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Abstract 20 
Background 21 

Pseudomonas aeruginosa (PA) is a ubiquitous, Gram-negative, bacteria that can attribute its 22 
survivability to numerous sensing and signaling pathways; conferring fitness due to speed of 23 
response. Post-transcriptional regulation is an energy efficient approach to quickly shift gene 24 
expression in response to the environment. The conserved post-transcriptional regulator RsmA 25 
is involved in regulating translation of genes involved in pathways that contribute to virulence, 26 
metabolism, and antibiotic resistance. Prior high-throughput approaches to map the full regulatory 27 
landscape of RsmA have estimated a target pool of approximately 500 genes; however, these 28 
approaches have been limited to a narrow range of growth phase, strain, and media conditions. 29 
Computational modeling presents a condition-independent approach to generating predictions for 30 
binding between the RsmA protein and highest affinity mRNAs. In this study, we draft a two-state 31 
thermodynamic model to predict the likelihood of RsmA binding to the 5’ UTR sequence of genes 32 
present in the PA genome.  33 

Results 34 

Our modeling approach predicts 1043 direct RsmA-mRNA binding interactions, including 457 35 
novel mRNA targets. We then perform GO term enrichment tests on our predictions that reveal 36 
significant enrichment for DNA binding transcriptional regulators. In addition, quorum sensing, 37 
biofilm formation, and two-component signaling pathways were represented in KEGG enrichment 38 
analysis. We confirm binding predictions using in vitro binding assays, and regulatory effects 39 
using in vivo translational reporters. These reveal RsmA binding and regulation of a broader 40 
number of genes not previously reported. An important new observation of this work is the direct 41 
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regulation of several novel mRNA targets encoding for factors involved in Quorum Sensing and 42 
the Type IV Secretion system, such as rsaL and mvaT. 43 

Conclusions 44 

Our study demonstrates the utility of thermodynamic modeling for predicting interactions 45 
independent of complex and environmentally-sensitive systems, specifically for profiling the post-46 
transcriptional regulator RsmA. Our experimental validation of RsmA binding to novel targets both 47 
supports our model and expands upon the pool of characterized target genes in PA. Overall, our 48 
findings demonstrate that a modeling approach can differentiate direct from indirect binding 49 
interactions and predict specific sites of binding for this global regulatory protein, thus broadening 50 
our understanding of the role of RsmA regulation in this relevant pathogen. 51 

Keywords 52 
Post-transcriptional regulation, Computational modeling, RNA regulation, RNA-binding proteins, 53 
Regulatory networks, Transcriptional control, Systems biology, RNA-protein interactions, RNA 54 
secondary structure, Pseudomonas aeruginosa  55 

Background 56 
Pseudomonas aeruginosa (PA) is a widespread, opportunistic pathogen that contributes to 57 
nosocomial infection and mortality in immunocompromised individuals. Critical to pathogenesis is 58 
the ability of PA to rapidly alter gene expression to respond to the environment. The post-59 
transcriptional regulator RsmA, a member of the CsrA family of RNA-binding proteins (RBPs), 60 
achieves this rapid response via post-transcriptional regulation. RsmA is a 6.9 kDa homodimeric 61 
protein whose regulatory influence is of clinical relevance as it regulates the expression of genes 62 
involved in motility, cell adhesion [1], biofilm formation [2], and secretion of effector proteins [1].  63 
 64 
The mechanism by which Rsm/Csr family proteins repress translation is by blocking ribosomal 65 
pairing to the Ribosome Binding Site (RBS) present in the 5’ untranslated region (UTR) of an 66 
mRNA [3,4]. This can occur through direct binding to and occlusion of the RBS sequence, or 67 
through binding in adjacent regions that result in structural rearrangement that reduces [2] or 68 
increases [5] accessibility of the RBS. In PA, the RsmA protein exerts tight control of pathways 69 
associated with planktonic colonization and sessile biofilm forming states [6]. In addition, the CsrA 70 
paralog RsmF/N[7,8] also binds and regulates overlapping [9] and exclusive [10] genes relative 71 
to RsmA. The regulatory activity of RsmA itself is sensitive to control by the GacA/GacS two-72 
component signaling (TCS) pathway, which activates expression of antagonistic sRNA sponges 73 
RsmY and RsmZ [11] that sequester the RsmA protein. Upon sequestration by these sRNA 74 
sponges, the regulatory effect of RsmA is inhibited and produces an inverse effect on translation 75 
of directly bound mRNAs. RsmA binds and regulates genes globally throughout the transcriptome. 76 
RsmA knockout results in large phenotypic changes to the cell including decreased infection 77 
phenotypes [12], impedes active colonization, and promotion of chronic infection states [13].  78 
 79 
Full characterization of the binding repertoire of a post-transcriptional regulator, such as RsmA, 80 
is difficult to adequately capture using a single high throughput approach [14]. Wide variety in 81 
gene expression and regulatory effects have been observed for Csr/Rsm family proteins due to 82 
various stresses or infectious states [15,16]. This is partially due to the fact that the pathways 83 
that govern the cellular transition from active colonization to chronic biofilm forming states are 84 
complex, deeply interlinked, and sensitive to the experimental contexts they are studied in [17].   85 
 86 
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Efforts to experimentally map the regulatory influence of RsmA range from broad, high 87 
throughput sequencing screens to individual in vitro biochemical assays. Overall, these high 88 
throughout approaches have estimated a target pool of approximately 500 genes that are either 89 
directly or indirectly regulated by RsmA [1,9,10,18,19]. Direct binding has been biochemically 90 
confirmed in vitro for fewer than 2% of this estimated pool of 500 genes. To date, confirmed 91 
direct bound mRNA targets of RsmA include tssA1, fha1, magA [1], psl [2], rahU, algU, pqsR, 92 
hxuI [20], mucA [9], and retS [21]. 93 
 94 
While sequencing approaches have been valuable for understanding the breadth of regulation 95 
influenced by the Gac/Rsm pathway, they may not capture potential targets due to low gene 96 
expression, strain to strain variation, condition dependent expression, heterogenous expression, 97 
sample manipulation, or high limits of detection. For example, microarray, RNA-seq, and 98 
proteomic screens fall short when assessing whether post-transcriptional regulation is occurring 99 
in a direct (i.e. direct binding of RBP to transcript) or indirect (i.e. network) manner. RNA-seq 100 
based approaches can also lose detection of transcripts that are not always degraded when 101 
bound by a post-transcriptional regulator, which convolute differential expression-based 102 
analyses; thus, missing potential targets of the protein [22]. In contrast, cross-linking 103 
immunoprecipitation (CLIP) and RNA immunoprecipitation (RIP) sequencing approaches can 104 
identify more direct binding interactions; however, data resulting from these techniques lose 105 
positional resolution for mRNA binding sites for small proteins like RsmA. In addition, cross-106 
linking can introduce false positives due to nonspecific linkages between the protein of interest 107 
and nearby RNA. Finally, many available high throughput datasets are limited to a narrow range 108 
of growth phase, strain, and media conditions that do not capture the full diversity of conditions 109 
the organism experiences natively. This presents a bottleneck in discovery, as gene expression 110 
varies widely across experimental conditions [23] and can be influenced by extensive strain 111 
diversity [24,25]. 112 
 113 
Computational modeling offers a condition-independent method for predicting binding partners 114 
of globally binding proteins. Thermodynamic models of protein-RNA interactions have 115 
demonstrated high predictive capabilities, such as that for the PUF4 protein interactions in 116 
Saccharomyces cerevisiae [26]. Similarly, thermodynamic models to predict binding and 117 
translation rates for ribosomes [27,28] have been used for both prediction of native translation 118 
and forward design of effective RBS sequences [29]. Although the small handful of confirmed, 119 
direct RsmA targets limits the ability to generate accurate models of binding using learning 120 
algorithms, much more data of direct targets has been collected for its closely related protein 121 
CsrA as genome wide screens have been performed to predict binding sites of the CsrA protein. 122 
In 2014, a sequence-based model was crafted for the Csr/Rsm family proteins to identify 123 
potential targets within transcriptomes of E. coli, P. aeruginosa, L. pneumatophilia, and S. 124 
enterocolitica [20]. In this work, we improve upon this approach by crafting a biophysical model 125 
of interaction built upon additional molecular features that influence binding which yields an 126 
energetic prediction for the probability of an interaction between RsmA and an mRNA in P. 127 
aeruginosa 128 
 129 
The Escherichia coli CsrA protein has been shown to be well suited for construction of a 130 
biophysical model of protein-RNA binding with characterized, empirically-derived, parameters 131 
[30], as core elements of binding mechanism that governs its post-transcriptional regulatory 132 
effect have been biochemically assessed. These principal rules of interaction include (1) the 133 
clear definition of a core ANGGA binding motif [31], (2) the energetic contribution of individual 134 
nucleotides within the core motif, (3) establishing a minimal distance between binding sites to 135 
reduce steric hindrance within the homodimer [4], and (4) position of binding within stem loop 136 
structures of the bound RNA [31] (Fig. 1a). Previously, these core rules were leveraged to craft 137 
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a biophysical model to observe binding patterns of the CsrA protein in E. coli [30] which yielded 138 
insights in the various molecular features that influence CsrA binding to 236 mRNAs [30] 139 
 140 
Given this established prior framework we hypothesized that we could craft a model to capture 141 
RsmA binding and regulation of genes in P. aeruginosa. Homologs of CsrA are found widely 142 
across the g-proteobacteria [32,33]. Within the Pseudomonas genus, homologs such as RsmA 143 
and RsmE share high sequence and structural similarity with CsrA [34]; the protein sequence of 144 
P. aeruginosa RsmA is 85% identical to its ortholog CsrA in E coli [35]. Furthermore, similar 145 
binding mechanisms. SELEX studies have also shown that the RsmA protein shares high 146 
affinity for the same binding motif ANGGA [36], and NMR structural studies in the P. fluorescens 147 
homolog RsmE also recapitulated affinity for this core motif [34]. In addition, the crystal 148 
structures of Csr/Rsm family proteins in complex with RNA are available in the Protein Data 149 
Bank for Escherichia coli [1Y00], Yersinia enterocolitica [2BTI], Pseudomonas protegens pf-5 150 
[2MFO], Pseudomonas fluorescens [2JPP], and Pseudomonas aeruginosa [7YR7].  In tandem 151 
with models that leverage data from crystal structures [37] these data can be used to 152 
computationally predict changes in free energy for a given motif.  153 
 154 
Here, we modify, tune, validate, and improve upon a prior model constructed for the E. coli CsrA 155 
protein [30] to accurately predict breadth of binding and regulation by the RsmA protein across 156 
the entire Pseudomonas aeruginosa PA14 transcriptome. This approach allows us to probe the 157 
entire sequence space computationally, thus lifting the constraints presented by prior 158 
experimental approaches. In an improvement upon our prior model, we consider alternative 159 
motifs given the generation of a crystal-structure derived, RsmA-specific, position weight matrix. 160 
Unlike GGA motif-based screens, our model also yields predictions regarding the mechanism of 161 
binding to a given target including: the approximation of binding strength, diversity of binding 162 
peak frequencies, and predicting the effect binding has on translation. We also leverage several 163 
publicly available high throughput sequencing datasets to statistically verify the accuracy of our 164 
predictions. In doing so, we predict 1043 genes to be bound by RsmA and identify 457 genes 165 
with no prior binding evidence. Our pool of filtered predictions is enriched in transcriptional 166 
regulators and virulence associated pathways. An important resulting observation of this work is 167 
the experimental characterization of two novel transcriptional regulators rsaL and mvaT, mRNA 168 
encoding for factors involved in Quorum Sensing and the Type IV Secretion System, among 169 
others. In this work, we use model predictions to confirm binding, binding site pockets, and 170 
regulation of these mRNAs in vitro and in vivo. This characterization both validates the 171 
predictive capabilities of the model and expand upon our understanding of RsmA regulation. 172 
Overall, our constructed model opens up new avenues for differentiating direct from indirect 173 
targets of RsmA and aids in generating hypotheses for the varying regulatory mechanisms 174 
governing complex signaling networks in PA.  175 
 176 

