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Abstract
Background

Pseudomonas aeruginosa (PA) is a ubiquitous, Gram-negative, bacteria that can attribute its
survivability to numerous sensing and signaling pathways; conferring fithess due to speed of
response. Post-transcriptional regulation is an energy efficient approach to quickly shift gene
expression in response to the environment. The conserved post-transcriptional regulator RsmA
is involved in regulating translation of genes involved in pathways that contribute to virulence,
metabolism, and antibiotic resistance. Prior high-throughput approaches to map the full regulatory
landscape of RsmA have estimated a target pool of approximately 500 genes; however, these
approaches have been limited to a narrow range of growth phase, strain, and media conditions.
Computational modeling presents a condition-independent approach to generating predictions for
binding between the RsmA protein and highest affinity mRNAs. In this study, we draft a two-state
thermodynamic model to predict the likelihood of RsmA binding to the 5’ UTR sequence of genes
present in the PA genome.

Results

Our modeling approach predicts 1043 direct RsmA-mRNA binding interactions, including 457
novel mMRNA targets. We then perform GO term enrichment tests on our predictions that reveal
significant enrichment for DNA binding transcriptional regulators. In addition, quorum sensing,
biofilm formation, and two-component signaling pathways were represented in KEGG enrichment
analysis. We confirm binding predictions using in vitro binding assays, and regulatory effects
using in vivo translational reporters. These reveal RsmA binding and regulation of a broader
number of genes not previously reported. An important new observation of this work is the direct
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regulation of several novel mRNA targets encoding for factors involved in Quorum Sensing and
the Type IV Secretion system, such as rsal and mvarT.

Conclusions

Our study demonstrates the utility of thermodynamic modeling for predicting interactions
independent of complex and environmentally-sensitive systems, specifically for profiling the post-
transcriptional regulator RsmA. Our experimental validation of RsmA binding to novel targets both
supports our model and expands upon the pool of characterized target genes in PA. Overall, our
findings demonstrate that a modeling approach can differentiate direct from indirect binding
interactions and predict specific sites of binding for this global regulatory protein, thus broadening
our understanding of the role of RsmA regulation in this relevant pathogen.

Keywords

Post-transcriptional regulation, Computational modeling, RNA regulation, RNA-binding proteins,
Regulatory networks, Transcriptional control, Systems biology, RNA-protein interactions, RNA
secondary structure, Pseudomonas aeruginosa

Background

Pseudomonas aeruginosa (PA) is a widespread, opportunistic pathogen that contributes to
nosocomial infection and mortality in immunocompromised individuals. Critical to pathogenesis is
the ability of PA to rapidly alter gene expression to respond to the environment. The post-
transcriptional regulator RsmA, a member of the CsrA family of RNA-binding proteins (RBPs),
achieves this rapid response via post-transcriptional regulation. RsmA is a 6.9 kDa homodimeric
protein whose regulatory influence is of clinical relevance as it regulates the expression of genes
involved in motility, cell adhesion [1], biofilm formation [2], and secretion of effector proteins [1].

The mechanism by which Rsm/Csr family proteins repress translation is by blocking ribosomal
pairing to the Ribosome Binding Site (RBS) present in the 5" untranslated region (UTR) of an
mRNA [3,4]. This can occur through direct binding to and occlusion of the RBS sequence, or
through binding in adjacent regions that result in structural rearrangement that reduces [2] or
increases [5] accessibility of the RBS. In PA, the RsmA protein exerts tight control of pathways
associated with planktonic colonization and sessile biofilm forming states [6]. In addition, the CsrA
paralog RsmF/N[7,8] also binds and regulates overlapping [9] and exclusive [10] genes relative
to RsmA. The regulatory activity of RsmA itself is sensitive to control by the GacA/GacS two-
component signaling (TCS) pathway, which activates expression of antagonistic SRNA sponges
RsmY and RsmZ [11] that sequester the RsmA protein. Upon sequestration by these sRNA
sponges, the regulatory effect of RsmA is inhibited and produces an inverse effect on translation
of directly bound mRNAs. RsmA binds and regulates genes globally throughout the transcriptome.
RsmA knockout results in large phenotypic changes to the cell including decreased infection
phenotypes [12], impedes active colonization, and promotion of chronic infection states [13].

Full characterization of the binding repertoire of a post-transcriptional regulator, such as RsmA,
is difficult to adequately capture using a single high throughput approach [14]. Wide variety in
gene expression and regulatory effects have been observed for Csr/Rsm family proteins due to
various stresses or infectious states [15,16]. This is partially due to the fact that the pathways
that govern the cellular transition from active colonization to chronic biofilm forming states are
complex, deeply interlinked, and sensitive to the experimental contexts they are studied in [17].
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87  Efforts to experimentally map the regulatory influence of RsmA range from broad, high
88  throughput sequencing screens to individual in vitro biochemical assays. Overall, these high
89  throughout approaches have estimated a target pool of approximately 500 genes that are either
90 directly or indirectly regulated by RsmA [1,9,10,18,19]. Direct binding has been biochemically
91  confirmed in vitro for fewer than 2% of this estimated pool of 500 genes. To date, confirmed
92  direct bound mRNA targets of RsmA include tssA1, tha1, magA [1], ps! [2], rahU, algU, pqsR,
93  hxul [20], mucA [9], and retS [21].
94
95  While sequencing approaches have been valuable for understanding the breadth of regulation
96 influenced by the Gac/Rsm pathway, they may not capture potential targets due to low gene
97  expression, strain to strain variation, condition dependent expression, heterogenous expression,
98 sample manipulation, or high limits of detection. For example, microarray, RNA-seq, and
99 proteomic screens fall short when assessing whether post-transcriptional regulation is occurring
100 in adirect (i.e. direct binding of RBP to transcript) or indirect (i.e. network) manner. RNA-seq
101 based approaches can also lose detection of transcripts that are not always degraded when
102  bound by a post-transcriptional regulator, which convolute differential expression-based
103  analyses; thus, missing potential targets of the protein [22]. In contrast, cross-linking
104  immunoprecipitation (CLIP) and RNA immunoprecipitation (RIP) sequencing approaches can
105 identify more direct binding interactions; however, data resulting from these techniques lose
106  positional resolution for mMRNA binding sites for small proteins like RsmA. In addition, cross-
107 linking can introduce false positives due to nonspecific linkages between the protein of interest
108 and nearby RNA. Finally, many available high throughput datasets are limited to a narrow range
109  of growth phase, strain, and media conditions that do not capture the full diversity of conditions
110  the organism experiences natively. This presents a bottleneck in discovery, as gene expression
111 varies widely across experimental conditions [23] and can be influenced by extensive strain
112  diversity [24,25].
113
114  Computational modeling offers a condition-independent method for predicting binding partners
115  of globally binding proteins. Thermodynamic models of protein-RNA interactions have
116  demonstrated high predictive capabilities, such as that for the PUF4 protein interactions in
117  Saccharomyces cerevisiae [26]. Similarly, thermodynamic models to predict binding and
118 translation rates for ribosomes [27,28] have been used for both prediction of native translation
119  and forward design of effective RBS sequences [29]. Although the small handful of confirmed,
120 direct RsmA targets limits the ability to generate accurate models of binding using learning
121  algorithms, much more data of direct targets has been collected for its closely related protein
122  CsrA as genome wide screens have been performed to predict binding sites of the CsrA protein.
123  In 2014, a sequence-based model was crafted for the Csr/Rsm family proteins to identify
124  potential targets within transcriptomes of E. coli, P. aeruginosa, L. pneumatophilia, and S.
125  enterocolitica [20]. In this work, we improve upon this approach by crafting a biophysical model
126  of interaction built upon additional molecular features that influence binding which yields an
127  energetic prediction for the probability of an interaction between RsmA and an mRNA in P.
128  aeruginosa
129
130  The Escherichia coli CsrA protein has been shown to be well suited for construction of a
131 biophysical model of protein-RNA binding with characterized, empirically-derived, parameters
132  [30], as core elements of binding mechanism that governs its post-transcriptional regulatory
133 effect have been biochemically assessed. These principal rules of interaction include (1) the
134  clear definition of a core ANGGA binding motif [31], (2) the energetic contribution of individual
135 nucleotides within the core motif, (3) establishing a minimal distance between binding sites to
136  reduce steric hindrance within the homodimer [4], and (4) position of binding within stem loop
137  structures of the bound RNA [31] (Fig. 1a). Previously, these core rules were leveraged to craft
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138 a biophysical model to observe binding patterns of the CsrA protein in E. coli [30] which yielded
139 insights in the various molecular features that influence CsrA binding to 236 mRNAs [30]

140

141  Given this established prior framework we hypothesized that we could craft a model to capture
142  RsmA binding and regulation of genes in P. aeruginosa. Homologs of CsrA are found widely
143  across the y-proteobacteria [32,33]. Within the Pseudomonas genus, homologs such as RsmA
144  and RsmE share high sequence and structural similarity with CsrA [34]; the protein sequence of
145  P. aeruginosa RsmA is 85% identical to its ortholog CsrA in E coli [35]. Furthermore, similar
146  binding mechanisms. SELEX studies have also shown that the RsmA protein shares high

147  affinity for the same binding motif ANGGA [36], and NMR structural studies in the P. fluorescens
148 homolog RsmE also recapitulated affinity for this core motif [34]. In addition, the crystal

149  structures of Csr/Rsm family proteins in complex with RNA are available in the Protein Data

150  Bank for Escherichia coli [1Y00], Yersinia enterocolitica [2BTI], Pseudomonas protegens pf-5
151 [2MFO], Pseudomonas fluorescens [2JPP], and Pseudomonas aeruginosa [7YRT7]. In tandem
152  with models that leverage data from crystal structures [37] these data can be used to

153  computationally predict changes in free energy for a given motif.

