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Perception is fallible1–3. Humans know this4–6, and so do some non-human animals like macaque monkeys7–14. When8

monkeys report more confidence in a perceptual decision, that decision is more likely to be correct. It is not known how9

neural circuits in the primate brain assess the quality of perceptual decisions. Here, we test two hypotheses. First, that10

decision confidence is related to the structure of population activity in sensory cortex. And second, that this relation dif-11

fers from the one between sensory activity and decision content. We trained macaque monkeys to judge the orientation12

of ambiguous stimuli and additionally report their confidence in these judgments. We recorded population activity in13

the primary visual cortex and used decoders to expose the relationship between this activity and the choice-confidence14

reports. Our analysis validated both hypotheses and suggests that perceptual decisions arise from a neural computation15

downstream of visual cortex that estimates the most likely interpretation of a sensory response, while decision confidence16

instead reflects a computation that evaluates whether this sensory response will produce a reliable decision. Our work17

establishes a direct link between neural population activity in sensory cortex and the metacognitive ability to introspect18

about the quality of perceptual decisions.19
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Introduction21

Perceptual interpretations of the environment are automatically accompanied by a sense of confidence in this interpretation. For22

example, when soccer fans in a football stadium see a striker score a goal, they may hold their breath and ask other fans whether23

the ball really went in. Judging the trajectory of fast moving objects is difficult, and we know this. The ‘metacognitive’ ability24

to evaluate the quality of perceptual interpretations helps us to plan future actions15, learn from mistakes16,17, and optimize25

group decision-making18. How does the brain assess the quality of perceptual decisions? A prominent hypothesis is that early26

areas in sensory cortex provide raw sensory measurements which are used by downstream circuits in association cortex to27

guide perceptual decisions19–22 and assign confidence in these decisions7,10,12,13. It follows that there may exist a systematic28

relationship between neural population activity in sensory cortex and confidence in perceptual decisions. Here, we set out to29

test this hypothesis and document the basic characteristics of this relationship.30

To examine the relationship between sensory activity and confidence, we developed a task that invites subjects to jointly31

report a perceptual decision and their confidence in this decision (also see the work by M. Vivar-Lazo & C.R. Fetsch, SFN32

Abstract, Population dynamics in areas MT and LIP during concurrent deliberation toward a choice and confidence report,33

212.11, 2022). We trained two macaque monkeys (F and Z) to judge whether a visual stimulus presented near the central34

visual field was oriented clockwise or counterclockwise from vertical. The monkeys communicated their judgment with a35

saccade to one of four choice targets, organized in a rectangular pattern around the fixation mark (Fig. 1a). Horizontal saccade36

direction indicated the perceptual judgement, vertical saccade direction indicated the confidence in the decision. Choices were37

rewarded in a manner that incentivizes observers to introspect about decision quality on a trial-by-trial basis. Specifically,38

high confidence judgements resulted in a larger immediate reward when correct, but in a loss of potential future reward when39

incorrect (see Methods). While the animals performed this task, we recorded extracellular responses from neural populations in40

primary visual cortex (V1), the first sensory area in the primate visual system where individual neurons signal the task relevant41

feature, stimulus orientation23.42

We found that confidence in perceptual decisions can be predicted from V1 population activity. The relationship between43

sensory activity and decision confidence appears as strong as the relationship between sensory activity and decision content.44

This assessment is based on the analysis of one hidden-layer neural networks trained to either predict the perceptual choice or the45

confidence report from V1 population activity. In both cases, the networks captured behavioral effects of stimulus manipulations46

(variations in stimulus orientation and stimulus contrast) as well as behavioral variability under repeated presentations of the47

same stimulus. As predicted by theoretical models of perceptual confidence, the relation between sensory activity and decision48
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confidence fundamentally differs from the one between sensory activity and decision content. It involves an additional non-49

linearity and consideration of sensory uncertainty. Together, these results reveal how an essential metacognitive ability arises50

from downstream transformations of neural population activity in sensory cortex.51

Results52

Behavior and computational hypothesis53

Both monkeys learned to report confidence in a fine orientation discrimination task. Their perceptual choices lawfully depended54

on stimulus orientation, and they made few errors in the easiest stimulus conditions (monkey F = ± 18.2 degrees, median55

performance, 100 % correct; monkey Z = ± 15.0 degrees, median performance, 100 % correct). Consider the choice behavior56

for an example recording session. Choices reported with high confidence are shown in green, choices reported with low57

confidence in red, and symbol size is proportional to the number of trials (Fig. 1b). As is evident from the raw data, for every58

stimulus condition, high confidence choices tended to be more accurate than low confidence choices (Fig. 1b, green vs red59

symbols). As a consequence, high confidence choices exhibited a steeper overall relationship with stimulus orientation (Fig.60

1b, green vs red curve). We quantified this effect by estimating the slope of both psychometric functions and computing the61

slope ratio (Methods). For the vast majority of recording sessions, high confidence choices were associated with a steeper62

psychometric function than low confidence choices (monkey F: median slope ratio = 0.42, P < 0.001, Wilcoxon signed rank63

test against 1; monkey Z = 0.40, P < 0.001; Fig. 1c). This effect mirrored the choice behavior of a group of human subjects,64

naive to the purpose of our study, who performed a similar orientation discrimination task (N = 19, median slope ratio = 0.27, P65

< 0.001; Fig. 1c; Methods). These results suggest that the monkeys introspected about the quality of each perceptual decision66

and relied on a confidence assignment process that is qualitatively similar to the one used by humans (see Supp. Fig. 1 for67

further comparison).68

We wondered whether the monkeys’ ability to assess the quality of perceptual decisions quantitatively resembles that of humans.69

The statistic we have considered thus far is inadequate to answer this question. The association between confidence and the70

slope of the psychometric function is a robust signature of sensible confidence assessments, but the slope ratio does not only71

depend on the quality of confidence assessments. It also depends on the subject’s perceptual sensitivity and their proclivity72

to report high confidence24. We therefore quantified the quality of the confidence reports by computing each subject’s meta-73

uncertainty (Methods). Meta-uncertainty is a statistic that expresses how well a decision maker can discriminate reliable from74

unreliable choices, regardless of their level of perceptual sensitivity and response biases24. Surprisingly, we found that the75

monkeys outperformed the human subjects during this group’s first visit to the lab (humans performed 1,100 trials in block 1,76

median σm = 1.56, median σm monkeys = 0.47, P < 0.001, Wilcoxon rank sum test; Fig. 1d, Humans 1 vs monkeys). We77

reasoned that task experience was the likely driver of this effect. To test this, we asked the human subjects to perform the78

experiment two more times. Reassuringly, they eventually caught up with the monkeys (median σm humans in block 3 = 0.57,79

median σm monkeys = 0.47, P = 0.58; Fig. 1d). We conclude that our animal paradigm invites high-quality metacognitive80

behavior.81

What is the nature of the confidence assignment process that underlies this metacognitive capacity? Previous work has shown82

that choice-confidence data in tasks like ours are often well captured by a hierarchical process model in which confidence83

