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20 Abstract

21 A shallow neural network was used to embed lipid structures in a 2- or 3-dimensional
22 space with the goal that structurally similar species have similar vectors. Tests on

23 complete lipid databanks show that the method automatically produces distributions
24 which follow conventional lipid classifications. The embedding is accompanied by the
25 web-based software, Lipidome Projector. This displays user lipidomes as 2D or 3D
26  scatterplots for quick exploratory analysis, quantitative comparison and interpretation

27  at a structural level.

28 Author summary

29 Lipids are not just the basis of membranes. They carry signals and metabolic energy.
30 This means that the presence, absence, and quantity of lipids reflects a cell's

31  biochemical state - starving, nourished, sick or healthy. Lipidomics (measuring all

32 lipids in a biological specimen) provides lists of the chemical species and their

33  quantities.

34  We have used a shallow neural network from natural language modelling to embed
35 lipids in a continuous vector space. Firstly, this means that similar molecules have
36  similar positions in this space. Conventional lipid categories cluster automatically.

37  Secondly, the accompanying web-based software, Lipidome Projector imports a

38 lipidome and displays it as a set of points. Reading several lipidomes at once allows
39 quantitative and structural comparisons. Combined with the ability to show structure
40 and abundance diagrams, the software allows exploratory analysis and interpretation

41  of lipidomics datasets.
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42 Introduction

43  Lipids remind one of membranes or fats, but they also carry energy and signals, so
44  one may assume that the set of lipids in a sample reflects the health and metabolic
45  state of a tissue or organism. Mass spectrometry provides lipidome information, but a
46 list of 10%-10* lipids and quantities is not easily interpretable. For exploratory analysis,
47  one would like a method that highlights chemical trends and shows how samples

48  differ with respect to lipid structures and quantities. Given a set of mass spectrometry
49 peaks that have been assigned to lipids, the idea is to display lipidomes as

50 scatterplots in a 2- or 3-dimensional space. This requires two steps. First, there must
51  be a continuous vector space such that each lipid gets distinct coordinates. Second,
52 one needs software to display and compare plots interactively. The software should

53  make it easy to relate points back to their names and chemical structures.

54  The aims here are different to those of other lipidomics software packages. If one

55 wants to treat a lipidome similarly to gene expression data, one can look for changed
56 levels of lipids or focus on molecules whose abundances are correlated [1-3]. If one
57 wants to see a lipidome in terms of networks, there is network construction and

58 display software [4]. Our focus is different. Lipidome Projector lets one quickly

59 highlight and interactively explore differences between groups of samples, with the

60 simultaneous display of abundances and structures.

61  The first challenge is finding vectors for molecules for the two- and three-dimensional
62 plots. Previous attempts applied ideas from string comparisons [5], but this was not
63  without problems. Whatever notation one uses, a small change to a molecule can

64 lead to a large change in a string representation such as SMILES [6], so the similarity

65 metrics are fundamentally unstable. Kopczynski et al approached the problem with
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66 elegant distance metrics, but this required some preconceptions about lipid structures

67 and used expensive graph similarity methods [7].

68 We come to the problem with slightly different ideas and some specific goals. The

69 method should be objective, unsupervised and require minimal chemical

70  preconceptions. Coordinates should be quite different for unrelated molecules, but

71  systematic changes such as extending the length of an aliphatic chain should give a
72  series of points near each other. Adding a phosphate or alcohol group to two different
73  molecules should change both coordinates in a similar manner. Our method for lipids
74 is a modified version of Mol2Vec [8], a technique from the small-molecule literature
75 which is, in turn, based on Word2Vec [9] a word embedding method from natural

76  language processing. To embed words, one first defines a vocabulary and gives

77  each word a unique token. In a text corpus, similar tokens appear in similar contexts
78  with reasonable probability, such that a token / context prediction task can be used to
79 train semantic vector representations. To apply the idea in chemistry, one constructs
80 avocabulary of chemical fragments and trains a shallow network on a large set of

81 molecules to recognise surrounding contexts. Input fragments are represented by

82 integer identifiers derived from computed sparse connectivity fingerprints [10].

