

1 **Comparative lifespan and healthspan of nonhuman primate species common to biomedical research**

2

3 Hillary F Huber^{1*}, Hannah C Ainsworth^{2*}, Ellen E Quillen², Adam Salmon³, Corinna Ross¹, Adinda D Azhar⁴,
4 Karen Bales^{5,6}, Michele A Basso⁷, Kristine Coleman^{8,9}, Ricki Colman¹⁰, Huda S Darusman^{4,11}, William
5 Hopkins^{12,13}, Charlotte E Hotchkiss⁷, Matthew J Jorgensen², Kylie Kavanagh^{2,15}, Cun Li¹⁴, Julie A Mattison¹⁶,
6 Peter W Nathanielsz^{1,14}, Suryo Saputro⁴, Diana G Scorpio^{1,17}, Paul-Michael Sosa⁵, Eric J Vallender^{18,19},
7 Yaomin Wang², Caroline J Zeiss²⁰, Carol A Shively^{2*}, Laura A Cox^{2*}

8

9 *Equal contributions

10

11 ¹Texas Biomedical Research Institute, San Antonio, TX, USA

12 ²Wake Forest University School of Medicine, Winston-Salem, NC, USA

13 ³University of Texas Health Science Center, San Antonio, TX, USA

14 ⁴Primate Research Center IPB University, Bogor, Indonesia

15 ⁵California National Primate Research Center, Davis, CA, USA

16 ⁶University of California, Davis, CA, USA

17 ⁷Washington National Primate Research Center, Seattle, WA, USA

18 ⁸Oregon National Primate Research Center, Hillsboro, OR, USA

19 ⁹Oregon Health & Science University, Portland, OR, USA

20 ¹⁰Wisconsin National Primate Research Center, Madison, WI, USA

21 ¹¹School of Veterinary Medicine and Biomedical Sciences IPB University, Bogor, Indonesia

22 ¹²The University of Texas MD Anderson Cancer Center, Bastrop, TX, USA

23 ¹³Emory National Primate Research Center, Atlanta, GA, USA

24 ¹⁴University of Wyoming, Laramie, WY, USA

25 ¹⁵University of Tasmania, Hobart, Tasmania, Australia

26 ¹⁶National Institute on Aging, National Institutes of Health, Gaithersburg, MD, USA

27 ¹⁷Envol Biomedical, Immokalee, FL, USA

28 ¹⁸Tulane National Primate Research Center, Covington, LA, USA

29 ¹⁹New England Primate Research Center, Southborough, MA, USA

30 ²⁰Yale University School of Medicine, New Haven, CT, USA

31

32 **Corresponding author:**

33 Hillary F. Huber

34 hhuber@txbiomed.org

35 ORCID: 0000-0001-9734-427X

36

37 **Abstract**

38 There is a critical need to generate age- and sex-specific survival curves to characterize chronological aging
39 consistently across nonhuman primates (NHP) used in biomedical research. Sex-specific Kaplan-Meier
40 survival curves were computed in 12 translational aging models: baboon, bonnet macaque, chimpanzee,
41 common marmoset, coppery titi monkey, cotton-top tamarin, cynomolgus macaque, Japanese macaque, pigtail
42 macaque, rhesus macaque, squirrel monkey, and vervet/African green. After employing strict inclusion criteria,
43 primary results are based on 12,269 NHP that survived to adulthood and died of natural/health-related causes.

44 A secondary analysis was completed for 32,616 NHP that died of any cause. Results show a pattern of
45 reduced male survival among catarrhines (African and Asian primates), especially macaques, but not
46 platyrhines (Central and South American primates). For many species, median lifespans were lower than
47 previously reported. An important consideration is that these analyses may offer a better reflection of
48 healthspan than lifespan since research NHP are typically euthanized for humane welfare reasons before their
49 natural end of life. This resource represents the most comprehensive characterization of sex-specific lifespan
50 and age-at-death distributions for 12 biomedically relevant species, to date. These results clarify relationships
51 among NHP ages and provide a valuable resource for the aging research community, improving human-NHP
52 age equivalencies, informing investigators of expected survival rates, providing a metric for comparisons in
53 future studies, and contributing to understanding of factors driving lifespan differences within and among
54 species.

5

6

Keywords

7 Nonhuman primates, translational, aging, healthspan, lifespan, longevity, survival

8

9

Introduction

10 Nonhuman primates (NHPs) are genetically, physiologically, and behaviorally the best translational models for
11 human aging as their genomes, developmental trajectory, reproductive strategies, and aging-related changes
12 in physical function, cognitive function, and disease development are more similar to humans than those of
13 other mammals.^{1–4} Yet, there is limited information regarding longevity in the NHPs most commonly used as
14 translational models. Few studies have attempted cross-species comparisons and reports are often
15 contradictory, likely due to the use of different methodological approaches (e.g., inclusion criteria). To
16 determine how NHP ages correspond with human age, it is essential to fully characterize the demography of
17 NHP longevity within each species, rather than focusing on individual reports of maximum longevity. Numerous
18 publications list NHP maximum lifespans in tables that include a variety of other life history features, but few
19 cite primary sources. This leads to overreporting of the same statistics without verifying the validity of the
20 measure or the relevance to animals under study. For example, 37.5 years is often cited as the lifespan of
21 baboons (*Papio hamadryas* spp.).^{5–8} However, tracing citations to the primary source reveals that this statistic
22 comes from a single baboon that died at the Brookfield Zoo in 1972; the birth date is given as June 1, 1935
23 (one year after the zoo opened), but it is not documented whether this date is known or estimated.⁹ This
24 estimate of maximum longevity in baboons is not particularly useful without additional context such as the
25 number of baboons surviving to the maximum or knowledge of the median baboon lifespan. Median captive
26 baboon lifespan has been reported as 21¹⁰ or 11¹¹ years but the report of maximum longevity is more
27 frequently cited. It is likely that the discrepancy in median baboon lifespan reflects differences in
28 methodological approaches to data analysis. This example in baboons highlights how differences in analytic
29 approaches across studies make it difficult to compare reports within or across species. The unclear and
30 limited data on NHP lifespan, such as the reporting of maximum longevity to indicate “lifespan,” creates
31 confusion in scientific analysis and in the peer review process.

32

33 Cross-species comparisons are a major goal of aging research since they can reveal factors contributing to
34 variation in lifespans. Inconsistent lifespan estimates are problematic when looking at a single species, and the
35 problem is compounded by cross-species comparisons. We address this knowledge gap by creating rigorous
36 and reproducible survivorship data, identifying mortality risk and its relationship to biological age at different
37 chronological ages, and examining the shape of mortality and healthspan curves across 12 captive NHP
38 species. The initial dataset, prior to quality control and filtering, included lifespan data from 114,255 animals
39 from 58 species at 15 institutions. We highlight that while maximum age is an easily reported statistic as it is
40 purely observational, calculating median lifespan is more challenging, as methodological decisions about
41 inclusion and exclusion criteria vary among studies, producing substantial discrepancies across cohorts and
42 species. With the data herein, we have the unique ability to calculate survival probabilities using the same
43 criteria for all 12 species, producing the most methodologically consistent cross-species comparison to date.
44 The value of such a large dataset is the ability to filter the data to the most representative sample and retain
45 adequate sample sizes for statistical analyses. In this study, survival curves were generated on animals that
46 survived to at least adulthood (defined in Methods) because, as in most mammals including humans, risk of
47 death in infancy is substantial and strongly biases the median lifespan. Primary results and comparisons by
48 sex are built using data from animals that died of natural causes or were euthanized for clinical/health reasons.
49 This report provides comprehensive data summaries and tools to improve biomedical research involving NHPs
50 within and beyond the field of aging.

51

52 **Methods**

53 **Species**

54 Twelve NHP species for analyses are shown in **Table 1**. We are considering all members of the genus *Papio* a
55 single species and considering Indian- and Chinese-origin rhesus macaques together, as captive research
56 baboons have a high degree of morphotype mixing^{12,13} and captive rhesus are similarly highly admixed from
57 these geographic source populations.¹⁴ We included chimpanzees (*Pan troglodytes* spp.), but it must be noted
58 that biomedical research with great apes is heavily restricted across the world. Still, many retired chimpanzees

9 reside at research facilities and they provide a valuable comparison since their estimated lifespan is between
10 that of humans and the monkey species commonly found at biomedical research facilities. Similarly, while
11 cotton-top tamarins (*Saguinus oedipus*) were at one time biomedical research models, they have not been
12 used for that purpose since 2008 when deforestation resulted in animals being listed as critically endangered.
13

14 **Participating institutions**

15 Data from eight United States National Primate Research Centers (NPRCs) are included: California (CPRNC),
16 Emory (ENPRC), New England (NEPRC; this center is no longer open but we obtained archival data), Oregon
17 (ONPRC), Southwest (SNPRC), Tulane (TNPRC), Washington (WaNPRC), and Wisconsin (WNPRC). Data
18 also originated from Primate Research Center IPB University in Indonesia, Keeling Center for Comparative
19 Medicine and Research at The University of Texas MD Anderson Cancer Center, National Institute on Aging
20 Intramural Research Program, Sam and Ann Barshop Institute for Longevity and Aging Studies at UT Health
21 San Antonio, Vervet Research Colony at Wake Forest University, and Yale University. **Supplementary Table**
22 **S1** shows species sample sizes contributed by each institute. A data extraction standard operating protocol
23 (SOP) was developed to ensure consistency among institutions. The SOP requested data from all NHPs that
24 were born and died at the same institute going back through all historical records, along with sex, species, date
25 of birth, date of death, and disposition (i.e., death) code and description. We received data from 27 species
26 categories at the Duke Lemur Center, but ultimately did not include these data herein because they did not
27 meet stage 1 filtering requirements of this study. We also note that life history profiles for these animals are
28 published¹⁵ and the data are available for public download (<https://lemur.duke.edu/duke-lemur-center-database/>).
29