Materials and Methods 177 
 178 
Construction of model and definition of energy terms 179 
A free energy model constructed for describing binding by the CsrA protein from Escherichia 180 
coli was described in [30]. In our current approach, we have modified the model to include the 181 
nucleotide contributions of bases other than the core ANGGA. This was also tuned to capture 182 
RsmA-mRNA interactions using the structure of the P. fluorescens RsmE in complex with hcnA 183 
(PDB: 2JPP). The thermodynamic model relies upon the sum of energetic contributions of 3 key 184 
parameters: 1- the position weight matrix of individual nucleotide contributions to binding (∆Gsite1 185 
& ∆Gsite2), 2- the change in free energy from the unbound to bound state of the mRNA (∆GmRNA), 186 
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3- the distance between binding sites to reflect steric effects of dimer binding (∆Gcooperativity) (Fig. 187 
1a). Total free energy ∆Gtotal is calculated using the following two-state thermodynamic equation, 188 
previously defined in [30]:  189 
 190 

∆𝐺#$#%& = (	∆𝐺*+#,- +	∆𝐺*+#,/ +	∆𝐺0$$1,2%#+3+#4 +	∆𝐺5678	9$:;<= −	∆𝐺5678	:;9$:;< 	 191 
 192 
After sorting the summed ∆Gtotal values for each pair of binding sites across the sequence space 193 
(Fig. 1b) and the position of binding sites for the top 15, highest affinity, predictions were 194 
converted into structural constraints within the open source translation rate calculator, OSTIR 195 
(Fig. 1c) [38]. This yielded a measure of the translation initiation rate for the bound (TIRRsmA bound 196 
i) and unbound (TIRunbound) states for each prediction of binding positions. Effects of binding on 197 
translation were calculated as follows: 198 
 199 

𝑅+ = 	
𝑇𝐼𝑅:;9$:;<

𝑇𝐼𝑅6*58	9$:;<	+
 200 

 201 
TIR ratios were used to predict the effect that RsmA binding would have on translation, and 202 
binned into three categories: repressed (Ri > 1.2), activated (Ri < 0.8), or no impact (0.8 < Ri < 203 
1.2) based on boundaries defined in [30]. 204 

 205 
Figure 1: Overview of energy parameters and procedure of the RsmA biophysical model. A) Core energy terms 206 
define the energetic parameters of RsmA binding to a specific RNA sequence and model the change in free energy 207 
(∆Gtotal) of the system from an unbound to a bound state. B) Each pair of binding site predictions are evaluated 208 
across the entire sequence space per gene, and sorted from most to lease probable given the free energy of binding 209 
∆Gtotal. C) Predictions are filtered given favorability of the change in free energy (∆Gtotal) and frequency of binding 210 
sites at a given location. D) The top 15 ranked predictions are then used to calculate the change in Translation 211 
Initiation Rate due to binding. 212 

Calculation of the per-nucleotide contributions to binding  213 
The protein sequence of P. aeruginosa RsmA is 85% identical to its ortholog CsrA in E coli. Key 214 
residues for RNA recognition, such as the arginine present at position 44 are conserved. The 215 
Rosetta-Vienna RNP ∆∆G tool [37] was used to measure the relative change in binding affinities 216 
between a wild-type hcnA sequence GGGCUUCACGGAUGAAGCCC (motif in bold) and all 217 
possible mutants within the 5-nt binding motif at positions 8-12. The solution NMR structure of 218 
Pseudomonas fluorescens RsmE in complex with the hcnA mRNA [39](PDB: 2JPP) was used 219 
as the scaffold of the model. This approach incorporates the RNAfold command within the 220 
Vienna RNA package 2.0 [40] to calculate the minimum free energy of each unbound mutant 221 
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(Supplementary table 2). The position weight matrix of per-nucleotide contributions to binding 222 
was calculated as follows:  223 
 224 

∆𝐺;#,+ = max(∆∆𝐺67G+) −	∆∆𝐺67G;#,+ 	 225 
 226 
Wherein i is the position of the nucleotide within the 5 nt binding motif and nt is the specific 227 
nucleotide mutation (ATGU) at that position. To generate an energetic measure of the individual 228 
nucleotide contribution, each ∆G value was subtracted from the maximum affinity found across 229 
all 4 nucleotides at a given position. The ∆Gnt,i  was then converted from kcal/mol to RT units 230 
given the gas constant at 37° C (R = 0.616). 231 
 232 
Generation and modeling of UTR sequences from the PA14 genome 233 
The 5’ Untranslated Region (UTR) of an mRNA transcript is the primary region where the 234 
Csr/Rsm family proteins enact their regulatory function by influencing ribosome binding. We 235 
selected the 5’ UTR plus the first 100 bases of coding sequence (CDS) to generate predictions 236 
via modeling. Prior RNA sequencing in [41] defined the transcription start sites (TSS) across the 237 
P. aeruginosa PA14 transcriptome at 28° C and 37° C. Where the primary TSS was defined, we 238 
selected nucleotides from the TSS site to 100 bases into the CDS. If no TSS was known, we 239 
selected -100 bases from the start site to encompass the RBS region. Sequences were 240 
extracted from the Pseudomonas aeruginosa UCBPP-PA14 reference genome assembly 241 
GCF_000014625.1. This yielded 5285 UTR sequences which are summarized in 242 
Supplementary table 2. Predictions of all combinations of 2 binding sites were performed for 243 
each of the modeled 4861 sequences in parallel on the Stampede2 compute cluster at the 244 
Texas Advanced Computing Center (TACC) at The University of Texas at Austin. Associated 245 
python scripts used to run the model on the Stampede2 compute cluster can be found at 246 
https://github.com/ajlukasiewicz/rsm_biophysical_model 247 
 248 
Ensemble analysis of predicted binding sites and peak calling 249 
All possible combinations of binding pairs are evaluated across the entire sequence space, and 250 
sorted by affinity. This yields an ensemble of predictions per gene with varying degrees of free 251 
energies. We then transform the overall affinity score ∆Gtotal into a measure of the likelihood of 252 
binding via the Boltzmann probability distribution:  253 