83 Fragment vectors come from hidden layer weights of the trained network and are

84  summed to produce vector representations of entire molecules.

85 Calculating the vector space model is performed once on a large set of lipid
86  structures and takes several hours. User lipidome data is simply matched to
87 precomputed vectors. Lipidome Projector, the browser-based application for
88 visualization and analysis, allows one to interactively explore lipidomes in the vector

89 space and additionally displays lipid abundance charts and molecular structures.
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90 To judge our methods, we consider the distributions of lipids in the computed vector
91 space and apply Lipidome Projector visualizations on three published lipidome

92 datasets.

93 Materials and Methods

94 Lipid Vector Space
95  For training, the Lipid Maps Structure Database (LMSD) [11] and SwissLipids [12]

96 (both accessed Jan 2023) were combined. SwissLipids entries were filtered to obtain
97 lipids with valid SMILES at isomeric subspecies level. The combination of databases
98 resulted in over 620 000 unique structures. RDKit [13] was used to convert all
99 database entries to a consistent charge state and RDKit's implementation of
100 extended connectivity fingerprints [10] was used to assign a unique identifier to each
101  substructure of a specified radius around each atom. Substructure identifiers were
102  ordered according to the position of the substructure’s central atom within the

103  molecule’s canonical SMILES string.

104 A few small modifications to Mol2Vec were necessary. First, chirality was explicitly
105 considered. Secondly, a parameter had to be adapted to capture differences in long
106  alkyl chains. Mol2Vec descriptors for small molecules are usually built from

107  fragments using atoms (radius 0) and their immediate neighbours (radius 1). For the
108  much larger lipid structures, radii of size 0, 1, 2, 3, 4, 5, 10, 15, 20, 25, 30, 35, 40, 45
109 and 50 were used, resulting in just under three million unique fragments for the

110 combination of databases. For each lipid, the set of fragments for each radius was

111  used as a separate training sentence.

112 Gensim [14] was used to train the Word2Vec model with training parameters listed in
113  Table S1. The network generated 100-dimensional substructure vectors, which were

114  summed for each molecule. For visualization, the Barnes-Hut [15] version of t-
5
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distributed stochastic neighbour embedding [16] as implemented in OpenTSNE [17]
was used to reduce the 100-dimensional vector space to generate 2- and 3-
dimensional vector sets (parameters listed in Table S2). The embedding process is

summarised in Fig 1 A.

Fig 1. Vector Space Generation and Matching. (A) A lipid structure is decomposed
into its substructures of different sizes represented by Morgan sparse fingerprint
integers, which constitute the training data for Word2Vec. A molecule’s vector is the
sum of its substructure vectors and is projected to 2D or 3D with stochastic neighbour
embedding. (B) The user provides a list of lipid species hames and component
constraints. Lipid names are parsed and matched to appropriate isomer names from
the pre-parsed database. The component constraints are applied to filter the
matches. Vectors of the remaining isomers are averaged for each lipid. Not illustrated
is an additional step, in which database matching is attempted on the original names

of unparsed lipid species.

Lipidome Processing

As part of building the system, entries from the lipid databases are stored along with
their corresponding vectors and higher-level abbreviations for each isomer following
previously defined levels [18]. When a user lipidome is imported, entries are matched
against pre-calculated vectors (Fig 1 B). Goslin [19] is used to parse both databases
and user data. It accepts common nomenclature, but should it fail, the process will
look for a match based on user-provided names. This means that Lipidome Projector
covers at least all entries from the union of SwissLipids and the LMSD that were

successfully parsed by Goslin (S1 Dataset gives a list of translated class names).

Mass spectrometry often does not identify a lipid at the complete structure level [18]

so additional steps are necessary to deal with this ambiguity. The software finds the

6
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140  set of isomers that match the higher-level abbreviation, but not all members of this
141  set will be plausible for the organism under consideration. To filter the list of possible
142  lipids, Lipidome Projector expects a constraints list with allowed fatty acyls and long-
143  chain bases. The remaining isomer vectors are averaged to produce a single

144  representative vector.

