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Abstract 20 

A shallow neural network was used to embed lipid structures in a 2- or 3-dimensional 21 

space with the goal that structurally similar species have similar vectors. Tests on 22 

complete lipid databanks show that the method automatically produces distributions 23 

which follow conventional lipid classifications. The embedding is accompanied by the 24 

web-based software, Lipidome Projector. This displays user lipidomes as 2D or 3D 25 

scatterplots for quick exploratory analysis, quantitative comparison and interpretation 26 

at a structural level. 27 

Author summary 28 

Lipids are not just the basis of membranes. They carry signals and metabolic energy. 29 

This means that the presence, absence, and quantity of lipids reflects a cell's 30 

biochemical state - starving, nourished, sick or healthy. Lipidomics (measuring all 31 

lipids in a biological specimen) provides lists of the chemical species and their 32 

quantities. 33 

We have used a shallow neural network from natural language modelling to embed 34 

lipids in a continuous vector space. Firstly, this means that similar molecules have 35 

similar positions in this space. Conventional lipid categories cluster automatically. 36 

Secondly, the accompanying web-based software, Lipidome Projector imports a 37 

lipidome and displays it as a set of points. Reading several lipidomes at once allows 38 

quantitative and structural comparisons. Combined with the ability to show structure 39 

and abundance diagrams, the software allows exploratory analysis and interpretation 40 

of lipidomics datasets.  41 
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Introduction 42 

Lipids remind one of membranes or fats, but they also carry energy and signals, so 43 

one may assume that the set of lipids in a sample reflects the health and metabolic 44 

state of a tissue or organism. Mass spectrometry provides lipidome information, but a 45 

list of 102-104 lipids and quantities is not easily interpretable. For exploratory analysis, 46 

one would like a method that highlights chemical trends and shows how samples 47 

differ with respect to lipid structures and quantities. Given a set of mass spectrometry 48 

peaks that have been assigned to lipids, the idea is to display lipidomes as 49 

scatterplots in a 2- or 3-dimensional space. This requires two steps. First, there must 50 

be a continuous vector space such that each lipid gets distinct coordinates. Second, 51 

one needs software to display and compare plots interactively. The software should 52 

make it easy to relate points back to their names and chemical structures. 53 

The aims here are different to those of other lipidomics software packages. If one 54 

wants to treat a lipidome similarly to gene expression data, one can look for changed 55 

levels of lipids or focus on molecules whose abundances are correlated [1–3]. If one 56 

wants to see a lipidome in terms of networks, there is network construction and 57 

display software [4]. Our focus is different. Lipidome Projector lets one quickly 58 

highlight and interactively explore differences between groups of samples, with the 59 

simultaneous display of abundances and structures. 60 

The first challenge is finding vectors for molecules for the two- and three-dimensional 61 

plots. Previous attempts applied ideas from string comparisons [5], but this was not 62 

without problems. Whatever notation one uses, a small change to a molecule can 63 

lead to a large change in a string representation such as SMILES [6], so the similarity 64 

metrics are fundamentally unstable. Kopczynski et al approached the problem with 65 
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elegant distance metrics, but this required some preconceptions about lipid structures 66 

and used expensive graph similarity methods [7]. 67 

We come to the problem with slightly different ideas and some specific goals. The 68 

method should be objective, unsupervised and require minimal chemical 69 

preconceptions. Coordinates should be quite different for unrelated molecules, but 70 

systematic changes such as extending the length of an aliphatic chain should give a 71 

series of points near each other. Adding a phosphate or alcohol group to two different 72 

molecules should change both coordinates in a similar manner. Our method for lipids 73 

is a modified version of Mol2Vec [8], a technique from the small-molecule literature 74 

which is, in turn, based on Word2Vec [9] a word embedding method from natural 75 

language processing. To embed words, one first defines a vocabulary and gives 76 

each word a unique token. In a text corpus, similar tokens appear in similar contexts 77 

with reasonable probability, such that a token / context prediction task can be used to 78 

train semantic vector representations. To apply the idea in chemistry, one constructs 79 

a vocabulary of chemical fragments and trains a shallow network on a large set of 80 

molecules to recognise surrounding contexts. Input fragments are represented by 81 

integer identifiers derived from computed sparse connectivity fingerprints [10]. 82 

