bioRxiv preprint doi: https://doi.org/10.1101/2024.08.02.605811; this version posted August 6, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

iSODA: A Comprehensive Tool for Integrative Omics Data Analysis in Single-
and Multi-Omics Experiments

Damien Olivier-Jimenez!, Rico J. E. Derks!, Oscar Harari?, Carlos Cruchaga3, Muhammad Ali,
Alessandro Ori*, Domenico Di Fraia®, Birol Cabukusta®, Andy Henrie®, Martin Gieral, Yassene
Mohammed®’

ICenter for Proteomics and Metabolomics, Leiden University Medical Center, 2333ZA Leiden,
Netherlands

2Department of Neurology, The Ohio State University, Columbus, OH 43210, United States of
America

3Washington University School of Medicine in St. Louis, St. Louis, MO 63110, United States of
America

“Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), 07745 Jena, Germany

>Department of Cell and Chemical Biology, ONCODE Institute, Leiden University Medical Center,
2333ZA Leiden, Netherlands

®DataTecnica, Washington, DC 20037, United States of America

’Gerald Bronfman Department of Oncology, McGill University, Montreal, QC H3A 0G4, Canada.

Corresponding:
Yassene Mohammed

Center for Proteomics and Metabolomics, Leiden University Medical Center, 2333ZA Leiden,
Netherlands

Email: y.mohammed@Iumc.nl
Abstract: 198 words
Text: 5420 words

Display items: 5 figures, 1 table


https://www.google.com/maps/place/data=!4m2!3m1!1s0x87d8b52094fa988d:0x9e4c3b832c1bce16?sa=X&ved=1t:8290&ictx=111
https://www.google.com/maps/place/data=!4m2!3m1!1s0x87d8b52094fa988d:0x9e4c3b832c1bce16?sa=X&ved=1t:8290&ictx=111
https://www.google.com/maps/place/data=!4m2!3m1!1s0x47a6a8e7d8df4bf3:0x23ee5e005420b0e7?sa=X&ved=1t:8290&ictx=111
https://doi.org/10.1101/2024.08.02.605811
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.08.02.605811; this version posted August 6, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

Abstract

Omics technologies including genomics, proteomics, metabolomics, and lipidomics allow profound
insights into health and disease. Thanks to plummeting costs of continuously evolving omics analytical
platforms, research centers collect multi-omics data more routinely. They are, however, confronted
with the lack of a versatile software solution to harmoniously analyze single-omics data and merge and
interpret multi-omics data. We have developed iSODA, an interactive web-based application for the
analysis of single- as well as multi-omics omics data. The software tool emphasizes intuitive, interactive
visualizations designed for user-driven data exploration. Researchers can filter and normalize their
datasets and access a variety of functions ranging from simple data visualization like volcano plots and
PCA, to advanced functional analyses like enrichment analysis for proteomics and saturation analysis
for lipidomics. For insights from integrated multi-omics, iISODA incorporates Multi-Omics Factor
Analysis — MOFA, and Similarity Network Fusion — SNF. All results are presented in interactive plots
with the possibility of downloading plots and associated data. The ability to adapt the imported data
on-the-fly allows for tasks such as removal of outlier samples or failed features, various imputation
strategies, or data normalization. The modular design allows for extensions with new analyses and
plots. The software is accessible under http://isoda.online/.
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Graphical summary for iISODA showcasing some application examples, the data import, the single-
omics and multi-omics modules.
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Introduction

The rapid advances in high-throughput omics resulted in an increase in data generation at lower costs,
encompassing genomics, transcriptomics, proteomics, metabolomics, and beyond (1). These data help
understanding biological processes, elucidating disease pathways, and advancing personalized
medicine (2). Various tools and methods exist to navigate omics data — from statistical techniques
pinpointing significant patterns to network-based approaches highlighting relationships within
biological systems. Most tools, however, require either advanced knowledge of coding for data
handling and/or dedicated to specific omics platform.

