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Abstract: The COVID-19 pandemic caused by the severe acute respiratory syndrome
coronavirus-2 (SARS-CoV-2) resulted in millions of deaths globally. Adults with
immunosuppression (e.g., solid organ transplant recipients) and those undergoing active cancer
treatments experience worse infections and more severe COVID-19. It is difficult to conduct
clinical studies in these populations, resulting in a restricted amount of data that can be used to
relate mechanisms of immune dysfunction to COVID-19 outcomes in these vulnerable groups.
To study immune dynamics after infection with SARS-CoV-2 and to investigate drivers of
COVID-19 severity in individuals with cancer and immunosuppression, we adapted our
mathematical model of the immune response during COVID-19 and generated virtual patient
cohorts of cancer and immunosuppressed patients. The cohorts of plausible patients
recapitulated available longitudinal clinical data collected from patients in Montréal, Canada
area hospitals. Our model predicted that both cancer and immunosuppressed virtual patients
with severe COVID-19 had decreased CD8+ T cells, elevated interleukin-6 concentrations, and
delayed type | interferon peaks compared to those with mild COVID-19 outcomes.
Additionally, our results suggest that cancer patients experience higher viral loads (however,
with no direct relation with severity), likely because of decreased initial neutrophil counts (i.e.,
neutropenia), a frequent toxic side effect of anti-cancer therapy. Furthermore, severe cancer and
immunosuppressed virtual patients suffered a high degree of tissue damage associated with
elevated neutrophils. Lastly, parameter values associated with monocyte recruitment by
infected cells were found to be elevated in severe cancer and immunosuppressed patients with
respect to the COVID-19 reference group. Together, our study highlights that dysfunction in
type | interferon and CD8+ T cells are key drivers of immune dysregulation in COVID-19,
particularly in cancer patients and immunosuppressed individuals.
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INTRODUCTION

The COVID-19 pandemic caused by the severe acute respiratory syndrome coronavirus-2
(SARS-CoV-2) caused more than 7 million deaths globally as of July 2024%. COVID-19 results
in heterogeneous immune responses and outcomes, where some individuals experience no or
very few symptoms while others become hyperinflamed and may need supportive oxygen or
succumb to the infection. The risk of severe complications to SARS-CoV-2 infection is
increased for individuals with weakened or suppressed immune responses?. Thus, it is critically
important to study immuno-infection dynamics, especially in vulnerable groups (e.g.,
immunocompromised individuals®® such as patients receiving immunosuppressants after organ
transplantation, cancer patients®2, older adults®*%) whose immune systems may not adequately
protect against the virus and who may have imperfect vaccine-induced immune responses?,

Cancer patients tend to have weaker responses to viral infections’, mostly due to impaired
responses of type | interferon (IFN) that are typical of cancers? and diverse immune cell
dysfunctions that are frequent adverse effects of oncologic treatments. COVID-19 mortality
risk in patients with hematological malignancies is around 34%, although a study by Vijenthira
et al. found the most relevant factor impacting mortality to be age!®. COVID-19-positive
leukemia patients have an increased fatality rate compared to the patients with other cancer
types'4, likely due to the susceptibility of blood cancer patients to experience lymphocyte
depletion. Furthermore, anti-cancer treatments like cytotoxic chemotherapy can result in
decreased T and B lymphocytes'®8, leaving patients undergoing treatment vulnerable to severe
infections. It has also been observed that patients receiving anti-cancer therapy tend to have low
platelet and/or decreased neutrophil counts'®. Although some studies have reported neutropenia
as a risk factor in COVID-19-positive hematological malignancy patients®, others found no
significant connection'’. However, cancer patients often have hyperactivated IL-6>7, which
may be another factor affecting COVID-19 severity, as multiple studies have shown that
elevated IL-6 concentrations are associated with poor COVID-19 outcomes*®-2°,

Immunosuppressed patients, such as solid organ transplant recipients, are treated with anti-T or
anti-B cell therapies to prevent immunological rejection of transplantable tissue. This results in
decreased lymphocytes®. A recent study showed that IL-6 concentrations in COVID-19
immunosuppressed patients without autoimmune disease were significantly increased
compared to COVID-19 patients without immunosuppression®. Together, this lack of
lymphocytes and elevated concentrations of inflammatory cytokines (i.e., 1L-6) results in a
weakened immune response against acute infections including ones caused by respiratory
viruses, resulting in severe infections?l. 1L-6 dysregulation may result in hyperinflammation
that is characteristic of severe COVID-19, particularly in patients requiring intensive care??.

Once it was identified that extreme inflammatory responses could develop from SARS-CoV-2
infections, potential causes and treatment strategies were intensively studied??-24. Although the
direct causes of hyperinflammation have yet to be established, several hypotheses exist??. One
links the condition with the viral replication leading to pyroptosis, a highly inflammatory form
of apoptosis, which then causes a pro-inflammatory cytokine reaction that affects macrophages
and lymphocytes?? and causes excessive IL-6 production?. Others include uncontrolled
adaptive and neutralizing antibody responses, proposing that antibody binding to spike protein
causes hyperinflammation??. Collecting longitudinal data in humans, particularly vulnerable
populations, can be difficult and thus limited in scope. Further, these studies may not be able to
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uncover kinetic differences and causes for dysregulated immune responses, which are difficult
to establish in humans, particularly given that early infection dynamics are generally not
captured in clinical data. Mechanistic mathematical modelling helps to overcome these
complexities because it allows for the investigation of immune response mechanisms, aids the
prediction of clinical outcomes or vaccination efficacy?62’, and facilitates uncovering potential
drivers of severity with limited data sources?®.