Fragment vectors come from hidden layer weights of the trained network and are 83 

summed to produce vector representations of entire molecules. 84 

Calculating the vector space model is performed once on a large set of lipid 85 

structures and takes several hours. User lipidome data is simply matched to 86 

precomputed vectors. Lipidome Projector, the browser-based application for 87 

visualization and analysis, allows one to interactively explore lipidomes in the vector 88 

space and additionally displays lipid abundance charts and molecular structures. 89 
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To judge our methods, we consider the distributions of lipids in the computed vector 90 

space and apply Lipidome Projector visualizations on three published lipidome 91 

datasets. 92 

Materials and Methods 93 

Lipid Vector Space 94 

For training, the Lipid Maps Structure Database (LMSD) [11] and SwissLipids [12] 95 

(both accessed Jan 2023) were combined. SwissLipids entries were filtered to obtain 96 

lipids with valid SMILES at isomeric subspecies level. The combination of databases 97 

resulted in over 620 000 unique structures. RDKit [13] was used to convert all 98 

database entries to a consistent charge state and RDKit’s implementation of 99 

extended connectivity fingerprints [10] was used to assign a unique identifier to each 100 

substructure of a specified radius around each atom. Substructure identifiers were 101 

ordered according to the position of the substructure’s central atom within the 102 

molecule’s canonical SMILES string. 103 

A few small modifications to Mol2Vec were necessary. First, chirality was explicitly 104 

considered. Secondly, a parameter had to be adapted to capture differences in long 105 

alkyl chains. Mol2Vec descriptors for small molecules are usually built from 106 

fragments using atoms (radius 0) and their immediate neighbours (radius 1). For the 107 

much larger lipid structures, radii of size 0, 1, 2, 3, 4, 5, 10, 15, 20, 25, 30, 35, 40, 45 108 

and 50 were used, resulting in just under three million unique fragments for the 109 

combination of databases. For each lipid, the set of fragments for each radius was 110 

used as a separate training sentence. 111 

Gensim [14] was used to train the Word2Vec model with training parameters listed in 112 

Table S1. The network generated 100-dimensional substructure vectors, which were 113 

summed for each molecule. For visualization, the Barnes-Hut [15] version of t-114 
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distributed stochastic neighbour embedding [16] as implemented in OpenTSNE [17] 115 

was used to reduce the 100-dimensional vector space to generate 2- and 3-116 

dimensional vector sets (parameters listed in Table S2). The embedding process is 117 

summarised in Fig 1 A. 118 

Fig 1. Vector Space Generation and Matching. (A) A lipid structure is decomposed 119 

into its substructures of different sizes represented by Morgan sparse fingerprint 120 

integers, which constitute the training data for Word2Vec. A molecule’s vector is the 121 

sum of its substructure vectors and is projected to 2D or 3D with stochastic neighbour 122 

embedding. (B) The user provides a list of lipid species names and component 123 

constraints. Lipid names are parsed and matched to appropriate isomer names from 124 

the pre-parsed database. The component constraints are applied to filter the 125 

matches. Vectors of the remaining isomers are averaged for each lipid. Not illustrated 126 

is an additional step, in which database matching is attempted on the original names 127 

of unparsed lipid species. 128 

Lipidome Processing 129 

As part of building the system, entries from the lipid databases are stored along with 130 

their corresponding vectors and higher-level abbreviations for each isomer following 131 

previously defined levels [18]. When a user lipidome is imported, entries are matched 132 

against pre-calculated vectors (Fig 1 B). Goslin [19] is used to parse both databases 133 

and user data. It accepts common nomenclature, but should it fail, the process will 134 

look for a match based on user-provided names. This means that Lipidome Projector 135 

covers at least all entries from the union of SwissLipids and the LMSD that were 136 

successfully parsed by Goslin (S1 Dataset gives a list of translated class names). 137 

Mass spectrometry often does not identify a lipid at the complete structure level [18] 138 

so additional steps are necessary to deal with this ambiguity. The software finds the 139 
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set of isomers that match the higher-level abbreviation, but not all members of this 140 

set will be plausible for the organism under consideration. To filter the list of possible 141 

lipids, Lipidome Projector expects a constraints list with allowed fatty acyls and long-142 

chain bases. The remaining isomer vectors are averaged to produce a single 143 

representative vector. 144 

Visualization and Analysis Software 145 

Plots are generated using Plotly.py [20]. Marker sizes are derived from respective 146 

lipid abundances, to which either linear or min-max scaling is applied. Dash [20] is 147 

used to build the web-application front end. The rest of the application was built in 148 

