

1 **Title**

2
3 **Thermodynamic modeling of Csr/Rsm- RNA interactions capture novel, direct binding**
4 **interactions across the *Pseudomonas aeruginosa* transcriptome**

5
6 **Authors**

7
8 Alexandra J Lukasiewicz¹, Abigail N Leistra², Lily Hoefner³, Erika Monzon³, Cindy J Gode⁴,
9 Bryan T Zorn⁴, Kayley H Janssen⁵, Timothy L Yahr^{5,6}, Matthew C Wolfgang^{4,7}, Lydia M
10 Contreras²

11 **Affiliations**

12 1- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX
13 2- McKetta Department of Chemical Engineering, The University of Texas at Austin
14 3- Department of Biology, The University of Texas at Austin, Austin, TX
15 4- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC
16 5- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, USA
17 6- Bellin College, Green Bay, WI
18 7- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill,
19 Chapel Hill, NC

20 **Abstract**

21 *Background*

22 *Pseudomonas aeruginosa* (PA) is a ubiquitous, Gram-negative, bacteria that can attribute its
23 survivability to numerous sensing and signaling pathways; conferring fitness due to speed of
24 response. Post-transcriptional regulation is an energy efficient approach to quickly shift gene
25 expression in response to the environment. The conserved post-transcriptional regulator RsmA
26 is involved in regulating translation of genes involved in pathways that contribute to virulence,
27 metabolism, and antibiotic resistance. Prior high-throughput approaches to map the full regulatory
28 landscape of RsmA have estimated a target pool of approximately 500 genes; however, these
29 approaches have been limited to a narrow range of growth phase, strain, and media conditions.
30 Computational modeling presents a condition-independent approach to generating predictions for
31 binding between the RsmA protein and highest affinity mRNAs. In this study, we draft a two-state
32 thermodynamic model to predict the likelihood of RsmA binding to the 5' UTR sequence of genes
33 present in the PA genome.

34 *Results*

35 Our modeling approach predicts 1043 direct RsmA-mRNA binding interactions, including 457
36 novel mRNA targets. We then perform GO term enrichment tests on our predictions that reveal
37 significant enrichment for DNA binding transcriptional regulators. In addition, quorum sensing,
38 biofilm formation, and two-component signaling pathways were represented in KEGG enrichment
39 analysis. We confirm binding predictions using *in vitro* binding assays, and regulatory effects
40 using *in vivo* translational reporters. These reveal RsmA binding and regulation of a broader
41 number of genes not previously reported. An important new observation of this work is the direct

42 regulation of several novel mRNA targets encoding for factors involved in Quorum Sensing and
43 the Type IV Secretion system, such as *rsaL* and *mvaT*.

44 **Conclusions**

45 Our study demonstrates the utility of thermodynamic modeling for predicting interactions
46 independent of complex and environmentally-sensitive systems, specifically for profiling the post-
47 transcriptional regulator RsmA. Our experimental validation of RsmA binding to novel targets both
48 supports our model and expands upon the pool of characterized target genes in PA. Overall, our
49 findings demonstrate that a modeling approach can differentiate direct from indirect binding
50 interactions and predict specific sites of binding for this global regulatory protein, thus broadening
51 our understanding of the role of RsmA regulation in this relevant pathogen.

52 **Keywords**

53 Post-transcriptional regulation, Computational modeling, RNA regulation, RNA-binding proteins,
54 Regulatory networks, Transcriptional control, Systems biology, RNA-protein interactions, RNA
55 secondary structure, *Pseudomonas aeruginosa*

56 **Background**

57 *Pseudomonas aeruginosa* (PA) is a widespread, opportunistic pathogen that contributes to
58 nosocomial infection and mortality in immunocompromised individuals. Critical to pathogenesis is
59 the ability of PA to rapidly alter gene expression to respond to the environment. The post-
60 transcriptional regulator RsmA, a member of the CsrA family of RNA-binding proteins (RBPs),
61 achieves this rapid response via post-transcriptional regulation. RsmA is a 6.9 kDa homodimeric
62 protein whose regulatory influence is of clinical relevance as it regulates the expression of genes
63 involved in motility, cell adhesion [1], biofilm formation [2], and secretion of effector proteins [1].
64

65 The mechanism by which Rsm/Csr family proteins repress translation is by blocking ribosomal
66 pairing to the Ribosome Binding Site (RBS) present in the 5' untranslated region (UTR) of an
67 mRNA [3,4]. This can occur through direct binding to and occlusion of the RBS sequence, or
68 through binding in adjacent regions that result in structural rearrangement that reduces [2] or
69 increases [5] accessibility of the RBS. In PA, the RsmA protein exerts tight control of pathways
70 associated with planktonic colonization and sessile biofilm forming states [6]. In addition, the CsrA
71 paralog RsmF/N[7,8] also binds and regulates overlapping [9] and exclusive [10] genes relative
72 to RsmA. The regulatory activity of RsmA itself is sensitive to control by the GacA/GacS two-
73 component signaling (TCS) pathway, which activates expression of antagonistic sRNA sponges
74 RsmY and RsmZ [11] that sequester the RsmA protein. Upon sequestration by these sRNA
75 sponges, the regulatory effect of RsmA is inhibited and produces an inverse effect on translation
76 of directly bound mRNAs. RsmA binds and regulates genes globally throughout the transcriptome.
77 RsmA knockout results in large phenotypic changes to the cell including decreased infection
78 phenotypes [12], impedes active colonization, and promotion of chronic infection states [13].
79

80 Full characterization of the binding repertoire of a post-transcriptional regulator, such as RsmA,
81 is difficult to adequately capture using a single high throughput approach [14]. Wide variety in
82 gene expression and regulatory effects have been observed for Csr/Rsm family proteins due to
83 various stresses or infectious states [15,16]. This is partially due to the fact that the pathways
84 that govern the cellular transition from active colonization to chronic biofilm forming states are
85 complex, deeply interlinked, and sensitive to the experimental contexts they are studied in [17].
86

87 Efforts to experimentally map the regulatory influence of RsmA range from broad, high
88 throughput sequencing screens to individual *in vitro* biochemical assays. Overall, these high
89 throughout approaches have estimated a target pool of approximately 500 genes that are either
90 directly or indirectly regulated by RsmA [1,9,10,18,19]. Direct binding has been biochemically
91 confirmed *in vitro* for fewer than 2% of this estimated pool of 500 genes. To date, confirmed
92 direct bound mRNA targets of RsmA include *tssA1*, *fha1*, *magA* [1], *psl* [2], *rahU*, *algU*, *pqsR*,
93 *hxul* [20], *mucA* [9], and *retS* [21].
94
95 While sequencing approaches have been valuable for understanding the breadth of regulation
96 influenced by the Gac/Rsm pathway, they may not capture potential targets due to low gene
97 expression, strain to strain variation, condition dependent expression, heterogenous expression,
98 sample manipulation, or high limits of detection. For example, microarray, RNA-seq, and
99 proteomic screens fall short when assessing whether post-transcriptional regulation is occurring
100 in a direct (i.e. direct binding of RBP to transcript) or indirect (i.e. network) manner. RNA-seq
101 based approaches can also lose detection of transcripts that are not always degraded when
102 bound by a post-transcriptional regulator, which convolute differential expression-based
103 analyses; thus, missing potential targets of the protein [22]. In contrast, cross-linking
104 immunoprecipitation (CLIP) and RNA immunoprecipitation (RIP) sequencing approaches can
105 identify more direct binding interactions; however, data resulting from these techniques lose
106 positional resolution for mRNA binding sites for small proteins like RsmA. In addition, cross-
107 linking can introduce false positives due to nonspecific linkages between the protein of interest
108 and nearby RNA. Finally, many available high throughput datasets are limited to a narrow range
109 of growth phase, strain, and media conditions that do not capture the full diversity of conditions
110 the organism experiences natively. This presents a bottleneck in discovery, as gene expression
111 varies widely across experimental conditions [23] and can be influenced by extensive strain
112 diversity [24,25].
113
114 Computational modeling offers a condition-independent method for predicting binding partners
115 of globally binding proteins. Thermodynamic models of protein-RNA interactions have
116 demonstrated high predictive capabilities, such as that for the PUF4 protein interactions in
117 *Saccharomyces cerevisiae* [26]. Similarly, thermodynamic models to predict binding and
118 translation rates for ribosomes [27,28] have been used for both prediction of native translation
119 and forward design of effective RBS sequences [29]. Although the small handful of confirmed,
120 direct RsmA targets limits the ability to generate accurate models of binding using learning
121 algorithms, much more data of direct targets has been collected for its closely related protein
122 CsrA as genome wide screens have been performed to predict binding sites of the CsrA protein.
123 In 2014, a sequence-based model was crafted for the Csr/Rsm family proteins to identify
124 potential targets within transcriptomes of *E. coli*, *P. aeruginosa*, *L. pneumophila*, and *S.*
125 *enterocolitica* [20]. In this work, we improve upon this approach by crafting a biophysical model
126 of interaction built upon additional molecular features that influence binding which yields an
127 energetic prediction for the probability of an interaction between RsmA and an mRNA in *P.*
128 *aeruginosa*
129
130 The *Escherichia coli* CsrA protein has been shown to be well suited for construction of a
131 biophysical model of protein-RNA binding with characterized, empirically-derived, parameters
132 [30], as core elements of binding mechanism that governs its post-transcriptional regulatory
133 effect have been biochemically assessed. These principal rules of interaction include (1) the
134 clear definition of a core ANGGA binding motif [31], (2) the energetic contribution of individual
135 nucleotides within the core motif, (3) establishing a minimal distance between binding sites to
136 reduce steric hindrance within the homodimer [4], and (4) position of binding within stem loop
137 structures of the bound RNA [31] (**Fig. 1a**). Previously, these core rules were leveraged to craft

138 a biophysical model to observe binding patterns of the CsrA protein in *E. coli* [30] which yielded
139 insights in the various molecular features that influence CsrA binding to 236 mRNAs [30]

140
141 Given this established prior framework we hypothesized that we could craft a model to capture
142 RsmA binding and regulation of genes in *P. aeruginosa*. Homologs of CsrA are found widely
143 across the γ -proteobacteria [32,33]. Within the *Pseudomonas* genus, homologs such as RsmA
144 and RsmE share high sequence and structural similarity with CsrA [34]; the protein sequence of
145 *P. aeruginosa* RsmA is 85% identical to its ortholog CsrA in *E. coli* [35]. Furthermore, similar
146 binding mechanisms. SELEX studies have also shown that the RsmA protein shares high
147 affinity for the same binding motif ANGGA [36], and NMR structural studies in the *P. fluorescens*
148 homolog RsmE also recapitulated affinity for this core motif [34]. In addition, the crystal
149 structures of Csr/Rsm family proteins in complex with RNA are available in the Protein Data
150 Bank for *Escherichia coli* [1Y00], *Yersinia enterocolitica* [2BTI], *Pseudomonas protegens* pf-5
151 [2MFO], *Pseudomonas fluorescens* [2JPP], and *Pseudomonas aeruginosa* [7YR7]. In tandem
152 with models that leverage data from crystal structures [37] these data can be used to
153 computationally predict changes in free energy for a given motif.

154
155 Here, we modify, tune, validate, and improve upon a prior model constructed for the *E. coli* CsrA
156 protein [30] to accurately predict breadth of binding and regulation by the RsmA protein across
157 the entire *Pseudomonas aeruginosa* PA14 transcriptome. This approach allows us to probe the
158 entire sequence space computationally, thus lifting the constraints presented by prior
159 experimental approaches. In an improvement upon our prior model, we consider alternative
160 motifs given the generation of a crystal-structure derived, RsmA-specific, position weight matrix.
161 Unlike GGA motif-based screens, our model also yields predictions regarding the mechanism of
162 binding to a given target including: the approximation of binding strength, diversity of binding
163 peak frequencies, and predicting the effect binding has on translation. We also leverage several
164 publicly available high throughput sequencing datasets to statistically verify the accuracy of our
165 predictions. In doing so, we predict 1043 genes to be bound by RsmA and identify 457 genes
166 with no prior binding evidence. Our pool of filtered predictions is enriched in transcriptional
167 regulators and virulence associated pathways. An important resulting observation of this work is
168 the experimental characterization of two novel transcriptional regulators *rsaL* and *mvaT*, mRNA
169 encoding for factors involved in Quorum Sensing and the Type IV Secretion System, among
170 others. In this work, we use model predictions to confirm binding, binding site pockets, and
171 regulation of these mRNAs *in vitro* and *in vivo*. This characterization both validates the
172 predictive capabilities of the model and expand upon our understanding of RsmA regulation.
173 Overall, our constructed model opens up new avenues for differentiating direct from indirect
174 targets of RsmA and aids in generating hypotheses for the varying regulatory mechanisms
175 governing complex signaling networks in PA.

176

177 Materials and Methods

178

179 **Construction of model and definition of energy terms**

180 A free energy model constructed for describing binding by the CsrA protein from *Escherichia*
181 *coli* was described in [30]. In our current approach, we have modified the model to include the
182 nucleotide contributions of bases other than the core ANGGA. This was also tuned to capture
183 RsmA-mRNA interactions using the structure of the *P. fluorescens* RsmE in complex with *hcnA*
184 (PDB: 2JPP). The thermodynamic model relies upon the sum of energetic contributions of 3 key
185 parameters: 1- the position weight matrix of individual nucleotide contributions to binding (ΔG_{site1}
186 & ΔG_{site2}), 2- the change in free energy from the unbound to bound state of the mRNA (ΔG_{mRNA}),

187 3- the distance between binding sites to reflect steric effects of dimer binding ($\Delta G_{cooperativity}$) (Fig.
 188 1a). Total free energy ΔG_{total} is calculated using the following two-state thermodynamic equation,
 189 previously defined in [30]:
 190

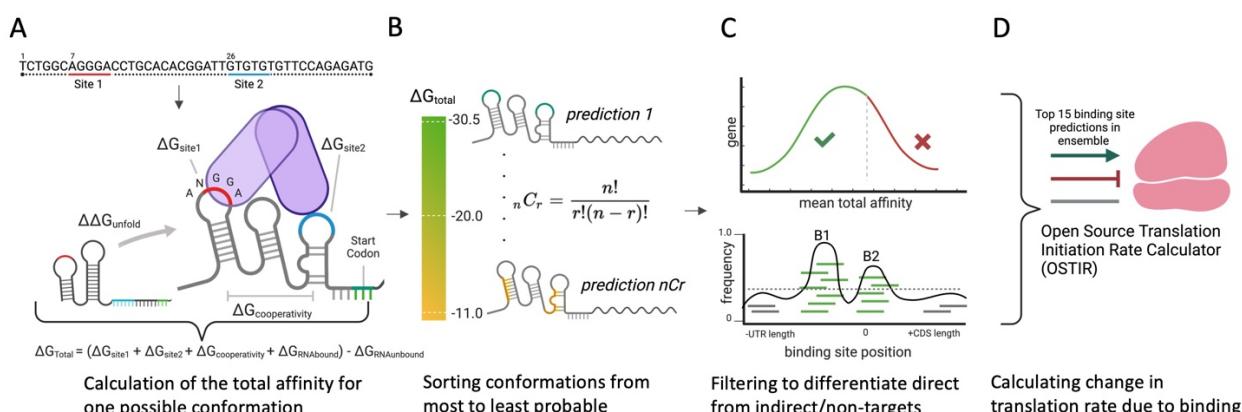
$$191 \Delta G_{total} = (\Delta G_{site1} + \Delta G_{site2} + \Delta G_{cooperativity} + \Delta G_{mRNA\ bound}) - \Delta G_{mRNA\ unbound}$$

192
 193 After sorting the summed ΔG_{total} values for each pair of binding sites across the sequence space
 194 (Fig. 1b) and the position of binding sites for the top 15, highest affinity, predictions were
 195 converted into structural constraints within the open source translation rate calculator, OSTIR
 196 (Fig. 1c) [38]. This yielded a measure of the translation initiation rate for the bound ($TIR_{RsmA\ bound}$
 197 i) and unbound ($TIR_{unbound}$) states for each prediction of binding positions. Effects of binding on
 198 translation were calculated as follows:
 199

$$200 R_i = \frac{TIR_{unbound}}{TIR_{RsmA\ bound\ i}}$$

201
 202 TIR ratios were used to predict the effect that RsmA binding would have on translation, and
 203 binned into three categories: repressed ($R_i > 1.2$), activated ($R_i < 0.8$), or no impact ($0.8 < R_i <$
 204 1.2) based on boundaries defined in [30].

