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Abstract 33 

Biological sex profoundly shapes brain function, yet its precise influence on 34 

neural oscillations was poorly understood. Despite decades of research, 35 

studies investigating sex-based variations in electroencephalographic (EEG) 36 

signals have yielded inconsistent findings that obstructs what may be a 37 

potentially crucial source of inter-individual variability in brain function. To 38 

address this, we analyzed five publicly available resting-state datasets, 39 

comprising EEG data (n=445) and iEEG data (n=103). Our results revealed 40 

striking age-dependent sex differences: older adults (30-80 years) exhibited 41 

robust sex differences, with males showing heightened low alpha (8-9 Hz) 42 

activity in temporal regions and attenuated low beta (16-20 Hz) oscillations in 43 

parietal-occipital areas compared to females. Intriguingly, these sex-specific 44 

patterns were absent in younger adults (20-30 years), suggesting a complex 45 

interplay between sex and aging in shaping brain dynamics. Furthermore, we 46 

identified consistent sex-related activity in the precentral gyrus with the results 47 

of scalp EEG, potentially driving the observed scalp EEG differences. This 48 

multi-level analysis allowed us to bridge the gap between cortical and scalp-49 

level observations, providing a more comprehensive picture of sex-related 50 

neural dynamics. To further investigate the functional implications of these 51 

oscillatory differences, we conducted correlation analyses to uncover 52 

significant associations between sex-specific oscillatory patterns and several 53 

lifestyle factors (behavioral and anthropometric measures) in older adults. This 54 

comprehensive investigation demonstrates the complex interplay between sex, 55 

age, and neural oscillations, revealing the variability in brain dynamics. And our 56 

findings highlight the importance of careful demographic consideration in EEG 57 
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research design to ensure fairness in capturing the full spectrum of 58 

neurophysiological diversity. 59 

 60 

Significance statement 61 

The influence of biological sex and age on neural oscillations had been a long-62 

standing, unresolved question in EEG research, largely unaddressed due to 63 

limited sample sizes and simplistic demographic matching. Our study leverages 64 

large-scale, open datasets to tackle this issue, analyzing hundreds of 65 

participants across five datasets. Our findings demonstrate substantial sex-66 

based differences in even resting-state EEG baselines, particularly in low alpha 67 

and low beta bands, uncovering a significant source of variability in neural 68 

activity. By connecting these sex and age-related variations to potential neural 69 

circuit mechanisms and lifestyle factors, our findings highlight the importance 70 

of careful demographic consideration in EEG research design in EEG 71 

experimental design to accurately capture the rich spectrum of 72 

neurophysiological variability across the lifespan. 73 

  74 
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Introduction 75 

Electroencephalography (EEG) offers unique advantages in recording 76 

spontaneous and task-related neural activities due to its high temporal 77 

resolution and non-invasive nature (1, 2). It has been used widely in measuring 78 

cognitive functions such as attention(3–5), memory(6–8), and learning(9, 10), 79 

as well as to investigate neurological and psychiatric conditions including 80 

attention deficit hyperactivity disorder (ADHD)(11–13), autism(14–16), 81 

depression(17–19), Alzheimer’s disease (AD)(20–22), schizophrenia(23, 24).  82 

However, the impact of demographic factors, particularly sex and age, on neural 83 

oscillations remains poorly characterized. This gap potentially undermines the 84 

interpretation of EEG studies comparing different groups, despite efforts to 85 

match demographic variables. 86 

 87 

EEG records neural oscillations (2, 25), which could reflect the interactions 88 

between different types of neuronal populations (26, 27). Sex differences in 89 

brain structure and function are well-documented across species (28), with 90 

animal studies revealing specific neural circuit mechanisms (29–31). However, 91 

their manifestation in EEG oscillatory features and underlying neural 92 

mechanisms remain unclear, despite significant sex differences in human brain 93 

structural connectivity(32). Previous studies investigating sex differences in 94 

EEG oscillations have yielded inconsistent results (33), across delta(34–38), 95 

theta(34, 35, 37, 38), alpha(34, 35, 37–40) and beta(34, 36–39, 41) frequency 96 

bands, likely due to limited sample sizes, age confounds, and unclear 97 

behavioral correlates. Age itself also significantly affects neural responses(35, 98 

