

1 **Lipidome visualisation, comparison, and analysis in a**
2 **vector space**
3

4 Short title: Lipidome Analysis

5

6 Timur Olzhabaev^{1,2}, Lukas Müller^{1,2}, Daniel Krause², Dominik Schwudke^{2,3,4*}, Andrew
7 Ernest Torda^{1*}

8

9 ¹ Centre for Bioinformatics, University of Hamburg, Hamburg, Germany

10 ² Bioanalytical Chemistry, Research Center Borstel Leibniz Lung Center, Borstel,
11 23845, Germany

12 ³ German Center for Infection Research, Thematic Translational Unit Tuberculosis,
13 23845 Borstel, Germany

14 ⁴ German Center for Lung Research (DZL), Airway Research Center North (ARCN),
15 23845 Borstel, Germany

16

17 * Corresponding authors

18 E-mail: andrew.torda@uni-hamburg.de

19 For submission to PLoS Computational Biology

20 **Abstract**

21 A shallow neural network was used to embed lipid structures in a 2- or 3-dimensional
22 space with the goal that structurally similar species have similar vectors. Tests on
23 complete lipid databanks show that the method automatically produces distributions
24 which follow conventional lipid classifications. The embedding is accompanied by the
25 web-based software, Lipidome Projector. This displays user lipidomes as 2D or 3D
26 scatterplots for quick exploratory analysis, quantitative comparison and interpretation
27 at a structural level.

28 **Author summary**

29 Lipids are not just the basis of membranes. They carry signals and metabolic energy.
30 This means that the presence, absence, and quantity of lipids reflects a cell's
31 biochemical state - starving, nourished, sick or healthy. Lipidomics (measuring all
32 lipids in a biological specimen) provides lists of the chemical species and their
33 quantities.

34 We have used a shallow neural network from natural language modelling to embed
35 lipids in a continuous vector space. Firstly, this means that similar molecules have
36 similar positions in this space. Conventional lipid categories cluster automatically.
37 Secondly, the accompanying web-based software, Lipidome Projector imports a
38 lipidome and displays it as a set of points. Reading several lipidomes at once allows
39 quantitative and structural comparisons. Combined with the ability to show structure
40 and abundance diagrams, the software allows exploratory analysis and interpretation
41 of lipidomics datasets.

42 **Introduction**

43 Lipids remind one of membranes or fats, but they also carry energy and signals, so
44 one may assume that the set of lipids in a sample reflects the health and metabolic
45 state of a tissue or organism. Mass spectrometry provides lipidome information, but a
46 list of 10^2 - 10^4 lipids and quantities is not easily interpretable. For exploratory analysis,
47 one would like a method that highlights chemical trends and shows how samples
48 differ with respect to lipid structures and quantities. Given a set of mass spectrometry
49 peaks that have been assigned to lipids, the idea is to display lipidomes as
50 scatterplots in a 2- or 3-dimensional space. This requires two steps. First, there must
51 be a continuous vector space such that each lipid gets distinct coordinates. Second,
52 one needs software to display and compare plots interactively. The software should
53 make it easy to relate points back to their names and chemical structures.

54 The aims here are different to those of other lipidomics software packages. If one
55 wants to treat a lipidome similarly to gene expression data, one can look for changed
56 levels of lipids or focus on molecules whose abundances are correlated [1–3]. If one
57 wants to see a lipidome in terms of networks, there is network construction and
58 display software [4]. Our focus is different. Lipidome Projector lets one quickly
59 highlight and interactively explore differences between groups of samples, with the
60 simultaneous display of abundances and structures.

61 The first challenge is finding vectors for molecules for the two- and three-dimensional
62 plots. Previous attempts applied ideas from string comparisons [5], but this was not
63 without problems. Whatever notation one uses, a small change to a molecule can
64 lead to a large change in a string representation such as SMILES [6], so the similarity
65 metrics are fundamentally unstable. Kopczynski et al approached the problem with

66 elegant distance metrics, but this required some preconceptions about lipid structures
67 and used expensive graph similarity methods [7].

68 We come to the problem with slightly different ideas and some specific goals. The
69 method should be objective, unsupervised and require minimal chemical
70 preconceptions. Coordinates should be quite different for unrelated molecules, but
71 systematic changes such as extending the length of an aliphatic chain should give a
72 series of points near each other. Adding a phosphate or alcohol group to two different
73 molecules should change both coordinates in a similar manner. Our method for lipids
74 is a modified version of Mol2Vec [8], a technique from the small-molecule literature
75 which is, in turn, based on Word2Vec [9] a word embedding method from natural
76 language processing. To embed words, one first defines a vocabulary and gives
77 each word a unique token. In a text corpus, similar tokens appear in similar contexts
78 with reasonable probability, such that a token / context prediction task can be used to
79 train semantic vector representations. To apply the idea in chemistry, one constructs
80 a vocabulary of chemical fragments and trains a shallow network on a large set of
81 molecules to recognise surrounding contexts. Input fragments are represented by
82 integer identifiers derived from computed sparse connectivity fingerprints [10].
83 Fragment vectors come from hidden layer weights of the trained network and are
84 summed to produce vector representations of entire molecules.
85 Calculating the vector space model is performed once on a large set of lipid
86 structures and takes several hours. User lipidome data is simply matched to
87 precomputed vectors. Lipidome Projector, the browser-based application for
88 visualization and analysis, allows one to interactively explore lipidomes in the vector
89 space and additionally displays lipid abundance charts and molecular structures.

90 To judge our methods, we consider the distributions of lipids in the computed vector
91 space and apply Lipidome Projector visualizations on three published lipidome
92 datasets.

93 **Materials and Methods**

94 **Lipid Vector Space**

95 For training, the Lipid Maps Structure Database (LMSD) [11] and SwissLipids [12]
96 (both accessed Jan 2023) were combined. SwissLipids entries were filtered to obtain
97 lipids with valid SMILES at isomeric subspecies level. The combination of databases
98 resulted in over 620 000 unique structures. RDKit [13] was used to convert all
99 database entries to a consistent charge state and RDKit's implementation of
100 extended connectivity fingerprints [10] was used to assign a unique identifier to each
101 substructure of a specified radius around each atom. Substructure identifiers were
102 ordered according to the position of the substructure's central atom within the
103 molecule's canonical SMILES string.

104 A few small modifications to Mol2Vec were necessary. First, chirality was explicitly
105 considered. Secondly, a parameter had to be adapted to capture differences in long
106 alkyl chains. Mol2Vec descriptors for small molecules are usually built from
107 fragments using atoms (radius 0) and their immediate neighbours (radius 1). For the
108 much larger lipid structures, radii of size 0, 1, 2, 3, 4, 5, 10, 15, 20, 25, 30, 35, 40, 45
109 and 50 were used, resulting in just under three million unique fragments for the
110 combination of databases. For each lipid, the set of fragments for each radius was
111 used as a separate training sentence.

112 Gensim [14] was used to train the Word2Vec model with training parameters listed in
113 Table S1. The network generated 100-dimensional substructure vectors, which were
114 summed for each molecule. For visualization, the Barnes-Hut [15] version of t-

115 distributed stochastic neighbour embedding [16] as implemented in OpenTSNE [17]
116 was used to reduce the 100-dimensional vector space to generate 2- and 3-
117 dimensional vector sets (parameters listed in Table S2). The embedding process is
118 summarised in Fig 1 A.

119 **Fig 1. Vector Space Generation and Matching.** (A) A lipid structure is decomposed
120 into its substructures of different sizes represented by Morgan sparse fingerprint
121 integers, which constitute the training data for Word2Vec. A molecule's vector is the
122 sum of its substructure vectors and is projected to 2D or 3D with stochastic neighbour
123 embedding. (B) The user provides a list of lipid species names and component
124 constraints. Lipid names are parsed and matched to appropriate isomer names from
125 the pre-parsed database. The component constraints are applied to filter the
126 matches. Vectors of the remaining isomers are averaged for each lipid. Not illustrated
127 is an additional step, in which database matching is attempted on the original names
128 of unparsed lipid species.