Here, we focused on investigating and predicting COVID-19 immune dynamics in vulnerable
populations, including those undergoing cancer treatments or who are immunosuppressed
without autoimmune disease (e.g., solid organ transplant recipients on immunosuppressive
agents). For this, we extended our approach described in Jenner et al.?, where we generated a
cohort of COVID-19-positive virtual patients based on a mechanistic model of the immune
response to SARS-CoV-2. The model predicted that patients with severe outcomes are more
likely to experience delayed IFN peaks and CD8+ T cell depletion. Because our previous work
did not take existing comorbidities into account, in this study we used the same model to
generate three virtual patient cohorts: 1) a cohort of COVID-19+ patients with cancer, 2) a
cohort of COVID-19+ immunosuppressed patients, and 3) a reference group of COVID-19+
patients without cancer or immunosuppression. The virtual patient cohorts were based on data
collected from Montréal, Canada area hospitals?®3! and data available in the literature. Our
simulations suggested that both severe cancer and immunosuppressed patients have decreased
CDB8+ T cells, elevated neutrophils and IL-6 concentrations, and delayed IFN peaks. As in our
previous work, we found these alterations to be driven by monocyte to macrophage
differentiation and monocyte recruitment, consistent with experimental and clinical studies®?-
3 suggesting these are host-intrinsic rather than driven by comorbidities. Overall, our findings
suggest suppressed CD8+ T cells, overproduction of IL-6, and delayed IFN peaks are correlated
with disease severity in cancer and immunosuppressed patients with COVID-19, similar to
previous results in COVID-19 severe virtual patients described in Jenner et al.?® However, we
determined that the most severe outcomes in cancer and immunosuppressed virtual patients
were characterized by more marked increases in elevated neutrophils during infection, higher
rates of monocyte to macrophage differentiation by IL-6, and increased monocyte recruitment
by infected cells. Thus, our study further highlights that immune dysfunction is heightened in
immunocompromised patients, with potential consequences on COVID-19 severity, and
identifies biomarkers driving this dysregulation.

METHODS
Mathematical model of the immune response to SARS-CoV-2

We used the differential equation-based mathematical model of Jenner et al.?® that mimics the
immune response to SARS-CoV-2 to understand and predict immune dynamics during COVID-
19 (Figure 1A). The model describes the dynamics of immune cells (neutrophils, monocytes,
CD8+ T cells, and tissue-resident and inflammatory macrophages) together with cytokine
production and binding kinetics, including IFN-a,B, IL-6, granulocyte-macrophage colony-
stimulating factor (GM-CSF), and granulocyte colony-stimulating factor (G-CSF).

In brief, infection begins with virus infecting susceptible lung epithelial cells (S), resulting in
the production of virus (V) and infected cell (1) death. Infected cells can secrete IFN-a.,3 and,
depending on the IFN concentration, neighbouring cells may also become resistant (R) to viral
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entry and replication. Infected cells are then removed by cytotoxic CD8+ T cells (T),
inflammatory macrophages (Mg;), and neutrophils (N), with neutrophils causing damage to all
lung epithelial cells through their release of granules. Monocytes differentiate into
inflammatory macrophages based on IL-6 and GM-CSF concentrations, and tissue-resident
macrophages (Myg) can transition into inflammatory subsets through contact with either dead
or infected cells. Dead cells (D) are eliminated by inflammatory macrophages. Neutrophils are
recruited by IL-6 and G-CSF, whereas monocytes are attracted by infected cells and GM-CSF.
Recruitment of CD8+ T cells is driven by infected cells and IFN and suppressed by IL-6
concentrations (it should be noted that we considered IL-6 as a proxy for the multitude of
cytokines that inhibit T cell recruitment). A detailed description of the model equations and
parametrization is provided in the Supplementary Information and Jenner et al.?®. All model
simulations were performed in MATLAB® using ddesd.
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Figure 1. Mathematical model of the systemic immune response to SARS-CoV-2 and virtual
patient generation algorithm. A) Mathematical model describing the immune response during
COVID-19. Reproduced from Jenner et al.?® under CC BY. Virus infects susceptible cells and creates
infected or resistant cells based on IFN concentrations. Infected cells die and produce more virus or are
eliminated by inflammatory macrophages, neutrophils (recruited by IL-6 and G-CSF), or CD8+ T cells
whose population expands based on IFN concentrations and is inhibited by IL-6. Monocytes are
recruited by infected cells and differentiate into inflammatory macrophages, which is regulated by GM-
CSF and IL-6 concentrations. Some tissue-resident macrophages convert to become inflammatory after
encountering infected or dead cells. See Supplementary Information for full model equations and
parameter values. B) Schematic description of the virtual patient cohort generation algorithm adapted
from Jenner et al.?® 1) Parameters associated with macrophage, IL-6, and IFN production are sampled
from normal distributions extracted from clinical data (Figure 2). 2) The model is simulated and
simulated annealing is performed to minimize the distance between model predictions (outputs) and
physiological ranges. 3) Virtual patients whose dynamics fit into the pre-defined ranges are assigned to
the cohort of plausible patients. 4) The population of plausible virtual patients is subsampled based on
data specific to each studied group (e.g., COVID-19 reference, cancer, immunosuppressed).

