124: 152–165
- 517 Schiene C & Fischer G (2000) Enzymes that catalyse the restructuring of proteins. *Curr Opin Struct
518 Biol* 10: 40–45
- 519 Schülke J-P, Wochnik GM, Lang-Rollin I, Gassen NC, Knapp RT, Berning B, Yassouridis A &
520 Rein T (2010) Differential Impact of Tetra peptide Repeat Proteins on the Steroid
521 Hormone Receptors. *PLoS One* 5: e11717
- 522 Sinars CR, Cheung-Flynn J, Rimerman RA, Scammell JG, Smith DF & Clardy J (2003) Structure
523 of the large FK506-binding protein FKBP51, an Hsp90-binding protein and a component of
524 steroid receptor complexes. *Proceedings of the National Academy of Sciences* 100: 868–873
- 525 Smedlund KB, Sanchez ER & Hinds TD (2021) FKBP51 and the molecular chaperoning of
526 metabolism. *Trends Endocrinol Metab* 32: 862–874
- 527 Taipale M, Tucker G, Peng J, Krykbaeva I, Lin Z-Y, Larsen B, Choi H, Berger B, Gingras A-C &
528 Lindquist S (2014) A Quantitative Chaperone Interaction Network Reveals the Architecture of
529 Cellular Protein Homeostasis Pathways. *Cell* 158: 434–448
- 530 Touma C, Gassen NC, Herrmann L, Cheung-Flynn J, Büll DR, Ionescu IA, Heinzmann J-M,
531 Knapman A, Siebertz A, Depping A-M, *et al* (2011) FK506 Binding Protein 5 Shapes Stress
532 Responsiveness: Modulation of Neuroendocrine Reactivity and Coping Behavior. *Biol
533 Psychiatry* 70: 928–936
- 534 Wiechmann T, Röh S, Sauer S, Czamara D, Arloth J, Ködel M, Beintner M, Knop L, Menke A,
535 Binder EB, *et al* (2019) Identification of dynamic glucocorticoid-induced methylation changes
536 at the FKBP5 locus. *Clin Epigenetics* 11: 83
- 537 Wochnik GM, Rüegg J, Abel GA, Schmidt U, Holsboer F & Rein T (2005) FK506-binding Proteins
538 51 and 52 Differentially Regulate Dynein Interaction and Nuclear Translocation of the
539 Glucocorticoid Receptor in Mammalian Cells. *Journal of Biological Chemistry* 280: 4609–
540 4616
- 541 Zannas AS, Jia M, Hafner K, Baumert J, Wiechmann T, Pape JC, Arloth J, Ködel M, Martinelli S,
542 Roitman M, *et al* (2019) Epigenetic upregulation of FKBP5 by aging and stress contributes to
543 NF-κB–driven inflammation and cardiovascular risk. *Proceedings of the National Academy of
544 Sciences* 116: 11370–11379
- 545 Zannas AS, Wiechmann T, Gassen NC & Binder EB (2016) Gene–Stress–Epigenetic Regulation of
546 FKBP5: Clinical and Translational Implications. *Neuropsychopharmacology* 41: 261–274
- 547
- 548

550 **Figure 1 - FKBP5/51 transcription variants and isoforms**

551 a) Schematic view of the FKBP5 locus on human chromosome 6 and the four splicing
552 variants of the gene (adapted from gtexportal.org). b) Schematic view of FKBP51 isoform 1
553 and 2 protein structures and 3D structure models generated with the swiss model repository
554 server of the expasy portal (<https://swissmodel.expasy.org/>). Domains are indicated in
555 black and experimentally validated domain-associated binding partners in blue. c)
556 Transcription variant-specific FKBP5 expression throughout human tissues (adapted from
557 gtexportal.org).

558 **Figure 2 - Expression of FKBP5 splicing variants in HeLa cells**

559 a) RT-qPCR quantification of FKBP51 variants in unstimulated HeLa cells b) RT-qPCR
560 quantification of FKBP51 variants, expressed as fold change of Dex-treated over vehicle-
561 treated, normalized on the housekeeper YWHAZ, of HeLa cells treated with 100 nM Dex or
562 vehicle for 24 hours. Two-way ANOVA with Geisser-Greenhouse correction (shown in the
563 box) and Sidak's multiple comparisons test (shown in the graph). Data shown as mean \pm
564 s.e.m. c) Fold change of FKBP5 Variants 1 and 4 over vehicle and normalized over YWHAZ
565 at 0, 1, 3, 6 and 23 hours after Dex stimulation. Mixed effects model with Geisser-
566 Greenhouse correction (shown in the box) and Sidak's multiple comparisons test (shown in
567 the graph). Data shown as box-and-whisker plot (Tukey style). d) Pulse chase assay of
568 FKBP51 isoform 1 and 2 of HeLa cells transfected with HaloTag®-tagged-isoform 1 or
569 HaloTag®-tagged-isoform 2, pulsed with a fluorophore and chased for 2, 4, 8, and 16 hours.
570 Quantifications were made from western blots. *P < 0.05. Two-way ANOVA (shown in the
571 box) and Sidak's multiple comparisons test (shown in the graph). Data shown as mean \pm
572 s.e.m.