reflects an observer’s estimate of the reliability of their decision24–27. In these models, a stimulus gives rise to a noisy, one-84

dimensional decision variable (for example, a perceptual orientation estimate). Comparison of this decision variable with a85

fixed criterion yields a perceptual decision (‘clockwise’ or ‘counterclockwise’; Fig. 1e, top). The reliability of this decision86

is revealed by computing the distance between the decision variable and the decision criterion, and normalizing this distance87

by an estimate of the uncertainty of the decision variable (Fig. 1e, middle). Comparison of this decision reliability estimate88

with a fixed confidence criterion yields a confidence report (‘confident’ or ‘not confident’; Fig. 1e, bottom). The quality of the89

confidence reports is limited by a subject’s uncertainty about the uncertainty of the decision variable (‘meta-uncertainty’)24,90

or by an analogous noise term, depending on the specific model variant25,26. As can be seen for an example dataset, this91

computational framework captures how the monkey’s tendency to choose the ‘confident’ response option jointly depends on92

stimulus orientation and stimulus contrast (Fig. 1f, Supp. Fig. 1d,e).93

Decision-making areas downstream of sensory cortex do not get one-dimensional perceptual estimates as input, but high-94

dimensional population responses. They implement operations akin to these idealized model computations by mapping this95

population activity onto the available choice options. To gain an intuition for these mapping rules, consider a pair of hypothetical96

V1 neurons whose responses selectively depend on stimulus orientation and stimulus contrast (Fig. 1g). One of these neurons97

prefers orientations smaller than 0 degrees, while the other one on average responds more vigorously to orientations larger than98

0 degrees. Thus, their joint activity pattern contains information about stimulus orientation, regardless of stimulus contrast.99

Specifically, when neuron 2 is more active than neuron 1, the stimulus is more likely to be oriented clockwise from vertical100
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and vice versa (Fig. 1h, left). The mapping rule used by a downstream decision-making circuit can thus be understood as101

projecting the population activity onto a one-dimensional axis perpendicular to a linear hyperplane that separates clockwise102

from counterclockwise response patterns (Fig. 1h, middle). The resulting decisions will not be flawless – due to neural103

response variability, there is considerable overlap between both response distributions, making errors inevitable. Crucially, the104

population response also contains information about the probability of such an error. The closer the population activity is to the105

hyperplane, the more probable an error. This effect is amplified for activity patterns that reside close to the bottom left corner106

of this state space. This part of the space is visited when the stimulus-drive is weak, for example because stimulus contrast is107

low or stimulus size is small. Here, response patterns are dominated by spontaneous activity, resulting in high levels of sensory108

uncertainty28–31 and many incorrect decisions (Fig. 1h, right). These geometrical considerations yield two testable predictions.109

First, that decision confidence is related to the structure of population activity in sensory cortex. And second, that this relation110

differs from the one between sensory activity and decision content.111

Predicting perceptual decision confidence from V1 activity112

While the animals performed the perceptual confidence task, we used multilaminar electrode arrays to record population activity113

from ensembles of V1 units whose receptive fields overlapped with the stimulus location (Methods). Populations ranged in114

size from 8 to 46 units (median = 15 units). Consider the activity of three simultaneously recorded units. Stimulus onset115

elicited a strong transient response, followed by a weaker sustained response (Fig. 2a). Some units were better driven by116

counterclockwise orientations (Fig. 2a, top), some by clockwise orientations (Fig. 2a, bottom), and some did not differentiate117

between these stimulus conditions (Fig. 2a, middle). We first asked whether the observed populations could in principle118

provide the sensory signals to support the perceptual task. To this end, we trained linear stimulus decoders to discriminate119

between clockwise and counterclockwise stimuli and tested them on non-ambiguous hold-out trials (Methods; Fig. 2b). We120

found that each recorded population could support the perceptual task above chance level (neural performance ranged from 57.4121

to 96.9% correct, median = 69.2%). These decoders have only been provided with neural population responses and stimulus122

labels (‘clockwise’ or ‘counterclockwise’). Yet it is natural to ask whether they can offer some insight into the monkeys’123

behavior. We compared the stimulus decoders’ choices with the animals’ reports on a trial-by-trial basis and found that the124

fraction of correctly predicted perceptual decisions exceeded the number expected by chance (median difference = 6.3%, P125

< 0.001, Wilcoxon signed rank test; Fig. 2b). Both variables exhibited a clear relationship; the better the neural populations126

could support the perceptual task, the better the stimulus decoder predicted perceptual decisions (Pearson correlation: r =127

0.79, P < 0.001, Fig. 2b). This finding is consistent with the hypothesis that decision-making circuits downstream of visual128

cortex estimate the most likely interpretation of a sensory response, just like these stimulus decoders do. We also compared the129

stimulus decoders’ output with the animals’ confidence reports and found them to be unrelated (median Pearson correlation =130

–0.03, P = 0.16; Fig. 2c). This result is not surprising. It simply confirms that in our task, the relationship between sensory131

activity and decision content cannot account for decision confidence.132

To expose the relationship between sensory population activity and decision confidence, we trained confidence decoders to133

discriminate between trials in which monkeys reported choices with either high or low confidence. For this analysis, we134

considered both linear and non-linear decoders (specifically, one-hidden layer neural networks; Methods). Linear decoders can135

slice a high-dimensional space in various ways (Fig. 2d, left), but none of the possible variations fully captures the hypothesized136

confidence mapping rule (Fig. 1h, right). Non-linear decoders can implement more complex input-output relations (Fig.137

2d, right), making them better suited to test the hypothesis. Importantly, this additional complexity is not guaranteed to be138

beneficial. This will only be the case if the brain’s mapping rule requires the complexity (compare Fig. 1h, middle and right).139

To connect this concept to our data, we first compared linear and non-linear choice decoders trained to predict perceptual140

decisions (Methods). We orthogonalized the neural choice and confidence subspaces by curating the decoders’ training sets141

such that the animals’ perceptual choice contained no information about their confidence report and vice versa (Methods;142

Supp. Fig. 2a). As expected, linear and non-linear choice decoders performed similarly well, suggesting that a linear mapping143

rule suffices to relate sensory population activity to perceptual decisions (median performance linear choice decoder = 66.8%144

correctly predicted choices; non-linear choice decoder = 68.8%, median difference = -0.7%, P = 0.34, Wilcoxon signed rank145

test; Fig. 2e). We then performed the same comparative analysis on the confidence reports and obtained a different result.146

The nonlinear confidence decoders consistently outperformed their linear counterparts in predicting confidence (median linear147

confidence decoder = 61.8% correctly predicted confidence reports; non-linear confidence decoder = 65.6%, median difference148

= 4.0%, P < 0.001; Fig. 2f). In general, confidence reports could be predicted about as well as perceptual decisions (median149

performance difference between non-linear choice and confidence decoders = 3.5%, P = 0.19). Together, these results confirm150

that perceptual decision confidence is related to the structure of population activity in sensory cortex, and that this relationship151

is more complex than the relation between this activity and decision content.152

3

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 4, 2024. ; https://doi.org/10.1101/2024.08.01.606172doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.01.606172
http://creativecommons.org/licenses/by-nc/4.0/