Generating virtual patient cohorts

To generate the three virtual patient cohorts in our study, we followed the algorithm described
in Jenner et al.?® (Figure 1B) to ensure that each plausible patient's immunological trajectory
corresponds to available clinical data®. The generation process began from the most sensitive
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parameters (p) revealed in the sensitivity analysis in Jenner et al.?8, including parameters
associated with IFN, macrophage and IL-6 production. These were first sampled from normal
distributions obtained from available clinical data*°, with mean values and standard deviations
taken from measurements on specific days (see Figure 2). For each virtual patient, the model
was simulated and the cost function?,

mpin](p) = mpin Izimax << M;(p) — L ;ui>2 — (ui - L ;ui>2 , 0> l, (1)

was minimized using simulated annealing. Here, M;(p) is the model output, and [; and u; are
the lower and upper bounds of each immune population, respectively. We used simulated
annealing via the simulannealbnd function in Matlab® for this optimization. If predicted
dynamics fell within the established data ranges, a virtual patient was accepted as a plausible
patient and placed into their respective cohort.

Using this approach, we created three cohorts representative of hospitalized and outpatients: 1)
COVID-19 cancer, 2) COVID-19 immunosuppressed, and 3) COVID-19 reference (which
included patients without cancer or immunosuppression). We then subsampled within each
cohort to more tightly match available clinical®®3! and reference data*®> (Figure 2; data
descriptions can be found in the Supplementary Information). Because COVID-19-positive
cancer and immunosuppressed patients tend to have fewer lymphocytes®® and increased IL-6*°
concentrations, we subsampled virtual patients according to the data from each of these patient
groups. For the cancer virtual patient cohort (VPC), we used data from Cai et al.®> and clinical
data from Montréal hospitals?®-3! for CD8+ T cells and IL-6 concentrations (Figure 2).

To replicate the neutropenia experienced by patients undergoing chemotherapy?’, we decreased
the initial concentrations of neutrophils for virtual patients in the cancer cohort. For this, we
digitized the data from neutropenic patients during SARS-CoV-2 infection described in Lee et
al.®" using PlotDigitizer®®. To generate immunosuppressed virtual patients, we used IL-6
concentrations from Monreal et al.*. Given their overall higher IL-6 concentrations, these
virtual patients also experienced lower CD8+ T cell counts compared to those in the COVID-
19 reference group, consistent with our model findings?. We assumed that these decreased
values were representative of the CD8+ T cell dynamics in hospitalized patients, as CD8+ T
cells are lower in immunosuppressed patients due to ongoing treatments. In all, this process
resulted in the creation of 280 patients in each of the three cohorts.

Evaluating disease severity across cohorts using an updated inflammation marker

To compare patient responses across cohorts, we modified the equation for the inflammation
marker (W) introduced by Jenner et al.?® to evaluate the severity of COVID-19+ virtual
patients. This inflammation marker measures each virtual patient’s maximum IL-6 and
neutrophil concentrations, and maximal lung tissue damage (i.e., concentration of D, see
Supplementary Information) according to the mean in the virtual patient cohort. These patient
attributes were chosen as they are known to be strongly associated with the final disease
outcomes (i.e., disease severity). By comparing patient immune populations to the
inflammation marker, our prior work found that IFN peaks were correlated with severity, and
that the IFN peak delay defined a severity threshold for W that separated mild from severe
cases. Thus, it was concluded that patients with delayed IFN peaks (i.e., those with
inflammation marker values above 3) experienced worse (more severe) outcomes.
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In our previous work, patient severity was classified based on W values, but it was done within
a single cohort. However, to compare patient responses between cohorts, adjustments to the
inflammation marker equation introduced in Jenner et al.?® were necessary, given that the
normalization (denominator terms) in the original equation are specific to the cohort being
considered and that these values will vary across cohorts. Thus, we opted here to use the
COVID-19 reference cohort as a baseline to measure severity across groups. Accordingly, we
modified the denominator values to reflect mean biomarker values from the reference group:

max (LJU (t)) max (N J (t))
- +
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where the index j corresponds to the j-th patient, L., N/, S/ + R/ and S,,,, represent the
concentrations of unbound IL-6, neutrophils, susceptible plus resistant epithelial cells
(undamaged tissue), respectively, and j™¢/ is the jth VP in the COVID-19 reference cohort with
Ve =280 being the total number of patients in the cohort. The change from our previous work
allows for inter-cohort comparisons of patient responses, which is crucial as some patients in
the vulnerable population virtual cohorts had lower Wi values compared to COVID-19
reference patients while at the same time exhibiting markers of increased disease severity (e.g.,
higher IL-6, lower T cells, etc.) with respect to their own cohort but not necessarily to the others.

Sensitivity analysis

Given the neutropenic status of the cancer virtual patients in our study, in addition to the
sensitivity analysis of full model parameters previously performed in Jenner et al.?8, we ran a
local sensitivity analysis to see how changes in the initial concentration of neutrophils (N,) may
impact other populations and, thus, severity. For this, we varied the initial concentration of
neutrophils from 60% to 140% of its baseline value and checked the differences in the output
values of certain immune populations (maximal viral concentration, minimum tissue
concentration, maximum IFN exposure and maximum concentration of dead cells,
inflammatory macrophages, CD8+ effector T cells, IL-6, IFN) compared to their baseline
output values. Parameter changes that caused changes greater than 40% were considered
significant.