573 For all statistics *P < 0.05, **P < 0.01, ****P < 0.0001.

574 **Figure 3 - Differential pathway regulation of FKBP51 isoforms**

575 a) Epifluorescent and bright field imaging of HeLa cells transfected with GFP-tagged
576 FKBP51 isoform 1, GFP-tagged FKBP51 isoform 2, or GFP-control vector 24 hours prior to
577 imaging. b-c) GRE-driven reporter gene assay performed in HeLa cells transfected with b)
578 FKBP51 isoform 1, FKBP51 isoform 2 or an empty vector (ctr vector), or c) in WT, full KO
579 and Isoform 1 KO (iso1 KO) HeLa cells treated with 0.1 nM, 0.3 nM, 1 nM, 3 nM, 10 nM, 30
580 nM, 100 nM or vehicle for 4 hours. Two-way ANOVA (shown in the box) with Tukey multiple
581 comparisons test (shown in the graph). * indicates comparison with control/WT and isoform

bioRxiv preprint doi: <https://doi.org/10.1101/2024.08.03.606475>; this version posted August 4, 2024. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

1 WT vs iso 1 KO comparison between WT and iso 1 KO. *P < 0.05, **P < 0.01, ***P < 0.0005, ****P < 0.0001.

2 **d-h)** Quantification of western blots analyses for different pathway markers from HeLa cells

3 transfected with FKBP51 isoform 1, FKBP51 isoform 2 or an empty vector: **d)**

4 phosphorylated AKT (pAKT) normalised on total AKT, **e-g)** autophagy markers, BECN1,

5 ATG12 and LC3BII/I; **h)** phosphorylated DNMT (pDNMT) normalised on total DNMT; **i)**

6 Quantification of western blots analyses for phosphorilated NFAT (pNFAT) normalised on

7 total NFAT from Jurkat cells transfected with FKBP51 isoform 1, FKBP51 isoform 2 or an

8 empty vector; *P < 0.05. Mann-Whitney test. * and # indicate comparisons with ctr vector