Fig. 1



205
 206 **Figure 1: Overview of energy parameters and procedure of the RsmA biophysical model.** A) Core energy terms
 207 define the energetic parameters of RsmA binding to a specific RNA sequence and model the change in free energy
 208 (ΔG_{total}) of the system from an unbound to a bound state. B) Each pair of binding site predictions are evaluated
 209 across the entire sequence space per gene, and sorted from most to least probable given the free energy of binding
 210 ΔG_{total} . C) Predictions are filtered given favorability of the change in free energy (ΔG_{total}) and frequency of binding
 211 sites at a given location. D) The top 15 ranked predictions are then used to calculate the change in Translation
 212 Initiation Rate due to binding.

213 Calculation of the per-nucleotide contributions to binding

214 The protein sequence of *P. aeruginosa* RsmA is 85% identical to its ortholog CsrA in *E. coli*. Key
 215 residues for RNA recognition, such as the arginine present at position 44 are conserved. The
 216 Rosetta-Vienna RNP $\Delta\Delta G$ tool [37] was used to measure the relative change in binding affinities
 217 between a wild-type *hcnA* sequence GGGCUUC**ACGG**AUGAAGCCC (motif in bold) and all
 218 possible mutants within the 5-nt binding motif at positions 8-12. The solution NMR structure of
 219 *Pseudomonas fluorescens* RsmE in complex with the *hcnA* mRNA [39] (PDB: 2JPP) was used
 220 as the scaffold of the model. This approach incorporates the RNAfold command within the
 221 Vienna RNA package 2.0 [40] to calculate the minimum free energy of each unbound mutant

222 (Supplementary table 2). The position weight matrix of per-nucleotide contributions to binding
223 was calculated as follows:

224

$$225 \Delta G_{nt,i} = \max(\Delta \Delta G_{RNPi}) - \Delta \Delta G_{RNPnt,i}$$

226

227 Wherein i is the position of the nucleotide within the 5 nt binding motif and nt is the specific
228 nucleotide mutation (ATGU) at that position. To generate an energetic measure of the individual
229 nucleotide contribution, each ΔG value was subtracted from the maximum affinity found across
230 all 4 nucleotides at a given position. The $\Delta G_{nt,i}$ was then converted from kcal/mol to RT units
231 given the gas constant at 37° C (R = 0.616).

232

233 **Generation and modeling of UTR sequences from the PA14 genome**

234 The 5' Untranslated Region (UTR) of an mRNA transcript is the primary region where the
235 Csr/Rsm family proteins enact their regulatory function by influencing ribosome binding. We
236 selected the 5' UTR plus the first 100 bases of coding sequence (CDS) to generate predictions
237 via modeling. Prior RNA sequencing in [41] defined the transcription start sites (TSS) across the
238 *P. aeruginosa* PA14 transcriptome at 28° C and 37° C. Where the primary TSS was defined, we
239 selected nucleotides from the TSS site to 100 bases into the CDS. If no TSS was known, we
240 selected -100 bases from the start site to encompass the RBS region. Sequences were
241 extracted from the *Pseudomonas aeruginosa* UCBPP-PA14 reference genome assembly
242 GCF_000014625.1. This yielded 5285 UTR sequences which are summarized in

243 **Supplementary table 2**. Predictions of all combinations of 2 binding sites were performed for
244 each of the modeled 4861 sequences in parallel on the Stampede2 compute cluster at the
245 Texas Advanced Computing Center (TACC) at The University of Texas at Austin. Associated
246 python scripts used to run the model on the Stampede2 compute cluster can be found at
247 https://github.com/ajlukasiewicz/rsm_biophysical_model

248

249 **Ensemble analysis of predicted binding sites and peak calling**

250 All possible combinations of binding pairs are evaluated across the entire sequence space, and
251 sorted by affinity. This yields an ensemble of predictions per gene with varying degrees of free
252 energies. We then transform the overall affinity score ΔG_{total} into a measure of the likelihood of
253 binding via the Boltzmann probability distribution:

254

$$p(\alpha) = \frac{e^{-\beta \Delta G_{total;\alpha}}}{\sum_i^M e^{-\beta \Delta G_{total;i}}}$$

255 Wherein the probability of a particular binding conformation ($p(\alpha)$) is a function of the ΔG_{total} for
256 an individual prediction given the distribution of all possible conformations for a gene. β (0.45) is
257 a scaling factor based on thermodynamic predictions of RNA-RNA interactions [30]. Here we
258 alter the scaling factor for calculating this probability using predicted energy and affinity values
259 from our prior model [30] and affinities derived from literature. Measured binding affinities were
260 converted into free energy using the following equation: $\Delta(G) = RT \ln(kD)$ wherein the gas
261 constant RT at 37° C (-0.616). Dissociation constants were found via prior EMSA experiments
262 for CsrA binding to *glgC*, *nhaR*, *cstA*, *pgaA*, and *rpoE* [42–46]. The Boltzmann probability was
263 used to weigh predicted ΔG_{total} affinity scores in calculating an overall average. We selected a
264 range of β values from 0.35 to 0.45. $\beta= 0.4$ was determined to generate the highest linear
265 correlation between the predicted ΔG value and the measured affinity (adjusted R² = 0.98, p-
266 value = 0.0009527). Linear regression tests were performed in R.

267

268 Out of all predictions per gene, the 300 top predictions were used to calculate the Boltzmann
269 probability given the inflection point of energy predictions observed per gene in [30]. The
270 frequency of binding site position predictions was calculated as a function of the Boltzmann

271 probability of binding to that position. These frequencies were then used to calculate densities of
272 binding interactions across the UTR itself, yielding peaks which we interpret as footprints or
273 binding sites of RsmA. Using the *lolB* sequence (**Fig. 2b; supplementary table 3**) as a
274 negative control, we established the peak height threshold for binding to be the maximum height
275 for *lolB* binding site frequencies, 0.0064.

276
277 Peaks in binding site density data were called using the signal function within SciPy 1.0 [10] with
278 the following parameters: the peak width was set from 5 to 15 to represent the range between
279 the minimum base pairing footprint and the maximum number of possible predictions for a
280 single site. The minimum height for a peak was set at 0.0064, which was determined to be the
281 maximum height for a negative control UTR, *lolB*. The script for parsing and calling peaks can
282 be found in the *rsm_biological_model* GitHub repository as *peak_calling.py*. Analysis and
283 generation of footprint density plots was performed in R (Version 4.3.1).

284
285 **RNA Co-immunoprecipitation**

286 Strain PA14ΔrsmAF carrying an empty vector control (pJN105), pRsmA_{His6}, pRsmF_{His6}, or the
287 RNA binding mutant expressing plasmids pRsmA(R44A)_{His6} and pRsmF(R62A)_{His6} were grown
288 at 37C with shaking at 300 RPM in 200 ml Tryptic Soy Broth (TSB) supplemented with 20 mM
289 MgCl₂, 5 mM EGTA, 15 µg/ml gentamicin, and 0.1% arabinose to mid-log phase, and pelleted at
290 4C. Cells pellets were immediately resuspended and lysed in Qiagen native purification lysis
291 buffer (50 mM NaH₂PO₄, 300 mM NaCl, 10 mM imidazole, pH 8.0) supplemented with 2.5 mM
292 vanadyl ribonucleoside complex (NEB) (to inhibit RNase activity), 1 mg/ml lysozyme, and 0.1%
293 Triton X-100. Lysis was completed by three freeze-thaw cycles. Lysates were treated with 10 µl
294 RQ-1 RNase-free DNase and cleared by centrifugation. An aliquot was removed from the
295 cleared lysate for total RNA isolation and preserved in TRIzol (Thermo Fisher), and the
296 remaining lysate was incubated with nickel-nitrilotriacetic acid (Ni-NTA)-agarose at 4°C for 1 h
297 under nondenaturing binding conditions. Ni-NTA-agarose was then loaded into a column and
298 washed 3 times with nondenaturing binding buffer containing 10 mM imidazole. Protein and
299 associated RNAs were eluted in 4 fractions with 250 mM imidazole and 4 fractions with 500 mM
300 imidazole. An aliquot of each fraction was analyzed by western blot, and fractions containing
301 RsmA_{His6}, RsmF_{His6} or the respective RNA binding mutant version of the proteins were
302 individually pooled as were the equivalent fractions from the vector control strain. Each pool was
303 treated with TRIzol and RNA was extracted according to the manufacturer's protocol. RNA was
304 treated with RQ1 RNase-free DNase and concentrated using RNA Clean and Concentrator kit
305 (Zymo).
306

307 **Library preparation and Next-Generation Sequencing Analysis**

308 Purified total RNA and co-IP enriched RNA was treated with Ribo-Zero (Illumina) according to
309 the manufacturer and purified and concentrated with Zymo Clean and Concentrator 5. First
310 strand cDNA was generated using Superscript II RT (Invitrogen) and Random Primer 9 (NEB)
311 and converted to double stranded cDNA using Second Strand cDNA Synthesis Kit (NEB)
312 according to the manufacturer's protocols. cDNA was purified using Zymo RNA Clean and
313 Concentrator Kit modified for cDNA recovery. Libraries were prepared using the Nextera XT
314 DNA Library Kit (Illumina, San Diego, CA) according to the manufacturer's protocol including
315 tagment of cDNA, amplicons indexation/barcoding through PCR amplification using Nextera
316 master mix, clean-up, and pooling. Finally, pooled and barcoded amplicons were single end
317 sequenced on an Illumina NextSeq500 System. Sequencing reads were trimmed using
318 Trimmomatic to remove library adapters. Trimmed reads were aligned to a *Pseudomonas*
319 *aeruginosa* PA14 reference genome using bowtie2 [47]. Aligned reads were then transformed
320 into binary alignment maps (BAM files) using samtools [48]. Finally, files were analyzed in
321 Geneious software to obtain count tables containing transcripts per million read counts for each

322 gene. Raw sequencing outputs were uploaded to the publicly available Sequence Read Archive
323 (SRA) under the Bioproject ID PRJNA1131461.

324 Analysis of gene expression was performed using the DEseq2 package [49] in R. To determine
325 enriched genes, we first calculated the differential expression between the total RNA and the
326 overexpressed RsmA-his pulldown genes. Genes with L2FC >1 and p adj < 0.005 were
327 considered enriched in our dataset (**Supplementary table 6**).

328

329 **Proteomic sample preparation and analysis**

330 Overnight cultures of WT *P. aeruginosa* PA103 and $\Delta rsmA$, $\Delta rsmF$, and $\Delta rsmAF$ mutants were
331 diluted to an optical density of 0.1 at 600 nm (OD₆₀₀) in tryptic soy broth supplemented with 1%
332 glycerol, 100 mM monosodium glutamate, and 2 mM EGTA. Cultures were incubated at 37°C
333 with shaking until the OD₆₀₀ reached 1.0. Cells (1 ml) were harvested by centrifugation (10 min,
334 4°C, 12,500 x g). Cell pellets were washed with 1 ml PBS and then stored at -80°C. Proteomic
335 sample preparation and analyses were performed by the VIB Proteomics Core, Gent, Belgium.
336 Differentially expressed proteins were identified using the DEseq2 package [49] in R. Proteins
337 with L2FC >1 and p adj < 0.005 were considered differentially expressed in our dataset
338 (**Supplementary table 7**).

339

340 **Filter binding assay for testing binding interactions in vitro**

341 Assessment of binding interactions between RsmA and several candidate genes were
342 evaluated using an *in vitro* nitrocellulose filter binding assay. Sequences generated with efficient
343 T7 promoter design and synthesized (IDT). Sequences for these targets can be found in
344 **Supplementary table 3**. RNA was produced via *in vitro* transcription (Thermo T7 megascript
345 kit) with supplemented 3.75 mM guanosine for efficient radiolabeling. P³² labeled ATP was
346 integrated to the 5' end of purified RNA with PNK and cleaned up using silica filter spin column
347 extraction (NEB Monarch).

348 His-tagged RsmA was purified using nickel chromatography. Briefly, BL21 *E. coli* cells were
349 transformed with an arabinose-inducible, his-tagged RsmA encoding plasmid. These were
350 grown in overnight cultures and seeded into large shaker flasks until reaching exponential
351 phase (OD₆₀₀ = 0.6).

352 Binding strengths between purified RsmA and various radiolabeled RNA sequences were
353 assessed using nitrocellulose filter binding. Serially diluted RsmA was incubated with 0.5 nM
354 p32 radiolabeled RNA in an optimized binding buffer (10 mM Tris-HCl pH 7.5, 100 mM KCl, 10
355 mM MgCl₂, 10 mM DTT, 10 ug/mL heparin, Murine RNase inhibitor) at 37°C for 30 minutes.
356 Following incubation, reactions were loaded into the Bio-Dot microfiltration apparatus (Bio-Rad)
357 and light suction was applied to pass the reactions through sandwiched 0.45 mM nitrocellulose
358 and N+ (Cytiva Amersham™ Hybond™-N+) membranes. Signal intensities were captured via
359 phosphorimaging on the Amersham Typhoon 5, and measured using Bio-Rad Image Lab
360 software. Dissociation constants were calculated using the modified hill equation described in
361 [50] with a Hill Constant of 2 to reflect cooperative binding of the homodimeric form of the RsmA
362 protein.

363

364 **Construction of translational reporters for assessing effects on regulation in PA103**

365 The effects of RsmA binding on translation were assayed using a translational GFP reporter
366 system. The *E. coli* and *P. aeruginosa* compatible plasmid, pJN105, encodes for a arabinose
367 inducible RsmA expression and was modified as follows: The constitutive lacUV5 promoter
368 upstream of the 5' UTR of our gene of interest was inserted into pJN105 along with the first 99
369 bases of coding sequence. This leader was fused to the GFPmut3 sequence with a trailing SRA

370 degradation tag (M0051, sequence from iGEM database). Sequences for our genes of interest,
371 along with positive and negative controls were amplified with compatible primers and inserted
372 through Gibson assembly (NEB HiFi Gibson assembly kit). pJN105 was encoded with an
373 inducible RsmA region via the pBAD promoter and constitutive araC expression. All plasmids
374 and primers used in this study can be found in **Supplementary table 3**.
375 Following assembly, plasmids were transformed using heat shock into chemically competent
376 *DH5 α E. coli* and plated on 15 ug/mL Gentamycin supplemented (Sigma-Aldrich) LB plates.
377 Plasmids were extracted from overnight cultures using the Zymo zippy miniprep kit and
378 submitted to Plasmidsaurus for sequence confirmation. Following extraction, plasmids were
379 then transformed into chemically competent PA103 Δ RsmA/RsmF strains and plated on LB-
380 agar media supplemented with 80 ug/mL Gentamycin antibiotic. Transformed strains were
381 grown overnight in LB broth supplemented with 80 ug/mL Gentamycin (Sigma) and then seeded
382 into 30 mL of supplemented LB culture at a 1:100 dilution. Upon reaching OD 0.02, cultures
383 were split into two flasks and half were induced with 0.5% L-arabinose. Induced and uninduced
384 cultures were monitored for fluorescence intensity on the Cyvation3 plate reader at 484 and 513
385 excitation and emission wavelengths. Fluorescence and OD600 measurements were taken at 0,
386 1, 2, 4, and 6 hours post induction. Fluorescence values were normalized by OD600
387 measurement and analyzed in R.
388

389 ***Generating mutations for rsaL and mvaT***

390 Mutations were made for all combinations of predicted binding sites on *rsaL* and *mvaT* while
391 minimizing the change to overall structure for the folded mRNA. Minimum Free Energy
392 calculations were performed using ViennaRNA RNAfold secondary structure prediction tool
393 (version 2.4.18). All scripts were written and executed in Python 3.7. For binding sites within the
394 coding region, mutations were made to exclude stop codons while still maintaining overall
395 structure. Motif mutations were generated using all combinations of low scoring residues
396 present in our prior PWM. The full list of mutant sequences can be found in **Supplemental**
397 **table 3**.