Interrogating the confidence decoder153

We seek to understand how sensory population activity informs confidence in perceptual decisions. So far, our analysis suggests154

that non-linear decoders trained to predict behavioral choice-confidence reports from neural population activity are a powerful155

tool in this endeavour. Of course, this is only true to the extent that the mapping relation learned by the decoders resembles156

the one used by the brain. This need not be the case. Clearly, the confidence decoders are imperfect predictors of the animals’157

behavior. It is possible that their success is based on exploiting idiosyncratic relationships between neural responses and158

confidence reports that are distinct from the brain’s confidence computation32. If this were the case, the confidence decoders’159

output should not exhibit the key signature of sensible confidence assignments, nor should they be able to generalize to new160

testing conditions. We investigated both issues. We first computed the slope of the psychometric function, conditioned on161

the confidence decoder’s output (Methods; Fig. 3a). Higher confidence outputs were associated with a steeper psychometric162

function (median slope ratio = 0.88, P = 0.02, Wilcoxon signed rank test, Fig. 3b). This pattern recapitulates a key feature of163

the animals’ behavior and implies that the confidence decoder’s outputs are sensible. The confidence decoder recognizes which164

neural responses are more likely to result in a reliable perceptual decision.165

If the mapping rule learned by the confidence decoder resembles the one used by the brain, it should transfer to more challenging166

testing conditions, such as input patterns it has not been exposed to during training. To test this, we probed the confidence167

decoders with synthetic patterns of neural activity. We designed these patterns such that they would expose the ‘pure’ effects168

of stimulus orientation and stimulus contrast on decision confidence. Specifically, for every stimulus orientation, we created a169

synthetic pattern by computing the trial-averaged population response, thus removing the effects of neural response variability170

(Methods). We captured the effects of stimulus contrast by changing the gain of the synthetic neural responses33–35. Here, we171

went far outside the range of our experimental stimulus manipulation to create out-of-distribution inputs (Methods). Consider172

the decoder’s confidence-outputs for an example recording session. More extreme orientations are always associated with more173

high confidence outputs, regardless of the level of response gain (Fig. 3c). Additionally, higher levels of response gain are174

always associated with more high confidence outputs, regardless of the stimulus orientation (Fig. 3c). These effects were175

evident across datasets (median difference in predicted proportion high confidence outputs for more vs less extreme stimulus176

orientations = 15%, P < 0.001; median difference for a response gain of 0.5 and 2 = 38%, P < 0.001; Wilcoxon signed rank177

test; Fig. 3d). Thus, the decoder’s confidence output jointly depends on stimulus orientation and stimulus contrast, thereby178

recapitulating the second key feature of the animals’ behavior (Supp. Fig. 1e). Moreover, the mapping rule learned by the179

decoder generalizes to new testing conditions. We conclude that the confidence decoder evaluates neural activity in a sensible180

and robust manner.181

Relationship between choice and confidence computations182

Our analysis of neural activity was inspired by a computational framework in which confidence reflects an observer’s estimate183

of the reliability of their decision24–26. In this framework, the computations that form a decision are distinct from the ones that184

assign confidence in these decisions. However, there is a direct relationship between the latent variables that underlie the overt185

perceptual choices and confidence reports. Specifically, more extreme decision variable values will yield higher confidence186

variable values (Fig. 1e, middle). The decoders we trained on neural data use a latent variable to predict behavioral choice-187

confidence reports (Methods). We wondered whether these latent variables would be related as predicted by the computational188

framework. If this were the case, it would provide direct evidence for the notion that the brain’s confidence computation189

evaluates the quality of the sensory evidence that informed the decision.190

Consider the neurally decoded decision variable for an example recording session. There are three important effects. The191

decision variable varies linearly with stimulus orientation (Fig. 4a). The slope of this relationship depends on stimulus contrast192

(Fig. 4a, left vs right panel). And trials that culminate in a "clockwise decision" are associated with a higher decision variable193

value (Fig. 4a, yellow vs blue). These effects were present in most of our datasets (median slope for high contrast stimuli =194

0.064, P < 0.001; median reduction in slope for low contrast stimuli = 0.02, P = 0.04; median change in offset with perceptual195

choice = 0.22, P < 0.001, Wilcoxon signed rank test; Fig. 4b). The neurally decoded confidence variable exhibits a different196

structure. It varies parabolically with stimulus orientation (Fig. 4c). The width and offset of the parabola depend on stimulus197

contrast (Fig. 4c). And trials that culminate in a "high confidence" report are associated with a higher confidence variable value198

(Fig. 4c). Again, these effects were present in most of our datasets (median quadratic coefficient for high contrast stimuli =199

0.002, P < 0.001; median change in this coefficient for low contrast stimuli = 0.001, P = 0.005; median change in offset for low200

contrast stimuli = 0.15, P < 0.001; median change in offset with confidence report = 0.11, P < 0.001 Wilcoxon signed rank test;201

Fig. 4d). To compare the strength of the association of both decision and confidence latent variables with the overt behavior, we202

computed their ability to discriminate behavior in the absence of stimulus variation (Methods). A discriminability value of 50%203

corresponds to chance performance, while 100% means that the behavior can be perfectly predicted from the latent variable.204

For both perceptual choices and confidence reports, we found a modest association (median decision variable discriminability205
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= 54%, P < 0.001; median confidence variable discriminability = 56%, P < 0.001, Wilcoxon signed rank test; Fig. 4b,d). This206

association tended to be stronger for populations that contained more stimulus information (Supp. Fig. 2b). Thus, the decoders’207

latent variables provide insight into the neural processes underlying the overt choice-confidence reports.208

Plotting the confidence variable against the decision variable for all trials of an example recording session reveals a U-shaped209

relationship, consistent with the proposed confidence computation (Fig. 4e, left). If this relationship arises from this computa-210

tion, it should leave a signature even within the same stimulus conditions. Specifically, trials that yield a more extreme decision211

variable value should result in a higher value of the confidence variable. To test this prediction, we computed the median of212

the decision variable for every stimulus condition and computed the average of the confidence variable separately for trials213

above and below the median. As can be seen for an example recording session, more extreme decision variable values were214

systematically associated with higher levels of confidence (Fig. 4e, right). This effect was evident across all datasets, for both215

monkeys (median difference in confidence variable: monkey F = 0.06, P < 0.001, monkey Z = 0.11, P < 0.001; Fig. 4f). Our216

analysis ensured that choice and confidence signals occupied orthogonal neural dimensions (Methods). We therefore conclude217

that the brain’s confidence computation evaluates the same sensory population activity that informed the decision.218