42, 43), with a consistent increase of beta-band activities (44–49). However, 99 

the interaction between age and sex differences in EEG oscillations remains 100 

poorly understood, as studies examining combined age and sex effects have 101 

been limited by small sample sizes (41, 50, 51). This limitation has precluded a 102 

comprehensive understanding of how sex differences in neural oscillations 103 
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might evolve across the lifespan and how they relate to cognitive functions and 104 

behavior.  105 

 106 

To address these critical gaps, we analyzed large-scale publicly available 107 

resting-state datasets (4 EEG, 1 iEEG) to systematically investigate sex 108 

differences in neural oscillations across the lifespan. Our approach comprised 109 

four key steps: (1) identifying age-dependent sex differences in specific brain 110 

regions and frequency bands using a primary EEG dataset (n=203); (2) 111 

validating these findings across three additional EEG datasets (n=242 total); (3) 112 

corroborating surface EEG findings with deep brain recordings using an iEEG 113 

dataset (n=103); and (4) exploring relationships between sex and age -specific 114 

oscillatory features and behavioral and anthropometric measures. This 115 

comprehensive analysis provides a robust characterization of sex differences 116 

in neural oscillations, their evolution with age, and their potential functional 117 

significance. Our findings have implications for improving EEG-based 118 

diagnostics, and enhancing the design and interpretation of cognitive 119 

neuroscience studies.  120 

 121 

Materials and Methods 122 

Public EEG dataset - Max Planck Institute (MPI) Leipzig Mind-Brain-Body 123 

Dataset(52)  124 

The EEG data was collected from 203 participants (age from 20 to 80, 129 Male, 125 

74 Female) during resting state (eye-open (EO) and eye-closed (EC)). The 126 

public dataset could be download in the following link: 127 

https://fcon_1000.projects.nitr c.org/indi/retro/MPI_LEMON.html. The public 128 

dataset has been preprocessed; the details could also be seen in the above 129 

link. The EEG was recorded with 61 electrodes and the total time length of 130 

open- and closed- eye state is 8 minutes. We divided the MPI dataset into two 131 

groups: young age (YA, aged 20-30, n=125. 89 Male, 36 Female) and older age 132 
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(OA, age 30-80, n=78, 40 Male, 38 Female) group.  133 

 134 

Public iEEG dataset - The Montreal Neurological Institute (MNI) iEEG 135 

Dataset(53) 136 

The iEEG data was collected from 1772 channels with normal brain activity 137 

(n=106, age from 13 to 62, 58 Male, 48 Female) during resting state (eye-closed 138 

(EC)). The public dataset could be download in the following link: https://mni-139 

open-ieegatlas.research.mcgill.ca. Total time length of closed- eye state is 1 140 

minute. We divided the MNI dataset into two groups: young age (aged <30) and 141 

older age (age >=30) group. There are 38 brain regions in total, but size of data 142 

in some regions is not sufficient to compare the statistical difference. The 143 

criteria to select the brain region for sex difference analysis is that in each age 144 

group, for a specific brain region, it should have at least 10 electrodes’ data. 145 

Under this criterion, 15 brain regions were selected in OA group, 9 brain regions 146 

were selected in YA group.  147 

 148 

Public EEG dataset - Southwest University (SU) Dataset(54)  149 

The EEG data was collected from 60 participants (age from 18 to 28, 28 Male, 150 

32 Female) during resting state (eye-open (EO) and eye-closed (EC)). The 151 

public dataset could be download in the following link: https://openneuro.org/ 152 

datasets/ds004148/versions/1.0.1. The public dataset has been preprocessed; 153 

the details could also be seen in the link. Three participants were excluded due 154 

to their data is incomplete (3 Female). The EEG was recorded with 61 155 

electrodes and the total time length of open- and closed- eye state is 9 minutes.  156 