𝑝(𝛼) =	
𝑒LM∆𝐺#$#%&;O
∑ 𝑒LM∆QRSRTU;VW
+

 254 

Wherein the probability of a particular binding conformation (p(a)) is a function of the ∆Gtotal for 255 
an individual prediction given the distribution of all possible conformations for a gene. b (0.45) is 256 
a scaling factor based on thermodynamic predictions of RNA-RNA interactions [30]. Here we 257 
alter the scaling factor for calculating this probability using predicted energy and affinity values 258 
from our prior model [30] and affinities derived from literature. Measured binding affinities were 259 
converted into free energy using the following equation: ∆(G) = RT ln(kD) wherein the gas 260 
constant RT at 37° C (-0.616). Dissociation constants were found via prior EMSA experiments 261 
for CsrA binding to glgC, nhaR, cstA, pgaA, and rpoE [42–46]. The Bolzmann probability was 262 
used to weigh predicted ∆Gtotal affinity scores in calculating an overall average. We selected a 263 
range of b values from 0.35 to 0.45. b= 0.4 was determined to generate the highest linear 264 
correlation between the predicted ∆G value and the measured affinity (adjusted R2 = 0.98, p-265 
value = 0.0009527). Linear regression tests were performed in R.  266 
 267 
Out of all predictions per gene, the 300 top predictions were used to calculate the Bolzmann 268 
probability given the inflection point of energy predictions observed per gene in [30]. The 269 
frequency of binding site position predictions was calculated as a function of the Bolzmann 270 
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probability of binding to that position. These frequencies were then used to calculate densities of 271 
binding interactions across the UTR itself, yielding peaks which we interpret as footprints or 272 
binding sites of RsmA. Using the lolB sequence (Fig. 2b; supplementary table 3) as a 273 
negative control, we established the peak height threshold for binding to be the maximum height 274 
for lolB binding site frequencies, 0.0064. 275 
 276 
Peaks in binding site density data were called using the signal function within SciPy 1.0 [10] with 277 
the following parameters: the peak width was set from 5 to 15 to represent the range between 278 
the minimum base pairing footprint and the maximum number of possible predictions for a 279 
single site. The minimum height for a peak was set at 0.0064, which was determined to be the 280 
maximum height for a negative control UTR, lolB. The script for parsing and calling peaks can 281 
be found in the rsm_biophysical_model GitHub repository as peak_calling.py. Analysis and 282 
generation of footprint density plots was performed in R (Version 4.3.1). 283 
 284 
RNA Co-immunoprecipitation 285 
Strain PA14ΔrsmAF carrying an empty vector control (pJN105), pRsmAHis6, pRsmFHis6, or the 286 
RNA binding mutant expressing plasmids pRsmA(R44A)His6 and pRsmF(R62A)His6 were grown 287 
at 37C with shaking at 300 RPM in 200 ml Tryptic Soy Broth (TSB) supplemented with 20 mM 288 
MgCl2, 5 mM EGTA, 15 μg/ml gentamicin, and 0.1% arabinose to mid-log phase, and pelleted at 289 
4C.  Cells pellets were immediately resuspended and lysed in Qiagen native purification lysis 290 
buffer (50 mM NaH2PO4, 300 mM NaCl, 10 mM imidazole, pH 8.0) supplemented with 2.5 mM 291 
vanadyl ribonucleoside complex (NEB) (to inhibit RNase activity), 1 mg/ml lysozyme, and 0.1% 292 
Triton X-100. Lysis was completed by three freeze-thaw cycles. Lysates were treated with 10 μl 293 
RQ-1 RNase-free DNase and cleared by centrifugation. An aliquot was removed from the 294 
cleared lysate for total RNA isolation and preserved in TRIzol (Thermo Fisher), and the 295 
remaining lysate was incubated with nickel-nitrilotriacetic acid (Ni-NTA)–agarose at 4°C for 1 h 296 
under nondenaturing binding conditions. Ni-NTA–agarose was then loaded into a column and 297 
washed 3 times with nondenaturing binding buffer containing 10 mM imidazole. Protein and 298 
associated RNAs were eluted in 4 fractions with 250 mM imidazole and 4 fractions with 500 mM 299 
imidazole. An aliquot of each fraction was analyzed by western blot, and fractions containing 300 
RsmAHis6, RsmFHis6 or the respective RNA binding mutant version of the proteins were 301 
individually pooled as were the equivalent fractions from the vector control strain. Each pool was 302 
treated with TRIzol and RNA was extracted according to the manufacturer's protocol. RNA was 303 
treated with RQ1 RNase-free DNase and concentrated using RNA Clean and Concentrator kit 304 
(Zymo).  305 
 306 
Library preparation and Next-Generation Sequencing Analysis 307 
Purified total RNA and co-IP enriched RNA was treated with Ribo-Zero (Illumina) according to 308 
the manufacture and purified and concentrated with Zymo Clean and Concentrator 5. First 309 
strand cDNA was generated using Superscript II RT (Invitrogen) and Random Primer 9 (NEB) 310 
and converted to double stranded cDNA using Second Strand cDNA Synthesis Kit (NEB) 311 
according to the manufacturer’s protocols. cDNA was purified using Zymo RNA Clean and 312 
Concentrator Kit modified for cDNA recovery. Libraries were prepared using the Nextera XT 313 
DNA Library Kit (Illumina, San Diego, CA) according to the manufacture’s protocol including 314 
tagment of cDNA, amplicons indexation/barcoding through PCR amplification using Nextera 315 
master mix, clean-up, and pooling. Finally, pooled and barcoded amplicons were single end 316 
sequenced on an Illumina NextSeq500 System. Sequencing reads were trimmed using 317 
Trimmomatic to remove library adapters. Trimmed reads were aligned to a Pseudomonas 318 
aeruginosa PA14 reference genome using bowtie2 [47]. Aligned reads were then transformed 319 
into binary alignment maps (BAM files) using samtools [48]. Finally, files were analyzed in 320 
Geneious software to obtain count tables containing transcripts per million read counts for each 321 
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gene. Raw sequencing outputs were uploaded to the publicly available Sequence Read Archive 322 
(SRA) under the Bioproject ID PRJNA1131461.    323 
Analysis of gene expression was performed using the DEseq2 package [49] in R. To determine 324 
enriched genes, we first calculated the differential expression between the total RNA and the 325 
overexpressed RsmA-his pulldown genes. Genes with L2FC >1 and p adj < 0.005 were 326 
considered enriched in our dataset (Supplementary table 6).  327 
 328 
Proteomic sample preparation and analysis 329 
Overnight cultures of WT P. aeruginosa PA103 and ∆rsmA, ∆rsmF, and ∆rsmAF mutants were 330 
diluted to an optical density of 0.1 at 600 nm (OD600) in tryptic soy broth supplemented with 1% 331 
glycerol, 100 mM monosodium glutamate, and 2 mM EGTA. Cultures were incubated at 37˚C 332 
with shaking until the OD600 reached 1.0. Cells (1 ml) were harvested by centrifugation (10 min, 333 
4˚C, 12,500 x g). Cell pellets were washed with 1 ml PBS and then stored at -80˚C. Proteomic 334 
sample preparation and analyses were performed by the VIB Proteomics Core, Gent, Belgium. 335 
Differentially expressed proteins were identified using the DEseq2 package [49] in R. Proteins 336 
with L2FC >1 and p adj < 0.005 were considered differentially expressed in our dataset 337 
(Supplementary table 7).  338 
 339 
Filter binding assay for testing binding interactions in vitro  340 
Assessment of binding interactions between RsmA and several candidate genes were 341 
evaluated using an in vitro nitrocellulose filter binding assay. Sequences generated with efficient 342 
T7 promoter design and synthesized (IDT). Sequences for these targets can be found in 343 
Supplementary table 3. RNA was produced via in vitro transcription (Thermo T7 megascript 344 
kit) with supplemented 3.75 mM guanosine for efficient radiolabeling. P32 labeled ATP was 345 
integrated to the 5’ end of purified RNA with PNK and cleaned up using silica filter spin column 346 
extraction (NEB Monarch).  347 

His-tagged RsmA was purified using nickel chromatography. Briefly, BL21 E. coli cells were 348 
transformed with an arabinose-inducible, his-tagged RsmA encoding plasmid. These were 349 
grown in overnight cultures and seeded into large shaker flasks until reaching exponential 350 
phase (OD600 = 0.6).  351 

Binding strengths between purified RsmA and various radiolabeled RNA sequences were 352 
assessed using nitrocellulose filter binding. Serially diluted RsmA was incubated with 0.5 nM 353 
p32 radiolabeled RNA in an optimized binding buffer (10 mM Tris-HCl pH 7.5, 100 mM KCl, 10 354 
mM MgCl2, 10 mM DTT, 10 ug/mL heparin, Murine RNase inhibitor) at 37 C for 30 minutes. 355 
Following incubation, reactions were loaded into the Bio-Dot microfiltration apparatus (Bio-Rad) 356 
and light suction was applied to pass the reactions through sandwiched 0.45 mM nitrocellulose 357 
and N+ (Cytiva Amersham™ Hybond™-N+ ) membranes. Signal intensities were captured via 358 
phosphorimaging on the Amersham Typhoon 5, and measured using Bio-Rad Image Lab 359 
software. Dissociation constants were calculated using the modified hill equation described in 360 
[50] with a Hill Constant of 2 to reflect cooperative binding of the homodimeric form of the RsmA 361 
protein.  362 

 363 
Construction of translational reporters for assessing effects on regulation in PA103 364 
The effects of RsmA binding on translation were assayed using a translational GFP reporter 365 
system. The E. coli and P. aeruginosa compatible plasmid, pJN105, encodes for a arabinose 366 
inducible RsmA expression and was modified as follows: The constitutive lacUV5 promoter 367 
upstream of the 5’ UTR of our gene of interest was inserted into pJN105 along with the first 99 368 
bases of coding sequence. This leader was fused to the GFPmut3 sequence with a trailing SRA 369 
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degradation tag (M0051, sequence from IGEM database). Sequences for our genes of interest, 370 
along with positive and negative controls were amplified with compatible primers and inserted 371 
through Gibson assembly (NEB HiFi Gibson assembly kit). pJN105 was encoded with an 372 
inducible RsmA region via the pBAD promoter and constitutive araC expression. All plasmids 373 
and primers used in this study can be found in Supplementary table 3.  374 
Following assembly, plasmids were transformed using heat shock into chemically competent 375 
DH5a E. coli and plated on 15 ug/mL Gentamycin supplemented (Sigma-Aldrich) LB plates. 376 
Plasmids were extracted from overnight cultures using the Zymo zippy miniprep kit and 377 
submitted to Plasmidsaurus for sequence confirmation. Following extraction, plasmids were 378 
then transformed into chemically competent PA103 ∆RsmA/RsmF strains and plated on LB- 379 
agar media supplemented with 80 ug/mL Gentamycin antibiotic. Transformed strains were 380 
grown overnight in LB broth supplemented with 80 ug/mL Gentamycin (Sigma) and then seeded 381 
into 30 mL of supplemented LB culture at a 1:100 dilution. Upon reaching OD 0.02, cultures 382 
were split into two flasks and half were induced with 0.5% L-arabinose. Induced and uninduced 383 
cultures were monitored for fluorescence intensity on the Cytation3 plate reader at 484 and 513 384 
excitation and emission wavelengths. Fluorescence and OD600 measurements were taken at 0, 385 
1, 2, 4, and 6 hours post induction. Fluorescence values were normalized by OD600 386 
measurement and analyzed in R.  387 

 388 
Generating mutations for rsaL and mvaT  389 
Mutations were made for all combinations of predicted binding sites on rsaL and mvaT while 390 
minimizing the change to overall structure for the folded mRNA. Minimum Free Energy 391 
calculations were performed using ViennaRNA RNAfold secondary structure prediction tool 392 
(version 2.4.18). All scripts were written and executed in Python 3.7. For binding sites within the 393 
coding region, mutations were made to exclude stop codons while still maintaining overall 394 
structure. Motif mutations were generated using all combinations of low scoring residues 395 
present in our prior PWM. The full list of mutant sequences can be found in Supplemental 396 
table 3.  397 

