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Abstract 

The encoding of three-dimensional visual spatial information is of ultimate importance in everyday 
life, in particular for successful navigation toward targets or threat avoidance. Eye-movements 
challenge this spatial encoding: 2-3 times per second, they shift the image of the outside world 
across the retina. The macaque ventral intraparietal area (VIP) stands out from other areas of the 
dorsal ‘where’ pathway of the primate visual cortical system: many neurons encode visual 
information irrespective of horizontal and vertical eye position. But does this gaze invariance of 
spatial encoding at the single neuron level also apply to egocentric distance? Here, concurrent 
with recordings from area VIP, monkeys fixated a central target at one of three distances 
(vergence), while a visual stimulus was shown at one of seven distances (disparity). Most 
neurons’ activity was modulated independently by both disparity and eye vergence, 
demonstrating a different type of invariance than for visual directions. By using population activity, 
we were able to decode egocentric distance of a stimulus which demonstrates that egocentric 
distances are nonetheless represented within the neuronal population. Our results provide further 
strong evidence for a role of area VIP in 3D space encoding.  

Introduction 

The Posterior Parietal Cortex (PPC) is composed of many areas that are anatomically and 
physiologically distinct1. Neurons respond to a variety of signals that are largely redundant across 
PPC areas, and their respective functional roles remain elusive. Clinical observation has 
consistently showed that lesions to the PPC strongly impact the generation and guidance of 
spatial awareness2. Moreover, these deficits are especially severe in the depth dimension (e.g. 3–

5 for earlier studies, but see also 6 for recent evidence in that direction), but this link has never 
been well established at a physiological level. The Ventral Intraparietal area (VIP), located in the 
fundus of the intraparietal sulcus, stands out from other areas of the dorsal pathway in one 
respect: many neurons in this area encode spatial information invariant of horizontal and vertical 
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eye position7–9. Such invariance at the single cell level is different from population-based 
approaches which have been suggested for ensembles of neurons carrying an eye-position signal 
(gain field)10–13. 

A similar invariance problem exists in the depth dimension: ever since the invention of the 
stereoscope by Wheatstone14, it has been well established that the difference in projection of a 
single point on the two retinae (binocular disparities) is the source of the clear sense of depth that 
one generally experiences when looking at the environment (stereopsis)15–18. Geometrically, 
binocular disparities depend on the relative distance between a point and the current angle formed 
by the eyes (vergence). Therefore, binocular disparities alone are insufficient to sustain the 
perception of the absolute distance of a point to the observer, or egocentric distance. While today 
there is good agreement that observers are able to perceive egocentric distances from binocular 
vision, including at far distances19–22, where and how this information is computed in the brain 
remains unknown. 

Theoretically, there are at least two ways that egocentric distances could be encoded in 
the brain: either as an explicit encoding through a mechanism equivalent to disparity scaling15, or 
implicitly through a distributed population code23. Some studies have found modulations of neural 
activity by vergence in early visual areas24,25, although these results have not been consistently 
replicated26,27. Furthermore these modulations were highly non-linear, making it unclear how they 
could be combined at a population level15. In humans, disparity tuning has been observed in 
various visual cortical areas including in the PPC28–30. Likewise, in macaque monkeys, disparity 
tuning has been showed in numerous visual cortical areas, starting in the primary visual area V1 
and reaching up to the highest levels of the dorsal stream: the Lateral Intraparietal area 31,32, 
Ventral Intraparietal area (VIP)33,34 and extending into sensorimotor systems including the Parietal 
Reach Region35, the Anterior Intraparietal area36,37 and area V638. In contrast, while conjugate eye 
position signals are omnipresent in the PPC11,39,40, disconjugate (vergence) eye-position signals 
have rarely been investigated. Although some studies did report modulation of neural activity by 
vergence31,32,35,41, suggesting that the PPC could, in principle, encode egocentric distances. 

Since area VIP demonstrates invariance of spatial locations to conjugate (2D) eye-
positions, here we ask whether this invariance extends to disconjugate eye-positions (depth). We 
investigated neural activity in area VIP in response to stationary and moving stimuli at various 
egocentric distances, while animals fixated at different distances. We found that neural activity is 
modulated by stimulus motion direction, stimulus disparity and vergence angle (fixation distance). 
To further characterize single-cell activity, we modelled neural activity using a Linear-Nonlinear 
Poisson model42,43. By inverting this model, we were able to recover egocentric distances of our 
stimuli, with biases consistent with the psychophysical literature. Our results suggest that 
egocentric distances are encoded implicitly through a heterogenous population code and provide 
strong evidence for a role of area VIP in 3D space encoding. 

 