 157 

Public EEG dataset - Healthy Brain Network (HBN) Dataset(55) 158 

The EEG data was collected from 71 participants (age from 18 to 22, 39 Male, 159 

32 Female) during resting state (eye-open (EO) and eye-closed (EC)), for the 160 

subjects who is younger than 18 is not considered in this study. The public 161 
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dataset could be download in the following link: https://openneuro.org/ 162 

datasets/ds004186/versions/2.0.0. The public dataset has been preprocessed; 163 

the details could also be seen in the link. The EEG was recorded with 128 164 

electrodes and the total time length of closed- eye state is 40 seconds.  165 

 166 

Public EEG dataset - SRM Dataset(56) 167 

The EEG dataset comprises resting-state recordings from 111 participants (age 168 

from 17 to 71, 42 Male, 69 Female) during eye-closed (EC) conditions. Data 169 

were collected using a 64-electrode montage for a total duration of 4 minutes 170 

per participant. The preprocessed dataset is publicly available at 171 

https://openneuro.org/datasets/ds003775/versions/1.2.1/download. We 172 

divided the MNI dataset into two groups: young age (aged <30) and older age 173 

(age >=30) group. Detailed preprocessing steps were provided in the dataset 174 

documentation. 175 

 176 

Data Analysis 177 

Data processing was performed in MATLAB (www.mathworks.com) with 178 

custom scripts. Data in three dataset was filtered between 1 and 30 Hz. The 179 

reference of MPI dataset and SU dataset was set to the averaged reference.  180 

We used spectrum analysis to quantify the neural oscillation strength in all 181 

electrodes in open or closed-eye state. The power spectral density (PSD) for 182 

time series EEG and iEEG data each electrode was computed using the multi-183 

taper method with 5 tapers using the Chronux toolbox(57), which is an open-184 

source, data analysis toolbox available at http://chronux.org. Similar methods 185 

have been applied in various biomedical fields, such as experimental 186 

neuroscience(58–61), neuropsychological disorders(12, 14, 24), etc. Relative 187 

power was calculated by dividing the power at a specific frequency by the total 188 

power summation from 3 to 30Hz. 189 

 190 
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Statistical Analysis 191 

The pairwise t-test was conducted to examine the relative power in alpha-band 192 

(8-12 Hz) between EO and EC state in MPI dataset (Fig 1C) and SU dataset 193 

(Fig 3B). In MPI dataset, in order to screen out significant frequency bands and 194 

electrode positions for sex difference, the independent t-test was tested 195 

difference between relative power of male and females in YA and OA group in 196 

open and closed-eye state respectively (Fig 1D, similar statistics also 197 

conducted in Fig 3C in SU Dataset). Then, two-way ANOVA (gender (M and F) 198 

and age (OA and YA)) was conducted to relative power in low alpha (LA), low 199 

beta (LB) band in open and closed- eye state respectively. Further, we used t-200 

test for pairwise comparison (Fig 2EF). In MNI Dataset, t-test was conducted to 201 

test the significance of sex difference of relative power in LA and LB band each 202 

brain region for YA group and OA group respectively. 203 

  204 
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Results 205 

Analysis of the MPI dataset revealed a robust increase in alpha-band activity 206 

during eyes-closed (EC) compared to eyes-open (EO) conditions across most 207 

recording sites (Fig. 1A). This effect was most pronounced in the parietal-208 

occipital region (Fig. 1B). By averaging all electrodes, most subjects showed 209 

significant (p<0.0001) increase in the alpha power (Fig 1C).  210 

 211 

Age dependent sex difference on low alpha- and low beta- band activities 212 

The dataset was separated with two age groups (OA and YA, see methods), 213 

and we compared the sex difference from 3 to 30Hz in all electrodes in EO and 214 

EC state (Fig 1D). In the YA group, no significant sex differences in relative 215 

power were observed across all electrodes in both eyes-open (EO) and eyes-216 

closed (EC) states (Fig. 1D, left panels). In contrast, the OA group exhibited 217 

significant sex differences (p<0.01) in multiple recording sites, specifically in the 218 

low alpha (LA, 8-9 Hz) and low beta (LB, 16-20 Hz) bands, during both EC and 219 

EO states (Fig. 1D, right panels). Taking CP4 site as an example (Fig 1E), while 220 

spectral profiles of males and females in the YA group were indistinguishable, 221 

the OA group displayed a clear divergence: males exhibited higher LA power, 222 

whereas females showed greater LB power.  223 

 224 

Sex difference with distinct topographic maps in low alpha and low beta 225 

band 226 

Based on the statistical analysis as sown in Fig. 1D, subsequent investigations 227 

focused on the low alpha (LA, 8-9 Hz) and low beta (LB, 16-20 Hz) bands. 228 

Topographic mapping of sex differences revealed age-dependent patterns (Fig. 229 

2A-D). In the young adult (YA) group, no significant sex differences were 230 

observed in either LA (Fig. 2A) or LB (Fig. 2C) bands. Conversely, the older 231 

adult (OA) group exhibited significant sex differences (p<0.01) in parietal-232 

temporal regions for LA (Fig. 2B) and parietal-occipital regions for LB (Fig. 2D). 233 
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 234 