Discussion219

In this study, we investigated neural population activity in V1 during a perceptual confidence task. We sought to understand the220

brain’s confidence assignment process. This process underlies the metacognitive ability to evaluate the quality of perceptual221

interpretations. We suggest that confidence arises from a nonlinear transformation of the same sensory signals that inform222

perceptual decisions. When the sensory population response is strong and unambiguous, this transformation results in high223

decision confidence (Fig. 1h, green zone). Conversely, when the sensory population response is weak or ambiguous, it results224

in low levels of confidence (Fig. 1h, red zone). Our proposal is supported by three distinct observations. First, nonlinear225

decoders of V1 population activity can predict monkeys’ confidence in perceptual orientation judgments (Fig. 2f), establishing226

a direct link between the structure of sensory activity and decision confidence. Second, these decoders yield sensible and robust227

confidence outputs when presented with synthetic patterns of neural activity (Fig. 3), suggesting they capture the essence of the228

brain’s confidence computation. Third, trials that yield stronger and less ambiguous V1 responses as evidenced by a neurally229

decoded decision variable also result in higher levels of neurally decoded confidence (Fig. 4).230

Our experimental paradigm enabled us to compare choice and confidence decoders trained on the same neural responses. We231

found that the relationship between sensory activity and decision confidence is as strong as the relationship between sensory232

activity and perceptual choice (Fig. 2e,f and Fig. 4b,d). However, we suggest that there is a fundamental difference between233

both relationships. Perceptual choices arise from a neural computation downstream of sensory cortex that identifies the most234

likely interpretation of the sensory response; decision confidence instead arises from a computation that evaluates whether this235

sensory response will produce a reliable decision (Fig. 1e). Because these computations are distinct, they can manifest as236

mapping rules of sensory population activity that occupy orthogonal neural subspaces (Fig. 1h). Previous work offers indirect237

support for these ideas. Specifically, micro-stimulating sensory neurons in a post-decision wagering task altered monkeys’ opt-238

out choice behavior as if they experienced a change in the sensory signal10. These results suggest that the same sensory signals239

that inform decision content inform decision confidence. A different study employing the postdecision wagering paradigm240

found that pulvinar neurons represent decision confidence but not perceptual choice9. Inactivating the pulvinar altered monkeys241

opt-out choice behavior but not their perceptual sensitivity9. These results suggest that distinct brain circuits may be responsible242

for decision formation and confidence assignment. Consistent with this, studies that employed a post-decision time investment243

task found that orbitofrontal cortex neurons in rats play a similar role12,13 and represent an abstract decision confidence signal14.244

Our work clarifies how neural circuits can extract such pure decision confidence signals from sensory population activity.245

However, note that in some experimental paradigms, the same neurons may represent decision content and confidence7,10.246

We have shown that decoders of V1 activity capture behavioral effects of stimulus manipulations as well as behavioral vari-247

ability under repeated presentations of the same stimulus (Fig. 4a,c). Correlations between between neural and behavioral248

responses can illuminate their causal relationship. However, these correlations can also arise for spurious reasons. Previ-249

ous studies employing binary perceptual decision-making tasks found that choice-related signals in sensory cortex reflect a250

combination of factors. These include the perceptual decision-making process36–39, but also choice-aligned fluctuations in at-251

tention40,41, expectation42, motor planning43, and in other unspecified sources that impact sensory activity44,45. Could spurious252

reasons underlie the association between neural activity and overt behavior in our study? This concern is warranted. There253

is no statistical guarantee that the associations we reported primarily reflect the confidence assignment process. However, our254

task-design has a unique strength compared to binary decision-making tasks. Subjects generated a two-dimensional choice-255

confidence report. Our analysis ensured that both dimensions were orthogonal in neural population space. Nevertheless, we256

found that trials that yielded a more extreme perceptual decision variable also resulted in a higher level of confidence (Fig.257
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4e,f). For this association to arise for spurious reasons, there would need to be a factor whose properties are more complex than258

simple choice-alignment. It would need to jointly align with perceptual choices and confidence reports. While we cannot rule259

out this possibility, we hope that the richness of our behavioral paradigm has helped to expose the confidence computations260

implemented by neural circuits downstream of sensory cortex.261

The ability to recognize which perceptual interpretations of the environment are at risk of being flawed is a hallmark of metacog-262

nition and as such often associated with higher intelligence. Our findings suggest that the confidence computations underlying263

this ability in the primate brain at least in part arise from simple deterministic transformations of sensory population activity.264

These transformations can in principle be realized in basic neural circuits, calling into question the extent to which confidence-265

mediated behavior truly provides insight into high level cognitive processes46. In general, metacognitive judgements are imper-266

fect24,25,47. Here, this was evident from the levels of meta-uncertainty displayed by our human and non-human subjects (Fig.267

1d). As of yet, we do not know the neural causes of this. Metacognitive inefficiencies may originate in noise in sensory rep-268

resentations29,48–50. Alternatively, these inefficiencies may arise downstream of sensory cortex, for example from sub-optimal269

confidence mapping rules51. The task-paradigm and computational framework we have developed offer promising vehicles to270

address these outstanding questions and achieve a more complete understanding of the neural mechanisms that underlie and271

constrain our sense of confidence.272
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METHODS273

Animal subjects274

Our experiments were performed on two adult male macaque monkeys (Maccaca mulatta, aged 7 and 10 years old at the time275

of the experiments). The animals were trained to perform an orientation discrimination task with saccadic eye movements as276

operant responses. Monkey F had previously participated in another research study22, Monkey Z had not previously participated277

in research studies. All training, surgery, and recording procedures were approved by the University of Texas Institutional278

Animal Care and Use Committee and conformed to the National Institutes of Health Guide for the Care and Use of Laboratory279

Animals. Under general anesthesia, both animals were implanted with three custom-designed titanium head posts and a titanium280

recording chamber which enabled access to V152.281

Apparatus282

The monkeys were seated in a custom-designed primate chair in front of a gamma-corrected 22-inch CRT monitor (Sony283

Trinitron, model GDM-FW900), with their heads restrained using three surgical implants. Stimuli were shown on the CRT284

monitor, which was positioned approximately 60 cm away from the monkeys’ heads. The CRT had a resolution of 1280 by285

1024 pixels with a refresh rate of 75 Hz. Eye position was tracked continuously with an infrared eye tracking system at 1 kHz286

(EyeLink 1000, SR Research). Stimuli were presented using the Psychophysics Toolbox53 in MATLAB (MathWorks). Neural287

activity was recorded using the Plexon OmniPlex System (Plexon). Precise temporal registration of task events and neural288

activity was obtained through a Datapixx system (Vpixx). All of these systems were integrated using the PLDAPS software289

package54 (https://github.com/HukLab/PLDAPS). An analogous setup was used for the human psychophysical experiment,290

except that head position was stabilized using a chin rest and the monitor was a Hewlett Packard, model A7217.291

Visual stimuli292

We constructed oriented visual stimuli by bandpass filtering 3-D luminance noise. The filter was orientation-spatial frequency-293

temporal frequency separable. All stimuli were constructed with the same spatial and temporal frequency filter. The filter’s294

spatial frequency passband was centered at a spatial frequency of 2.5 cycles per degree and had a bandwidth of 0.5 octaves.295