129 **Lipidome Processing**

130 As part of building the system, entries from the lipid databases are stored along with
131 their corresponding vectors and higher-level abbreviations for each isomer following
132 previously defined levels [18]. When a user lipidome is imported, entries are matched
133 against pre-calculated vectors (Fig 1 B). Goslin [19] is used to parse both databases
134 and user data. It accepts common nomenclature, but should it fail, the process will
135 look for a match based on user-provided names. This means that Lipidome Projector
136 covers at least all entries from the union of SwissLipids and the LMSD that were
137 successfully parsed by Goslin (S1 Dataset gives a list of translated class names).
138 Mass spectrometry often does not identify a lipid at the complete structure level [18]
139 so additional steps are necessary to deal with this ambiguity. The software finds the

140 set of isomers that match the higher-level abbreviation, but not all members of this
141 set will be plausible for the organism under consideration. To filter the list of possible
142 lipids, Lipidome Projector expects a constraints list with allowed fatty acyls and long-
143 chain bases. The remaining isomer vectors are averaged to produce a single
144 representative vector.

145 **Visualization and Analysis Software**

146 Plots are generated using Plotly.py [20]. Marker sizes are derived from respective
147 lipid abundances, to which either linear or min-max scaling is applied. Dash [20] is
148 used to build the web-application front end. The rest of the application was built in
149 Python [21] with pandas [22] used for data-table storage and manipulation. Parsing
150 and matching are performed server-side. The original lipidome dataset together with
151 the newly derived lipid names and computed vectors is stored inside the user's
152 browser session and sent to the server for temporary processing operations such as
153 averaging of samples or plot updates. Lipidome datasets and constraints are read in
154 a simple table format.

155 **Datasets**

156 Publicly available lipidome datasets from drosophila [23], yeast [24] and mouse [25]
157 were used for development and analysed as user cases. Python scripts for the
158 extraction of the original data and formatting into formats appropriate for Lipidome
159 Projector, as well as manually constructed respective FA and LCB constraint files are
160 given in S2 dataset.

161 **Results**

162 **Lipid Vector Space**

163 We first consider the projection of lipids into a vector space by looking at the
164 distributions of points for entries from the combined databases with a valid structure

165 and class. Are the vectors consistent with chemical intuition and database
166 classification? Fig 2 A shows the entire lipid set in two dimensions (see S2 Fig for 3D
167 version). With some exceptions, lipids within a category are grouped together in the
168 vector space despite the underlying structural diversity. For the largest categories,
169 glycerolipids (GL), glycerophospholipids (GP) and sphingolipids (SP) a clear
170 separation can be observed with some overlap and outliers at some borders. To look
171 in more detail, one can focus on the class level with the example of selected
172 glycerophospholipid classes. Fig 2 B marks three clusters, which largely correspond
173 to diacyl, mono-alkyl and plasmalogen glycerophospholipids respectively. This
174 suggests that the embedding has mostly captured the chemical connectivity at the
175 glycerol. Within each large cluster, phosphatidylinositols (PI) and
176 phosphatidylcholines (PC) form their own subgroups with some local exceptions. For
177 the other classes there are numerous smaller, intertwined clusters spread across the
178 vector space. Also marked are a few unusual molecules with uncommon fatty acyl
179 double bond structures such as (5E, 9E) or chains which are heavily methylated or
180 even contain ladderane, a structural moiety seen in bacteria. These are positioned
181 outside the main group as one might expect since the database is dominated by the
182 biochemistry of mammals. The remaining plots in Fig 2 show how the lipid vectors
183 capture chemical functional groups and their structural context. In Fig 2 C there is a
184 general trend of more double bonds from left to right. Focusing on a local region
185 shows that clustering is determined by lipid class (Fig 2 D) and fatty acyl double bond
186 location and number (Fig 2 E). Additionally, one can see a systematic change in
187 mass as one moves along clusters (Fig 2 F). These patterns suggest that the
188 embedding captures gradual structural changes. This was further assessed using a
189 contrived example borrowed from the literature [5]. Three sets of manually generated
190 structures were added to the training data. The first two consist of series of

191 phosphatidylinositols with a successively longer fatty acyl chain. The sets are the
192 same, except for the presence / absence of a double bond in the lengthening chain.
193 Fig 3 B shows that growing an aliphatic chain gives progressively changing vector
194 positions, while the presence of the double bond leads to a large, but consistent
195 displacement. The third set consists of a series of ceramides, each of which is
196 hydroxylated at a different position within its fatty acyl chain (Fig 3 A). The steps of
197 the hydroxylated position translate into an almost linear series of vectors with the
198 exception of an outlier near the acyl bond.

199 **Fig 2. Vector Space (2D).** (A) Entire vector space. Marker colour represents lipid
200 category: Fatty acids (FA), glycerolipids (GL), glycerophospholipids (GP),
201 sphingolipids (SP), sterol lipids (ST), prenol lipids (PR), saccharolipids (SL) and
202 polyketides (PK). (B) Region of the vector space focused on selected
203 glycerophospholipids: Glycerophosphates (PA), glycerophosphocholines (PC),
204 glycerophosphoethanolamines (PE), glycerophosphoglycerols (PG),
205 glycerophosphoinositols (PI) and glycerophosphoserines (PS). Marker colour: Lipid
206 class. (C) Same region as in B, marker colour represents the number of fatty acyl
207 double bonds. (D) Zoomed-in region of selected glycerophospholipids, marker colour
208 represents lipid class. (E) Same region as in D, marker colour represents the double
209 bond profile of the 2-sn fatty acyl. (F) Same region as in D, marker colour represents
210 molecule mass.

211 **Fig 3. Impact of Stepwise Structural Changes.** (A) Local vector space region of
212 manually added ceramide structures. Marker annotations denote the fatty acyl
213 hydroxylation position. (B) Local vector space region of manually added
214 phosphatidylinositol structures. Marker annotations denote the length of the 2-sn fatty
215 acyl.

216 Another aspect of the quality of the vector space is its coverage of lipid classes, fatty
217 acyls, and long-chain bases, which in our case, is completely dependent on the
218 underlying databases and the parser. When lipidomes are imported, entries are
219 discarded if they cannot be matched or if they are rejected by the constraint-based
220 filtering. For the three example literature datasets used here, we implemented
221 plausible FA / LCB constraints and performed the matching to the database.
222 Reasonable manual preprocessing steps, such as re-formatting the data, removing
223 duplicate entries, and adjusting unusual nomenclature were performed beforehand,
224 and are available as Python scripts in S2 dataset. The processing statistics are listed
225 in Table 1.

226 **Table 1.** Matching statistics for development datasets.

Dataset	Num. lipids	Successfully matched	Parsed - not matched	Not parsed - not matched	Filtered
<i>Drosophila</i>	359	324 (90.3%)	9 (2.5%)	4 (1.1%)	22 (6.1%)
Yeast	249	235 (94.4%)	14 (5.6%)	0	0
LAMP3	209	199 (95.2%)	3 (1.4%)	0	7 (3.3%)

227
228 **Visualization**
229 One has to look at complete databases to judge the vector space and embedding of
230 lipids. A user, however, would be interested in what one sees in their lipidome. We
231 take three examples from the literature and look at the scatterplots in the light of the
232 biochemistry noted by the original authors.
233 The first dataset consists of lipidomes of different *Drosophila melanogaster* larval
234 tissue types (brain, fat body, gut, lipoprotein, salivary gland, wing disc) fed with
235 different diets (plant food or yeast food) [23]. For our quick analysis, we averaged the

236 lipidome samples by tissue type. Carvalho et al noted that hexosyl ceramides
237 (HexCer) and ether glycerophospholipids (O-) were only detected in gut and brain
238 tissues respectively. Fig 4 A shows how this kind of feature can be easily observed
239 and highlighted. Fig 4 B displays a comparison of fat body and lipoprotein tissue
240 types focused on a glycerolipid region and highlights the expected large amounts of
241 triacylglycerol (TG) species in the fat body and conversely an overabundance of
242 diacylglycerols (DG) in the lipoprotein tissue, both noted in the original publication.