Results: 398 
Using crystallized RsmA-RNA binding structures to generate a biophysical framework 399 
that captures different energetic contributions of various RNA sequences to binding. 400 
The P. aeruginosa RsmA and E. coli CsrA protein sequences share 85% amino acid identity 401 
(BLAST alignment: Camacho et al., 2009), however slight differences in the primary and 402 
secondary binding motifs have been reported for the Csr/Rsm family across organisms [20,51]. 403 
To construct an energetic matrix that captures interactions between RsmA and specific motifs in 404 
P. aeruginosa, we selected the scaffold structure of RsmE-hcnA available in the Protein Data 405 
Bank (PDB: 2JPP) as representative of the overall protein structure in complex with mRNA. 406 
Changes in free energy due to single positional mutations were captured using the Rosetta-407 
Vienna RNP ∆∆G tool [37] as described in (Methods). This generated a Position Weight Matrix 408 
(PWM) of per-nucleotide contributions of binding based on their position within a 5-nucleotide 409 
window (Table 1).  410 
 411 
 412 
Table 1: Rosetta modeling derived Position Weight Matrix of the free energy contributions for each nucleotide present 413 
in a 5 nt window. An example of this calculation would be as follows: high affinity motifs such as AUGGA would 414 
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contribute the maximum possible score to the overall free energy calculation, whereas low affinity sequences such as 415 
UCCUU would not contribute to the overall score at all. 416 

 417 
 418 
 419 
 420 
 421 
 422 
 423 
 424 
 425 
 426 
 427 
 428 
The highest affinity 429 motif produced by a 5-nt 
window using this crafted PWM (Table 1) would therefore be AUGGA, which is consistent with 430 
the binding motif observed for RsmA [34]. Prior models crafted for the E. coli CsrA protein 431 
confer the highest energetic contribution when a strict AAGGA motif is found [30]. A comparison 432 
of the two matrices can be found in Supplemental table 1. The Rosetta-crafted PWM presented 433 
here confers an additional benefit to the model, wherein non-canonical motifs may contribute to 434 
the overall energy calculation and thus considers alternative sequences that RsmA can bind. 435 
Using this PWM we can then calculate the free energy contributions of a motif within sliding 5 nt 436 
windows (∆Gsite1 and ∆Gsite2), which we sum with additional biophysical parameters (Equation 1) 437 
to generate a prediction of overall affinity, or the change in free energy (∆Gtotal) due to RsmA 438 
binding to an mRNA of interest.  439 
 440 
To briefly summarize the contributions of this PWM to our two-step thermodynamic equation, we 441 
calculate the ∆Gtotal as the change in free energy from the unbound (∆GmRNA unbound) to a bound 442 
state. These biophysical parameters are defined as follows: The energies of the bound state are 443 
calculated given the matrix-derived free energy of each motif bound by the homodimeric form of 444 
RsmA (∆Gsite1 and ∆Gsite2) and added to a penalty for steric hindrance for binding sites in close 445 
proximity (∆Gcooperativity ) and the minimum free energy of RNA folding given bound folding 446 
constraints (∆GmRNA bound)(Fig. 1a, Equation 1). These calculations are performed for all 447 
possible combinations of binding sites along each transcript modeled (Fig. 1b) and the positions 448 
are sorted by the predicted highest affinity. Given the empirically-derived nature of these energy 449 
terms, we hypothesize that the in-silico predictions of high energetic affinity (∆Gtotal) can be used 450 
to predict binding interactions in-vivo.  451 
 452 
Genes enriched in RNA co-immunoprecipitation and proteomics establish positive 453 
control population for model tuning 454 

To tune model filtering terms, we established a positive control population using RNA co-455 
immunoprecipitation sequencing (RIP-seq) and proteomics. For the RIP-seq experiments Total 456 
RNA and pulled down fractions were sequenced in PA14 ∆rsmAF carrying plasmids encoding 457 
His-tagged RsmA, RsmF, the respective inactive mutants (RsmA R44A, RsmF R62A) or an empty 458 
vector control (pJN105). PCA analysis (Supplementary Figure 2a) of RNA sequencing 459 
performed for the pulldown study suggests that the difference in RNA in total and enriched 460 
fractions contributed to 33% of the observed variance in the dataset. 18% of the variance could 461 
be attributed to an inactivating mutation present in the overexpressed RsmF protein. Conditions 462 
lacking vector expressing RsmA/RsmF and the presence of empty vector encoding no protein 463 
both clustered closely and therefore the presence of the plasmid did not alter gene expression.  464 

pos/nt A G C U 

1 -1.97 -0.49 -0.27 0 

2 -0.02 -0.04 0 -0.16 

3 -2.18 -3.42 0 -0.09 

4 -1.76 -5.10 -0.54 0 

5 -2.11 -1.90 -0.08 0 
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 465 
358 genes were identified to be significantly enriched (L2FC >1 and p-adj < 0.005; 466 

Supplementary Figure 3b, Supplementary Table 6) in RsmA pulldown relative to the total 467 
RNA. These targets were considered to have a high likelihood of being bound partners of RsmA 468 
and were used to define the positive control population to tune the cutoff term for our model. 469 
This enriched population included positive controls such as algU, rahU, and magA, however, 470 
other well characterized direct targets of RsmA (“positive control genes”) such as tssA1 were 471 
not enriched in the RsmA pulldown pool. Interestingly, more genes were significantly enriched in 472 
the RsmF pulldown relative RsmA (Supplementary Figure 3b). This pool of 565 mRNAs 473 
included positive control genes such as tssA1, fha1, rahU, and mucA. 228/565 genes overlap 474 
with the pool of enriched mRNAs pulled down by RsmA.  475 

The proteomics experiments identified an additional 261 proteins (Supplementary Table 7) 476 
found to be significantly differentially expressed (L2FC >1, p-adj < 0.005) in PA103 ∆rsmA strain 477 
relative to WT (interpreted as repressed in native conditions).  478 
 479 
Predicted total affinity can be used to differentiate bound from unbound targets 480 
The predicted overall affinity score, ∆Gtotal, can be interpreted as a probability for binding 481 
occurring when RsmA and the target mRNA are present. To evaluate the predictive capabilities 482 
of the model, we sought to determine whether the calculated total affinity score could be used 483 
as a metric to differentiate direct binding interactions from indirect or unbound gene targets. 484 
Predictions were generated for 5861 UTR sequences extracted from the PA14-UCBB 485 
transcriptome (NCBI:txid 208963, Supplementary table 4). As of this publication, PA14 has a 486 
total of 5893 identified genes but we were unable to generate predictions for all due to their lack 487 
of inclusion in prior TSS profiling [41]. To evaluate our predictions, we sought to compare the 488 
model predictions to experimental results. A combination of prior RNA co-immunoprecipitation 489 
sequencing [9] and the RNA co-immunoprecipitation and proteomics performed in this work 490 
were used to experimentally identify 780 genes potentially regulated by RsmA. This pool of 491 
genes was used to define a positive control population for binding. A random selection of 780 492 
additional UTR sequences were collected from the rest of the modeled PA14 transcriptome to 493 
generate a control population. For each gene within the positive and background populations, 494 
the average ∆Gtotal affinity score was calculated given the 300 most favorable predicted energies 495 
in the ensemble. These first 300 predictions represent the most probable conformations of 496 
binding between RsmA and the RNA target. A significant difference (p <0.05) was observed 497 
between the average total affinity scores of 780 randomly selected sequences and those from 498 
Co-IP enriched genes (Fig. 2a). We identified several control genes to validate our results.The 499 
tssA1 (positive) and lolB, (negative) genes are outlined (Fig. 2a) due to their extensive binding 500 
characterization. These fall at expected values within each population. The average total affinity 501 
score for tssA1 was determined to be highly favorable (∆Gtotal:  -27.75 RT), and fell within the 502 
energy range for our positive control population (Fig. 2a). The average total affinity for the 503 
negative control, lolB, was calculated to be -23.80 RT which fell within the population range for 504 
our randomly selected “non-targets” population. This indicated to us that we could use the ∆Gtotal 505 
metric as a cutoff for filtering true from false targets in our pool of predictions. 506 
 507 
To further refine the exact ∆Gtotal cutoff that differentiates direct bound targets from indirect non-508 
targets, we performed hypergeometric enrichment testing for the pool of predictions that would 509 
enrich for genes pulled down in prior RIP-seq studies, while also minimizing those included by 510 
random chance. We evaluated cutoff values within a ∆Gtotal range of -27.50 RT to -24.0 RT (Fig. 511 
2d). The cutoff value that conferred the highest significant enrichment for immunoprecipitated 512 
genes was found at a ∆Gtotal threshold of -26.25 (p = 7.08e-08), and the second highest at ∆Gtotal 513 
-25.75 (p = 2.61e-07). In addition, genes with no prior evidence of binding by RsmA were 514 
selected to performed exclusion testing of non-targets for each energy cutoff. This determined 515 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 2, 2024. ; https://doi.org/10.1101/2024.08.01.606018doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.01.606018
http://creativecommons.org/licenses/by-nc-nd/4.0/


 12 

that the depletion of non-targets reached its maximum at the cutoff value of -25.50 (p = 6.36e-516 
07). Given these results, the optimal cutoff used was -25.75 which yielded 1071 predictions of 517 
putative targets for RsmA. This observation validated that the ∆Gtotal can be used as a predictor 518 
of overall affinity.  519 

 520 
Figure 2: Model parameters are refined and validated using experimental datasets. A) Overall affinity scores 521 
from genes identified to be bound by RsmA in prior RNA immunoprecipitation studies (coIP) are a distinct population 522 
relative to a random sample from the rest of the transcriptome. Positive and negative control RNA tssA1 and lolB fall 523 
at opposite sites in these populations wherein more negative ∆Gtotal values represent higher affinity scores. B) 524 
Frequency of binding site predictions along the lolB mRNA sequence. Predictions along the sequence space of this 525 
gene are very disperse and have low affinity. C) Frequency of binding site predictions across the tssA1 UTR 526 
sequence. Binding site frequencies across the space of this sequence pass our threshold at three main sites. *Two of 527 
which were confirmed binding sites of RsmA given past mutational studies (Schulmeyer et. al., 2016). D) 528 
Hypergeometric enrichment testing reveals that the peak energy cutoff that enriches for known targets of RsmA, 529 
while excluding non-targets, is -25.75 kcal/mol (black line). The number of predictions that pass this filter are shown 530 
in text, and the % of novel predictions are shown in color. Non colored bars and points represent energy thresholds 531 
where predicted targets were not significantly enriched (p-value > 0.05) relative to random chance.  532 