154

155  Here, we modify, tune, validate, and improve upon a prior model constructed for the E. coli CsrA
156  protein [30] to accurately predict breadth of binding and regulation by the RsmA protein across
157  the entire Pseudomonas aeruginosa PA 14 transcriptome. This approach allows us to probe the
158 entire sequence space computationally, thus lifting the constraints presented by prior

159  experimental approaches. In an improvement upon our prior model, we consider alternative

160  motifs given the generation of a crystal-structure derived, RsmA-specific, position weight matrix.
161 Unlike GGA motif-based screens, our model also yields predictions regarding the mechanism of
162  binding to a given target including: the approximation of binding strength, diversity of binding
163  peak frequencies, and predicting the effect binding has on translation. We also leverage several
164  publicly available high throughput sequencing datasets to statistically verify the accuracy of our
165  predictions. In doing so, we predict 1043 genes to be bound by RsmA and identify 457 genes
166  with no prior binding evidence. Our pool of filtered predictions is enriched in transcriptional

167  regulators and virulence associated pathways. An important resulting observation of this work is
168  the experimental characterization of two novel transcriptional regulators rsaL and mvaT, mRNA
169  encoding for factors involved in Quorum Sensing and the Type IV Secretion System, among
170  others. In this work, we use model predictions to confirm binding, binding site pockets, and

171 regulation of these mRNAs in vitro and in vivo. This characterization both validates the

172  predictive capabilities of the model and expand upon our understanding of RsmA regulation.
173  Overall, our constructed model opens up new avenues for differentiating direct from indirect
174  targets of RsmA and aids in generating hypotheses for the varying regulatory mechanisms

175  governing complex signaling networks in PA.

176

177  Materials and Methods

178

179  Construction of model and definition of energy terms

180 A free energy model constructed for describing binding by the CsrA protein from Escherichia
181 coli was described in [30]. In our current approach, we have modified the model to include the
182  nucleotide contributions of bases other than the core ANGGA. This was also tuned to capture
183 RsmA-mRNA interactions using the structure of the P. fluorescens RsmE in complex with hcnA
184  (PDB: 2JPP). The thermodynamic model relies upon the sum of energetic contributions of 3 key
185  parameters: 1- the position weight matrix of individual nucleotide contributions to binding (AGsitet
186 & AGsie2), 2- the change in free energy from the unbound to bound state of the mMRNA (AGmrna),
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187  3- the distance between binding sites to reflect steric effects of dimer binding (AGcooperativity) (Fig-
188 1a). Total free energy AGuwtalis calculated using the following two-state thermodynamic equation,
189  previously defined in [30]:

190

191 AGi.“oiral = (AGsitel + AGsiteZ + AGcooperativity + AGmRNA bound) - AGmRNA unbound

192

193  After sorting the summed AGtal Values for each pair of binding sites across the sequence space
194  (Fig. 1b) and the position of binding sites for the top 15, highest affinity, predictions were

195  converted into structural constraints within the open source translation rate calculator, OSTIR
196 (Fig. 1c) [38]. This yielded a measure of the translation initiation rate for the bound (TIRrsma bound
197 i) and unbound (TIRunbound) States for each prediction of binding positions. Effects of binding on
198 translation were calculated as follows:

199

200 Ri — TIRunbound
TIRRsma bouna i

201

202 TIR ratios were used to predict the effect that RsmA binding would have on translation, and
203  binned into three categories: repressed (R > 1.2), activated (Ri < 0.8), or no impact (0.8 < Ri<
204 1.2) based on boundaries defined in [30].

1CTGGCAGGGACCTGCACACGGATTGTGTGTGTTCCAGAGATG
Site 1 Site 2
¢ AGiotal =
305 prediction 1 - Top 15 binding site
% predictions in
- AGgier > v p 4 ensemble
Y 200 = — 7‘)! — mean total affinity
5 . 10 B1 Open Source Translation
g Initiation Rate Calculator
3 (OSTIR)
prediction nCr g
L AGeomperiay ) 110 "o )
UTR length 0 +CDS length
AGrota = (AGsiter + AGsie2 + AG +AG ) - AG binding site position
Calculation of the total affinity for Sorting conformations from Filtering to differentiate direct ~ Calculating change in
one possible conformation most to least probable from indirect/non-targets translation rate due to binding

205

206 Figure 1: Overview of energy parameters and procedure of the RsmA biophysical model. A) Core energy terms
207 define the energetic parameters of RsmA binding to a specific RNA sequence and model the change in free energy
208 (AGuta)) Of the system from an unbound to a bound state. B) Each pair of binding site predictions are evaluated

209 across the entire sequence space per gene, and sorted from most to lease probable given the free energy of binding
210 AGiota. C) Predictions are filtered given favorability of the change in free energy (AGtotal) and frequency of binding
211 sites at a given location. D) The top 15 ranked predictions are then used to calculate the change in Translation

212  Initiation Rate due to binding.

213  Calculation of the per-nucleotide contributions to binding

214  The protein sequence of P. aeruginosa RsmA is 85% identical to its ortholog CsrA in E coli. Key
215  residues for RNA recognition, such as the arginine present at position 44 are conserved. The
216  Rosetta-Vienna RNP AAG tool [37] was used to measure the relative change in binding affinities
217  between a wild-type hcnA sequence GGGCUUCACGGAUGAAGCCC (motif in bold) and all
218  possible mutants within the 5-nt binding motif at positions 8-12. The solution NMR structure of
219  Pseudomonas fluorescens RsmE in complex with the hcnA mRNA [39](PDB: 2JPP) was used
220 as the scaffold of the model. This approach incorporates the RNAfold command within the

221  Vienna RNA package 2.0 [40] to calculate the minimum free energy of each unbound mutant
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222  (Supplementary table 2). The position weight matrix of per-nucleotide contributions to binding
223  was calculated as follows:
224
225 AGre; = max(AAGgyp;) — AAGrypnt,i
226
227  Wherein i is the position of the nucleotide within the 5 nt binding motif and nt is the specific
228 nucleotide mutation (ATGU) at that position. To generate an energetic measure of the individual
229  nucleotide contribution, each AG value was subtracted from the maximum affinity found across
230 all 4 nucleotides at a given position. The AG.; was then converted from kcal/mol to RT units
231  given the gas constant at 37° C (R = 0.616).
232
233  Generation and modeling of UTR sequences from the PA14 genome
234  The 5 Untranslated Region (UTR) of an mRNA transcript is the primary region where the
235  Csr/Rsm family proteins enact their regulatory function by influencing ribosome binding. We
236  selected the 5’ UTR plus the first 100 bases of coding sequence (CDS) to generate predictions
237  via modeling. Prior RNA sequencing in [41] defined the transcription start sites (TSS) across the
238  P. aeruginosa PA14 transcriptome at 28° C and 37° C. Where the primary TSS was defined, we
239  selected nucleotides from the TSS site to 100 bases into the CDS. If no TSS was known, we
240 selected -100 bases from the start site to encompass the RBS region. Sequences were
241  extracted from the Pseudomonas aeruginosa UCBPP-PA14 reference genome assembly
242  GCF_000014625.1. This yielded 5285 UTR sequences which are summarized in
243  Supplementary table 2. Predictions of all combinations of 2 binding sites were performed for
244  each of the modeled 4861 sequences in parallel on the Stampede2 compute cluster at the
245  Texas Advanced Computing Center (TACC) at The University of Texas at Austin. Associated
246  python scripts used to run the model on the Stampede2 compute cluster can be found at
247  https://github.com/ajlukasiewicz/rsm_biophysical _model
248
249  Ensemble analysis of predicted binding sites and peak calling
250  All possible combinations of binding pairs are evaluated across the entire sequence space, and
251  sorted by affinity. This yields an ensemble of predictions per gene with varying degrees of free
252  energies. We then transform the overall affinity score AGiotal into a measure of the likelihood of
253  binding via the Boltzmann probability distribution:

e_ﬁAGtotal;a
254 p(a) = Y M o= BhGrotas

255  Wherein the probability of a particular binding conformation (p(a)) is a function of the AGiota for
256  anindividual prediction given the distribution of all possible conformations for a gene. 3 (0.45) is
257  ascaling factor based on thermodynamic predictions of RNA-RNA interactions [30]. Here we
258  alter the scaling factor for calculating this probability using predicted energy and affinity values
259  from our prior model [30] and affinities derived from literature. Measured binding affinities were
260 converted into free energy using the following equation: A(G) = RT In(kD) wherein the gas

261  constant RT at 37° C (-0.616). Dissociation constants were found via prior EMSA experiments
262  for CsrA binding to glgC, nhaR, cstA, pgaA, and rpoE [42—-46]. The Bolzmann probability was
263 used to weigh predicted AGuta affinity scores in calculating an overall average. We selected a
264  range of B values from 0.35 to 0.45. = 0.4 was determined to generate the highest linear

265 correlation between the predicted AG value and the measured affinity (adjusted R2 = 0.98, p-
266  value = 0.0009527). Linear regression tests were performed in R.

267

268  Out of all predictions per gene, the 300 top predictions were used to calculate the Bolzmann
269  probability given the inflection point of energy predictions observed per gene in [30]. The

270 frequency of binding site position predictions was calculated as a function of the Bolzmann
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271  probability of binding to that position. These frequencies were then used to calculate densities of
272  binding interactions across the UTR itself, yielding peaks which we interpret as footprints or
273  binding sites of RsmA. Using the /lo/B sequence (Fig. 2b; supplementary table 3) as a

274  negative control, we established the peak height threshold for binding to be the maximum height
275  for loIB binding site frequencies, 0.0064.