A few suites dedicated to analysis of (multi-)omics data have emerged over the past decade. Some
focus on specific diseases or applications (3-8), while others adopt a general approach (9-16). Despite
the long list of software tools (Table S1), a few notable implementations stand out for their interactive
design and generality. MetaboAnalyst is a web-based application for metabolomics data analysis and
interpretation (17). It currently allows streamlined analysis for both quantitative and untargeted
metabolomics data. Perseus is specialized in interpreting protein quantification, interaction and post-
translational modification data (18). It enables high-dimensional omics data analysis covering
normalization, pattern recognition, time-series analysis, and classification. PaintOmics 4 maps
acquired omics data on biological pathways (19) including KEGG (20) and Reactome (21). It supports
pathways from KEGG, Reactome and MapMan. MergeOmics is pipeline for integrating datasets across
omics (22). It leverages three functional analyses for disease association including Marker Set
Enrichment Analysis (MSEA) to detect relevant processes, Meta-MSEA to examine the consistency
between omics datasets, and Key Driver Analysis (KDA) to identify regulators of disease-associated
pathways. OmicsAnalyst focuses on multi-omics analysis through three analysis tracks; correlation
network analysis, cluster heatmap analysis, and dimension reduction analysis (10). Each of the tracks
offers various algorithms to choose from. 30mics generates inter-omics correlation networks with
respect to experimental conditions for transcriptomics, proteomics and metabolomics (14). It includes
coexpression analysis, phenotype analysis for transcriptomics and proteomics, KEGG pathway
enrichment analysis for metabolomics and proteomics, and Gene Ontology enrichment analysis for
proteomics and transcriptomics. In summary, great advances have been made towards convergent
multi-omics data analysis. However, most tools take a deterministic approach to data analysis, making
it a linear pipeline rather than exploration. The tools are either specialized for a specific omics, or
dedicated to multi-omics, but not both. Static plotting seems also to be common in contrast to
interactivity. All these aspects limit the users’ experience and ability to explore the data dynamically.

To that end, we have developed iSODA (integrated Simple Omics Data Analysis) as an interactive,
expandable, and user-friendly software solution for single- and multi-omics data exploration. Our goal
was to build a web-based platform that offers users a dynamic environment to process, study, and
integrate their omics data; essentially to study multi-omics characterization experiments, on each
omics layer individually, and side by side with multi-omics integration. Our goal was to transcend the
linear approach to data analysis to enable a dynamic interactive exploration. We aimed to simplify the
process for novice users without compromising the in-depth analysis for advanced users.

We demonstrate iSODA using two datasets. The first is a lipidomics library of 90 lipid transport protein
knockouts studying the effect of these protein on the cell lipidome (23). In the second we use the
multiomic characterization datasets of the NCI-60 cell lines (24), which were acquired in various
laboratories. We discuss how to identify insights using the interactivity available in iSODA.
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Materials and Methods
Software implementation.

iSODA was developed in R —4.4.0, and Shiny framework (25) for the graphical interface. We relied on
shiny extensions including bs4Dash (26) and ShinyWidgets (27) for additional Ul elements,
shinymanager (28) for user authentication, shinyjs (29) and shinybrowser (30) for aspect ratio
adjustment. The backend architecture is object-oriented implementing three R6 (31) classes; 1) the
omics class for single omics experiments with methods for data import, processing, visualization, and
result storage; 2) the MOFA class for Multi Omics Factor Analysis (32); and 3) the SNF class for
Similarity Network Fusion integration (33). The MOFA and SNF classes contain the methods for
importing data from the single omics classes, processing them accordingly, and visualizing the results.
Omics data are imported into iSODA as tables in comma-separated (csv), semicolon-separated (csv2),
tab-separated (tsv) or excel (xIsx) formats. We used plotly (34) for interactive plots, and visNework
(35) for visualizing networks. Finally, the heatmaply package was used to visualize heatmaps (36). For
all plots, a various color palettes are available from RColorBrewer, viridisLite and grDevices packages.

The various analyses rely on the stats core package including: Distance calculations — Euclidean,
maximum, Manhattan, Canberra, binary, and Minkowski. Hierarchical clustering methods — ward.D,
ward.D2, single, complete, average, McQuitty, median, and centroid. Pearson’s and Spearman’s
correlation coefficients for correlation, Student’s t-test and Mann—-Whitney—Wilcoxon for statistical
tests, and p-value adjustment methods include Bonferroni ("bonferroni"), Holm ("holm"), Hochberg
("hochberg"), Hommel ("hommel"), Benjamini & Hochberg ("BH"), and Benjamini & Yekutieli
correction ("BY"). Principal Component Analysis — PCA using pcaMethods package (37). Advanced
regression analysis and feature selection was achieved using Lasso and Elastic-Net Regularized
Generalized Linear Models using the glmnet package (38). For functional analyses we used
ClusterProfiler and Enrichplot packages for enrichment and over-representation analyses (39-41).
Gene and protein annotations are provided using the Org.Hs.eg.db package (42), and users can also
upload their own annotation for any omics for functional analyses.