 533 
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Peak analysis of predicted binding sites for enriched targets validate the predictive 534 
capabilities of the model 535 
In addition to predicting an overall affinity, our model also has the capability to determine the 536 
position of RsmA binding sites along the modeled mRNA leader sequence. The Boltzmann 537 
probability of binding was calculated given the ∆Gtotal per prediction presented in Equation 4, 538 
and described in Methods. Calculation of the frequency of binding interactions at a specific site 539 
was extrapolated from this predetermined probability and used to weigh highest affinity 540 
predictions relative to the expanded set of those per gene. Then, peak calling was performed on 541 
all genes with a baseline cutoff established from the negative control sequence of the lolB 542 
mRNA leader sequence (Methods). The application of this cutoff filtered our list of predictions to 543 
1043 possible targets of RsmA, 457 of which are genes for which no prior experimental 544 
evidence was found.  545 
 546 
The specific binding sites of P. aeruginosa RsmA on its established targetome has been 547 
experimentally validated on tssA1[36]. To evaluate the capabilities of the model for predicting 548 
bound regions, we compared peak predictions on the 5’ UTR of tssA1 which has been 549 
experimentally verified binding sites that fall at -15 and -67 nt from the start codon [36]. 550 
Predicted binding site peaks not only fall within those two regions (Fig. 2b), but also identify a 551 
third region where RsmA may potentially bind to repress translation of tssA1. Confirmation of 552 
more than two binding sites that confer flexible binding of the protein to a given mRNA target 553 
has been identified for CsrA [52]. Due to the lack of footprinting data available for other mRNAs 554 
within PA, binding site predictions were also performed on experimentally footprinted targets of 555 
Rsm/Csr family proteins in closely related organisms, such as E. coli (CsrA-glgC) and P. 556 
fluorescens (RsmE- hcnA). These produced high positive predictive values on those binding 557 
partners (Supplementary Fig. 2). Peak predictions for all modeled genes can be found in the 558 
supplementary binding packet. Overall, the capturing multiple experimentally characterized 559 
binding site across a range of well-studied RsmA/CsrA targets that we selected provided 560 
confidence in the ability of the model to identify RsmA binding sites across different potential 561 
mRNA targets.  562 
 563 
Enrichment of quorum sensing and biofilm pathway transcription factors in predicted 564 
RsmA targets  565 
Given our pool of 1043 predicted targets, we next sought to determine whether new pathways 566 
that were regulated by RsmA (but not yet identified) were enriched in our filtered pool. 567 
Encouragingly, pathways with prior experimental evidence of regulation by the GacA/S TCS 568 
pathway were identified in our analyses. GO term and KEGG pathway enrichment analyses of 569 
our pool of 1043 putative mRNA targets show significant (EASE score < 0.1) representation of 570 
genes involved in key virulence pathways (Fig. 3a,b). Molecular features enriched in our 571 
predicted targets include those with DNA-binding transcriptional activator (GO:0001216), metal 572 
ion binding (GO: 0046872) and cytochrome-c oxidase (GO:0004129) activities (Fig. 3a). 573 
Roughly 60 transcriptional regulators were predicted to be bound by RsmA in our model, 574 
including key QS regulators LasR, MvfR, and the orphan regulator, QscR.  575 
Key pathways enriched by our predictions include quorum sensing (pae02024), biofilm 576 
formation (pae02025), valine, leucine, and isoleucine degradation (pae00280), and 577 
peptidoglycan biosynthesis (pae00550)(Fig. 3b). Although many of these processes have 578 
already been shown to be regulated by the Gac/Rsm pathway [53,54], several novel predictions 579 
were generated within each feature (Fig. 3a,b). This suggests modeling allows us to expand 580 
upon the total number of genes that RsmA may regulate across complex and condition-sensitive 581 
pathways.  582 
 583 
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The full profiling of transcriptional regulatory network in PA is yet incomplete, but recent efforts 584 
to characterize binding specificities in vitro  [55] has expanded upon our understanding of TF 585 
interaction with known, key virulence pathways. Transcriptional regulators were significantly 586 
enriched in our predicted pool of genes bound by RsmA (Fig. 3a); therefore, we sought to 587 
identify which of these transcriptional regulators were associated with KEGG enriched 588 
pathways. Of note is the identification of lasR (PA14_45960) is shared by both QS and biofilm 589 
forming processes (Fig. 3c). Out of 86 total transcription factors mapped to biofilm, quorum 590 
sensing, the Type 6 Secretion System (T6SS) and motility pathways in [55], 17 were identified 591 
by our model to be bound by RsmA. Of these 17, 3 were found to be associated with all four 592 
pathways (Fig. 3c), which were identified as PA1431 (rsaL), PA4184 (souR), and PA1437, a 593 
two-component response regulator. Only PA1437 was previously predicted to be a potential 594 
target via a prior motif search approach [20], whereas PA1431 (rsaL) and PA4184 (souR) are 595 
entirely novel mRNA predictions. 596 

 597 
Figure 3 Distribution of enriched molecular functions and pathways in pool of predicted targets of RsmA. 598 
A&B) DAVID enrichment analysis for molecular function GO terms and KEGG pathways, sorted by increasing p-value 599 
(< 0.1). Along with the reported fold change of enrichment, the lines display the proportion of genes within each 600 
category that are novel predictions yielded by the model (red line) and the proportion of genes with some prior 601 
evidence of association with RsmA (purple line). C) Predictions that fall within key virulence pathways such as 602 
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quorum sensing and biofilm formation also have shared transcription factor regulation. Left: one transcriptional 603 
regulator, LasR (PA14_45960) is associated with both quorum sensing and biofilms. Right: Model predictions identify 604 
several newly profiled transcription factors (Wang, et. al., 2020) that are also associated with virulence pathways. 605 
Three transcriptional regulators associated with all four processes include PA1437, a two-component response 606 
regulator, PA4184, SouR regulator of Phezanine biosynthesis, and PA1431, rsaL, a novel target and regulator 607 
involved in quorum sensing.  608 

 609 

Meta-analysis of aggregated RNA-seq datasets reveal that novel targets identified in our 610 
model are lowly expressed in standard media types used for binding/pulldown studies 611 
The influence of RsmA on regulating the aforementioned pathways has been well demonstrated 612 
by prior studies [53,54]. Therefore, we sought to determine how many of our predicted genes 613 
were also found in other high-throughput characterizations of RsmA regulation in P. aeruginosa. 614 
We compared predictions to all those found in previous modeling [20], microarray analysis [18], 615 
RNA-seq studies [1,19], RIP-seq studies [9], CLIP-seq studies [10], and recent nascent chain 616 
profling methods such as ChiPPar-seq [19]. Comparisons across these studies revealed that 617 
586 of our predictions had some level of prior evidence of binding or direct/indirect regulation by 618 
RsmA, and 457 were entirely novel predictions.  619 
 620 
Prior experimental approaches have estimated RsmA has some regulatory effect (including 621 
direct and indirect) on approximately 500 genes, yet our number of predictions (1043) is double 622 
that estimate. In an effort to understand why our pool of predictions is larger than prior 623 
approximations, we hypothesized that many predictions were dependent on conditions not 624 
tested in prior experimental screens. To investigate this hypothesis we leveraged the 625 
aggregated, publicly available, RNA sequencing data from a meta-analysis of gene expression 626 
across various conditions in P. aeruginosa [23]. This dataset included values of normalized 627 
gene expression in transcripts per million (log TPM) from 411 sequencing datasets, including 628 
data from a RsmA pulldown study [9]. These datasets measure gene expression in a wide 629 
variety of experimental conditions including various strain types, growth phases, media, 630 
antibiotic supplementation, clinical isolates, and lifestyles and demonstrates that gene 631 
expression is highly variable and condition-specific [23]. In our analysis, we interpreted a gene 632 
to be expressed if the log TPM value was greater than 0. The expression data was filtered and 633 
subsequently binned into 10 ranges and then labeled given their prior evidence for regulation by 634 
RsmA. Overall, genes with some prior experimental evidence of binding to RsmA were more 635 
represented in higher expression bins, whereas those that had no evidence, or were novel 636 
predictions by our model, aggregated towards lower expression bins (Fig. 4a). This observation 637 
suggests that the novel predictions generated by the model were not identified as RsmA targets 638 
in prior experimental screens due to low expression levels in the conditions tested.  639 
 640 
To assess where novel predictions were clustering across these varied conditions, we used k-641 
modal clustering of experimental condition categories as described in Methods. Overall, a 642 
higher proportion of genes with some prior evidence of RsmA interaction were found in 643 
experiments performed in LB media (cluster 3), whereas nutrient-limited media types like M9 644 
and ABTGT exhibited a higher proportion of novel predictions and genes with no RsmA 645 
regulatory evidence (Fig. 4c, cluster 1). This recapitulates observations that media type has a 646 
large impact on gene expression, and therefore the availability of certain genes for high 647 
throughput profiling. As example of note is rsaL, a novel target encoding for a quorum sensing 648 
transcriptional regulator, that we identify to be bound by RsmA computationally but, when 649 
assessed across datasets, appears rarely expressed. We define high expression in this case as 650 
a log TPM value greater than that of the rimM housekeeping gene (average log TPM = 1.95).  651 
RsaL reaches a log TPM expression level above 1.95 in only 3 of the 411 RNA-seq experiments 652 
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(SRA accession numbers SRS605141, SRR6018047, and ERS530377) aggregated in [23]; 653 
indicating that sufficient levels of rsaL expression may only occur in certain experimental 654 
conditions. 655 
 656 
To assess whether expression of rsaL could be detected if media and growth conditions were 657 
optimized, we evaluated expression levels of the gene via RT-qPCR. To mimic the planktonic 658 
conditions where rsaL expression was detected [56], we cultured PA103 WT strains in either 659 
minimal ABTGT or LB media and sampled for rsaL expression at late-exponential phase. After 660 
normalization to the rimM housekeeping gene and to internal primer efficiency E scores, 661 
expression of rsaL was not significantly different between media types (Fig. 4b). In addition, 662 
expression of RsmY was significantly increased in LB media relative to ABTGT, but showed no 663 
significant change in ABTGT relative to rsaL 664 
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 665 
Figure 4: Comparison of results with transcriptomic data suggests novel transcripts are found at lower 666 
concentrations. 483 genes were predicted by the model that are not represented in any prior modeling, microarray, 667 
RNA-seq or pulldown studies of RsmA. A recent publication aggregated 411 expression datasets for Pseudomonas 668 
aeruginosa grown in various experimental conditions. A) Bar chart of the proportion of predictions with no evidence of 669 
RNA binding, prior evidence of binding, and entirely novel predictions, binned by log TPM expression level in that 670 
experiment. The proportion of genes with prior evidence increases as the log TPM levels of expression increases, 671 
suggesting that expression influences detection. B) RT-qPCR data of rsaL and RsmY expression in minimal and LB 672 
media at early stationary phase suggests that rsaL is lowly expressed in both media types. C) K-modal clustering of 673 
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all categories in the aggregated experimental conditions from 411 expression datasets (KO, media, growth phase, 674 
stress) to observe whether the presence of novel or predicted targets cluster within specific conditions, knockouts, or 675 
media types, overlaid with the proportion of genes that fall within each cluster. Predictably, most of the genes that 676 
have some prior association with RsmA are expressed in conditions cultured in LB media, whereas more novel 677 
targets were expressed in minimal media such as M9 or ABTHC. 678 