276

277  Peaks in binding site density data were called using the signal function within SciPy 1.0 [10] with
278  the following parameters: the peak width was set from 5 to 15 to represent the range between
279  the minimum base pairing footprint and the maximum number of possible predictions for a

280 single site. The minimum height for a peak was set at 0.0064, which was determined to be the
281 maximum height for a negative control UTR, /o/B. The script for parsing and calling peaks can
282  be found in the rsm_biophysical_model GitHub repository as peak_calling.py. Analysis and

283  generation of footprint density plots was performed in R (Version 4.3.1).

284

285 RNA Co-immunoprecipitation

286  Strain PA14ArsmAF carrying an empty vector control (pJN105), pRsmAmiss, PRsMFiss, or the
287  RNA binding mutant expressing plasmids pRsmA(R44A)uiss and pRsmF(R62A)+iss were grown
288 at 37C with shaking at 300 RPM in 200 ml Tryptic Soy Broth (TSB) supplemented with 20 mM
289  MgClz, 5 mM EGTA, 15 pg/ml gentamicin, and 0.1% arabinose to mid-log phase, and pelleted at
290 4C. Cells pellets were immediately resuspended and lysed in Qiagen native purification lysis
291  buffer (50 mM NaH.PQO4, 300 mM NaCl, 10 mM imidazole, pH 8.0) supplemented with 2.5 mM
292  vanadyl ribonucleoside complex (NEB) (to inhibit RNase activity), 1 mg/ml lysozyme, and 0.1%
293  Triton X-100. Lysis was completed by three freeze-thaw cycles. Lysates were treated with 10 pl
294 RQ-1 RNase-free DNase and cleared by centrifugation. An aliquot was removed from the

295 cleared lysate for total RNA isolation and preserved in TRIzol (Thermo Fisher), and the

296 remaining lysate was incubated with nickel-nitrilotriacetic acid (Ni-NTA)—agarose at 4°C for 1 h
297  under nondenaturing binding conditions. Ni-NTA—agarose was then loaded into a column and
298 washed 3 times with nondenaturing binding buffer containing 10 mM imidazole. Protein and
299 associated RNAs were eluted in 4 fractions with 250 mM imidazole and 4 fractions with 500 mM
300 imidazole. An aliquot of each fraction was analyzed by western blot, and fractions containing
301  RsmAsiss, RsmFhiss or the respective RNA binding mutant version of the proteins were

302 individually pooled as were the equivalent fractions from the vector control strain. Each pool was
303 treated with TRIzol and RNA was extracted according to the manufacturer's protocol. RNA was
304 treated with RQ1 RNase-free DNase and concentrated using RNA Clean and Concentrator kit
305 (Zymo).

306

307 Library preparation and Next-Generation Sequencing Analysis

308  Purified total RNA and co-IP enriched RNA was treated with Ribo-Zero (lllumina) according to
309 the manufacture and purified and concentrated with Zymo Clean and Concentrator 5. First

310  strand cDNA was generated using Superscript I| RT (Invitrogen) and Random Primer 9 (NEB)
311 and converted to double stranded cDNA using Second Strand cDNA Synthesis Kit (NEB)

312  according to the manufacturer’s protocols. cDNA was purified using Zymo RNA Clean and

313  Concentrator Kit modified for cDNA recovery. Libraries were prepared using the Nextera XT
314  DNA Library Kit (lllumina, San Diego, CA) according to the manufacture’s protocol including
315  tagment of cDNA, amplicons indexation/barcoding through PCR amplification using Nextera
316  master mix, clean-up, and pooling. Finally, pooled and barcoded amplicons were single end
317  sequenced on an lllumina NextSeq500 System. Sequencing reads were trimmed using

318  Trimmomatic to remove library adapters. Trimmed reads were aligned to a Pseudomonas

319  aeruginosa PA14 reference genome using bowtie2 [47]. Aligned reads were then transformed
320 into binary alignment maps (BAM files) using samtools [48]. Finally, files were analyzed in

321  Geneious software to obtain count tables containing transcripts per million read counts for each
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322  gene. Raw sequencing outputs were uploaded to the publicly available Sequence Read Archive
323  (SRA) under the Bioproject ID PRINA1131461.

324  Analysis of gene expression was performed using the DEseq2 package [49] in R. To determine
325  enriched genes, we first calculated the differential expression between the total RNA and the
326  overexpressed RsmA-his pulldown genes. Genes with L2FC >1 and p adj < 0.005 were

327  considered enriched in our dataset (Supplementary table 6).

328

329 Proteomic sample preparation and analysis

330  Overnight cultures of WT P. aeruginosa PA103 and ArsmA, ArsmF, and ArsmAF mutants were
331  diluted to an optical density of 0.1 at 600 nm (ODsqo) in tryptic soy broth supplemented with 1%
332  glycerol, 100 mM monosodium glutamate, and 2 mM EGTA. Cultures were incubated at 37°C
333  with shaking until the ODsoo reached 1.0. Cells (1 ml) were harvested by centrifugation (10 min,
334 4°C, 12,500 x g). Cell pellets were washed with 1 ml PBS and then stored at -80°C. Proteomic
335 sample preparation and analyses were performed by the VIB Proteomics Core, Gent, Belgium.
336 Differentially expressed proteins were identified using the DEseq2 package [49] in R. Proteins
337  with L2FC >1 and p adj < 0.005 were considered differentially expressed in our dataset

338 (Supplementary table 7).

339

340  Filter binding assay for testing binding interactions in vitro

341  Assessment of binding interactions between RsmA and several candidate genes were

342  evaluated using an in vitro nitrocellulose filter binding assay. Sequences generated with efficient
343  T7 promoter design and synthesized (IDT). Sequences for these targets can be found in

344  Supplementary table 3. RNA was produced via in vitro transcription (Thermo T7 megascript
345  kit) with supplemented 3.75 mM guanosine for efficient radiolabeling. P* labeled ATP was

346  integrated to the 5’ end of purified RNA with PNK and cleaned up using silica filter spin column
347  extraction (NEB Monarch).

348  His-tagged RsmA was purified using nickel chromatography. Briefly, BL21 E. coli cells were
349 transformed with an arabinose-inducible, his-tagged RsmA encoding plasmid. These were
350 grown in overnight cultures and seeded into large shaker flasks until reaching exponential
351 phase (OD600 = 0.6).

352  Binding strengths between purified RsmA and various radiolabeled RNA sequences were

353  assessed using nitrocellulose filter binding. Serially diluted RsmA was incubated with 0.5 nM
354  p32 radiolabeled RNA in an optimized binding buffer (10 mM Tris-HCI pH 7.5, 100 mM KCI, 10
355 mM MgCI2, 10 mM DTT, 10 ug/mL heparin, Murine RNase inhibitor) at 37 C for 30 minutes.
356  Following incubation, reactions were loaded into the Bio-Dot microfiltration apparatus (Bio-Rad)
357  and light suction was applied to pass the reactions through sandwiched 0.45 mM nitrocellulose
358 and N+ (Cytiva Amersham™ Hybond™-N+ ) membranes. Signal intensities were captured via
359  phosphorimaging on the Amersham Typhoon 5, and measured using Bio-Rad Image Lab

360 software. Dissociation constants were calculated using the modified hill equation described in
361 [50] with a Hill Constant of 2 to reflect cooperative binding of the homodimeric form of the RsmA
362  protein.

363

364  Construction of translational reporters for assessing effects on regulation in PA103

365 The effects of RsmA binding on translation were assayed using a translational GFP reporter
366 system. The E. coli and P. aeruginosa compatible plasmid, pJN105, encodes for a arabinose
367 inducible RsmA expression and was modified as follows: The constitutive lacUV5 promoter

368  upstream of the 5° UTR of our gene of interest was inserted into pJN105 along with the first 99
369 bases of coding sequence. This leader was fused to the GFPmut3 sequence with a trailing SRA
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370 degradation tag (M0051, sequence from IGEM database). Sequences for our genes of interest,
371  along with positive and negative controls were amplified with compatible primers and inserted
372  through Gibson assembly (NEB HiFi Gibson assembly kit). pJN105 was encoded with an

373  inducible RsmA region via the pBAD promoter and constitutive araC expression. All plasmids
374  and primers used in this study can be found in Supplementary table 3.

375  Following assembly, plasmids were transformed using heat shock into chemically competent
376 DHb5« E. coliand plated on 15 ug/mL Gentamycin supplemented (Sigma-Aldrich) LB plates.
377  Plasmids were extracted from overnight cultures using the Zymo zippy miniprep kit and

378 submitted to Plasmidsaurus for sequence confirmation. Following extraction, plasmids were
379 then transformed into chemically competent PA103 ARsmA/RsmF strains and plated on LB-
380 agar media supplemented with 80 ug/mL Gentamycin antibiotic. Transformed strains were

381  grown overnight in LB broth supplemented with 80 ug/mL Gentamycin (Sigma) and then seeded
382  into 30 mL of supplemented LB culture at a 1:100 dilution. Upon reaching OD 0.02, cultures
383  were split into two flasks and half were induced with 0.5% L-arabinose. Induced and uninduced
384  cultures were monitored for fluorescence intensity on the Cytation3 plate reader at 484 and 513
385  excitation and emission wavelengths. Fluorescence and OD600 measurements were taken at 0,
386 1, 2,4, and 6 hours post induction. Fluorescence values were normalized by OD600

387 measurement and analyzed in R.

388

389  Generating mutations for rsalL and mvaT

390 Mutations were made for all combinations of predicted binding sites on rsaL and mvaT while
391 minimizing the change to overall structure for the folded mMRNA. Minimum Free Energy

392  calculations were performed using ViennaRNA RNAfold secondary structure prediction tool

393  (version 2.4.18). All scripts were written and executed in Python 3.7. For binding sites within the
394  coding region, mutations were made to exclude stop codons while still maintaining overall

395  structure. Motif mutations were generated using all combinations of low scoring residues

396  present in our prior PWM. The full list of mutant sequences can be found in Supplemental

397 table 3.