30 31 **Data Filtering and Quality Control**

32 Received data were first processed via a series of quality control checks for non-NHP species labels,
33 inconsistent or undefined codes, and duplicated records (e.g., ensuring one observation (date of birth and
34 death) per animal in data). We attempted to resolve inconsistencies or undefined codes via follow-up with the
35 original data source. Records that were unable to be resolved were removed from subsequent analyses. The

36 resulting data were then parsed through a two-stage filtering process. Stage One filtering retained records with:
37 1) sex classified as male or female, 2) known date of birth (not estimated), and 3) survived at least 30 days
38 (removing neonatal deaths). Species were then filtered to only include those which retained at least 150
39 animals. These Stage One filtered data yielded over 77,000 animals across 12 species. Stage Two filtering
40 retained 1) animals that survived to adulthood using the National Institutes of Health Nonhuman Primate
41 Evaluation and Analysis table of NHP life stages (**Table 1**).¹⁶ The earliest age listed as adult for each species
42 was used, supplemented by additional references for two species not present in the table, chimpanzees¹⁷ and
43 coppery titi monkeys.¹⁸ Stage Two filtering also implemented a date of birth (DOB) cutoff. This step was critical
44 for survival analyses and lifespan inference as received data did not include records on alive animals.
45 Removing later (more recent) births avoided skewing results towards earlier deaths, and inference was thus
46 based on the dataset of animals that had greatest opportunity to live to their maximum ages (**Supplementary**
47 **Figure S1**). The DOB threshold was implemented by retaining animals born before 2023 minus the number of
48 years corresponding to the initial assessment of the 85th percentile of lifespan for that species (combined
49 sexes; non-natural deaths as censored events). In total, this filtering stage yielded a dataset of 32,616
50 animals, across 12 species.

51

52 *Defining censored events by death types.* Given that these data did not include alive animals, for survival
53 analyses, censored events were based on death type, as follows: 1) death types pertaining to research
54 sacrifice and colony management were categorized as right censored events; 2) death types pertaining to
55 natural causes or humane euthanasia for health reasons were coded as un-censored events. Right censoring
56 is a statistical approach in survival analysis that enables inclusion of the knowledge that the subject survived at
57 least to that point.¹⁹ Treating deaths related to research sacrifice and colony management as right-censored
58 events enabled animals to contribute to the survivorship model up until age of censoring. That is, this accounts
59 for the lack of knowledge of how long the animal would have lived until a natural or health-related death. The
60 final Stage Two filtered dataset was comprised of 12,269 events and 20,347 censored events.

61

62

33

34 Statistical analyses

35 We computed the Kaplan-Meier estimator²⁰ of the survivorship function for each species and sex, using the
36 ggsurvfit package²¹ in R version 4.1.2. Survival curves and median lifespan estimates were calculated for both
37 including and excluding censored (research sacrifice; colony management death types) data. A critical analytic
38 consideration was that censoring was greatly biased by sex. Thus, the primary analyses presented with
39 comparisons by sex were limited to natural/health-related deaths only (no censored data). For many species,
40 proportional hazards assumptions were violated (preventing usage of the cox-proportional hazards model), but
41 since the primary analysis datasets were absent of censored events, analyses were not restricted to methods
42 for censored data. The analysis plan followed one that was applicable across all twelve species of various
43 sample sizes. For each species, maximum ages were compared between males and females using two
44 analytic approaches. First, quantile regression models were analyzed in SAS version 9.2 using the
45 QUANTREG procedure at the 25th, 50th, 75th, and 85th maximum age percentiles with sex as the predictor and
46 primate center was included as a covariate. Effects of sex at each percentile were tested using the Wald
47 statistic and standard errors for regression coefficients were computed using resampling method
48 (seed=12333). For each species, we also tested for differences in the maximum age distributions by sex using
49 the nonparametric two-sample Kolmogorov-Smirnov test (ks.test function in R version 4.1.2), two-sided test p-
50 values are reported.²⁰ Finally, to evaluate the uniformity of the rate of decline across survivorship curves, we fit
51 an exponential model (e^{β}), separately, to the first and last quartiles of the Kaplan-Meier survival curves using
52 the nonlinear least squares function in R (version 4.1.2), shown in **Supplementary Figure S2**. As β captures
53 the function's rate of decay, we illustrated trends across species, by sex, by plotting the magnitude of β for
54 these two quartiles. Computations were performed using the Wake Forest University (WFU) High Performance
55 Computing Facility.²²

56

37 Results

38 **Primary analyses.** Sample counts of primary analysis datasets, featuring natural or health-related deaths only,
39 are shown in **Table 1**. Maximum observed age including all types of deaths (e.g., research-related sacrifice,

0 clinical/health-related euthanasia, and natural), as well as median age at death calculated from only natural
1 and clinical deaths, are summarized by sex and species in **Table 2**. **Figure 1** shows the distribution of natural
2 and clinical deaths, with medians, interquartile ranges, and proportions of data by sex and species. Combined
3 survival curves for all 12 species in males and females are shown in **Figure 2**. To evaluate the rate of decline
4 for the survivorship curves, across species, data from the first and last quartiles of the Kaplan-Meier
5 survivorship function were fit to an exponential model that captures rate of decay (i.e., change in probability of
6 death) (**Supplementary Figure S2**), and species were then compared within and between sexes. Comparing
7 first and last quartiles illustrated that species predominantly experienced faster rates of death within the first
8 quartile of adulthood. Comparing male and female rates of decline within both quartiles highlighted the faster
9 rates of decline for males within the first quartile. However, in the last quartile, this pattern was nearly reversed;
10 the majority of species (except cotton-top tamarin, vervet/African green monkey, and common marmoset)
11 exhibited slower rates of decline in males compared to females (**Figure 3**).
12

13 For each species, individual survival curves are shown in **Figure 4** and species-specific, sex-based
14 comparisons in **Table 3**. In most species, males showed reduced survival compared to females. Among
15 vervets, Japanese macaques, and chimpanzees, males showed reduced survival at every age with a different
16 overall distribution of age at death. *Cynomolgus* macaque and baboon males showed reduced survival
17 compared to females at younger ages (25th and 50th percentiles), but there was no difference in survival at later
18 stages of life. Rhesus macaque males showed reduced survival compared to females at the 25th, 50th, and 75th
19 percentiles, but females had lower age of survival at the 85th percentile. There was a strong difference in the
20 distribution of age at death between males and females ($P\text{-value}=2.20\times 10^{-16}$). Pig-tailed macaque males
21 showed reduced survival compared to females early in life (25%) but the sexes were similar at other ages. In
22 contrast, females showed reduced survival compared to males at every age in common marmosets. Male and
23 female survival was similar at every age with no difference in the distribution of age at death between sexes for
24 cotton-top tamarins and squirrel monkeys. There was also no difference in distributions for coppery titi
25 monkeys and bonnet macaques; however, the modest sample size for the species limits power to detect small
26 differences.

17

18 **Secondary analyses.** Censored data (deaths due to research sacrifice and colony management) were biased
19 by sex (**Supplemental Figure S3**) and prevented statistical comparisons between males and females when
20 including censored data.¹⁹ However, as a secondary analysis, survival curves that include censored events are
21 presented for reference. **Supplemental Figure S4** features survival curves for each species separately with
22 and without censored events adjacent to each other with additional details. Across species, inclusion of
23 additional datapoints from censored events increased median lifespan estimates. We note that the high
24 proportion of censored events (**Supplemental Figure S3**), especially in some species (i.e., greater than 50%
25 of deaths in baboons, cynomolgus, pigtailed, rhesus, squirrel monkeys, and vervets), yielded survivorship
26 functions that never reach zero, limiting utility and inference for the full lifespan.

27

28

Discussion

29 **Lifespan vs healthspan.** A major consideration of note for this study is that few research NHPs live until
30 natural death. Most are humanely euthanized due to study protocols or clinical determinations based on quality
31 of life. The issues considered by veterinarians in making euthanasia decisions vary by facility and study
32 protocol, but a common approach is to euthanize at the first diagnosis of major disease or injury requiring long-
33 term treatment with reduced quality of life. Reasons for humane euthanasia may include such diverse
34 conditions as advanced spinal or knee osteoarthritis, endometriosis, broken limbs, tumors, and meningitis – not
35 all of which are the result of aging-related diseases. Therefore, we posit that these findings may be measuring
36 healthspan rather than lifespan in NHP cohorts housed at research facilities. For our survival analyses, this
37 potential limitation is partially mediated by our very large database, which enabled analyses even after
38 removing experimental and other non-clinical deaths.

39

40 Supporting the idea that we are measuring healthspan rather than lifespan, for several species, typical age at
41 onset of chronic disease is similar to the median lifespan estimates. Among baboons, age-related diseases are
42 apparent around 9 years old (e.g., edema, kyphosis, prolapse, myocarditis), and by 12 years many more are
43 evident (e.g., pancreatitis, stricture, lymphosarcoma).²³ Median baboon lifespan in this report is 10.1 years for

14 males and 11.1 years for females. Marmoset age-related diseases tend to emerge in animals >6 years old,
15 including cardiovascular disease, diabetes, and neoplasias.²⁴ Median marmoset lifespan in our study is 5.5
16 years in males and 5.0 years in females. Rhesus macaques are on average diagnosed with the first chronic
17 condition at age 9.0 years and the second at age 10.7 years.²⁵ Median rhesus lifespan in our study is 9.1 years
18 in males and 10.6 years in females. Differences in veterinary care for these conditions mean that some
19 pathologies in some species may be treated medically, whereas others proceed to veterinarian-suggested
20 euthanasia. We speculate that zoo NHPs may be treated for more chronic conditions than research NHPs and
21 would make a useful lifespan and healthspan comparison to humans.