Results 
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Figure 1: A) Monkeys were trained to fixate a central target while a Random Dot Pattern (RDP) was 
shown stationary or moving in the fronto-parallel plane at one of seven possible distances (shown in 
centimeters at the bottom). B) The fixation target (red dot) could have one of three possible distances 
to the monkeys, requiring different vergence angles (shades of green). Horizontal lines represent the 
possible stimulus distances. Numbers on the left are disparities in deg and on the right egocentric 
distances in cm. Note that the stimulus distances are always the same, but their disparity depends 
on fixation distance. C) Time-course of a trial. Initially, only the fixation target was shown for 800 ms. 
Then, a static RDP was displayed for 250 ms, after which it started moving at a constant speed on a 
circular pathway44 for 2000 ms, completing 1 and 1/4 cycle. D) Peristimulus Time Histogram of an 
example neuron as a function of motion direction (abscissa), disparity (ordinate) and vergence angle 
(panels). Colors represent firing rate in Hz. E) Hypothetical neuronal tuning curves. Each column 
represents one type of encoding as a function of disparity (top) or egocentric distance (bottom). The 
neuron in the first column would be tuned to disparity irrespective of egocentric distance. The neuron 
in the second column would be tuned to egocentric distance irrespective of disparity. And the neuron 
in the last column would exhibit mixed selectivity to both disparity and vergence. Figures on the right 
depict the relationship between vergence, disparity and egocentric distance. F) Representation of 
the stimuli geometry used in this experiment. Here distance is represented as vergence-demand 
(binocular parallax), that is the vergence angle that would be required to fixate at this distance. In 
this space, a simple relationship exists between vergence, disparity and vergence-demand: vergence 
demand = vergence - disparity. 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 31, 2024. ; https://doi.org/10.1101/2024.07.31.605976doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.31.605976
http://creativecommons.org/licenses/by-nc-nd/4.0/


Task 
Two macaque monkeys (macaca mulatta) were trained to keep fixation on a central target. 

The target had one of 3 possible egocentric distances corresponding to vergence angles of 1.5, 
3.5 and 5.5 deg (see Figure 1A, B). After an 800 ms fixation period, a static Random Dot Pattern 
(RDP) was presented dichoptically for 250 ms, after which it started to move at a constant speed 
for 1 and 1/4 cycle of a circular path in the fronto-parallel plane (see Figure 1C). Below we refer 
to these three temporal intervals as the fixation period, stationary period and the motion period. 
The RDP had one of 7 egocentric distances (ranging from 27 to 229 cm in front of the animals), 
resulting in multiple combinations (each termed a condition in the following) of disparities relative 
to fixation ranging from -5 to +5 deg, in steps of 1 deg, with a negative sign corresponding to 
crossed disparities (closer than fixation). Eye-positions were recorded using scleral search coils 
and animals successfully maintained fixation throughout the duration of the trials for liquid reward 
(see Figure S1). We recorded neural activity from 113 individual neurons (89 and 24 for animals 
C and H respectively), with an average number of 9±2 trials per cell and condition. In the following, 
we analyze first neural tuning for basic features (motion direction, disparity and vergence), before 
turning to egocentric distance encoding. 
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Figure 2: A) Examples of neurons’ tuning curves in the motion period (excluding the first ¼ of cycle). 
Each row displays the activity of an individual neuron. Left column shows activity as a function of 
disparity marginalized over directions. The right column shows activity as a function of direction 
marginalized over disparity. Colors represent different fixation distances. Cells 42 and 78 show a 
preference for near and far disparities respectively, and their activity was largely unaffected by 
vergence angle. In sharp contrast, the activity of cell 32 is clearly modulated by vergence angle. B) 
Top: Direction tuning of a neuron. Colors represent different fixation distances. Thin lines are activity 
for each distance condition separately and thick lines are averages. Bottom: Distribution of 
differences in Preferred Direction across conditions for all the neurons recorded from both animals 
(pink). The black distribution shows differences in preferred directions in a randomly shuffled dataset, 
and the light pink distribution shows differences in preferred directions when the dataset is resampled 
within conditions (for identical visual stimuli), indicating expected measurement noise when preferred 
directions are perfectly stable. C) Left: Depth Sign Discriminant Index (DSDI) for all cells sorted by 
magnitude. Saturated lines indicate neurons whose 95% confidence did not include 0. A negative 
DSDI indicates a preference for crossed disparities (near), and positive for uncrossed disparities 
(far). Insets represent the fraction of neurons with a significant preference for crossed (C) vs 
uncrossed (U) disparities, and 95% Confidence Intervals. Middle: Vergence Distance Discriminant 
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Index (VDDI). Graphical details are identical to the left subfigure. Here a negative VDDI indicates a 
neuron that responds more during near fixations than far fixations, and conversely for a positive sign. 
Right: VDDI plotted as a function of DSDI for each neuron (black dots). Black line shows regression 
line and shaded area confidence interval. On the top and right are marginal distributions (shaded 
areas) and best Gaussian Mixture Model fit (thick lines). 

 

Direction tuning 
A dominant feature of area VIP is a high degree of selectivity for motion direction44,45. All 

neurons demonstrated significant directional tuning for fronto-parallel visual motion in at least one 
of the 21 (3 vergence x 7 disparities) motion period conditions (p<0.05, uncorrected for multiple 
comparison). To estimate the consistency of directional tuning across disparity33,46 and vergence, 
we computed pairwise differences of preferred directions across the 21 conditions for each cell. 
Figure 2B (bottom, “PD differences”) plots the distribution of these differences. This distribution 
was more narrowly centered on 0 than the same distribution computed on a randomly shuffled 
dataset (Figure 2B, bottom, “Shuffled”), and their medians were significantly different indicating 
that preferred directions are more stable across conditions than expected by chance. We also 
compared this distribution to what should be expected from measurement noise by resampling 
the dataset within conditions (Figure 2B, bottom, “Measurement noise”), that is for identical visual 
stimuli where we expect preferred directions to remain perfectly stable. The median of the 
measured distribution was not significantly different from the median of the measurement noise 
distribution, demonstrating that neurons’ preferred motion direction was constant across vergence 
and disparity. 