398 Results:

399  Using crystallized RsmA-RNA binding structures to generate a biophysical framework
400 that captures different energetic contributions of various RNA sequences to binding.
401 The P. aeruginosa RsmA and E. coli CsrA protein sequences share 85% amino acid identity
402  (BLAST alignment: Camacho et al., 2009), however slight differences in the primary and

403 secondary binding motifs have been reported for the Csr/Rsm family across organisms [20,51].
404  To construct an energetic matrix that captures interactions between RsmA and specific motifs in
405 P. aeruginosa, we selected the scaffold structure of RsmE-hcnA available in the Protein Data
406 Bank (PDB: 2JPP) as representative of the overall protein structure in complex with mRNA.
407 Changes in free energy due to single positional mutations were captured using the Rosetta-
408 Vienna RNP AAG tool [37] as described in (Methods). This generated a Position Weight Matrix
409 (PWM) of per-nucleotide contributions of binding based on their position within a 5-nucleotide
410  window (Table 1).

411

412

413 Table 1: Rosetta modeling derived Position Weight Matrix of the free energy contributions for each nucleotide present
414 in a 5 nt window. An example of this calculation would be as follows: high affinity motifs such as AUGGA would
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415 contribute the maximum possible score to the overall free energy calculation, whereas low affinity sequences such as
416  UCCUU would not contribute to the overall score at all.

417 pos/nt A G C )
418

419 1 -1.97 -049 -0.27 0
420

421 2 -0.02 -004 0 -0.16
422

423 3 -2.18 -342 0 -0.09
424

425 4 -1.76 -5.10 -0.54 0
426

427 5 -2.11 -1.90 -0.08 0
428

429  The highest affinity motif produced by a 5-nt

430 window using this crafted PWM (Table 1) would therefore be AUGGA, which is consistent with
431  the binding motif observed for RsmA [34]. Prior models crafted for the E. coli CsrA protein

432  confer the highest energetic contribution when a strict AAGGA motif is found [30]. A comparison
433  of the two matrices can be found in Supplemental table 1. The Rosetta-crafted PWM presented
434  here confers an additional benefit to the model, wherein non-canonical motifs may contribute to
435 the overall energy calculation and thus considers alternative sequences that RsmA can bind.
436  Using this PWM we can then calculate the free energy contributions of a motif within sliding 5 nt
437  windows (AGsie1 and AGsie2), Which we sum with additional biophysical parameters (Equation 1)
438  to generate a prediction of overall affinity, or the change in free energy (AGiota) due to RsmA
439  binding to an mRNA of interest.

440

441 To briefly summarize the contributions of this PWM to our two-step thermodynamic equation, we
442  calculate the AGwtal as the change in free energy from the unbound (AGmgna unbound) to @ bound
443  state. These biophysical parameters are defined as follows: The energies of the bound state are
444  calculated given the matrix-derived free energy of each motif bound by the homodimeric form of
445 RsmA (AGsiet and AGsie2) and added to a penalty for steric hindrance for binding sites in close
446  proximity (AGeooperativity ) @and the minimum free energy of RNA folding given bound folding

447  constraints (AGmrnabound)(Fig. 1@, Equation 1). These calculations are performed for all

448  possible combinations of binding sites along each transcript modeled (Fig. 1b) and the positions
449  are sorted by the predicted highest affinity. Given the empirically-derived nature of these energy
450 terms, we hypothesize that the in-silico predictions of high energetic affinity (AGita) can be used
451  to predict binding interactions in-vivo.

452

453  Genes enriched in RNA co-immunoprecipitation and proteomics establish positive

454  control population for model tuning

455 To tune model filtering terms, we established a positive control population using RNA co-
456  immunoprecipitation sequencing (RIP-seq) and proteomics. For the RIP-seq experiments Total
457  RNA and pulled down fractions were sequenced in PA14 ArsmAF carrying plasmids encoding
458  His-tagged RsmA, RsmF, the respective inactive mutants (RsmA R44A, RsmF R62A) or an empty
459  vector control (pJN105). PCA analysis (Supplementary Figure 2a) of RNA sequencing
460 performed for the pulldown study suggests that the difference in RNA in total and enriched
461  fractions contributed to 33% of the observed variance in the dataset. 18% of the variance could
462  be attributed to an inactivating mutation present in the overexpressed RsmF protein. Conditions
463 lacking vector expressing RsmA/RsmF and the presence of empty vector encoding no protein
464  both clustered closely and therefore the presence of the plasmid did not alter gene expression.

10
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465

466 358 genes were identified to be significantly enriched (L2FC >1 and p-adj < 0.005;

467 Supplementary Figure 3b, Supplementary Table 6) in RsmA pulldown relative to the total
468 RNA. These targets were considered to have a high likelihood of being bound partners of RsmA
469 and were used to define the positive control population to tune the cutoff term for our model.
470  This enriched population included positive controls such as algU, rahU, and magA, however,
471  other well characterized direct targets of RsmA (“positive control genes”) such as tssA71 were
472  not enriched in the RsmA pulldown pool. Interestingly, more genes were significantly enriched in
473  the RsmF pulldown relative RsmA (Supplementary Figure 3b). This pool of 565 mRNAs

474  included positive control genes such as tssA1, fha1, rahU, and mucA. 228/565 genes overlap
475  with the pool of enriched mRNAs pulled down by RsmA.

476 The proteomics experiments identified an additional 261 proteins (Supplementary Table 7)
477  found to be significantly differentially expressed (L2FC >1, p-adj < 0.005) in PA103 ArsmA strain
478 relative to WT (interpreted as repressed in native conditions).

479

480 Predicted total affinity can be used to differentiate bound from unbound targets

481  The predicted overall affinity score, AGta, can be interpreted as a probability for binding

482  occurring when RsmA and the target mRNA are present. To evaluate the predictive capabilities
483  of the model, we sought to determine whether the calculated total affinity score could be used
484  as a metric to differentiate direct binding interactions from indirect or unbound gene targets.

485  Predictions were generated for 5861 UTR sequences extracted from the PA14-UCBB

486 transcriptome (NCBI:txid 208963, Supplementary table 4). As of this publication, PA14 has a
487  total of 5893 identified genes but we were unable to generate predictions for all due to their lack
488  of inclusion in prior TSS profiling [41]. To evaluate our predictions, we sought to compare the
489  model predictions to experimental results. A combination of prior RNA co-immunoprecipitation
490 sequencing [9] and the RNA co-immunoprecipitation and proteomics performed in this work

491  were used to experimentally identify 780 genes potentially regulated by RsmA. This pool of

492  genes was used to define a positive control population for binding. A random selection of 780
493 additional UTR sequences were collected from the rest of the modeled PA14 transcriptome to
494  generate a control population. For each gene within the positive and background populations,
495 the average AGioa affinity score was calculated given the 300 most favorable predicted energies
496 in the ensemble. These first 300 predictions represent the most probable conformations of

497  binding between RsmA and the RNA target. A significant difference (p <0.05) was observed
498 between the average total affinity scores of 780 randomly selected sequences and those from
499  Co-IP enriched genes (Fig. 2a). We identified several control genes to validate our results.The
500 tssAf1 (positive) and lolB, (negative) genes are outlined (Fig. 2a) due to their extensive binding
501 characterization. These fall at expected values within each population. The average total affinity
502  score for tssA1 was determined to be highly favorable (AGiwt: -27.75 RT), and fell within the
503 energy range for our positive control population (Fig. 2a). The average total affinity for the

504 negative control, lo/B, was calculated to be -23.80 RT which fell within the population range for
505 ourrandomly selected “non-targets” population. This indicated to us that we could use the AGiotal
506 metric as a cutoff for filtering true from false targets in our pool of predictions.

507

508  To further refine the exact AGita cutoff that differentiates direct bound targets from indirect non-
509 targets, we performed hypergeometric enrichment testing for the pool of predictions that would
510  enrich for genes pulled down in prior RIP-seq studies, while also minimizing those included by
511  random chance. We evaluated cutoff values within a AGita range of -27.50 RT to -24.0 RT (Fig.
512  2d). The cutoff value that conferred the highest significant enrichment for immunoprecipitated
513  genes was found at a AGial threshold of -26.25 (p = 7.08e-08), and the second highest at AGiotai
514  -25.75 (p = 2.61e-07). In addition, genes with no prior evidence of binding by RsmA were

515 selected to performed exclusion testing of non-targets for each energy cutoff. This determined

11
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516 that the depletion of non-targets reached its maximum at the cutoff value of -25.50 (p = 6.36e-
517  07). Given these results, the optimal cutoff used was -25.75 which yielded 1071 predictions of
518 putative targets for RsmA. This observation validated that the AGi.ta can be used as a predictor
519  of overall affinity.
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521 Figure 2: Model parameters are refined and validated using experimental datasets. A) Overall affinity scores

522 from genes identified to be bound by RsmA in prior RNA immunoprecipitation studies (colP) are a distinct population
523 relative to a random sample from the rest of the transcriptome. Positive and negative control RNA tssA1 and lolB fall
524 at opposite sites in these populations wherein more negative AGtotal values represent higher affinity scores. B)

525 Frequency of binding site predictions along the lolB mRNA sequence. Predictions along the sequence space of this
526 gene are very disperse and have low affinity. C) Frequency of binding site predictions across the tssA1 UTR

527 sequence. Binding site frequencies across the space of this sequence pass our threshold at three main sites. *Two of
528 which were confirmed binding sites of RsmA given past mutational studies (Schulmeyer et. al., 2016). D)

529 Hypergeometric enrichment testing reveals that the peak energy cutoff that enriches for known targets of RsmA,
530 while excluding non-targets, is -25.75 kcal/mol (black line). The number of predictions that pass this filter are shown
531 in text, and the % of novel predictions are shown in color. Non colored bars and points represent energy thresholds
532 where predicted targets were not significantly enriched (p-value > 0.05) relative to random chance.