243 **Fig 4. Lipidome Dataset Projections.** (A) *Drosophila* dataset averaged over tissue
244 type. HexCer and ether-linked GPs are only present in gut and brain tissues
245 respectively. Min-max scaling of abundances was used to calculate marker area. (B)
246 *Drosophila* dataset zoomed in to a glycerolipid region of the vector space showing
247 selected tissue samples (same marker scaling as in A). (C) Yeast lipidomes –
248 comparison between the means of the wildtype and the Elo2 and Elo3 strains with
249 min-max marker scaling. (D) Yeast dataset zoomed in on a region of partially
250 annotated sphingolipids (same marker scaling as in C). Elo2 and Elo3 strains contain
251 species with shorter fatty acyls. (E) Mouse lung lipidome dataset lipids coloured by
252 the \log_2 abundance fold change between the wildtype and LAMP3-KO asthma
253 conditions. Certain lipids with relatively high change values are annotated. (F) PG
254 region comparison between wildtype and LAMP3-KO asthma conditions. Linear
255 scaling applied to marker sizes.

256 The second example is focussed on a yeast study comparing the wildtype strain
257 (BY4741) and mutants that were defective in fatty acyl elongation (Elo1, Elo2, Elo3)
258 [24]. Two different growth temperatures (24°C and 37°C) were considered. The study
259 showed that the Elo2 and Elo3 strains produce sphingolipids with shorter fatty acyl
260 chains. We averaged the samples by strain, filtered Elo1, and projected the full

261 results onto our vector space (Fig 4 C). Fig 4 D displays sphingolipid abundances
262 from the wildtype strain compared to average abundances from the Elo2 and Elo3
263 group, clearly showing that species with shorter fatty acyls occurring in the Elo strains
264 with a higher prevalence.

265 The third dataset is taken from a study of LAMP3-deficient mice, evaluating the role
266 of this protein in the lung [25]. The two different conditions genotype (wildtype /
267 LAMP3-KO) and challenge (none / allergen induced asthma) resulted in four groups
268 of mice. Fig 4 E and F show that if we average the samples by genotype and
269 challenge and compare the wildtype to the LAMP3-KO genotypes in the asthma
270 group, there is a large reduction in phosphatidylglycerols in the LAMP3-KO group, as
271 noted by the authors. Fig 4 E also shows the increased abundance of diacylglycerols
272 and decreased amounts of certain sphingolipids and phosphatidylinositols in the
273 wildtype group.

274 **Discussion**

275 There are two aspects to this work. Firstly, there is the fundamental embedding of
276 molecules in a low-dimensional space. Secondly, there are practical issues and the
277 software implementation.

278 From the point of view of the vector space, there are some surprising observations.
279 The lipid coordinates agree with chemical intuition, although the training was
280 completely unsupervised. The lipids compositions from myriads of substructure
281 vectors on their own produce a systematically organized vector space, which is
282 improved by substructure vector training. Not only were classic lipid categories
283 separated, but unusual structures are given coordinates on the edges of the common
284 lipid classes (Fig 2 B). The local and global structure of the embedding is interesting.

285 Globally, the space reflects broad classes, but locally, it is remarkable that moving a
286 hydroxylation along a chain gives a set of points near each other and almost lying on
287 a smooth curve. There is reason to say this is unexpected. Consider the space as
288 first calculated in 100 dimensions. Maybe there are directions corresponding to
289 phosphorylation, chain extension, moving bonds and other chemical properties.
290 When we project the space to two or three dimensions, one will inevitably lose
291 information. The local structure is a tribute to stochastic nearest neighbour-
292 embedding rather than any invention on our part.
293 There are also differences compared to other vector spaces for lipids. Marella et al
294 calculated the differences between molecules using the differences between string
295 representations of the molecules [5]. This suffers from the instability of string
296 representations. Kopczynski et al avoided this problem by using graph-based
297 similarity [7]. There is a less obvious difference in the methods. Kopczynski et al
298 calculated distances between lipids and used principal coordinate analysis to get low
299 dimensional coordinates from the distance matrix. This is deterministic, but
300 discarding everything after the few most important eigenvectors is a brutal truncation.
301 Our method also requires dimensional reduction, but our experiments with principal
302 component analysis suggested that too much local structure was lost. We would
303 concede that stochastic neighbour embedding is not deterministic, the cost function
304 details are ad hoc and it does not have the geometric rigour of principal component
305 analysis. It does, however, seem to preserve relationships between neighbouring
306 molecules.
307 Kopczynski et al's approach does admit one feature that we lack. We construct a
308 space based on all known lipids and then show all lipidomes in this context. In
309 contrast, Kopczynski et al build a new space for each set of lipidomes. This allows

310 them to construct a very natural measure for the similarity of lipidomes and lends
311 itself to clustering of datasets.

312 Continuing in this self-critical vein, the non-determinism of our approach might be
313 considered a disadvantage. Repeating the training and dimensional reduction always
314 gives slightly different results. With more training time or different parameters, one
315 might get even better results. Having experimented in this direction, we suspect that
316 this is not a useful pursuit. It would be more profitable to consider completely different
317 strategies. Graph convolutional networks would be a natural fit to molecular
318 structures [26] and one could experiment with novel dimensionality reduction
319 methods such as UMAP [27].

320 Besides the embedding, other issues should be addressed. We are not the first
321 group to lament the inherent inconsistency of lipid nomenclature [18]. Synonyms
322 such as SM(d18:1/14:0) and SM 18:1;2/14:0 are tedious but can be handled
323 mechanically by packages such as Goslin. A more fundamental problem are lipid
324 notation ambiguities which cannot be solved by any parser.

325 In this study we encountered ambiguities in the position, number and precise location
326 of double bonds and hydroxylations of sphingolipids. Some line notations would allow
327 one to denote some ambiguities [28], but lipidome data is typically not stored in such
328 formats. Another problem is that a user lipidome may contain species that are not in
329 the training set (SwissLipids + LMSD). This problem will be alleviated when we
330 implement an on-the-fly method to generate structures and respective vectors from
331 nomenclature only.

332 The second half of this work is the software. With the vector space precomputed, it is
333 not too demanding to run on an ordinary laptop. The web application stores lipidome

334 data on the client side and sends it to the server for processing operations. This does
335 require a fair amount of client-server communication, but we are currently moving
336 more processing tasks to the client's browser. Software is also a matter of taste. The
337 current release displays properties such as relative abundances using very compact
338 methods, but these might at first seem foreign to a user.

339 There are clear directions for the future. There will be improvements to the underlying
340 vector space as we experiment with the embedding model and as the databases are
341 updated. The software will change as a result of user experience, and it will
342 automatically benefit from the evolution of the parsing package [19]. Finally, we plan
343 proper integration with biochemical pathway software. As it stands, the vector space
344 is conceptually useful, and the software fills a practical niche.

345 **Acknowledgments**

346 We are indebted to Dr Nils Hoffmann for advice and consolation beyond the call of
347 reasonable duty. Dr Dominik Kopczynski provided invaluable insights on many
348 technical issues.