22
23 The ability to make more accurate comparisons between NHP age and the human equivalent was a primary
24 goal of the current analyses. Since the NHP estimates herein may be closer to healthspan than lifespan, it is
25 useful to consider them in relation to human healthspan. The most frequently studied measures of human
26 healthspan are deficit accumulation indices, which measure accumulation of health deficits and decline in
27 physical function or frailty.²⁶⁻³⁰ In one study of 66,589 Canadians in the National Population Health Survey,
28 accumulation of health deficits was gradual before age 46 years, with 40% of 45-50 year-olds having a frailty
29 index score of 0 (no health deficits); starting at age 46, deficit accumulation was much more rapid, and at age
30 80, only 5% still had a score of 0.^{30,31} Among 73,396 people from the Longitudinal Ageing Study in India,
31 average age of onset of any chronic disease was 53 years.³² We speculate that our NHP median lifespan
32 estimates may align better with human onset and accumulation of health deficits, rather than human lifespan.
33 However, our analysis does not address onset of health deficits, and we are unable to distinguish between
34 which NHPs died at the end of their lifespan versus those which died at the end of their healthspan. Therefore,
35 we are unable to make specific comparisons between human and NHP healthspans.

36
37 **Sources of variation within and between species.** Our findings show great variation in adult life expectancy
38 among all 12 species, in contrast to a prior cross-species analysis of six primate species that found little
39 variation in adult survival.³³ Many factors contribute to variation in adult survival. Some may assume that in
40 captive research populations, quality of veterinary care is a major driving force. While this may have been

71 important in the early years of NHP research, most species have been in captivity for decades and quality care
72 is well defined. Institutional management practices are important factors, such as how decisions are made
73 about euthanizing animals due to illness or reproductive capacity. Housing conditions are a likely influence on
74 lifespan, as it is well known that individual versus paired versus group housing can have profound effects on
75 health.³⁴⁻³⁹ The goals of the research are also important to consider. For example, rhesus monkeys have been
76 the subjects in two longevity studies in which survival time was an outcome variable. Here, additional
77 measures were taken to maintain older animals, which explains the extreme maximum age of rhesus
78 macaques – 44.2 years – relative to other the other four macaque species, which show maximum ages in the
79 20s and 30s.^{40,41} Another potential source of bias is the way animals are selected for studies. NHPs go through
80 health checks beforehand, and healthy animals may be preferentially selected. In our study, many of the
81 longest-lived animals were excluded from lifespan calculations because their endpoints were research-related
82 (**Supplementary Figure S3**). Thus, limiting the analyses to natural deaths seems to influence lifespan
83 calculations towards younger ages.

84
85 Within species, life history features can influence lifespan. It has been proposed that reproductive strategies
86 play an evolutionary role in regulating lifespan, since there may be tradeoffs between female fertility,
87 investment in offspring, and longevity,⁴² although this long-held view has been challenged since the
88 relationships between reproduction and longevity are not consistent across species.^{43,44} Adult body size also
89 factors into survival because a longer period of growth will likely result in later reproductive maturity and a
90 greater need for investment in offspring. In our data, common marmosets have the shortest maximum and
91 median lifespan of all 12 species. Marmosets are also the smallest species (average weight 350-400 g), reach
92 adulthood at the youngest age (1.5 years), and usually give birth to twins.^{24,45} However, cotton-top tamarins,
93 the other small (average weight in captivity 565.7 g), quickly maturing (2.5 years at adulthood), twinning
94 callitrichine⁴⁶ in this study, has maximum and median lifespan resembling that of several larger bodied, slower
95 maturing species that give birth to singletons, including squirrel monkeys, baboons, vervets, and macaques. It
96 is unclear to what extent these patterns are driven by inherent species characteristics versus institutional
97 practices, but it would be advantageous to explore this question in future studies.

18

19 Identifying physiological changes underlying the aging process and variation in lifespan and healthspan has
20 been a major goal of the aging research community, leading to the concept of the hallmarks of aging. Nine
21 hallmarks are now well established: genomic instability, telomere attrition, epigenetic alterations, loss of
22 proteostasis, deregulated nutrient-sensing, mitochondrial dysfunction, cellular senescence, stem cell
23 exhaustion, and altered intercellular communication.⁴⁷ Five new hallmarks have been recently proposed:
24 autophagy, microbiome disturbance, altered mechanical properties, splicing dysregulation, and inflammation.⁴⁸
25 These hallmarks are thought to be molecular, cellular, and organismal level drivers of the aging process.
26 Investigators have generated hypotheses about how the hallmarks of aging may influence lifespan within and
27 between primate species. For example, oxidative stress is a trigger of cellular senescence and genomic
28 instability.⁴⁹ In a comparative analysis of 13 primate species with divergent body sizes and longevity,
29 investigators studied reactive oxygen species production and oxidative stress resistance in cultured fibroblasts,
30 finding some support for their hypothesis of a causal relationship with species longevity.⁵⁰ Within species,
31 investigators are also exploring how variation in the hallmarks contributes to individual lifespan differences.
32 Telomere shortening has long been recognized as a marker of aging. Studies of calorie restriction in rhesus
33 macaques have shown extension of lifespan, and investigators tested whether lifespan differences between
34 groups could be explained by telomere length in several tissues, but interestingly, telomere length was
35 associated with both age and sex, but not calorie restriction.⁵¹ The hallmarks of aging provide a productive
36 foundation for guiding studies of the causal factors underlying lifespan variation.
37

38

39 **Sex-based differences.** Among primates, males have been shown to have higher age-specific mortality than
40 females throughout adulthood.⁵² We see this in some species included in the current study. One pattern is
41 shorter lifespan among macaque males. Five macaque species (*Macaca* spp.) are reported here. In three
42 species males have shorter median lifespan than females (cynomolgus, Japanese, and rhesus macaques). In
43 pigtails, males have lower survival probability in early adulthood (25%) but similar survival probability at older
44 ages, and in bonnet macaques male lifespan appears shorter in the curves and estimates, but sample size
45 may be too small to detect a difference (female n=43, male n=19). This pattern seems to extend to all of the

15 parvorder Catarrhini (Old World monkeys- Cercopithecoidea and apes- Hominoidea). Vervets have the largest
16 sex-based differential with median age of 8.3 years for males and 17.9 years for females. For baboons, males
17 show borderline lower survival probability at the 25th and 75th percentiles. Male chimpanzees also have lower
18 survival probability relative to females at every life stage.

19

20 In contrast, in the parvorder Platyrrhini (Central and South American monkeys), there is generally no difference
21 between males and females in survival estimates. For context, a phylogenetic tree for the 12 species in this
22 study is shown in **Figure 5**.⁵³ The exception is the common marmoset, with lower female survival at every age,
23 replicating the findings of another marmoset report.²⁴ The relatively short female marmoset lifespan is related
24 to their high fertility rates.^{42,45} There are no differences in survival between males and females in coppery titi
25 monkeys, squirrel monkeys, or cotton-top tamarins. A prior primate lifespan comparison that suggested female
26 primates have longer lifespan than males included several catarrhine species but few data from platyrrhine
27 species.⁵² A recent study of coppery titi monkey lifespan showed a trend toward longer lifespan in males
28 relative to females using the same population of monkeys in the current study but with different inclusion
29 criteria.¹⁸

30

31 It is difficult to know if the observed sex-based differences between catarrhine versus platyrrhine species are
32 due to inherent species characteristics, institutional practices, or their interactions. For example, in catarrhine
33 monkeys, it is common to house a single breeding or vasectomized male with multiple females. Fewer males
34 than females are needed for breeding programs because males will mate with multiple females. In some
35 species, especially baboons, males are much larger than females, requiring more space and resources. These
36 factors and more mean males and females are not equally distributed and are subject to different animal
37 selection practices in research institutions. The difference is also evident in the sample size. Before data
38 filtering, the sample size included 44,704 females and 43,413 males. After data filtering, there were 8,296
39 females and 3,973 males. A larger proportion of the males were filtered out of the analyses because of
40 research-related endpoints or humane euthanasia for management reasons, reflecting bias in how sexes are
41 deployed in research.

52

53 **Comparison with prior reports of captive NHP lifespan.** As mentioned in the introduction, captive baboon
54 maximum lifespan has been reported as 37.5 years,^{5–8} and median lifespan as 21¹⁰ or 11¹¹ years. Our median
55 lifespan findings align with the lowest of those estimates, and close inspection of the methods used to arrive at
56 that estimate reveals that the study employed similar inclusion and exclusion criteria as the current study.¹¹
57 The 37.5 year estimate is based on a single zoo baboon⁹ and is a rare case of extreme maximum longevity.
58 The 21-year baboon lifespan estimate uses different methods from the current study, such as inclusion of live
59 animals as right censored datapoints.¹⁰ In another report that includes 4,480 zoo baboons, male *P. hamadryas*
60 were estimated to live 13.2 years and females 17.1 years from birth.³³ We expect that this difference is due to
61 both methodological differences in calculating median lifespan and differences in the veterinary care for the
62 small numbers of baboons in zoo settings, e.g., they frequently receive long-term treatment for chronic
63 diseases. It may also be due to differences between hamadryas and the mixed baboons in our study. Prior
64 reports of lifespan of rhesus macaques have hovered around a median lifespan of 25 years and maximum 40
65 years, but again, these studies employed right censored data approaches.^{40,54–56} In contrast, our median
66 lifespan estimate for rhesus is 7.9 years in males and 10.3 years in females using data only from animals with
67 known ages at death, rather than including ages from still living animals with a right censored approach. To
68 highlight this methodological difference, we provide survivorship probabilities with censored data for reference
69 (**Supplementary Figure S4**). A prior study of common marmosets at a single institution estimated median
70 lifespan of 6.5 years in animals that survived to at least two years (compared with our starting age of 1.5
71 years).²⁴ Another marmoset study from a different institution estimated median lifespan at four years in
72 marmosets that survived for 60 days; the same study reported cotton-top tamarin median life expectancy of 7.2
73 years.⁵⁷ Our estimates from marmosets at 4 different institutions are 5.3 years in females and 6.0 years in
74 males. For cotton-top tamarins, our estimates of median lifespan (from animals living at one institution) are 9.6
75 years for males and 8.9 years for females. Chimpanzee median survival in a biomedical research population
76 has been reported as 31.0 years in males and 38.8 years in females among individuals who reached 1 year of
77 age.⁵⁸ In a zoo population, male chimpanzees lived a median of 26.0 years and females 30.5 years from
78 birth.³³ Our estimates are 33.0 years in males and 44.0 years in females among individuals who reached ten

79 years of age and are therefore fairly consistent with previous reports. For coppery titi monkeys, median
30 lifespan has been reported as 14.9 years in males and 11.4 years in females among individuals surviving to 31
31 days,¹⁸ compared with our estimates of 8.6 years for males and 9.2 years for females. Once again, the
32 differences between estimates in our studies and prior reports likely arise methodologically, such as choices
33 made about age of inclusion and use of a right censored approach to include individuals still alive and/or those
34 euthanized for research-related endpoints. A major strength of the current study is the use of uniform methods
35 across 12 different NHP species.