LTP KO lipidomics library

The Lipid Transfer Protein Knockout (LTP KO) library was produced by our group (23) to investigate
the disturbances caused by the loss of lipid transfer proteins (LTPs). Briefly, the MelluSo cell line
(human melanoma) was used and 90 LTP gene knockouts experiments were conducted using
CRISPR/Cas9 technology (Table S2). These 90 genes are from 11 families determined by the LTP
domains: OSBP (n=30), START (n=34), PITP (n=16), GLTP (n=11), CRAL-TRIO (n=71), SMP (n=15), VPS13
(n=11), NPC1 NTD (n=6), ML (n=9), SCP2 (n=12) and ASTER/VAST (n=8). Additionally, six non-targeting
controls were included. These samples were analyzed for their lipidomics content in the original study.
An extensive description of the samples and measurement is available in the original work (23).

NCI-60 cancer cell lines multi-omics dataset

The 60 Human Tumor Cell Lines used by National Cancer Institute for over 20 years as a screen to
identify and characterize novel compounds for growth inhibition or killing of tumor cell lines (43). The
screen utilizes 60 different human tumor cell lines, representing leukemia (LE, n=6), melanoma (ME,
n=10), and cancers of breast (BR, n=5), central nervous system/brain (CNS, n=6), colon (CO, n=7), non-
small cell lung (LC, n=9), ovarian (OV, n=7), prostate (PR, n=2) and renal (RE, n=8). Table S3 lists the
individual cell lines. CellMineris an online database hosting the multi-omics characterization data on
the NCI-60 cell lines (24,44). We used three characterization datasets representing genomics (lllumina
450K methylation, gene average), transcriptomics (5 Platform Gene Transcript, averaged intensities)
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and proteomics (SWATH mass spectrometry, protein). A complete description of the sample
measurement and data acquisition are provided in the original publication (24,44).

Data preparation

All datasets went through a reformatting step to ensure compatibility with iISODA simple format. Two
essential tables were generated for all datasets, i.e. data table and sample annotation table. In
addition, when available, a feature annotation table was generated and used. iISODA requires the first
two tables for analysis and visualization, while the feature annotation is required to map feature
metadata onto the visualizations and for the functional analyses, i.e. enrichment and over
representation analysis. In case of gene associated measurement (genomics, transcriptomics,
proteomics), an internal annotation based on Gene Ontology will also be available.

Results
We give next an overview of iSODA and we follow with a discussion of two use-cases.
iSODA - integrated Simple Omics Data Analysis

Each omics layer has a dedicated interface with data upload, visualization, and functional analysis tabs.
The multi-omics modules allow selecting all or some of the data in the single-omics experiments for
integration (Figure S1). We describe here the functionalities briefly, and include a comprehensive
description in the supplementary materials.

Single-Omics data analysis

Users upload their data via three subtabs for: Sample annotations, Measurement data, and Feature
annotations. Data pre-analysis includes filtering, normalization (scaling, total normalization,
standardization), imputation (minimum, median, mean, maximum), and batch effect correction using
ComBat (45). In Interactive visualization up to four plots can be displayed simultaneously, and all can
be interacted with by zooming and hovering. Various display and analysis parameters can be adjusted
for each plot from the parameter sidebars. Dendrogram provides a rapid assessment of the similarity
between samples and sample groups via hierarchical clustering. Volcano Plot visualizes features that
differentiate between two groups using adjustable statistical tests and fold change thresholds.
Additional information regarding the features can be mapped onto this plot, for instance, Gene
Ontology terms (genes/proteins) or chemical classes (lipidomics). The heatmap can be used to cluster
samples and features allowing for the identification of sample groups and features groups. Outlier
samples or failed measurements can be spotted here. Uploaded sample annotations can also be
mapped, and using LASSO and Elastic-Net Regularized Generalized Linear Models allow feature
selection for segregating sample groups. This provides a clear view of how sample groups correlate
with specific features. Principal Component Analysis (PCA) visualizes samples and features in a
reduced dimensional space maximizing variance highlighting unsupervised groupings. Plots for
explained variance, scores, and loadings are available. Annotations enhance interpretation and Lasso
helps identify key features driving trends. Sample Correlation Heatmap provides a visual
representation of the correlations between samples, allowing the user to spot grouping and batch
effects. Feature Correlation Heatmap provides similar information but applied to the features. All
plots can be downloaded in several formats (png, svg, jpg, webp).

iSODA allows the implementation of omics specific analyses. Class Distribution is a lipidomics specific
visualization that provides a summary of the mean lipid class concentrations for all sample groups.
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Class Comparison is a stratified version of the class distribution, allowing a better assessment of the
minute group concentration variations. Double Bonds Plot complements the volcano plot by focusing
on the differences in double bounds in lipid classes between two groups.