533

12


https://doi.org/10.1101/2024.08.01.606018
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.08.01.606018; this version posted August 2, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

534  Peak analysis of predicted binding sites for enriched targets validate the predictive

535 capabilities of the model

536  In addition to predicting an overall affinity, our model also has the capability to determine the
537  position of RsmA binding sites along the modeled mMRNA leader sequence. The Boltzmann
538  probability of binding was calculated given the AGutal per prediction presented in Equation 4,
539  and described in Methods. Calculation of the frequency of binding interactions at a specific site
540  was extrapolated from this predetermined probability and used to weigh highest affinity

541 predictions relative to the expanded set of those per gene. Then, peak calling was performed on
542  all genes with a baseline cutoff established from the negative control sequence of the /o/B

543 mRNA leader sequence (Methods). The application of this cutoff filtered our list of predictions to
544 1043 possible targets of RsmA, 457 of which are genes for which no prior experimental

545  evidence was found.

546

547  The specific binding sites of P. aeruginosa RsmA on its established targetome has been

548  experimentally validated on tssA1[36]. To evaluate the capabilities of the model for predicting
549  bound regions, we compared peak predictions on the 5 UTR of tssA71 which has been

550 experimentally verified binding sites that fall at -15 and -67 nt from the start codon [36].

551  Predicted binding site peaks not only fall within those two regions (Fig. 2b), but also identify a
552  third region where RsmA may potentially bind to repress translation of tssA71. Confirmation of
553  more than two binding sites that confer flexible binding of the protein to a given mRNA target
554  has been identified for CsrA [52]. Due to the lack of footprinting data available for other mMRNAs
555  within PA, binding site predictions were also performed on experimentally footprinted targets of
556  Rsm/Csr family proteins in closely related organisms, such as E. coli (CsrA-glgC) and P.

557  fluorescens (RsmE- hcnA). These produced high positive predictive values on those binding
558 partners (Supplementary Fig. 2). Peak predictions for all modeled genes can be found in the
559  supplementary binding packet. Overall, the capturing multiple experimentally characterized
560 binding site across a range of well-studied RsmA/CsrA targets that we selected provided

561  confidence in the ability of the model to identify RsmA binding sites across different potential
562 mRNA targets.

563

564  Enrichment of quorum sensing and biofilm pathway transcription factors in predicted
565 RsmA targets

566  Given our pool of 1043 predicted targets, we next sought to determine whether new pathways
567  that were regulated by RsmA (but not yet identified) were enriched in our filtered pool.

568 Encouragingly, pathways with prior experimental evidence of regulation by the GacA/S TCS
569 pathway were identified in our analyses. GO term and KEGG pathway enrichment analyses of
570  our pool of 1043 putative mRNA targets show significant (EASE score < 0.1) representation of
571  genes involved in key virulence pathways (Fig. 3a,b). Molecular features enriched in our

572  predicted targets include those with DNA-binding transcriptional activator (GO:0001216), metal
573 ion binding (GO: 0046872) and cytochrome-c oxidase (GO:0004129) activities (Fig. 3a).

574  Roughly 60 transcriptional regulators were predicted to be bound by RsmA in our model,

575 including key QS regulators LasR, MvfR, and the orphan regulator, QscR.

576  Key pathways enriched by our predictions include quorum sensing (pae02024), biofilm

577  formation (pae02025), valine, leucine, and isoleucine degradation (pae00280), and

578  peptidoglycan biosynthesis (pae00550)(Fig. 3b). Although many of these processes have

579  already been shown to be regulated by the Gac/Rsm pathway [53,54], several novel predictions
580 were generated within each feature (Fig. 3a,b). This suggests modeling allows us to expand
581 upon the total number of genes that RsmA may regulate across complex and condition-sensitive
582  pathways.

583
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The full profiling of transcriptional regulatory network in PA is yet incomplete, but recent efforts
to characterize binding specificities in vitro [55] has expanded upon our understanding of TF
interaction with known, key virulence pathways. Transcriptional regulators were significantly
enriched in our predicted pool of genes bound by RsmA (Fig. 3a); therefore, we sought to
identify which of these transcriptional regulators were associated with KEGG enriched
pathways. Of note is the identification of lasR (PA14_45960) is shared by both QS and biofilm
forming processes (Fig. 3¢). Out of 86 total transcription factors mapped to biofilm, quorum
sensing, the Type 6 Secretion System (T6SS) and motility pathways in [55], 17 were identified
by our model to be bound by RsmA. Of these 17, 3 were found to be associated with all four
pathways (Fig. 3c), which were identified as PA1431 (rsalL), PA4184 (souR), and PA1437, a
two-component response regulator. Only PA1437 was previously predicted to be a potential
target via a prior motif search approach [20], whereas PA1431 (rsal) and PA4184 (souR) are
entirely novel mRNA predictions.
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Figure 3 Distribution of enriched molecular functions and pathways in pool of predicted targets of RsmA.
A&B) DAVID enrichment analysis for molecular function GO terms and KEGG pathways, sorted by increasing p-value
(< 0.1). Along with the reported fold change of enrichment, the lines display the proportion of genes within each
category that are novel predictions yielded by the model (red line) and the proportion of genes with some prior
evidence of association with RsmA (purple line). C) Predictions that fall within key virulence pathways such as
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603 quorum sensing and biofilm formation also have shared transcription factor regulation. Left: one transcriptional

604 regulator, LasR (PA14_45960) is associated with both quorum sensing and biofilms. Right: Model predictions identify
605 several newly profiled transcription factors (Wang, et. al., 2020) that are also associated with virulence pathways.
606 Three transcriptional regulators associated with all four processes include PA1437, a two-component response

607 regulator, PA4184, SouR regulator of Phezanine biosynthesis, and PA1431, rsalL, a novel target and regulator

608  involved in quorum sensing.

609

610 Meta-analysis of aggregated RNA-seq datasets reveal that novel targets identified in our
611  model are lowly expressed in standard media types used for binding/pulldown studies
612  The influence of RsmA on regulating the aforementioned pathways has been well demonstrated
613 by prior studies [53,54]. Therefore, we sought to determine how many of our predicted genes
614  were also found in other high-throughput characterizations of RsmA regulation in P. aeruginosa.
615  We compared predictions to all those found in previous modeling [20], microarray analysis [18],
616 RNA-seq studies [1,19], RIP-seq studies [9], CLIP-seq studies [10], and recent nascent chain
617  profling methods such as ChiPPar-seq [19]. Comparisons across these studies revealed that
618 586 of our predictions had some level of prior evidence of binding or direct/indirect regulation by
619 RsmA, and 457 were entirely novel predictions.

620

621  Prior experimental approaches have estimated RsmA has some regulatory effect (including

622  direct and indirect) on approximately 500 genes, yet our number of predictions (1043) is double
623 that estimate. In an effort to understand why our pool of predictions is larger than prior

624  approximations, we hypothesized that many predictions were dependent on conditions not

625 tested in prior experimental screens. To investigate this hypothesis we leveraged the

626  aggregated, publicly available, RNA sequencing data from a meta-analysis of gene expression
627  across various conditions in P. aeruginosa [23]. This dataset included values of normalized

628  gene expression in transcripts per million (log TPM) from 411 sequencing datasets, including
629 data from a RsmA pulldown study [9]. These datasets measure gene expression in a wide

630 variety of experimental conditions including various strain types, growth phases, media,

631  antibiotic supplementation, clinical isolates, and lifestyles and demonstrates that gene

632  expression is highly variable and condition-specific [23]. In our analysis, we interpreted a gene
633  to be expressed if the log TPM value was greater than 0. The expression data was filtered and
634  subsequently binned into 10 ranges and then labeled given their prior evidence for regulation by
635 RsmA. Overall, genes with some prior experimental evidence of binding to RsmA were more
636 represented in higher expression bins, whereas those that had no evidence, or were novel

637  predictions by our model, aggregated towards lower expression bins (Fig. 4a). This observation
638  suggests that the novel predictions generated by the model were not identified as RsmA targets
639 in prior experimental screens due to low expression levels in the conditions tested.

640

641  To assess where novel predictions were clustering across these varied conditions, we used k-
642  modal clustering of experimental condition categories as described in Methods. Overall, a

643  higher proportion of genes with some prior evidence of RsmA interaction were found in

644  experiments performed in LB media (cluster 3), whereas nutrient-limited media types like M9
645 and ABTGT exhibited a higher proportion of novel predictions and genes with no RsmA

646  regulatory evidence (Fig. 4c, cluster 1). This recapitulates observations that media type has a
647 large impact on gene expression, and therefore the availability of certain genes for high

648 throughput profiling. As example of note is rsaL, a novel target encoding for a quorum sensing
649 transcriptional regulator, that we identify to be bound by RsmA computationally but, when

650 assessed across datasets, appears rarely expressed. We define high expression in this case as
651 alog TPM value greater than that of the rimM housekeeping gene (average log TPM = 1.95).
652  Rsal reaches a log TPM expression level above 1.95 in only 3 of the 411 RNA-seq experiments
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(SRA accession numbers SRS605141, SRR6018047, and ERS530377) aggregated in [23];
indicating that sufficient levels of rsalL expression may only occur in certain experimental
conditions.