36

37 **Importance of data filtering.** This study highlights the necessity of thorough methodological documentation in
38 NHP lifespan studies. As illustrated with our primary and secondary analyses, filtering and methodological
39 decisions impact the results and interpretation. The simplest example is the minimum age threshold for
40 computing the survivorship functions. Including juveniles dramatically lowers median lifespan due to high rates
41 of juvenile mortality among primates. Additionally, by including only animals that were born and died at the
42 same institute, it sometimes eliminated the oldest known individuals from the dataset, such as two 19-year-old
43 SNPRC marmosets; however, these instances were rare in our very large sample. Decisions that greatly
44 reduced our analysis sample size, such as date-of-birth (DOB) cutoffs, are a privilege of a large initial (pre-
45 filtered) dataset. So, while the DOB cutoffs greatly reduced our final sample size, it removed bias associated
46 with very early deaths (since our dataset did not include currently alive animals). Overall, given the impact of
47 filtering decisions, we emphasize the need for robust reporting of the decision criteria in NHP survival studies.
48 We encourage authors to follow the ARRIVE guidelines (Animal Research: Reporting of In Vivo Experiments;
49 <https://arriveguidelines.org/>), a checklist for full and transparent reporting aimed at improving rigor,
50 transparency, and reproducibility in animal research.⁵⁹ In longevity research, it is particularly crucial to report
51 inclusion and exclusion criteria in addition to the details of statistical approaches.

52

53 **Limitations.** One limitation of the study is that the stringent inclusion criteria reduced our starting sample size
54 by 86%. This was necessary to ensure appropriate comparisons across institutions and species. For example,
55 some species (cynomolgus, pigtailed, baboons) have a very high percentage of deaths by research sacrifice,

6 rather than by natural or health-related causes. Including research-related deaths as right censored data
7 results in highly skewed models with limited utility for these species (e.g., survival curves for female baboons
8 do not converge past the median survivorship when including censored data). Further, censoring was biased
9 by sex because of the differences in research utilization and breeding needs, statistically hindering the
10 possibility of comparisons between males and females. Therefore, primary analyses were limited to data from
11 natural or clinical deaths, eliminating the need for right censoring. Another constraint of the study is our limited
12 knowledge of specific cause of death. Differences in institutional death coding systems make it difficult to easily
13 determine cause of death, since some record systems group many types of deaths, while others have more
14 granular codes to distinguish among death types. Furthermore, as previously described, variations in
15 institutional practices can likely impose some differences on lifespan. While inclusion and assessment of
16 specific practices (e.g., housing) are not explored within this study, institutional source was included within
17 regression models to adjust for these potential effects.

18

19 **Conclusions.** The need for comparative analyses of lifespans across species has been widely
20 acknowledged.⁶⁰ Investigators need access to reliable lifespan tables, survivorship graphs, and maximum
21 lifespan measurements to conduct relevant translational aging studies. Here we provide the largest dataset yet
22 assembled from captive research NHPs. These data provide a valuable comparative resource for translational
23 NHP research, primary data on multispecies NHP lifespan in captivity, and context for consideration of
24 morbidity and mortality in the study of diverse diseases.

25

26 **Acknowledgements & Sources of Funding**

27 This work was supported by the National Institutes of Health: P40-OD010965 (MJJ), P51-OD011133 (CR;
28 SNPRC), P51-OD011106 (RC; WNPRC), P51-OD011103 (EJV;NEPRC), P51-OD011104 (EJV,TNPRC),
29 U42OD011123 (CEH; WaNPRC), P51OD010425 (CEH; WaNPRC), P51OD011092 (KC), OD011107 (KB),
30 and the National Institute on Aging: R01AG087957 (EEQ), U19AG057758 (LAC), U34AGAG068482 (AS),
31 P30AG013319 (AS), P30AG044271 (AS), R01AG050797 (AS), AG-067419 (BH), NIH-NIA Intramural
32 Research Program (JAM), R24AG073199 (CS). Computations were performed using the Wake Forest

33 University (WFU) High Performance Computing Facility, a centrally managed computational resource available
34 to WFU researchers including faculty, staff, students, and collaborators.
35

36 **Disclosures**

37 None
38

39 **Data Availability**

40 Raw, de-identified data are available via the password-protected database MIDAS (Monkey Inventory and
41 DAta management of Samples), request for access available from <https://midas.wakehealth.edu/MIDAS>. The
42 MIDAS database provides tools for species comparisons, which will make this a user-friendly resource
43 accessible to researchers. Data accessible to approved users within MIDAS includes de-identified animal-level
44 information used for analyses (e.g., date of birth, date of death, species, sex), as well as summary-level data
45 such as the survivorship probabilities calculated in primary and secondary analyses. Data from all NHP in the
46 manuscript are available within MIDAS, with the exceptions of data from chimpanzees and data from NHP
47 residing at the Primate Research Center in Indonesia. Approved users who seek additional data not available
48 within MIDAS should contact the authors directly. Data sharing will be limited to scientific uses.
49

50 **Code Availability**

51 Analyses and summaries were computed using functions and libraries, as described in methods, in
52 accordance with standard practices and their vignettes. Custom Code for fitting exponential curves to survival
53 data is available in Supplementary Information and is available via MIDAS as described in Data Availability.
54

55 **Ethical Statement/Conflict of Interests**

56 The authors declare no competing interests.
57

58 **References**

59 1. Frye BM, Craft S, Latimer CS, et al. Aging-related Alzheimer's disease-like neuropathology and functional
60 decline in captive vervet monkeys (*Chlorocebus aethiops sabaeus*). *Am J Primatol.* 2021;83(11):e23260.

51 2. Cox LA, Comuzzie AG, Havill LM, et al. Baboons as a model to study genetics and epigenetics of human
52 disease. *ILAR J.* 2013;54(2):106-121.

53 3. Ross CN, Salmon AB. Aging research using the common marmoset: Focus on aging interventions. *Nutr*
54 *Healthy Aging.* 2019;5(2):97-109.

55 4. Mattison JA, Vaughan KL. An overview of nonhuman primates in aging research. *Exp Gerontol.*
56 2017;94:41-45.

57 5. Saltzman W, Tardif SD, Rutherford JN. Chapter 13 - Hormones and Reproductive Cycles in Primates. In:
58 Norris DO, Lopez KH, eds. *Hormones and Reproduction of Vertebrates*. Academic Press; 2011:291-327.

59 6. Zimmermann E, Radespiel U. Primate Life Histories. In: Henke W, Tattersall I, eds. *Handbook of*
70 *Paleoanthropology*. Springer; 2015:1527-1592.

71 7. Tacutu R, Thornton D, Johnson E, et al. Human Ageing Genomic Resources: new and updated databases.
72 *Nucleic Acids Res.* 2018;46(D1):D1083-D1090.

73 8. Hakeem AY, Sandoval GR, Jones M, Allman JM. Brain and life span in primates. In: *Handbook of the*
74 *Psychology of Aging*. Academic Press, Inc; 1996:78-104.

75 9. Weigl R. *Longevity of Mammals in Captivity; from the Living Collections of the World*. Kleine Senckenberg-
76 Reihe; 2005.

77 10. Bronikowski AM, Alberts SC, Altmann J, Packer C, Carey KD, Tatar M. The aging baboon: Comparative
78 demography in a non-human primate. *PNAS.* 2002;99(14):9591-9595.

79 11. Martin LJ, Mahaney MC, Bronikowski AM, Carey KD, Dyke B, Comuzzie AG. Lifespan in captive baboons
80 is heritable. *Mech Ageing Dev.* 2002;123(11):1461-1467.

81 12. Keller C, Roos C, Groeneveld LF, Fischer J, Zinner D. Introgressive hybridization in southern African
82 baboons shapes patterns of mtDNA variation. *Am J Phys Anthropol.* 2010;142(1):125-136.

83 13. Robinson JA, Belsare S, Birnbaum S, et al. Analysis of 100 high-coverage genomes from a pedigreed
84 captive baboon colony. *Genome Res.* 2019;29(5):848-856.

85 14. Kanthaswamy S, Trask JS, Ross CT, et al. A large-scale SNP-based genomic admixture analysis of the
86 captive rhesus macaque colony at the California National Primate Research Center. *Am J Primatol.*
87 2012;74(8):747-757.

88 15. Zehr SM, Roach RG, Haring D, Taylor J, Cameron FH, Yoder AD. Life history profiles for 27 strepsirrhine
89 primate taxa generated using captive data from the Duke Lemur Center. *Sci Data.* 2014;1(1):140019.

90 16. Feister AJ, DiPietrantonio A, Yuenger J, Ireland K, Rao A. *Nonhuman Primate Evaluation and Analysis*
91 *Part 1: Analysis of Future Demand and Supply | Office of Research Infrastructure Programs (ORIP) –*
92 *DPCPSI – NIH.*; 2018.

93 17. Stumpf R. Chimpanzees and Bonobos: Diversity within and between species. In: Campbell CJ, Fuentes A,
94 MacKinnon KC, Panger M, Bearder SK, eds. *Primates in Perspective*. Oxford University Press; 2007:321-
95 344.