145 Visualization and Analysis Software

146  Plots are generated using Plotly.py [20]. Marker sizes are derived from respective
147  lipid abundances, to which either linear or min-max scaling is applied. Dash [20] is
148 used to build the web-application front end. The rest of the application was built in
149  Python [21] with pandas [22] used for data-table storage and manipulation. Parsing
150 and matching are performed server-side. The original lipidome dataset together with
151 the newly derived lipid names and computed vectors is stored inside the user’s

152  browser session and sent to the server for temporary processing operations such as
153  averaging of samples or plot updates. Lipidome datasets and constraints are read in

154  asimple table format.

155 Datasets

156  Publicly available lipidome datasets from drosophila [23], yeast [24] and mouse [25]
157  were used for development and analysed as user cases. Python scripts for the

158 extraction of the original data and formatting into formats appropriate for Lipidome
159  Projector, as well as manually constructed respective FA and LCB constraint files are

160 given in S2 dataset.

161  Results
162 Lipid Vector Space

163  We first consider the projection of lipids into a vector space by looking at the

164  distributions of points for entries from the combined databases with a valid structure

7
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165 and class. Are the vectors consistent with chemical intuition and database

166  classification? Fig 2 A shows the entire lipid set in two dimensions (see S2 Fig for 3D
167  version). With some exceptions, lipids within a category are grouped together in the
168  vector space despite the underlying structural diversity. For the largest categories,
169 glycerolipids (GL), glycerophospholipids (GP) and sphingolipids (SP) a clear

170 separation can be observed with some overlap and outliers at some borders. To look
171  in more detail, one can focus on the class level with the example of selected

172 glycerophospholipid classes. Fig 2 B marks three clusters, which largely correspond
173  to diacyl, mono-alkyl and plasmalogen glycerophospholipids respectively. This

174  suggests that the embedding has mostly captured the chemical connectivity at the
175  glycerol. Within each large cluster, phosphatidylinositols (PI) and

176  phosphatidylcholines (PC) form their own subgroups with some local exceptions. For
177  the other classes there are numerous smaller, intertwined clusters spread across the
178  vector space. Also marked are a few unusual molecules with uncommon fatty acyl
179  double bond structures such as (5E, 9E) or chains which are heavily methylated or
180 even contain ladderane, a structural moiety seen in bacteria. These are positioned
181  outside the main group as one might expect since the database is dominated by the
182  biochemistry of mammals. The remaining plots in Fig 2 show how the lipid vectors
183  capture chemical functional groups and their structural context. In Fig 2 C there is a
184  general trend of more double bonds from left to right. Focusing on a local region

185  shows that clustering is determined by lipid class (Fig 2 D) and fatty acyl double bond
186 location and number (Fig 2 E). Additionally, one can see a systematic change in

187 mass as one moves along clusters (Fig 2 F). These patterns suggest that the

188 embedding captures gradual structural changes. This was further assessed using a
189  contrived example borrowed from the literature [5]. Three sets of manually generated

190  structures were added to the training data. The first two consist of series of
8
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191  phosphatidylinositols with a successively longer fatty acyl chain. The sets are the
192 same, except for the presence / absence of a double bond in the lengthening chain.
193  Fig 3 B shows that growing an aliphatic chain gives progressively changing vector
194  positions, while the presence of the double bond leads to a large, but consistent
195 displacement. The third set consists of a series of ceramides, each of which is

196  hydroxylated at a different position within its fatty acyl chain (Fig 3 A). The steps of
197 the hydroxylated position translate into an almost linear series of vectors with the

198 exception of an outlier near the acyl bond.

199 Fig 2. Vector Space (2D). (A) Entire vector space. Marker colour represents lipid
200 category: Fatty acids (FA), glycerolipids (GL), glycerophospholipids (GP),

201  sphingolipids (SP), sterol lipids (ST), prenol lipids (PR), saccharolipids (SL) and

202  polyketides (PK). (B) Region of the vector space focused on selected

203  glycerophospholipids: Glycerophosphates (PA), glycerophosphocholines (PC),

204  glycerophosphoethanolamines (PE), glycerophosphoglycerols (PG),

205 glycerophosphoinositols (PI) and glycerophosphoserines (PS). Marker colour: Lipid
206 class. (C) Same region as in B, marker colour represents the number of fatty acyl
207 double bonds. (D) Zoomed-in region of selected glycerophospholipids, marker colour
208 represents lipid class. (E) Same region as in D, marker colour represents the double
209 bond profile of the 2-sn fatty acyl. (F) Same region as in D, marker colour represents

210 molecule mass.