Python [21] with pandas [22] used for data-table storage and manipulation. Parsing 149 

and matching are performed server-side. The original lipidome dataset together with 150 

the newly derived lipid names and computed vectors is stored inside the user’s 151 

browser session and sent to the server for temporary processing operations such as 152 

averaging of samples or plot updates. Lipidome datasets and constraints are read in 153 

a simple table format. 154 

Datasets 155 

Publicly available lipidome datasets from drosophila [23], yeast [24] and mouse [25] 156 

were used for development and analysed as user cases. Python scripts for the 157 

extraction of the original data and formatting into formats appropriate for Lipidome 158 

Projector, as well as manually constructed respective FA and LCB constraint files are 159 

given in S2 dataset. 160 

Results 161 

Lipid Vector Space 162 

We first consider the projection of lipids into a vector space by looking at the 163 

distributions of points for entries from the combined databases with a valid structure 164 
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and class. Are the vectors consistent with chemical intuition and database 165 

classification? Fig 2 A shows the entire lipid set in two dimensions (see S2 Fig for 3D 166 

version). With some exceptions, lipids within a category are grouped together in the 167 

vector space despite the underlying structural diversity. For the largest categories, 168 

glycerolipids (GL), glycerophospholipids (GP) and sphingolipids (SP) a clear 169 

separation can be observed with some overlap and outliers at some borders. To look 170 

in more detail, one can focus on the class level with the example of selected 171 

glycerophospholipid classes. Fig 2 B marks three clusters, which largely correspond 172 

to diacyl, mono-alkyl and plasmalogen glycerophospholipids respectively. This 173 

suggests that the embedding has mostly captured the chemical connectivity at the 174 

glycerol. Within each large cluster, phosphatidylinositols (PI) and 175 

phosphatidylcholines (PC) form their own subgroups with some local exceptions. For 176 

the other classes there are numerous smaller, intertwined clusters spread across the 177 

vector space. Also marked are a few unusual molecules with uncommon fatty acyl 178 

double bond structures such as (5E, 9E) or chains which are heavily methylated or 179 

even contain ladderane, a structural moiety seen in bacteria. These are positioned 180 

outside the main group as one might expect since the database is dominated by the 181 

biochemistry of mammals. The remaining plots in Fig 2 show how the lipid vectors 182 

capture chemical functional groups and their structural context. In Fig 2 C there is a 183 

general trend of more double bonds from left to right. Focusing on a local region 184 

shows that clustering is determined by lipid class (Fig 2 D) and fatty acyl double bond 185 

location and number (Fig 2 E). Additionally, one can see a systematic change in 186 

mass as one moves along clusters (Fig 2 F). These patterns suggest that the 187 

embedding captures gradual structural changes. This was further assessed using a 188 

contrived example borrowed from the literature [5]. Three sets of manually generated 189 

structures were added to the training data. The first two consist of series of 190 
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phosphatidylinositols with a successively longer fatty acyl chain. The sets are the 191 

same, except for the presence / absence of a double bond in the lengthening chain. 192 

Fig 3 B shows that growing an aliphatic chain gives progressively changing vector 193 

positions, while the presence of the double bond leads to a large, but consistent 194 

displacement. The third set consists of a series of ceramides, each of which is 195 

hydroxylated at a different position within its fatty acyl chain (Fig 3 A). The steps of 196 

the hydroxylated position translate into an almost linear series of vectors with the 197 

exception of an outlier near the acyl bond. 198 

Fig 2. Vector Space (2D). (A) Entire vector space. Marker colour represents lipid 199 

category: Fatty acids (FA), glycerolipids (GL), glycerophospholipids (GP), 200 

sphingolipids (SP), sterol lipids (ST), prenol lipids (PR), saccharolipids (SL) and 201 

polyketides (PK). (B) Region of the vector space focused on selected 202 

glycerophospholipids: Glycerophosphates (PA), glycerophosphocholines (PC), 203 

glycerophosphoethanolamines (PE), glycerophosphoglycerols (PG), 204 

glycerophosphoinositols (PI) and glycerophosphoserines (PS). Marker colour: Lipid 205 