96 18. Zablocki-Thomas P, Rebout N, Karaskiewicz CL, Bales KL. Survival rates and mortality risks of
97 *Plecturocebus cupreus* at the California National Primate Research Center. *Am J Primatol.* Published
98 online July 9, 2023:e23531.

19 19. Lagakos SW. General right censoring and its impact on the analysis of survival data. *Biometrics*.
20 1979;35(1):139-156.

21 20. Hosmer DW, Lemeshow S, May S. *Applied Survival Analysis: Regression Modeling of Time-to-Event Data*.
22 John Wiley & Sons, Ltd; 2008.

23 21. Sjoberg D, Baillie M, Fruechtenicht C, Haesendonckx S, Treis T. pharmaverse/ggsurvfit. Published online
24 February 29, 2024.

25 22. WFU High Performance Computing Facility. Information Systems and Wake Forest University.

26 23. Dick EJ, Owston MA, David JM, Sharp RM, Rouse S, Hubbard GB. Mortality in captive baboons (Papio
27 spp.): a 23-year study. *J Med Primatol*. 2014;43(3):169-196.

28 24. Tardif SD, Mansfield KG, Ratnam R, Ross CN, Ziegler TE. The marmoset as a model of aging and age-
29 related diseases. *ILAR J*. 2011;52(1):54-65.

30 25. Schaaf GW, Justice JN, Quillen EE, Cline JM. Resilience, aging, and response to radiation exposure
31 (RARRE) in nonhuman primates: a resource review. *GeroScience*. 2023;45(6):3371-3379.

32 26. Zedda N, Bramanti B, Gualdi-Russo E, Ceraico E, Rinaldo N. The biological index of frailty: A new index
33 for the assessment of frailty in human skeletal remains. *American Journal of Physical Anthropology*.
34 2021;176(3):459-473.

35 27. Searle SD, Mitnitski A, Gahbauer EA, Gill TM, Rockwood K. A standard procedure for creating a frailty
36 index. *BMC Geriatr*. 2008;8:24.

37 28. Zeng A, Song X, Dong J, et al. Mortality in relation to frailty in patients admitted to a specialized geriatric
38 intensive care unit. *J Gerontol A Biol Sci Med Sci*. 2015;70(12):1586-1594.

39 29. Shi SM, Olivieri-Mui B, McCarthy EP, Kim DH. Changes in a Frailty Index and Association with Mortality. *J
40 Am Geriatr Soc*. 2021;69(4):1057-1062.

41 30. Rockwood K, Howlett SE. Age-related deficit accumulation and the diseases of ageing. *Mech Ageing Dev*.
42 2019;180:107-116.

43 31. Rockwood K, Mogilner A, Mitnitski A. Changes with age in the distribution of a frailty index. *Mechanisms of
44 Ageing and Development*. 2004;125(7):517-519.

45 32. Rashmi R, Mohanty SK. Examining chronic disease onset across varying age groups of Indian adults using
46 competing risk analysis. *Sci Rep*. 2023;13:5848.

47 33. Colchero F, Aburto JM, Archie EA, et al. The long lives of primates and the “invariant rate of ageing”
48 hypothesis. *Nat Commun*. 2021;12(1):3666.

49 34. DiVincenti L, Wyatt JD. Pair housing of macaques in research facilities: a science-based review of benefits
50 and risks. *J Am Assoc Lab Anim Sci*. 2011;50(6):856-863.

51 35. Capitanio JP, Cole SW. Social instability and immunity in rhesus monkeys: the role of the sympathetic
52 nervous system. *Philos Trans R Soc Lond B Biol Sci*. 2015;370(1669):20140104.

53 36. Xie L, Zhou Q, Liu S, et al. Effect of living conditions on biochemical and hematological parameters of the
54 cynomolgus monkey. *Am J Primatol*. 2014;76(11):1011-1024.

35 37. Capitanio JP, Mendoza SP, Mason WA, Maninger N. Rearing environment and hypothalamic-pituitary-
36 adrenal regulation in young rhesus monkeys (*Macaca mulatta*). *Dev Psychobiol*. 2005;46(4):318-330.

37 38. Hannibal DL, Bliss-Moreau E, Vandeleest J, McCowan B, Capitanio J. Laboratory Rhesus Macaque Social
38 Housing and Social Changes: Implications for Research. *Am J Primatol*. 2017;79(1):1-14.

39 39. Weiss A, Adams MJ, King JE. Happy orang-utans live longer lives. *Biology Letters*. 2011;7(6):872.

40 40. Mattison JA, Roth GS, Beasley TM, et al. Impact of caloric restriction on health and survival in rhesus
41 monkeys from the NIA study. *Nature*. 2012;489(7415):318-321.

42 41. Mattison JA, Colman RJ, Beasley TM, et al. Caloric restriction improves health and survival of rhesus
43 monkeys. *Nature Communications*. 2017;8:14063.

44 42. Kirkwood TB, Holliday R. The evolution of ageing and longevity. *Proc R Soc Lond B Biol Sci*.
45 1979;205(1161):531-546.

46 43. Maklakov AA, Chapman T. Evolution of ageing as a tangle of trade-offs: energy versus function. *Proc Biol
47 Sci*. 2019;286(1911):20191604.

48 44. Cohen AA, Coste CFD, Li XY, Bourg S, Pavard S. Are trade-offs really the key drivers of ageing and life
49 span? *Functional Ecology*. 2020;34(1):153-166.

50 45. Cawthon Lang K. Primate Factsheets: Common marmoset (*Callithrix jacchus*). Primate Info Net, Wisconsin
51 National Primate Research Center.

52 46. Cawthon Lang K. Primate Factsheets: Cotton-top tamarin (*Saguinus oedipus*). Primate Info Net, Wisconsin
53 National Primate Research Center.

54 47. López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. *Cell*.
55 2013;153(6):1194-1217.

56 48. Schmauck-Medina T, Mollière A, Lautrup S, et al. New hallmarks of ageing: a 2022 Copenhagen ageing
57 meeting summary. *Aging (Albany NY)*. 2022;14(16):6829-6839.

58 49. López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. Hallmarks of aging: An expanding universe.
59 *Cell*. 2023;186(2):243-278.

60 50. Csiszar A, Podlutsky A, Podlutskaya N, et al. Testing the oxidative stress hypothesis of aging in primate
61 fibroblasts: is there a correlation between species longevity and cellular ROS production? *J Gerontol A Biol
62 Sci Med Sci*. 2012;67(8):841-852.

63 51. Smith DL, Mattison JA, Desmond RA, et al. Telomere dynamics in rhesus monkeys: no apparent effect of
64 caloric restriction. *J Gerontol A Biol Sci Med Sci*. 2011;66(11):1163-1168.

65 52. Bronikowski AM, Altmann J, Brockman DK, et al. Aging in the natural world: comparative data reveal
66 similar mortality patterns across primates. *Science*. 2011;331(6022):1325-1328.

67 53. Arnold C, Matthews LJ, Nunn CL. The 10kTrees website: A new online resource for primate phylogeny.
68 *Evol Anthropol*. 2010;19(3):114-118.

69 54. Chiou KL, Montague MJ, Goldman EA, et al. Rhesus macaques as a tractable physiological model of
70 human ageing. *Philos Trans R Soc Lond B Biol Sci*. 2020;375(1811):20190612.

71 55. Roth GS, Mattison JA, Ottinger MA, Chachich ME, Lane MA, Ingram DK. Aging in rhesus monkeys:
72 relevance to human health interventions. *Science*. 2004;305(5689):1423-1426.

73 56. Colman RJ, Beasley TM, Kemnitz JW, Johnson SC, Weindruch R, Anderson RM. Caloric restriction
74 reduces age-related and all-cause mortality in rhesus monkeys. *Nat Commun*. 2014;5:3557.

75 57. Ward JM, Buslov AM, Vallender EJ. Twinning and survivorship of captive common marmosets (*Callithrix*
76 *jacchus*) and cotton-top tamarins (*Saguinus oedipus*). *J Am Assoc Lab Anim Sci*. 2014;53(1):7-11.

77 58. Arbogast DM, Crews DE, McGraw WS, Ely JJ. Demography and epidemiology of captive former
78 biomedical research chimpanzees (*Pan troglodytes*) 1: Survival and mortality. *American Journal of*
79 *Primateology*. 2023;85(4):e23466.

80 59. Sert NP du, Hurst V, Ahluwalia A, et al. The ARRIVE guidelines 2.0: Updated guidelines for reporting
81 animal research. *PLOS Biology*. 2020;18(7):e3000410.

82 60. Riddle NC, Biga PR, Bronikowski AM, et al. Comparative analysis of animal lifespan. *GeroScience*.
83 2024;46(1):171-181.

84

35 **Primary Figure Legends**

36

37 **Figure 1.** Distribution of natural and health-related euthanasia deaths by species.

38 Boxplot overlay depicts median and interquartile range by species and sex. Proportion of data by sex and
39 species also shown. The vertical dashed line denotes equal counts of males and females by species.

40

41 **Figure 2.** Survival curves for females (A) and males (B) of all 12 species. Data shown are for animals with
42 deaths resulting from natural causes or humane euthanasia for health-related reasons.

43

44 **Figure 3.** Comparison of rate of survivorship decline by quartile and sex. Rates of decline were calculated from
45 fitting an exponential model to the first and last quartiles of the sex-specific Kaplan-Meier survival curves.
46 Males and females are compared by quartile. Rate of decline was generally faster in males within the first
47 quartile with the pattern nearly reversed by sex in the last quartile.

48

49 **Figure 4.** Kaplan-Meier survival curves by sex and species for natural deaths or humane euthanasia for
50 health-related reasons. For each plot, the X-axis scaling (maximum age) is species-specific.