398 **Results:**

399 ***Using crystallized RsmA-RNA binding structures to generate a biophysical framework*** 400 ***that captures different energetic contributions of various RNA sequences to binding.***

401 The *P. aeruginosa* RsmA and *E. coli* CsrA protein sequences share 85% amino acid identity
402 (BLAST alignment: Camacho et al., 2009), however slight differences in the primary and
403 secondary binding motifs have been reported for the Csr/Rsm family across organisms [20,51].
404 To construct an energetic matrix that captures interactions between RsmA and specific motifs in
405 *P. aeruginosa*, we selected the scaffold structure of RsmE-hcnA available in the Protein Data
406 Bank (PDB: 2JPP) as representative of the overall protein structure in complex with mRNA.
407 Changes in free energy due to single positional mutations were captured using the Rosetta-
408 Vienna RNP $\Delta\Delta G$ tool [37] as described in (Methods). This generated a Position Weight Matrix
409 (PWM) of per-nucleotide contributions of binding based on their position within a 5-nucleotide
410 window (Table 1).
411
412

413 *Table 1: Rosetta modeling derived Position Weight Matrix of the free energy contributions for each nucleotide present*
414 *in a 5 nt window. An example of this calculation would be as follows: high affinity motifs such as AUGGA would*

415 contribute the maximum possible score to the overall free energy calculation, whereas low affinity sequences such as
416 UCCUU would not contribute to the overall score at all.

417	pos/nt	A	G	C	U
418	1	-1.97	-0.49	-0.27	0
419	2	-0.02	-0.04	0	-0.16
420	3	-2.18	-3.42	0	-0.09
421	4	-1.76	-5.10	-0.54	0
422	5	-2.11	-1.90	-0.08	0
423					
424					
425					
426					
427					
428					

429 The highest affinity motif produced by a 5-nt
430 window using this crafted PWM (Table 1) would therefore be AUGGA, which is consistent with
431 the binding motif observed for RsmA [34]. Prior models crafted for the *E. coli* CsRA protein
432 confer the highest energetic contribution when a strict AAGGA motif is found [30]. A comparison
433 of the two matrices can be found in Supplemental table 1. The Rosetta-crafted PWM presented
434 here confers an additional benefit to the model, wherein non-canonical motifs may contribute to
435 the overall energy calculation and thus considers alternative sequences that RsmA can bind.
436 Using this PWM we can then calculate the free energy contributions of a motif within sliding 5 nt
437 windows (ΔG_{site1} and ΔG_{site2}), which we sum with additional biophysical parameters (Equation 1)
438 to generate a prediction of overall affinity, or the change in free energy (ΔG_{total}) due to RsmA
439 binding to an mRNA of interest.

440
441 To briefly summarize the contributions of this PWM to our two-step thermodynamic equation, we
442 calculate the ΔG_{total} as the change in free energy from the unbound ($\Delta G_{\text{mRNA unbound}}$) to a bound
443 state. These biophysical parameters are defined as follows: The energies of the bound state are
444 calculated given the matrix-derived free energy of each motif bound by the homodimeric form of
445 RsmA (ΔG_{site1} and ΔG_{site2}) and added to a penalty for steric hindrance for binding sites in close
446 proximity ($\Delta G_{\text{cooperativity}}$) and the minimum free energy of RNA folding given bound folding
447 constraints ($\Delta G_{\text{mRNA bound}}$) (Fig. 1a, Equation 1). These calculations are performed for all
448 possible combinations of binding sites along each transcript modeled (Fig. 1b) and the positions
449 are sorted by the predicted highest affinity. Given the empirically-derived nature of these energy
450 terms, we hypothesize that the *in-silico* predictions of high energetic affinity (ΔG_{total}) can be used
451 to predict binding interactions *in-vivo*.

452
453 **Genes enriched in RNA co-immunoprecipitation and proteomics establish positive**
454 **control population for model tuning**

455 To tune model filtering terms, we established a positive control population using RNA co-
456 immunoprecipitation sequencing (RIP-seq) and proteomics. For the RIP-seq experiments Total
457 RNA and pulled down fractions were sequenced in PA14 $\Delta rsmAF$ carrying plasmids encoding
458 His-tagged RsmA, RsmF, the respective inactive mutants (RsmA R44A, RsmF R62A) or an empty
459 vector control (pJN105). PCA analysis (Supplementary Figure 2a) of RNA sequencing
460 performed for the pulldown study suggests that the difference in RNA in total and enriched
461 fractions contributed to 33% of the observed variance in the dataset. 18% of the variance could
462 be attributed to an inactivating mutation present in the overexpressed RsmF protein. Conditions
463 lacking vector expressing RsmA/RsmF and the presence of empty vector encoding no protein
464 both clustered closely and therefore the presence of the plasmid did not alter gene expression.

465

466 358 genes were identified to be significantly enriched ($L2FC > 1$ and $p\text{-adj} < 0.005$;
467 **Supplementary Figure 3b, Supplementary Table 6**) in RsmA pulldown relative to the total
468 RNA. These targets were considered to have a high likelihood of being bound partners of RsmA
469 and were used to define the positive control population to tune the cutoff term for our model.
470 This enriched population included positive controls such as *algU*, *rahU*, and *magA*, however,
471 other well characterized direct targets of RsmA (“positive control genes”) such as *tssA1* were
472 not enriched in the RsmA pulldown pool. Interestingly, more genes were significantly enriched in
473 the RsmF pulldown relative RsmA (**Supplementary Figure 3b**). This pool of 565 mRNAs
474 included positive control genes such as *tssA1*, *fha1*, *rahU*, and *mucA*. 228/565 genes overlap
475 with the pool of enriched mRNAs pulled down by RsmA.

476 The proteomics experiments identified an additional 261 proteins (**Supplementary Table 7**)
477 found to be significantly differentially expressed ($L2FC > 1$, $p\text{-adj} < 0.005$) in PA103 $\Delta rsmA$ strain
478 relative to WT (interpreted as repressed in native conditions).

479

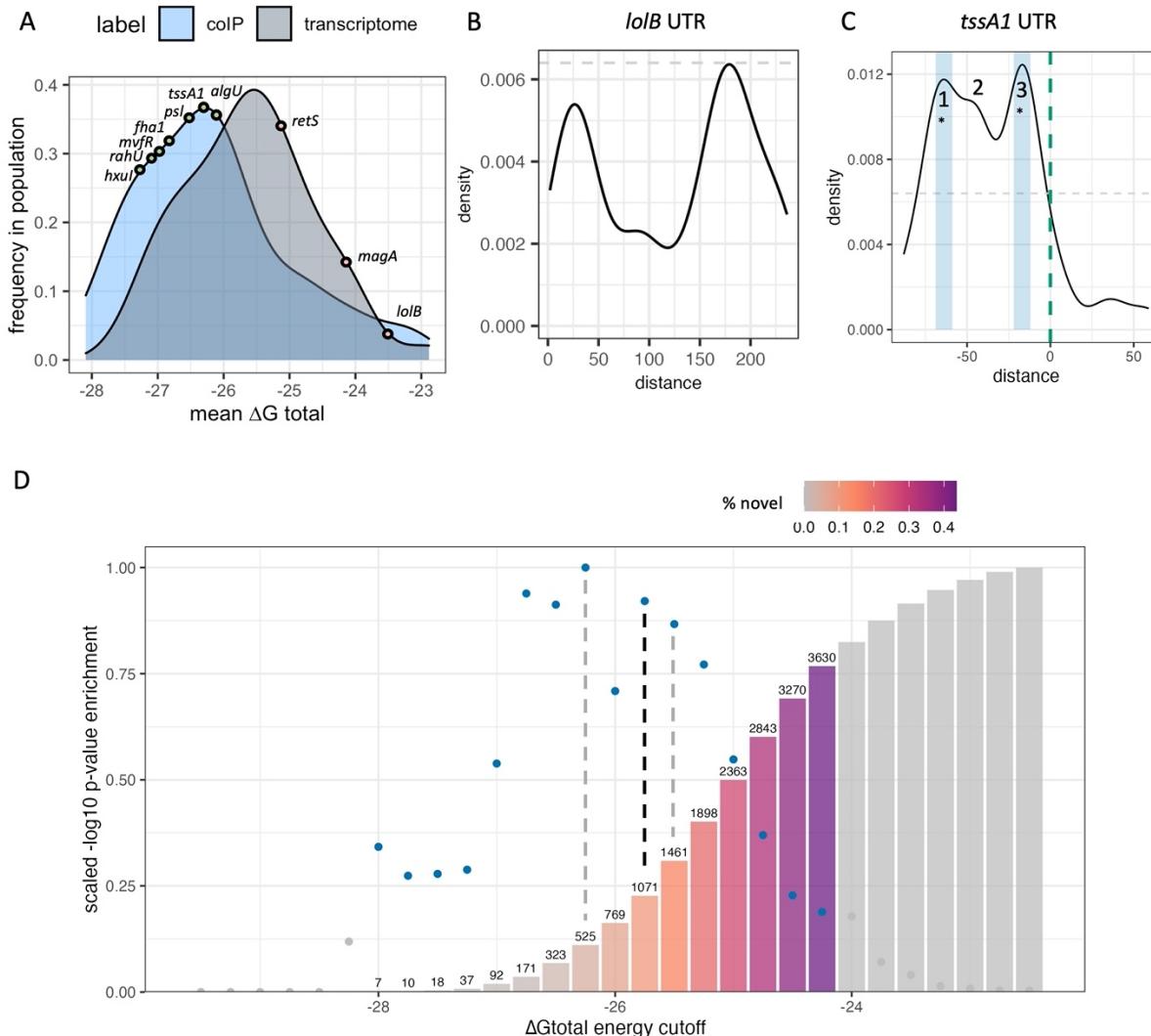
480 **Predicted total affinity can be used to differentiate bound from unbound targets**
481 The predicted overall affinity score, ΔG_{total} , can be interpreted as a probability for binding
482 occurring when RsmA and the target mRNA are present. To evaluate the predictive capabilities
483 of the model, we sought to determine whether the calculated total affinity score could be used
484 as a metric to differentiate direct binding interactions from indirect or unbound gene targets.
485 Predictions were generated for 5861 UTR sequences extracted from the PA14-UCBB
486 transcriptome (NCBI:txid 208963, **Supplementary table 4**). As of this publication, PA14 has a
487 total of 5893 identified genes but we were unable to generate predictions for all due to their lack
488 of inclusion in prior TSS profiling [41]. To evaluate our predictions, we sought to compare the
489 model predictions to experimental results. A combination of prior RNA co-immunoprecipitation
490 sequencing [9] and the RNA co-immunoprecipitation and proteomics performed in this work
491 were used to experimentally identify 780 genes potentially regulated by RsmA. This pool of
492 genes was used to define a positive control population for binding. A random selection of 780
493 additional UTR sequences were collected from the rest of the modeled PA14 transcriptome to
494 generate a control population. For each gene within the positive and background populations,
495 the average ΔG_{total} affinity score was calculated given the 300 most favorable predicted energies
496 in the ensemble. These first 300 predictions represent the most probable conformations of
497 binding between RsmA and the RNA target. A significant difference ($p < 0.05$) was observed
498 between the average total affinity scores of 780 randomly selected sequences and those from
499 Co-IP enriched genes (**Fig. 2a**). We identified several control genes to validate our results. The
500 *tssA1* (positive) and *lolB*, (negative) genes are outlined (**Fig. 2a**) due to their extensive binding
501 characterization. These fall at expected values within each population. The average total affinity
502 score for *tssA1* was determined to be highly favorable ($\Delta G_{\text{total}}: -27.75$ RT), and fell within the
503 energy range for our positive control population (**Fig. 2a**). The average total affinity for the
504 negative control, *lolB*, was calculated to be -23.80 RT which fell within the population range for
505 our randomly selected “non-targets” population. This indicated to us that we could use the ΔG_{total}
506 metric as a cutoff for filtering true from false targets in our pool of predictions.

507

508 To further refine the exact ΔG_{total} cutoff that differentiates direct bound targets from indirect non-
509 targets, we performed hypergeometric enrichment testing for the pool of predictions that would
510 enrich for genes pulled down in prior RIP-seq studies, while also minimizing those included by
511 random chance. We evaluated cutoff values within a ΔG_{total} range of -27.50 RT to -24.0 RT (**Fig.**
512 **2d**). The cutoff value that conferred the highest significant enrichment for immunoprecipitated
513 genes was found at a ΔG_{total} threshold of -26.25 ($p = 7.08\text{e-}08$), and the second highest at ΔG_{total}
514 -25.75 ($p = 2.61\text{e-}07$). In addition, genes with no prior evidence of binding by RsmA were
515 selected to performed exclusion testing of non-targets for each energy cutoff. This determined

516 that the depletion of non-targets reached its maximum at the cutoff value of -25.50 ($p = 6.36e-07$). Given these results, the optimal cutoff used was -25.75 which yielded 1071 predictions of
 517 putative targets for RsmA. This observation validated that the ΔG_{total} can be used as a predictor
 518 of overall affinity.
 519

Fig. 2



520
 521 **Figure 2: Model parameters are refined and validated using experimental datasets.** A) Overall affinity scores
 522 from genes identified to be bound by RsmA in prior RNA immunoprecipitation studies (colIP) are a distinct population
 523 relative to a random sample from the rest of the transcriptome. Positive and negative control RNA *tssA1* and *lolB* fall
 524 at opposite sites in these populations wherein more negative ΔG_{total} values represent higher affinity scores. B)
 525 Frequency of binding site predictions along the *lolB* mRNA sequence. Predictions along the sequence space of this
 526 gene are very disperse and have low affinity. C) Frequency of binding site predictions across the *tssA1* UTR
 527 sequence. Binding site frequencies across the space of this sequence pass our threshold at three main sites. *Two of
 528 which were confirmed binding sites of RsmA given past mutational studies (Schulmeyer et. al., 2016). D)
 529 Hypergeometric enrichment testing reveals that the peak energy cutoff that enriches for known targets of RsmA,
 530 while excluding non-targets, is -25.75 kcal/mol (black line). The number of predictions that pass this filter are shown
 531 in text, and the % of novel predictions are shown in color. Non colored bars and points represent energy thresholds
 532 where predicted targets were not significantly enriched ($p > 0.05$) relative to random chance.

533

534 **Peak analysis of predicted binding sites for enriched targets validate the predictive
535 capabilities of the model**

536 In addition to predicting an overall affinity, our model also has the capability to determine the
537 position of RsmA binding sites along the modeled mRNA leader sequence. The Boltzmann
538 probability of binding was calculated given the ΔG_{total} per prediction presented in Equation 4,
539 and described in Methods. Calculation of the frequency of binding interactions at a specific site
540 was extrapolated from this predetermined probability and used to weigh highest affinity
541 predictions relative to the expanded set of those per gene. Then, peak calling was performed on
542 all genes with a baseline cutoff established from the negative control sequence of the *lolB*
543 mRNA leader sequence (Methods). The application of this cutoff filtered our list of predictions to
544 1043 possible targets of RsmA, 457 of which are genes for which no prior experimental
545 evidence was found.

546

547 The specific binding sites of *P. aeruginosa* RsmA on its established targetome has been
548 experimentally validated on *tssA1*[36]. To evaluate the capabilities of the model for predicting
549 bound regions, we compared peak predictions on the 5' UTR of *tssA1* which has been
550 experimentally verified binding sites that fall at -15 and -67 nt from the start codon [36].
551 Predicted binding site peaks not only fall within those two regions (**Fig. 2b**), but also identify a
552 third region where RsmA may potentially bind to repress translation of *tssA1*. Confirmation of
553 more than two binding sites that confer flexible binding of the protein to a given mRNA target
554 has been identified for CsrA [52]. Due to the lack of footprinting data available for other mRNAs
555 within PA, binding site predictions were also performed on experimentally footprinted targets of
556 Rsm/Csr family proteins in closely related organisms, such as *E. coli* (CsrA-*glgC*) and *P.*
557 *fluorescens* (RsmE- *hcnA*). These produced high positive predictive values on those binding
558 partners (**Supplementary Fig. 2**). Peak predictions for all modeled genes can be found in the
559 supplementary binding packet. Overall, the capturing multiple experimentally characterized
560 binding site across a range of well-studied RsmA/CsrA targets that we selected provided
561 confidence in the ability of the model to identify RsmA binding sites across different potential
562 mRNA targets.