Statistical analysis

We used the Kolmogorov-Smirnov test at a level of significance of a=0.05 via the kstest2
function in Matlab® to evaluate statistically significant differences in pair-wise distributions of
virtual patient parameters between severe and mild patients across, and among cohorts. To
analyze statistical differences in maximal biomarker values observed in virtual patients, we
performed ANOVA tests at a level of significance of «=0.05 using anoval function in Matlab3.
To further analyze the statistical differences in parameter values and some maximal biomarker
values (e.g., neutrophils, damaged tissue, and IFN concentrations) between certain groups of
patients (i.e., severe vs. mild), we performed a pairwise non-parametric Wilcoxon test using the


https://doi.org/10.1101/2024.08.01.605860
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.08.01.605860; this version posted August 2, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC 4.0 International license.

stat_compare_means function in R%. We considered coefficients of R > 0.6 to indicate
moderate to strong correlations.

RESULTS

Data suggests differences in immune biomarkers values in cancer and immunosuppressed
patients compared to those without comorbidities

To ensure all virtual patients trajectories matched the clinical data, we subsampled them based
on the biomarker measurements from clinical?®-3! and reference data*® sources (Figure 2; see
Generating virtual patients cohorts in the Methods and the Supplementary Information). In
these data, cancer patients with COVID-19 tended to have decreased T cells count throughout
the course of infection compared to cancer-free (reference) individuals with COVID-19 (Figure
2P-2Q). Mean concentrations of IL-6 were increased in both COVID-19+ cancer and
immunosuppressed patients groups compared to comorbidity-free group after day 10 post
symptom-onset, reaching above 60 pg/ml. The initial value of neutrophils was lowest in
COVID-19+ cancer patients, but neutrophil concentrations were similar across the three groups
throughout the course of infection. Mean values of GM-CSF were highest in the COVID-19+
immunosuppressed patients (Figure 2G-21), whereas IFN values tended to decrease in cancer
patients during infection, while they remained generally on a constant level in the reference
cohort versus the cancer and immunosuppressed patients (Figure 2A-2C).
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Figure 2. Clinical data measurements from 15 days post-symptom onset in COVID-19+ cancer
patients, COVID-19+ immunosuppressed patients, and COVID-19+ patients without cancer or
immunosuppression. A-C) IFN concentrations; D-F) IL-6 concentrations; G-1) GM-CSF
concentrations; J-L) G-CSF concentrations; M-O) neutrophil concentrations; P-Q) CD8+ T cell
concentrations. Note that there were no available CD8+ T cell data from immunosuppressed patients.
For further descriptions of the clinical data used in our study, see the Methods and Supplementary
Information. Solid lines: mean values. Shaded areas: standard deviations. Dashed lines indicate single
observations. Boxplots were used where data were available only on certain days with mean values
indicated by diamonds and standard deviations marked by error bars.

Key differences in immunological dynamics of virtual patients in the reference, cancer,
and immunosuppressed cohorts

To uncover the potential causes of COVID-19 associated severity in cancer and
immunosuppressed populations, we generated virtual patient cohorts each consisting of 280
virtual individuals with COVID-19 who were otherwise healthy (“reference”), had cancer, or
were immunosuppressed. The virtual patient selection process (Figure 1B, see Methods)
resulted in diverse dynamics. Namely, the cancer (Figure 3A) and immunosuppressed virtual
patients (VPs) (Figure 3B) both exhibited significantly decreased CD8+ T cell concentrations
(p-values < 10%) compared to the VVPs from the reference cohort (Figure 3C). Around 10 days
after infection (when concentrations peaked), the mean T cell concentration reached 1.3 x 10°
cells/ml in the cancer cohort, while it was 1.8 x 10° cells/ml in the COVID-19 reference cohort
(Table 1). In comparison, VPs from the immunosuppressed cohort had lower maximal CD8+ T
cell concentrations, with a mean of 0.9 x 10° cells/ml (Table 1). These patterns also extended
to IL-6 concentrations that similarly varied between groups: immunosuppressed patients had
the highest maximal mean values of I1L-6 of 60 pg/ml (Figure 3H, Table 1), followed by VPs in
the cancer cohort (Figure 3G, Table 1), who were predicted to have an average peak value of
40 pg/ml. In contrast, virtual patients in the COVID-19 reference group had the lowest mean
IL-6 peak concentrations of 25 pg/ml (Figure 31, Table 1), which is consistent with reduced
severity in otherwise healthy individuals. Statistical differences in maximal IL-6 values
between three groups were confirmed by ANOVA (p-values <10®). A similar trend was
observed in GM-CSF, where ANOVA confirmed statistically significant differences in
maximal GM-CSF values between cohorts (p-values < 10°); COVID-19 immunosuppressed
VPs had highest mean GM-CSF maximal concentration (117 pg/ml), which was almost two
times higher than in the COVID-19 reference group (60.17 pg/ml). By comparing maximal
values of inflammatory macrophages, we also found statistical differences (p-value < 10°%)
between all three cohorts. Maximal values of neutrophils were significantly decreased (p-value
< 108) in the cancer cohort compared to other two cohorts (Figure 3J-3L, Table 1). Despite
these dissimilarities, our model did not predict a statistically significant difference in the
maximal IFN, G-CSF and monocyte concentrations between the three groups (Figure 3D-3F,
Table 1).
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Units COVID-19+ COVID-19+ COVID-19
cancer immunosuppressed reference
mean (SD) mean (SD) mean (SD)
T cells 10°cells/ml 1.32 (0.28) ** 0.87 (0.17) ** 1.78 (0.58)
IFN pg/mi 0.17 (0.06) 0.17 (0.07) 0.18 (0.06)
IL-6 pg/mi 39.65 (12.95) ** 58.75 (11.01) ** 25.15 (12.25)
Neutrophils 10° cells/ml 5.35 (0.39) ** 6.29 (0.52) * 6.33 (0.36)
GM-CSF pg/mi 78.92 (25.81) ** 117.01 (21.89) ** | 60.17 (24.43)
G-CSF pg/mi 27.27 (0.83) 27.18 (1.09) 27.25 (0.76)
Monocytes 10> cells/ml 4.59 (0.21) 4.59 (0.29) 4.58 (0.20)
Inflammatory | 10° cells/ml 1.83 (1.52) ** 4.38 (2.72) ** 1.51 (1.53)
macrophages

