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Abstract 

Omics technologies including genomics, proteomics, metabolomics, and lipidomics allow profound 

insights into health and disease. Thanks to plummeting costs of continuously evolving omics analytical 

platforms, research centers collect multi-omics data more routinely. They are, however, confronted 

with the lack of a versatile software solution to harmoniously analyze single-omics data and merge and 

interpret multi-omics data. We have developed iSODA, an interactive web-based application for the 

analysis of single- as well as multi-omics omics data. The software tool emphasizes intuitive, interactive 

visualizations designed for user-driven data exploration. Researchers can filter and normalize their 

datasets and access a variety of functions ranging from simple data visualization like volcano plots and 

PCA, to advanced functional analyses like enrichment analysis for proteomics and saturation analysis 

for lipidomics. For insights from integrated multi-omics, iSODA incorporates Multi-Omics Factor 

Analysis – MOFA, and Similarity Network Fusion – SNF. All results are presented in interactive plots 

with the possibility of downloading plots and associated data. The ability to adapt the imported data 

on-the-fly allows for tasks such as removal of outlier samples or failed features, various imputation 

strategies, or data normalization. The modular design allows for extensions with new analyses and 

plots. The software is accessible under http://isoda.online/. 

 

 
Graphical summary for iSODA showcasing some application examples, the data import, the single-

omics and multi-omics modules. 
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Introduction 

The rapid advances in high-throughput omics resulted in an increase in data generation at lower costs, 

encompassing genomics, transcriptomics, proteomics, metabolomics, and beyond (1). These data help 

understanding biological processes, elucidating disease pathways, and advancing personalized 

medicine (2). Various tools and methods exist to navigate omics data — from statistical techniques 

pinpointing significant patterns to network-based approaches highlighting relationships within 

biological systems. Most tools, however, require either advanced knowledge of coding for data 

handling and/or dedicated to specific omics platform.   

A few suites dedicated to analysis of (multi-)omics data have emerged over the past decade. Some 

focus on specific diseases or applications (3-8), while others adopt a general approach (9-16). Despite 

the long list of software tools (Table S1), a few notable implementations stand out for their interactive 

design and generality. MetaboAnalyst is a web-based application for metabolomics data analysis and 

interpretation (17). It currently allows streamlined analysis for both quantitative and untargeted 

metabolomics data. Perseus is specialized in interpreting protein quantification, interaction and post-

translational modification data (18). It enables high-dimensional omics data analysis covering 

normalization, pattern recognition, time-series analysis, and classification. PaintOmics 4 maps 

acquired omics data on biological pathways (19) including KEGG (20) and Reactome (21). It supports 

pathways from KEGG, Reactome and MapMan. MergeOmics is pipeline for integrating datasets across 

omics (22). It leverages three functional analyses for disease association including Marker Set 

Enrichment Analysis (MSEA) to detect relevant processes, Meta-MSEA to examine the consistency 

between omics datasets, and Key Driver Analysis (KDA) to identify regulators of disease-associated 

pathways. OmicsAnalyst focuses on multi-omics analysis through three analysis tracks; correlation 

network analysis, cluster heatmap analysis, and dimension reduction analysis (10). Each of the tracks 

offers various algorithms to choose from. 3Omics generates inter-omics correlation networks with 

respect to experimental conditions for transcriptomics, proteomics and metabolomics (14). It includes 

coexpression analysis, phenotype analysis for transcriptomics and proteomics, KEGG pathway 

enrichment analysis for metabolomics and proteomics, and Gene Ontology enrichment analysis for 

proteomics and transcriptomics. In summary, great advances have been made towards convergent 

multi-omics data analysis. However, most tools take a deterministic approach to data analysis, making 

it a linear pipeline rather than exploration. The tools are either specialized for a specific omics, or 

dedicated to multi-omics, but not both. Static plotting seems also to be common in contrast to 

interactivity. All these aspects limit the users’ experience and ability to explore the data dynamically. 

To that end, we have developed iSODA (integrated Simple Omics Data Analysis) as an interactive, 

expandable, and user-friendly software solution for single- and multi-omics data exploration. Our goal 

was to build a web-based platform that offers users a dynamic environment to process, study, and 

integrate their omics data; essentially to study multi-omics characterization experiments, on each 

omics layer individually, and side by side with multi-omics integration. Our goal was to transcend the 

linear approach to data analysis to enable a dynamic interactive exploration. We aimed to simplify the 

process for novice users without compromising the in-depth analysis for advanced users.  