349 **Availability**

350 Lipidome Projector is available for download
351 (https://www.github.com/olzhabaev/lipidome_projector) and released under the MIT
352 license. It is a web-application that can be run locally or deployed to a server. The
353 repository has pre-computed vectors for and pre-parsed versions of the Lipid Maps
354 and SwissLipids databases. The software distribution also includes modules for the
355 pre-processing of the databases and a complete recalculation of the vector space.
356 An instance of Lipidome Projector is available at: <https://lipidomeprojector.zbh.uni-hamburg.de/>

358 References

359 1. Mohamed A, Hill MM. LipidSuite: interactive web server for lipidomics
360 differential and enrichment analysis. *Nucleic Acids Res.* 2021;49: W346–W351
361 doi:10.1093/nar/gkab327

362 2. Mohamed A, Molendijk J, Hill MM. lipidr: A Software Tool for Data Mining and
363 Analysis of Lipidomics Datasets. *J Proteome Res.* 2020;19: 2890–2897.
364 doi:10.1021/acs.jproteome.0c00082

365 3. Kyle JE, Aimo L, Bridge AJ, Clair G, Fedorova M, Helms JB, et al. Interpreting
366 the lipidome: bioinformatic approaches to embrace the complexity.
367 *Metabolomics.* 2021;17: 55. doi:10.1007/s11306-021-01802-6

368 4. Köhler N, Rose TD, Falk L, Pauling JK. Investigating Global Lipidome
369 Alterations with the Lipid Network Explorer. *Metabolites.* 2021;11: 488.
370 doi:10.3390/metabo11080488

371 5. Marella C, Torda AE, Schwudke D. The LUX Score: A Metric for Lipidome
372 Homology. *PLoS Comput Biol.* 2015;11: e1004511.
373 doi:10.1371/journal.pcbi.1004511

374 6. Weininger D. SMILES, a chemical language and information system. 1.
375 Introduction to methodology and encoding rules. *J Chem Inf Comput Sci.*
376 1988;28: 31–36. doi:10.1021/ci00057a005

377 7. Kopczynski D, Hoffmann N, Troppmair N, Coman C, Ekoos K, Kreutz MR, et
378 al. LipidSpace: Simple Exploration, Reanalysis, and Quality Control of Large-
379 Scale Lipidomics Studies. *Anal Chem.* 2023;95: 15236–15244.
380 doi:10.1021/acs.analchem.3c02449

381 8. Jaeger S, Fulle S, Turk S. Mol2vec: Unsupervised Machine Learning Approach
382 with Chemical Intuition. *J Chem Inf Model.* 2018;58: 27–35.
383 doi:10.1021/acs.jcim.7b00616

384 9. Mikolov T, Chen K, Corrado G, Dean J. Efficient Estimation of Word
385 Representations in Vector Space. 2013.

386 10. Rogers D, Hahn M. Extended-Connectivity Fingerprints. *J Chem Inf Model.*
387 2010;50: 742–754. doi:10.1021/ci100050t

388 11. Sud M, Fahy E, Cotter D, Brown A, Dennis EA, Glass CK, et al. LMSD: LIPID
389 MAPS structure database. *Nucleic Acids Res.* 2007;35: D527–D532.
390 doi:10.1093/nar/gkl838

391 12. Aimo L, Liechti R, Hyka-Nouspikel N, Niknejad A, Gleizes A, Götz L, et al. The
392 SwissLipids knowledgebase for lipid biology. *Bioinformatics.* 2015;31: 2860–
393 2866. doi:10.1093/bioinformatics/btv285

394 13. RDKit: Open-source cheminformatics. <https://www.rdkit.org/>.

395 14. Řehuřek R, Sojka P. Software Framework for Topic Modelling with Large
396 Corpora. *Proceedings of the LREC 2010 Workshop on New Challenges for*
397 *NLP Frameworks.* Valletta, Malta: ELRA; 2010. pp. 45–50.

398 15. Van Der Maaten L. Accelerating t-SNE using tree-based algorithms. *The*
399 *journal of machine learning research.* 2014;15: 3221–3245.

400 16. der Maaten L, Hinton G. Visualizing data using t-SNE. *Journal of machine*
401 *learning research.* 2008;9.

402 17. Poličar PG, Stražar M, Zupan B. OpenTSNE: A modular Python library for t-
403 SNE dimensionality reduction and embedding. bioRxiv. 2019.
404 doi:10.1101/731877

405 18. Liebisch G, Fahy E, Aoki J, Dennis EA, Durand T, Ejsing CS, et al. Update on
406 LIPID MAPS classification, nomenclature, and shorthand notation for MS-
407 derived lipid structures. J Lipid Res. 2020;61: 1539–1555.
408 doi:10.1194/jlr.S120001025

409 19. Kopczynski D, Hoffmann N, Peng B, Ahrends R. Goslin: A Grammar of
410 Succinct Lipid Nomenclature. Anal Chem. 2020;92: 10957–10960.
411 doi:10.1021/acs.analchem.0c01690

412 20. Inc. PT. Collaborative data science. Montreal, QC: Plotly Technologies Inc.;
413 2015. Available: <https://plot.ly>

414 21. Van Rossum G, Drake Jr FL. Python tutorial. Centrum voor Wiskunde en
415 Informatica Amsterdam, The Netherlands; 1995.

416 22. McKinney W. Data Structures for Statistical Computing in Python. 2010. pp.
417 56–61. doi:10.25080/Majora-92bf1922-00a

418 23. Carvalho M, Sampaio JL, Palm W, Brankatschk M, Eaton S, Shevchenko A.
419 Effects of diet and development on the *Drosophila* lipidome. Mol Syst Biol.
420 2012;8. doi:10.1038/msb.2012.29

421 24. Ejsing CS, Sampaio JL, Surendranath V, Duchoslav E, Ekroos K, Klemm RW,
422 et al. Global analysis of the yeast lipidome by quantitative shotgun mass
423 spectrometry. Proc Natl Acad Sci U S A. 2009;106.
424 doi:10.1073/pnas.0811700106

425 25. Lundin LP, Krause D, Stichtenoth G, Stämme C, Lauterbach N, Hegermann J,
426 et al. LAMP3 deficiency affects surfactant homeostasis in mice. PLoS Genet.
427 2021;17. doi:10.1371/journal.pgen.1009619

428 26. Hamilton WL, Ying R, Leskovec J. Representation Learning on Graphs:
429 Methods and Applications. 2017.

430 27. Sainburg T, McInnes L, Gentner TQ. Parametric UMAP Embeddings for
431 Representation and Semisupervised Learning. Neural Comput. 2021; 1–27.
432 doi:10.1162/neco_a_01434

433 28. Homer RW, Swanson J, Jilek RJ, Hurst T, Clark RD. SYBYL Line Notation
434 (SLN): A Single Notation To Represent Chemical Structures, Queries,
435 Reactions, and Virtual Libraries. J Chem Inf Model. 2008;48: 2294–2307.
436 doi:10.1021/ci7004687

437

438 **Supporting information**

439 **Figures**

440 **S1 Fig. Lipidome Projector Interface, *Drosophila* dataset.** Top left: Lipidome

441 dataset scatter plot; Top right: Settings, data operations and abundance charts.

442 Bottom: Abundance and feature tables.

443 **S2 Fig. Vector Space (3D).** (A) Projection of the entire vector space. Marker colour

444 represents lipid category: Fatty acids (FA), glycerolipids (GL), glycerophospholipids

445 (GP), sphingolipids (SP), sterol lipids (ST), prenol lipids (PR), saccharolipids (SL) and

446 polyketides (PK). (B) Region of the vector space focused on a set of selected

447 glycerophospholipids: Glycerophosphates (PA), glycerophosphocholines (PC),

448 glycerophosphoethanolamines (PE), glycerophosphoglycerols (PG),

449 glycerophosphoinositols (PI) and glycerophosphoserines (PS). Marker colour: Lipid

450 class. (C) Same region as in B. Marker colour: Number of fatty acyl double bonds.

451 (D) Zoomed in region of selected glycerophospholipids. Marker colour: Lipid class.