51

52 **Figure 5.** Phylogenetic tree of 12 species analyzed in study. This tree was generated with the 10kTrees
53 Project and modified to match taxonomic names with those used in our study and to simplify the
54 presentation.⁴² Only the 12 species studied herein are represented in the tree; there are many other species of
55 primates in these clades not pictured.

6 Primary Tables

7 Table 1. Sample sizes of primary analysis datasets and species-specific age categories.

8 For each species, age categories and estimated age ranges are shown.^{33,44,45}

Common Name	Species name	Post-filtering sample size*		Age categories			
		Male	Female	Infant	Juvenile	Adult	Geriatric
Baboon	<i>Papio hamadryas</i> spp.	334	669	<12 months	1-4 years	4-15 years	>15 years
Bonnet macaque	<i>Macaca radiata</i>	19	43	<12 months	1-4 years	4-15 years	>15 years
Chimpanzee	<i>Pan troglodytes</i> spp.	48	50	<12 months	1-10 years	10-35 years	>35 years
Common marmoset	<i>Callithrix jacchus</i>	378	453	<6 months	6-18 months	1.5-8 years	>8 years
Coppery titi monkey	<i>Plecturocebus cupreus</i>	32	33	<12 months	1-4 years	4-10 years	>10 years
Cotton-top tamarin	<i>Saguinus oedipus</i>	155	191	<7 months	7-30 months	2.5-10 years	>10 years
Cynomolgus macaque	<i>Macaca fascicularis</i>	82	132	<12 months	1-4 years	4-17 years	>17 years
Japanese macaque	<i>Macaca fuscata</i>	174	196	<12 months	1-4 years	4-15 years	>15 years
Pig-tailed macaque	<i>Macaca nemestrina</i>	173	596	<12 months	1-4 years	4-15 years	>15 years
Rhesus macaque	<i>Macaca mulatta</i>	2465	5742	<12 months	1-4 years	4-17 years	>17 years
Squirrel monkey	<i>Saimiri</i> spp.	53	47	<12 months	1-4 years	4-15 years	>15 years
Vervet/African green	<i>Chlorocebus aethiops sabaeus</i>	60	144	<12 months	1-4 years	4-15 years	>15 years

*Natural or Health-related deaths only

9

10

11

12 Table 2. Maximum and median age at death by sex and species

Common Name	Species name	Maximum observed age in years*		Median age at death in years (range)*	
		Male	Female	Male	Female
Baboon	<i>P. hamadryas</i> spp.	30.3	30.6	11.29(10.41-12.47)	11.65(11.08-12.44)
Bonnet macaque	<i>M. radiata</i>	32.8	21.4	7.93(5.70-14.54)	9.22(7.81-13.49)
Chimpanzee	<i>P. troglodytes</i> spp.	53.3	58.8	33.00(28.41-38.33)	43.96(41.66-45.82)
Common marmoset	<i>C. jacchus</i>	17.3	17.1	5.97(5.41-6.74)	5.31(4.92-5.66)
Coppery titi monkey	<i>P. cupreus</i>	24.4	23.2	8.59(6.92-12.13)	9.16(7.35-14.13)
Cotton-top tamarin	<i>S. oedipus</i>	24.7	23.1	9.60(7.87-11.27)	8.87(7.67-10.57)
Cynomolgus macaque	<i>M. fascicularis</i>	28.4	23.5	6.93(6.21-8.18)	8.62(7.72-9.84)
Japanese macaque	<i>M. fuscata</i>	38.4	30.1	8.19(7.48-9.36)	11.41(10.27-12.70)
Pig-tailed macaque	<i>M. nemestrina</i>	27.9	29.2	8.43(7.49-9.12)	8.96(8.43-9.59)
Rhesus macaque	<i>M. mulatta</i>	44.2	42	7.89(7.65-8.24)	10.26(10.03-10.49)
Squirrel monkey	<i>Saimiri</i> spp.	22.7	21.8	8.78(6.97-10.09)	9.22(6.55-11.19)
Vervet/African green	<i>C. aethiops sabaeus</i>	24.1	30.6	8.34(7.57-10.71)	17.87(15.24-20.23)

*Median age at death is calculated from natural and clinical deaths only; maximum observed age includes animals with any type of death. Maximum ages are from the current dataset only; there are known older animals of some of these species at research institutes, such as a 29-year-old titi monkey male at CNPRC and two 19-year-old male marmosets at SNPRC but these did not meet this study's filtering criteria (see methods).