Two-way ANOVA (age and sex as factors) on the five most significant 235 

electrodes for each condition (EO or EC in LA or LB) revealed significant main 236 

effects and interactions (p<0.001). The pairwised comparisons are shown in Fig 237 

2E for YA group, and Fig 2F for OA group. From the scatter plot (Fig 2G), based 238 

on the 2-dim oscillatory features (EC and EO) in LA and LB, we could find clear 239 

separation between males and females in OA group. 240 

 241 

To assess the generalizability of these findings, analyses were extended to 242 

three additional open EEG datasets (SU, HBN, and SRM; Fig. S1). The 243 

predominantly young adult SU and HBN datasets showed no significant sex 244 

differences in LA or LB bands (Fig. S1, top two rows). However, the age-diverse 245 

SRM dataset corroborated the MPI findings, exhibiting similar sex-related 246 

trends in both LA and LB bands (Fig. S1, bottom row). 247 

 248 

Consistence for sex difference of neural response in precentral gyrus 249 

with EEG finding 250 

To further explore the potential neural circuits contributes to the findings in MPI 251 

dataset, analyses were extended to an intracranial EEG (iEEG) dataset (MNI 252 

dataset; Fig. 3A).. In the older adult (OA) group, significant sex differences 253 

(p<0.05) were observed in multiple brain regions. Females exhibited higher low 254 

beta (LB) power in the posterior insula and precentral gyrus, while males 255 

showed higher low alpha (LA) power in the precentral gyrus and inferior frontal 256 

gyrus. Additionally, males displayed significantly higher LB power (p<0.01) in 257 

the angular gyrus and supramarginal gyrus. 258 

 259 

Notably, the spectral pattern of sex differences in the precentral gyrus (Fig. 3B, 260 

C) closely mirrored the scalp EEG findings from the MPI dataset. Age-stratified 261 

analyses (Fig. 3D) revealed that in the LB band, OA females exhibited 262 
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significantly stronger relative power compared to males (p<0.0001), with this 263 

effect attenuated in the young adult (YA) group (p=0.016). Conversely, in the 264 

LA band, OA males showed significantly stronger relative power than females 265 

(p=0.023), while no significant difference was observed in the YA group. 266 

 267 

Potential lifestyle-related factors associated with the sex difference in low 268 

alpha and low beta activities during aging  269 

To investigate the potential factors that may relate to the sex difference in LA 270 

and LB band in MPI dataset, anthropometries (height, weight, waist and hip) 271 

were considered to test for the relationship (Fig 4 A-B). In the older adult (OA) 272 

group, only females exhibited significant positive correlations between LB 273 

power and hip circumference (p<0.01; Fig. 4A-B). Similarly, body mass index 274 

(BMI), derived from anthropometric data, showed a significant positive 275 

correlation with LB power exclusively in OA females (p<0.01; Fig. 4C-D). 276 

 277 

Further analyses investigated potential links with mood and alcohol 278 

consumption using the Hamilton scale and alcohol-related scores (Fig. S2 A-B). 279 

While no significant correlations were found between Hamilton scale scores 280 

and LA or LB power in either age group, alcohol-related scores showed 281 

significant associations with both LA (positive correlation) and LB (negative 282 

correlation) power across eyes-closed and eyes-open states (all p<0.05). 283 

 284 

  285 
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Discussion 286 

In this study, we have, for the first time, provided novel insights into sex 287 

differences in neural oscillations across lifespan and identified some potential 288 

factors contributing to these differences by analyzing five public datasets 289 

encompassing both scalp and intracranial EEG recordings. Our findings reveal 290 

age-dependent sexual dimorphism in neural oscillatory patterns, with older 291 

males exhibiting enhanced low alpha (LA) power in temporal-parietal regions, 292 

while older females show increased low beta (LB) power in parietal-occipital 293 

areas. In particular, while older females show increased low beta (LB) power in 294 

parietal-occipital areas. Notably, these scalp-level observations are 295 

corroborated by intracranial recordings from the precentral gyrus, suggesting a 296 

potential neural substrate for the observed sex differences. Furthermore, we 297 

also found that in older adults, sex-specific differences in LA and LB band power 298 

are significantly associated with alcohol consumption patterns, while the LB 299 

band activity is significantly correlated with hip circumference in aging females. 300 