class. (C) Same region as in B, marker colour represents the number of fatty acyl 206 

double bonds. (D) Zoomed-in region of selected glycerophospholipids, marker colour 207 

represents lipid class. (E) Same region as in D, marker colour represents the double 208 

bond profile of the 2-sn fatty acyl. (F) Same region as in D, marker colour represents 209 

molecule mass. 210 

Fig 3. Impact of Stepwise Structural Changes. (A) Local vector space region of 211 

manually added ceramide structures. Marker annotations denote the fatty acyl 212 

hydroxylation position. (B) Local vector space region of manually added 213 

phosphatidylinositol structures. Marker annotations denote the length of the 2-sn fatty 214 

acyl. 215 
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Another aspect of the quality of the vector space is its coverage of lipid classes, fatty 216 

acyls, and long-chain bases, which in our case, is completely dependent on the 217 

underlying databases and the parser. When lipidomes are imported, entries are 218 

discarded if they cannot be matched or if they are rejected by the constraint-based 219 

filtering. For the three example literature datasets used here, we implemented 220 

plausible FA / LCB constraints and performed the matching to the database. 221 

Reasonable manual preprocessing steps, such as re-formatting the data, removing 222 

duplicate entries, and adjusting unusual nomenclature were performed beforehand, 223 

and are available as Python scripts in S2 dataset. The processing statistics are listed 224 

in Table 1. 225 

Table 1. Matching statistics for development datasets. 226 

Dataset Num. 
lipids 

Successfully 
matched 

Parsed - 
not 
matched 

Not 
parsed - 
not 
matched 

Filtered 

Drosophila 359 324 (90.3%) 9 (2.5%) 4 (1.1%) 22 (6.1%) 

Yeast 249 235 (94.4%) 14 
(5.6%) 

0 0 

LAMP3 209 199 (95.2%) 3 (1.4%) 0 7 (3.3%) 

 227 

Visualization 228 

One has to look at complete databases to judge the vector space and embedding of 229 

lipids. A user, however, would be interested in what one sees in their lipidome. We 230 

take three examples from the literature and look at the scatterplots in the light of the 231 

biochemistry noted by the original authors. 232 

The first dataset consists of lipidomes of different Drosophila melanogaster larval 233 

tissue types (brain, fat body, gut, lipoprotein, salivary gland, wing disc) fed with 234 

different diets (plant food or yeast food) [23]. For our quick analysis, we averaged the 235 
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lipidome samples by tissue type. Carvalho et al noted that hexosyl ceramides 236 

(HexCer) and ether glycerophospholipids (O-) were only detected in gut and brain 237 

tissues respectively. Fig 4 A shows how this kind of feature can be easily observed 238 

and highlighted. Fig 4 B displays a comparison of fat body and lipoprotein tissue 239 

types focused on a glycerolipid region and highlights the expected large amounts of 240 

triacylglycerol (TG) species in the fat body and conversely an overabundance of 241 

diacylglycerols (DG) in the lipoprotein tissue, both noted in the original publication. 242 

Fig 4. Lipidome Dataset Projections. (A) Drosophila dataset averaged over tissue 243 

type. HexCer and ether-linked GPs are only present in gut and brain tissues 244 

respectively. Min-max scaling of abundances was used to calculate marker area. (B) 245 

Drosophila dataset zoomed in to a glycerolipid region of the vector space showing 246 

selected tissue samples (same marker scaling as in A). (C) Yeast lipidomes – 247 

comparison between the means of the wildtype and the Elo2 and Elo3 strains with 248 

min-max marker scaling. (D) Yeast dataset zoomed in on a region of partially 249 

annotated sphingolipids (same marker scaling as in C). Elo2 and Elo3 strains contain 250 

species with shorter fatty acyls. (E) Mouse lung lipidome dataset lipids coloured by 251 

the log2 abundance fold change between the wildtype and LAMP3-KO asthma 252 

conditions. Certain lipids with relatively high change values are annotated. (F) PG 253 

region comparison between wildtype and LAMP3-KO asthma conditions. Linear 254 

scaling applied to marker sizes. 255 

The second example is focussed on a yeast study comparing the wildtype strain 256 