211 Fig 3. Impact of Stepwise Structural Changes. (A) Local vector space region of
212 manually added ceramide structures. Marker annotations denote the fatty acyl

213 hydroxylation position. (B) Local vector space region of manually added

214  phosphatidylinositol structures. Marker annotations denote the length of the 2-sn fatty

215 acyl.
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216  Another aspect of the quality of the vector space is its coverage of lipid classes, fatty
217  acyls, and long-chain bases, which in our case, is completely dependent on the

218 underlying databases and the parser. When lipidomes are imported, entries are

219 discarded if they cannot be matched or if they are rejected by the constraint-based
220 filtering. For the three example literature datasets used here, we implemented

221 plausible FA / LCB constraints and performed the matching to the database.

222 Reasonable manual preprocessing steps, such as re-formatting the data, removing
223 duplicate entries, and adjusting unusual nomenclature were performed beforehand,
224  and are available as Python scripts in S2 dataset. The processing statistics are listed

225 in Table 1.

226  Table 1. Matching statistics for development datasets.

Dataset Num. Successfully | Parsed - | Not Filtered
lipids matched not parsed -
matched | not
matched
Drosophila | 359 324 (90.3%) | 9 (2.5%) |4 (1.1%) 22 (6.1%)
Yeast 249 235 (94.4%) | 14 0 0
(5.6%)
LAMP3 209 199 (95.2%) |3 (1.4%) | O 7 (3.3%)

227
228 Visualization

229  One has to look at complete databases to judge the vector space and embedding of
230 lipids. A user, however, would be interested in what one sees in their lipidome. We
231 take three examples from the literature and look at the scatterplots in the light of the

232 biochemistry noted by the original authors.

233 The first dataset consists of lipidomes of different Drosophila melanogaster larval
234 tissue types (brain, fat body, gut, lipoprotein, salivary gland, wing disc) fed with

235 different diets (plant food or yeast food) [23]. For our quick analysis, we averaged the

10
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236 lipidome samples by tissue type. Carvalho et al noted that hexosyl ceramides

237  (HexCer) and ether glycerophospholipids (O-) were only detected in gut and brain
238  tissues respectively. Fig 4 A shows how this kind of feature can be easily observed
239 and highlighted. Fig 4 B displays a comparison of fat body and lipoprotein tissue
240 types focused on a glycerolipid region and highlights the expected large amounts of
241  triacylglycerol (TG) species in the fat body and conversely an overabundance of

242 diacylglycerols (DG) in the lipoprotein tissue, both noted in the original publication.

243 Fig 4. Lipidome Dataset Projections. (A) Drosophila dataset averaged over tissue
244  type. HexCer and ether-linked GPs are only present in gut and brain tissues

245  respectively. Min-max scaling of abundances was used to calculate marker area. (B)
246  Drosophila dataset zoomed in to a glycerolipid region of the vector space showing
247  selected tissue samples (same marker scaling as in A). (C) Yeast lipidomes —

248  comparison between the means of the wildtype and the Elo2 and Elo3 strains with
249  min-max marker scaling. (D) Yeast dataset zoomed in on a region of partially

250 annotated sphingolipids (same marker scaling as in C). Elo2 and Elo3 strains contain
251  species with shorter fatty acyls. (E) Mouse lung lipidome dataset lipids coloured by
252  the log, abundance fold change between the wildtype and LAMP3-KO asthma

253  conditions. Certain lipids with relatively high change values are annotated. (F) PG
254  region comparison between wildtype and LAMP3-KO asthma conditions. Linear

255  scaling applied to marker sizes.