Its temporal frequency passband was centered at a speed of 2.5 degrees per second and had a bandwidth of 1 octave. The296

filter’s orientation bandwidth was 3 degrees. For each stimulus condition, the stimulus set contained five unique filtered noise297

movies. Each orientation discrimination experiment included stimuli that varied in orientation and contrast. There was one high298

and one low contrast level per experiment. The high contrast value was constant across experiments, the low contrast value299

varied somewhat across experiments. The high contrast stimuli spanned a range of 11 different orientations, the number of low300

contrast orientations varied across experiments (15 experiments had 11 orientations, 7 had 9, 3 had 7, and 4 had 2).301

Fixation task302

At the beginning of each recording session, monkeys first performed a passive fixation task. We used a hand-mapping procedure303

to estimate the location of the spatial receptive fields of visually responsive units. The average receptive field center estimate304

served as the center location for the visual stimuli presented during the rest of the recording session. We conducted an initial305

fixation task during which we presented sinusoidal gratings of varying orientation for 1000 ms each. This was followed by the306

orientation discrimination task.307

Orientation discrimination task308

The orientation-discrimination task is a variant of classical visual categorization tasks in which the subject uses a saccadic eye309

movement as operant response42,55,56. We used a richer version of this task in which subjects are invited to additionally report310

their confidence in each perceptual decision. Each trial began when the subject fixated a small white dot at the center of the311

screen. Upon fixation, four black choice targets appeared — one in each quadrant of the screen. Targets to the left of the fixation312

point represented counter-clockwise decisions, targets to the right clockwise decisions. Upper choice targets indicated high313

decision confidence, lower choice targets low confidence. After a variable pre-stimulus fixation period the stimulus appeared in314

the near periphery (average eccentricity: monkey F = 4.32◦, monkey Z = 3.00◦) for 500 ms. Subjects judged the orientation of315

the stimulus relative to vertical. The stimulus then disappeared along with the fixation mark and subjects reported their decision316

and confidence with a saccadic eye movement to one of the four choice targets. Auditory feedback was given to indicate the317

accuracy of the decision and the chosen level of confidence. Specifically, the tone differed for correct and incorrect trials and318

the sound was played twice in quick succession for high confidence reports. If the decision was correct, a liquid reward was319
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delivered via a solenoid-operated reward system (New Era). Vertically oriented stimuli received random feedback. Trials in320

which the monkey did not saccade to one of the choice targets within 3 seconds were aborted. To incentivize meaningful321

confidence reports, there were four possible reward levels. It required one correct decision to move from level 1 to 2, 3 further322

correct decisions to move from level 2 to 3, and 3 more to reach level 4. Subjects remained at level 4 until they reported an323

incorrect decision with high confidence, which reset the score to level 1. The higher the reward level, the larger the reward for324

a correct decision. In addition, correct decisions reported with high confidence were rewarded more generously than correct325

decisions reported with low confidence. High confidence rewards for each level were 0.04, 0.16, 0.32, 0.64 ml for monkey F326

and 0.116, 0.232, 0.464, 0.928 ml for monkey Z. Low confidence rewards were a scalar function of low confidence reward. This327

scalar value varied across sessions and was adjusted to titrate the proportion of high and low confidence responses (average 0.68328

± 0.04 for monkey Z and average 0.82 ± 0.04 for monkey F. Lower scalar values encouraged more high confidence responses329

due to a larger reward difference between high and low confidence. Each trial, the current reward level was indicated to the330

monkey by the duration of the pre-stimulus fixation period (the lower the reward level, the longer this duration). Both monkeys331

managed to stay at the highest reward level for the majority of trials (fraction of trials at reward level 4: monkey F = 64 %,332

monkey Z = 80 %). We conducted 12 successful recordings from monkey F and 17 from monkey Z (average number of reward333

level 4 trials per session, monkey F = 753; monkey Z = 1026).334

Human psychophysical experiment335

Nineteen human subjects (10 male, 9 female; ages 19-32) with normal or corrected-to-normal vision participated in the exper-336

iment. The human behavioral task was the same as the animals’ orientation discrimination task, with the exception that the337

stimulus was presented more centrally and subjects earned points instead of liquid reward (points per high confidence correct338

response as a function of reward level: 2, 4, 8, 16; points per low confidence correct response: 1, 2, 4, 8). Human subjects339

began by completing 175 training trials. We used these initial trials to estimate each subject’s orientation sensitivity. This340

sensitivity estimate determined the range of stimulus orientations used in the main experiment. We chose the range such that341

the subjects’ overall task performance level would resemble that of the animals. This procedure worked well for all but two342

subjects for whom we discarded the first block of trials. Subjects performed the main task in sub-blocks of 50 trials. Subjects343

were rewarded with monetary points in the same manner as the macaques were rewarded with liquid reward, and received344

analogous auditory feedback at the end of each trial. Every 50 trials, subjects were given additional visual feedback on their345

total point count. Subjects completed three blocks of 1100 trials. Eleven subjects judged the same filtered noise stimuli as the346

monkeys did, eight subjects were presented with deterministic sinusoidal gratings instead. Because meta-uncertainty did not347

systematically differ across both groups of subjects, we included all these datasets in our analysis except for the two subjects348

who had poorly calibrated first blocks yielding a total of 17 human observers in this analysis.349

Behavioral analysis350

We measured observers’ behavioral capability to discriminate stimulus orientation by fitting the relationship between stimulus351

orientation and probability of a ‘clockwise’ choice with a psychometric function consisting of a lapse rate and a cumulative352

Gaussian function. To compare the behavioral capability associated with low and high confidence reports, each psychometric353

function had its own steepness parameter (the standard deviation of the cumulative Gaussian). The parameters controlling lapse354

rate and the point of subjective equality (the mean of the cumulative Gaussian) were shared across both psychometric functions.355

Model parameters were optimized by maximizing the likelihood over observed data, assuming responses arise from a Bernoulli356

process. For the analysis documented in Fig. 1c, each dataset was analyzed independently.357

For each dataset, we obtained an estimate of the subject’s level of ‘meta-uncertainty’ by fitting the CASANDRE model to the358

choice-confidence data using a fitting procedure described previously24. In brief, the model had eight parameters: the standard359

deviation of the decision variable (σd) (one per contrast level, two in total), the decision criterion (Cd) (one per contrast level,360

two in total), the level of meta-uncertainty (σm), the confidence criterion (Cc) (we allowed for choice-dependent asymmetries,361

two in total), and lapse rate (λ). For each dataset, we computed the log-likelihood of a given set of model parameters across all362

choice-confidence reports and used an iterative procedure to identify the most likely set of parameter values (specifically, the363

interior point algorithm used by the Matlab function ‘fmincon’). For the analysis documented in Fig. 1d, the first and last block364

of trials completed by the human subjects were analyzed independently.365

Electrophysiological recordings366

During the orientation discrimination task, we recorded extracellular spiking activity from populations of V1 neurons through a367

chronically implanted recording chamber. Every recording session, we used a microdrive (Thomas recording) to mechanically368

advance one or two linear electrode arrays (Plexon S- and V-probes; 32 or 24 contacts) into the brain. We positioned the linear369
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arrays so that they roughly spanned the cortical sheet and removed them after each recording session. Continuous neural data370

were acquired and saved to disk from each channel (sampling rate 30 kHz, Plexon Omniplex System). To extract responses371

of individual units, we performed offline spike sorting. We first automatically spike-sorted the data with Kilosort57, followed372

by manual merging and splitting as needed (with the ‘phy’ user interface, https://github.com/kwikteam/phy). Given that the373

electrodes’ position could not be optimized for all contact sites, most of our units probably consist of multineuron clusters.374