To assess whether expression of rsal could be detected if media and growth conditions were
optimized, we evaluated expression levels of the gene via RT-qPCR. To mimic the planktonic
conditions where rsal expression was detected [56], we cultured PA103 WT strains in either
minimal ABTGT or LB media and sampled for rsalL expression at late-exponential phase. After
normalization to the rimM housekeeping gene and to internal primer efficiency E scores,
expression of rsal was not significantly different between media types (Fig. 4b). In addition,
expression of RsmY was significantly increased in LB media relative to ABTGT, but showed no
significant change in ABTGT relative to rsalL
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665
666 Figure 4. Comparison of results with transcriptomic data suggests novel transcripts are found at lower

667  concentrations. 483 genes were predicted by the model that are not represented in any prior modeling, microarray,
668 RNA-seq or pulldown studies of RsmA. A recent publication aggregated 411 expression datasets for Pseudomonas
669 aeruginosa grown in various experimental conditions. A) Bar chart of the proportion of predictions with no evidence of
670 RNA binding, prior evidence of binding, and entirely novel predictions, binned by log TPM expression level in that
671 experiment. The proportion of genes with prior evidence increases as the log TPM levels of expression increases,
672 suggesting that expression influences detection. B) RT-qPCR data of rsal. and RsmY expression in minimal and LB
673 media at early stationary phase suggests that rsal is lowly expressed in both media types. C) K-modal clustering of
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674 all categories in the aggregated experimental conditions from 411 expression datasets (KO, media, growth phase,
675 stress) to observe whether the presence of novel or predicted targets cluster within specific conditions, knockouts, or
676 media types, overlaid with the proportion of genes that fall within each cluster. Predictably, most of the genes that
677 have some prior association with RsmA are expressed in conditions cultured in LB media, whereas more novel

678  targets were expressed in minimal media such as M9 or ABTHC.

679

680 RsmA binds and regulates several predicted mRNA targets encoding for key

681 transcriptional regulators as assessed by in vitro binding and in vivo translational

682 reporter assays

683  Given the concordance of our computational predictions with previously published experimental
684  results, we sought to test RsmA binding to our novel predictions in vitro. Therefore, we selected
685 8 genes that were representative of the core quorum sensing regulatory cascade (Fig. 5a,

686  Supplementary table 3) to assess binding in vitro. These were quorum sensing regulatory
687  genes lasR/lasl, rhIR/rhll, mvfR, and a novel prediction rsaL. Secretion system regulators

688 included the mvaT and aprD leader sequences. These targets have varied support in the

689 literature for RsmA interactions, the majority lacking evidence of either in vitro binding or

690 regulatory impact. Finally, the tssA7 and loB sequences were included as positive and negative
691 controls. Filter binding assays were performed with the [a-*?P] ATP radiolabeled mRNA and
692  purified RsmA protein. aprD binding was evaluated via Electrophoretic Mobility Shift Assay

693 (EMSA) (Supplemental Fig. 4). Each of these genes had varying degrees of prior RsmA

694  regulatory characterization as summarized in Fig. 5a. Importantly, we observed strong in vitro
695 binding interactions between RsmA and mvaT, lasR, rhll and tssA1 leader sequences. These
696  observations are consistent with the predicted overall affinity (AGiota) Scores for each gene,

697  which were predicted to be -26.29, -26.54, -26.37, and -26.34 respectively (Fig. 5a,b). Weaker
698 interactions were seen for rsal, mvfR, and lasl. These each had average predicted affinities of -
699 25.82,-26.55, and -24.79 (Fig. 5a,b). Disassociation constants (kDs) from this biochemical

700 characterization correlate well with the predicted total affinity (R2= 0.92, Fig. 5¢). It is worth

701 noting that although we initially excluded genes such as rhIR from our true target predictions (in
702  accordance with the -25.75 energy threshold), we tested them experimentally for binding given
703  the observation that we predicted two other mRNA targets (lasR and /asl) in our final candidate
704  pool that encode for two closely functionally related proteins to RhIR in the quorum sensing
705 pathway. We did not observe binding between RsmA and rhIR in our in vitro filter binding

706  assays (Fig. 5b) or via EMSA (Supplementary Fig. 4) experiments, which recapitulates the
707  negative result from the model. Finally, we did not observe binding between RsmA and the /o/B
708  negative control. Overall, these results indicate that RsmA does bind to targets predicted by the
709  model, and that relative binding affinity predicted via the AGiotal affinity score is correlated with
710  affinities measured in vitro.

711

712 As a post-transcriptional regulator, RsmA is able to repress or activate gene expression by

713  blocking or enhancing ribosomal binding to the 5 UTR region of an mRNA. To evaluate the
714  effects of binding on translation, we performed plasmid-based in vivo translational reporter

715  assays (summarized in Fig. 6a). Sequences from the same pool of 8 genes selected for in vitro
716  characterization were fused to the GFPmut3 coding sequence, and fluorescence values were
717  measured following RsmA induction in a PA103 ARsmA/RsmF strain (Supplementary table 3).
718  lolB was not used in these assays due to the observation that the established sequence used in
719  prior mobility shift experiments [1] is not the leader sequence, but falls within a portion of the
720  coding region and therefore does not contain a ribosome binding site (see supplemental table
721 3). Specifically, BLAST search revealed the /o/IB sequence used in prior experiments falls

722  between nucleotides 5236896 and 5237178 in the PAO1 genome. Given the lack of binding
723  observed between RsmA and rhIR in our in vitro binding assays (Fig. 5b, Supplementary

724  Figure 4) we selected this target to use as a suitable negative control for this assay. No
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725  significant difference in fluorescence is observed for rhiR (Fig. 6b). The tssA71 5 UTR was used
726  as a positive control for repression and showed a significant (p<0.05) reduction in normalized
727  fluorescence values following induction of RsmA (Fig. 4b). We also observed significant

728  reduction of fluorescent signal for the HSL synthetase genes /as/ and rhll (p < 0.001, and p <
729  0.05, respectively) (Fig. 6¢). Given results for our positive and negative regulatory controls, we
730 then performed the assay on mvaT, lasR and rsalL. Each of these genes have some lacking
731 prior evidence of direct RsmA binding and/or regulation from the literature (Fig. 5a). These

732  targets yielded reduced fluorescent values following RsmA induction (Fig. 6¢) and we interpret
733  these results to suggest these genes are repressed by RsmA in vivo.
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Fig. 5
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735 Figure 5: in vitro filter binding assay demonstrates binding interactions between RsmA and predicted targets
736 A) Summary table of the genes tested for in vitro filter binding which are representative of a variety of predicted

737 energies and prior levels of characterization. B) Phosphoscreen of bound and unbound radiolabeled intensities for the
738 UTRs presented in table A. C) A linear correlation exists between predicted and measured disassociation constants
739  generated from fitting filter binding assay.

740
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742 Figure 6: in vivo repression assay. A) Experimental overview of in vivo translational repression assay. UTRs were
743 fused to GFPmut3 and expressed off of the lacUV5 constitutive promoter. Plasmids were transformed into PA103
744 ARsmA/RsmF strains and seeded into +/- 0.5% arabinose LB media. Fluorescence was monitored up to 6 hours

22


https://doi.org/10.1101/2024.08.01.606018
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.08.01.606018; this version posted August 2, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

745 following induction. B) rhIR and tssA1 UTR sequences were used as negative and positive controls for our assay. No
746 significant change in fluorescence was measured for rhIR, which is consistent with our prediction and in vitro

747 experimental results. A significant reduction in fluorescence values was observed for the positive control tssA1. C) A
748 significant reduction in fluorescence was also detected for our pool of additional tested genes, including lasl and rhll.
749 Fluorescence values are plotted median centered to account for changes in translation rates due to the native RBS
750  encoded in each individual UTR.

751

752  RsmA binds to model-predicted binding sites in novel targets rsaL and mvarT in vitro

753  The model identifies several binding sites along the sequence space of each gene. Given our
754  observation that two novel targets rsal. and mvaT were bound by RsmA in vitro, we sought to
755  assess binding to the specific predicted locations produced by the model. The top three binding
756  sites for each gene (Fig.s 7a,b and Fig.s 8a,b) were mutated individually, and for all

757  combinations of 2 binding sites along the sequence. Binding to each mutant was evaluated via
758 in vitro filter binding assay.

759

760  The three predicted binding sites (termed BS1, BS2, and BS3) on the rsaL transcript fall within
761  the coding region at +12, +67, and +76 nt from the start codon (Fig. 7a, BS1, BS2, and BS3),
762  with the highest frequency of binding predictions falling peaks 67 and 76 nt (Fig. 7a). Guided by
763  the strict peaks (i.e. specific binding sites) predicted by the model in this case, we selected

764  these three specific binding sites to test. Evaluating these mutations via in vitro binding reveals
765  that mutation of BS3 significantly reduces binding affinity of RsmA to the rsaL transcript (Fig.
766  7c). Mutating BS1 and BS2 individually did not alter affinity to the transcript however, tandem
767  mutations at sites BS1 and BS2 as well as sites BS2 and BS3 hinder binding interactions from
768  occurring. Overall these results suggest that BS3 is the main anchor of binding interactions with
769  the transcript, with BS2 as the site with second highest affinity. Mutation of BS1, which falls

770  below our peak threshold, did not impact binding as strongly and is therefore a less likely site for
771 RsmA-rsal interactions.