452 (E) Same region as in D. Marker colour: Double bond profile of the 2-sn fatty acyl. (F)

453 Same region as in D. Marker colour: Molecule mass.

454

455 **Tables**

456 **S1 Table. Word2Vec Embedding Parameters.**

457 **S2 Table. Stochastic Neighbour Embedding Parameters.**

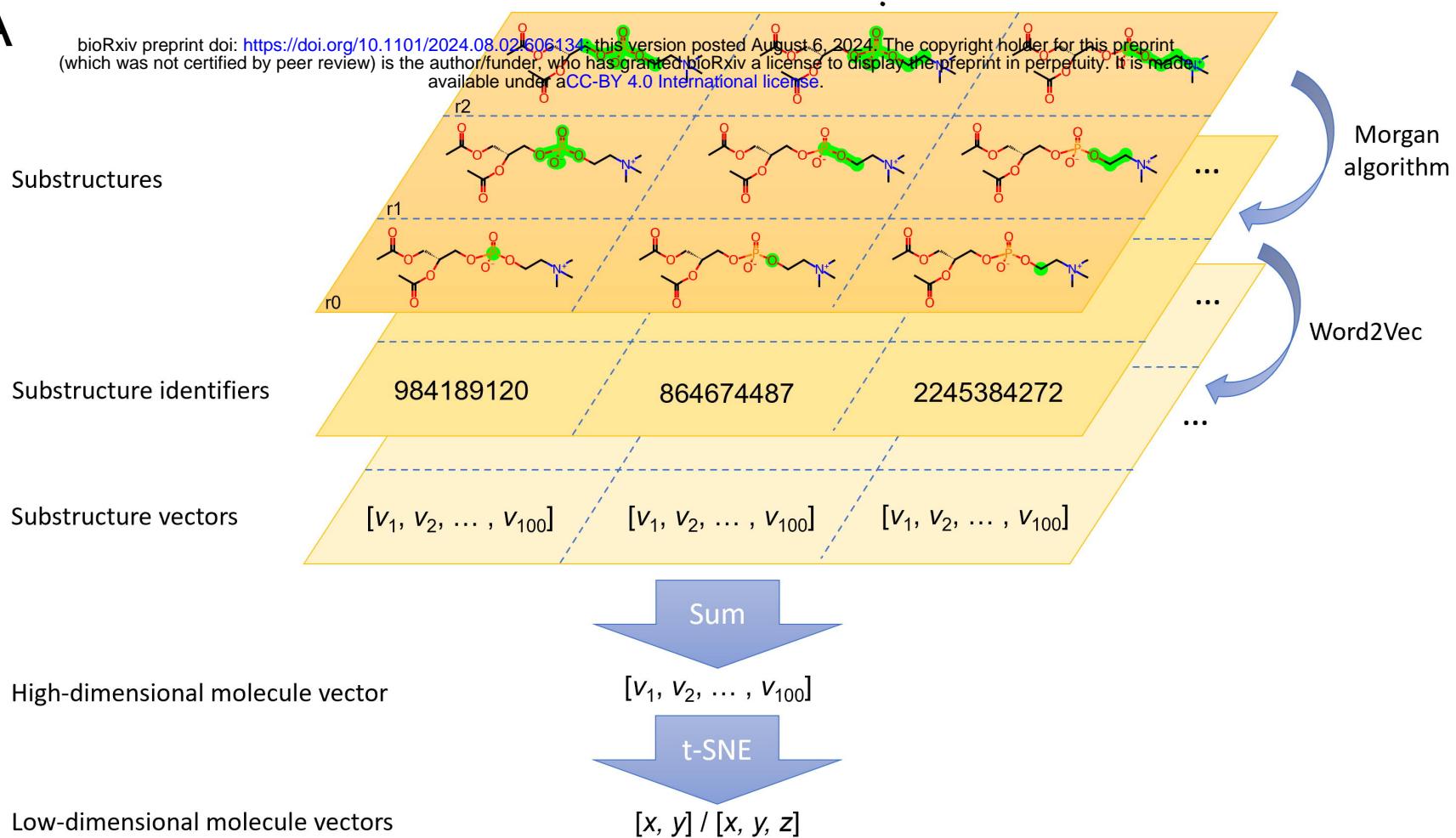
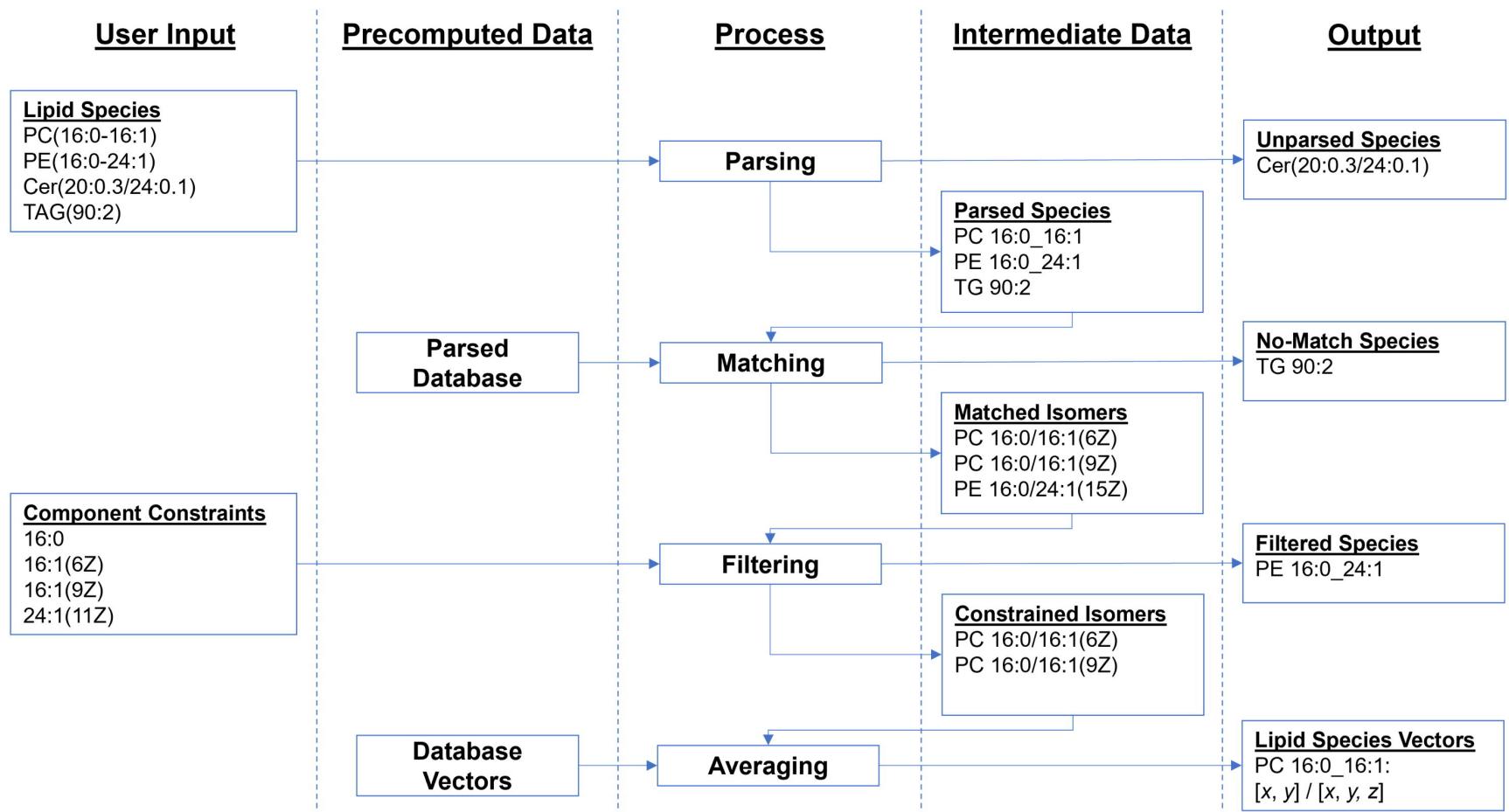
458 **Data**

459 **S1 Dataset.** List of classes present in LMSD and SwissLipids recognised by the
460 Goslin parser in translated representation.