We demonstrate iSODA using two datasets. The first is a lipidomics library of 90 lipid transport protein 

knockouts studying the effect of these protein on the cell lipidome (23). In the second we use the 

multiomic characterization datasets of the NCI-60 cell lines (24), which were acquired in various 

laboratories. We discuss how to identify insights using the interactivity available in iSODA.  
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Materials and Methods 

Software implementation. 

iSODA was developed in R – 4.4.0, and Shiny framework (25) for the graphical interface. We relied on 

shiny extensions including bs4Dash (26) and ShinyWidgets (27) for additional UI elements, 

shinymanager (28) for user authentication, shinyjs (29) and shinybrowser (30) for aspect ratio 

adjustment. The backend architecture is object-oriented implementing three R6 (31) classes; 1) the 

omics class for single omics experiments with methods for data import, processing, visualization, and 

result storage; 2) the MOFA class for Multi Omics Factor Analysis (32); and 3) the SNF class for 

Similarity Network Fusion integration (33). The MOFA and SNF classes contain the methods for 

importing data from the single omics classes, processing them accordingly, and visualizing the results. 

Omics data are imported into iSODA as tables in comma-separated (csv), semicolon-separated (csv2), 

tab-separated (tsv) or excel (xlsx) formats. We used plotly (34) for interactive plots, and visNework 

(35) for visualizing networks. Finally, the heatmaply package was used to visualize heatmaps (36). For 

all plots, a various color palettes are available from RColorBrewer, viridisLite and grDevices packages.  

The various analyses rely on the stats core package including: Distance calculations – Euclidean, 

maximum, Manhattan, Canberra, binary, and Minkowski. Hierarchical clustering methods – ward.D, 

ward.D2, single, complete, average, McQuitty, median, and centroid. Pearson’s and Spearman’s 

correlation coefficients for correlation, Student’s t-test and Mann–Whitney–Wilcoxon for statistical 

tests, and p-value adjustment methods include Bonferroni ("bonferroni"), Holm ("holm"), Hochberg 

("hochberg"), Hommel ("hommel"), Benjamini & Hochberg ("BH"), and Benjamini & Yekutieli 

correction ("BY"). Principal Component Analysis – PCA using pcaMethods package (37). Advanced 

regression analysis and feature selection was achieved using Lasso and Elastic-Net Regularized 

Generalized Linear Models using the glmnet package (38). For functional analyses we used 

ClusterProfiler and Enrichplot packages for enrichment and over-representation analyses (39-41). 

Gene and protein annotations are provided using the Org.Hs.eg.db package (42), and users can also 

upload their own annotation for any omics for functional analyses.  

LTP KO lipidomics library 

The Lipid Transfer Protein Knockout (LTP KO) library was produced by our group (23) to investigate 

the disturbances caused by the loss of lipid transfer proteins (LTPs). Briefly, the MelJuSo cell line 

(human melanoma) was used and 90 LTP gene knockouts experiments were conducted using 

CRISPR/Cas9 technology (Table S2). These 90 genes are from 11 families determined by the LTP 

domains: OSBP (n=30), START (n=34), PITP (n=16), GLTP (n=11), CRAL-TRIO (n=71), SMP (n=15), VPS13 

(n=11), NPC1 NTD (n=6), ML (n=9), SCP2 (n=12) and ASTER/VAST (n=8). Additionally, six non-targeting 

controls were included. These samples were analyzed for their lipidomics content in the original study. 

An extensive description of the samples and measurement is available in the original work (23). 

NCI-60 cancer cell lines multi-omics dataset 

The 60 Human Tumor Cell Lines used by National Cancer Institute for over 20 years as a screen to 

identify and characterize novel compounds for growth inhibition or killing of tumor cell lines (43). The 

screen utilizes 60 different human tumor cell lines, representing leukemia (LE, n=6), melanoma (ME, 

n=10), and cancers of breast (BR, n=5), central nervous system/brain (CNS, n=6), colon (CO, n=7), non-

small cell lung (LC, n=9), ovarian (OV, n=7), prostate (PR, n=2) and renal (RE, n=8). Table S3 lists the 

individual cell lines. CellMiner is an online database hosting the multi-omics characterization data on 

the NCI-60 cell lines (24,44). We used three characterization datasets representing genomics (Illumina 

450K methylation, gene average), transcriptomics (5 Platform Gene Transcript, averaged intensities) 
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and proteomics (SWATH mass spectrometry, protein). A complete description of the sample 

measurement and data acquisition are provided in the original publication (24,44). 