Disparity tuning 
Another characteristic feature of area VIP is a clear selectivity for binocular disparities, 

including a preference for near (crossed) disparities33,34. In this dataset, 55% of the neurons 
showed a significant tuning for disparity during the motion period (Kruskal-Wallis test, p<0.05, 
uncorrected for multiple comparisons). We assessed their preference for crossed vs. uncrossed 
disparities by computing a Depth Sign Discriminant Index (DSDI)47,48. A DSDI of -1 indicates a 
preference for crossed disparities, of +1 a preference for uncrossed disparities and of 0 a cell that 
responds equally to crossed and uncrossed disparities. This DSDI index was significantly different 
than 0 for 51% of the neurons (permutation test, p<0.05, uncorrected for multiple comparisons). 
Among this subpopulation of neurons, 78% (45/58) exhibited a preference for crossed (near) 
disparities (Figure 2C, left), in good agreement with previous results33,34. The distribution of DSDI 
values appeared bimodal (see Figure 2C, right), suggesting that it reflects a binary class of 
disparity receptors. We tested this hypothesis by fitting a Gaussian Mixture Model (see Methods) 
to the distribution of DSDIs and found that a model including 2 components fitted data better than 
a model that assumed a unimodal distribution of DSDIs. 

Vergence tuning 
Finally, we examined neurons’ selectivity to fixation distances (vergence), a feature that 

remains unknown in area VIP. Since in our dataset the range of simulated fixation and stimulus 
distances was fixed, vergence and disparities are unavoidably anti-correlated (see Figure 1F). 
Consequently, we only included comparable disparities (-1, 0 and +1 deg relative to fixation 
distance) in these analyses. We found that 33% (37/113) of cells were significantly tuned to 
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vergence during the motion period, 17% (19/113) during the stationary period, and 26% (29/113) 
during the fixation period where only the fixation target was displayed (Kruskal-Wallis test, p<0.05, 
uncorrected for multiple comparisons). Out of the entire dataset, 11 cells remained significantly 
tuned for vergence throughout the 3 stimulus periods. Therefore, while selectivity for fixation 
distance is not as pronounced as motion or disparity in area VIP, it remained well above chance 
level. 

For each cell we then computed a Vergence Distance Discriminant Index (VDDI, see 
Methods), by analogy with the Depth Sign Discriminant Index. This index varies between -1, 
corresponding to a preference for near fixation distances (within the range of distances tested 
within this experiment), and +1 to a preference for fixation at far distances; here again restricting 
analyses to matching disparities across vergence angles. 28% (32/113) of cells had a VDDI 
significantly different than 0 (see Figure 2C, middle; permutation test, p<0.05). In contrast with 
disparity, there was no clear asymmetry between near and far fixation distances, and the 
distribution of VDDI values appeared unimodal (see Figure 2C, right). A Gaussian Mixture Model 
that includes only 1 component fitted data better than a model assuming a bimodal distribution 
(see Methods). Finally, there was a clear and significant anti-correlation (resampling, r = -0.62, 
p<0.001) between the cells’ disparity preference (DSDI) and cells’ fixation preference (VDDI), 
even though we only included conditions with identical ranges of disparities in this analysis. Put 
differently, cells selective for fixation at closer distances tend to be selective for stimuli with 
uncrossed disparity (farther than fixation), and conversely for cells selective for fixation at farther 
distances. 

Egocentric distance 
As a next step, we aimed to determine if neural responses to stimulus disparity and 

vergence were independent or not at a single cell level. If neurons are tuned to absolute distance, 
they should exhibit stable activity when stimulus distance remains constant (see Figure 1E, middle 
column), despite changing disparities and vergence. In contrast with this hypothesis, we found 
that 69% of the neurons (77/113) significantly changed their activity with constant egocentric 
distance (Kruskal-Wallis test, p<0.05, uncorrected for multiple comparisons). Among the 
remaining 36 neurons, only 4 demonstrated significant response to a specific distance (Kruskal-
Wallis test, p<0.05), and none when applying a Holm-Bonferroni correction for multiple 
comparison. 

The opposite reasoning is that if a neuron is tuned to the egocentric distance of a stimulus, 
its tuning for disparity should invert as fixation distance crosses the neuron’s preferred egocentric 
distance. Although we did not test all possible distances within the visual scene, our stimuli 
included a broad range of egocentric distances and such inversion should be evident in at least 
some cells. We resampled our dataset for each neuron separately and computed the DSDI for 
the smallest and largest vergence angle on each sample. We then computed the 95% two-sided 
confidence interval of the difference of DSDI between the 2 vergence. This confidence interval 
did not include 0 for less than 4% of the neurons (4/113), and none of the neurons when applying 
a Holm-Bonferroni correction for multiple comparison. 

In summary, we found no evidence for a direct representation of egocentric distance by 
individual neurons in area VIP (shifting of disparity tuning curves by vergence angle): almost all 
neurons varied their activity when disparity or vergence changed but the stimuli maintained their 
egocentric distance, and no neuron inverted its disparity sign preference with vergence angle. 
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Yet, we still found a tuning for both disparity and vergence angles, which suggests that egocentric 
distance is encoded at a population level. In the next sections, we investigate how reliably these 
variables, including egocentric distance, can be decoded from population activity. 
 