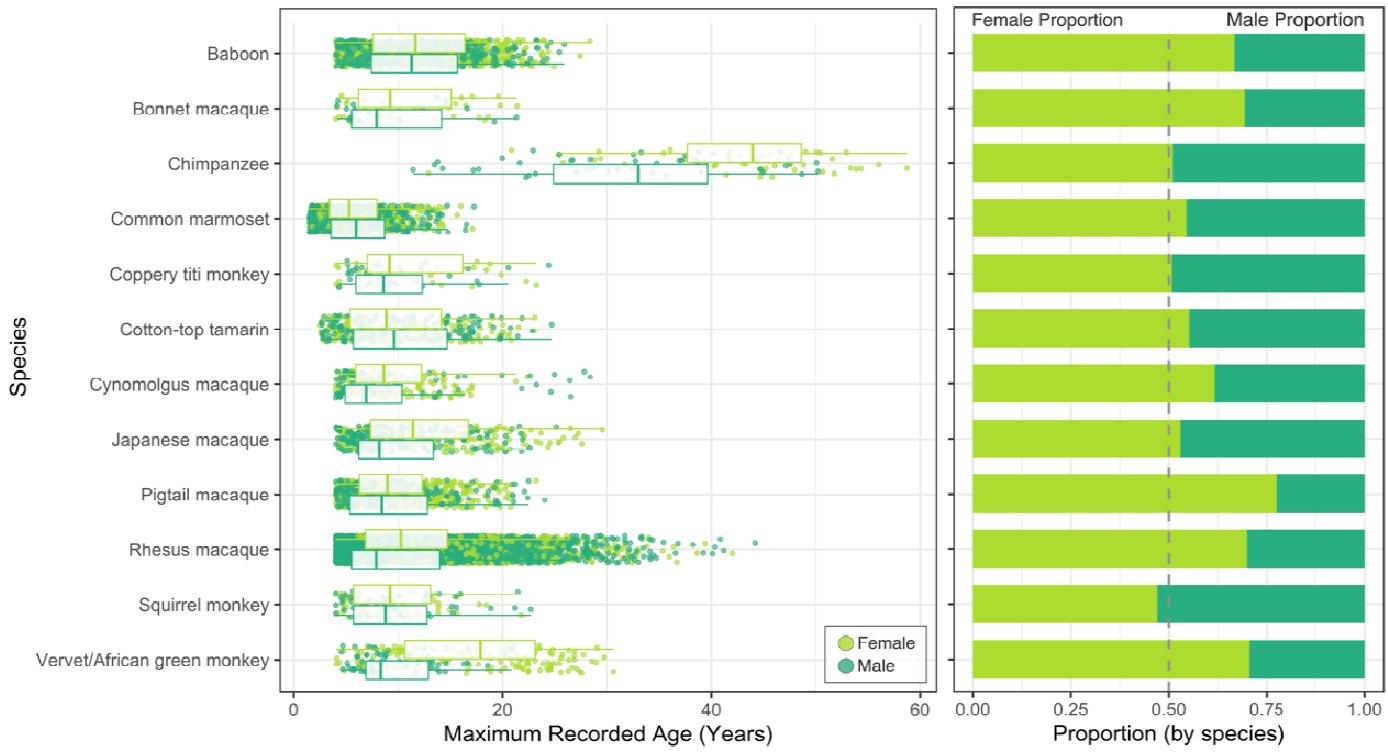
13

14

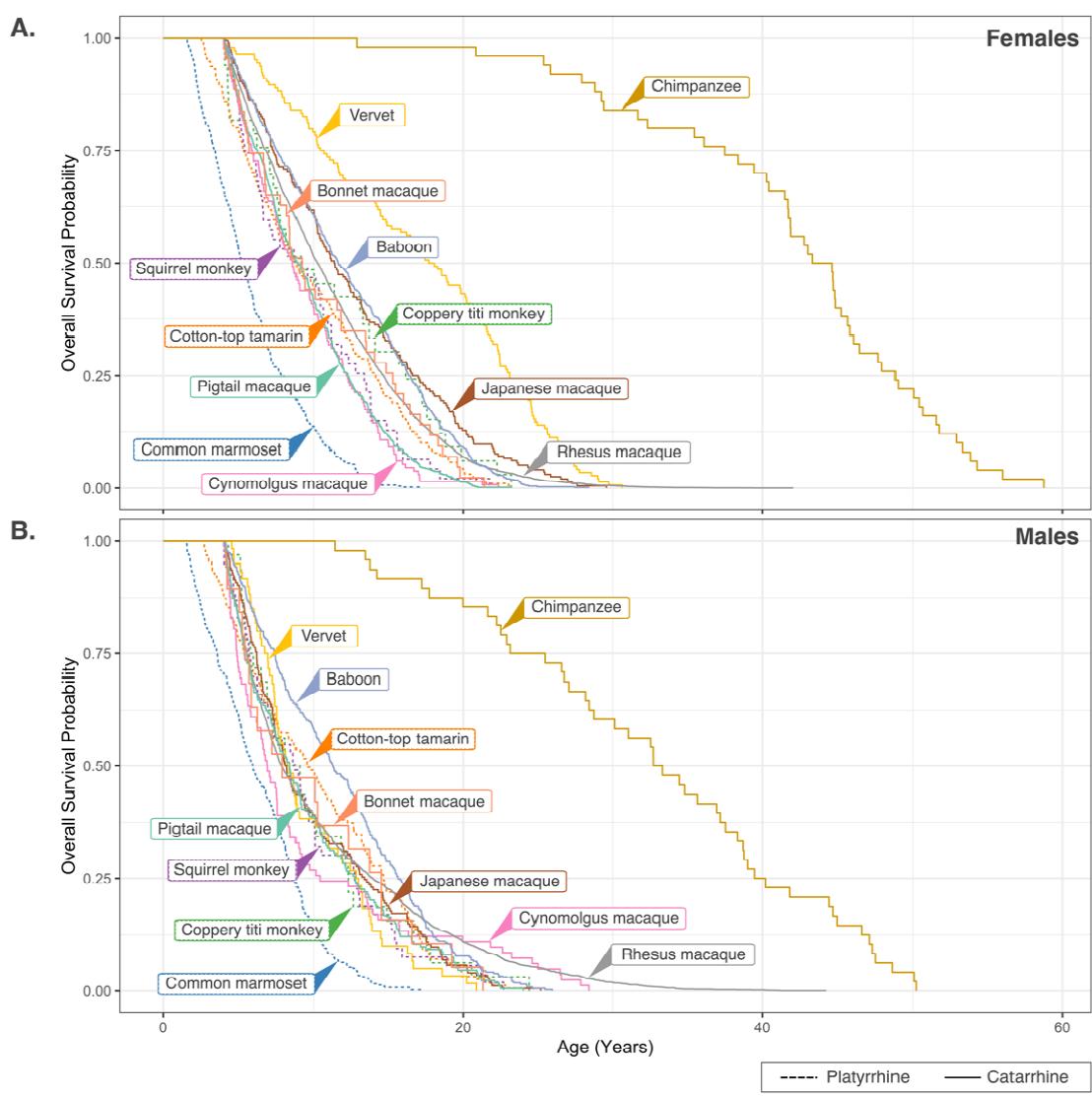
15

16

17

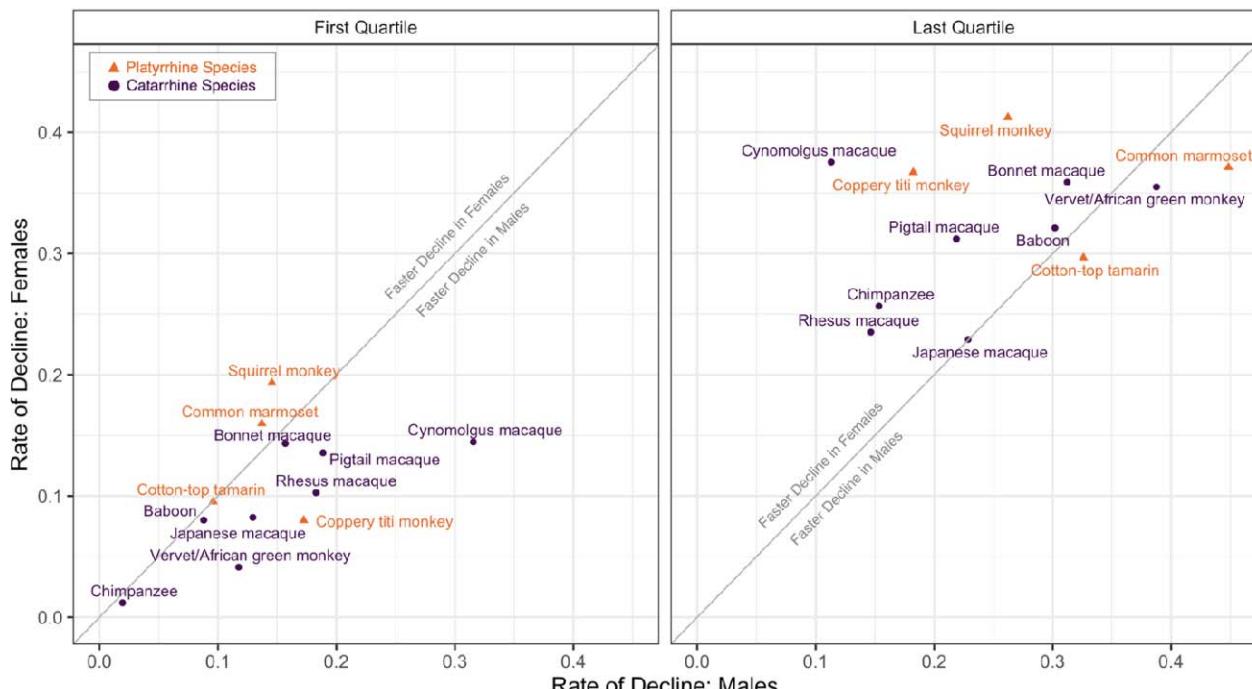

18 **Table 3. Sex-based comparisons of age by species.** Quantile regression for 25th, 50th, 75th, and 85th
19 percentiles. Regression models adjusted for primate location (data source). Distribution of ages by sex were
20 assessed using the Kolmogorov Smirnov test. Complete data used for analyses (natural or clinical deaths) with
21 no censoring.

Species	Max Age Percentile	Years of Age (Male)	Years of Age (Female)	Quantile Regression Estimate	Standard Error	Quantile Regression P-value	Kolmogorov-Smirnov P-Value
Baboon (N=334 M, 669 F)	25 th	7.42 (6.68-7.92)	7.57 (7.09-8.10)	0.68	0.38	0.073	0.352
	50 th	11.29 (10.41-12.47)	11.65 (11.08-12.44)	0.96	0.65	0.141	
	75 th	15.68 (14.80-16.53)	16.40 (15.86-17.12)	0.94	0.57	0.097	
	85 th	17.47 (16.97-18.79)	18.28 (17.70-19.14)	0.62	0.47	0.185	
Bonnet macaque (N=19 M, 43 F)	25 th	5.42 (4.23-7.93)	5.72 (5.03-8.40)	0.30	1.16	0.798	0.794
	50 th	7.93 (5.70-14.54)	9.22 (7.81-13.49)	1.29	2.38	0.591	
	75 th	14.54 (7.93-19.23)	15.32 (11.57-17.76)	0.78	2.76	0.778	
	85 th	16.61 (12.34-21.32)	17.10 (15.32-21.40)	0.50	3.05	0.871	
Chimpanzee (N=48 M, 50 F)	25 th	24.30 (17.71-28.41)	37.47 (29.23-41.66)	14.32	4.42	1.65 x10 ⁻³	1.78x10 ⁻⁵
	50 th	33.00 (28.41-38.33)	43.96 (41.66-45.82)	10.59	2.61	1.03 x10 ⁻⁴	
	75 th	39.84 (37.52-47.14)	48.84 (45.67-51.77)	7.77	3.07	0.013	
	85 th	44.96 (39.47-48.67)	51.57 (48.84-54.32)	5.15	2.58	0.049	
Common marmoset (N=378 M, 453 F)	25 th	3.56 (3.08-4.00)	3.42 (3.08-3.67)	-0.29	0.26	0.274	0.002
	50 th	5.97 (5.41-6.74)	5.31 (4.92-5.66)	-0.59	0.29	0.040	
	75 th	8.71 (8.35-9.19)	7.98 (7.19-8.71)	-0.68	0.35	0.048	
	85 th	10.00 (9.24-10.47)	9.56 (9.11-10.41)	-0.38	0.37	0.303	
Coppery titi monkey (N=32 N, 33 F)	25 th	5.90 (5.18-7.27)	7.04 (4.28-7.81)	1.05	1.43	0.469	0.322
	50 th	8.59 (6.92-12.13)	9.16 (7.35-14.13)	1.04	2.42	0.669	
	75 th	12.32 (9.87-17.77)	16.19 (13.11-18.80)	3.88	2.38	0.108	
	85 th	16.72 (12.31-24.43)	18.43 (15.74-23.23)	1.72	2.47	0.490	
Cotton-top tamarin (N=155 M, 191 F)	25 th	5.69 (4.80-6.52)	5.30 (4.63-6.19)	-0.39	0.55	0.477	0.874
	50 th	9.60 (7.87-11.27)	8.87 (7.67-10.57)	-0.73	0.96	0.446	
	75 th	14.70 (13.35-16.13)	14.17 (12.64-15.28)	-0.53	0.94	0.574	
	85 th	16.74 (15.85-17.68)	16.21 (14.71-17.14)	-0.53	0.74	0.480	
Cynomolgus macaque (N=82 M, 132 F)	25 th	4.89 (4.47-5.61)	5.91 (5.23-6.60)	0.93	0.53	0.082	0.034
	50 th	6.93 (6.21-8.18)	8.62 (7.72-9.84)	1.58	0.72	0.028	
	75 th	10.43 (8.45-15.73)	12.24 (11.01-13.61)	1.97	1.41	0.165	
	85 th	15.73 (12.99-24.63)	13.94 (12.75-15.37)	-2.03	1.86	0.278	
Japanese macaque (N=174 M, 196 F)	25 th	6.23 (5.62-6.58)	7.33 (6.75-8.56)	1.08	0.46	0.021	4.66x10 ⁻⁵
	50 th	8.19 (7.48-9.36)	11.41 (10.27-12.70)	3.26	0.81	6.88 x10 ⁻⁵	
	75 th	13.41 (12.00-15.13)	16.81 (15.40-18.86)	3.23	1.23	0.009	
	85 th	16.33 (14.68-18.34)	19.44 (18.48-21.93)	3.10	0.97	0.002	
Pigtail macaque (N=173 M, 596 F)	25 th	5.39 (5.14-5.94)	6.27 (5.75-6.73)	0.90	0.36	0.013	0.134
	50 th	8.43 (7.49-9.12)	8.96 (8.43-9.59)	0.63	0.55	0.254	
	75 th	12.80 (11.08-14.63)	12.30 (11.70-12.90)	-0.46	0.69	0.510	
	85 th	15.56 (13.77-17.48)	14.17 (13.65-14.90)	-1.19	0.70	0.091	
Rhesus macaque (N=2465 M, 5742 F)	25 th	5.55 (5.45-5.66)	6.85 (6.66-7.01)	1.22	0.10	4.21 x10 ⁻³⁷	2.20x10 ⁻¹⁶
	50 th	7.89 (7.65-8.24)	10.26 (10.03-10.49)	1.89	0.14	1.27 x10 ⁻⁴⁰	
	75 th	13.98 (13.33-14.74)	14.70 (14.41-14.88)	0.90	0.20	7.02 x10 ⁻⁶	
	85 th	17.73 (17.14-18.41)	16.97 (16.72-17.29)	0.24	0.26	0.355	
Squirrel monkey (N=53 M, 47 F)	25 th	5.72 (4.78-6.97)	5.40 (4.95-6.67)	-0.05	0.58	0.934	0.585
	50 th	8.78 (6.97-10.09)	9.22 (6.55-11.19)	0.84	1.00	0.401	
	75 th	12.76 (10.07-15.46)	13.39 (10.65-14.91)	0.79	1.61	0.625	
	85 th	15.25 (12.76-21.18)	13.84 (13.39-18.43)	-0.34	1.91	0.859	
Vervet/African green monkey (N=60 M, 144 F)	25 th	6.86 (5.80-7.44)	10.57 (9.54-12.21)	3.4	0.88	1.49 x10 ⁻⁴	7.92x10 ⁻¹⁰
	50 th	8.34 (7.57-10.71)	17.87 (15.24-20.23)	8.93	1.49	8.98 x10 ⁻⁹	
	75 th	12.93 (10.71-14.51)	23.12 (21.99-24.60)	10.26	1.16	4.51 x10 ⁻¹⁶	
	85 th	13.88 (13.00-16.70)	24.81 (24.25-26.34)	10.98	1.06	2.45 x10 ⁻²⁰	