Data preparation 

All datasets went through a reformatting step to ensure compatibility with iSODA simple format. Two 

essential tables were generated for all datasets, i.e. data table and sample annotation table. In 

addition, when available, a feature annotation table was generated and used. iSODA requires the first 

two tables for analysis and visualization, while the feature annotation is required to map feature 

metadata onto the visualizations and for the functional analyses, i.e. enrichment and over 

representation analysis. In case of gene associated measurement (genomics, transcriptomics, 

proteomics), an internal annotation based on Gene Ontology will also be available.  

 

Results 

We give next an overview of iSODA and we follow with a discussion of two use-cases.  

iSODA – integrated Simple Omics Data Analysis 

Each omics layer has a dedicated interface with data upload, visualization, and functional analysis tabs. 

The multi-omics modules allow selecting all or some of the data in the single-omics experiments for 

integration (Figure S1). We describe here the functionalities briefly, and include a comprehensive 

description in the supplementary materials.  

Single-Omics data analysis 

Users upload their data via three subtabs for: Sample annotations, Measurement data, and Feature 

annotations. Data pre-analysis includes filtering, normalization (scaling, total normalization, 

standardization), imputation (minimum, median, mean, maximum), and batch effect correction using 

ComBat (45). In Interactive visualization up to four plots can be displayed simultaneously, and all can 

be interacted with by zooming and hovering. Various display and analysis parameters can be adjusted 

for each plot from the parameter sidebars. Dendrogram provides a rapid assessment of the similarity 

between samples and sample groups via hierarchical clustering. Volcano Plot visualizes features that 

differentiate between two groups using adjustable statistical tests and fold change thresholds. 

Additional information regarding the features can be mapped onto this plot, for instance, Gene 

Ontology terms (genes/proteins) or chemical classes (lipidomics). The heatmap can be used to cluster 

samples and features allowing for the identification of sample groups and features groups. Outlier 

samples or failed measurements can be spotted here. Uploaded sample annotations can also be 

mapped, and using LASSO and Elastic-Net Regularized Generalized Linear Models allow feature 

selection for segregating sample groups. This provides a clear view of how sample groups correlate 

with specific features. Principal Component Analysis (PCA) visualizes samples and features in a 

reduced dimensional space maximizing variance highlighting unsupervised groupings. Plots for 

explained variance, scores, and loadings are available. Annotations enhance interpretation and Lasso 

helps identify key features driving trends. Sample Correlation Heatmap provides a visual 

representation of the correlations between samples, allowing the user to spot grouping and batch 

effects. Feature Correlation Heatmap provides similar information but applied to the features. All 

plots can be downloaded in several formats (png, svg, jpg, webp). 

iSODA allows the implementation of omics specific analyses. Class Distribution is a lipidomics specific 

visualization that provides a summary of the mean lipid class concentrations for all sample groups. 
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Class Comparison is a stratified version of the class distribution, allowing a better assessment of the 

minute group concentration variations. Double Bonds Plot complements the volcano plot by focusing 

on the differences in double bounds in lipid classes between two groups.  

Functional analysis implements Enrichment Analysis (EA) and Over-Representation Analysis (ORA). EA 

is based on modified K-S statistics as implemented originally by Geneset Enrichment Analysis (GSEA) 

(46). Over-representation Analysis (ORA) uses Fisher exact test to identify if a feature annotation is 

over-represented in a list of pre-selected features of interest compared to random chance (47). The 

user can upload their own feature annotations and perform EA and ORA. Gene Ontology terms are 

made readily available for corresponding omics, i.e. genomics, transcriptomics and proteomics. Dot 

Plot and Bar plot display the significant feature sets resulting from the analysis according to the test’s 

p-values. Ridge Plot provides density curves of features (genes, proteins, etc.) associated with each 

enriched term/function. CNET Plot is an interactive network representation of measured features and 

associated enriched terms. The interactive network enables a physics mode in which nodes (enriched 

terms) are pulled together or repelled based on their association with measured features (genes, 

proteins, etc.). This would cluster terms together in a data-driven way based on features and 

annotations. eMap Plot is an enrichment map plot similar to CNET plot, but specifically designed to 

visualize larger numbers of feature sets. 