 

 
Figure 3: A) Depiction of the Linear-Nonlinear Poisson model. Variables (Vergence, Disparity and 
Motion) contribute additively to the activity of the neuron and are then passed through a static 
exponential nonlinearity. Bottom inset shows fraction of neurons tuned jointly to combinations of 
variables (for example DM corresponds to a joint tuning to Disparity and Motion), as a function of 
fraction of joint-tuning predicted from an independent tuning to each variable. B) Example of 
predicted tuning curves for the same 3 neurons as in Figure 2. Solid lines are best model fit to the 
neural responses (+/- SEM) as shown by individual points. C) Decoded vergence (top-left), disparity 
(top-right) and motion direction (bottom-left) during the Motion period as a function of the stimulus 
values. Colors show different fixation distances and shaded areas are 95% confidence interval of 
decoded values. Dashed lines show median decoded values during the Fixation and Stationary 
periods (see Figure 1C), which were not fitted to our model. Bottom-right subplot shows median and 
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95% Confidence Interval difference decoding error (distance to true value) between the actual and 
randomly shuffled dataset, for all 3 variables and different stimulus periods (F=Fixation, 
S=Stationary, and M=Motion). A negative number indicates a better decoding accuracy than 
expected from chance. Note that units for different variables are different and cannot be directly 
compared. D) Egocentric distance prediction during the Motion period (purple) as a function of 
stimulus distance (abscissa) and comparison with results from human data from Mon-Williams & 
Tresilian (1999, orange)19 and Viguier et al. (2001, green)20. 

 

Encoding model 
To better characterize the neuronal tunings, we fitted a Linear-Nonlinear Poisson (LNP) 

spiking model to our data42,43. This class of models has previously been showed to account well 
for activity in the PPC42,49. This model assumes that task variables contribute additively to the 
neurons firing rate then passed through a static nonlinearity (see Figure 3A). While the source 
and shape of this static non-linearity remains unclear, differences in firing rate of individual 
neurons when two variables co-vary is linearly related to the differences in firing rate when each 
variable varies individually on a logarithmic scale (see Figure S5), demonstrating that an 
exponential non-linearity approximates neurons’ activity well. 

To assess which variables contribute to the activity of each neuron, we used a cross-
validated forward nested-search approach (see Methods). In short, each variable (motion, 
disparity, vergence) was added sequentially. The variable that most improved the likelihood of 
the model, estimated on an unfitted test-set, was preserved. We repeated this process until no 
more variables improved the likelihood of the model. This approach let us estimate jointly which 
variables contribute to the neuron’s activity and the shape of their tuning curves. Figure 3B shows 
examples of model fits for the same neurons as in Figure 2. 

Results are in good agreement with previous analyses. With this approach we found that 
89% of cells are tuned to motion, 81% to disparity and finally 64% to vergence. Predictions from 
model fits were able to replicate all results from previous analyses (see Figure S6), demonstrating 
that it provides a good description of a neuron’s activity. The overall correlation between actual 
and predicted firing rates was 0.91. The correlation between the DSDI and VDDI measured and 
predicted from the model were respectively 0.99 and 0.94. We found no evidence for a joint coding 
of variables above chance level (see Figure 3A), suggesting that the encoding of these variables 
is homogeneously distributed throughout the population. 

Decoding 
The LNP encoding model generates probability functions of neural activity based on task 

variables, and can be inverted to predict task variables given the population activity. Specifically, 
for each neuron, we can compute the probability of each combination of task variables given the 
neurons’ current firing rate. We can then determine the stimulus values that are most likely to 
have produced the neural activity across the population. Since cells were recorded separately, 
we simulated population activity by randomly picking 1 trial from identical disparity and vergence 
conditions independently for each cell 10,000 times and decoded the most likely stimulus values. 
Figure 3C shows decoding results for all 3 task variables (motion direction, disparity and 
vergence) during the motion period. 

We could decode vergence angle with a mean precision of 0.15 degree (SD of the 
distribution of decoded values). Decoded vergence was approximately unbiased for the fixation 
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distance of 3.5 deg, but was significantly overestimated for a vergence angle of 1.5 deg (far 
fixation) and underestimated for a vergence angle of 5.5 deg (near fixation; median decoded 
vergences respectively 1.96 and 4.71, p<0.001). 

We found that we could similarly decode disparity with a good level of precision. The mean 
error was 0.67 deg. Decoded disparities were significantly underestimated at the most extreme 
disparity values (-5 and +5 deg, decoded values respectively -3.6 and +3.5, p<0.001), as well as 
for the mean bias over crossed and uncrossed disparities (mean bias respectively +0.45 and -
1.0). However, there was no statistical difference between the mean errors for crossed vs. 
uncrossed disparities (resampling of the mean error, p=0.85). We also found no difference 
between decoding precisions at the different fixation distances. 

Decoded motion direction was excellent: the mean precision for motion direction was 8 
deg and we found no interactions with vergence or disparities. 

Our model was fitted to neural data during the motion period exclusively. However, if these 
variables are encoded by the population of neurons and their tuning curves remain relatively 
stable across stimulus periods, we should be able to decode the stimulus variables during the 
other, unfitted, stimulus periods. These results are plotted alongside data from the Motion period 
in Figure 3C. Decoding performance (both precision and accuracy) were unsurprisingly 
significantly poorer than during the motion period. Yet, we compared decoding accuracy 
(difference to true variable value) with that of a randomly shuffled dataset and found that we could 
decode task variables above chance level for all 3 stimulus periods (see Figure 3C, bottom-right). 