These findings collectively highlight the complex interplay between aging, sex, 301 

and lifestyle factors in shaping neural oscillatory patterns, potentially offering 302 

new avenues for understanding sex-specific trajectories of cognitive aging and 303 

their modulation by environmental influences. 304 

 305 

Mechanisms underlying age-dependent sex difference in neural 306 

oscillations 307 

Our study advances the field beyond previous investigations of sex differences 308 

in EEG (33, 39) by integrating age as a critical variable, validating findings with 309 

intracranial EEG data, and exploring correlations with behavioral and 310 

psychometric measures. Our study is of significant scientific importance, 311 

particularly in highlighting that sex and age should be key variables to control 312 

for in future EEG experiments. In our study, sex differences in EC or EO states 313 

are similar (Fig 1D, Fig 3C), indicating that the generality of sex differences may 314 
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not be task-specific.  315 

 316 

The contribution of sex differences in aging may not be attributed to a single 317 

brain region, but likely involves the coordinated action of multiple brain regions. 318 

For example, while the precentral gyrus showed high concordance with scalp 319 

EEG findings in both low alpha (LA) and low beta (LB) bands, other regions 320 

also exhibited significant sex differences (Fig. 3). The distinct spatial patterns 321 

of significance for LA and LB (Fig. 2B, 2D) align with proposed divergent 322 

mechanisms underlying alpha(62, 63) and beta(64) oscillations. Enhanced LB 323 

power in females and LA power in males each implicate multiple brain regions, 324 

highlighting the distributed nature of these sex differences. Furthermore, our 325 

analyses identified two brain regions where males exhibit higher low beta band 326 

power compared to females, a pattern not apparent in the broader 327 

topographical assessment. 328 

 329 

Associations between daily behaviors and neural oscillations 330 

Neuronal oscillations underpin diverse cognitive functions(5, 61, 65), and are 331 

intricately connected to human behaviors (15, 66, 67). Our analyses reveal 332 

significant associations between lifestyle factors and oscillatory power in older 333 

adults. Notably, we observed an inverse relationship between alcohol-related 334 

scores and the power of low alpha (LA) and low beta (LB) bands. Higher 335 

alcohol-related scores correlated with increased LA and decreased LB power. 336 

While causality cannot be inferred, this association, considered alongside 337 

alcohol's known health effects and GABAergic modulation(68), suggests that 338 

neural oscillatory patterns might serve as potential indicators of recent alcohol 339 

consumption.  340 

Our investigation into anthropometric correlates uncovered a positive 341 

association between LB power and both hip circumference and BMI in older 342 

females. Meanwhile, waist-hip ratio (69, 70) showed no significant correlation 343 
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(Fig 6 C-D). The relationship between LB power and hip circumference may 344 

reflect complex interactions between body composition and neural activity, 345 

potentially influenced by age-related changes in motor function (49).  346 

 347 

These correlational findings highlight the intricate relationships between 348 

lifestyle factors, body composition, and neural oscillations in aging populations. 349 

While causal relationships remain to be established, these associations 350 

suggest that EEG-derived measures might provide insights into lifestyle-related 351 

variations in brain function. This non-invasive approach warrants further 352 

investigation for its potential in health monitoring and intervention strategies, 353 

particularly in aging populations where lifestyle factors are known to impact 354 

cognitive health. 355 

 356 

Limitations and future work 357 

While our findings demonstrate consistent sex differences in neural oscillations 358 

across diverse datasets, the use of publicly available data from various 359 

geographical origins introduces potential confounds related to racial and ethnic 360 

factors. Although the consistency of our results suggests these factors may not 361 

substantially influence the observed sex differences, they likely contribute to 362 

some variability. Future investigations should systematically control for racial 363 

and ethnic factors to refine our understanding of sex-specific neural dynamics 364 

across populations. Longitudinal studies tracking individuals across the lifespan, 365 

combined with multimodal neuroimaging techniques, would elucidate the 366 

developmental trajectories of these sex differences and their underlying 367 

neuroanatomical substrates.  368 

 369 

  370 
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Figures and figure legends 542 