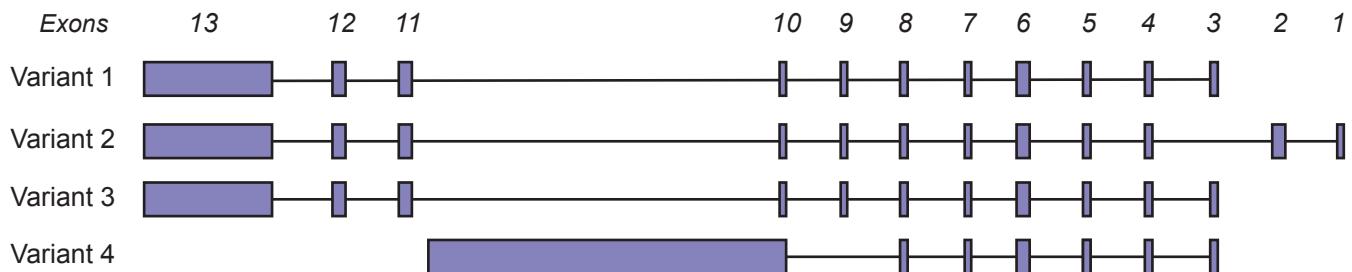
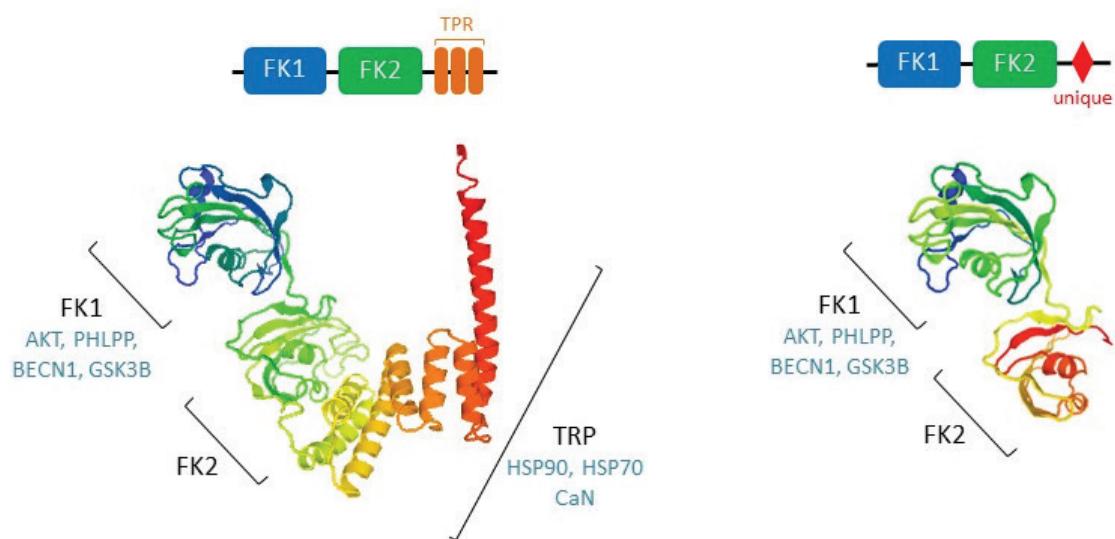
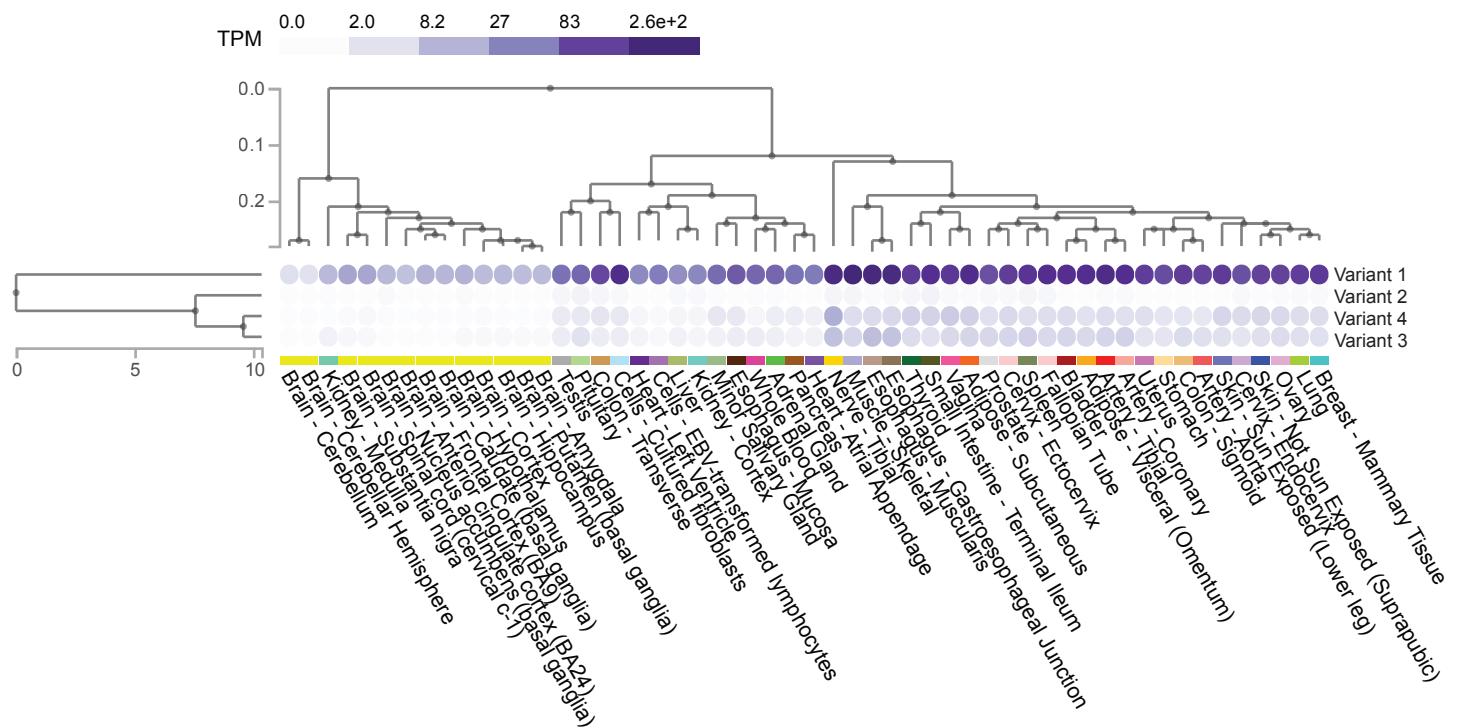
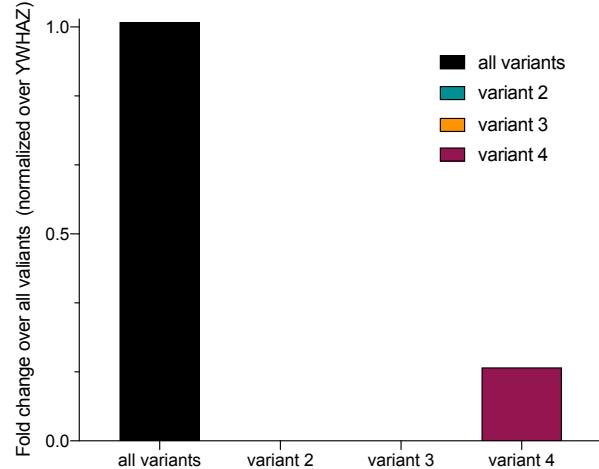