Table 1. Predicted peak values over 20 days after infection for the three virtual patient cohorts.
Immunosuppressed VPs were found to have the highest maximal inflammatory macrophage, IL-6, and
GM-CSF concentrations in addition to the lowest maximal T cell concentrations. In comparison to the
COVID-19 reference group, cancer virtual patients were predicted to have higher peak IL-6 and GM-
CSF concentrations, increased inflammatory macrophages, and decreased maximal T cells and
neutrophils. Values indicate means and standard deviations (SD). * indicates a statistically significant
difference  (ANOVA) in maximal biomarker values found in patients from cancer and
immunosuppressed cohorts versus reference cohort. Statistically significant differences found in
maximal biomarker values in patients from cancer versus immunosuppressed cohorts are marked by *.
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Figure 3. Comparison of immune dynamics in virtual patients from COVID-19+ cancer,
immunosuppressed, reference cohorts and clinical data. A-C) CD8+ T cells dynamics, D-F) IFN
dynamics, G-1) 1L-6 dynamics, J-L) Neutrophils dynamics. Solid curves: mean values within each
cohort. Shaded areas: standard deviations. Purple triangles: mean clinical values. Purple vertical lines:
standard deviations from clinical observations (Figure 2 and Supplementary Information).

High tissue damage and increased occurrence of IFN peak delay characterize severe
COVID-19 immunosuppressed virtual patients

To uncover mechanistic differences in immune responses in mild and severe COVID-19 virtual
patients from vulnerable populations, we compared characteristics (e.g., maximal T cell
concentrations) across our three virtual patient cohorts using our updated inflammation marker
(Eq. (2)). In all three cohorts, severe patients (patients with high values of severity marker W)
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tended to have depleted CD8+ T cells (Figure 4A-4C) with the strongest negative correlation
(R = -0.88, p-value < 108) with the inflammation marker (¥J) found in the cancer cohort. A
strong positive correlation (R > 0.9, p-value < 10-%) was observed between inflammation marker
(W) and maximal 1L-6 concentrations (Supplementary Figure 1A-1C), and the maximal
concentration of inflammatory macrophages (R > 0.85, p-value < 108; Supplementary Figure
1D-1F). In both the cancer and immunosuppressed VPCs, we also found a statistically
significant weak correlation between severity and peak neutrophils concentrations (R = 0.4, p-
value < 108) in addition to the degree of lung tissue damage (R = 0.5, p-value < 108) while in
the COVID-19 reference cohort, no such relationships were established (maximum neutrophils:
R = 0.064, p-value = 0.288; maximum damaged lung tissue: R = -0.108, p-value = 0.072; see
Supplementary Figure 1G-11 and 1J-1L). Moderate correlations (R > 0.6, p-value < 1079)
between the inflammation marker () and peak IFN concentrations were found in both the
immunosuppressed and COVID-19 reference cohorts (Figure 4E-4F), with severe
immunosuppressed patients (¥ > 4) having IFN peak delays more often than patients from
other cohorts. In the cancer cohort, we only observed a statistically significant but weak
correlation (R < 0.6, p-value < 108) between IFN peak and WI. Together, these findings suggest
increased immunological dysregulation in cancer and immunosuppressed virtual patients.
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Figure 4. Correlations between maximal T cell and peak IFN concentrations and COVID-19
severity. Maximal T cell concentrations compared to the inflammation marker in patients from the A)
COVID-19+ cancer cohort, B) COVID-19+ immunosuppressed cohort, and C) COVID-19+ reference
cohort. Maximal T cell concentrations in all three cohorts were found to be negatively correlated with
wJ, Time to IFN peak concentrations compared to the inflammation marker in patients from the D)
COVID-19+ cancer cohort, E) COVID-19+ immunosuppressed cohort, and F) COVID-19+ reference
cohort. IFN peak times were positively correlated with ¥/ in the immunosuppressed and COVID-19
reference cohorts. Patients were ordered by ¥/ values, with the mildest patients having the lowest ¥/
values and the most severe the highest ¥/ values.
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Increased monocyte recruitment rates indicate more innate immune dysregulation in the
vulnerable groups versus reference patients