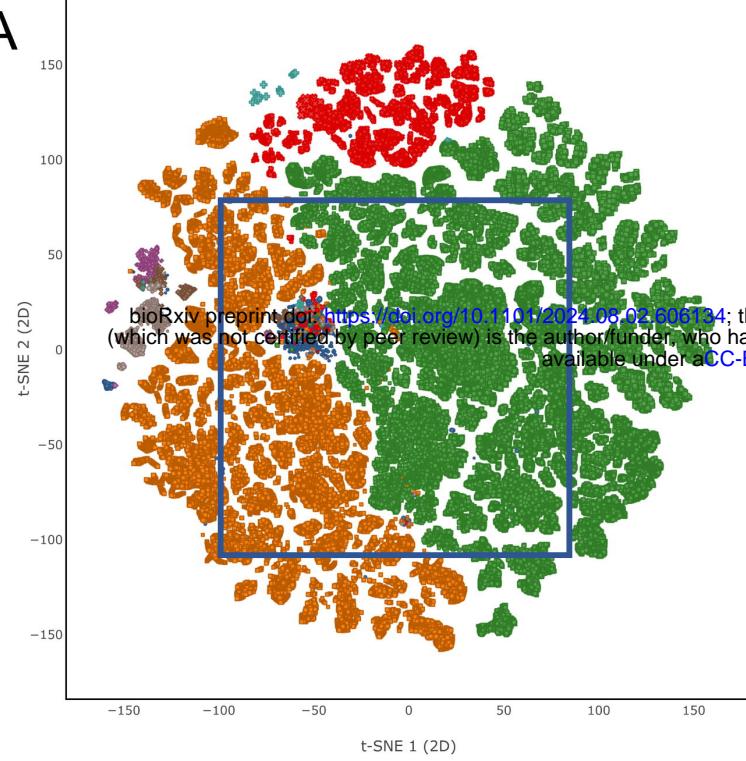
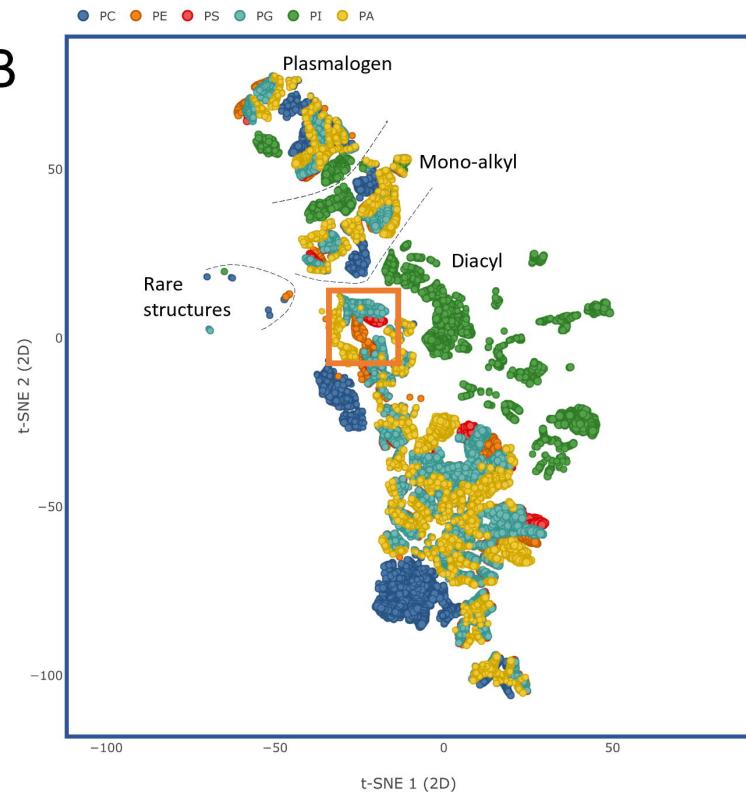
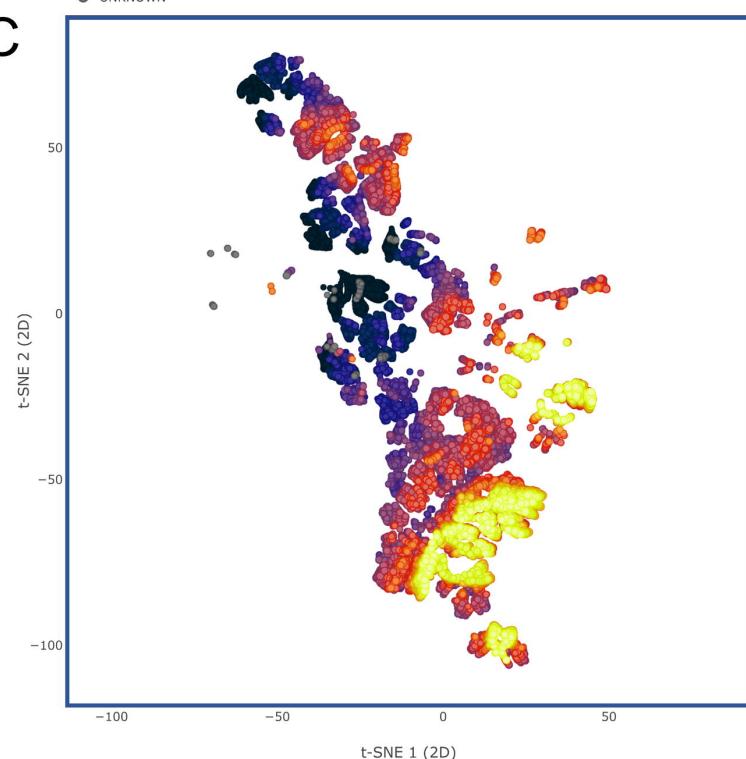
461 **S2 Dataset.** Python scripts with instructions for the extraction and transformation of
462 original datasets; Transformed datasets; Dataset FA / LCB constraints.

463 **S3 Dataset.** Partially interactive HTMLs of vector space and dataset projection
464 scatter plots.