In summary, our results show that information about motion direction, stimulus disparity 
and vergence can be decoded from population activity in VIP. We found that decoded vergence 
was approximately unbiased at a distance of 48 cm, but were overestimated for near fixations 
(farther than fixation) and underestimated at far fixation (closer than fixation). Similarly, decoded 
disparities were consistently smaller than their true value (closer to fixation). We used these 
variables to recover egocentric distances of the stimuli. Figure 3D shows the decoded distance 
during the motion period. Decoded distances were overestimated for the nearest stimuli. This was 
true for all vergence angles for stimuli at both 27 and 31 cm. Inversely, decoded distances were 
underestimated for all vergence angles for any stimuli farther than 48 cm. These results should 
be compared to psychophysical measurements of human distance estimation. Figure 3D plots 
results from 2 studies that explicitly measured binocular distance perception. Notably, both 
studies found, as in our results, an overestimation of close distances and an underestimation of 
far distances, with an inversion of this bias somewhere between 40 and 50 cm. These biases are 
also comparable in amplitude to those measured in humans. 

Discussion 

The ventral intraparietal area (VIP) stands out from other areas of the dorsal pathway of 
the macaque visual cortical system: many neurons encode spatial information invariant with 
respect to horizontal and vertical eye position7,8. Here we asked if such eye position invariance is 
also found for distance. Such an invariance would correspond to a shift of disparity-tuning curves 
by vergence angle (see Figure 1F). Our data do not provide evidence for this hypothesis at the 
scale of individual neurons. Instead, we found that individual neuron’s activity was well described 
by a Linear-Nonlinear Poisson model (LNP), and that a gaze invariant encoding of egocentric 
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distance can be achieved at a population level. This finding is important for at least two major 
reasons: first, the role of area VIP for behavior is yet not fully understood. It has been implicated 
in goal-directed navigation33,44 (visual–vestibular interactive responses) but also threat detection 
and/or avoidance50–52. Both behavioral contexts require a robust estimation of egocentric 
distance. Our data clearly show that the relevant information is multiplexed in the population 
activity of area VIP. Second, a functional equivalent of macaque area VIP has been identified in 
humans53,54. Hence, we can infer from our current findings that the neural encoding in the posterior 
parietal cortex of humans also contains such information. 

Individual tuning 
Almost all neurons exhibited selectivity for motion direction. Consistently with previous 

studies33,34, we found that directional tuning in area VIP was unaffected by stimulus disparity. 
Here, we extend this finding by showing that this directional tuning is also unaffected by changes 
in vergence angle (Figure 2B). This new finding further demarcates the functional roles of area 
VIP as compared to area MST, since cells in the latter often flip their directional selectivity with 
disparity34,46,55. Furthermore, 78% of the neurons significantly tuned to non-zero disparities 
preferred crossed (near) disparities. This result confirms previous findings that neurons in area 
VIP have a preference for near extrapersonal space33,34,45, regardless of fixation depth. A similar 
overrepresentation of crossed disparities has been found in other areas of the PPC31,32,35. A 
smaller, but consistent, overrepresentation of crossed disparities has also been observed in early 
visual areas. Sprague et al. (2015)56 have argued that this bias is a byproduct of the oversampling 
of cells from the lower hemifield. The same argument is unlikely to apply for the PPC, first because 
the overrepresentation of crossed disparities is far stronger, second because receptive fields in 
the PPC are very large, with very few cells being exclusively selective to the upper or lower 
hemifield7,44,45,57, and finally because area VIP is not organized in a retinotopic manner54 making 
it less likely that receptive fields from the lower visual hemifield have been oversampled. 

We have found no clear preference for fixation distances across the population. However 
we found a negative correlation between vergence and disparity (Figure 2C), a characteristic 
previously reported in LIP neurons32. This result is not extremely surprising, considering the 
inverse relationship between fixation distance and disparities within the visual scene. For 
instance, when fixating at infinity all points within the visual scene have crossed disparities, so it 
would not make sense for a neuron highly selective for fixation at infinity to also be selective for 
uncrossed disparities. Nonetheless, this finding demonstrates that the tuning characteristic of 
individual neurons is not random; which might be evidence of a coding scheme, such as efficient 
coding. 

Eye-position signals 
 We have shown that neurons activity in area VIP are modulated by vergence eye-posture. 
While these modulations were small, their magnitude (Spikes/deg) is comparable with 
modulations that have been showed for version (conjunctive) eye-position signals throughout the 
cortex8,11,39,58–61, and allowed decoding vergence eye-posture with a reasonable level of precision. 
Furthermore, these small modulations are amplified by the non-linear output of neurons. In 
particular, neurons in area VIP tend to prefer higher motion speeds than used in our study45. We 
can predict that the small but consistent vergence modulations reported here would be 
dramatically amplified at higher motion speeds. Finally, we found that this representation was 
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stable enough that we could decode vergence eye-posture at all stimulus periods, even though 
our model was fitted to neural activity during the motion period only. 
 Theoretically, three signals could contribute to this vergence signal: sensed eye-
position62,63, efference copy/corollary discharge signals11, or vertical disparities64,65. All three cues 
have been showed to contribute to perception66–68 or have been suggested to be the neural basis 
of perceptual localization11. Here we used stimuli where cues were congruent, and consequently 
we cannot dissociate which one contributed to the eye-position signals. Furthermore, we only 
used symmetrical vergence eye-postures (straight-ahead). In principle, vergence could be 
represented as a proper vergence eye-posture signal, or as a combination of monocular eye-
position signals. Further investigations, using a broader range of vergence and version eye-
positions, and especially asymmetrical eye-postures, are required to answer this question. 