Functional analysis implements Enrichment Analysis (EA) and Over-Representation Analysis (ORA). EA
is based on modified K-S statistics as implemented originally by Geneset Enrichment Analysis (GSEA)
(46). Over-representation Analysis (ORA) uses Fisher exact test to identify if a feature annotation is
over-represented in a list of pre-selected features of interest compared to random chance (47). The
user can upload their own feature annotations and perform EA and ORA. Gene Ontology terms are
made readily available for corresponding omics, i.e. genomics, transcriptomics and proteomics. Dot
Plot and Bar plot display the significant feature sets resulting from the analysis according to the test’s
p-values. Ridge Plot provides density curves of features (genes, proteins, etc.) associated with each
enriched term/function. CNET Plot is an interactive network representation of measured features and
associated enriched terms. The interactive network enables a physics mode in which nodes (enriched
terms) are pulled together or repelled based on their association with measured features (genes,
proteins, etc.). This would cluster terms together in a data-driven way based on features and
annotations. eMap Plot is an enrichment map plot similar to CNET plot, but specifically designed to
visualize larger numbers of feature sets.

Multi-omics integration

The integration provides a holistic view allowing to pinpoint patterns that are not readily observable
in each single-omics alone. In the current implementation, iSODA offers two multi-omics integration
strategies, i.e. Multi-Omics Factor Analysis (MOFA) and Similarity Network Fusion (SNF).

MOFA is an unsupervised integration designed to reduce the complexity of large-scale omics datasets
into a manageable number of latent factors (32). These factors capture the underlying sources of
variation across the omics datasets, providing insights into driving biological processes. In a way,
MOFA’s factors are similar to PCA components in one omics layer. Explained Variance Plot provides
an overview of the contribution of each omics dataset to each factor. It allows identifying factors
dominated by a specific omics as well as those that are shared across multiple omics. Factor Plot
summarizes the sample factor weights and assesses their potential to explain group differences.
Combined Factors Plot is a scatter plot of sample factor weights from two factors allowing to explain
dependency/independence between factors. Feature Weights Plot shows the contributions of
individual measured features to a selected factor within an omics dataset. Feature Top Weights Plot
focuses specifically on the highest-contributing features in each factor and displays these as lollipop
plot. MOFA Heatmap shows the factors’ top contributing features versus the samples enabling a visual
inspection of how certain sample groups can be clustered by relevant features in different omics.
Scatter Plot allows examination of how the measured top-weight features correlate with sample
weights.

SNF constructs individual networks for each dataset, each representing the similarity between
samples. These networks are then fused into a single network through an iterative process capturing
both the shared and unique characteristics of each dataset (33). Similarity Heatmap illustrates the
impact of clustering on omics datasets separately. The x- and y-axes display samples organized by
cluster groups, while the cell values indicate similarity (SNF affinity) levels. Cluster assignments can be
used to evaluate alignment with sample grouping. Fusion Heatmap organizes samples according to
their cluster based on the integrated network. Similarity Network visualizes the affinity matrix for
single-omics datasets as an interactive network, and Similarity Fusion Network represents the fused
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multi-omics sample clustering as an interactive network. By hovering over an edge between two
sample nodes in the network, the user can display information on the evidence from the data.

Lipidomics of lipid transfer protein knock-outs

Lipid transfer proteins (LTP) are classified into families based on protein domains suggesting
similarities in function (48,49). There are currently 348 proteins annotated as lipid transport proteins
(50). To systematically study and highlight the function of various LTPs, we characterized 90
intracellular LTP KO based on MelluSo cell line using targeted quantitative lipidomics with internal
standards (supplementary data Table S2, Figure S2) (23). Using iISODA we imputed missing values with
median and removed lipid species below two times the average blank signals; 752 lipid species out of
the measured 1109 remained and were used for further analysis.