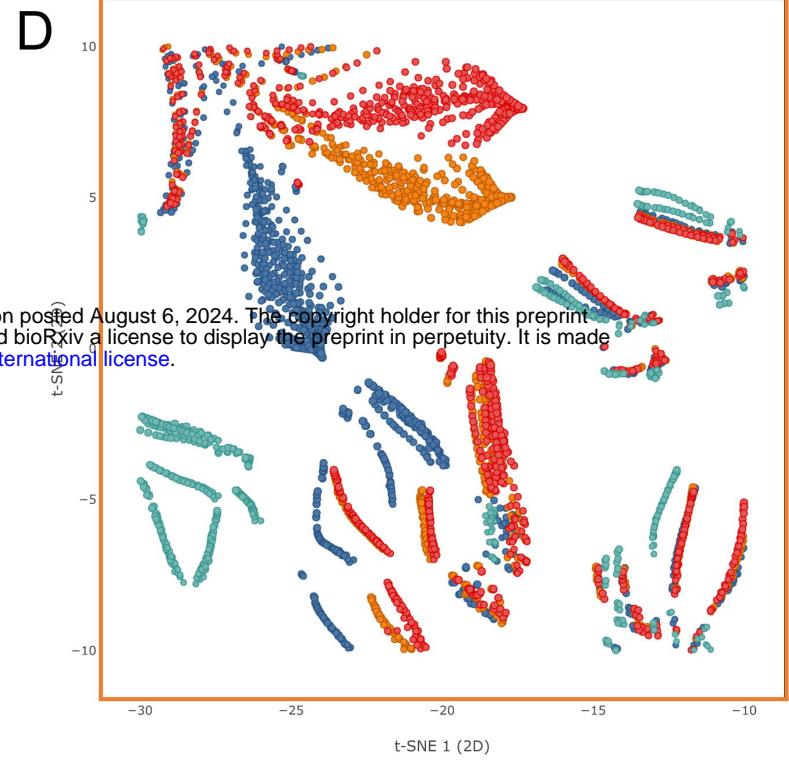
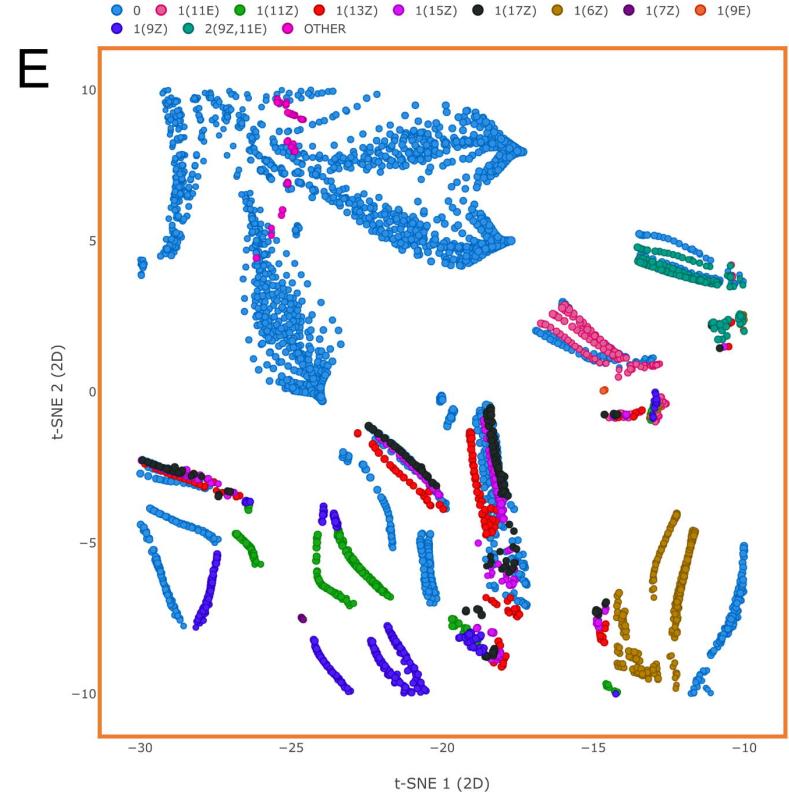
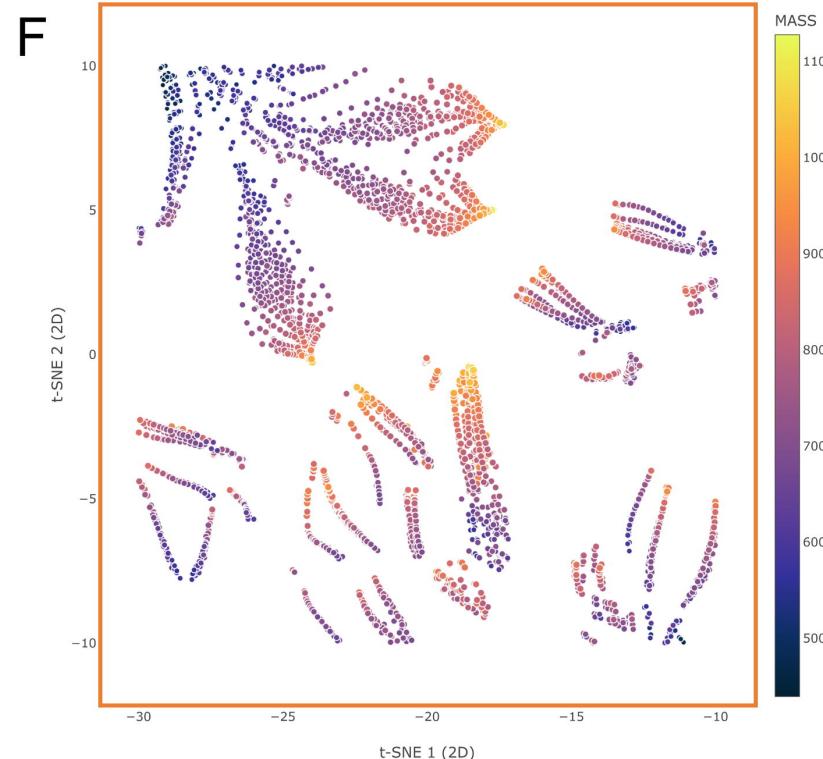
465