772

773  Relative to the distinct peaks observed on rsaL, binding site predictions on the mvaT leader
774  sequence fall in a wider range, as evidenced by a single peak in the within the coding sequence
775  of the gene (Fig. 8b). Predicted binding sites on the mvaT leader sequence were mutated at
776  positions +26, +41, and +68 nt from the start codon (Fig. 8a,b, BS1, BS2, and BS3). Given the
777  lack of distinct peaks, and therefore a broader selection of potential binding sites, RsmA-mvaT
778  binding interactions were not disrupted as expected. Specifically, in our in vitro binding assays,
779  no change in affinity was observed by mutating BS1, BS2, or BS3 individually. A slight decrease
780 in affinity was observed when mutating BS1 and BS2, or BS1 and BS3 in tandem (Fig. 8c). It is
781 interesting to note that predicted RsmA binding sites along the mvaT sequence cluster in a wide
782  region within the CDS (Fig. 8a), suggesting that there may be a multitude of conformations by
783  which RsmA binds to this transcript.
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785 Figure 7: Mutational evaluation of predicted RsmA binding sites on rsaL. A) Density plot of predicted binding
786 pockets along the modeled region of the rsal leader sequence + 100 bases of CDS. Blue boxes represent the

787 highest frequency regions for the ensemble of predictions along the sequence space. Light grey dashed line

788 represents the minimum peak threshold for considering a binding pocket. Green dashed line is the start codon. B)
789 Structural diagram of the rsal leader sequence with labeled binding pockets (brown, green, and purple) as well as
790 key functional regions such as the start codon (green) and predicted RBS (pink). C) Filter binding generated binding
791 curves for RsmA in complex with WT rsalL (pink) and individual mutations (orange through brown) or mutations in
792  combination (grey through red).
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Figure 8: Mutational evaluation of predicted RsmA binding sites on mvaT. A) Density plot of predicted binding
pockets along the modeled region of the mvaT leader sequence + 100 bases of CDS. Blue boxes represent the
highest frequency regions for the ensemble of predictions along the sequence space. Light grey dashed line
represents the minimum peak threshold for considering a binding pocket. Green dashed line is the start codon. B)
Structural diagram of the mvaT leader sequence with labeled binding pockets (green, and purple) as well as key
functional regions such as the start codon (green) and predicted RBS (pink). C) Filter binding generated binding
curves for RsmA in complex with WT mvaT (grey) and individual site mutations (brown through red) or mutations in
combination (green through pink).

Discussion:

In this work, we expand beyond motif-based screens to computationally profile binding and
regulation by the RsmA protein across the entire P. aeruginosa transcriptome. Modeling and
subsequent filtering yielded 1043 potential targets, of which 457 were not identified in prior
experimental screens. We deem these as novel putative targets of RsmA. These putative novel
targets were found to have variable media and condition-specific expression when investigated
in context of publicly available sequencing data, which we posit explains earlier inability to
detect them. Within each prediction we identify key molecular features that influence binding,
and used these to effectively differentiate direct from indirect binding. Overall, this effort
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812  demonstrates the utility in using empirically derived binding parameters to computationally

813 interrogate expansive sequence spaces.

814

815  Metrics such as the energy terms and binding sites correlate with experimental evidence,
816  which demonstrate utility of model in predicting true vs false targets of RsmA.

817  Given empirically derived binding parameters, our free energy model of RsmA binding was able
818 to differentiate direct from indirect or unbound targets. Our predictions of overall affinity (AGotal)
819  and the position of binding sites were identified as the key parameters that allowed us to

820 interrogate binding to mRNA leader sequences across the transcriptome. Molecular features on
821  the RNA sequence are key for enabling regulatory function, and also provide information on the
822  mechanism by which RsmA is able to bind. In comparing our model predictions to publicly

823 available pulldown sequencing data, we demonstrate that the calculation of the overall affinity
824  term AGuta can be used as a metric to differentiate true from false targets of RsmA (Fig. 2)

825  which allowed us to effectively filter predictions made across the entire transcriptome. This was
826 facilitated by improvements made to tailor our model for the P. aeruginosa RsmA protein. One
827  such improvement was the generation of a RsmA-specific PWM (Table 1). This PWM allows for
828 the contribution of non-canonical bases to the overall energy score, and prioritizes an AUGGA
829  motif. Although not drastically different from the canonical A(N)GGA CsrA consensus, the

830 AUGGA motif was independently observed in prior crystal structure [34], SELEX [36], and CLIP-
831 seq [10] studies to be favored by RsmA. This also demonstrates the utility in using solved

832  crystal structures to generate models of protein-RNA interactions. Overall, considering slight
833 changes in the protein sequence allowed for our approach to be better tailored for assessing
834 interactions occurring within P aeruginosa.

835

836  Our model appears to be able to accurately capture binding interactions between RsmA and
837 candidate targets, as evidenced by the correlation between the measured in vitro binding

838  affinities and the predicted AGiotal Values that we performed in a small selection of predicted

839 mRNA targets (Fig. 5¢). More qualitatively, genes that did not pass our energetic threshold

840  (such as rhIR) were not observed to bind in vitro (Fig. 5b), and showed no significant change in
841 translation in vivo (Fig. 6¢). This suggests that the model has utility in predicting relative binding
842  affinity and can aid in further exploration of network regulation, particularly as it relates to lowly
843  expressed or condition-dependent genes. Interestingly, of the 1043 genes predicted to be

844  bound by RsmA, several previously characterized genes did not pass our energy cutoff. These
845 included magA, and mucA, for which binding was previously experimentally confirmed in vitro
846  [1,9]. Each of these predictions yielded less favorable mean AGiotal SCOres, with only a handful of
847  the suite of binding conformations scoring with high favorability. It is possible then, that other
848  sequences that exhibit strict site ranges may have been lost to filtering. Other genes that did not
849  pass our energetic cutoff included those regulated in tandem with other post-transcriptional

850 regulators, or require multiple copies of RsmA. This is possible as it has been demonstrated that
851  RsmA is not always the sole repressor and can bind genes in tandem with other regulatory

852 factors; this has been shown to occur with two transcriptional regulators, AmrZ and Vfr, wherein
853 RsmA is only able to bind these transcripts in the presence of an additional global post-

854  transcriptional regulator Hfq. [12,19]. Neither amrZ nor vfr were predicted to be bound by RsmA
855 in our model, therefore our pool of predicted targets is limited to those regulated by RsmA

856  alone.

857

858  Future iterations of our model can improve upon capturing the influence of multimerization on
859  binding. RsmA binding can cause structural changes along an RNA transcript and promote

860  multimerization via subsequent folding of higher affinity sites. This phenomenon has been best
861  demonstrated via loading of multiple copies of RsmE on the RsmZ sRNA sponge [39] Our

862 model only considers binding interactions between a single RsmA protein and transcript;
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863 therefore, the structural influence of multiple proteins is missed by the model. To address these
864 limitations, future improvements could include structural constraints due to partner binding,
865  however, the footprint and position of the cooperative partner must be known. In addition,

866 changes can be made to have RNA sequences “inherit” structural constraints from a primary
867 iteration of predictions, and measure changes in total affinity due to the addition of secondary or
868 tertiary elements. This can also prove useful in modeling RsmA-mRNA interactions in other
869 Pseudomonas species that encode multiple paralogs of RsmA, such as RsmA and RsmE in P.
870 putida and P. syringae [32]

871

872  Global trends in our binding site predictions agree with patterns observed in prior high

873  throughput screens. Distances between the top binding sites and the start codon were plotted
874  for all genes that passed our total affinity and peak filtering (Supplementary Fig. 4). Overall,
875  binding sites for RsmA were localized to three main regions: RBS region (between -30 and 0
876 relative to the start codon), the start codon, and a broad distribution of sites within the first 100
877  bases of the coding sequence. This is consistent with binding site frequencies observed in

878  CLIP-seq studies of RsmA in P. aeruginosa [10] and CsrA in E. coli [57]. These observations
879  suggest that, in addition to predicting an overall affinity score, our model can also predict

880  specific binding sites on the mRNA which provides additional information on the exact

881 mechanism by which the protein interacts with its target.

882

883  More globally, binding site distributions vary across transcripts. To investigate this, we used
884  custom peak calling scripts with parameters defined in Methods. A peak is therefore a region
885  with a sufficiently high frequency of predicted sites that passes some minimum threshold set by
886  negative controls. Approximately 30% of genes modeled have wide, overlapping, pockets of
887  binding sites that span 30 + nucleobases across of the mRNA. An example of this is shown in
888  predictions on the mvaT transcript (Fig. 8a). 70% contain narrower, distinct, peaks that are less
889  than 30 nucleotides wide, which is also seen for predictions across rsaL (Fig. 7a). Analysis of
890  peak count distributions for our predictions (shown in Supplementary Fig. 2d) reveals that the
891 maijority of genes have an average number of 1.25 peaks in their distribution of binding site
892  peaks, and a smaller population of genes contain an average of 2.5 peaks where RsmA is

893  predicted to bind. This indicates that the majority of genes contain 1-2 distinct binding peaks,
894  whereas a smaller population contain 2 or more distinct peaks. This recapitulates prior

895  observations that Rsm/Csr proteins facultatively interact with targets at a single binding site, or
896  at double binding sites [4,8]. The divergent patterns of binding also suggest “anchoring” at

897  single high affinity site along the gene, prior to binding to lower affinity positions. This

898 phenomenon was recently characterized for CsrA- acnA and evgA sequences in E. coli [52]
899

900

901 Further, the location of predicted binding peaks appeared to correlate well with in vitro

902 experimental evidence. Our initial observation was the concordance of predicted peak location
903 on the well-studied RsmA binding partner tssA1. These predictions fell within characterized
904 binding sites on the mMRNA sequence (Fig. 2c) [36]. The model also accurately predicted high
905  affinity binding sites on the rsaL mRNA sequence which had no prior binding or foot-printing
906 evidence. Using in vitro filter binding, we experimentally confirmed these predictions by

907  disrupting interactions via mutation of the highest affinity motif (BS3) (Fig. 7c), and a further
908 disruption of binding strength was observed upon mutating the second strongest motif (BS2) in
909 tandem with BS3 (Fig. 7c¢). This is consistent with the theory that Csr/Rsm family proteins may
910  anchor to lower affinity sites on the nascent transcript [19], before binding more strongly to

911  downstream high affinity sites [30]. In contrast, mutating predicted sites along the mvaT leader
912  sequence did not result in a change in affinity (Fig. 8c). Predicted RsmA binding sites along the
913  mvaT sequence cluster in a wide region within the CDS (Fig. 8a), and suggest that there may
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914  be a multitude of conformations by which RsmA binds to this transcript. This mechanism of

915  binding has been theorized previously [30] as a strategy CsrA to ensure binding to a dynamic
916  structured RNA.