 543 

Figure 1 Age-dependent sex difference in low alpha and low beta EEG 544 

oscillations 545 

A. Averaged power spectrum (n=203) across 61 electrodes in MPI dataset 546 

during eyes-open (white curve) and closed (black curve) states.  547 

B. Average topographic map of alpha (8-12Hz) power in eyes-open and eyes-548 

closed states. 549 

C. Upper: Grand average power spectrum across all electrodes. Lower: 550 

Comparison of alpha power (8-12 Hz) between eyes-open and eyes-closed 551 

states. Each dot represents an individual subject. 552 

D. Statistical significance of sex differences in the eyes-open and eyes-closed 553 

states for young adult (YA, left) and older adult (OA, right) groups. X-axis is 554 

frequency and y-axis is electrode ID.  555 

E. Power spectrum of male (blue curve) and female (red curve) in closed (black 556 

curve) state in a typical example electrode (CP4) for demo in YA (above panel) 557 

and OA (below panel) groups.  558 
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 559 

Figure 2 Sex difference with distinct topographic maps in low alpha and 560 

low beta band 561 

(A-D) Topographic maps of EEG power for males (left), females (middle), and 562 

sex difference significance (right; red: significant, blue: non-significant) in eyes-563 
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open (top) and eyes-closed (bottom) states. (A) Low alpha, young adults (YA). 564 

(B) Low alpha, older adults (OA). (C) Low beta, YA. (D) Low beta, OA. 565 

E. Sex differences in low alpha and low beta power for YA in eyes-open and 566 

eyes-closed states. 567 

F. Sex differences in low alpha and low beta power for OA in eyes-open and 568 

eyes-closed states. 569 

G. Scatter plots comparing eyes-open versus eyes-closed power in low alpha 570 

and low beta bands for YA and OA. 571 

Each dot in (E-G) represents an individual subject. 572 

 573 

 574 
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Figure 3 Sex differences in precentral gyrus neural responses align with 576 

EEG findings 577 

A. Comparison of 15 brain regions in iEEG dataset (age >=30) in older adults 578 

group in closed-eye state in low beta (above) and low alpha band (below), 579 

where * is for p<0.05, ** is for p<0.01, *** is for p<0.001, and ns is for not 580 

significant.  581 

B. Illustration of anatomical location of precentral gyrus. 582 

C. LFP power spectra in precentral gyrus for younger (age<30) and older 583 

(age>=30) adults, by sex (male: blue; female: orange). 584 

D. Sex differences in low alpha and low beta power in precentral gyrus for 585 

younger and older adults. Each dot represents a recording site. 586 

 587 

 588 

 589 
Figure 4 Associations between anthropometries and low beta activity 590 

(A, B) Relationships between low beta power and height, weight, waist, and hip 591 

measurements in (A) young adults (YA) and (B) older adults (OA) during eyes-592 

open and eyes-closed states. 593 

(C, D) Relationships between low beta power and BMI and waist-hip ratio in 594 

(C) YA and (D) OA during eyes-open and eyes-closed states. 595 

 596 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 1, 2024. ; https://doi.org/10.1101/2024.07.31.603949doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.31.603949
http://creativecommons.org/licenses/by-nc-nd/4.0/


24 

 

 597 

Supplementary Figure 1 Consistency of sex differences in low alpha and 598 

low beta EEG activity across additional datasets 599 

Left panels: Sex differences in low alpha (LA) and low beta (LB) power during 600 

eyes-open and eyes-closed states for SU, HBN (primarily younger adults), and 601 

SRM (both younger and older adults) datasets. Each dot represents an 602 

individual subject; bars indicate sample means. 603 

Right panels: Electrode-wise p values for sex differences. In younger adults, 604 

most electrodes show insignificant differences. In older adults, LA and LB 605 

exhibit significant differences across multiple electrodes. 606 

 607 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 1, 2024. ; https://doi.org/10.1101/2024.07.31.603949doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.31.603949
http://creativecommons.org/licenses/by-nc-nd/4.0/


25 

 

 608 

Supplementary figure 2 Associations between lifestyle factors and neural 609 

oscillations 610 

 611 

A. Scatter plot of scores (Hamilton, AUDIT, Alcohol units) and relative power 612 

(low alpha and low beta) during eyes-open state. 613 

B. Scatter plot of scores (Hamilton, AUDIT, Alcohol units) and relative power 614 

(low alpha and low beta) during eyes-closed state. 615 

Each dot represents an individual subject. 616 

 617 
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