It should be noted that this result does not directly imply that observers have conscious 
access to their vergence eye-posture69. Indeed, many visual cues are known to be used by the 
brain without conscious access to them. It would not even be unique in binocular vision alone, 
where observers have poorer access to absolute disparity information than relative disparity 
information70,71 as well as no conscious access to vertical disparity information72. 

Distance estimation 
We did not observe distance-tuned neurons in our population (neurons that shift their 

tuning curves based on vergence, see Figure 1F). Yet we have shown that it is possible to recover 
egocentric distances at a population level, based on vergence and disparity signals. That 
binocular disparities alone are insufficient to recover egocentric distance has long been 
appreciated73, starting with Wheatstone himself74. Whether observers are able to perceive 
egocentric distances based on binocular vision has been the subject of a longstanding debate 
initiated by Helmholtz and Hering73. Today there is a general agreement that egocentric distances 
can be estimated from binocular vision (but see69 for a new take on Hering’s point of view). 
Psychophysical studies have consistently found biases in distance estimation with an 
overestimation of close distances, and underestimation of far distances19–22. We have found that 
these biases are consistent with our decoded results. 

In any case, we have shown that both disparity and vergence signals coexist within the 
same area of the PPC. It would be surprising that the visual system does not make use of these 
signals while they are readily accessible. 

What is area VIP for? 
Area VIP is not typically considered as part of the classical pathway for binocular vision15–

18. Yet we found that in this area a majority of neurons are tuned to both disparity and vergence. 
Binocular disparities can be discriminated just as quickly as luminance75,76 and are sufficient to 
sustain the orienting of attention in depth77. Furthermore at least in some circumstances, crossed 
(near) disparities more potently orient attention78,79. Finally behavioral and physiological studies 
suggest a link between spatiotopic representations and the orienting of attention80. Since area 
VIP is (1) one of the areas whose activity is most strongly modulated by attention81; (2) has cells 
with spatiotopic, or at least craniotopic, receptive fields7,8; and (3) exhibits a strong over-
representation of crossed disparities33,34; then it seems likely that area VIP is involved in the 
orienting of attention in 3-dimensional space and its role for the maintenance of 3-dimensional 
perceptual stability. 
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Conclusion 
 In conclusion, we have shown that neurons’ activity in area VIP are modulated by motion, 
disparity and vergence eye-posture. In addition, we have shown that these variables are encoded 
independently, but allow recovering egocentric distance at a population level. This encoding 
scheme is reminiscent of the gain-field neurons for conjunctive eye-position82 and likely includes 
speed tuning as well. This mechanism could provide an answer to how various types of visual 
constancies, such as speed, depth and size constancy83–85 are implemented at a neural level. 

Methods 

Animals 
Two adult rhesus macaques (Macaca mulatta: 9.2kg and 9.5kg) have been used for this 

study. All treatments regarding animal care were in accordance with German and international 
published guidelines on the use of animals in research (European Communities Council Directive 
86/609/ECC). 

Procedures, materials and methods are described in more detail in Bremmer et al. (2013)33. 
In short, animals were implanted with a head-holding device, binocular scleral search coils and a 
recording chamber under general anesthesia. Chambers were located over the Parietal sulcus 
based on MRI scans for each animal. In one animal the recording chamber was placed over the 
left cortical hemisphere, in the other it was placed over the right cortical hemisphere.  

Stimuli 
We used a CRT video projector (Electrohome ECP 4100, Electrohome, Canada) to back-

project the visual stimuli onto a screen that subtended the central 70x70 deg of the animal’s visual 
field at 48 cm. The stimuli, random dot pattern, were presented stereoscopically via LCD shutter 
goggles (Silicon Graphics, customized, US) at a rate of 120 Hz interlaced, meaning that each eye 
was shown the stimuli at 60 Hz. Each trial started with the presentation of a central fixation target 
(800 ms) at one of three egocentric distances corresponding to a vergence angle of 5.5°, 3.5° and 
1.5° relative to the animal or -2°, 0° and +2° relative to the screen. These values correspond 
geometrically to distances of 31 cm, 48 cm and 101 cm relative to the animal, i.e., within, at the 
limit and beyond peripersonal space of a macaque monkey86. After the fixation period, a stationary 
Random Dot Pattern (RDP) was presented for 250 ms at 1 of 7 possible distances in 
pseudorandom order, defined by a disparity ranging from -3° to +3° relative to the display screen. 
These disparities corresponded geometrically to distances of 27, 31, 38, 48, 65, 101 and 229 cm 
relative to the animal (Figure 1). As for vergence, these values were within, at the limit of and 
beyond peripersonal space. The RDP then started moving along a circular path in the fronto-
parallel plane87 for 2000 ms (1 cycle: 1600 ms). Stimuli had a constant retinal speed and were 
corrected for the inter-ocular delay introduced by the sequential stereoscopic system.  

Procedure 
During experiments, monkeys were seated comfortably in a primate chair with their heads 

fixed. For each recording session, a tungsten electrode (impedance 1-2 MΩ at 1 KHz) was 
inserted into the lateral bank of the IntraParietal Sulcus (IPS). The electrode was lowered using 
a hydraulic microdrive (Narishige, Tokyo, Japan) until a neuron could be isolated over background 
activity. Area VIP was identified by the depth and position of the electrode within the IPS as well 
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as physiological properties of the area (direction selectivity to the visual stimulus). We recorded 
a total of 113 neurons across sessions (89 from monkey C and 24 from monkey H). 