563

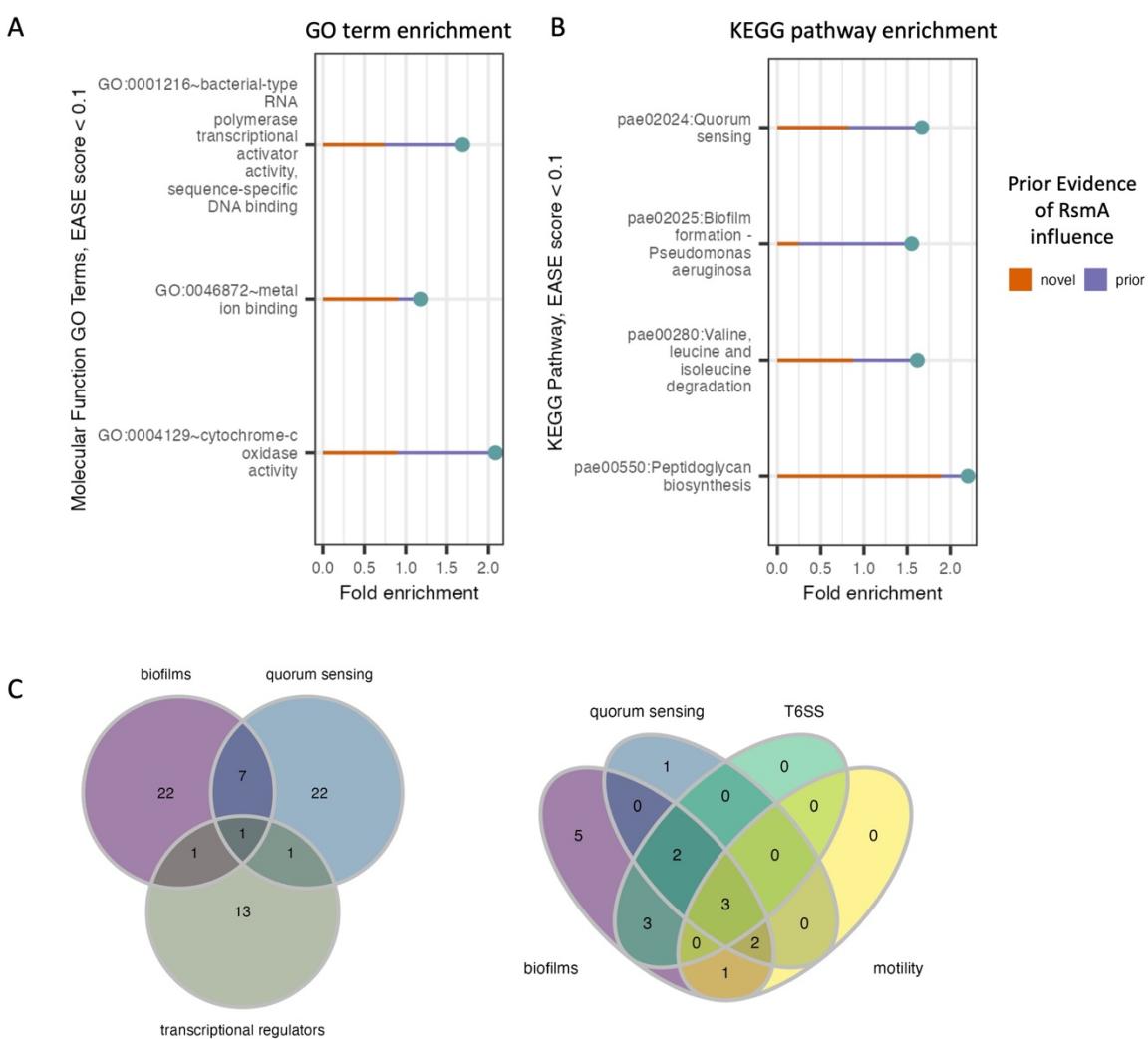
564 **Enrichment of quorum sensing and biofilm pathway transcription factors in predicted
565 RsmA targets**

566 Given our pool of 1043 predicted targets, we next sought to determine whether new pathways
567 that were regulated by RsmA (but not yet identified) were enriched in our filtered pool.
568 Encouragingly, pathways with prior experimental evidence of regulation by the GacA/S TCS
569 pathway were identified in our analyses. GO term and KEGG pathway enrichment analyses of
570 our pool of 1043 putative mRNA targets show significant (EASE score < 0.1) representation of
571 genes involved in key virulence pathways (**Fig. 3a,b**). Molecular features enriched in our
572 predicted targets include those with DNA-binding transcriptional activator (GO:0001216), metal
573 ion binding (GO: 0046872) and cytochrome-c oxidase (GO:0004129) activities (**Fig. 3a**).
574 Roughly 60 transcriptional regulators were predicted to be bound by RsmA in our model,
575 including key QS regulators LasR, MvfR, and the orphan regulator, QscR.
576 Key pathways enriched by our predictions include quorum sensing (pae02024), biofilm
577 formation (pae02025), valine, leucine, and isoleucine degradation (pae00280), and
578 peptidoglycan biosynthesis (pae00550)(**Fig. 3b**). Although many of these processes have
579 already been shown to be regulated by the Gac/Rsm pathway [53,54], several novel predictions
580 were generated within each feature (**Fig. 3a,b**). This suggests modeling allows us to expand
581 upon the total number of genes that RsmA may regulate across complex and condition-sensitive
582 pathways.

583

584 The full profiling of transcriptional regulatory network in PA is yet incomplete, but recent efforts
585 to characterize binding specificities *in vitro* [55] has expanded upon our understanding of TF
586 interaction with known, key virulence pathways. Transcriptional regulators were significantly
587 enriched in our predicted pool of genes bound by RsmA (**Fig. 3a**); therefore, we sought to
588 identify which of these transcriptional regulators were associated with KEGG enriched
589 pathways. Of note is the identification of *lasR* (PA14_45960) is shared by both QS and biofilm
590 forming processes (**Fig. 3c**). Out of 86 total transcription factors mapped to biofilm, quorum
591 sensing, the Type 6 Secretion System (T6SS) and motility pathways in [55], 17 were identified
592 by our model to be bound by RsmA. Of these 17, 3 were found to be associated with all four
593 pathways (**Fig. 3c**), which were identified as PA1431 (*rsaL*), PA4184 (*souR*), and PA1437, a
594 two-component response regulator. Only PA1437 was previously predicted to be a potential
595 target via a prior motif search approach [20], whereas PA1431 (*rsaL*) and PA4184 (*souR*) are
596 entirely novel mRNA predictions.

Fig. 3



597
598 **Figure 3 Distribution of enriched molecular functions and pathways in pool of predicted targets of RsmA.**
599 A&B) DAVID enrichment analysis for molecular function GO terms and KEGG pathways, sorted by increasing p-value
600 (< 0.1). Along with the reported fold change of enrichment, the lines display the proportion of genes within each
601 category that are novel predictions yielded by the model (red line) and the proportion of genes with some prior
602 evidence of association with RsmA (purple line). C) Predictions that fall within key virulence pathways such as

603 quorum sensing and biofilm formation also have shared transcription factor regulation. Left: one transcriptional
604 regulator, *LasR* (PA14_45960) is associated with both quorum sensing and biofilms. Right: Model predictions identify
605 several newly profiled transcription factors (Wang, et. al., 2020) that are also associated with virulence pathways.
606 Three transcriptional regulators associated with all four processes include PA1437, a two-component response
607 regulator, PA4184, SouR regulator of Phezanine biosynthesis, and PA1431, *rsaL*, a novel target and regulator
608 involved in quorum sensing.

609

610 **Meta-analysis of aggregated RNA-seq datasets reveal that novel targets identified in our**
611 **model are lowly expressed in standard media types used for binding/pulldown studies**

612 The influence of RsmA on regulating the aforementioned pathways has been well demonstrated
613 by prior studies [53,54]. Therefore, we sought to determine how many of our predicted genes
614 were also found in other high-throughput characterizations of RsmA regulation in *P. aeruginosa*.
615 We compared predictions to all those found in previous modeling [20], microarray analysis [18],
616 RNA-seq studies [1,19], RIP-seq studies [9], CLIP-seq studies [10], and recent nascent chain
617 profiling methods such as ChiPPar-seq [19]. Comparisons across these studies revealed that
618 586 of our predictions had some level of prior evidence of binding or direct/indirect regulation by
619 RsmA, and 457 were entirely novel predictions.

620

621 Prior experimental approaches have estimated RsmA has some regulatory effect (including
622 direct and indirect) on approximately 500 genes, yet our number of predictions (1043) is double
623 that estimate. In an effort to understand why our pool of predictions is larger than prior
624 approximations, we hypothesized that many predictions were dependent on conditions not
625 tested in prior experimental screens. To investigate this hypothesis we leveraged the
626 aggregated, publicly available, RNA sequencing data from a meta-analysis of gene expression
627 across various conditions in *P. aeruginosa* [23]. This dataset included values of normalized
628 gene expression in transcripts per million (log TPM) from 411 sequencing datasets, including
629 data from a RsmA pulldown study [9]. These datasets measure gene expression in a wide
630 variety of experimental conditions including various strain types, growth phases, media,
631 antibiotic supplementation, clinical isolates, and lifestyles and demonstrates that gene
632 expression is highly variable and condition-specific [23]. In our analysis, we interpreted a gene
633 to be expressed if the log TPM value was greater than 0. The expression data was filtered and
634 subsequently binned into 10 ranges and then labeled given their prior evidence for regulation by
635 RsmA. Overall, genes with some prior experimental evidence of binding to RsmA were more
636 represented in higher expression bins, whereas those that had no evidence, or were novel
637 predictions by our model, aggregated towards lower expression bins (**Fig. 4a**). This observation
638 suggests that the novel predictions generated by the model were not identified as RsmA targets
639 in prior experimental screens due to low expression levels in the conditions tested.

640

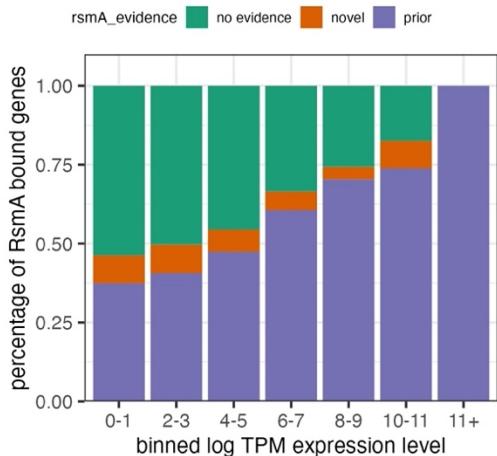
641 To assess where novel predictions were clustering across these varied conditions, we used k-
642 modal clustering of experimental condition categories as described in Methods. Overall, a
643 higher proportion of genes with some prior evidence of RsmA interaction were found in
644 experiments performed in LB media (cluster 3), whereas nutrient-limited media types like M9
645 and ABTGT exhibited a higher proportion of novel predictions and genes with no RsmA
646 regulatory evidence (**Fig. 4c, cluster 1**). This recapitulates observations that media type has a
647 large impact on gene expression, and therefore the availability of certain genes for high
648 throughput profiling. An example of note is *rsaL*, a novel target encoding for a quorum sensing
649 transcriptional regulator, that we identify to be bound by RsmA computationally but, when
650 assessed across datasets, appears rarely expressed. We define high expression in this case as
651 a log TPM value greater than that of the *rimM* housekeeping gene (average log TPM = 1.95).
652 *RsaL* reaches a log TPM expression level above 1.95 in only 3 of the 411 RNA-seq experiments

653 (SRA accession numbers SRS605141, SRR6018047, and ERS530377) aggregated in [23];
654 indicating that sufficient levels of *rsaL* expression may only occur in certain experimental
655 conditions.

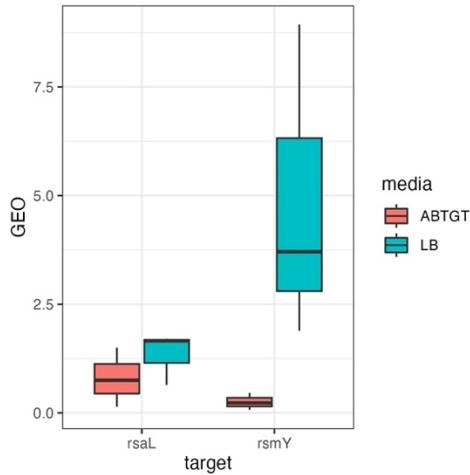
656
657 To assess whether expression of *rsaL* could be detected if media and growth conditions were
658 optimized, we evaluated expression levels of the gene via RT-qPCR. To mimic the planktonic
659 conditions where *rsaL* expression was detected [56], we cultured PA103 WT strains in either
660 minimal ABTGT or LB media and sampled for *rsaL* expression at late-exponential phase. After
661 normalization to the *rimM* housekeeping gene and to internal primer efficiency E scores,
662 expression of *rsaL* was not significantly different between media types (**Fig. 4b**). In addition,
663 expression of RsmY was significantly increased in LB media relative to ABTGT, but showed no
664 significant change in ABTGT relative to *rsaL*

Fig. 4

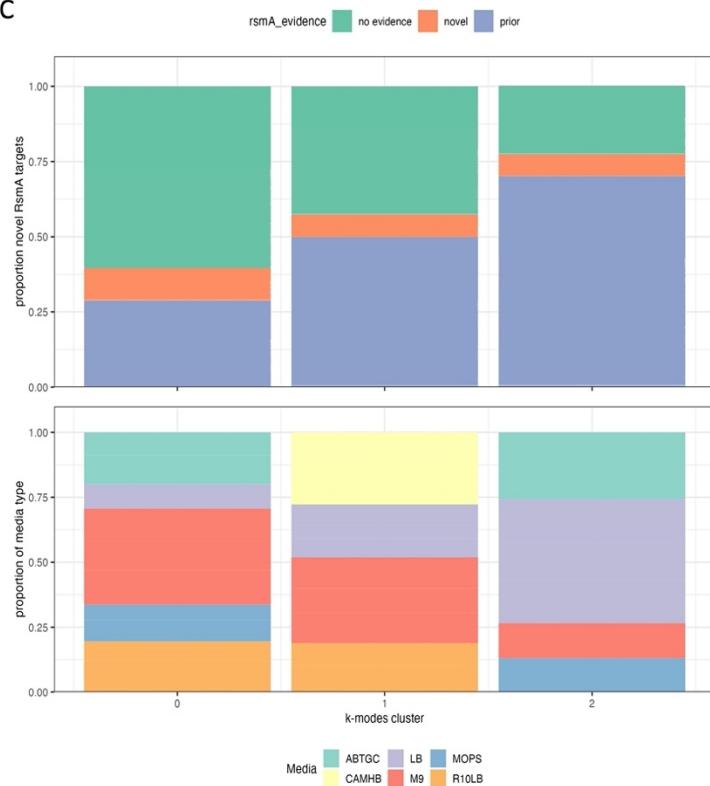
A



B



C



665
666
667
668
669
670
671
672
673

Figure 4: Comparison of results with transcriptomic data suggests novel transcripts are found at lower concentrations. 483 genes were predicted by the model that are not represented in any prior modeling, microarray, RNA-seq or pulldown studies of RsmA. A recent publication aggregated 411 expression datasets for *Pseudomonas aeruginosa* grown in various experimental conditions. A) Bar chart of the proportion of predictions with no evidence of RNA binding, prior evidence of binding, and entirely novel predictions, binned by log TPM expression level in that experiment. The proportion of genes with prior evidence increases as the log TPM levels of expression increases, suggesting that expression influences detection. B) RT-qPCR data of rsaL and RsmY expression in minimal and LB media at early stationary phase suggests that rsaL is lowly expressed in both media types. C) K-modal clustering of

674 all categories in the aggregated experimental conditions from 411 expression datasets (KO, media, growth phase,
675 stress) to observe whether the presence of novel or predicted targets cluster within specific conditions, knockouts, or
676 media types, overlaid with the proportion of genes that fall within each cluster. Predictably, most of the genes that
677 have some prior association with RsmA are expressed in conditions cultured in LB media, whereas more novel
678 targets were expressed in minimal media such as M9 or ABTHC.