256  The second example is focussed on a yeast study comparing the wildtype strain

257 (BY4741) and mutants that were defective in fatty acyl elongation (Elo1, Elo2, Elo3)
258  [24]. Two different growth temperatures (24°C and 37°C) were considered. The study
259  showed that the Elo2 and Elo3 strains produce sphingolipids with shorter fatty acyl
260 chains. We averaged the samples by strain, filtered Elo1, and projected the full

11
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261  results onto our vector space (Fig 4 C). Fig 4 D displays sphingolipid abundances
262  from the wildtype strain compared to average abundances from the Elo2 and Elo3
263  group, clearly showing that species with shorter fatty acyls occurring in the Elo strains

264  with a higher prevalence.

265 The third dataset is taken from a study of LAMP3-deficient mice, evaluating the role
266  of this protein in the lung [25]. The two different conditions genotype (wildtype /

267 LAMP3-KO) and challenge (none / allergen induced asthma) resulted in four groups
268  of mice. Fig 4 E and F show that if we average the samples by genotype and

269 challenge and compare the wildtype to the LAMP3-KO genotypes in the asthma

270  group, there is a large reduction in phosphatidylglycerols in the LAMP3-KO group, as
271 noted by the authors. Fig 4 E also shows the increased abundance of diacylglycerols
272  and decreased amounts of certain sphingolipids and phosphatidylinositols in the

273 wildtype group.

274 Discussion

275  There are two aspects to this work. Firstly, there is the fundamental embedding of
276  molecules in a low-dimensional space. Secondly, there are practical issues and the

277  software implementation.

278  From the point of view of the vector space, there are some surprising observations.
279  The lipid coordinates agree with chemical intuition, although the training was

280 completely unsupervised. The lipids compositions from myriads of substructure

281  vectors on their own produce a systematically organized vector space, which is

282  improved by substructure vector training. Not only were classic lipid categories

283  separated, but unusual structures are given coordinates on the edges of the common

284 lipid classes (Fig 2 B). The local and global structure of the embedding is interesting.

12
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285  Globally, the space reflects broad classes, but locally, it is remarkable that moving a
286  hydroxylation along a chain gives a set of points near each other and almost lying on
287  asmooth curve. There is reason to say this is unexpected. Consider the space as
288 first calculated in 100 dimensions. Maybe there are directions corresponding to

289  phosphorylation, chain extension, moving bonds and other chemical properties.

290 When we project the space to two or three dimensions, one will inevitably lose

291 information. The local structure is a tribute to stochastic nearest neighbour-

292  embedding rather than any invention on our part.

293  There are also differences compared to other vector spaces for lipids. Marella et al
294  calculated the differences between molecules using the differences between string
295 representations of the molecules [5]. This suffers from the instability of string

296 representations. Kopczynski et al avoided this problem by using graph-based

297 similarity [7]. There is a less obvious difference in the methods. Kopczynski et al

298 calculated distances between lipids and used principal coordinate analysis to get low
299 dimensional coordinates from the distance matrix. This is deterministic, but

300 discarding everything after the few most important eigenvectors is a brutal truncation.
301  Our method also requires dimensional reduction, but our experiments with principal
302 component analysis suggested that too much local structure was lost. We would

303 concede that stochastic neighbour embedding is not deterministic, the cost function
304 details are ad hoc and it does not have the geometric rigour of principal component
305 analysis. It does, however, seem to preserve relationships between neighbouring

306 molecules.

307 Kopczynski et al's approach does admit one feature that we lack. We construct a
308 space based on all known lipids and then show all lipidomes in this context. In
309 contrast, Kopczysnki et al build a new space for each set of lipidomes. This allows

13
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310 them to construct a very natural measure for the similarity of lipidomes and lends

311 itself to clustering of datasets.

312  Continuing in this self-critical vein, the non-determinism of our approach might be

313 considered a disadvantage. Repeating the training and dimensional reduction always
314  gives slightly different results. With more training time or different parameters, one
315 might get even better results. Having experimented in this direction, we suspect that
316 this is not a useful pursuit. It would be more profitable to consider completely different
317  strategies. Graph convolutional networks would be a natural fit to molecular

318 structures [26] and one could experiment with novel dimensionality reduction

319 methods such as UMAP [27].