The combination of 3 fixation distances (vergence) and 7 stimulus distances (disparity) 
corresponded to 21 stimulus conditions that were presented in pseudorandomized order across 
trials. Monkeys were required to maintain fixation of the central target throughout a given trial 
(3050 ms), at which point they received a liquid reward. We only analyzed trials where the animals 
successfully maintained fixation within 1 deg of visual angle during the whole course of the trial. 
We recorded approximately 9±2 successful trials per condition and neuron. 

 
Analyses 

Raw spike count rate was used to quantify neural activity in the different periods of a trial. 
The temporal interval ranging from -300 to 0 ms relative to the onset of the stationary RDP was 
considered as fixation period. Here, only the fixation target was visible on the screen. The interval 
ranging from 50 to 250 ms after stationary stimulus onset was considered as stationary period. 
Importantly, this period already contained disparity information of the stimulus. For the analysis 
of the motion induced response we discarded the first quarter cycle of the circular pathway 
movement of the stimulus (400 ms) to avoid transient activity related to movement onset. Hence, 
we defined the temporal interval from 400ms to 2000ms after movement onset (i.e. one complete 
cycle) as the motion period. 

Directional selectivity: Motion direction selectivity was assessed separately for each 
combination of vergence and stimulus disparity (21 conditions). For each condition, all the 
corresponding trials were stacked and binned in 50 ms width (corresponding to 22.5 degrees). 
Then by implementing a Rayleigh test, we checked if the cell has a directional preference (p<0.05) 
To assess the stability of directional tuning across various conditions, we computed the pairwise 
difference in preferred directions for each cell. We then compared this distribution with two other 
distributions. First, with a similar distribution computed on a randomly shuffled dataset. This 
distribution indicates differences expected if preferred directions were unstable across conditions. 
Second, we resampled the dataset within conditions. Here differences in preferred directions 
occur because of the noisiness of the neurons responses and indicates expected differences if 
their preferred directions remained perfectly stable across conditions. 

Disparity sign selectivity: We used the Kruskal-Wallis test to measure the disparity selectivity 
of each neuron. Since a majority of our cells exhibited a preference for either near or far disparity, 
we further quantified their disparity sign selectivity using a Depth Sign Discriminant Index (DSDI) 
47,48:  

𝐷𝑆𝐷𝐼 = 	
1
𝑛
(

𝑅!"#(%) −	𝑅'("#(%)
+𝑅!"#(%) −	𝑅'("#(%)+ 	+	𝜎")*

'

%+,

 

With 𝑅!"#(%) and 𝑅'("#(%) the cells firing rate in pairs of disparities of equal value but opposite sign 
(e.g., ±1 deg); and 𝜎")* the average standard deviation of the two responses. The DSDI quantifies 
how well a neuron is tuned to far or near disparities relative to the ongoing activity of the cell; it 
ranges from -1 (strong preference for near disparity) to +1 (strong preference for far disparity). To 
determine if the observed index is significantly different from randomness, we performed a 
permutation test by randomly shuffling the disparity sign 1 million times. We considered an index 
value significant if it was outside of the 95% confidence interval of the random permutated 
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distribution. Since the tested disparities were identical in space, but not around each fixation 
distance in our experiment, for computing a general index we used trials when the monkey was 
fixating at the screen distance, in which we have 3 symmetrical disparities around the fixation 
point (±1°, ±2° and ±3°). 

Vergence selectivity: First we performed Kruskal-Wallis tests for each stimulus period 
separately to assess whether a cell’s activity was significantly modulated by vergence angles. To 
identify the vergence preference (near or far) for each cell, we computed a Vergence Distance 
Discriminant Index (VDDI), by analogy with the DSDI: 

𝑉𝐷𝐷𝐼 = 	
1
𝑛
(

𝑅% −	𝑅-
+𝑅% −	𝑅-+ 	+	𝜎")*

'

%,-

 

With i,j all pairs of different vergence angles and 𝜎")*	is the average standard deviation of the 
two responses. 
 Gaussian Mixture Models: To test whether the distributions of DSDI and VDDI were better 
explained by a unimodal or bimodal distribution, we used a Leave-One-Out cross-validation 
technique: we fitted 2 Gaussian Mixture Models including respectively 1 or 2 components to all 
but 1 datapoint. We then computed the likelihood ratio of the unfitted datapoint according to the 
2 models. We iterated this process for every point of the dataset and summed up the log likelihood 
ratios to compare the overall performance of one model as compared to the other. 

Distance tuning: If neurons were tuned to distance, we anticipated unchanged activity 
despite variation in vergence and disparity when a stimulus was presented at a constant distance. 
To evaluate this, we analyzed neural responses during stimulus presentation at a fixed distance, 
accounting for diverse combinations of vergence and disparity. This analysis was carried out 
individually for each of the 7 distances using a Kruskal-Wallis test. If there was no significant 
change in activity for any of the distances, we further checked the possibility of being significantly 
tuned to one specific distance (Kruskal-Wallis test, p<0.05). 
 