First, we attempted to identify any association between the LTP families and observed lipidomics
phenotype. The protein family is based on functional domain similarity, and suggests that similar
functions would be reflected in respective lipid cargo giving rise to similar patterns in lipidomics,
underlining associations between LTP families and their role in lipid metabolism. Our data revealed no
such associations (Figure 1A). Considering that a protein domain might interact/affect specific lipid
species, therefore the effect might only show on a subset of measured lipids, we performed a
multinomial LASSO regression to extract any discriminatory lipid species between families. This also
led to no observable discrimination (Figure 1A). It can hence be argued that protein domains and their
similarities are not necessarily proxies for the actual function. Examination on a gene-by-gene basis
seemed essential to identify the effects of a specific knock-out on the lipidome (Table S4). We highlight
here a few examples.

COL4A3BP, also known as Ceramide Transfer Protein (CERT), is a gene that encodes an LTP primarily
transferring ceramides between the endoplasmic reticulum and Golgi apparatus. Ceramides are key
components of cell membranes and play a crucial role in cellular signaling and apoptosis.
Dysregulation of ceramide metabolism has been linked to various cancers. Moreover, given the
importance of sphingolipids in the nervous system, dysfunction of COL4A3BP in known to be
implicated in neurological diseases (51). When comparing the COL4A3BP KO to control (Figure 1B) a
few significant lipid species can be detected. Mapping lipid class on the volcano plot revealed that DGs
and LacCer species were present at higher concentrations while lipids from the SM class were at lower
concentrations (Figure 1C). Although not at a significant level with FC of 1.5 (corresponding to logFC
cutoff 0.585) a trend can be seen given all measured LacCer and SM species.

Next, we investigated Oxysterol Binding Protein-Like 9, OSBPL9, which is part of the oxysterol-binding
protein (OSBP) family. It contains a pleckstrin homology domain, which facilitates binding to
phosphoinositides, and a conserved oxysterol-binding domain that binds sterols and other lipids, and
therefore is believed to binds and transports predominantly sterols and phosphoinositides within
cells. OSBPL9 plays a crucial role in maintaining cellular lipid homeostasis and is involved in various
cell signaling pathways regulating growth, survival, and metabolism. Disruptions in OSBPL9 may
contribute to neurological disorders given how critical lipid homeostasis for neural functions is. Several
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Figure 1. Lipidomics analysis of the LTP KO dataset. (A) PCA with scores and loadings of all KO colored according to family.
(B) Volcano plot comparing COL4A3BP KO to non-target displaying lipid classes, and in (C) selected lipid classes that show
trends are displayed. (D) Comparing OSBPL9 to non-target showing no visible trend for any lipid class, and (E) with only TGs
colored by the total double bond count showing a clear trend. In (F) and (G) as well as (H) and (I) TGs in StarD7 and StarD8
were compared to non-target showing different trends regarding the double bond in the volcano plots (F, G), and in the
detailed double bond plots (H, 1). (J) A dendrogram of all LTP KO library using all lipid species measured to determine the
distances showing no obvious alignment with the LTP family. Samples could however be clustered according to 5 main
groups. Total normalized tables were used in all cases, lasso was applied to PCA based on the LTP family, alpha=0.8.
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lipid classes show overproduction in OSBPL9 knockout compared to control, notably
Hexosylceramides (HexCer) with multiple significant species (Figure 1D). Moreover, when focusing
specifically on Triglycerides (TG) and investigating the double bonds, additional patterns emerge with
count of double bonds higher than 5 being gradually overexpressed in the knockouts (Figure 1E).

StarD7 and StarD8 belong to the StAR-related lipid transfer (START) domain family, known for their
role in lipid binding and transfer. StarD7 is specifically involved in the intracellular transport of
phospholipids and particularly the transfer of phosphatidylcholine to mitochondria, which is crucial
for maintaining mitochondrial membrane integrity and function. StarD8, also known as DLC-3 (Deleted
in Liver Cancer-3), is involved in lipid binding and transport, and plays a role in cellular signaling
pathways by interacting with phosphoinositides. StarD8 is also known to regulate the activity of Rho
family GTPases, which are critical for cytoskeletal dynamics, cell movement, and growth. Comparing
the effects of the StarD7 and StarD8 knockouts on the cell lipidome shows that they have opposite
effects within a single lipid class. Absence of StarD7 affects TG saturation, while StarD8 absence does
not (Figure 1F, G). This effect can also be seen in more detail when using the double bond plots,
specifically showing opposite effects for many of the lipid species examined (Figure 1H, ).