Multi-omics integration 

The integration provides a holistic view allowing to pinpoint patterns that are not readily observable 

in each single-omics alone. In the current implementation, iSODA offers two multi-omics integration 

strategies, i.e. Multi-Omics Factor Analysis (MOFA) and Similarity Network Fusion (SNF).  

MOFA is an unsupervised integration designed to reduce the complexity of large-scale omics datasets 

into a manageable number of latent factors (32). These factors capture the underlying sources of 

variation across the omics datasets, providing insights into driving biological processes. In a way, 

MOFA’s factors are similar to PCA components in one omics layer. Explained Variance Plot provides 

an overview of the contribution of each omics dataset to each factor. It allows identifying factors 

dominated by a specific omics as well as those that are shared across multiple omics. Factor Plot 

summarizes the sample factor weights and assesses their potential to explain group differences. 

Combined Factors Plot is a scatter plot of sample factor weights from two factors allowing to explain 

dependency/independence between factors. Feature Weights Plot shows the contributions of 

individual measured features to a selected factor within an omics dataset. Feature Top Weights Plot 

focuses specifically on the highest-contributing features in each factor and displays these as lollipop 

plot. MOFA Heatmap shows the factors’ top contributing features versus the samples enabling a visual 

inspection of how certain sample groups can be clustered by relevant features in different omics. 

Scatter Plot allows examination of how the measured top-weight features correlate with sample 

weights. 

SNF constructs individual networks for each dataset, each representing the similarity between 

samples. These networks are then fused into a single network through an iterative process capturing 

both the shared and unique characteristics of each dataset (33). Similarity Heatmap illustrates the 

impact of clustering on omics datasets separately. The x- and y-axes display samples organized by 

cluster groups, while the cell values indicate similarity (SNF affinity) levels. Cluster assignments can be 

used to evaluate alignment with sample grouping. Fusion Heatmap organizes samples according to 

their cluster based on the integrated network. Similarity Network visualizes the affinity matrix for 

single-omics datasets as an interactive network, and Similarity Fusion Network represents the fused 
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multi-omics sample clustering as an interactive network. By hovering over an edge between two 

sample nodes in the network, the user can display information on the evidence from the data. 

 

Lipidomics of lipid transfer protein knock-outs 

Lipid transfer proteins (LTP) are classified into families based on protein domains suggesting 

similarities in function (48,49). There are currently 348 proteins annotated as lipid transport proteins 

(50). To systematically study and highlight the function of various LTPs, we characterized 90 

intracellular LTP KO based on MelJuSo cell line using targeted quantitative lipidomics with internal 

standards (supplementary data Table S2, Figure S2) (23). Using iSODA we imputed missing values with 

median and removed lipid species below two times the average blank signals; 752 lipid species out of 

the measured 1109 remained and were used for further analysis.  

First, we attempted to identify any association between the LTP families and observed lipidomics 

phenotype. The protein family is based on functional domain similarity, and suggests that similar 

functions would be reflected in respective lipid cargo giving rise to similar patterns in lipidomics, 

underlining associations between LTP families and their role in lipid metabolism. Our data revealed no 

such associations (Figure 1A). Considering that a protein domain might interact/affect specific lipid 

species, therefore the effect might only show on a subset of measured lipids, we performed a 

multinomial LASSO regression to extract any discriminatory lipid species between families. This also 

led to no observable discrimination (Figure 1A). It can hence be argued that protein domains and their 

similarities are not necessarily proxies for the actual function. Examination on a gene-by-gene basis 

seemed essential to identify the effects of a specific knock-out on the lipidome (Table S4). We highlight 

here a few examples. 

COL4A3BP, also known as Ceramide Transfer Protein (CERT), is a gene that encodes an LTP primarily 

transferring ceramides between the endoplasmic reticulum and Golgi apparatus. Ceramides are key 

components of cell membranes and play a crucial role in cellular signaling and apoptosis. 

Dysregulation of ceramide metabolism has been linked to various cancers. Moreover, given the 

importance of sphingolipids in the nervous system, dysfunction of COL4A3BP in known to be 

implicated in neurological diseases (51). When comparing the COL4A3BP KO to control (Figure 1B) a 

few significant lipid species can be detected. Mapping lipid class on the volcano plot revealed that DGs 

and LacCer species were present at higher concentrations while lipids from the SM class were at lower 

concentrations (Figure 1C). Although not at a significant level with FC of 1.5 (corresponding to logFC 

cutoff 0.585) a trend can be seen given all measured LacCer and SM species.  