 679 
RsmA binds and regulates several predicted mRNA targets encoding for key 680 
transcriptional regulators as assessed by in vitro binding and in vivo translational 681 
reporter assays  682 
Given the concordance of our computational predictions with previously published experimental 683 
results, we sought to test RsmA binding to our novel predictions in vitro. Therefore, we selected 684 
8 genes that were representative of the core quorum sensing regulatory cascade (Fig. 5a, 685 
Supplementary table 3) to assess binding in vitro. These were quorum sensing regulatory 686 
genes lasR/lasI, rhlR/rhlI, mvfR, and a novel prediction rsaL. Secretion system regulators 687 
included the mvaT and aprD leader sequences. These targets have varied support in the 688 
literature for RsmA interactions, the majority lacking evidence of either in vitro binding or 689 
regulatory impact. Finally, the tssA1 and loB sequences were included as positive and negative 690 
controls. Filter binding assays were performed with the [a-32P] ATP radiolabeled mRNA and 691 
purified RsmA protein. aprD binding was evaluated via Electrophoretic Mobility Shift Assay 692 
(EMSA) (Supplemental Fig. 4). Each of these genes had varying degrees of prior RsmA 693 
regulatory characterization as summarized in Fig. 5a.  Importantly, we observed strong in vitro 694 
binding interactions between RsmA and mvaT, lasR, rhlI and tssA1 leader sequences. These 695 
observations are consistent with the predicted overall affinity (∆Gtotal) scores for each gene, 696 
which were predicted to be -26.29, -26.54, -26.37, and -26.34 respectively (Fig. 5a,b). Weaker 697 
interactions were seen for rsaL, mvfR, and lasI. These each had average predicted affinities of -698 
25.82, -26.55, and -24.79 (Fig. 5a,b). Disassociation constants (kDs) from this biochemical 699 
characterization correlate well with the predicted total affinity (R2= 0.92, Fig. 5c). It is worth 700 
noting that although we initially excluded genes such as rhlR from our true target predictions (in 701 
accordance with the -25.75 energy threshold), we tested them experimentally for binding given 702 
the observation that we predicted two other mRNA targets (lasR and lasI) in our final candidate 703 
pool that encode for two closely functionally related proteins to RhlR in the quorum sensing 704 
pathway. We did not observe binding between RsmA and rhlR in our in vitro filter binding 705 
assays (Fig. 5b) or via EMSA (Supplementary Fig. 4) experiments, which recapitulates the 706 
negative result from the model. Finally, we did not observe binding between RsmA and the lolB 707 
negative control. Overall, these results indicate that RsmA does bind to targets predicted by the 708 
model, and that relative binding affinity predicted via the ∆Gtotal affinity score is correlated with 709 
affinities measured in vitro.  710 
 711 
As a post-transcriptional regulator, RsmA is able to repress or activate gene expression by 712 
blocking or enhancing ribosomal binding to the 5’ UTR region of an mRNA. To evaluate the 713 
effects of binding on translation, we performed plasmid-based in vivo translational reporter 714 
assays (summarized in Fig. 6a). Sequences from the same pool of 8 genes selected for in vitro 715 
characterization were fused to the GFPmut3 coding sequence, and fluorescence values were 716 
measured following RsmA induction in a PA103 ∆RsmA/RsmF strain (Supplementary table 3).  717 
lolB was not used in these assays due to the observation that the established sequence used in 718 
prior mobility shift experiments [1] is not the leader sequence, but falls within a portion of the 719 
coding region and therefore does not contain a ribosome binding site (see supplemental table 720 
3). Specifically, BLAST search revealed the lolB sequence used in prior experiments falls 721 
between nucleotides 5236896 and 5237178 in the PA01 genome. Given the lack of binding 722 
observed between RsmA and rhlR in our in vitro binding assays (Fig. 5b, Supplementary 723 
Figure 4) we selected this target to use as a suitable negative control for this assay. No 724 
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significant difference in fluorescence is observed for rhlR (Fig. 6b). The tssA1 5’ UTR was used 725 
as a positive control for repression and showed a significant (p<0.05) reduction in normalized 726 
fluorescence values following induction of RsmA (Fig. 4b). We also observed significant 727 
reduction of fluorescent signal for the HSL synthetase genes lasI and rhlI (p < 0.001, and p < 728 
0.05, respectively) (Fig. 6c). Given results for our positive and negative regulatory controls, we 729 
then performed the assay on mvaT, lasR and rsaL. Each of these genes have some lacking 730 
prior evidence of direct RsmA binding and/or regulation from the literature (Fig. 5a). These 731 
targets yielded reduced fluorescent values following RsmA induction (Fig. 6c) and we interpret 732 
these results to suggest these genes are repressed by RsmA in vivo. 733 
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Figure 5: in vitro filter binding assay demonstrates binding interactions between RsmA and predicted targets 735 
A) Summary table of the genes tested for in vitro filter binding which are representative of a variety of predicted 736 
energies and prior levels of characterization. B) Phosphoscreen of bound and unbound radiolabeled intensities for the 737 
UTRs presented in table A. C) A linear correlation exists between predicted and measured disassociation constants 738 
generated from fitting filter binding assay. 739 

 740 
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 741 
Figure 6: in vivo repression assay. A) Experimental overview of in vivo translational repression assay. UTRs were 742 
fused to GFPmut3 and expressed off of the lacUV5 constitutive promoter. Plasmids were transformed into PA103 743 
∆RsmA/RsmF strains and seeded into +/- 0.5% arabinose LB media. Fluorescence was monitored up to 6 hours 744 
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following induction. B) rhlR and tssA1 UTR sequences were used as negative and positive controls for our assay. No 745 
significant change in fluorescence was measured for rhlR, which is consistent with our prediction and in vitro 746 
experimental results. A significant reduction in fluorescence values was observed for the positive control tssA1. C) A 747 
significant reduction in fluorescence was also detected for our pool of additional tested genes, including lasI and rhlI. 748 
Fluorescence values are plotted median centered to account for changes in translation rates due to the native RBS 749 
encoded in each individual UTR.  750 

 751 

RsmA binds to model-predicted binding sites in novel targets rsaL and mvaT in vitro 752 
The model identifies several binding sites along the sequence space of each gene. Given our 753 
observation that two novel targets rsaL and mvaT were bound by RsmA in vitro, we sought to 754 
assess binding to the specific predicted locations produced by the model. The top three binding 755 
sites for each gene (Fig.s 7a,b and Fig.s 8a,b) were mutated individually, and for all 756 
combinations of 2 binding sites along the sequence. Binding to each mutant was evaluated via 757 
in vitro filter binding assay.  758 
 759 
The three predicted binding sites (termed BS1, BS2, and BS3) on the rsaL transcript fall within 760 
the coding region at +12, +67, and +76 nt from the start codon (Fig. 7a, BS1, BS2, and BS3), 761 
with the highest frequency of binding predictions falling peaks 67 and 76 nt (Fig. 7a). Guided by 762 
the strict peaks (i.e. specific binding sites) predicted by the model in this case, we selected 763 
these three specific binding sites to test. Evaluating these mutations via in vitro binding reveals 764 
that mutation of BS3 significantly reduces binding affinity of RsmA to the rsaL transcript (Fig. 765 
7c). Mutating BS1 and BS2 individually did not alter affinity to the transcript however, tandem 766 
mutations at sites BS1 and BS2 as well as sites BS2 and BS3 hinder binding interactions from 767 
occurring. Overall these results suggest that BS3 is the main anchor of binding interactions with 768 
the transcript, with BS2 as the site with second highest affinity. Mutation of BS1, which falls 769 
below our peak threshold, did not impact binding as strongly and is therefore a less likely site for 770 
RsmA-rsaL interactions. 771 
 772 
Relative to the distinct peaks observed on rsaL, binding site predictions on the mvaT leader 773 
sequence fall in a wider range, as evidenced by a single peak in the within the coding sequence 774 
of the gene (Fig. 8b). Predicted binding sites on the mvaT leader sequence were mutated at 775 
positions +26, +41, and +68 nt from the start codon (Fig. 8a,b, BS1, BS2, and BS3). Given the 776 
lack of distinct peaks, and therefore a broader selection of potential binding sites, RsmA-mvaT 777 
binding interactions were not disrupted as expected. Specifically, in our in vitro binding assays, 778 
no change in affinity was observed by mutating BS1, BS2, or BS3 individually. A slight decrease 779 
in affinity was observed when mutating BS1 and BS2, or BS1 and BS3 in tandem (Fig. 8c). It is 780 
interesting to note that predicted RsmA binding sites along the mvaT sequence cluster in a wide 781 
region within the CDS (Fig. 8a), suggesting that there may be a multitude of conformations by 782 
which RsmA binds to this transcript.    783 
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 784 
Figure 7: Mutational evaluation of predicted RsmA binding sites on rsaL. A) Density plot of predicted binding 785 
pockets along the modeled region of the rsaL leader sequence + 100 bases of CDS. Blue boxes represent the 786 
highest frequency regions for the ensemble of predictions along the sequence space. Light grey dashed line 787 
represents the minimum peak threshold for considering a binding pocket. Green dashed line is the start codon. B) 788 
Structural diagram of the rsaL leader sequence with labeled binding pockets (brown, green, and purple) as well as 789 
key functional regions such as the start codon (green) and predicted RBS (pink). C) Filter binding generated binding 790 
curves for RsmA in complex with WT rsaL (pink) and individual mutations (orange through brown) or mutations in 791 
combination (grey through red).  792 
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 793 
Figure 8: Mutational evaluation of predicted RsmA binding sites on mvaT. A) Density plot of predicted binding 794 
pockets along the modeled region of the mvaT leader sequence + 100 bases of CDS. Blue boxes represent the 795 
highest frequency regions for the ensemble of predictions along the sequence space. Light grey dashed line 796 
represents the minimum peak threshold for considering a binding pocket. Green dashed line is the start codon. B) 797 
Structural diagram of the mvaT leader sequence with labeled binding pockets (green, and purple) as well as key 798 
functional regions such as the start codon (green) and predicted RBS (pink). C) Filter binding generated binding 799 
curves for RsmA in complex with WT mvaT (grey) and individual site mutations (brown through red) or mutations in 800 
combination (green through pink).  801 