24 **Figure 1. Distribution of natural and health-related euthanasia deaths by species.**

25 Boxplot overlay depicts median and interquartile range by species and sex. Proportion of data by sex and
26 species also shown. The vertical dashed line denotes equal counts of males and females by species.

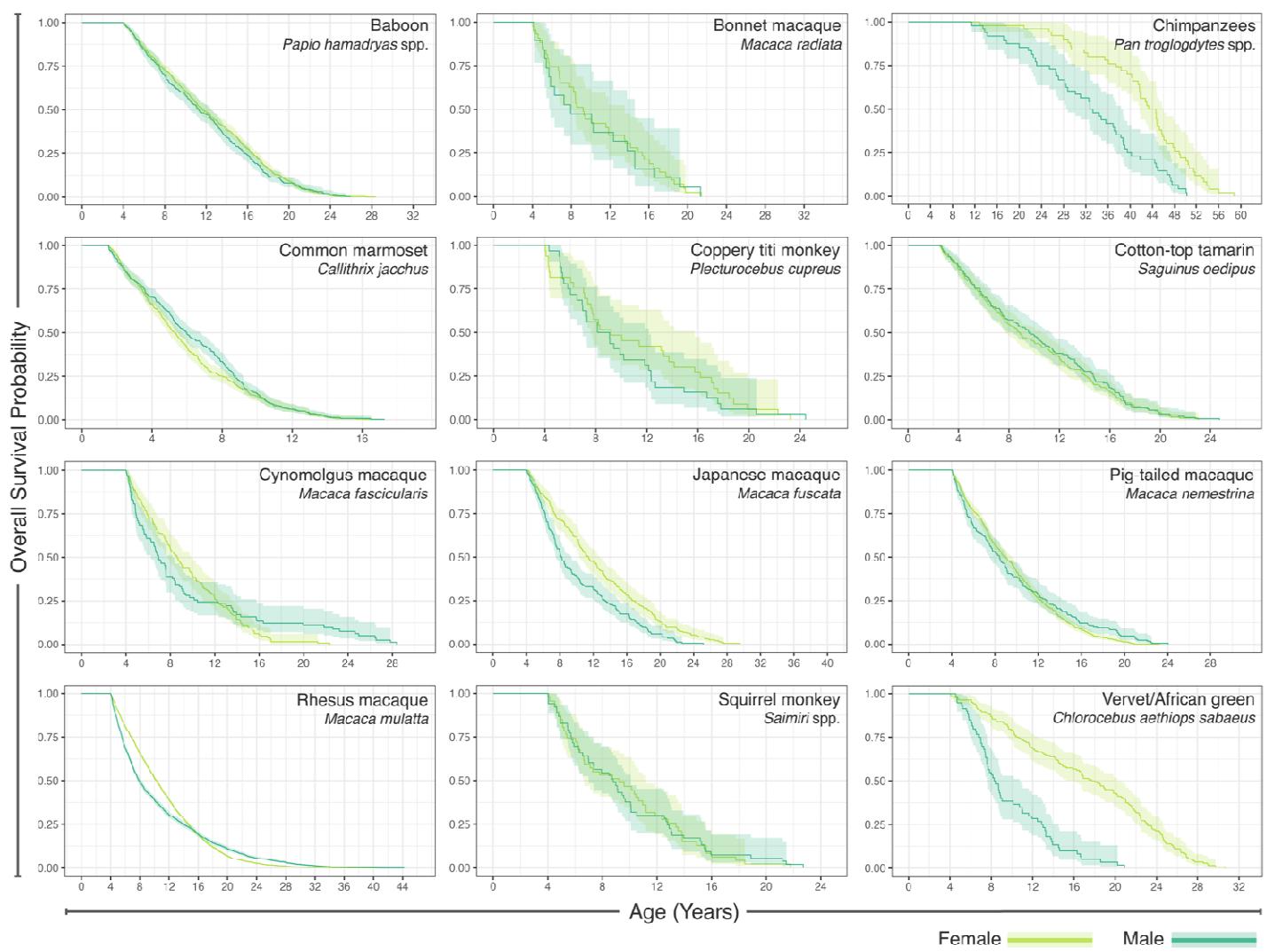
27


31 **Figure 2. Survival curves for females (A) and males (B) of all 12 species. Data shown are for animals with**
32 **deaths resulting from natural causes or humane euthanasia for health-related reasons.**

33

34

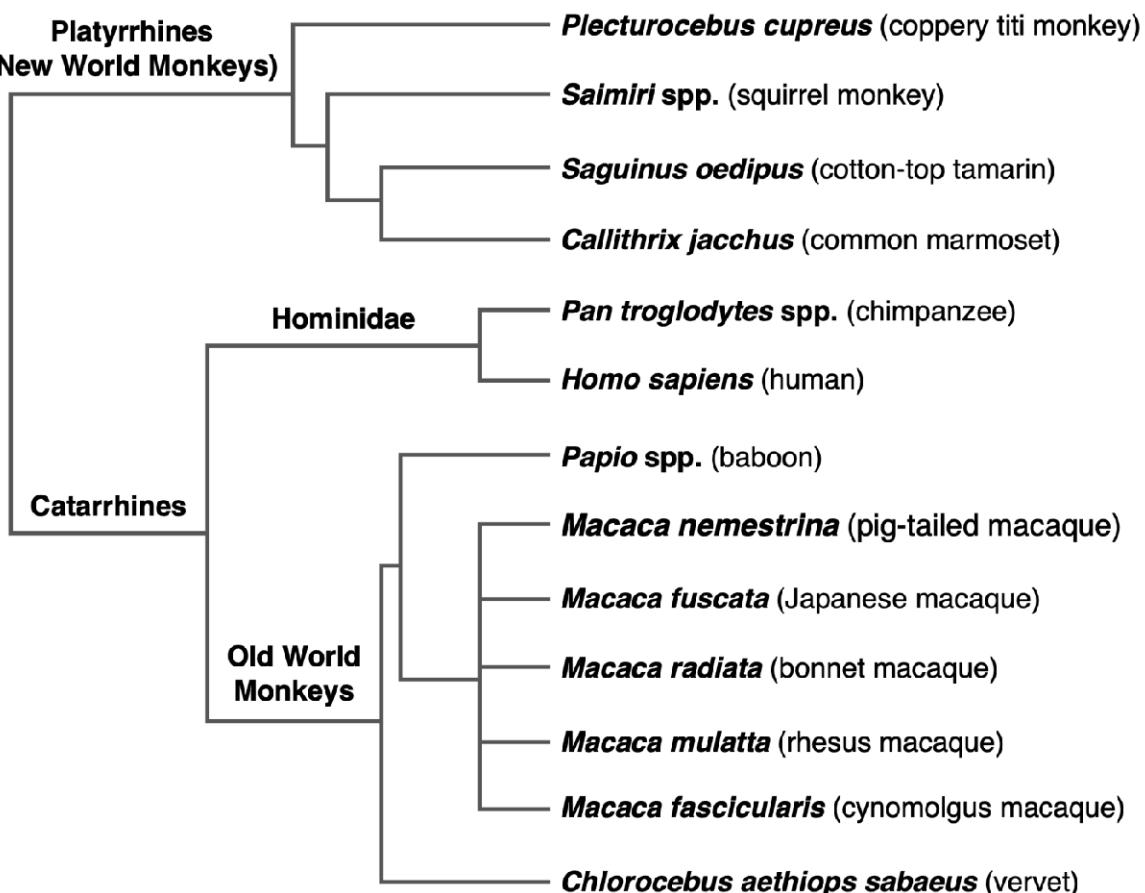
35 **Figure 3.** Comparison of rate of survivorship decline by quartile and sex. Rates of decline were calculated from
36 fitting an exponential model to the first and last quartiles of the sex-specific Kaplan-Meier survival curves.
37 Males and females are compared by quartile. Rate of decline was generally faster in males within the first
38 quartile with the pattern nearly reversed by sex in the last quartile.



39

40

1 **Figure 4. Kaplan-Meier survival curves by sex and species for natural deaths or humane euthanasia for**


2 **health-related reasons. For each plot, the X-axis scaling (maximum age) is species-specific.**

13

14

15 **Figure 5.** Phylogenetic tree of 12 species analyzed in study. This tree was generated with the 10kTrees
16 Project and modified to match taxonomic names with those used in our study and to simplify the
17 presentation.⁴² Only the 12 species studied herein are represented in the tree; there are many other species of
18 primates in these clades not pictured.