320 Besides the embedding, other issues should be addressed. We are not the first
321  group to lament the inherent inconsistency of lipid nomenclature [18]. Synonyms
322 such as SM(d18:1/14:0) and SM 18:1;2/14:0 are tedious but can be handled

323  mechanically by packages such as Goslin. A more fundamental problem are lipid

324  notation ambiguities which cannot be solved by any parser.

325 In this study we encountered ambiguities in the position, number and precise location
326  of double bonds and hydroxylations of sphingolipids. Some line notations would allow
327 one to denote some ambiguities [28], but lipidome data is typically not stored in such
328 formats. Another problem is that a user lipidome may contain species that are not in
329 the training set (SwissLipids + LMSD). This problem will be alleviated when we

330 implement an on-the-fly method to generate structures and respective vectors from

331 nomenclature only.

332 The second half of this work is the software. With the vector space precomputed, it is

333  not too demanding to run on an ordinary laptop. The web application stores lipidome

14
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334 data on the client side and sends it to the server for processing operations. This does
335 require a fair amount of client-server communication, but we are currently moving
336 more processing tasks to the client’s browser. Software is also a matter of taste. The
337 current release displays properties such as relative abundances using very compact

338 methods, but these might at first seem foreign to a user.

339 There are clear directions for the future. There will be improvements to the underlying
340 vector space as we experiment with the embedding model and as the databases are
341 updated. The software will change as a result of user experience, and it will

342 automatically benefit from the evolution of the parsing package [19]. Finally, we plan
343  proper integration with biochemical pathway software. As it stands, the vector space

344 is conceptually useful, and the software fills a practical niche.
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349 Availability

350 Lipidome Projector is available for download

351  (https://www.github.com/olzhabaev/lipidome_projector) and released under the MIT
352 license. It is a web-application that can be run locally or deployed to a server. The
353  repository has pre-computed vectors for and pre-parsed versions of the Lipid Maps
354 and SwissLipids databases. The software distribution also includes modules for the
355 pre-processing of the databases and a complete recalculation of the vector space.
356  Aninstance of Lipidome Projector is available at: https://lipidomeprojector.zbh.uni-

357 hamburg.de/
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438  Supporting information

439 Figures
440 S1Fig. Lipidome Projector Interface, Drosophila dataset. Top left: Lipidome

441  dataset scatter plot; Top right: Settings, data operations and abundance charts.

442  Bottom: Abundance and feature tables.

443  S2 Fig. Vector Space (3D). (A) Projection of the entire vector space. Marker colour
444  represents lipid category: Fatty acids (FA), glycerolipids (GL), glycerophospholipids
445  (GP), sphingolipids (SP), sterol lipids (ST), prenol lipids (PR), saccharolipids (SL) and
446  polyketides (PK). (B) Region of the vector space focused on a set of selected

447  glycerophospholipids: Glycerophosphates (PA), glycerophosphocholines (PC),

448  glycerophosphoethanolamines (PE), glycerophosphoglycerols (PG),

449  glycerophosphoinositols (Pl) and glycerophosphoserines (PS). Marker colour: Lipid
450 class. (C) Same region as in B. Marker colour: Number of fatty acyl double bonds.
451 (D) Zoomed in region of selected glycerophospholipids. Marker colour: Lipid class.
452  (E) Same region as in D. Marker colour: Double bond profile of the 2-sn fatty acyl. (F)

453  Same region as in D. Marker colour: Molecule mass.

454
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455  Tables
456 S1 Table. Word2Vec Embedding Parameters.
457 S2 Table. Stochastic Neighbour Embedding Parameters.

458 Data
459  S1 Dataset. List of classes present in LMSD and SwissLipids recognised by the

460  Goslin parser in translated representation.

461 S2 Dataset. Python scripts with instructions for the extraction and transformation of

462  original datasets; Transformed datasets; Dataset FA / LCB constraints.

463  S3 Dataset. Partially interactive HTMLs of vector space and dataset projection

464  scatter plots.