 802 

Discussion: 803 
In this work, we expand beyond motif-based screens to computationally profile binding and 804 
regulation by the RsmA protein across the entire P. aeruginosa transcriptome. Modeling and 805 
subsequent filtering yielded 1043 potential targets, of which 457 were not identified in prior 806 
experimental screens. We deem these as novel putative targets of RsmA. These putative novel 807 
targets were found to have variable media and condition-specific expression when investigated 808 
in context of publicly available sequencing data, which we posit explains earlier inability to 809 
detect them. Within each prediction we identify key molecular features that influence binding, 810 
and used these to effectively differentiate direct from indirect binding. Overall, this effort 811 
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demonstrates the utility in using empirically derived binding parameters to computationally 812 
interrogate expansive sequence spaces.  813 
 814 
Metrics such as the energy terms and binding sites correlate with experimental evidence, 815 
which demonstrate utility of model in predicting true vs false targets of RsmA.  816 
Given empirically derived binding parameters, our free energy model of RsmA binding was able 817 
to differentiate direct from indirect or unbound targets. Our predictions of overall affinity (∆Gtotal) 818 
and the position of binding sites were identified as the key parameters that allowed us to 819 
interrogate binding to mRNA leader sequences across the transcriptome. Molecular features on 820 
the RNA sequence are key for enabling regulatory function, and also provide information on the 821 
mechanism by which RsmA is able to bind. In comparing our model predictions to publicly 822 
available pulldown sequencing data, we demonstrate that the calculation of the overall affinity 823 
term ∆Gtotal can be used as a metric to differentiate true from false targets of RsmA (Fig. 2) 824 
which allowed us to effectively filter predictions made across the entire transcriptome. This was 825 
facilitated by improvements made to tailor our model for the P. aeruginosa RsmA protein. One 826 
such improvement was the generation of a RsmA-specific PWM (Table 1). This PWM allows for 827 
the contribution of non-canonical bases to the overall energy score, and prioritizes an AUGGA 828 
motif. Although not drastically different from the canonical A(N)GGA CsrA consensus, the 829 
AUGGA motif was independently observed in prior crystal structure [34], SELEX [36], and CLIP-830 
seq [10] studies to be favored by RsmA. This also demonstrates the utility in using solved 831 
crystal structures to generate models of protein-RNA interactions. Overall, considering slight 832 
changes in the protein sequence allowed for our approach to be better tailored for assessing 833 
interactions occurring within P aeruginosa.  834 
 835 
Our model appears to be able to accurately capture binding interactions between RsmA and 836 
candidate targets, as evidenced by the correlation between the measured in vitro binding 837 
affinities and the predicted ∆Gtotal values that we performed in a small selection of predicted 838 
mRNA targets (Fig. 5c). More qualitatively, genes that did not pass our energetic threshold 839 
(such as rhlR) were not observed to bind in vitro (Fig. 5b), and showed no significant change in 840 
translation in vivo (Fig. 6c). This suggests that the model has utility in predicting relative binding 841 
affinity and can aid in further exploration of network regulation, particularly as it relates to lowly 842 
expressed or condition-dependent genes. Interestingly, of the 1043 genes predicted to be 843 
bound by RsmA, several previously characterized genes did not pass our energy cutoff. These 844 
included magA, and mucA, for which binding was previously experimentally confirmed in vitro 845 
[1,9]. Each of these predictions yielded less favorable mean ∆Gtotal scores, with only a handful of 846 
the suite of binding conformations scoring with high favorability. It is possible then, that other 847 
sequences that exhibit strict site ranges may have been lost to filtering. Other genes that did not 848 
pass our energetic cutoff included those regulated in tandem with other post-transcriptional 849 
regulators, or require multiple copies of RsmA. This is possible as it has been demonstrated that 850 
RsmA is not always the sole repressor and can bind genes in tandem with other regulatory 851 
factors; this has been shown to occur with two transcriptional regulators, AmrZ and Vfr, wherein 852 
RsmA is only able to bind these transcripts in the presence of an additional global post-853 
transcriptional regulator Hfq. [12,19]. Neither amrZ nor vfr were predicted to be bound by RsmA 854 
in our model, therefore our pool of predicted targets is limited to those regulated by RsmA 855 
alone.  856 
 857 
Future iterations of our model can improve upon capturing the influence of multimerization on 858 
binding. RsmA binding can cause structural changes along an RNA transcript and promote 859 
multimerization via subsequent folding of higher affinity sites. This phenomenon has been best 860 
demonstrated via loading of multiple copies of RsmE on the RsmZ sRNA sponge [39] Our 861 
model only considers binding interactions between a single RsmA protein and transcript; 862 
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therefore, the structural influence of multiple proteins is missed by the model. To address these 863 
limitations, future improvements could include structural constraints due to partner binding, 864 
however, the footprint and position of the cooperative partner must be known. In addition, 865 
changes can be made to have RNA sequences “inherit” structural constraints from a primary 866 
iteration of predictions, and measure changes in total affinity due to the addition of secondary or 867 
tertiary elements. This can also prove useful in modeling RsmA-mRNA interactions in other 868 
Pseudomonas species that encode multiple paralogs of RsmA, such as RsmA and RsmE in P. 869 
putida and P. syringae [32] 870 
 871 
Global trends in our binding site predictions agree with patterns observed in prior high 872 
throughput screens. Distances between the top binding sites and the start codon were plotted 873 
for all genes that passed our total affinity and peak filtering (Supplementary Fig. 4). Overall, 874 
binding sites for RsmA were localized to three main regions: RBS region (between -30 and 0 875 
relative to the start codon), the start codon, and a broad distribution of sites within the first 100 876 
bases of the coding sequence. This is consistent with binding site frequencies observed in 877 
CLIP-seq studies of RsmA in P. aeruginosa [10] and CsrA in E. coli [57]. These observations 878 
suggest that, in addition to predicting an overall affinity score, our model can also predict 879 
specific binding sites on the mRNA which provides additional information on the exact 880 
mechanism by which the protein interacts with its target.  881 
 882 
More globally, binding site distributions vary across transcripts. To investigate this, we used 883 
custom peak calling scripts with parameters defined in Methods. A peak is therefore a region 884 
with a sufficiently high frequency of predicted sites that passes some minimum threshold set by 885 
negative controls. Approximately 30% of genes modeled have wide, overlapping, pockets of 886 
binding sites that span 30 + nucleobases across of the mRNA. An example of this is shown in 887 
predictions on the mvaT transcript (Fig. 8a). 70% contain narrower, distinct, peaks that are less 888 
than 30 nucleotides wide, which is also seen for predictions across rsaL (Fig. 7a). Analysis of 889 
peak count distributions for our predictions (shown in Supplementary Fig. 2d) reveals that the 890 
majority of genes have an average number of 1.25 peaks in their distribution of binding site 891 
peaks, and a smaller population of genes contain an average of 2.5 peaks where RsmA is 892 
predicted to bind. This indicates that the majority of genes contain 1-2 distinct binding peaks, 893 
whereas a smaller population contain 2 or more distinct peaks. This recapitulates prior 894 
observations that Rsm/Csr proteins facultatively interact with targets at a single binding site, or 895 
at double binding sites [4,8]. The divergent patterns of binding also suggest “anchoring” at 896 
single high affinity site along the gene, prior to binding to lower affinity positions. This 897 
phenomenon was recently characterized for CsrA- acnA and evgA sequences in E. coli [52] 898 
 899 
 900 
Further, the location of predicted binding peaks appeared to correlate well with in vitro 901 
experimental evidence. Our initial observation was the concordance of predicted peak location 902 
on the well-studied RsmA binding partner tssA1. These predictions fell within characterized 903 
binding sites on the mRNA sequence (Fig. 2c) [36]. The model also accurately predicted high 904 
affinity binding sites on the rsaL mRNA sequence which had no prior binding or foot-printing 905 
evidence. Using in vitro filter binding, we experimentally confirmed these predictions by 906 
disrupting interactions via mutation of the highest affinity motif (BS3) (Fig. 7c), and a further 907 
disruption of binding strength was observed upon mutating the second strongest motif (BS2) in 908 
tandem with BS3 (Fig. 7c). This is consistent with the theory that Csr/Rsm family proteins may 909 
anchor to lower affinity sites on the nascent transcript [19], before binding more strongly to 910 
downstream high affinity sites [30]. In contrast, mutating predicted sites along the mvaT leader 911 
sequence did not result in a change in affinity (Fig. 8c). Predicted RsmA binding sites along the 912 
mvaT sequence cluster in a wide region within the CDS (Fig. 8a), and suggest that there may 913 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 2, 2024. ; https://doi.org/10.1101/2024.08.01.606018doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.01.606018
http://creativecommons.org/licenses/by-nc-nd/4.0/