(BY4741) and mutants that were defective in fatty acyl elongation (Elo1, Elo2, Elo3) 257 

[24]. Two different growth temperatures (24°C and 37°C) were considered. The study 258 

showed that the Elo2 and Elo3 strains produce sphingolipids with shorter fatty acyl 259 

chains. We averaged the samples by strain, filtered Elo1, and projected the full 260 
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results onto our vector space (Fig 4 C). Fig 4 D displays sphingolipid abundances 261 

from the wildtype strain compared to average abundances from the Elo2 and Elo3 262 

group, clearly showing that species with shorter fatty acyls occurring in the Elo strains 263 

with a higher prevalence. 264 

The third dataset is taken from a study of LAMP3-deficient mice, evaluating the role 265 

of this protein in the lung [25]. The two different conditions genotype (wildtype / 266 

LAMP3-KO) and challenge (none / allergen induced asthma) resulted in four groups 267 

of mice. Fig 4 E and F show that if we average the samples by genotype and 268 

challenge and compare the wildtype to the LAMP3-KO genotypes in the asthma 269 

group, there is a large reduction in phosphatidylglycerols in the LAMP3-KO group, as 270 

noted by the authors. Fig 4 E also shows the increased abundance of diacylglycerols 271 

and decreased amounts of certain sphingolipids and phosphatidylinositols in the 272 

wildtype group. 273 

Discussion 274 

There are two aspects to this work. Firstly, there is the fundamental embedding of 275 

molecules in a low-dimensional space. Secondly, there are practical issues and the 276 

software implementation. 277 

From the point of view of the vector space, there are some surprising observations. 278 

The lipid coordinates agree with chemical intuition, although the training was 279 

completely unsupervised. The lipids compositions from myriads of substructure 280 

vectors on their own produce a systematically organized vector space, which is 281 

improved by substructure vector training. Not only were classic lipid categories 282 

separated, but unusual structures are given coordinates on the edges of the common 283 

lipid classes (Fig 2 B). The local and global structure of the embedding is interesting. 284 
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Globally, the space reflects broad classes, but locally, it is remarkable that moving a 285 

hydroxylation along a chain gives a set of points near each other and almost lying on 286 

a smooth curve. There is reason to say this is unexpected. Consider the space as 287 

first calculated in 100 dimensions. Maybe there are directions corresponding to 288 

phosphorylation, chain extension, moving bonds and other chemical properties. 289 

When we project the space to two or three dimensions, one will inevitably lose 290 

information. The local structure is a tribute to stochastic nearest neighbour-291 

embedding rather than any invention on our part. 292 

There are also differences compared to other vector spaces for lipids. Marella et al 293 

calculated the differences between molecules using the differences between string 294 

representations of the molecules [5]. This suffers from the instability of string 295 

representations. Kopczynski et al avoided this problem by using graph-based 296 

similarity [7]. There is a less obvious difference in the methods. Kopczynski et al 297 

calculated distances between lipids and used principal coordinate analysis to get low 298 

dimensional coordinates from the distance matrix. This is deterministic, but 299 

discarding everything after the few most important eigenvectors is a brutal truncation. 300 

Our method also requires dimensional reduction, but our experiments with principal 301 

component analysis suggested that too much local structure was lost. We would 302 

concede that stochastic neighbour embedding is not deterministic, the cost function 303 

details are ad hoc and it does not have the geometric rigour of principal component 304 

analysis. It does, however, seem to preserve relationships between neighbouring 305 

molecules. 306 

Kopczynski et al’s approach does admit one feature that we lack. We construct a 307 

space based on all known lipids and then show all lipidomes in this context. In 308 

contrast, Kopczysnki et al build a new space for each set of lipidomes. This allows 309 
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them to construct a very natural measure for the similarity of lipidomes and lends 310 

itself to clustering of datasets. 311 

Continuing in this self-critical vein, the non-determinism of our approach might be 312 

considered a disadvantage. Repeating the training and dimensional reduction always 313 

gives slightly different results. With more training time or different parameters, one 314 

might get even better results. Having experimented in this direction, we suspect that 315 

this is not a useful pursuit. It would be more profitable to consider completely different 316 