679

680 **RsmA binds and regulates several predicted mRNA targets encoding for key**
681 **transcriptional regulators as assessed by *in vitro* binding and *in vivo* translational**
682 **reporter assays**

683 Given the concordance of our computational predictions with previously published experimental
684 results, we sought to test RsmA binding to our novel predictions *in vitro*. Therefore, we selected
685 8 genes that were representative of the core quorum sensing regulatory cascade (**Fig. 5a**,
686 **Supplementary table 3**) to assess binding *in vitro*. These were quorum sensing regulatory
687 genes *lasR/lasI*, *rhI/RhII*, *mvfR*, and a novel prediction *rsaL*. Secretion system regulators
688 included the *mvaT* and *aprD* leader sequences. These targets have varied support in the
689 literature for RsmA interactions, the majority lacking evidence of either *in vitro* binding or
690 regulatory impact. Finally, the *tssA1* and *loB* sequences were included as positive and negative
691 controls. Filter binding assays were performed with the [α -³²P] ATP radiolabeled mRNA and
692 purified RsmA protein. *aprD* binding was evaluated via Electrophoretic Mobility Shift Assay
693 (EMSA) (**Supplemental Fig. 4**). Each of these genes had varying degrees of prior RsmA
694 regulatory characterization as summarized in **Fig. 5a**. Importantly, we observed strong *in vitro*
695 binding interactions between RsmA and *mvaT*, *lasR*, *rhII* and *tssA1* leader sequences. These
696 observations are consistent with the predicted overall affinity (ΔG_{total}) scores for each gene,
697 which were predicted to be -26.29, -26.54, -26.37, and -26.34 respectively (**Fig. 5a,b**). Weaker
698 interactions were seen for *rsaL*, *mvfR*, and *lasI*. These each had average predicted affinities of -
699 25.82, -26.55, and -24.79 (**Fig. 5a,b**). Disassociation constants (kDs) from this biochemical
700 characterization correlate well with the predicted total affinity ($R^2 = 0.92$, **Fig. 5c**). It is worth
701 noting that although we initially excluded genes such as *rhI/R* from our true target predictions (in
702 accordance with the -25.75 energy threshold), we tested them experimentally for binding given
703 the observation that we predicted two other mRNA targets (*lasR* and *lasI*) in our final candidate
704 pool that encode for two closely functionally related proteins to RhI/R in the quorum sensing
705 pathway. We did not observe binding between RsmA and *rhI/R* in our *in vitro* filter binding
706 assays (**Fig. 5b**) or via EMSA (**Supplemental Fig. 4**) experiments, which recapitulates the
707 negative result from the model. Finally, we did not observe binding between RsmA and the *loB*
708 negative control. Overall, these results indicate that RsmA does bind to targets predicted by the
709 model, and that relative binding affinity predicted via the ΔG_{total} affinity score is correlated with
710 affinities measured *in vitro*.

711

712 As a post-transcriptional regulator, RsmA is able to repress or activate gene expression by
713 blocking or enhancing ribosomal binding to the 5' UTR region of an mRNA. To evaluate the
714 effects of binding on translation, we performed plasmid-based *in vivo* translational reporter
715 assays (summarized in **Fig. 6a**). Sequences from the same pool of 8 genes selected for *in vitro*
716 characterization were fused to the GFPmut3 coding sequence, and fluorescence values were
717 measured following RsmA induction in a PA103 Δ RsmA/RsmF strain (**Supplementary table 3**).
718 *loB* was not used in these assays due to the observation that the established sequence used in
719 prior mobility shift experiments [1] is not the leader sequence, but falls within a portion of the
720 coding region and therefore does not contain a ribosome binding site (see supplemental table
721 3). Specifically, BLAST search revealed the *loB* sequence used in prior experiments falls
722 between nucleotides 5236896 and 5237178 in the PA01 genome. Given the lack of binding
723 observed between RsmA and *rhI/R* in our *in vitro* binding assays (**Fig. 5b, Supplementary**
724 **Figure 4**) we selected this target to use as a suitable negative control for this assay. No

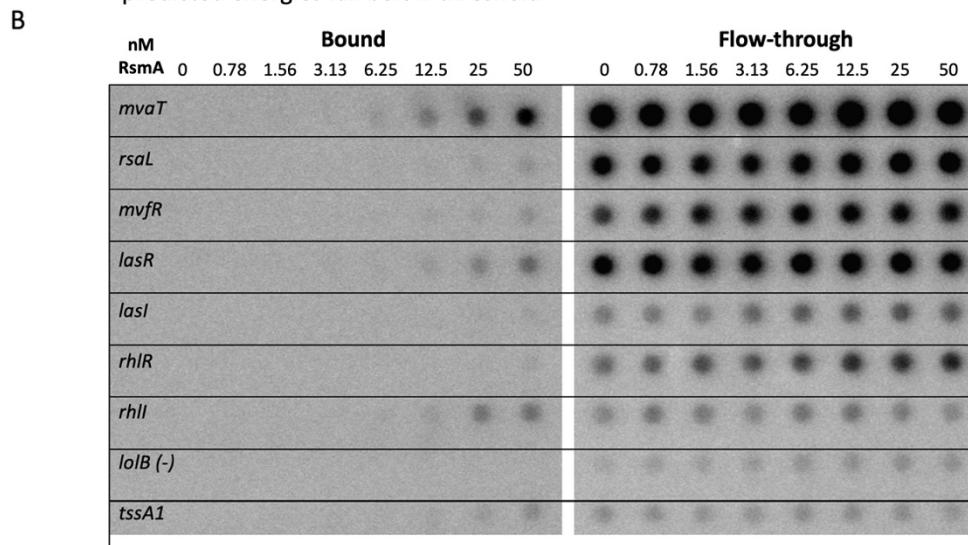
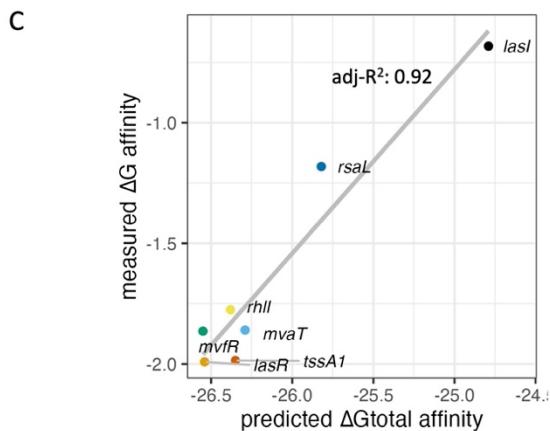
725 significant difference in fluorescence is observed for *rhIR* (**Fig. 6b**). The *tssA1* 5' UTR was used
726 as a positive control for repression and showed a significant ($p < 0.05$) reduction in normalized
727 fluorescence values following induction of RsmA (Fig. 4b). We also observed significant
728 reduction of fluorescent signal for the HSL synthetase genes *lasI* and *rhII* ($p < 0.001$, and $p <$
729 0.05, respectively) (**Fig. 6c**). Given results for our positive and negative regulatory controls, we
730 then performed the assay on *mvaT*, *lasR* and *rsaL*. Each of these genes have some lacking
731 prior evidence of direct RsmA binding and/or regulation from the literature (**Fig. 5a**). These
732 targets yielded reduced fluorescent values following RsmA induction (**Fig. 6c**) and we interpret
733 these results to suggest these genes are repressed by RsmA *in vivo*.

Fig. 5

A

UTR	Predicted ΔG total	Prior Evidence of RsmA association
<i>mvaT</i>	-26.29	RNA-seq; CLIP-seq
<i>rsaL</i>	-25.82	Not found
<i>rhlR</i>	-25.73*	Not found
<i>rhlI</i>	-26.38	CLIP-seq; B-Galactosidase assay
<i>lasR</i>	-26.54	RNA-seq; CLIP-seq
<i>lasI</i>	-24.79*	CLIP-seq; B-Galactosidase assay
<i>mvfR</i>	-26.55	Model-predicted, in-vitro binding assay
<i>lolB</i>	-21.12*	Non-target
<i>tssA1</i>	-26.35	Microarray; RNA-seq; ChIPPAR-seq; EMSA

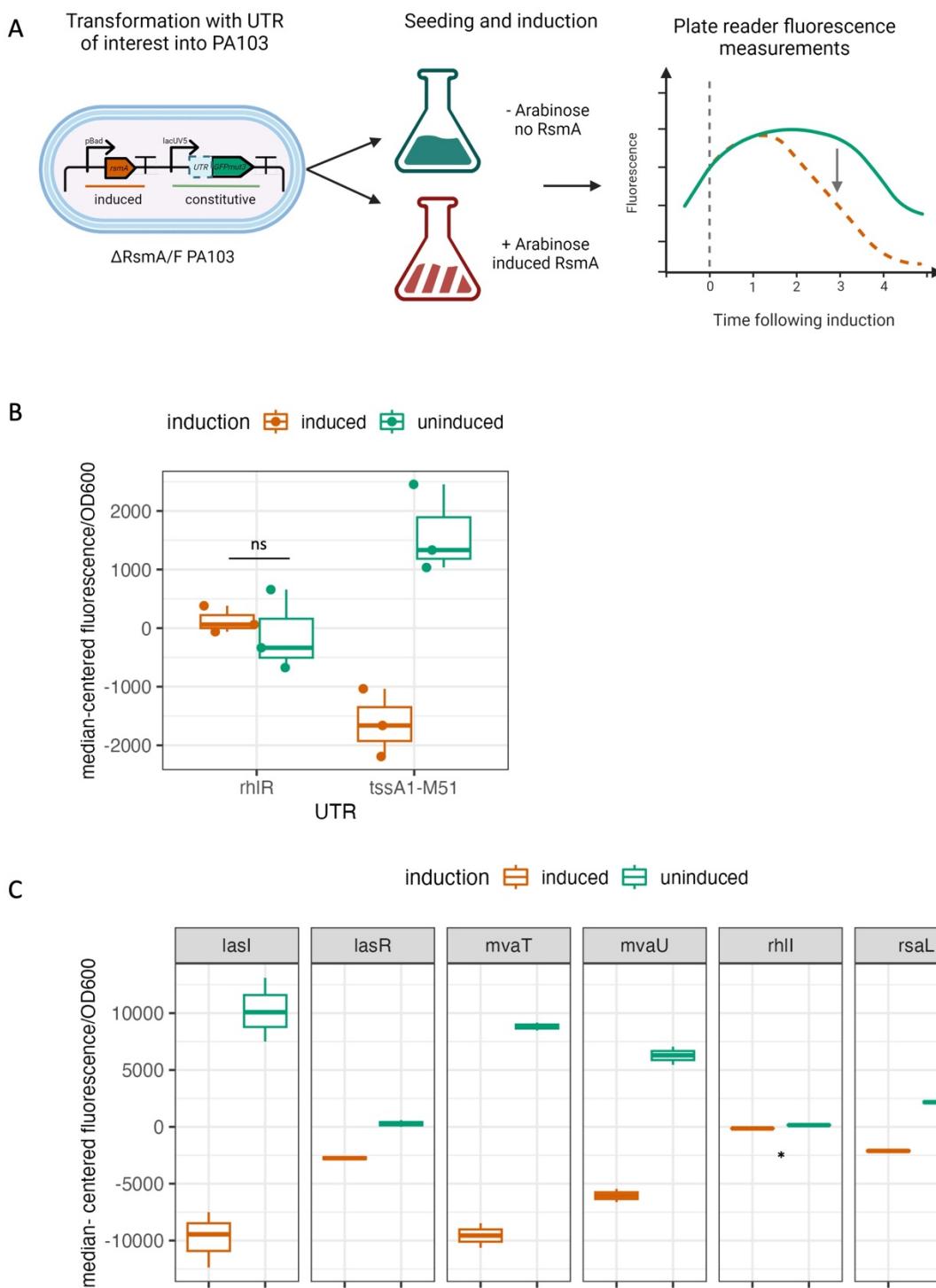
* predicted energies fall below threshold



735 **Figure 5: *in vitro* filter binding assay demonstrates binding interactions between RsmA and predicted targets**
736 A) Summary table of the genes tested for *in vitro* filter binding which are representative of a variety of predicted
737 energies and prior levels of characterization. B) Phosphoscreen of bound and unbound radiolabeled intensities for the
738 UTRs presented in table A. C) A linear correlation exists between predicted and measured disassociation constants
739 generated from fitting filter binding assay.

740

Fig. 6



741
742
743
744

Figure 6: *in vivo* repression assay. A) Experimental overview of *in vivo* translational repression assay. UTRs were fused to GFPmut3 and expressed off of the lacUV5 constitutive promoter. Plasmids were transformed into PA103 Δ RsmA/RsmF strains and seeded into +/- 0.5% arabinose LB media. Fluorescence was monitored up to 6 hours

745 following induction. B) *rhIR* and *tssA1* UTR sequences were used as negative and positive controls for our assay. No
746 significant change in fluorescence was measured for *rhIR*, which is consistent with our prediction and *in vitro*
747 experimental results. A significant reduction in fluorescence values was observed for the positive control *tssA1*. C) A
748 significant reduction in fluorescence was also detected for our pool of additional tested genes, including *lasI* and *rhII*.
749 Fluorescence values are plotted median centered to account for changes in translation rates due to the native RBS
750 encoded in each individual UTR.

751

752 **RsmA binds to model-predicted binding sites in novel targets *rsaL* and *mvaT* *in vitro***

753 The model identifies several binding sites along the sequence space of each gene. Given our
754 observation that two novel targets *rsaL* and *mvaT* were bound by RsmA *in vitro*, we sought to
755 assess binding to the specific predicted locations produced by the model. The top three binding
756 sites for each gene (**Fig.s 7a,b** and **Fig.s 8a,b**) were mutated individually, and for all
757 combinations of 2 binding sites along the sequence. Binding to each mutant was evaluated via
758 *in vitro* filter binding assay.

759

760 The three predicted binding sites (termed BS1, BS2, and BS3) on the *rsaL* transcript fall within
761 the coding region at +12, +67, and +76 nt from the start codon (**Fig. 7a**, BS1, BS2, and BS3),
762 with the highest frequency of binding predictions falling peaks 67 and 76 nt (**Fig. 7a**). Guided by
763 the strict peaks (i.e. specific binding sites) predicted by the model in this case, we selected
764 these three specific binding sites to test. Evaluating these mutations via *in vitro* binding reveals
765 that mutation of BS3 significantly reduces binding affinity of RsmA to the *rsaL* transcript (**Fig.**
766 **7c**). Mutating BS1 and BS2 individually did not alter affinity to the transcript however, tandem
767 mutations at sites BS1 and BS2 as well as sites BS2 and BS3 hinder binding interactions from
768 occurring. Overall these results suggest that BS3 is the main anchor of binding interactions with
769 the transcript, with BS2 as the site with second highest affinity. Mutation of BS1, which falls
770 below our peak threshold, did not impact binding as strongly and is therefore a less likely site for
771 RsmA-*rsaL* interactions.

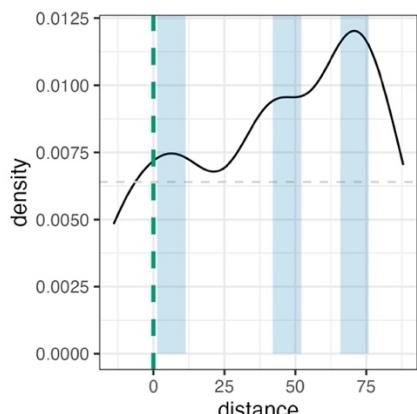
772

773 Relative to the distinct peaks observed on *rsaL*, binding site predictions on the *mvaT* leader
774 sequence fall in a wider range, as evidenced by a single peak in the within the coding sequence
775 of the gene (**Fig. 8b**). Predicted binding sites on the *mvaT* leader sequence were mutated at
776 positions +26, +41, and +68 nt from the start codon (**Fig. 8a,b**, BS1, BS2, and BS3). Given the
777 lack of distinct peaks, and therefore a broader selection of potential binding sites, RsmA-*mvaT*
778 binding interactions were not disrupted as expected. Specifically, in our *in vitro* binding assays,
779 no change in affinity was observed by mutating BS1, BS2, or BS3 individually. A slight decrease
780 in affinity was observed when mutating BS1 and BS2, or BS1 and BS3 in tandem (**Fig. 8c**). It is
781 interesting to note that predicted RsmA binding sites along the *mvaT* sequence cluster in a wide
782 region within the CDS (**Fig. 8a**), suggesting that there may be a multitude of conformations by
783 which RsmA binds to this transcript.