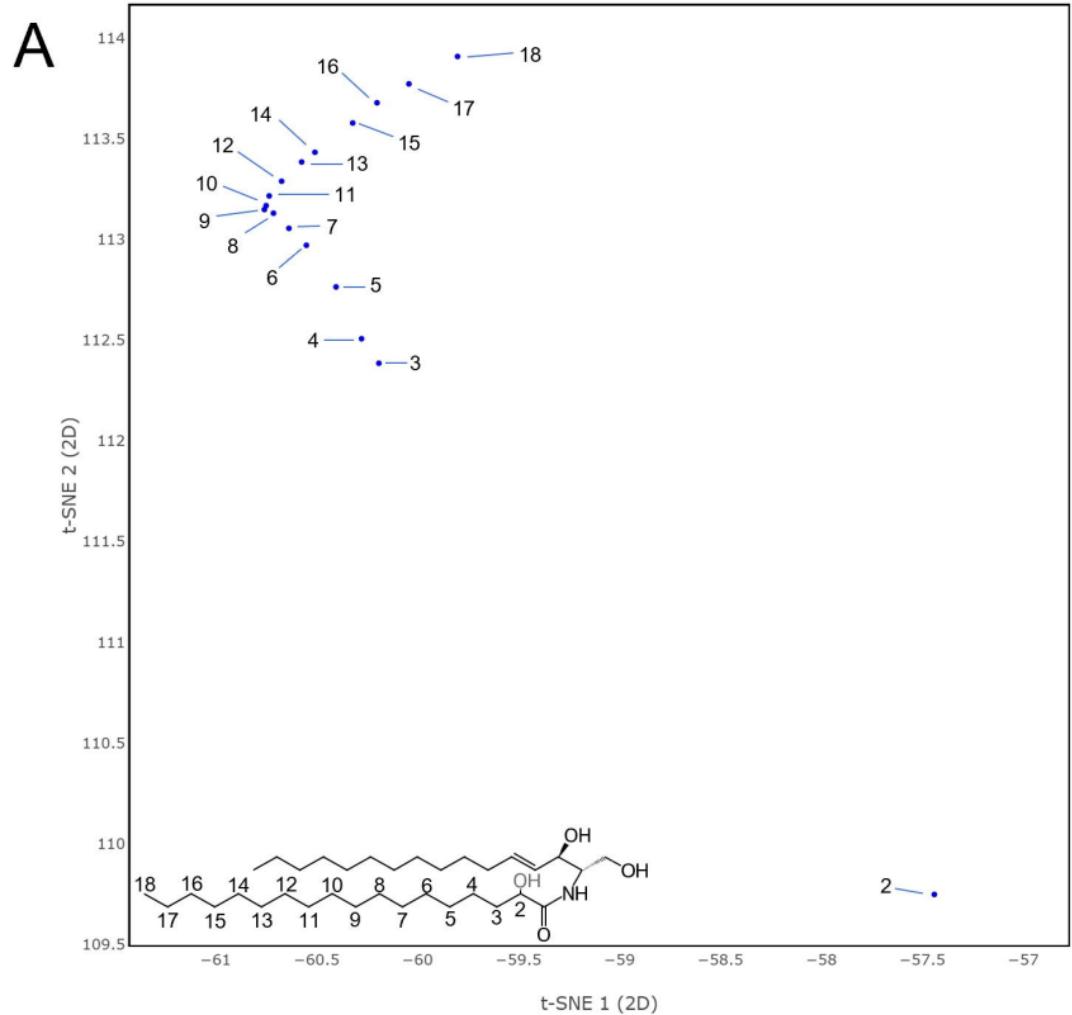
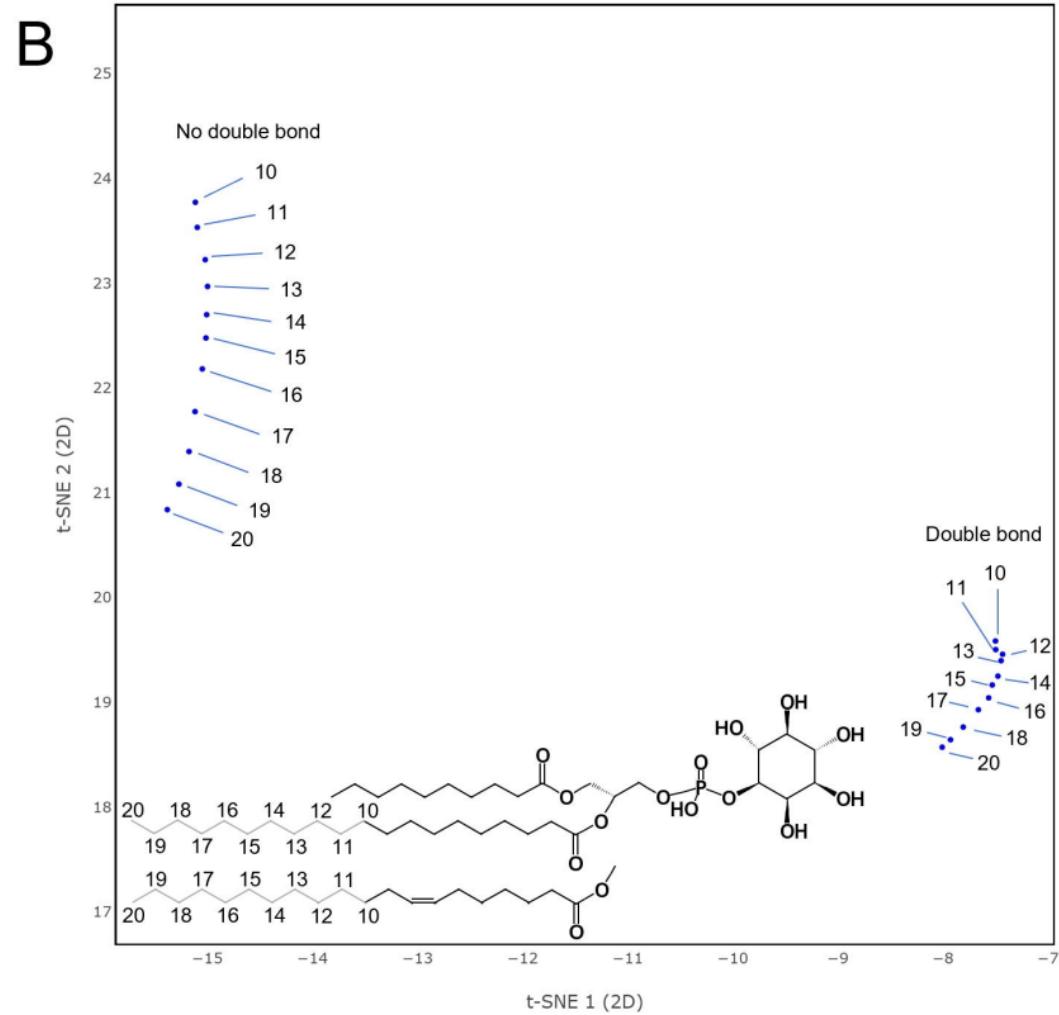
A**B**

● FA ● GL ● GP ● SP ● ST ● PR ● SL ● PK

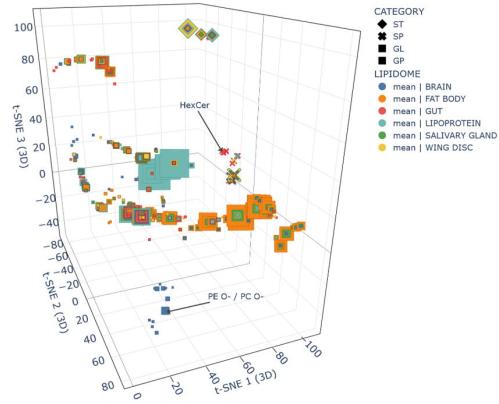


● PE ● PS ● PG ● PA

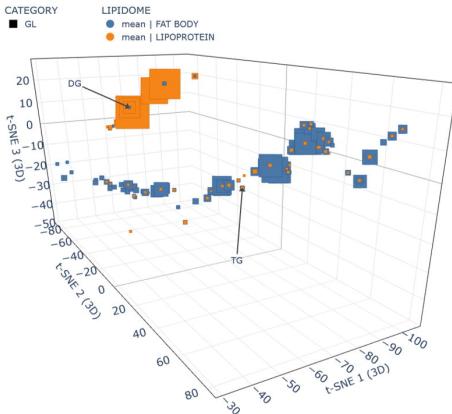




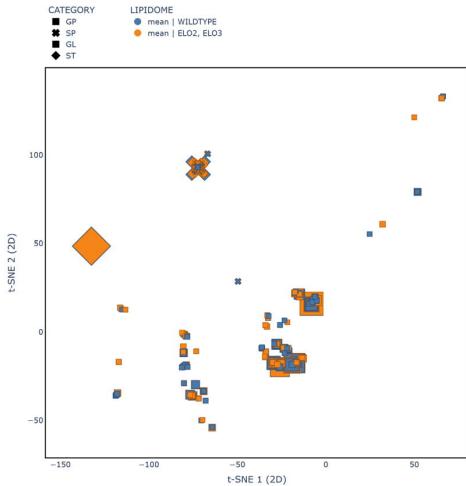
A



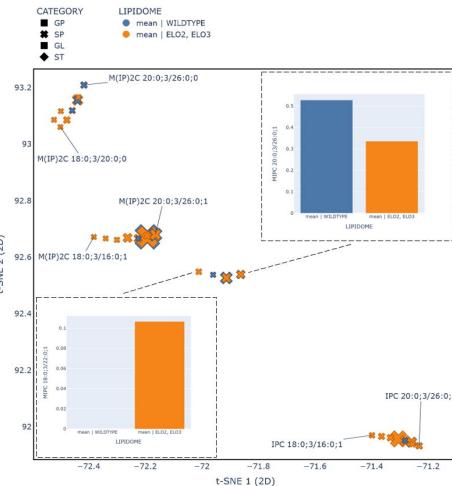
B



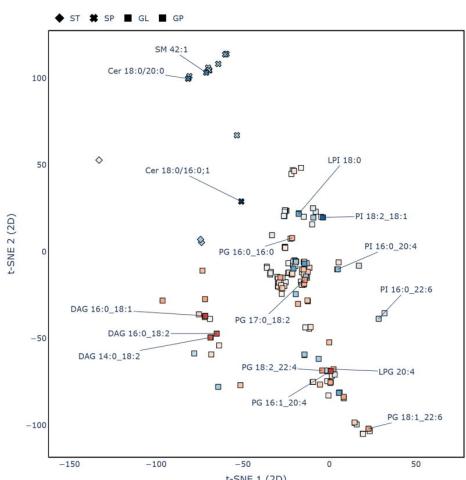
C



D



E



F