Next, we investigated Oxysterol Binding Protein-Like 9, OSBPL9, which is part of the oxysterol-binding 

protein (OSBP) family. It contains a pleckstrin homology domain, which facilitates binding to 

phosphoinositides, and a conserved oxysterol-binding domain that binds sterols and other lipids, and 

therefore is believed to binds and transports predominantly sterols and phosphoinositides within 

cells. OSBPL9 plays a crucial role in maintaining cellular lipid homeostasis and is involved in various 

cell signaling pathways regulating growth, survival, and metabolism. Disruptions in OSBPL9 may 

contribute to neurological disorders given how critical lipid homeostasis for neural functions is. Several  
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Figure 1. Lipidomics analysis of the LTP KO dataset. (A) PCA with scores and loadings of all KO colored according to family. 

(B) Volcano plot comparing COL4A3BP KO to non-target displaying lipid classes, and in (C) selected lipid classes that show 

trends are displayed. (D) Comparing OSBPL9 to non-target showing no visible trend for any lipid class, and (E) with only TGs 

colored by the total double bond count showing a clear trend. In (F) and (G) as well as (H) and (I) TGs in StarD7 and StarD8 

were compared to non-target showing different trends regarding the double bond in the volcano plots (F, G), and in the 

detailed double bond plots (H, I). (J) A dendrogram of all LTP KO library using all lipid species measured to determine the 

distances showing no obvious alignment with the LTP family. Samples could however be clustered according to 5 main 

groups. Total normalized tables were used in all cases, lasso was applied to PCA based on the LTP family, alpha=0.8. 
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lipid classes show overproduction in OSBPL9 knockout compared to control, notably 

Hexosylceramides (HexCer) with multiple significant species (Figure 1D). Moreover, when focusing 

specifically on Triglycerides (TG) and investigating the double bonds, additional patterns emerge with 

count of double bonds higher than 5 being gradually overexpressed in the knockouts (Figure 1E). 

StarD7 and StarD8 belong to the StAR-related lipid transfer (START) domain family, known for their 

role in lipid binding and transfer. StarD7 is specifically involved in the intracellular transport of 

phospholipids and particularly the transfer of phosphatidylcholine to mitochondria, which is crucial 

for maintaining mitochondrial membrane integrity and function. StarD8, also known as DLC-3 (Deleted 

in Liver Cancer-3), is involved in lipid binding and transport, and plays a role in cellular signaling 

pathways by interacting with phosphoinositides. StarD8 is also known to regulate the activity of Rho 

family GTPases, which are critical for cytoskeletal dynamics, cell movement, and growth. Comparing 

the effects of the StarD7 and StarD8 knockouts on the cell lipidome shows that they have opposite 

effects within a single lipid class. Absence of StarD7 affects TG saturation, while StarD8 absence does 

not (Figure 1F, G). This effect can also be seen in more detail when using the double bond plots, 

specifically showing opposite effects for many of the lipid species examined (Figure 1H, I). 

Multi-omics characterization and integration of the NCI-60 cancer cell lines  

The three omics datasets covered epigenomics, transcriptomics and proteomics of the NCI-60 cell 

lines. For epigenomics DNA-methylation levels were measured, for transcriptomics gene transcripts 

averages between 5 platform were used, and for proteomics SWATH (data independent acquisition) 

was performed on NCI-60 cell lines. After inspection in iSODA, prostate cancer with only two cell lines 

was underrepresented and therefore removed. Two other samples were excluded, i.e. ME:MDA-N for 

having no data in proteomics and CNS:SF-539 for having too many missing values in transcriptomics. 

The remaining cell lines covered 8 cancers; leukemia, melanoma, breast, central nervous 

system/brain, colon, non-small cell lung, ovarian, and renal. 