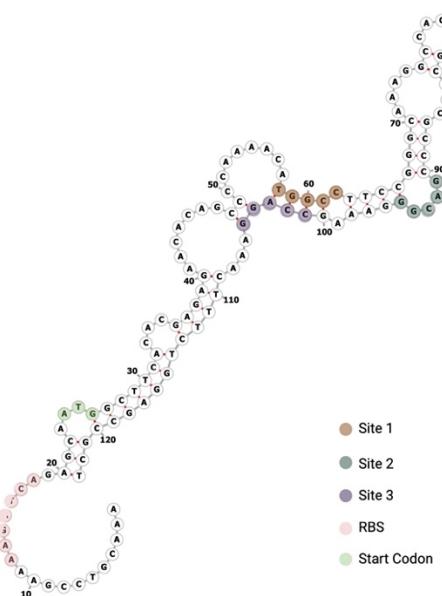
Fig. 7

A

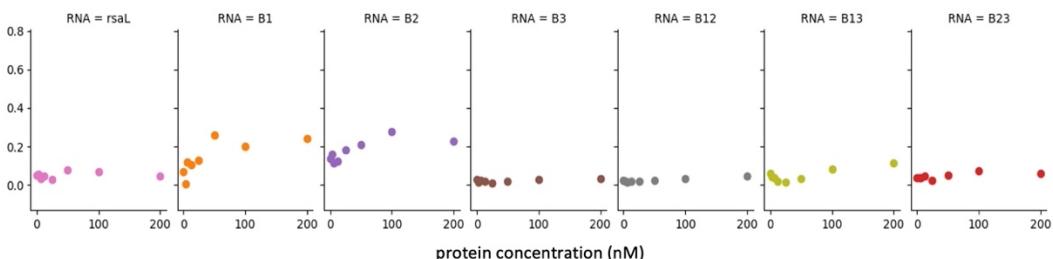
Predicted binding sites of RsmA on *rsaL*



B



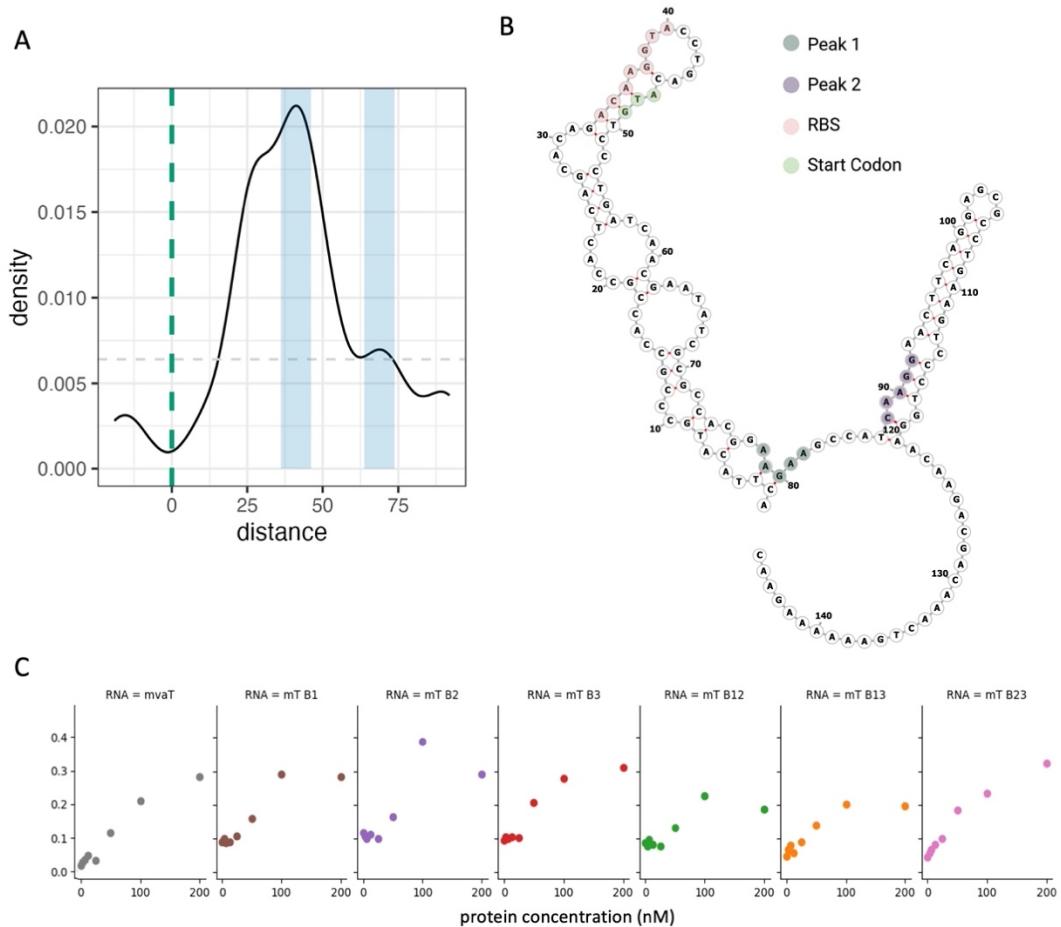
C



784
785
786
787
788
789
790
791
792

Figure 7: Mutational evaluation of predicted RsmA binding sites on *rsaL*. A) Density plot of predicted binding pockets along the modeled region of the *rsaL* leader sequence + 100 bases of CDS. Blue boxes represent the highest frequency regions for the ensemble of predictions along the sequence space. Light grey dashed line represents the minimum peak threshold for considering a binding pocket. Green dashed line is the start codon. B) Structural diagram of the *rsaL* leader sequence with labeled binding pockets (brown, green, and purple) as well as key functional regions such as the start codon (green) and predicted RBS (pink). C) Filter binding generated binding curves for RsmA in complex with WT *rsaL* (pink) and individual mutations (orange through brown) or mutations in combination (grey through red).

Fig. 8



793

794 **Figure 8: Mutational evaluation of predicted RsmA binding sites on *mvaT*.** A) Density plot of predicted binding
 795 pockets along the modeled region of the *mvaT* leader sequence + 100 bases of CDS. Blue boxes represent the
 796 highest frequency regions for the ensemble of predictions along the sequence space. Light grey dashed line
 797 represents the minimum peak threshold for considering a binding pocket. Green dashed line is the start codon. B)
 798 Structural diagram of the *mvaT* leader sequence with labeled binding pockets (green, and purple) as well as key
 799 functional regions such as the start codon (green) and predicted RBS (pink). C) Filter binding generated binding
 800 curves for RsmA in complex with WT *mvaT* (grey) and individual site mutations (brown through red) or mutations in
 801 combination (green through pink).

802

803 Discussion:

804 In this work, we expand beyond motif-based screens to computationally profile binding and
 805 regulation by the RsmA protein across the entire *P. aeruginosa* transcriptome. Modeling and
 806 subsequent filtering yielded 1043 potential targets, of which 457 were not identified in prior
 807 experimental screens. We deem these as novel putative targets of RsmA. These putative novel
 808 targets were found to have variable media and condition-specific expression when investigated
 809 in context of publicly available sequencing data, which we posit explains earlier inability to
 810 detect them. Within each prediction we identify key molecular features that influence binding,
 811 and used these to effectively differentiate direct from indirect binding. Overall, this effort

812 demonstrates the utility in using empirically derived binding parameters to computationally
813 interrogate expansive sequence spaces.

814
815 **Metrics such as the energy terms and binding sites correlate with experimental evidence,**
816 **which demonstrate utility of model in predicting true vs false targets of RsmA.**
817 Given empirically derived binding parameters, our free energy model of RsmA binding was able
818 to differentiate direct from indirect or unbound targets. Our predictions of overall affinity (ΔG_{total})
819 and the position of binding sites were identified as the key parameters that allowed us to
820 interrogate binding to mRNA leader sequences across the transcriptome. Molecular features on
821 the RNA sequence are key for enabling regulatory function, and also provide information on the
822 mechanism by which RsmA is able to bind. In comparing our model predictions to publicly
823 available pulldown sequencing data, we demonstrate that the calculation of the overall affinity
824 term ΔG_{total} can be used as a metric to differentiate true from false targets of RsmA (Fig. 2)
825 which allowed us to effectively filter predictions made across the entire transcriptome. This was
826 facilitated by improvements made to tailor our model for the *P. aeruginosa* RsmA protein. One
827 such improvement was the generation of a RsmA-specific PWM (Table 1). This PWM allows for
828 the contribution of non-canonical bases to the overall energy score, and prioritizes an AUGGA
829 motif. Although not drastically different from the canonical A(N)GGA CsrA consensus, the
830 AUGGA motif was independently observed in prior crystal structure [34], SELEX [36], and CLIP-
831 seq [10] studies to be favored by RsmA. This also demonstrates the utility in using solved
832 crystal structures to generate models of protein-RNA interactions. Overall, considering slight
833 changes in the protein sequence allowed for our approach to be better tailored for assessing
834 interactions occurring within *P aeruginosa*.

835
836 Our model appears to be able to accurately capture binding interactions between RsmA and
837 candidate targets, as evidenced by the correlation between the measured *in vitro* binding
838 affinities and the predicted ΔG_{total} values that we performed in a small selection of predicted
839 mRNA targets (Fig. 5c). More qualitatively, genes that did not pass our energetic threshold
840 (such as *rhlR*) were not observed to bind *in vitro* (Fig. 5b), and showed no significant change in
841 translation *in vivo* (Fig. 6c). This suggests that the model has utility in predicting relative binding
842 affinity and can aid in further exploration of network regulation, particularly as it relates to lowly
843 expressed or condition-dependent genes. Interestingly, of the 1043 genes predicted to be
844 bound by RsmA, several previously characterized genes did not pass our energy cutoff. These
845 included *magA*, and *mucA*, for which binding was previously experimentally confirmed *in vitro*
846 [1,9]. Each of these predictions yielded less favorable mean ΔG_{total} scores, with only a handful of
847 the suite of binding conformations scoring with high favorability. It is possible then, that other
848 sequences that exhibit strict site ranges may have been lost to filtering. Other genes that did not
849 pass our energetic cutoff included those regulated in tandem with other post-transcriptional
850 regulators, or require multiple copies of RsmA. This is possible as it has been demonstrated that
851 RsmA is not always the sole repressor and can bind genes in tandem with other regulatory
852 factors; this has been shown to occur with two transcriptional regulators, AmrZ and Vfr, wherein
853 RsmA is only able to bind these transcripts in the presence of an additional global post-
854 transcriptional regulator Hfq. [12,19]. Neither *amrZ* nor *vfr* were predicted to be bound by RsmA
855 in our model, therefore our pool of predicted targets is limited to those regulated by RsmA
856 alone.

857
858 Future iterations of our model can improve upon capturing the influence of multimerization on
859 binding. RsmA binding can cause structural changes along an RNA transcript and promote
860 multimerization via subsequent folding of higher affinity sites. This phenomenon has been best
861 demonstrated via loading of multiple copies of RsmE on the RsmZ sRNA sponge [39] Our
862 model only considers binding interactions between a single RsmA protein and transcript;

863 therefore, the structural influence of multiple proteins is missed by the model. To address these
864 limitations, future improvements could include structural constraints due to partner binding,
865 however, the footprint and position of the cooperative partner must be known. In addition,
866 changes can be made to have RNA sequences “inherit” structural constraints from a primary
867 iteration of predictions, and measure changes in total affinity due to the addition of secondary or
868 tertiary elements. This can also prove useful in modeling RsmA-mRNA interactions in other
869 *Pseudomonas* species that encode multiple paralogs of RsmA, such as RsmA and RsmE in *P.*
870 *putida* and *P. syringae* [32]

871
872 Global trends in our binding site predictions agree with patterns observed in prior high
873 throughput screens. Distances between the top binding sites and the start codon were plotted
874 for all genes that passed our total affinity and peak filtering (**Supplementary Fig. 4**). Overall,
875 binding sites for RsmA were localized to three main regions: RBS region (between -30 and 0
876 relative to the start codon), the start codon, and a broad distribution of sites within the first 100
877 bases of the coding sequence. This is consistent with binding site frequencies observed in
878 CLIP-seq studies of RsmA in *P. aeruginosa* [10] and CsrA in *E. coli* [57]. These observations
879 suggest that, in addition to predicting an overall affinity score, our model can also predict
880 specific binding sites on the mRNA which provides additional information on the exact
881 mechanism by which the protein interacts with its target.

882
883 More globally, binding site distributions vary across transcripts. To investigate this, we used
884 custom peak calling scripts with parameters defined in Methods. A peak is therefore a region
885 with a sufficiently high frequency of predicted sites that passes some minimum threshold set by
886 negative controls. Approximately 30% of genes modeled have wide, overlapping, pockets of
887 binding sites that span 30 + nucleobases across of the mRNA. An example of this is shown in
888 predictions on the *mvaT* transcript (**Fig. 8a**). 70% contain narrower, distinct, peaks that are less
889 than 30 nucleotides wide, which is also seen for predictions across *rsaL* (**Fig. 7a**). Analysis of
890 peak count distributions for our predictions (shown in **Supplementary Fig. 2d**) reveals that the
891 majority of genes have an average number of 1.25 peaks in their distribution of binding site
892 peaks, and a smaller population of genes contain an average of 2.5 peaks where RsmA is
893 predicted to bind. This indicates that the majority of genes contain 1-2 distinct binding peaks,
894 whereas a smaller population contain 2 or more distinct peaks. This recapitulates prior
895 observations that Rsm/Csr proteins facultatively interact with targets at a single binding site, or
896 at double binding sites [4,8]. The divergent patterns of binding also suggest “anchoring” at
897 single high affinity site along the gene, prior to binding to lower affinity positions. This
898 phenomenon was recently characterized for CsrA- *acnA* and *evgA* sequences in *E. coli* [52]

899
900
901 Further, the location of predicted binding peaks appeared to correlate well with *in vitro*
902 experimental evidence. Our initial observation was the concordance of predicted peak location
903 on the well-studied RsmA binding partner *tssA1*. These predictions fell within characterized
904 binding sites on the mRNA sequence (**Fig. 2c**) [36]. The model also accurately predicted high
905 affinity binding sites on the *rsaL* mRNA sequence which had no prior binding or foot-printing
906 evidence. Using *in vitro* filter binding, we experimentally confirmed these predictions by
907 disrupting interactions via mutation of the highest affinity motif (BS3) (**Fig. 7c**), and a further
908 disruption of binding strength was observed upon mutating the second strongest motif (BS2) in
909 tandem with BS3 (**Fig. 7c**). This is consistent with the theory that Csr/Rsm family proteins may
910 anchor to lower affinity sites on the nascent transcript [19], before binding more strongly to
911 downstream high affinity sites [30]. In contrast, mutating predicted sites along the *mvaT* leader
912 sequence did not result in a change in affinity (**Fig. 8c**). Predicted RsmA binding sites along the
913 *mvaT* sequence cluster in a wide region within the CDS (**Fig. 8a**), and suggest that there may

914 be a multitude of conformations by which RsmA binds to this transcript. This mechanism of
915 binding has been theorized previously [30] as a strategy CsrA to ensure binding to a dynamic
916 structured RNA.

917

918

919 ***Loss of target discovery can be attributed to widely varying expression profiles across***
920 ***study conditions***

921 Perhaps the most exciting element of the model results is demonstrating the ability of
922 computational predictions to capture interactions for mRNAs that are expressed transiently or in
923 a condition-dependent manner. Our evaluation of target predictions across 411 gene expression
924 datasets revealed that the majority of novel genes predicted by our model are lowly expressed
925 (**Fig. 4a, b**) or condition specific (**Fig. 4c**). Indeed, K-modal clustering showed a higher ratio of
926 these novel genes to cluster with nonstandard media types like ABTGT or M9 minimal media
927 (**Fig. 4c**). This highlights the importance of considering multiple approaches to profile the effects
928 of a post-transcriptional regulator, as condition dependent gene expression can cause a
929 bottleneck in discovery. This is the case for sRNA discovery, especially, as many are expressed
930 in specific nutrient [58] or infection contexts [59].