Multi-omics characterization and integration of the NCI-60 cancer cell lines

The three omics datasets covered epigenomics, transcriptomics and proteomics of the NCI-60 cell
lines. For epigenomics DNA-methylation levels were measured, for transcriptomics gene transcripts
averages between 5 platform were used, and for proteomics SWATH (data independent acquisition)
was performed on NCI-60 cell lines. After inspection in iISODA, prostate cancer with only two cell lines
was underrepresented and therefore removed. Two other samples were excluded, i.e. ME:MDA-N for
having no data in proteomics and CNS:SF-539 for having too many missing values in transcriptomics.
The remaining cell lines covered 8 cancers; leukemia, melanoma, breast, central nervous
system/brain, colon, non-small cell lung, ovarian, and renal.

Single-omics analyses. The sample correlation heatmap (Figure 2A-C) shows that the cell lines clusters
follow the cancer type in transcriptomics (Figure 2B), but not on proteomics and DNA-methylation
level (Figure 2A, 2C). A closer look shows the epithelial nature of the cells, i.e. carcinoma or not, is a
main driver of the grouping. This is most apparent in transcriptomics, which seems to carry most
embedded patterns regarding cancer and epithelial nature. PCA score plots of both cancer and
epithelial nature show similar trends (Figure 2D-F). Here, the non-epithelial cell lines form two groups
with leukemia on top-right, and melanoma together with CNS at bottom-left (Figure 2E). Epithelial cell
lines show distinction between colon on one side, and lung, ovarian, and renal cancer on the other
side. A regression analysis to select discriminating features can be applied with provided sample
annotations. When using cancer types as main grouping endpoint, various features in each of the three
omics were identified (Figure 2J-L). Interestingly, the epithelial nature of cell lines still drove the
clustering indicating an underlying strong similarity between cell lines based on origin. A similar
analysis according to the epithelial nature of the cell lines was also performed (Figure S3).

To identify statistically significant features, we used volcano plots, and epithelial and non-epithelial
cell lines were compared in all three omics. Many discriminating genes were identified in DNA-
methylation data, with less in transcriptomics, and no significant proteins were found (Figure 2M-0).
While the multivariate analysis using regression was able to identify features for such discrimination,
the univariate analysis using statistical testing and fold change was less effective, save for DNA-
methylation. These results appear to be intertwining; the epithelial nature of cells seems to be
regulated upstream, hence DNA-methylation data shows discriminating features in volcano plots;
however, the effect on the phenotype is more subtle appearing only in the multivariate analysis.
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Figure 2. Single-omics data analysis of the NCI-60 DNA-methylation, transcriptomics, and proteomics characterization data.
A-C correlation heatmaps showing similar clusters based on Pearson’s correlation. D-I represent PCA score plots (z-scored
total normalized data, the nipals PCA method) with D-F are colored by cancer type and G-I by epithelial nature. J-L heatmaps
with feature selection to discriminate cancer type for the three omics (z-scored total normalized data, LASSO alpha set to
0.8, Euclidean distance, ward.D2 clustering). Annotations mapped on top included cancer type and epithelial nature of the
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tissue. k=8 clusters was set and is rendered in the colored dendrogram. M-0O volcano plots comparing cell lines according to
their epithelial nature, and P-R comparing leukemia to melanoma samples (total normalized data, t-test, FC using mean, B-
H p-value adjustment, p-value threshold was set to 0.05, FC threshold was set to 1.5).

We also compared various cell lines in pairs, Figure 2P-R shows leukemia and melanoma, both non-
epithelial. Although no proteins were significantly over/underrepresented, various transcripts and
methylated genes were. The possibility to perform these analyses and interact with the results on the
screen in a few clicks enables streamlined analysis and quick contrasting towards trends identification.

Functional analysis. In addition to accepting user’s custom feature annotations for functional
analyses, iISODA annotates genomics, transcriptomics and proteomics with Gene Ontology. From the
various possible comparisons, we highlight the results of the enrichment analysis comparing
melanoma to leukemia (Figure 3A-F). Interestingly, functions related to immune response were
upregulated in the DNA-methylation, and downregulated in the transcriptomics data. This aligns with
the general understanding that DNA methylation regulates gene transcription through repression.
Here, we observe this repression on the functional level rather than on a specific gene. Various
functions that exhibit opposite regulation in the DNA methylation versus transcriptomics were
associated with different immune system pathways. Further, methylation of genes associated with
synapses and morphogenesis were reduced in melanoma, while genes associated with pigmentation
and cell junction were upregulated in melanoma. Over representation analysis of the differentiated
gene methylation between epithelial and non-epithelial cell lines resulted in functions grouped into
two clusters; associated with epidermis development and cell junction assembly (Figure 3G-H). The
functional analyses demonstrate how different omics complement each other in describing cell
biology. To achieve a more holistic view, we next describe omics integration.