Single-omics analyses. The sample correlation heatmap (Figure 2A-C) shows that the cell lines clusters 

follow the cancer type in transcriptomics (Figure 2B), but not on proteomics and DNA-methylation 

level (Figure 2A, 2C). A closer look shows the epithelial nature of the cells, i.e. carcinoma or not, is a 

main driver of the grouping. This is most apparent in transcriptomics, which seems to carry most 

embedded patterns regarding cancer and epithelial nature. PCA score plots of both cancer and 

epithelial nature show similar trends (Figure 2D-F). Here, the non-epithelial cell lines form two groups 

with leukemia on top-right, and melanoma together with CNS at bottom-left (Figure 2E). Epithelial cell 

lines show distinction between colon on one side, and lung, ovarian, and renal cancer on the other 

side. A regression analysis to select discriminating features can be applied with provided sample 

annotations. When using cancer types as main grouping endpoint, various features in each of the three 

omics were identified (Figure 2J-L). Interestingly, the epithelial nature of cell lines still drove the 

clustering indicating an underlying strong similarity between cell lines based on origin. A similar 

analysis according to the epithelial nature of the cell lines was also performed (Figure S3). 

To identify statistically significant features, we used volcano plots, and epithelial and non-epithelial 

cell lines were compared in all three omics. Many discriminating genes were identified in DNA-

methylation data, with less in transcriptomics, and no significant proteins were found (Figure 2M-O). 

While the multivariate analysis using regression was able to identify features for such discrimination, 

the univariate analysis using statistical testing and fold change was less effective, save for DNA-

methylation. These results appear to be intertwining; the epithelial nature of cells seems to be 

regulated upstream, hence DNA-methylation data shows discriminating features in volcano plots; 

however, the effect on the phenotype is more subtle appearing only in the multivariate analysis.  
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Figure 2. Single-omics data analysis of the NCI-60 DNA-methylation, transcriptomics, and proteomics characterization data. 

A-C correlation heatmaps showing similar clusters based on Pearson’s correlation. D-I represent PCA score plots (z-scored 

total normalized data, the nipals PCA method) with D-F are colored by cancer type and G-I by epithelial nature. J-L heatmaps 

with feature selection to discriminate cancer type for the three omics (z-scored total normalized data, LASSO alpha set to 

0.8, Euclidean distance, ward.D2 clustering). Annotations mapped on top included cancer type and epithelial nature of the 
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tissue. k=8 clusters was set and is rendered in the colored dendrogram. M-O volcano plots comparing cell lines according to 

their epithelial nature, and P-R comparing leukemia to melanoma samples (total normalized data, t-test, FC using mean, B-

H p-value adjustment, p-value threshold was set to 0.05, FC threshold was set to 1.5). 

 

We also compared various cell lines in pairs, Figure 2P-R shows leukemia and melanoma, both non-

epithelial. Although no proteins were significantly over/underrepresented, various transcripts and 

methylated genes were. The possibility to perform these analyses and interact with the results on the 

screen in a few clicks enables streamlined analysis and quick contrasting towards trends identification. 

 

Functional analysis. In addition to accepting user’s custom feature annotations for functional 

analyses, iSODA annotates genomics, transcriptomics and proteomics with Gene Ontology. From the 

various possible comparisons, we highlight the results of the enrichment analysis comparing 

melanoma to leukemia (Figure 3A-F). Interestingly, functions related to immune response were 

upregulated in the DNA-methylation, and downregulated in the transcriptomics data. This aligns with 

the general understanding that DNA methylation regulates gene transcription through repression. 

Here, we observe this repression on the functional level rather than on a specific gene. Various 

functions that exhibit opposite regulation in the DNA methylation versus transcriptomics were 

associated with different immune system pathways. Further, methylation of genes associated with 

synapses and morphogenesis were reduced in melanoma, while genes associated with pigmentation 

and cell junction were upregulated in melanoma. Over representation analysis of the differentiated 

gene methylation between epithelial and non-epithelial cell lines resulted in functions grouped into 

two clusters; associated with epidermis development and cell junction assembly (Figure 3G-H). The 

functional analyses demonstrate how different omics complement each other in describing cell 

biology. To achieve a more holistic view, we next describe omics integration. 

Similarity Network Fusion of the NCI-60 cell lines. SNF finds similarities between samples using 

spectral clustering (33). For comparison we show single-omics and multi-omics clustering (Figure 4). 

Before fusion, leukemia cell lines are barely clustered together, the renal cell lines produce compact 

clusters on DNA-methylation and transcriptomics, and the melanoma cell lines cluster generally 

consistently in all three datasets. When applying SNF, the integrated view better captures the nature 

of cell lines by clustering these – to a good degree – into their original cancer (Figure 4G, H). 