We used the fixation task to identify visually responsive units whose activity selectively depended on stimulus orientation.375

We measured each unit’s response by expressing spike times relative to stimulus onset and counting spikes within a 1,000-ms376

window following response onset. For each unit, we chose a response latency by maximizing the stimulus-associated response377

variance58. We visually inspected orientation tuning curves and excluded untuned units from further analysis.378

Linear decoders379

To assess how well the recorded populations could support the perceptual task, we trained linear stimulus decoders to discrim-
inate between clockwise and counterclockwise stimuli. We used all stimuli whose orientation differed from 0 degrees. We first
Z-scored each unit’s spike counts. We then used these z-scored responses to estimate the set of linear weights, w = (w1, ...wn)
that best separate clockwise and counter-clockwise stimulus response patterns, assuming a multivariate Gaussian response
distribution:

w =
s

Σ
(1)

Where s is the mean difference of the stimulus-category conditioned Z-scored responses and Σ is the covariance matrix of380

the Z-scored responses. The decoder weights are calculated from observed trials. To avoid double-dipping, we excluded the381

trial under consideration from the calculation and solely used all other trials to estimate the weights. This way, we obtained a382

‘cross-validated’ stimulus judgement from the linear stimulus decoder for each trial. We quantified how well these decoders383

captured the animals’ behavior by computing the fraction of consistent perceptual choices and subtracting the number expected384

by chance based on the decoder’s and the animal’s overall success rate (Fig. 2b). In a later analysis, we compared nonlinear385

choice and confidence decoders with their linear counterparts (Fig. 2e,f). For this analysis, we used exactly the same set of386

training and hold-out trials for the linear decoders as we used for the nonlinear decoders.387

Nonlinear decoders388

We trained feed-forward multi-layer perceptron neural networks on Z-scored V1 responses to either predict the animals’ per-389

ceptual choice or their confidence report. We implemented networks within the TensorFlow framework using the AdamW390

optimiser with an objective to minimize binary cross-entropy. Models consisted of 1 hidden layer with 15 hidden units per391

layer, had a dropout rate between layers of 0.1, and the learning rate was set to 0.001. We explored various hyper-parameter set-392

tings and found the results presented here to be robust across settings. We trained networks on 80% of trials (training/validation393

set) and obtained a cross-validated prediction on the held out 20% of trials, rotating trials between training and held out set394

such that each trial had a cross-validated prediction (Fig. 2e,f). To ensure that every trial would be part of the hold out set, we395

trained 30 different networks per dataset. Just like we did for the linear decoders, we solely used cross-validated choice and396

confidence predictions in our analysis. For each trial, we selected the decoder’s prediction from the “first" network in which397

this trial was held out. We found 30 networks to be sufficient for every trial to be held out at least once.398

We ensured that choice decoders could not use decision confidence to predict choices and that confidence decoders could not399

use perceptual choice to predict confidence. Specifically, we orthogonalized choice and confidence information in the training400

trials by maintaining a fixed ratio of high and low confidence reports across clockwise and counterclockwise choices and a401

fixed ratio of clockwise and counterclockwise choices across high and low confidence reports. To do so, we randomly selected402

trials from under-represented trial types (e.g “high-confident counter-clockwise") and concatenated them to the training set.403

To minimize potentially confounding influences of cross-trial variation in the animals’ motivation, attention, and alertness, we404

only included “reward level 4" trials in the training set. Training sets on average contained 1088 trials.405

To interrogate whether the confidence decoders extracted meaningful information from V1 responses, we compared the slope406

of the psychometric function conditioned on the confidence decoder’s output (Fig. 3a). This comparison is most reliable when407

both psychometric functions contain a similar number of trials. We achieved this by using the median of the latent confidence408

variable as confidence criterion. We did this for both high and low contrast trials.409

We probed the confidence decoders with synthetic patterns of neural activity (Fig. 3c). To create these patterns, we first410

computed the cross-trial average firing rate per unit for a given stimulus orientation using only high contrast, reward level 4411

trials. We manipulated the gain of these responses by multiplying this average population response with a scalar factor. For412

each recording session, we randomly picked on the 30 trained networks for this analysis (Fig. 3d).413
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We studied the decoders’ latent variables (Fig. 4). This analysis involved computing a discriminability index. To do so, we414

first Z-scored the latent variables per stimulus condition, thus removing stimulus-driven effects. We then created two groups415

of trials based on the animals’ behavioral reports (either their perceptual choice or their confidence report). We included all416

stimulus conditions for which both response options had been used at least 5 times. Finally, we computed the area under the417