Similarity Network Fusion of the NCI-60 cell lines. SNF finds similarities between samples using
spectral clustering (33). For comparison we show single-omics and multi-omics clustering (Figure 4).
Before fusion, leukemia cell lines are barely clustered together, the renal cell lines produce compact
clusters on DNA-methylation and transcriptomics, and the melanoma cell lines cluster generally
consistently in all three datasets. When applying SNF, the integrated view better captures the nature
of cell lines by clustering these — to a good degree — into their original cancer (Figure 4G, H).
Interestingly, a data-driven k=8 clustering shows a better agreement with the original cancer type
after SNF compared to each single omics alone. While SNF indicates integration enhances clustering,
we turn to MOFA to study features driving the similarities.
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Figure 3. Functional analyses in NCI-60 omics characterization data. A-F show functional analyses with results for DNA-
methylation and transcriptomics data comparing leukemia and melanoma cell lines. Feature set adjustment was set to BH,
p-value=0.05, set minimum and maximum size were 3 and 800 respectively. A and C are dot plots and B is eMap from the
DNA-methylation data, D and F along with E are for transcriptomics. In dot plots top 10 enriched terms were selected, in
eMaps top 20, colored by NES values with blue for negative and red for positive, node size scaled to gene count, similarity
score was JC, score threshold was 0.2. For each omics the suppressed (A, D) and activated (C, F) biological processes and
molecular functions are shown. G and H show over representation analysis comparing epithelial and non-epithelial cell lines
with the DNA- methylation data, using the under- and overexpressed features. Over- and underexpressed DNA-methylated
genes were determined by the volcano plot analysis and imported into functional analysis using the built-in save tool feature.
H shows top 20 annotations. G displaying top 20, node coloring reflects adjusted p-value, their size is scaled to gene counts,
JC similarity score used with threshold set to 0.2, edges colored according to JC score.
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Figure 4. Similarity Network Fusion on NCI-60 cell lines. A-C are similarity heatmaps and D-F are the network of the three
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status, while the networks were colored by cancer type and 5% of the top scoring edges were kept.

Multi-Omics Factor Analysis of the NCI-60 cell lines. We set MOFA to generate 10 factors; however,
the exact number of factors can vary according to the integration goal. For example, up to 10 factors
are recommended to find measured features that drive the variance in the different omics layers,
however, finding outlier samples requires more factors. Additional details can be found in the original
MOFA documentations (32). The variance plot (Figure 5A) shows the explained variance associated
with each factor and omics. The factor plot shows the samples’ factor weights and allows coloring
according to the different sample annotations. When projecting the epithelial nature of the cell lines,
there was no clear separation across all 10 factors. When projecting cancer type a few factors stood
out, especially factors 1, 3, and 6 separating colon, leukemia and melanoma from the rest of the cell
lines (Figure 5B-E). For an in-depth view of the integration results and how they relate to the data
measured, the top contributing features for a factor can be displayed (Figure 5F-H) along with the
measured values and associated sample weight (Figure 61-K). Heatmaps of these top features and how
they contribute to discrimination in each omics dataset separately can also be viewed and studied

(Figure S4).
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Figure 5. MOFA on DNA-methylation, transcriptomics, and proteomics datasets of the NCI-60 cell lines. A: explained variance
for each factor and omics combinations. B: factor plot comparing sample weights stratified according to cancer type. C-E:
combined factor plots showing how specific groups of interest can be discriminated using a combination of factors; in this
case colon, leukemia, and melanoma show good discrimination combining factors 1, 3, and 6. F-G show top discriminating
factors according to MOFA in the three omics datasets used. |-K are scatter plots for these top contributing features, plotting
the actual measured value for the feature (normalized) against the sample weights.

Discussion

In this work we introduced iSODA (integrated Simple Omics Data Analysis) for interactive single- and
multi-omics data exploration. The web-based platform allows users to analyze their single-omics
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experiments individually, and side by side using multi-omics integration, within the same interface.
This enables a more efficient streamlined analysis for multi-omics characterization experiments.
Although we have demonstrated the tool in this work using two example datasets and various figures,
the actual emphasis of iSODA lies in its interactive visualization capabilities, for which the true
experience cannot be reflected in static figures. The modular structure of the application allows
extending the core single-omics module to the specifics of the data. For example, handling lipid
shorthand IDs (52). iSODA’s modularity was employed to produce SODAlight, a lipidomics-only
instance designed to explore the lipidomics data of the Neurolipid Atlas project (53).