Interestingly, a data-driven k=8 clustering shows a better agreement with the original cancer type 

after SNF compared to each single omics alone. While SNF indicates integration enhances clustering, 

we turn to MOFA to study features driving the similarities. 
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Figure 3. Functional analyses in NCI-60 omics characterization data. A-F show functional analyses with results for DNA-

methylation and transcriptomics data comparing leukemia and melanoma cell lines. Feature set adjustment was set to BH, 

p-value=0.05, set minimum and maximum size were 3 and 800 respectively. A and C are dot plots and B is eMap from the 

DNA-methylation data, D and F along with E are for transcriptomics. In dot plots top 10 enriched terms were selected, in 

eMaps top 20, colored by NES values with blue for negative and red for positive, node size scaled to gene count, similarity 

score was JC, score threshold was 0.2. For each omics the suppressed (A, D) and activated (C, F) biological processes and 

molecular functions are shown. G and H show over representation analysis comparing epithelial and non-epithelial cell lines 

with the DNA- methylation data, using the under- and overexpressed features. Over- and underexpressed DNA-methylated 

genes were determined by the volcano plot analysis and imported into functional analysis using the built-in save tool feature. 

H shows top 20 annotations. G displaying top 20, node coloring reflects adjusted p-value, their size is scaled to gene counts, 

JC similarity score used with threshold set to 0.2, edges colored according to JC score. 
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Figure 4. Similarity Network Fusion on NCI-60 cell lines. A-C are similarity heatmaps and D-F are the network of the three 

omics individually. G shows the fusion heatmap and network results. k-nearest neighbors method was set to 5, sigma to 0.5, 

using an Euclidean distance, and setting k clusters to 8. The heatmaps were mapped with k clusters, cancer type and epithelial 

status, while the networks were colored by cancer type and 5% of the top scoring edges were kept. 

 

Multi-Omics Factor Analysis of the NCI-60 cell lines. We set MOFA to generate 10 factors; however, 

the exact number of factors can vary according to the integration goal. For example, up to 10 factors 

are recommended to find measured features that drive the variance in the different omics layers, 

however, finding outlier samples requires more factors. Additional details can be found in the original 

MOFA documentations (32). The variance plot (Figure 5A) shows the explained variance associated 

with each factor and omics. The factor plot shows the samples’ factor weights and allows coloring 

according to the different sample annotations. When projecting the epithelial nature of the cell lines, 

there was no clear separation across all 10 factors. When projecting cancer type a few factors stood 

out, especially factors 1, 3, and 6 separating colon, leukemia and melanoma from the rest of the cell 

lines (Figure 5B-E). For an in-depth view of the integration results and how they relate to the data 

measured, the top contributing features for a factor can be displayed (Figure 5F-H) along with the 

measured values and associated sample weight (Figure 6I-K). Heatmaps of these top features and how 

they contribute to discrimination in each omics dataset separately can also be viewed and studied 

(Figure S4).  

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 6, 2024. ; https://doi.org/10.1101/2024.08.02.605811doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.02.605811
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 
Figure 5. MOFA on DNA-methylation, transcriptomics, and proteomics datasets of the NCI-60 cell lines. A: explained variance 

for each factor and omics combinations. B: factor plot comparing sample weights stratified according to cancer type. C-E: 

combined factor plots showing how specific groups of interest can be discriminated using a combination of factors; in this 

case colon, leukemia, and melanoma show good discrimination combining factors 1, 3, and 6. F-G show top discriminating 

factors according to MOFA in the three omics datasets used. I-K are scatter plots for these top contributing features, plotting 

the actual measured value for the feature (normalized) against the sample weights.  

 

Discussion 

In this work we introduced iSODA (integrated Simple Omics Data Analysis) for interactive single- and 

multi-omics data exploration. The web-based platform allows users to analyze their single-omics 
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experiments individually, and side by side using multi-omics integration, within the same interface. 

This enables a more efficient streamlined analysis for multi-omics characterization experiments. 

Although we have demonstrated the tool in this work using two example datasets and various figures, 

the actual emphasis of iSODA lies in its interactive visualization capabilities, for which the true 

experience cannot be reflected in static figures. The modular structure of the application allows 

extending the core single-omics module to the specifics of the data. For example, handling lipid 

shorthand IDs (52). iSODA’s modularity was employed to produce SODAlight, a lipidomics-only 

instance designed to explore the lipidomics data of the Neurolipid Atlas project (53).  