We further explored how differences in parameter values led to altered dynamics by selecting
virtual patients representing the lowest and highest 10% of inflammation marker values in each
VPC and comparing their parameter values. These virtual patients correspond to the mildest or
most severe SARS-CoV-2 infections, respectively. We performed statistical analyses using a
pairwise non-parametric Wilcoxon test and found increases (p-value < 108) in the mean values
of parameters associated with monocyte-to-macrophage differentiation by IL-6 (prL; Figure
5A) and decreases (p-value < 0.05) in IFN production rates by infected cells (pg,; Figure 5B)
in severe patients in all three cohorts. In particular, the values of p,, ; (monocyte recruitment by
infected cells; Figure 5C) and € ; (cell-related half-maximal inhibitory (IC50) concentration of
IFN on the virus production; Figure 5D) were elevated only in the cancer and
immunosuppressed virtual patients with severe COVID-19 (p-value < 0.05); differences
between mild and severe virtual patients in the reference cohort were not observed. Values of
NE M,y (half-maximal stimulatory (EC50) concentration of inflammatory macrophages on the
IFN production; Figure 5E) were increased in cancer and immunosuppressed severe patients,
but only in the latter group was the difference statistically significant (p-value < 0.05).
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Figure 5. Differences in parameter values between mild and severe patients in each virtual patient
cohort. Differences in parameters associated with A) monocyte-to-macrophage differentiation by I1L-6
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(pM(pI,L)’ B) IFN production rate by infected cells (pr;), C) monocyte recruitment by infected cells

(pm,1), D) cell-related 1C50 concentration of IFN on virus production (er ), and E) EC50 concentration
of inflammatory macrophages on the IFN production (TIF,Mq,,)- Box plots show the mean values of
parameters in each cohort. Statistically significant differences in parameters between groups are marked
by p-values above the box plots. A pairwise non-parametric Wilcoxon test was used to assess statistical
significance (see Methods).

We then performed a Kolmogorov-Smirnov test to check for statistically significant differences
in parameter distributions between the mildest 10% and most severe 10% of virtual patients in
all three VPCs (Supplementary Figures 2-9). Three parameters from the cancer VPC were found
to differ from the reference VPC when considering the severe virtual patients (Figure 6A-6C).
These included the rate of monocyte-to-macrophage differentiation by IL-6 (pM<p1.L)’ the rate of

monocyte recruitment by infected cells (p,;;), and the IC50 concentration of IFN on virus
production (e ;). We also found statistically different distributions of six parameters between
the severe immunosuppressed and COVID-19+ reference VPs (Figure 6D-61), again supporting
the observation of increased immune dysregulation in these vulnerable populations. To further
characterize the degree of these immunological differences, we also compared parameter
distributions between the cancer and immunosuppressed VPCs and found a statistically
significant difference in only one parameter (qu:,,L’ the monocyte-to-macrophage

differentiation by IL-6) between mild patients (Supplementary Figure 8) and no statistical
differences between severe patients in those two groups (Supplementary Figure 9).
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Figure 6. Statistical differences in parameter distributions between severe virtual patients.
Statistically significant parameter distributions were evaluated by comparison to the COVID-19
reference cohort using a Kolmogorov-Smirnov test at a level of significance of «=0.05. Comparison of
the COVID-19 reference to A)-C) severe cancer and D)-1) severe immunosuppressed. The parameter
being compared is denoted on the horizontal axis. A) and E) PM,, L (monocyte-to-macrophage

differentiation by IL-6). B) and F) p,,; (monocyte recruitment by infected cells). C) and G) e ; (cell-
related 1C50 concentration of IFN on the virus production). D) PLm,, (1L-6 production by inflammatory

macrophages). H) pr; (IFN production rates by infected cells). I) NFM, (EC50 concentration of

inflammatory macrophages on the IFN production). Red p-values indicate statistically significant
differences between parameter distributions.
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Elevated neutrophils are associated with the highest tissue damage in severe cancer and
immunosuppressed patients

Using the adjusted inflammation marker, we also examined the relationship between cytokines,
cells, and lung tissue damage to distinguish potential severity drivers within each cohort.
Overall, we found no correlation between model variables, except for a negative correlation
between maximal IFN and damaged tissue (R <-0.6, p-value < 10°8) in the three cohorts (Figure
7A-7C). The highest degree of lung tissue damage (marked by red dots) was predicted in the
most severe cancer and immunosuppressed patients (compared to mild ones), but not in the
most severe patients in the COVID-19 reference cohort (Figure 7C).
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Figure 7. Relationships between maximal IFN and damaged tissue concentrations in virtual
patients ordered by severity. A) COVID-19+ patients with cancer. B) COVID-19+ patients with
immunosuppression. C) COVID-19+ reference patients. In all three cohorts, maximum IFN
concentrations were negatively correlated with the degree of damaged tissue. In the cancer and
immunosuppressed cohorts (A and B), the most severe patients (i.e., those with the highest inflammation
marker values) were found to have the most tissue damage, contrary to virtual patients in the COVID-
19 reference cohort (C). Patients are ordered from the lowest to higest inflammation marker values ¥/,

To uncover potential factors causing those differences, we analyzed the dynamics and the mean
of maximum predicted values of the top 10% of patients (most severe) and bottom 10% (most
mild) virtual patients. Our model predicted a comparable amount of damaged tissue over time
in the case of severe patients (Supplementary Figure 12). In agreement with findings on lung
tissue damage (Figure 7), mean values of maximum damaged tissue were found to be increased
only in severe cancer and immunosuppressed patients (Figure 8B).
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Figure 8. Relationships between maximum neutrophil concentrations and damaged tissue in mild
and severe virtual patients. Mean values of A) maximum neutrophils and B) damaged tissue were
found to be statistically significantly (p-value < 0.05) increased in cancer and immunosuppressed virtual
patients with severe COVID-19 versus those with mild disease. Statistical tests were performed using a
pairwise non-parametric Wilcoxon test (see Methods). Statistical differences are marked by p-values
above the box plots.