465

21


https://doi.org/10.1101/2024.08.02.606134
http://creativecommons.org/licenses/by/4.0/

m\ bioRxiv preprint doi: https://doi.org/10.1101/2024.08. Oﬂﬁ 613 rsion postedA .6 e opyrlghtho)dle ,for

(which was not certified by peer review) is the author/funder; who h R iv alic feprmt in p p uity:
available undq(aCC BY 4.0 Int a,ﬂonal I|c€r||§e
A s s
0 / o 0 ,’ 't Q Morgan
o”‘/*\/\w\f e S )\o”'/\ozf‘M ¢ :
Substructures - ~° e ¥° | algorithm
" (0] // (o] /' o
o T T T T rar o e
)LO/"K O’gw //// )Lo/ ;“'//\0" W ) P o /\ (0 ‘O‘/\'il(
Y J h¢ K hg
r0 o] , e . 0
_____________________ S Word2Vec
Substructure identifiers 984189120 864674487 /' 2245384272
Substructure vectors Vi, Vou eov s Vagol 7 [V, Vou ooy Vgl /7 [Vis Vo, oony Va0l
High-dimensional molecule vector [V, Vay ey Vigol
Low-dimensional molecule vectors x, Y1/[x y 2]
User Input . Precomputed Data | Process - Intermediate Data | Output
Lipid Species |
PC(16:0-16:1) ! | | - | | i | Unparsed Species
PE(16:0-24:1) : — Parsing - ¥ Cer(20:0.3/24:0.1)
Cer(20:0.3/24:0.1) ] i E !
TAG(90:2) | | . | Parsed Species :
5 i .| PC 16:0_16:1 5
E | | PE 16:0_24:1 ;
: ; || TG 90:2 :
: : ] i !
: : v ! ' | No-Match Species
' Parsed ' : | 1 | No-Walch Sp
: —{: : > :
: Database ; Matching [ ! TG 90:2
i | Matched Isomers
! ; . | PC 16:0/16:1(62) ;
! i | PC 16:0/16:1(92) i
i i ' | PE 16:0/24:1(152) i
Component Constraints I
16:0 ; R o 1 | | Filtered Species
16:1(62) : > Filtering — > PE 16:0_24:1
16:1(92) ; | . i
24:1(112) | | ' | Constrained Isomers |
| | . | PC 16:0/16:1(62Z) |
5 5 | PC 16:0/16:1(92) 5
i : ; ! ! i S Ivid Soacles Vgt
: i ! ! 1p1 pecies vectors
5 D\fetz:):rsse ) Averaging I i > PC 16:0_16:1:
| | | Lol xy 2]



https://doi.org/10.1101/2024.08.02.606134
http://creativecommons.org/licenses/by/4.0/

@ FA BMGL HGP 8SP ST PR g SL @ PK

@PE @OPS @ PG @ PA

150
100
50
\ !
§ ; this version po@d August 6, 2024. ¥, ight holder for this prepri 2
oy " s granted blongqvl? license to display eprint in pe;petunty. It is madg ©
% Y 4.0 Internat'%)na llicense. /) ,’
& & °
..\. ; ®
‘.
-50
\ . ®
Sl 0% \ 8 p
8
-100 \ Q
\ o
° °% ‘&
% .
8 °
% W
-150
-10 \ % U ,\
-150 -100 -50 0 50 100 150 =30 =25 =20 =15 -10
t-SNE 1 (2D) t-SNE 1 (2D)
@FPC @PE @ PS @ PG @ PI © PA @ 0 @ 1(11E) @ 1(112) @ 1(13Z) @ 1(152) @ 1(17Z) @ 1(62) @ 1(72) @ 1(9E)
® 1(92) @ 2(9Z,11E) @ OTHER
Plasmalogen E
10
50 Mono-alkyl
5
e e Diacyl 80
Rare ® °
structures g/ @
B >
3 ° s
J P ° 8
g Seos N oo
2 ) %
“ ; L
=50
=5
100 %
=10
-100 =50 0 50 =30 =25 =20 -15 -10
t-SNE 1 (2D) t-SNE 1 (2D)
@0 01 02 03 @4 @5 @6 @7 @8 © 9 O 10 11 12
@ UNKNOWN
F MASS
10 1100
50
1000
5
900
—~ 0 =
3 g
~ S0 800
= z
7 2
700
=50
=5
600
-100 -10 =00
-100 —50 0 50 -30 ~25 =20 ~15 ~10
t-SNE 1 (2D)

t-SNE 1 (2D)


https://doi.org/10.1101/2024.08.02.606134
http://creativecommons.org/licenses/by/4.0/

t-SNE 2 (2D)