strategies. Graph convolutional networks would be a natural fit to molecular 317 

structures [26] and one could experiment with novel dimensionality reduction 318 

methods such as UMAP [27]. 319 

Besides the embedding, other issues should be addressed. We are not the first 320 

group to lament the inherent inconsistency of lipid nomenclature [18]. Synonyms 321 

such as SM(d18:1/14:0) and SM 18:1;2/14:0 are tedious but can be handled 322 

mechanically by packages such as Goslin. A more fundamental problem are lipid 323 

notation ambiguities which cannot be solved by any parser.  324 

In this study we encountered ambiguities in the position, number and precise location 325 

of double bonds and hydroxylations of sphingolipids. Some line notations would allow 326 

one to denote some ambiguities [28], but lipidome data is typically not stored in such 327 

formats. Another problem is that a user lipidome may contain species that are not in 328 

the training set (SwissLipids + LMSD). This problem will be alleviated when we 329 

implement an on-the-fly method to generate structures and respective vectors from 330 

nomenclature only. 331 

The second half of this work is the software. With the vector space precomputed, it is 332 

not too demanding to run on an ordinary laptop. The web application stores lipidome 333 
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data on the client side and sends it to the server for processing operations. This does 334 

require a fair amount of client-server communication, but we are currently moving 335 

more processing tasks to the client’s browser. Software is also a matter of taste. The 336 

current release displays properties such as relative abundances using very compact 337 

methods, but these might at first seem foreign to a user. 338 

There are clear directions for the future. There will be improvements to the underlying 339 

vector space as we experiment with the embedding model and as the databases are 340 

updated. The software will change as a result of user experience, and it will 341 

automatically benefit from the evolution of the parsing package [19]. Finally, we plan 342 

proper integration with biochemical pathway software. As it stands, the vector space 343 

is conceptually useful, and the software fills a practical niche. 344 
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Availability 349 

Lipidome Projector is available for download 350 

(https://www.github.com/olzhabaev/lipidome_projector) and released under the MIT 351 

license. It is a web-application that can be run locally or deployed to a server. The 352 

repository has pre-computed vectors for and pre-parsed versions of the Lipid Maps 353 

and SwissLipids databases. The software distribution also includes modules for the 354 

pre-processing of the databases and a complete recalculation of the vector space. 355 

An instance of Lipidome Projector is available at: https://lipidomeprojector.zbh.uni-356 

hamburg.de/ 357 
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Supporting information 438 

Figures 439 

S1 Fig. Lipidome Projector Interface, Drosophila dataset. Top left: Lipidome 440 

dataset scatter plot; Top right: Settings, data operations and abundance charts. 441 

Bottom: Abundance and feature tables. 442 

S2 Fig. Vector Space (3D). (A) Projection of the entire vector space. Marker colour 443 

represents lipid category: Fatty acids (FA), glycerolipids (GL), glycerophospholipids 444 

(GP), sphingolipids (SP), sterol lipids (ST), prenol lipids (PR), saccharolipids (SL) and 445 

polyketides (PK). (B) Region of the vector space focused on a set of selected 446 

glycerophospholipids: Glycerophosphates (PA), glycerophosphocholines (PC), 447 

glycerophosphoethanolamines (PE), glycerophosphoglycerols (PG), 448 

glycerophosphoinositols (PI) and glycerophosphoserines (PS). Marker colour: Lipid 449 

class. (C) Same region as in B. Marker colour: Number of fatty acyl double bonds. 450 

(D) Zoomed in region of selected glycerophospholipids. Marker colour: Lipid class. 451 

(E) Same region as in D. Marker colour: Double bond profile of the 2-sn fatty acyl. (F) 452 

Same region as in D. Marker colour: Molecule mass. 453 
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Tables 455 

S1 Table. Word2Vec Embedding Parameters. 456 

S2 Table. Stochastic Neighbour Embedding Parameters. 457 

Data 458 

S1 Dataset. List of classes present in LMSD and SwissLipids recognised by the 459 

Goslin parser in translated representation. 460 

S2 Dataset. Python scripts with instructions for the extraction and transformation of 461 

original datasets; Transformed datasets; Dataset FA / LCB constraints. 462 

S3 Dataset. Partially interactive HTMLs of vector space and dataset projection 463 

scatter plots. 464 
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