Table 1. Comparison of 6 software packages: PaintOmics 4, MergeOmics, OmicsAnalyst, 30mics, MetaboAnalyst Perseus,
and iSODA. The criteria examined encompass data filtering, single-omics, interactive plots, enrichment and multi-omics
integration. *Meta-MSEA: meta-Marker Set Enrichment Analysis. **Many: MCIA (Multiple co-inertia analysis), CPCA
(Consensus PCA), MOFA, SNF, and DIABLO.

Name Filtering Ir?tera.ctlv.e Enrichment S'"?'e' !Vlultl-or'nlcs Local/online/GUI
visualization omics integration

Paintomics 4 NA Yes Yes NA Pathwa.y Online GUI
projection

Mergeomics NA NA Yes Yes meta-msea* Online GUI

3omics NA NA Yes Yes Feature. Online GUI
correlation

Omicsanalyst Limited Limited Yes NA i) (e mofa, Online GUI
snf, diablo**

Metaboanalyst Yes Yes Yes Yes NA Online GUI

Perseus Yes Yes Yes Yes NA Local GUI

iSODA Yes Yes Yes Yes mofa, snf Online and local GUI

Before designing iSODA, we performed a comprehensive literature search to identify tools for single
and integrative omics data analysis (Table S1), six notable software implementations stand out,
MetaboAnalyst (17), Perseus (18), PaintOmics 4 (19), MergeOmics (22), OmicsAnalyst (10), and
30mics (14) (Table 1). These software tools provide a graphical user interface (GUI), are general
purpose and not specific towards a disease or an organism. We compared the software tools based
on five criteria: data filtering, interactivity, functional analyses, single-omics analysis, multi-omics
integration, as well as local and online interface. For data filtering PaintOmics, MergeOmics, 30mics
or OmicsAnalyst do not provide filtering options, requiring users to perform filtering and data
preparation externally. MetaboAnalyst, Perseus and iSODA, offer advanced filtering. In regards to
interactive visualization, MetaboAnalyst, Perseus and iSODA provide interactive plots, however this
interactivity is central in iSODA allowing various plotting options as well as downloading all plots as
vector graphics. All seven evaluated software packages offer some form of functional analysis. iISODA
allows users to also supply their own annotations. Regarding providing a unified interface to single-
omics analysis as well as multi-omics integration, most omics tools including the ones discussed here
can be split into two categories: those specializing in single-omics (e.g. MetaboAnalyst, Perseus) and
those processing multi-omics (e.g. PaintOmics, MergeOmics, 30mics, OmicsAnalyst). iSODA provides
a unified interface to perform both.

For the multi-omics integration, a variety of methods are used, ranging from knowledge-driven
approaches based on enrichment, to data-driven approaches based on variance or similarity.
Knowledge-driven methods like pathway projection (PaintOmics 4) or meta-MSEA (MergeOmics) are
less effective for small molecules omics such as lipidomics. OmicsAnalyst offers the most extensive
range of data-driven methods, including DIABLO and PLS-DA (supervised) and SNF, MOFA, CPCA
(unsupervised). iSODA currently focuses on two unsupervised methods, SNF and MOFA. Additionally,
given the unified interface of iISODA, various method for supervised feature selection (like discriminant
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regression analysis or statistical tests) can be performed in each single-omics modules individually,
and the results carried over to the multi-omics modules. This effectively results in a supervised MOFA
or SNF and shows the versatility of iISODA.

Conclusion

The development of iISODA was driven by the necessity for a user-friendly data analysis tool that
equally focusses on single-omics and multi-omics. For single-omics analysis, iSODA includes a core
module with several omics-agnostic processes that are extendable to handle omics-specific analyses
and visualizations. For multi-omics analysis, the goal was not only to incorporate multi-omics modules
but also to connect them with the single-omics modules, leveraging the insights gained from single-
omics processing to improve the integrative analysis. Importantly, iSODA is not designed as a linear
analysis pipeline, it is rather a versatile toolbox allowing users to explore their data in innovative ways;
going back and forth between plots and omics views, filtering and exploring specific parts of the
uploaded data, all with the possibility to download the plot-associated data for external analysis if
needed. Currently, the application includes five modules: lipidomics, metabolomics, proteomics,
transcriptomics, and genomics. Future developments aim to introduce more specialized processes for
each of these omics, as well as additional (multi-)omics modules based on user requirements.
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