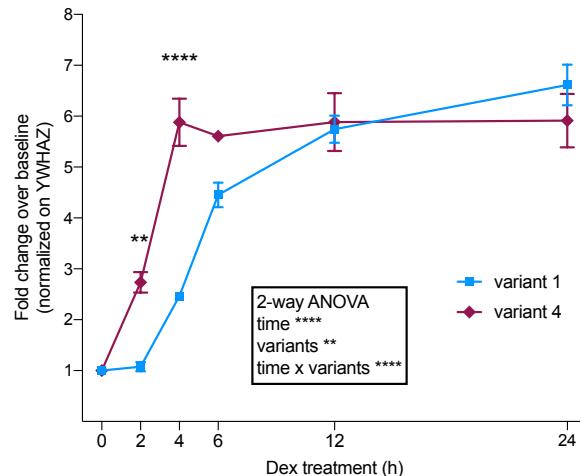
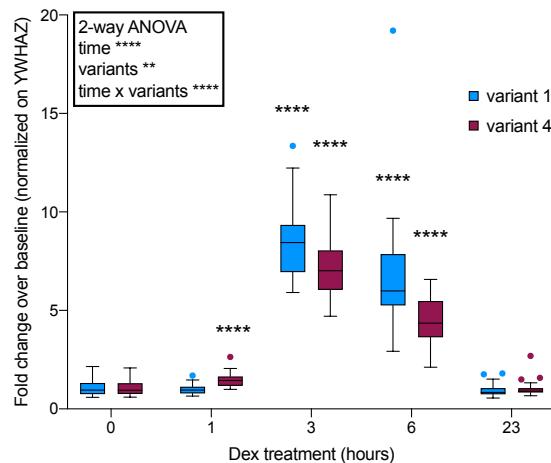
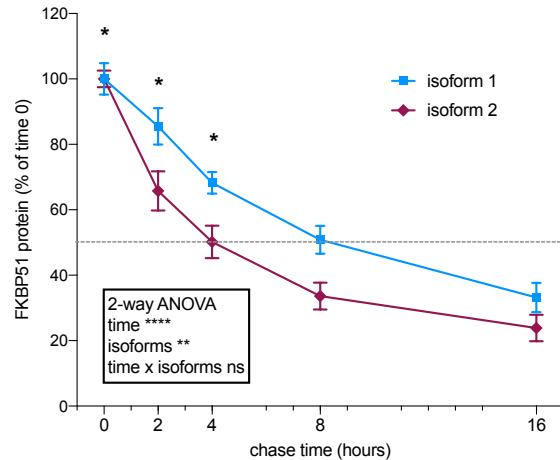