A 114 18 B
16\ . "
. s
14 . 17
113.5 12 \' 5 No double bond
10 \' s 24 10
~; 1 e
9 .7 — M
113 8 .
v — 12
6 «—5 23 o
M
142:5 4 . = 15
«—3 .
22 \16
112 a .\17
% 21 .°\ "
111.5 & ~~ 20 Double bond
10
20 11 ‘
111 13\\.3./12
15— —14
19 17— —16
110.5 19—, —18
.,
1l20 18 16 14 12 10 0 0/\
110 PH o 17 45 8 11 T T Y
NW\/\/\/S‘”\OH o
18 16 14 12 10 8 4 OH NH Dy 19 17 15 13 11 . O/
7 15 13 11 8 7 5 32 R g ¢
109.5 O o
61 ~60.5 ~60 “59.5 “59 ~58.5 58 575 ~57 “1s “1a “13 12 11 “10 iy "8 =

t-SNE 1 (2D) t-SNE 1 (2D)


https://doi.org/10.1101/2024.08.02.606134
http://creativecommons.org/licenses/by/4.0/

-SNE 2 (2D)

t-SNE 2 (20)

HexCer

PEO-/PCO-

CATEGORY
sT

mean | BRAIN
mean | FAT BODY

mean | GUT

mean | LIPOPROTEIN
mean | SALIVARY GLAND
mean | WING DISC

1
5 °
CATEGORY LIPIDOME
[ e @ mean | WILDTYPE
® sp ® mean | ELO2, ELO3
Gl
*st
]
=
100 I E
L]
[ ]
=
50
=
- -
| ]
a®
° @
=
= -
. i
-50) L]
L]
150 ~100 50 o 50
t-SNE 1 (2D)
®sT %S EG WG
log2fc
sM 42 -
Cer 18:0/20:0
100 5
15
E
° LPI 18:0
50 1
ol
g os
Tmpre2 18
o
B
p r6160.160 O '/Pm'ﬂ—m o
=)
o % .
P116:0_22:6
= -0.5
a s L EF/
DAG 16:0_18:1
T peinolie2 @
. DAG 16:0_18:2- o
o
o
DAG 14:0_18:2 oo 8g
PG 18:2_22:4. R
& -15
-]
o
PG 16:1_20: B
PG 18:1_22:6 ®
~100| =} e 2
150 —100 —50 0 50
t-SNE 1 (2D)

B

t-SNE 2 (20)

CATEGORY

LIPIDOME

GL @ mean | FAT BODY
® mean | LIPOPROTEIN

CATEGORY LIPIDOME
® mean | WILDTYPE
* sp @ mean | ELO2, ELO3
L
® ST
M(IP)2C 20:0;3/26:0;0
93.2 »
.y o
e ]
93 £ o
M(IP)2C 18:0;3/20:0;0 H
£ o
H
928 M{P)2C 20,0;3/26:0;1
uoont
3 ® 2%
S s2.6| Map)C 18:0;3/16:0,1
w o e
S L3 3
924
s22f} 3 o=
g oo
H 1P 20:0;3/26:0;1]
2 L
-
19C 18:0;3/16:0;1
724 722 E 7Y 0 1 EZ¥)
t-SNE 1 (2D)
CATEGORY LIPIDOME
" ® mean | WILDTYPE, ASTHMA
© mean | LAMP3-KO, ASTHMA
LeGi1ei0 B FPG 16:0_16:0
0
PG 16:0_18:1
20| PG 16:0_18:2
40
-
_60] .
v 16:0_20:4—— i
~s0] &
~100| " -
) 0 =) 0 20 W0

t-SNE 1 (2D)


https://doi.org/10.1101/2024.08.02.606134
http://creativecommons.org/licenses/by/4.0/