931

932 ***Model identifies that RsmA exerts regulatory control of Quorum Sensing and Biofilm***
933 ***forming pathways through binding and regulation of redundant TF nodes***

934 RsmA is a major global regulator of a variety of pathways that contribute to survival and
935 pathogenicity of *P. aeruginosa*. These include indirect activation of pathways critical for
936 epithelial colonization such as the Type 3 Secretion System (T3SS) [60], Type IV Pili, and
937 flagellar biosynthesis processes[1]. RsmA also has been shown to directly repress pathways
938 that contribute to chronic infection states, such as the formation of biofilms, Quorum Sensing
939 (QS) [53], and the Type 6 Secretion System (T6SS)[6]. Tight control of these processes is
940 advantageous for fitness and survival of PA as it responds to rapid changes in the environment.
941 Direct forms of post-transcriptional regulation typically have a stronger and more immediate
942 effect on gene expression. It is therefore important to effectively differentiate between indirect
943 and direct forms of regulation by RsmA to better understand the influence on dynamic signaling
944 networks. In this study, we used our tuned model to predict the likelihood of a direct interaction
945 occurring between RsmA and an mRNA leader sequence, and found predictions to be enriched
946 for transcriptional regulators and core virulence pathways (**Fig. 3a**). Here, we discuss
947 noteworthy predictions generated for genes in quorum sensing and biofilm forming pathways.
948

949

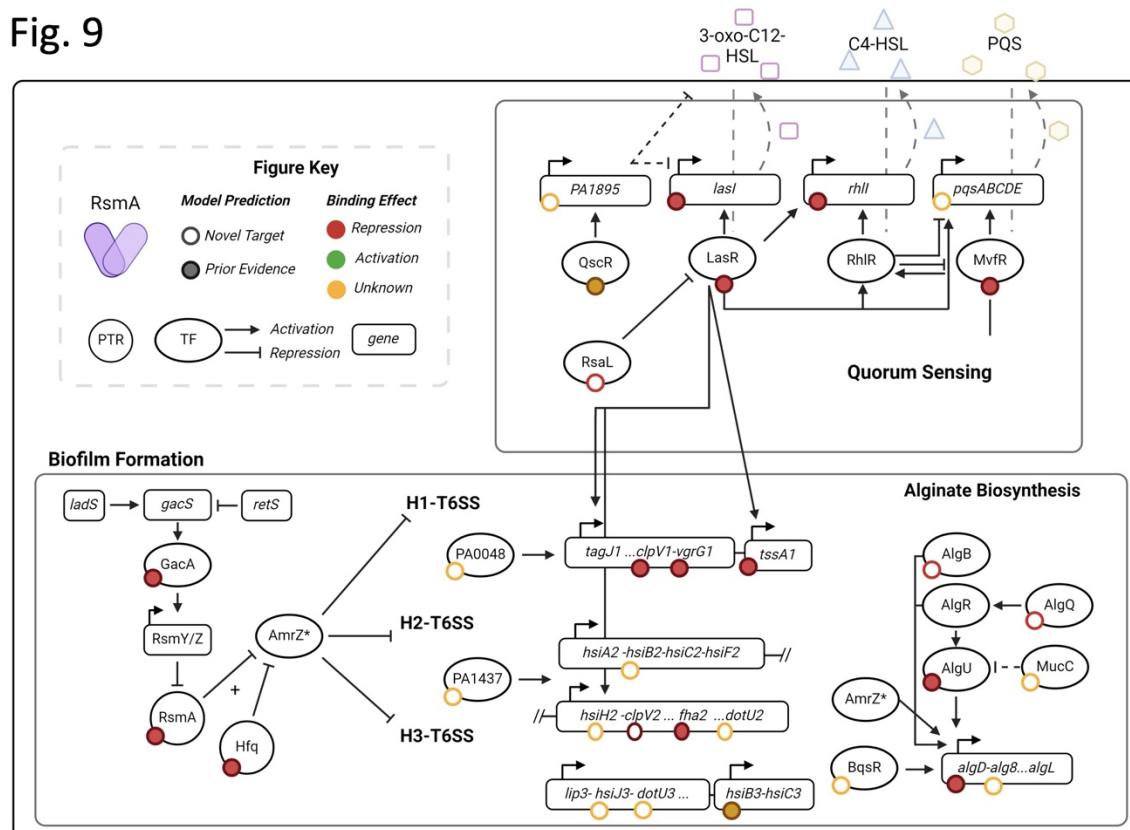
949 Quorum Sensing (QS) in PA are complex, interconnected, context-dependent signaling
950 cascades that facilitate group control and survival. Gene expression in these pathways is
951 stochastic and sensitive to environmental conditions including fluctuations in nutrients, pH, and
952 cellular density[61,62]. QS expression can also vary from cell to cell in a population, and it is
953 thought that this heterogeneity is a survival strategy that ensures proper division of labor and
954 resource conservations within biofilms[63]. It has also been observed that post-transcriptional
955 regulation by sRNAs and RBPs allows for fine tuning of signal production [64]. These factors
956 present challenges in fully characterizing how these pathways are regulated experimentally, and
957 efforts have been made to understand dynamics using computational modeling [65].

958 The activation of the hierarchical and interconnected quorum sensing pathways in PA has been
959 shown to directly influence the lifestyle switch towards sessile biofilm forming states. The
960 Gac/Rsm regulatory pathway has been identified as a key influencer of the QS cascade [53].
961 Our model identified several transcriptional regulators in the QS pathway as potential regulatory
962 targets of RsmA (**Fig. 3a,c**). This included *lasR* and *mvfR* transcriptional activators as well as
963 the *lasI* and *rhlI* homo-serine lactone synthetases. The hierarchical cascade of QS signaling is
964 initiated when transcriptional activator, LasR, is becomes active upon sensing 3-oxo-C12-HSL.

965 This event sets off a signaling cascade and activates expression of subsequent transcriptional
 966 regulators RhlR, and MvfR (**Fig. 9**; [66]). There exists an interplay between the RhlR and MvfR,
 967 wherein RhlR represses MvfR expression [67]. Interestingly, RsmA binding to *rhlR* was neither
 968 predicted nor observed (**Fig. 5a, b, 6b, Supplementary Fig. 3**) which, given the repressive
 969 effect RhlR has on *mvfR* transcription, suggests a redundant mechanism by which RsmA
 970 regulates expression of this pathway along multiple nodes. Additional QS associated regulators
 971 were also evaluated *in vitro* given results of our model, including transcriptional repressors *rsaL*
 972 and *mvaT*. Both *rsaL* and *mvaT* repress elements of the LasR/I QS cascade (**Fig. 9**). *mvaT* has
 973 been observed to repress additional transcription factors including *mvfR* [68] and represses *rsaL*
 974 in *P. fluorescens* [69].

975 Several genes predicted by our model are part of the extensive biofilm formation pathway. Our
 976 observation that our model and experimental results confirm binding and repression of LasR led
 977 us to further investigate whether RsmA also regulated additional targets of LasR activated
 978 genes involved in the T6SS. Inter-operonic binding was observed for genes in the H1, H2, and
 979 H3-T6SS (**Fig. 2c**). The GacA/S TCS has been observed to regulate key genes in the H1-T6SS
 980 and H3-TCSS, including the well-characterized target *tssA1*. In PA14, the H2-T6SS is more
 981 essential than H1[70], and is activated by the QS transcriptional regulator MvfR [71]. The
 982 prediction that RsmA regulates of several genes within this locus (**Fig. 3c**), as well as
 983 repressing *mvfR*, reflects a shift towards redundant regulatory control of that crucial region.
 984 Overall, this outlines the utility of the model in capturing inter-operonic binding events that
 985 regulate the assembly of large, multi-component structures in PA.

Fig. 9



986
 987 **Figure 9: Virulence associated pathways enriched in target predictions included key regulatory transcription**
 988 **factors.** Pathway diagrams shown here represent RsmA targets identified by our model in context of their cellular
 989 contribution to virulence. Circles represent predictions that passed our filter and are shown in solid or hollow based

990 on whether there is prior experimental evidence of direct or indirect regulation of that gene. In addition, these circles
991 are colored by their predicted regulatory effect: repression (red), activation (green), or an unknown effect (yellow).
992 Genes are shown as boxes, and key transcriptional regulators are present as ovals. Finally post transcriptional
993 regulators such as *RsmA* and *Hfq* are shown as circles. As shown in the box describing Quorum Sensing, several
994 key TF regulators are targeted by *RsmA*, as well as their cognate synthetases that contribute to the autoregulatory
995 feedback loop. Key TFs such as *LasR* are also directly involved in influencing biofilms, and here we illustrate the
996 activation effect on several pathogenicity islands that make up the T6SS in PA. * Our model did not identify *AmrZ* as
997 a potential direct target, and this is likely due to the cooperative effect that *Hfq* binding has on loading *RsmA* to this
998 gene. We also show predictions for several transcriptional regulators present in the Alginate biosynthesis pathway,
999 providing further clarity on the level of control over this pathway.

1000

1001 In our study we further evaluated the strength and regulatory nature of binding between *RsmA*
1002 and the *rsaL* and *mvaT* transcriptional regulators. *RsaL* was identified as a regulator of four
1003 major virulence-associated pathways, including QS (Fig. 3,[55]), exhibits low levels of
1004 expression across an aggregate of publicly available sequencing data [23], and is an entirely
1005 novel prediction generated by our model. In this study, we demonstrate that *RsmA* binds to this
1006 mRNA *in vitro* (Fig. 5b) at positions +67 and +76 nucleotides from the start codon (Fig. 6).
1007 Binding results in repression of translation of this protein (Fig. 8c). We also theorize that this
1008 gene evaded prior high throughput screens because of low (Fig. 4b), or context dependent
1009 expression during planktonic growth phase. The observation that *RsmA* represses translation of
1010 *rsaL* suggests a surprising mechanism of indirect activation, as *RsaL* negatively regulates *lasI*/
1011 expression by blocking *LasR* transcriptional activation [72]. Perhaps this is a mechanism by
1012 which *RsmA* can initiate the autoregulatory feedback loop for the *LasR/I* signaling cascade at
1013 intermediate points during the motile – sessile lifestyle switch.

1014

1015 The second transcript we characterized further was that encoding the *MvaT* transcriptional
1016 repressor. There exists prior evidence of *RsmA* causing changes in expression[19] or binding
1017 directly to this transcript [10], however no prior evidence exists of direct binding *in vitro* or
1018 repression *in vivo*. Interestingly, *MvaT* has also been shown to regulate the *Gac/Rsm* regulatory
1019 pathway through repression of the *RsmY* and *RsmZ* sRNA sponges [73]. *MvaT* is also a
1020 regulator of QS, and its influence the system is thought to be through repression of *mvfR* and
1021 *rsaL*. In this study, we find that *RsmA* binds *mvaT* within the coding sequence (Fig. 7) and
1022 represses expression of *mvaT* as well as its paralog *mvaU* (Fig. 8c). Although mutations at
1023 model-predicted binding sites did not result in full loss of binding, the width of predicted binding
1024 sites on this transcript (Fig. 7a) suggests that *RsmA* may bind in multiple conformations.

1025

1026 In this study, we confirm *RsmA* binds and represses translation of *lasR*, *lasI*, *rhII*, *mvfR*, *rsaL*
1027 and *mvaT* (Fig.s 5-8). We hypothesize that this mechanism of redundant regulatory control
1028 across quorum sensing and biofilm formation allows for tight regulation of energetically costly
1029 pathways that can become rapidly de-repressed upon sequestration by the *RsmY* and *RsmZ*
1030 small RNAs, and could also fine tune production of signaling molecules at intermediate steps
1031 along the planktonic to biofilm forming lifestyle switch.

1032

1033 **Conclusions**

1034 This study demonstrates the utility in using thermodynamic modeling for differentiating direct
1035 from indirect regulatory interactions between the *RsmA* protein and the entirety of the
1036 transcriptome within PA. Our computational approach yielded novel genes not yet reported to
1037 be bound or regulated by the *RsmA*, likely due to lack of expression in standard laboratory
1038 growth conditions. We also affirm the conserved nature of *Rsm/Csr* regulation across

1039 gammaproteobacteria, as known interactions in PA are recapitulated given empirically derived
1040 parameters derived from the CsrA protein in *E. coli*. The further biochemical characterization of
1041 binding to two transcriptional regulatory targets *mvaT* and *rsaL* reveal that RsmA has a far more
1042 extensive influence on quorum sensing pathways. We anticipate that the predictions presented
1043 in this dataset will aid in further characterization RsmA regulatory influence upon the complex
1044 and interconnected networks within this widespread pathogen.

1045 **Availability of Data and Materials**

1046 Scripts and associated files can be found at
1047 https://github.com/ajlukasiewicz/rsm_biophysical_model. Raw sequencing data for the RNA Co-
1048 Immunoprecipitation Sequencing experiments can be found in the Sequence Read Archive
1049 (SRA) under the Bioproject ID PRJNA1131461

1050 **Acknowledgements**

1051 We would like to thank Ryan Buchser, Kobe Grismore, Trevor Simmons, and Philip Sweet for
1052 their feedback on the manuscript. Figures were generated for this work using Biorender
1053 (BioRender.com)

1054 **Author Contributions**

1055 Designed research: A.J.L., A.N.L., and L.M.C.; performed experiments: A.J.L. L.H., E.M., C.J.G.,
1056 B.T.Z., K.H.J.; wrote scripts: A.J.L analyzed data: A.J.L., A.N.L., and L.M.C.; wrote paper: A.J.L.,
1057 M.J.W., T.L.Y., and L.M.C.

1058 **References**

1. Brencic A, Lory S. Determination of the regulon and identification of novel mRNA targets of *Pseudomonas aeruginosa* RsmA. *Mol Microbiol*. 2009;72:612–32.
2. Irie Y, Starkey M, Edwards AN, Wozniak DJ, Romeo T, Parsek MR. *Pseudomonas aeruginosa* biofilm matrix polysaccharide Psl is regulated transcriptionally by RpoS and post-transcriptionally by RsmA. *Mol Microbiol*. 2010;78:158–72.
3. Liu MY, Yang H, Romeo T. The Product of the Pleiotropic *Escherichia coli* Gene *csrA* Modulates Glycogen Biosynthesis via Effects on mRNA Stability [Internet]. *J Bacteriol*. 1995. Available from: <https://journals.asm.org/journal/jb>
4. Mercante J, Edwards AN, Dubey AK, Babitzke P, Romeo T. Molecular Geometry of CsrA (RsmA) Binding to RNA and Its Implications for Regulated Expression. *J Mol Biol* [Internet]. 2009;392:511–28. Available from: <http://dx.doi.org/10.1016/j.jmb.2009.07.034>
5. Ren B, Shen H, Lu ZJ, Liu H, Xu Y. The *phzA2-G2* transcript exhibits direct RsmA-mediated activation in *Pseudomonas aeruginosa* M18. *PLoS One*. 2014;9.
6. Goodman AL, Kulasekara B, Rietsch A, Boyd D, Smith RS, Lory S. A Signaling Network Reciprocally Regulates Genes Associated with Acute Infection and Chronic Persistence in *Pseudomonas aeruginosa* [Internet]. 2004. Available from: <https://doi.org/10.1016/j.devcel.2004.08.020>

1082
1083 7. Marden JN, Diaz MR, Walton WG, Gode CJ, Betts L, Urbanowski ML, et al. An unusual CsrA
1084 family member operates in series with RsmA to amplify posttranscriptional responses in
1085 *Pseudomonas aeruginosa*. *Proc Natl Acad Sci U S A*. 2013;110:15055–60.
1086
1087 8. Morris ER, Hall G, Li C, Heeb S, Kulkarni R V., Lovelock L, et al. Structural rearrangement in
1088 an RsmA/CsrA Ortholog of *pseudomonas aeruginosa* creates a dimeric RNA-binding protein,
1089 RsmN. *Structure*. 2013;21:1659–71.
1090
1091 9. Romero M, Silistre H, Lovelock L, Wright VJ, Chan KG, Hong KW, et al. Genome-wide
1092 mapping of the RNA targets of the *Pseudomonas aeruginosa* riboregulatory protein RsmN.
1093 *Nucleic Acids Res*. 2018;46:6823–40.
1094
1095 10. Chihara K, Barquist L, Takasugi K, Noda N, Tsuneda S. Global identification of RsmA/N
1096 binding sites in *Pseudomonas aeruginosa* by in vivo UV CLIP-seq. *RNA Biol* [Internet].
1097 2021;18:2401–16. Available from: <https://doi.org/10.1080/15476286.2021.1917184>
1098
1099 11. Brencic A, McFarland KA, McManus HR, Castang S, Mogno I, Dove SL, et al. The
1100 GacS/GacA signal transduction system of *Pseudomonas aeruginosa* acts exclusively through its
1101 control over the transcription of the RsmY and RsmZ regulatory small RNAs. *Mol Microbiol*.
1102 2009;73:434–45.
1103
1104 12. Irie Y, La Mensa A, Murina V, Hauryliuk V, Tenson T, Shingler V. Hfq-Assisted RsmA
1105 Regulation Is Central to *Pseudomonas aeruginosa* Biofilm Polysaccharide PEL Expression.
1106 *Front Microbiol*. 2020;11.
1107
1108 13. Mulcahy H, O'Callaghan J, O'Grady EP, Maciá MD, Borrell N, Gómez C, et al.
1109 *Pseudomonas aeruginosa* RsmA plays an important role during murine infection by influencing
1110 colonization, virulence, persistence, and pulmonary inflammation. *Infect Immun*. 2008;76:632–8.
1111
1112 14. Sowa SW, Gelderman G, Leistra AN, Buvanendiran A, Lipp S, Pitakpong A, et al. Integrative
1113 FourD omics approach profiles the target network of the carbon storage regulatory system.
1114 *Nucleic Acids Res*. 2017;45:1673–86.
1115
1116 15. Chourashi R, Oglesby AG. Iron starvation increases the production of the *Pseudomonas*
1117 *aeruginosa* RsmY and RsmZ sRNAs in static conditions. Bondy-Denomy J, editor. *J Bacteriol*
1118 [Internet]. 2024; Available from: <https://journals.asm.org/doi/10.1128/jb.00278-23>
1119
1120 16. Potts AH, Guo Y, Ahmer BMM, Romeo T. Role of CsrA in stress responses and metabolism
1121 important for *Salmonella* virulence revealed by integrated transcriptomics. *PLoS One*. 2019;14.
1122
1123 17. Valentini M, Gonzalez D, Mavridou DA, Filloux A. Lifestyle transitions and adaptive
1124 pathogenesis of *Pseudomonas aeruginosa*. *Curr Opin Microbiol* [Internet]. 2018;41:15–20.
1125 Available from: <http://dx.doi.org/10.1016/j.mib.2017.11.006>
1126
1127 18. Burrowes E, Baysse C, Adams C, O'Gara F. Influence of the regulatory protein RsmA on
1128 cellular functions in *Pseudomonas aeruginosa* PAO1, as revealed by transcriptome analysis.
1129 *Microbiology (N Y)*. 2006;152:405–18.
1130

1131 19. Gebhardt MJ, Kambara TK, Ramsey KM, Dove SL. Widespread targeting of nascent
1132 transcripts by RsmA in *Pseudomonas aeruginosa*. *Proc Natl Acad Sci U S A*. 2020;117:10520–
1133 9.