Table 1. Comparison of 6 software packages: PaintOmics 4, MergeOmics, OmicsAnalyst, 3Omics, MetaboAnalyst Perseus, 

and iSODA. The criteria examined encompass data filtering, single-omics, interactive plots, enrichment and multi-omics 

integration. *Meta-MSEA: meta-Marker Set Enrichment Analysis. **Many: MCIA (Multiple co-inertia analysis), CPCA 

(Consensus PCA), MOFA, SNF, and DIABLO.  

Name Filtering 
Interactive 
visualization 

Enrichment 
Single-
omics 

Multi-omics 
integration  

Local/online/GUI 

Paintomics 4 NA Yes Yes NA 
Pathway 
projection 

Online GUI 

Mergeomics NA NA Yes Yes meta-msea* Online GUI  

3omics NA NA Yes Yes 
Feature 
correlation 

Online GUI 

Omicsanalyst Limited Limited Yes NA 
mcia, cpca, mofa, 
snf, diablo** 

Online GUI 

Metaboanalyst Yes Yes Yes Yes NA Online GUI 

Perseus Yes Yes Yes Yes NA Local GUI 

iSODA Yes Yes Yes Yes mofa, snf Online and local GUI 

 

Before designing iSODA, we performed a comprehensive literature search to identify tools for single 

and integrative omics data analysis (Table S1), six notable software implementations stand out, 

MetaboAnalyst (17), Perseus (18), PaintOmics 4 (19), MergeOmics (22), OmicsAnalyst (10), and 

3Omics (14) (Table 1). These software tools provide a graphical user interface (GUI), are general 

purpose and not specific towards a disease or an organism. We compared the software tools based 

on five criteria: data filtering, interactivity, functional analyses, single-omics analysis, multi-omics 

integration, as well as local and online interface. For data filtering PaintOmics, MergeOmics, 3Omics 

or OmicsAnalyst do not provide filtering options, requiring users to perform filtering and data 

preparation externally. MetaboAnalyst, Perseus and iSODA, offer advanced filtering. In regards to 

interactive visualization, MetaboAnalyst, Perseus and iSODA provide interactive plots, however this 

interactivity is central in iSODA allowing various plotting options as well as downloading all plots as 

vector graphics. All seven evaluated software packages offer some form of functional analysis. iSODA 

allows users to also supply their own annotations. Regarding providing a unified interface to single-

omics analysis as well as multi-omics integration, most omics tools including the ones discussed here 

can be split into two categories: those specializing in single-omics (e.g. MetaboAnalyst, Perseus) and 

those processing multi-omics (e.g. PaintOmics, MergeOmics, 3Omics, OmicsAnalyst). iSODA provides 

a unified interface to perform both.  

For the multi-omics integration, a variety of methods are used, ranging from knowledge-driven 

approaches based on enrichment, to data-driven approaches based on variance or similarity. 

Knowledge-driven methods like pathway projection (PaintOmics 4) or meta-MSEA (MergeOmics) are 

less effective for small molecules omics such as lipidomics. OmicsAnalyst offers the most extensive 

range of data-driven methods, including DIABLO and PLS-DA (supervised) and SNF, MOFA, CPCA 

(unsupervised). iSODA currently focuses on two unsupervised methods, SNF and MOFA. Additionally, 

given the unified interface of iSODA, various method for supervised feature selection (like discriminant 
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regression analysis or statistical tests) can be performed in each single-omics modules individually, 

and the results carried over to the multi-omics modules. This effectively results in a supervised MOFA 

or SNF and shows the versatility of iSODA.  

 

Conclusion 

The development of iSODA was driven by the necessity for a user-friendly data analysis tool that 

equally focusses on single-omics and multi-omics. For single-omics analysis, iSODA includes a core 

module with several omics-agnostic processes that are extendable to handle omics-specific analyses 

and visualizations. For multi-omics analysis, the goal was not only to incorporate multi-omics modules 

but also to connect them with the single-omics modules, leveraging the insights gained from single-

omics processing to improve the integrative analysis. Importantly, iSODA is not designed as a linear 

analysis pipeline, it is rather a versatile toolbox allowing users to explore their data in innovative ways; 

going back and forth between plots and omics views, filtering and exploring specific parts of the 

uploaded data, all with the possibility to download the plot-associated data for external analysis if 

needed. Currently, the application includes five modules: lipidomics, metabolomics, proteomics, 

transcriptomics, and genomics. Future developments aim to introduce more specialized processes for 

each of these omics, as well as additional (multi-)omics modules based on user requirements. 
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