Next, we investigated the dynamics and mean maximum values of other immune populations
to look for a potential cause of that feature. Mean values of maximum IFN were decreased in

severe patients versus mild patients in all three cohorts (Supplementary Figure 13B). Further,
we found that neutrophils were highest in severe immunosuppressed and cancer patients, with
this trend also observed in maximum tissue damage (increased values in severe cancer and
immunosuppressed patients, Figure 8B) with respect to neutrophil concentrations (Figure 8A).
To confirm this, we performed a pairwise non-parametric Wilcoxon test to check for statistical
differences. Indeed, we found statistically significant differences in maximal damaged tissue
and neutrophils values between mild and severe patients in the cancer and immunosuppressed
cohorts (Figure 8), contrary to the reference cohort. While checking for differences in the
maximum IFN concentrations, statistical tests confirmed the differences between mild and
severe patients in all three cohorts (Supplementary Figure 13B).

Cancer virtual patients experience overall higher viral loads

Finally, our model predicted higher peak viral loads in both severe and mild cancer virtual
patients as compared to virtual patients in the two other cohorts (Figure 9A). We hypothesized
that this result was related to depressed initial neutrophil counts (N,) in these virtual patients
caused by chemotherapy-induced neutropenia®®. To test this, we performed a sensitivity
analysis by varying the initial concentration of neutrophils between 60% and 140% of its
baseline value (see Methods). Decreasing the initial concentration of neutrophils (N,) resulted
in higher viral loads and maximum IL-6 and IFN concentrations (Figure 9B), seemingly
confirming the assumed relationship between initial neutrophil concentrations and viral loads.
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This suggests that viral load is not the sole driver of severity, which is rather determined through
a combination of immunological features*.
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Figure 9. Cancer virtual patients with decreased initial neutrophil concentrations have higher
viral load peaks. A) Viral loads in mild a)-c) and severe virtual patients d)-f). B) Sensitivity analysis
determined that decreasing N, (the initial concentration of neutrophils) causes higher peak viral load
and peak IL-6 and IFN concentrations.

DISCUSSION

A better understanding of the immune dynamics and potential causes of severe COVID-19
outcomes in vulnerable groups is essential to improving our understanding of factors driving
immune responses during COVID-19, helping to lessen morbidity and mortality in these
patients and to select best treatment courses. For example, patients with active cancers are more
likely to experience worse COVID-19 disease outcomes as compared to those without
cancer*>#3, Similarly, individuals with immunosuppression triggered by lymphocyte-targeting
therapies after organ transplantation have been reported to suffer from severe COVID-19 more
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often than immunosuppression-free patients®’. Here, we used mathematical modelling and
virtual patient cohorts to predict cellular immune response dynamics in COVID-19 in
individuals with cancer or immunosuppression. Based on our previously developed
mathematical model?®, we generated virtual patients whose immunological trajectories
corresponded to clinical observations*®. By comparing predicted outcomes between virtual
patients with the lowest and highest inflammation marker values both between and within
cohorts, we distinguished biomarkers of immune dysregulation and severity, which has
implications for drug development and clinical practices.

Our findings suggest that all severe COVID-19 patients, regardless of existing
immunosuppression or cancer diagnoses, experience CD8+ T cell depletion, higher IL-6
concentrations, and importantly, delayed type | IFN peaks. Thus, these results further support
the role of type | interferons in the control of SARS-CoV-2 infection severity**. We also
observed delayed IFN peaks in some mild cancer and immunosuppressed virtual patients
(Supplementary Figure 10 and 11). Relatedly, previous studies have found that IFN deficiency
may be treated by anti-inflammatory therapies that target IL-6%. Our model’s predictions
further underline the major role of IL-6, which was found to be increased even in mild virtual
patients in the cancer and immunosuppressed VPCs.

By comparing parameter values between the top and bottom 10% of virtual patients according
to severity (i.e., severe versus mild), we found significant differences in five of the seven
parameters used to generate the VPCs. Three of them (monocyte recruitment by infected cells,
half-maximal stimulatory concentration of IFN production by inflammatory macrophages, and
half-maximal inhibitory concentration of IFN on the virus production) were noticeably
increased in severe cancer and immunosuppressed patients (Figure 5), suggesting their roles as
potential severity indicators in those groups. Comparing the remaining two parameter values
according to severity revealed differences between and within cohorts. For example, the rate of
monocyte-to-macrophage differentiation by IL-6 tended to be increased in severe patients and
was highest in the immunosuppressed and cancer cohorts and lowest in the COVID-19
reference cohort. This agrees with clinical findings from circulating blood cells those in the
lungs in severe COVID-19 patients®. Further, IL-6 concentrations are higher in
immunosuppressed patients?, in agreement with our model predictions. The rate of IFN
production by infected cells was also predicted to be highest in mild patients in the COVID-19
reference cohort as compared to the other two cohorts, again showing the significant role of
IFN in coordinating a sufficient immune defense against SARS-CoV-2 infection.

Although neutrophils play a crucial role in blocking fungal and bacterial infections*’, their
function in viral infection is not yet fully establlished*. When we decreased the initial
neutrophil concentration to mimic neutropenia characteristic of cancer patients, our model
predicted higher peak viral loads in both severe and mild virtual cancer patients (Figure 9A). In
our model, neutrophils quickly remove free viral particles and cause damage to all cells
(including infected cells), hence a lower initial concentration of these cells may result in a
higher number of infected cells leading to increased viral production at the beginning of
infection. Later, when neutrophil concentrations in cancer virtual patients were predicted to
reach comparable levels to virtual patients in the other cohorts (around day 7 post-infection),
we observed a similar trend in the viral load dynamics, namely that its concentration also
decreased and was comparable to those predicted in the two other cohorts. As a higher viral
load peak was observed in severe patients, our results suggest that pre-existing neutropenia in
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cancer patients may be associated with adverse outcomes, consistent with findings from other
studies'®. However, throughout the course of infection, our model predicts that cancer patients
with severe COVID-19 will nonetheless experience neutrophilia (Figure 8A), in agreement with
clinical studies like that of Lee et al.*’.