curve for both sets of trials36.418
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Figure 1 Perceptual confidence task: behavior and computational hypothesis. (a) Orientation discrimination task sequence.
After the observer fixates for at least 500 ms, four choice targets appear, followed by the stimulus. The stimulus is placed in the
neurons’ visual receptive field (RF). The observer judges whether the stimulus is rotated clockwise or counterclockwise relative
to vertical. They jointly communicate this orientation judgment and their decision confidence with a saccade towards one of
four choice targets. Horizontal saccade direction indicates the perceptual judgment, vertical saccade direction the confidence
report. Correct decisions are followed by a juice reward (Methods). (b) Psychophysical performance for monkey Z in an example
recording session. Proportion of clockwise (CW) choices for high-contrast stimuli is shown as a function of stimulus orientation,
conditioned on the observer’s confidence report. Symbol size reflects the number of trials (total 527 trials, slope ratio = 0.57).
The curves are fits of a behavioral model (Methods). (c) The ratio of the slope of high contrast psychometric functions. Sensible
confidence judgments yield values smaller than one. Grey bars indicate interquartile range. (d) Meta-uncertainty for a group
of human subjects and two monkeys. For the humans, each symbol represents metacognitive performance of one subject in
one block of trials. For the monkeys, each symbol represent metacognitive performance in one behavioral session (humans:
n = 17; monkey Z: n = 60; monkey F: n = 58). Grey bars indicate interquartile range. (e) Schematic of a process model for
decision confidence 24. (f) Proportion high confidence judgments as a function of stimulus orientation for high and low contrast
stimuli (filled vs open symbols) in an example recording session. Symbol size reflects the number of trials (total 744 trials).
Solid lines are fits of the process model shown in panel e. (g) Average firing rate as a function of stimulus orientation for two
model neurons (black vs grey) and two stimulus contrasts (open vs closed symbols). (h) (Left) Joint responses of a pair of model
neurons to repeated presentations of four stimuli that differ in orientation and contrast. (Middle) Illustration of a mapping rule that
converts the pairwise activity into a perceptual decision. (Right) Illustration of a mapping rule that converts the same responses
into a confidence report. Decision confidence is high when the sensory response is strong (towards upper right corner) and
non-ambiguous (away from line of unity). n.s. not significant, * P < 0.05, ** P < 0.01, *** P < 0.001.
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the linear stimulus decoder. The proportion of correctly predicted perceptual choices minus the proportion expected by chance
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correctly predicted perceptual choices by a linear (abscissa) and non-linear (ordinate) choice decoder. (f) Comparison of the
proportion correctly predicted confidence reports by a linear (abscissa) and non-linear (ordinate) confidence decoder. n.s. not
significant, * P < 0.05, ** P < 0.01, *** P < 0.001.
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Figure 3 The non-linear confidence decoder yields sensible and robust outputs. (a) Psychophysical performance for monkey Z in
an example recording session. Proportion of clockwise (CW) choices for high-contrast stimuli is shown as a function of stimulus
orientation, conditioned on the confidence decoder’s output. Symbol size reflects the number of trials (total 520 trials, slope ratio
= 0.88). The curves are fits of a behavioral model. (b) The ratio of the slope of both psychometric functions. Grey bars indicate
interquartile range. (c) Illustration of the confidence decoder’s output for various synthetic patterns of neural activity for an
example recording session. (d) Summary of the synthetic confidence experiments for all recording sessions. (Left) Proportion
of predicted high confidence outputs elicited by stimuli whose orientation is more or less extreme than the median stimulus
orientation. (Right) Proportion of high confidence outputs elicited by sensory input patterns with a high or low response gain
(indicated by the colored arrows in panel c). Grey bars indicate interquartile range. n.s. not significant, * P < 0.05, ** P < 0.01,
*** P < 0.001.
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Figure 4 The decoders’ latent variables follow the predictions of a computational framework of perceptual decision confidence.
(a) The latent variable of the nonlinear choice decoder plotted against stimulus orientation, for high and low contrast trials (left
vs right), conditioned on the animal’s perceptual choice (yellow vs blue) for an example dataset. (b) Summary of the decision
variable’s statistical structure across all recording sessions. Grey bars indicate interquartile range. (c) The latent variable of the
nonlinear confidence decoder plotted against stimulus orientation, for high and low contrast trials (left vs right), conditioned on the
animal’s confidence report (red vs green) for an example dataset. (d) Summary of the confidence variable’s statistical structure
across all recording sessions. Grey bars indicate interquartile range. (e) Direct comparison of the confidence variable and the
decision variable. (Left) Each point represents a single trial in an example recording session. (Right) The mean confidence level
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28. Gergő Orban, Pietro Berkes, József Fiser, and Máté Lengyel. Neural variability and sampling-based probabilistic represen-473

tations in the visual cortex. Neuron, 92(2):530–543, 2016.474

29. Olivier J. Henaff, Zoe M. Boundy-Singer, Kristof Meding, Corey M. Ziemba, and Robbe L. T. Goris. Representation of visual475

uncertainty through neural gain variability. Nature Communications, 11(1):2513, May 2020.476

30. Dylan Festa, Amir Aschner, Aida Davila, Adam Kohn, and Ruben Coen-Cagli. Neuronal variability reflects probabilistic477

inference tuned to natural image statistics. Nature Communications, 12(1):3635, June 2021.478

31. Robbe L. T. Goris, Ruben Coen-Cagli, Kenneth D. Miller, Nicholas J. Priebe, and Máté Lengyel. Response sub-additivity479

13

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 4, 2024. ; https://doi.org/10.1101/2024.08.01.606172doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.01.606172
http://creativecommons.org/licenses/by-nc/4.0/


and variability quenching in visual cortex. Nature Reviews Neuroscience, 25(4):237–252, April 2024.480

32. Robert Geirhos, Jörn-Henrik Jacobsen, Claudio Michaelis, Richard Zemel, Wieland Brendel, Matthias Bethge, and Felix A.481

Wichmann. Shortcut learning in deep neural networks. Nature Machine Intelligence, 2(11):665–673, November 2020.482

33. B. C. Skottun, A. Bradley, G. Sclar, I. Ohzawa, and R. D. Freeman. The effects of contrast on visual orientation and spatial483

frequency discrimination: a comparison of single cells and behavior. Journal of Neurophysiology, 57(3):773–786, March484

1987.485

34. D. J. Heeger. Normalization of cell responses in cat striate cortex. Visual Neuroscience, 9(2):181–197, August 1992.486

35. David Ferster and Kenneth D. Miller. Neural mechanisms of orientation selectivity in the visual cortex. Annual review of487

neuroscience, 23(1):441–471, 2000.488

36. K. H. Britten, W. T. Newsome, M. N. Shadlen, S. Celebrini, and J. A. Movshon. A relationship between behavioral choice489

and the visual responses of neurons in macaque MT. Visual Neuroscience, 13(1):87–100, February 1996.490

37. J. V. Dodd, K. Krug, B. G. Cumming, and A. J. Parker. Perceptually bistable three-dimensional figures evoke high choice491

probabilities in cortical area MT. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience,492

21(13):4809–4821, July 2001.493

38. Adrian G. Bondy, Ralf M. Haefner, and Bruce G. Cumming. Feedback determines the structure of correlated variability in494

primary visual cortex. Nature Neuroscience, 21(4):598–606, April 2018.495

39. Ralf M. Haefner, Pietro Berkes, and József Fiser. Perceptual Decision-Making as Probabilistic Inference by Neural Sampling.496

Neuron, 0(0), April 2016.497

40. Hendrikje Nienborg and Bruce G. Cumming. Decision-related activity in sensory neurons reflects more than a neuron’s498

causal effect. Nature, 459(7243):89–92, May 2009.499

41. Katrina R. Quinn, Lenka Seillier, Daniel A. Butts, and Hendrikje Nienborg. Decision-related feedback in visual cortex lacks500

spatial selectivity. Nature Communications, 12(1):4473, July 2021.501

42. Robbe L. T. Goris, Corey M. Ziemba, Gabriel M. Stine, Eero P. Simoncelli, and J. Anthony Movshon. Dissociation of Choice502

Formation and Choice-Correlated Activity in Macaque Visual Cortex. Journal of Neuroscience, 37(20):5195–5203, May503

2017.504

43. Pooya Laamerad, Liu D. Liu, and Christopher C. Pack. Decision-related activity and movement selection in primate visual505

cortex. Science Advances, 10(22):eadk7214, May 2024.506

44. Aaron J. Levi, Yuan Zhao, Il Memming Park, and Alexander C. Huk. Sensory and Choice Responses in MT Distinct from507

Motion Encoding. Journal of Neuroscience, 43(12):2090–2103, March 2023.508

45. Corey M. Ziemba, Robbe L. T. Goris, Gabriel M. Stine, Richard K. Perez, Eero P. Simoncelli, and J. Anthony Movshon.509