LNP model 

Framework: To quantify the dependence of neurons’ spiking rates on a combination of 
variables, we fitted a Linear-Nonlinear Poisson model (LNP) to each neuron. LNP models assume 
that the firing rate of a neuron is a linear combination of independent variables passed through 
an exponential static nonlinearity. Similar models have been used to model neural activity in 
multiple areas including of the Posterior Parietal Cortex42,43,49,88. Formally, firing rate is expressed 
as: 

𝑅 = 𝐺 0( 𝜃/𝐹%
%

(𝑋%|𝜃)7 

Where i refers to one of our 3 variables (motion direction, disparity or vergence) and the baseline, 
𝐹% is the neuron tuning function for each variable i, 𝑋% is the value of that variable and 𝜃 is a set of 
parameters for F, G is an exponential non-linearity and 𝜃/ a gain modulation factor. This model 
required assuming a tuning function for the 3 variables. We assumed that motion tuning was the 
sum of 2 von Mises functions with peaks 180° apart. Disparity was assumed to follow a Gabor 
function, the product of a Gaussian envelope and a sine carrier. Similarly, to previous studies89–

91, we found that leaving the frequency component of the carrier as a free parameter led to strong 
overfitting. However, since VIP cells exhibit a broad tuning at low disparity frequencies always 
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lower than 0.2cyc.deg-1 34, we limited that parameter to the range [0-0.2]. Finally, vergence was 
assumed to be a second-order polynomial, the simplest curve we could fit to our 3 vergence 
angles. 

𝐹0(𝑋|𝜇, 𝜅, 𝛼/, 𝛼,) = 𝛼/. 𝑉𝑀(𝑋|𝜇, 𝜅) 	+ 𝛼,. 𝑉𝑀(𝑋|𝜇 − 𝜋, 𝜅) 
With 𝑉𝑀(𝑥|𝜇, 𝜅) = (12(3.567(189))

:;!(3)
 

𝐹<(𝑋|𝛼, 𝜇, 𝜎, 𝑓, 𝜑) = 𝛼. 𝑒𝑥𝑝(−
(𝑋 − 𝜇)=

2𝜎=
). 𝑐𝑜𝑠(2𝜋𝑓(𝑋 − 𝜇) + 𝜑) 

𝐹>(𝑋|𝑎, 𝑏) = 𝑎. 𝑋	 + 	𝑏. 𝑋= 
Estimation of the non-linearity: First we tested how the neuron’s output varied when 

multiple variables covary. We binned data in 16 possible motion directions and computed the 
mean firing rate for each of these bins (16 directions x 7 disparities x 3 vergence). Then for a 
given pair of variables A and B, we measured the differences in firing rate when only one variable 
changes: D1 = A2B1 - A1B1 and D2 = A1B2 - A1B1. If the variables contribute additively to the neuron’s 
activity, the difference of activity when both variables change should simply be the sum of the 
change when each variable changes alone: D3 = A2B2 - A1B1 = D1 + D2. Instead, we found that this 
latter difference was consistently higher than predicted by linear summation, and that the following 
equality held approximately true: log(A2B2) µ log(A2B1)+log(A1B2), indicative of an exponential 
non-linearity. 

Optimization: Assuming that the firing rate is approximately a Poisson process, we treat 
each 1 ms time bin as independent. Therefore, the probability of a spike in each bin is 
approximately  𝑟. 𝛥? and the probability of no spikes is 1 − 𝑟. 𝛥? (assuming that the probability of 
having 2 spikes within a 1 ms bin is negligible). To fit the model, we computed and summed the 
log-likelihood of having observed a spike, or no spike, in each time bin jointly across the entire 
dataset (on average 235,000 data-points). We used BADS92 to find the set of parameters 
maximizing this log-likelihood. 
 Selection: For model selection, we used a nested forward-search approach combined with 
10-fold cross-validation. For each cell we divided the dataset in 10 random subsets and fitted the 
model to all but 1 of the subsets. We then computed the likelihood of the unfitted subset. We first 
fitted a model including the baseline firing rate only. We then added each variable one at a time 
and preserved variables only when it improved the likelihood of the model, in order of 
improvement of the likelihood. This allowed us to estimate jointly whether a variable contributes 
the cell firing-rate, and the tuning function of the cell.  

Comparison with actual tuning curves: To estimate whether our model captured the cell's 
actual pattern of activity, we performed the same analyses on predicted firing rate of the model 
as on the real data. Since we assume a Poisson process for generating spikes, we focus on the 
mean firing rate rather than the variability for comparing metrics predicted by the model and 
computed the DSDI and VDDI using the standard measurement of contrast: 𝐷𝑆𝐷𝐼 = @"#$%8@&$%

@"#$%A@&$%
 

(and similarly for the VDDI). The correlation coefficient between actual DSDI and DSDI predicted 
by the model was 0.99 and the correlation for VDDI was 0.94. 

Decoding: Decoding was performed using Maximum Likelihood Estimation. The encoding 
model provides the probability distribution 𝑝(𝑟|𝑑, 𝑣, 𝑠): the conditional probability of observing 
spike count rate 𝑟 given the disparity 𝑑, vergence 𝑣 and direction 𝑠. For decoding we need to 
reverse this problem to find the probability of each parameter given the spike count rate 
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𝑝(𝑑, 𝑣, 𝑠|𝑟). We assumed a flat prior over stimulus values, in which case decoding can be 
performed by simply summing the log-probability of each stimulus value across the population: 

log	 𝑝(𝑑, 𝑣, 𝑠|𝑟262BC"?%6') = 	(log 𝑝(𝑑, 𝑣, 𝑠|𝑟%)
D

%+,

 

The variables associated with the maximum a posteriori will be assigned as the decoded value.  
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