1134

1135 20. Kulkarni PR, Jia T, Kuehne SA, Kerkering TM, Morris ER, Searle MS, et al. A sequence-
1136 based approach for prediction of CsrA/RsmA targets in bacteria with experimental validation in
1137 *Pseudomonas aeruginosa*. *Nucleic Acids Res*. 2014;42:6811–25.

1138

1139 21. Corley, Jodi M., Intile, Peter., Yahr, Timothy L. Direct Inhibition of RetS Synthesis by RsmA
1140 Contributes to Homeostasis of the *Pseudomonas aeruginosa* Gac/Rsm signaling system. *J*
1141 *Bacteriol*. 2022;204.

1142

1143 22. Baker CS, Eöry LA, Yakhnin H, Mercante J, Romeo T, Babitzke P. CsrA inhibits translation
1144 initiation of *Escherichia coli* hfq by binding to a single site overlapping the Shine-Dalgarno
1145 sequence. *J Bacteriol*. 2007;189:5472–81.

1146

1147 23. Rajput A, Tsunemoto H, Sastry A V., Szubin R, Rychel K, Sugie J, et al. Machine learning
1148 from *Pseudomonas aeruginosa* transcriptomes identifies independently modulated sets of
1149 genes associated with known transcriptional regulators. *Nucleic Acids Res*. 2022;50:3658–72.

1150

1151 24. Lebreton F, Snesrud E, Hall L, Mills E, Galac M, Stam J, et al. A panel of diverse
1152 *Pseudomonas aeruginosa* clinical isolates for research and development. *JAC Antimicrob*
1153 *Resist*. 2021;3.

1154

1155 25. Trouillon J, Imbert L, Villard AM, Vernet T, Attrée I, Elsen S. Determination of the two-
1156 component systems regulatory network reveals core and accessory regulations across
1157 *Pseudomonas aeruginosa* lineages. *Nucleic Acids Res*. 2021;49:11476–90.

1158

1159 26. Sadée C, Hagler LD, Becker WR, Jarmoskaite I, Vaidyanathan PP, Denny SK, et al. A
1160 comprehensive thermodynamic model for RNA binding by the *Saccharomyces cerevisiae*
1161 Pumilio protein PUF4. *Nat Commun*. 2022;13.

1162

1163 27. Salis HM. The ribosome binding site calculator. *Methods Enzymol*. 2011;498:19–42.

1164

1165 28. Espah Borjeni A, Channarasappa AS, Salis HM. Translation rate is controlled by coupled
1166 trade-offs between site accessibility, selective RNA unfolding and sliding at upstream standby
1167 sites. *Nucleic Acids Res*. 2014;42:2646–59.

1168

1169 29. Salis HM, Mirsky EA, Voigt CA. Automated design of synthetic ribosome binding sites to
1170 control protein expression. *Nat Biotechnol*. 2009;27:946–50.

1171

1172 30. Leistra AN, Gelderman G, Sowa SW, Moon-Walker A, Salis HM, Contreras LM. A Canonical
1173 Biophysical Model of the CsrA Global Regulator Suggests Flexible Regulator-Target
1174 Interactions. *Sci Rep [Internet]*. 2018;8:9892. Available from: <https://doi.org/10.1038/s41598-018-27474-2>

1175

1176

1177 31. Dubey AK, Baker CS, Romeo T, Babitzke P. RNA sequence and secondary structure
1178 participate in high-affinity CsrA-RNA interaction. *Rna*. 2005;11:1579–87.

1179

1180 32. Sobrero PM, Valverde C. Comparative Genomics and Evolutionary Analysis of RNA-Binding
1181 Proteins of the CsrA Family in the Genus *Pseudomonas*. *Front Mol Biosci*. 2020;7:1–22.

1182
1183 33. Vakulskas CA, Potts AH, Babitzke P, Ahmer BMM, Romeo T. Regulation of Bacterial
1184 Virulence by Csr (Rsm) Systems. *Microbiology and Molecular Biology Reviews*. 2015;79:193–
1185 224.
1186
1187 34. Schubert M, Lapouge K, Duss O, Oberstrass FC, Jelesarov I, Haas D, et al. Molecular basis
1188 of messenger RNA recognition by the specific bacterial repressing clamp RsmA/CsrA. *Nat
1189 Struct Mol Biol*. 2007;14:807–13.
1190
1191 35. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, et al. BLAST+:
1192 Architecture and applications. *BMC Bioinformatics*. 2009;10.
1193
1194 36. Schulmeyer KH, Diaz MR, Bair TB, Sanders W, Gode CJ, Laederach A, et al. Primary and
1195 secondary sequence structure requirements for recognition and discrimination of target RNAs
1196 by *Pseudomonas aeruginosa* RsmA and RsmF. *J Bacteriol*. 2016;198:2458–69.
1197
1198 37. Kappel K, Das R. Sampling Native-like Structures of RNA-Protein Complexes through
1199 Rosetta Folding and Docking. *Structure* [Internet]. 2019;27:140–151.e5. Available from:
1200 <https://doi.org/10.1016/j.str.2018.10.001>
1201
1202 38. Roots C, Lukasiewicz A, Barrick J. OSTIR: open source translation initiation rate prediction.
1203 *J Open Source Softw*. 2021;6:3362.
1204
1205 39. Duss O, Michel E, Yulikov M, Schubert M, Jeschke G, Allain FHT. Structural basis of the
1206 non-coding RNA RsmZ acting as a protein sponge. *Nature*. 2014;509:588–92.
1207
1208 40. Lorenz R, Bernhart SH, Honer zu Siederdissen C, Tafer H, Flamm C, Stadler PF, et al.
1209 ViennaRNA Package 2.0. *Algorithms for Modelcular Biology*. 2011;6:1–14.
1210
1211 41. Wurtzel O, Yoder-Himes DR, Han K, Dandekar AA, Edelheit S, Greenberg EP, et al. The
1212 Single-Nucleotide Resolution Transcriptome of *Pseudomonas aeruginosa* Grown in Body
1213 Temperature. *PLoS Pathog*. 2012;8.
1214
1215 42. Baker CS, Morozov I, Suzuki K, Romeo T, Babitzke P. CsrA regulates glycogen
1216 biosynthesis by preventing translation of *glgC* in *Escherichia coli*. *Mol Microbiol*. 2002;44:1599–
1217 610.
1218
1219 43. Pannuri A, Yakhnin H, Vakulskas CA, Edwards AN, Babitzke P, Romeo T. Translational
1220 repression of NhaR, a novel pathway for multi-tier regulation of biofilm circuitry by CsrA. *J
1221 Bacteriol*. 2012;194:79–89.
1222
1223 44. Dubey AK, Baker CS, Suzuki K, Jones AD, Pandit P, Romeo T, et al. CsrA regulates
1224 translation of the *Escherichia coli* carbon starvation gene, *cstA*, by blocking ribosome access to
1225 the *cstA* transcript. *J Bacteriol*. 2003;185:4450–60.
1226
1227 45. Wang X, Dubey AK, Suzuki K, Baker CS, Babitzke P, Romeo T. CsrA post-transcriptionally
1228 represses *pgaABCD*, responsible for synthesis of a biofilm polysaccharide adhesin of
1229 *Escherichia coli*. *Mol Microbiol*. 2005;56:1648–63.
1230
1231 46. Yakhnin H, Aichele R, Ades SE, Romeo T, Babitzke P. Circuitry linking the global Csr- and σ
1232 E -dependent cell envelope stress response systems. *J Bacteriol*. 2017;199.

1233
1234 47. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. *Nat Methods*.
1235 2012;9:357–9.
1236
1237 48. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The Sequence
1238 Alignment/Map format and SAMtools. *Bioinformatics*. 2009;25:2078–9.
1239
1240 49. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-
1241 seq data with DESeq2. *Genome Biol*. 2014;15:1–21.
1242
1243 50. Ryder SP, Recht MI, Williamson JR. Quantitative analysis of protein-RNA interactions by gel
1244 mobility shift. *Methods in Molecular Biology*. 2008;488:99–115.
1245
1246 51. Lapouge K, Sineva E, Lindell M, Starke K, Baker CS, Babitzke P, et al. Mechanism of hcnA
1247 mRNA recognition in the Gac/Rsm signal transduction pathway of *Pseudomonas fluorescens*.
1248 *Mol Microbiol*. 2007;66:341–56.
1249
1250 52. Rojano-Nisimura AM, Grismore KB, Ruzek JS, Avila JL, Contreras LM. The Post-
1251 Transcriptional Regulatory Protein CsrA Amplifies Its Targetome through Direct Interactions with
1252 Stress-Response Regulatory Hubs: The EvgA and AcnA Cases. *Microorganisms* [Internet].
1253 2024;12:636. Available from: <https://www.mdpi.com/2076-2607/12/4/636>
1254
1255 53. Pessi G, Williams F, Hindle Z, Heurlier K, Holden MTG, Cámera M, et al. The Global
1256 Posttranscriptional Regulator RsmA Modulates Production of Virulence Determinants and *N*-
1257 Acylhomoserine Lactones in *Pseudomonas aeruginosa*. *J Bacteriol* [Internet]. 2001;183:6676–
1258 83. Available from: <https://journals.asm.org/doi/10.1128/JB.183.22.6676-6683.2001>
1259
1260 54. Parkins MD, Ceri H, Storey DG. *Pseudomonas aeruginosa* GacA, a factor in multihost
1261 virulence, is also essential for biofilm formation. *Mol Microbiol*. 2001;40:1215–26.
1262
1263 55. Wang T, Sun W, Fan L, Hua C, Wu N, Fan S, et al. An atlas of the binding specificities of
1264 transcription factors in *pseudomonas aeruginosa* directs prediction of novel regulators in
1265 virulence. *Elife*. 2021;10:1–25.
1266
1267 56. Chua SL, Liu Y, Yam JKH, Chen Y, Vejborg RM, Tan BGC, et al. Dispersed cells represent
1268 a distinct stage in the transition from bacterial biofilm to planktonic lifestyles. *Nat Commun*.
1269 2014;5.
1270
1271 57. Potts AH, Vakulskas CA, Pannuri A, Yakhnin H, Babitzke P, Romeo T. Global role of the
1272 bacterial post-transcriptional transcriptomics. *Nat Commun* [Internet]. Available from:
1273 <http://dx.doi.org/10.1038/s41467-017-01613-1>
1274
1275 58. Mihailovic MK, Ekdahl AM, Chen A, Leistra AN, Li B, González Martínez J, et al. Uncovering
1276 Transcriptional Regulators and Targets of sRNAs Using an Integrative Data-Mining Approach:
1277 H-Ns-Regulated RseX as a Case Study. *Front Cell Infect Microbiol*. 2021;11.
1278
1279 59. Cao P, Fleming D, Moustafa DA, Dolan SK, Szymanik KH, Redman WK, et al. A
1280 *Pseudomonas aeruginosa* small RNA regulates chronic and acute infection. *Nature*.
1281 2023;618:358–64.
1282

1283 60. Stevens AM. Mechanistic Studies of the Roles of the Transcriptional Activator ExsA and
1284 Anti-activator Protein ExsD in the Regulation of the Type Three Secretion System in
1285 *Pseudomonas aeruginosa* Manisha Shrestha. 2018;
1286
1287 61. Schuster M, Greenberg EP. Early activation of quorum sensing in *Pseudomonas aeruginosa*
1288 reveals the architecture of a complex regulon. *BMC Genomics*. 2007;8.
1289
1290 62. Papenfort K, Bassler BL. Quorum sensing signal-response systems in Gram-negative
1291 bacteria. *Nat Rev Microbiol*. Nature Publishing Group; 2016. p. 576–88.
1292
1293 63. Bettenworth V, Steinfeld B, Duin H, Petersen K, Streit WR, Bischofs I, et al. Phenotypic
1294 Heterogeneity in Bacterial Quorum Sensing Systems. *J Mol Biol*. Academic Press; 2019. p.
1295 4530–46.
1296
1297 64. Goryachev AB. Design principles of the bacterial quorum sensing gene networks. *Inc*
1298 *WIREs Syst Biol Med* [Internet]. 2009;1:45–60. Available from: www.wiley.com/wires/sysbio
1299
1300 65. Lee J, Zhang L. The hierarchy quorum sensing network in *Pseudomonas aeruginosa*.
1301 *Protein Cell*. 2015;6:26–41.
1302
1303 66. Cao H, Krishnan G, Goumnerov B, Tsongalis J, Tompkins R, Rahme LG. A quorum
1304 sensing-associated virulence gene of *Pseudomonas aeruginosa* encodes a LysR-like
1305 transcription regulator with a unique self-regulatory mechanism [Internet]. Available from:
1306 www.pnas.org
1307
1308 67. Diggle SP, Winzer K, Lazdunski A, Williams P, Cámarra M. Advancing the quorum in
1309 *Pseudomonas aeruginosa*: MvaT and the regulation of N-acylhomoserine lactone production
1310 and virulence gene expression. *J Bacteriol*. 2002;184:2576–86.
1311
1312 68. Yu X, Zhang B, Zhang LQ, Wu X. The Regulatory Network Involving PcoR, RsaL, and MvaT
1313 Coordinates the Quorum-Sensing System in *Pseudomonas fluorescens* 2P24. *Appl Environ*
1314 *Microbiol*. 2022;88.
1315
1316 69. Allsopp LP, Wood TE, Howard SA, Maggiorelli F, Nolan LM, Wettstadt S, et al. RsmA and
1317 AmrZ orchestrate the assembly of all three type VI secretion systems in *Pseudomonas*
1318 *aeruginosa*. *Proc Natl Acad Sci U S A*. 2017;114:7707–12.
1319
1320 70. Maura D, Hazan R, Kitao T, Ballok AE, Rahme LG. Evidence for direct control of virulence
1321 and defense gene circuits by the *pseudomonas aeruginosa* quorum sensing regulator, MvfR.
1322 *Sci Rep*. 2016;6.
1323
1324 71. Rampioni G, Schuster M, Greenberg EP, Bertani I, Grasso M, Venturi V, et al. RsaL
1325 provides quorum sensing homeostasis and functions as a global regulator of gene expression in
1326 *Pseudomonas aeruginosa*. *Mol Microbiol*. 2007;66:1557–65.
1327
1328 72. McMackin EAW, Marsden AE, Yahr TL. H-NS Family Members MvaT and MvaU Regulate
1329 the *Pseudomonas aeruginosa* Type III Secretion System. 2019; Available from:
1330 <https://doi.org/10.1128/JB>
1331
1332
1333

1334 **Description of Additional Files**

- 1335 • Supplementary Table 1: Energy predictions used to generate PWM
- 1336 • Supplementary Table 2: Sequences Modeled from the PA14 Transcriptome
- 1337 • Supplementary Table 3: Primers, Plasmids, and Strains used in this work
- 1338 • Supplementary Table 4: All binding site and translation rate predictions made
- 1339 • Supplementary Table 5: RsmA targets determined by prior HTS approaches
- 1340 • Supplementary Table 6: DEseq2 analysis of RNA Co-immunoprecipitation Seq in PA14
- 1341 • Supplementary Table 7: DEseq2 summary of proteomics dataset
- 1342 • Supplementary Figures: PDF containing supplemental figures 1-7
- 1343 • Supplemental Binding Packet: HTML file containing visualizations of binding sites,
- 1344 assigned KEGG pathways, mean predicted affinities, and predicted translational effect
- 1345 for all 1043 targets that passed filtering

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360