9 and isoform 2 respectively. Data shown as mean \pm s.e.m.

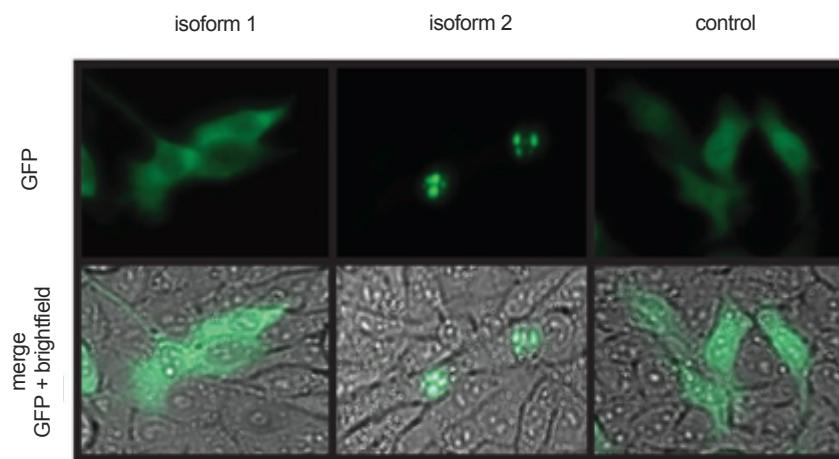
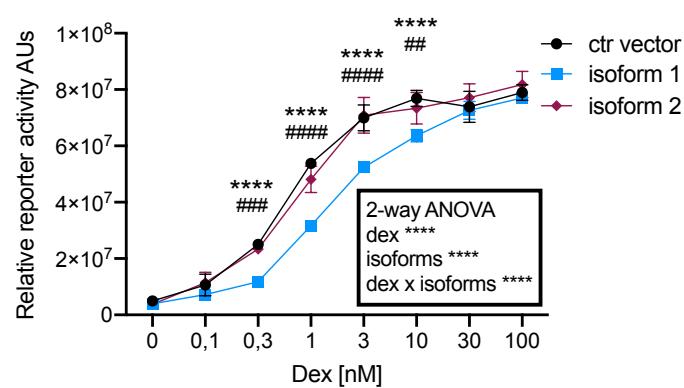
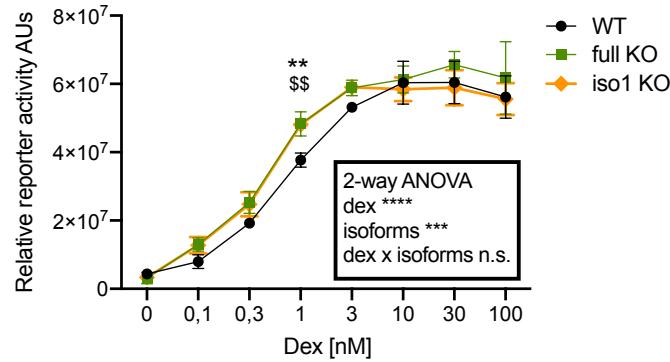
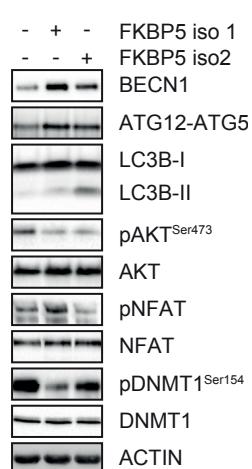
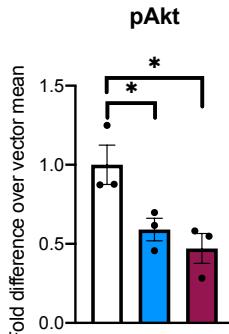
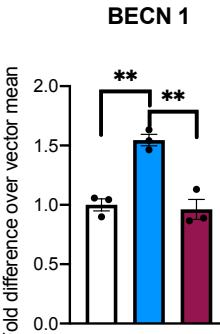
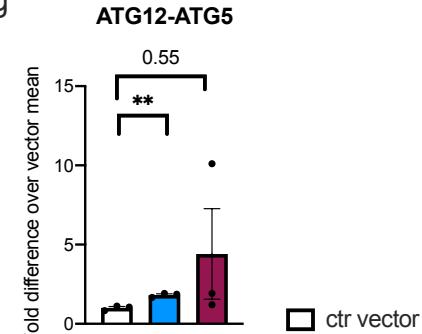
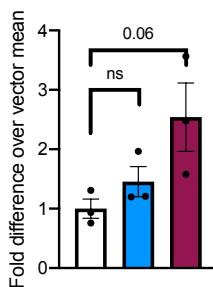
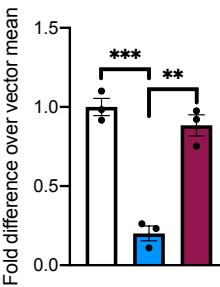
Figure 1


bioRxiv preprint doi: <https://doi.org/10.1101/2024.08.03.606475>; this version posted August 4, 2024. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

a


FKBP5 locus










b

C

Figure 2**a****FKBP5 variants expression****b****FKBP5 variants expression dynamic****c****Expression dynamic in peripheral blood****d****FKBP51 degradation**

Figure 3**a****b****c****d****e****f****g****h****i****j**