 28 

be a multitude of conformations by which RsmA binds to this transcript. This mechanism of 914 
binding has been theorized previously [30] as a strategy CsrA to ensure binding to a dynamic 915 
structured RNA.  916 
 917 
 918 
Loss of target discovery can be attributed to widely varying expression profiles across 919 
study conditions 920 
Perhaps the most exciting element of the model results is demonstrating the ability of 921 
computational predictions to capture interactions for mRNAs that are expressed transiently or in 922 
a condition-dependent manner. Our evaluation of target predictions across 411 gene expression 923 
datasets revealed that the majority of novel genes predicted by our model are lowly expressed 924 
(Fig. 4a, b) or condition specific (Fig. 4c). Indeed, K-modal clustering showed a higher ratio of 925 
these novel genes to cluster with nonstandard media types like ABTGT or M9 minimal media 926 
(Fig. 4c). This highlights the importance of considering multiple approaches to profile the effects 927 
of a post-transcriptional regulator, as condition dependent gene expression can cause a 928 
bottleneck in discovery. This is the case for sRNA discovery, especially, as many are expressed 929 
in specific nutrient [58] or infection contexts [59]. 930 
 931 
Model identifies that RsmA exerts regulatory control of Quorum Sensing and Biofilm 932 
forming pathways through binding and regulation of redundant TF nodes  933 
RsmA is a major global regulator of a variety of pathways that contribute to survival and 934 
pathogenicity of P. aeruginosa. These include indirect activation of pathways critical for 935 
epithelial colonization such as the Type 3 Secretion System (T3SS) [60], Type IV Pili, and 936 
flagellar biosynthesis processes[1]. RsmA also has been shown to directly repress pathways 937 
that contribute to chronic infection states, such as the formation of biofilms, Quorum Sensing 938 
(QS) [53], and the Type 6 Secretion System (T6SS)[6]. Tight control of these processes is 939 
advantageous for fitness and survival of PA as it responds to rapid changes in the environment. 940 
Direct forms of post-transcriptional regulation typically have a stronger and more immediate 941 
effect on gene expression. It is therefore important to effectively differentiate between indirect 942 
and direct forms of regulation by RsmA to better understand the influence on dynamic signaling 943 
networks. In this study, we used our tuned model to predict the likelihood of a direct interaction 944 
occurring between RsmA and an mRNA leader sequence, and found predictions to be enriched 945 
for transcriptional regulators and core virulence pathways (Fig. 3a). Here, we discuss 946 
noteworthy predictions generated for genes in quorum sensing and biofilm forming pathways. 947 
 948 
Quorum Sensing (QS) in PA are complex, interconnected, context-dependent signaling 949 
cascades that facilitate group control and survival. Gene expression in these pathways is 950 
stochastic and sensitive to environmental conditions including fluctuations in nutrients, pH, and 951 
cellular density[61,62]. QS expression can also vary from cell to cell in a population, and it is 952 
thought that this heterogeneity is a survival strategy that ensures proper division of labor and 953 
resource conservations within biofilms[63]. It has also been observed that post-transcriptional 954 
regulation by sRNAs and RBPs allows for fine tuning of signal production [64]. These factors 955 
present challenges in fully characterizing how these pathways are regulated experimentally, and 956 
efforts have been made to understand dynamics using computational modeling [65].  957 
The activation of the hierarchical and interconnected quorum sensing pathways in PA has been 958 
shown to directly influence the lifestyle switch towards sessile biofilm forming states. The 959 
Gac/Rsm regulatory pathway has been identified as a key influencer of the QS cascade [53]. 960 
Our model identified several transcriptional regulators in the QS pathway as potential regulatory 961 
targets of RsmA (Fig. 3a,c). This included lasR and mvfR transcriptional activators as well as 962 
the lasI and rhlI homo-serine lactone synthetases. The hierarchical cascade of QS signaling is 963 
initiated when transcriptional activator, LasR, is becomes active upon sensing 3-oxo-C12-HSL. 964 
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This event sets off a signaling cascade and activates expression of subsequent transcriptional 965 
regulators RhlR, and MvfR (Fig. 9; [66]). There exists an interplay between the RhlR and MvfR, 966 
wherein RhlR represses MvfR expression [67]. Interestingly, RsmA binding to rhlR was neither 967 
predicted nor observed (Fig. 5a, b, 6b, Supplementary Fig. 3) which, given the repressive 968 
effect RhlR has on mvfR transcription, suggests a redundant mechanism by which RsmA 969 
regulates expression of this pathway along multiple nodes. Additional QS associated regulators 970 
were also evaluated in vitro given results of our model, including transcriptional repressors rsaL 971 
and mvaT. Both rsaL and mvaT repress elements of the LasR/I QS cascade (Fig. 9). mvaT has 972 
been observed to repress additional transcription factors including mvfR [68] and represses rsaL 973 
in P. fluorescens [69].  974 
Several genes predicted by our model are part of the extensive biofilm formation pathway. Our 975 
observation that our model and experimental results confirm binding and repression of LasR led 976 
us to further investigate whether RsmA also regulated additional targets of LasR activated 977 
genes involved in the T6SS. Inter-operonic binding was observed for genes in the H1, H2, and 978 
H3-T6SS (Fig. 2c). The GacA/S TCS has been observed to regulate key genes in the H1-T6SS 979 
and H3-TCSS, including the well-characterized target tssA1. In PA14, the H2-T6SS is more 980 
essential than H1[70], and is activated by the QS transcriptional regulator MvfR [71]. The 981 
prediction that RsmA regulates of several genes within this locus (Fig. 3c), as well as 982 
repressing mvfR, reflects a shift towards redundant regulatory control of that crucial region. 983 
Overall, this outlines the utility of the model in capturing inter-operonic binding events that 984 
regulate the assembly of large, multi-component structures in PA. 985 

 986 
Figure 9: Virulence associated pathways enriched in target predictions included key regulatory transcription 987 
factors.  Pathway diagrams shown here represent RsmA targets identified by our model in context of their cellular 988 
contribution to virulence. Circles represent predictions that passed our filter and are shown in solid or hollow based 989 
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on whether there is prior experimental evidence of direct or indirect regulation of that gene. In addition, these circles 990 
are colored by their predicted regulatory effect: repression (red), activation (green), or an unknown effect (yellow). 991 
Genes are shown as boxes, and key transcriptional regulators are present as ovals. Finally post transcriptional 992 
regulators such as RsmA and Hfq are shown as circles. As shown in the box describing Quorum Sensing, several 993 
key TF regulators are targeted by RsmA, as well as their cognate synthetases that contribute to the autoregulatory 994 
feedback loop. Key TFs such as LasR are also directly involved in influencing biofilms, and here we illustrate the 995 
activation effect on several pathogenicity islands that make up the T6SS in PA. * Our model did not identify AmrZ as 996 
a potential direct target, and this is likely due to the cooperative effect that Hfq binding has on loading RsmA to this 997 
gene. We also show predictions for several transcriptional regulators present in the Alginate biosynthesis pathway, 998 
providing further clarity on the level of control over this pathway.  999 

 1000 

In our study we further evaluated the strength and regulatory nature of binding between RsmA 1001 
and the rsaL and mvaT transcriptional regulators. RsaL was identified as a regulator of four 1002 
major virulence-associated pathways, including QS (Fig. 3,[55]), exhibits low levels of 1003 
expression across an aggregate of publicly available sequencing data [23], and is an entirely 1004 
novel prediction generated by our model. In this study, we demonstrate that RsmA binds to this 1005 
mRNA in vitro (Fig. 5b) at positions +67 and +76 nucleotides from the start codon (Fig. 6). 1006 
Binding results in repression of translation of this protein (Fig. 8c). We also theorize that this 1007 
gene evaded prior high throughput screens because of low (Fig. 4b), or context dependent 1008 
expression during planktonic growth phase. The observation that RsmA represses translation of 1009 
rsaL suggests a surprising mechanism of indirect activation, as RsaL negatively regulates lasI 1010 
expression by blocking LasR transcriptional activation [72]. Perhaps this is a mechanism by 1011 
which RsmA can initiate the autoregulatory feedback loop for the LasR/I signaling cascade at 1012 
intermediate points during the motile – sessile lifestyle switch.  1013 
 1014 
The second transcript we characterized further was that encoding the MvaT transcriptional 1015 
repressor. There exists prior evidence of RsmA causing changes in expression[19] or binding 1016 
directly to this transcript [10], however no prior evidence exists of direct binding in vitro or 1017 
repression in vivo. Interestingly, MvaT has also been shown to regulate the Gac/Rsm regulatory 1018 
pathway through repression of the RsmY and RsmZ sRNA sponges [73]. MvaT is also a 1019 
regulator of QS, and its influence the system is thought to be through repression of mvfR and 1020 
rsaL. In this study, we find that RsmA binds mvaT within the coding sequence (Fig. 7) and 1021 
represses expression of mvaT as well as its paralog mvaU (Fig. 8c). Although mutations at 1022 
model-predicted binding sites did not result in full loss of binding, the width of predicted binding 1023 
sites on this transcript (Fig. 7a) suggests that RsmA may bind in multiple conformations.  1024 
 1025 
In this study, we confirm RsmA binds and represses translation of lasR, lasI, rhlI, mvfR, rsaL 1026 
and mvaT (Fig.s 5-8). We hypothesize that this mechanism of redundant regulatory control 1027 
across quorum sensing and biofilm formation allows for tight regulation of energetically costly 1028 
pathways that can become rapidly de-repressed upon sequestration by the RsmY and RsmZ 1029 
small RNAs, and could also fine tune production of signaling molecules at intermediate steps 1030 
along the planktonic to biofilm forming lifestyle switch. 1031 
 1032 

Conclusions 1033 

This study demonstrates the utility in using thermodynamic modeling for differentiating direct 1034 
from indirect regulatory interactions between the RsmA protein and the entirety of the 1035 
transcriptome within PA. Our computational approach yielded novel genes not yet reported to 1036 
be bound or regulated by the RsmA, likely due to lack of expression in standard laboratory 1037 
growth conditions. We also affirm the conserved nature of Rsm/Csr regulation across 1038 
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gammaproteobacteria, as known interactions in PA are recapitulated given empirically derived 1039 
parameters derived from the CsrA protein in E. coli. The further biochemical characterization of 1040 
binding to two transcriptional regulatory targets mvaT and rsaL reveal that RsmA has a far more 1041 
extensive influence on quorum sensing pathways. We anticipate that the predictions presented 1042 
in this dataset will aid in further characterization RsmA regulatory influence upon the complex 1043 
and interconnected networks within this widespread pathogen. 1044 
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