Overall, our study supports the continued investigation of longitudinal immunological
dynamics in groups vulnerable to COVID-19 by highlighting key mechanistic differences in
their immune responses. In particular, our results revealed the effect of pre-existing neutropenia
on viral load in cancer patients, which can result in a more severe course of infection®.
However, we also found an association between elevated neutrophils and high tissue damage
in severe COVID-19+ cancer and immunosuppressed patients, which suggests the potential
danger of neutrophilia even during immunosuppression. This may explain why some studies
found no connection between neutropenia and severe COVID-19%, and even found decreased
neutrophils beneficial. However, as other studies identified low neutrophil count as a potential
risk factor’® in COVID-19, our findings support accounting for neutropenia in treatment
decisions. Interestingly, when considering full cohorts, we did not find any correlations between
maximum neutrophil count and damaged tissue. This lack of association is notable given the
key roles of cell-mediated immunity during infection with SARS-CoV-2. For example, through
the release of neutrophil extracellular traps and reactive oxygen species, neutrophils can cause
extensive damage to tissues, so a correlation between maximum neutrophil count and damaged
tissue would be expected in all patients. Moreover, by adjusting immunological trajectories to
available CD8+ T cell and IL-6 data, our model predicted elevated pro-inflammatory
compounds (such as GM-CSF) in both cancer and immunosuppressed patients. Thus, our
results suggest the consideration of inhibitory therapies, as GM-CSF has been identified as a
driver of lung tissue damage®°, and underline the delicate balance that must be struck to generate
a robust yet controlled response to SARS-CoV-2. Together, this work puts forward a hypothesis
for increased severity in both cancer and immunosuppressed patients, whose immunological
systems are dysregulated either through disease or by immunomodulatory treatments.

Virtual populations based on mechanistic mathematical models enable the study and prediction
of immune responses to viruses or vaccination without the need for extensive amounts of
clinical data, making the approach a promising tool to study emerging infectious diseases and
a variety of other contexts?®51-54, Nonetheless, our model has limitations. Specifically, certain
innate immune cells (i.e., natural killer cells®) and cytokines that play an important role in
fighting SARS-CoV-2 (i.e., IL-1, IL-12, TNF-a°%) were not considered in our model. However,
the major model component IL-6, the main driver of T cell depletion throughout the infection,
mimics the effects of other cytokines and drugs that inhibits T cell recruitment, suggesting our
results can be extended to other anti-inflammatory cytokines not included in our model.
Further, our model did not account for the humoral response provided by B cells and antibodies,
and thus, it has limited application to vaccination studies. Adding those components would
enable the identification of other severity-associated factors and significantly improve our
understanding of the intricate dynamics of the immune response to SARS-CoV-2 and other
viral infections. Further, the addition of humoral immunity to our model would enable the
identification of the mechanisms of decreased vaccine efficacy, as reported in many studies'*>’,
in vulnerable groups.

In summary, our findings corroborate that unregulated immune responses in cancer and
immunosuppressed patients place them in a high-risk position of experiencing severe COVID-
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19. Furthermore, the approach presented here can be used in complement to experimental and
clinical studies of COVID-19 and other viral respiratory diseases to comprehensively explore
immune response kinetics after infection, thereby improving our understanding of the disease
severity.

ACKNOWLEDGEMENTS

We thank all the patients, family members, and staff from all the units that participated in the
study, in addition to the teams of Drs Madeleine Durand, Michaél Chasse, Brent Richards,
Daniel Kaufmann, and technicians from other laboratories at the CRCHUM for patient
recruitment, sample collection, and blood specimen processing. We acknowledge the clinical
research teams for clinical data retrieval, J Plantin, C Dufour, | Turcotte, and R Fromentin for
sample collection and processing, and the help of Marc Messier Peet, Pascale Arlotto, Nakome
Nguissan, Fatma Mayil, Maya Salame, and Nathalie Brassard for participant recruitment at
CHUM.

FUNDING

This work was funded by: Université de Montréal Recruitment Scholarship (SG), FRQS junior
2 salary award (CL), NIH AI170115 (AMS), Mathematics for Public Health Emergent
Infectious Diseases Modelling Network grant from the Natural Sciences and Engineering
Research Council (NSERC) of Canada and the Public Health Agency of Canada (JH, MC),
NSERC Discovery RGPIN-2018-04546 (MC), a joint grant from COVID-19 immunity task
force and the Canadian Institute of Health research (CITF-CIHR) (grant VR2-173203), Fonds
de recherche du Québec-Santé J1 Research Scholar Award (MC), and Canada Research Chair
in Computational Immunology (MC).

CODE AVAILABILITY

The computational code to simulate the full immunological model is available on GitHub
at https://github.com/adriannejnner/COVID19-Virtual-Trial-PLOS-Pathogens. Matlab arrays
for each of the three virtual patient cohorts are available on GitHub at
https://github.com/mlcraig/COVID19-Virtual-Trial-vulnerable-groups.qgit.
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