Neuronal and behavioral responses to naturalistic texture images in macaque monkeys, February 2024. Available from510

http://doi.org/10.1101/2024.02.22.581645.511

46. Navindra Persaud, Peter McLeod, and Alan Cowey. Post-decision wagering objectively measures awareness. Nature512

Neuroscience, 10(2):257–261, February 2007.513

47. Thomas O. Nelson. A comparison of current measures of the accuracy of feeling-of-knowing predictions. Psychological514

Bulletin, 95(1):109–133, 1984.515

48. P. Heggelund and K. Albus. Response variability and orientation discrimination of single cells in striate cortex of cat. Exper-516

imental Brain Research, 32(2):197–211, June 1978.517

49. Robbe L. T. Goris, J. Anthony Movshon, and Eero P. Simoncelli. Partitioning neuronal variability. Nature Neuroscience,518

17(6):858–865, June 2014.519

50. Zoe M. Boundy-Singer, Corey M. Ziemba, Olivier J. Hénaff, and Robbe L. T. Goris. How does V1 population activity inform520

perceptual certainty?, September 2023. Available from http://doi.org/10.1101/2023.09.08.556926.521

51. Jeffrey M. Beck, Wei Ji Ma, Xaq Pitkow, Peter E. Latham, and Alexandre Pouget. Not Noisy, Just Wrong: The Role of522

Suboptimal Inference in Behavioral Variability. Neuron, 74(1):30–39, April 2012.523

52. Daniel L. Adams, John R. Economides, Cristina M. Jocson, John M. Parker, and Jonathan C. Horton. A watertight acrylic-524

free titanium recording chamber for electrophysiology in behaving monkeys. Journal of Neurophysiology, 106(3):1581–1590,525

September 2011.526

53. D. H. Brainard. The Psychophysics Toolbox. Spatial Vision, 10(4):433–436, 1997.527

54. Kyler Eastman and Alexander Huk. PLDAPS: A Hardware Architecture and Software Toolbox for Neurophysiology Requiring528

Complex Visual Stimuli and Online Behavioral Control. Frontiers in Neuroinformatics, 6, 2012.529

55. William T. Newsome, Kenneth H. Britten, and J. Anthony Movshon. Neuronal correlates of a perceptual decision. Nature,530

341(6237):52–54, September 1989.531

56. Hendrikje Nienborg and Bruce G. Cumming. Decision-Related Activity in Sensory Neurons May Depend on the Columnar532

Architecture of Cerebral Cortex. Journal of Neuroscience, 34(10):3579–3585, 2014.533

57. Marius Pachitariu, Nicholas A Steinmetz, Shabnam N Kadir, Matteo Carandini, and Kenneth D Harris. Fast and accurate534

spike sorting of high-channel count probes with KiloSort. In Advances in Neural Information Processing Systems, volume 29.535

Curran Associates, Inc., 2016.536

58. Matthew A. Smith, Najib J. Majaj, and J. Anthony Movshon. Dynamics of motion signaling by neurons in macaque area MT.537

Nature Neuroscience, 8(2):220–228, February 2005.538

539

14

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 4, 2024. ; https://doi.org/10.1101/2024.08.01.606172doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.01.606172
http://creativecommons.org/licenses/by-nc/4.0/


540

15

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 4, 2024. ; https://doi.org/10.1101/2024.08.01.606172doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.01.606172
http://creativecommons.org/licenses/by-nc/4.0/


Supplementary Information541

F230208

a

0
Orientation (deg)

–25 25

Pr
op

or
tio

n 
“C

W
”

0

0.5

1.0

b c d

0
Orientation (deg)

–25 25

Pr
op

or
tio

n 
“C

on
fid

en
t”

0

1.0

F230208

e

Hi
gh

 c
on

tra
st

 s
lo

pe
 (d

eg
–1

) 5

Mon
ke

y Z

Mon
ke

y F

Hum
an

s 1
-3

0

Sl
op

e 
ra

tio
 

(h
ig

h:
lo

w 
co

nt
ra

st
)

1

1.5

Mon
ke

y Z

Mon
ke

y F

Hum
an

s 1
-3

0 Pr
op

or
tio

n 
‘‘C

on
fid

en
t’’ 1

0

Human
Monkey F
Monkey Z

n.s
n.s.

CASANDRE
High contrast
Low contrast

CASANDRE
High contrast
Low contrast

|or
i| <

 m
ed

ian

|or
i| >

 m
ed

ian

co
ntr

as
t =

 lo
w

co
ntr

as
t =

 hi
gh

***
***

*** ***n.s.*** ******

Supplementary Figure 1 Further comparison of human and monkey behaviour. (a) Psychophysical performance for monkey
F in an example recording session. Proportion of clockwise (CW) choices is shown as a function of stimulus orientation for
high and low contrast stimuli (filled vs open symbols). Symbol size reflects the number of trials (total 1390 trials, slope ratio =
0.46). The curves are fits of a process model for confidence (CASANDRE 24). (b) Analysis of perceptual sensitivity. The slope
of the high contrast psychometric function is shown for a group of human observers and both monkeys. We only included the
human subjects for whom stimulus contrast and stochasticity was identical to the values used in the monkey experiments (n =
11). Orientation sensitivity of the humans and monkeys was comparable. Grey bars indicate interquartile range. (c) The ratio of
the slope of the high and low contrast psychometric functions for a group of human subjects and both monkeys. The contrast
manipulation had a stronger impact on the monkeys’ perceptual sensitivity. We speculate that this may be due to the stimuli being
presented more centrally in the human experiments. Grey bars indicate interquartile range. (d) Proportion of high confidence
judgments as a function of stimulus orientation for high and low contrast stimuli (filled vs open symbols) in an example recording
session. (e) (Left) Proportion of high confidence reports elicited by stimuli whose orientation is more or less extreme than the
median stimulus orientation. (Right) Proportion of high confidence reports elicited by high and low contrast stimuli. Grey bars
indicate interquartile range. n.s. not significant, * P < 0.05, ** P < 0.01, *** P < 0.001.
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Supplementary Figure 2 Further analysis of linear and non-linear decoders. (a) Comparison of the orientation of the hyper-
planes used to slice neural population space by a linear choice decoder (trained on all data), stimulus decoder (trained on
all non-ambiguous trials), ambiguous decoder (trained to predict choices on ambiguous trials only), and confidence decoder
(trained on all data). Unrelated hyperplanes tend to be orthogonal in high-dimensional spaces (vector angle = 90 deg). Note
that this is not the case for the choice and stimulus decoder, nor for the stimulus and ambiguous decoder. Grey bars indicate
interquartile range. (b) Task performance of the linear stimulus decoder is plotted against the number of units in the population
(left), the non-linear choice decoder’s latent variable’s discriminability (middle), and the non-linear confidence decoder’s latent
variable’s discriminability (right). Larger neural populations tended to be better able to support the perceptual task. Populations
that contained more stimulus information tended to enable better decoding of perceptual choices and confidence reports. n.s.
not significant, * P < 0.05, ** P < 0.01, *** P < 0.001.
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