917

918

919 Loss of target discovery can be attributed to widely varying expression profiles across
920 study conditions

921 Perhaps the most exciting element of the model results is demonstrating the ability of

922  computational predictions to capture interactions for mMRNAs that are expressed transiently or in
923 a condition-dependent manner. Our evaluation of target predictions across 411 gene expression
924  datasets revealed that the majority of novel genes predicted by our model are lowly expressed
925 (Fig. 4a, b) or condition specific (Fig. 4c). Indeed, K-modal clustering showed a higher ratio of
926 these novel genes to cluster with nonstandard media types like ABTGT or M9 minimal media
927  (Fig. 4c). This highlights the importance of considering multiple approaches to profile the effects
928  of a post-transcriptional regulator, as condition dependent gene expression can cause a

929  bottleneck in discovery. This is the case for sSRNA discovery, especially, as many are expressed
930 in specific nutrient [58] or infection contexts [59].

931

932 Model identifies that RsmA exerts regulatory control of Quorum Sensing and Biofilm

933 forming pathways through binding and regulation of redundant TF nodes

934 RsmA is a major global regulator of a variety of pathways that contribute to survival and

935 pathogenicity of P. aeruginosa. These include indirect activation of pathways critical for

936  epithelial colonization such as the Type 3 Secretion System (T3SS) [60], Type IV Pili, and

937 flagellar biosynthesis processes[1]. RsmA also has been shown to directly repress pathways
938 that contribute to chronic infection states, such as the formation of biofilms, Quorum Sensing
939 (QS) [53], and the Type 6 Secretion System (T6SS)[6]. Tight control of these processes is

940 advantageous for fitness and survival of PA as it responds to rapid changes in the environment.
941 Direct forms of post-transcriptional regulation typically have a stronger and more immediate
942  effect on gene expression. It is therefore important to effectively differentiate between indirect
943  and direct forms of regulation by RsmA to better understand the influence on dynamic signaling
944  networks. In this study, we used our tuned model to predict the likelihood of a direct interaction
945  occurring between RsmA and an mRNA leader sequence, and found predictions to be enriched
946  for transcriptional regulators and core virulence pathways (Fig. 3a). Here, we discuss

947  noteworthy predictions generated for genes in quorum sensing and biofilm forming pathways.
948

949  Quorum Sensing (QS) in PA are complex, interconnected, context-dependent signaling

950 cascades that facilitate group control and survival. Gene expression in these pathways is

951 stochastic and sensitive to environmental conditions including fluctuations in nutrients, pH, and
952  cellular density[61,62]. QS expression can also vary from cell to cell in a population, and it is
953 thought that this heterogeneity is a survival strategy that ensures proper division of labor and
954  resource conservations within biofilms[63]. It has also been observed that post-transcriptional
955  regulation by sRNAs and RBPs allows for fine tuning of signal production [64]. These factors
956  present challenges in fully characterizing how these pathways are regulated experimentally, and
957  efforts have been made to understand dynamics using computational modeling [65].

958  The activation of the hierarchical and interconnected quorum sensing pathways in PA has been
959  shown to directly influence the lifestyle switch towards sessile biofilm forming states. The

960 Gac/Rsm regulatory pathway has been identified as a key influencer of the QS cascade [53].
961  Our model identified several transcriptional regulators in the QS pathway as potential regulatory
962 targets of RsmA (Fig. 3a,c). This included /asR and mvfR transcriptional activators as well as
963 the lasl and rhll homo-serine lactone synthetases. The hierarchical cascade of QS signaling is
964 initiated when transcriptional activator, LasR, is becomes active upon sensing 3-oxo-C12-HSL.
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This event sets off a signaling cascade and activates expression of subsequent transcriptional
regulators RhIR, and MvfR (Fig. 9; [66]). There exists an interplay between the RhIR and MvfR,
wherein RhIR represses MvfR expression [67]. Interestingly, RsmA binding to rhIR was neither
predicted nor observed (Fig. 5a, b, 6b, Supplementary Fig. 3) which, given the repressive
effect RhIR has on mvfR transcription, suggests a redundant mechanism by which RsmA
regulates expression of this pathway along multiple nodes. Additional QS associated regulators
were also evaluated in vitro given results of our model, including transcriptional repressors rsal
and mvaT. Both rsal and mvaT repress elements of the LasR/I QS cascade (Fig. 9). mvaT has
been observed to repress additional transcription factors including mvfR [68] and represses rsalL
in P. fluorescens [69].

Several genes predicted by our model are part of the extensive biofilm formation pathway. Our
observation that our model and experimental results confirm binding and repression of LasR led
us to further investigate whether RsmA also regulated additional targets of LasR activated
genes involved in the T6SS. Inter-operonic binding was observed for genes in the H1, H2, and
H3-T6SS (Fig. 2c). The GacA/S TCS has been observed to regulate key genes in the H1-T6SS
and H3-TCSS, including the well-characterized target tssA17. In PA14, the H2-T6SS is more
essential than H1[70], and is activated by the QS transcriptional regulator MvfR [71]. The
prediction that RsmA regulates of several genes within this locus (Fig. 3c), as well as
repressing mvfR, reflects a shift towards redundant regulatory control of that crucial region.
Overall, this outlines the utility of the model in capturing inter-operonic binding events that
regulate the assembly of large, multi-component structures in PA.
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Figure 9: Virulence associated pathways enriched in target predictions included key regulatory transcription
factors. Pathway diagrams shown here represent RsmA targets identified by our model in context of their cellular
contribution to virulence. Circles represent predictions that passed our filter and are shown in solid or hollow based
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990 on whether there is prior experimental evidence of direct or indirect requlation of that gene. In addition, these circles
991 are colored by their predicted regulatory effect: repression (red), activation (green), or an unknown effect (yellow).
992 Genes are shown as boxes, and key transcriptional requlators are present as ovals. Finally post transcriptional

993 regulators such as RsmA and Hfq are shown as circles. As shown in the box describing Quorum Sensing, several
994 key TF regulators are targeted by RsmA, as well as their cognate synthetases that contribute to the autoregulatory
995 feedback loop. Key TFs such as LasR are also directly involved in influencing biofilms, and here we illustrate the
996 activation effect on several pathogenicity islands that make up the T6SS in PA. * Our model did not identify AmrZ as
997 a potential direct target, and this is likely due to the cooperative effect that Hfq binding has on loading RsmA to this
998 gene. We also show predictions for several transcriptional regulators present in the Alginate biosynthesis pathway,
999  providing further clarity on the level of control over this pathway.

1000

1001 In our study we further evaluated the strength and regulatory nature of binding between RsmA
1002 and the rsalL and mvaT transcriptional regulators. RsalL was identified as a regulator of four
1003  major virulence-associated pathways, including QS (Fig. 3,[55]), exhibits low levels of

1004  expression across an aggregate of publicly available sequencing data [23], and is an entirely
1005 novel prediction generated by our model. In this study, we demonstrate that RsmA binds to this
1006  mRNA in vitro (Fig. 5b) at positions +67 and +76 nucleotides from the start codon (Fig. 6).
1007  Binding results in repression of translation of this protein (Fig. 8c). We also theorize that this
1008 gene evaded prior high throughput screens because of low (Fig. 4b), or context dependent
1009 expression during planktonic growth phase. The observation that RsmA represses translation of
1010  rsal suggests a surprising mechanism of indirect activation, as RsalL negatively regulates /as/
1011 expression by blocking LasR transcriptional activation [72]. Perhaps this is a mechanism by
1012  which RsmA can initiate the autoregulatory feedback loop for the LasR/I signaling cascade at
1013 intermediate points during the motile — sessile lifestyle switch.

1014

1015  The second transcript we characterized further was that encoding the MvaT transcriptional
1016  repressor. There exists prior evidence of RsmA causing changes in expression[19] or binding
1017  directly to this transcript [10], however no prior evidence exists of direct binding in vitro or

1018 repression in vivo. Interestingly, MvaT has also been shown to regulate the Gac/Rsm regulatory
1019  pathway through repression of the RsmY and RsmZ sRNA sponges [73]. MvaT is also a

1020 regulator of QS, and its influence the system is thought to be through repression of mvfR and
1021  rsaL. In this study, we find that RsmA binds mvaT within the coding sequence (Fig. 7) and
1022  represses expression of mvaT as well as its paralog mvaU (Fig. 8c). Although mutations at
1023  model-predicted binding sites did not result in full loss of binding, the width of predicted binding
1024  sites on this transcript (Fig. 7a) suggests that RsmA may bind in multiple conformations.

1025

1026 In this study, we confirm RsmA binds and represses translation of lasR, lasl, rhll, mvfR, rsalL
1027 and mvaT (Fig.s 5-8). We hypothesize that this mechanism of redundant regulatory control
1028 across quorum sensing and biofilm formation allows for tight regulation of energetically costly
1029  pathways that can become rapidly de-repressed upon sequestration by the RsmY and RsmZ
1030 small RNAs, and could also fine tune production of signaling molecules at intermediate steps
1031  along the planktonic to biofilm forming lifestyle switch.

1032

1033 Conclusions

1034  This study demonstrates the utility in using thermodynamic modeling for differentiating direct
1035 from indirect regulatory interactions between the RsmA protein and the entirety of the

1036 transcriptome within PA. Our computational approach yielded novel genes not yet reported to
1037  be bound or regulated by the RsmA, likely due to lack of expression in standard laboratory
1038  growth conditions. We also affirm the conserved nature of Rsm/Csr regulation across
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1039 gammaproteobacteria, as known interactions in PA are recapitulated given empirically derived
1040  parameters derived from the CsrA protein in E. coli. The further biochemical characterization of
1041 binding to two transcriptional regulatory targets mvaT and rsalL reveal that RsmA has a far more
1042 extensive influence on quorum sensing pathways. We anticipate that the predictions presented
1043 in this dataset will aid in further characterization RsmA regulatory influence upon the complex
1044  and interconnected networks within this widespread pathogen.
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