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Abstract

Neuroanatomical changes to the cortex during adolescence have been well documented using MR,
revealing ongoing cortical thinning and volume loss with age. However, the underlying cellular
mechanisms remain elusive with conventional neuroimaging. Recent advances in MRI hardware and new
biophysical models of tissue informed by diffusion MRI data hold promise for identifying the cellular
changes driving these morphological observations. This study used ultra-strong gradient MRI to obtain
high-resolution, in vivo estimates of cortical neurite and soma microstructure in sample of typically
developing children and adolescents. Cortical neurite signal fraction, attributed to neuronal and glial
processes, increased with age (mean R%meuie=.53, p<3.3e-11, 11.91% increase over age), while apparent
soma radius decreased (mean R%gsoma=.48, p<4.4e-10, 1% decrease over age) across domain-specific
networks. To complement these findings, developmental patterns of cortical gene expression in two
independent post-mortem databases were analysed. This revealed increased expression of genes
expressed in oligodendrocytes, and excitatory neurons, alongside a relative decrease in expression of
genes expressed in astrocyte, microglia and endothelial cell-types. Age-related genes were significantly
enriched in cortical oligodendrocytes, oligodendrocyte progenitors and Layer 5-6 neurons (pror<.001) and
prominently expressed in adolescence and young adulthood. The spatial and temporal alignment of
oligodendrocyte cell-type gene expression with neurite and soma microstructural changes suggest that
ongoing cortical myelination processes contribute to adolescent cortical development. These findings
highlight the role of intra-cortical myelination in cortical maturation during adolescence and into
adulthood.
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1. Context

Over the last two decades, magnetic resonance imaging (MRI) has provided invaluable insights into the
developing brain, revealing ongoing cortical thinning and cortical volume loss throughout adolescence
(Mills et al., 2016; Tamnes et al., 2017). However, the underlying cellular processes driving these changes
are less understood. Cortical cytoarchitecture can be broadly categorised into neurites (e.g., axons,
dendrites, and glial processes) and soma (e.g., neuronal, and glial cell bodies). Traditionally, synaptic
pruning has been considered the primary driver of developmental changes in cortical morphology
(Huttenlocher, 1979). Recent evidence, however, suggests that myelin encroachment into the grey/white
matter boundary may also contribute to changes in MR contrast typically used for volumetrics, such as T+
(Natu et al., 2019). Developmental patterns of cortical myelination have been elucidated using
magnetization transfer (MT) imaging (Paquola et al., 2019), and indirectly using T1w/T2w ratio (Grydeland
et al.,, 2019). Despite these advances, how microstructural changes — specifically neurite and soma
properties — contribute to these distinct morphological changes remains unclear.

Diffusion-weighted MRI (dMRI) is the main non-invasive MRI technique capable of probing the tissue
microstructure, orders of magnitude smaller than the typical millimetre image resolution of structural MRI
(Le Bihan et al., 2001). This microstructural imaging method is highly sensitive to the magnitude and
direction of water diffusing within brain tissue. By employing biophysical models, it is possible to infer
microscopic properties of different tissues, such as neurite signal fraction in the brain’s white matter
(Alexander et al.,, 2019; Zhang et al., 2012). In comparison with white matter, grey matter cytoarchitecture,
broadly categorized into neurites (e.g., elongated structures such as axons, dendrites and glial processes)
and soma (e.g., spherical structures such as neuronal and glial cell-bodies) is more locally complex,
requiring extensions of the standard models of microstructure developed for studying the white matter.
Recent hardware (Fan et al., 2022; Jones et al., 2018) and biophysical modelling (Jelescu et al., 2022;
Palombo et al., 2020; Tax et al., 2020) developments have enabled diffusion-weighted microstructural
quantification of soma and neurite components in the cortex in vivo. The Soma and Neurite Density
Imaging (SANDI; Palombo et al. (2020)), is robust, reliable (Genc et al., 2021), clinically feasible for
sufficiently short diffusion times (Schiavi et al., 2023) and has been validated in ex vivo data (lanus et al.,
2022).

Here, we examine cortical microstructural development in a sample of children and adolescents using
ultra-strong gradient dMRI to identify specific changes in neurite and soma properties with age. To
identify potential cellular substrates, we analyse developmental patterns of neurite and soma
microstructure alongside contemporaneous trajectories of cortical cell-type specific gene expression
measured in the developing cortex using data from two independent, post-mortem databases. We reveal
key developmental patterns in cortical neurite and soma architecture, highlighting the contribution of
active and ongoing cortical myelination processes to the macroscale changes observed in the cortex
during adolescence.
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2. Results

We apply a framework for cortical microstructure and cell-type specific gene expression analysis (Fig 1) to
evaluate the cellular properties underpinning human cortical microstructural development.
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Figure 1: Framework for cortical microstructure and gene expression analysis. This study employs a biophysical model of
cortical neurite and soma microstructure using ultra-strong gradient dMRI (Jones et al., 2018) data collected from 88
children and adolescents aged 8-19 years. Representative maps of neurite signal fraction (freuite), Soma signal fraction
(fsoma), apparent soma radius (Rsoma, pm) and extracellular signal fraction (fexraceiuar) are shown for one 8-year-old female
participant. We also analyse two human gene expression datasets (Colantuoni et al., 2011; Li et al., 2018) to estimate cell-
type specific and spatial (where arrows on brain render indicate a subset of regions sampled) gene expression profiles and
examine their concordance with developmental patterns of cortical microstructure.

2.1. Cortical microstructure and morphology in domain-specific networks

First, we studied the repeatability of cortical microstructural estimates from the SANDI model in a sample
of 6 healthy adults scanned over 5 sessions. Intra-class coefficients (ICCs) for neurite signal fraction
(freurite), SOMa signal fraction (fsoma) and extracellular signal fraction (fexraceiuiar) Were very high (Fig 2c) across
seven domain-specific networks (mean ICC=.97, all p<.001). Apparent soma radius (Rsoma, in pm) showed
lower repeatability on average (mean ICC=.92) with lower mean repeatability driven by the limbic network
(ICC=.66, p=.04).

We then studied age-related patterns of cortical microstructure and morphology in a sample of 88
typically developing children and adolescents aged 8-19 years (Table S2). Cortical foeurite and intracellular
volume fraction (vi;; derived from the NODDI model, Zhang et al. (2012)) increased with age across all
cortical networks (mean R%meuite=.53, all networks p<3.3e-11; mean R2,.=.46, all networks p<1.6e-9) (Fig
2d, Fig S1). Orientation dispersion index (ODI; derived from the NODDI model, Zhang et al. (2012)) also
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increased with age across all studied networks (mean R?,4=.42, all networks p<1.9e-5). In contrast, we
observed decreasing Rsoma With age across all networks (mean R%gsoma=.48, all networks p<4.4e-10) and
fsoma decreased with age in the dorsal attention (R%soma=.12), limbic (R?soma=-09) and somatomotor
(R%soma=.23), networks (all p<.002). fexiraceiuiar decreased in the default mode (R%.=.12), limbic (R%.=.21) and
visual (R%.=.09) networks (all p<.004).

Consistent with established developmental patterns, cortical thickness and grey matter volume decreased
with age (Fig 2b). The strength of these associations varied across brain networks (see Fig S1 and Table
S2). Specifically, cortical thickness exhibited age-related decline in the default mode, = -.59 [-.77, -.41],
dorsal attention, f=-.40 [-.61, -.19], somatomotor, = -.40 [-.60, -.19], and visual, = -.61 [-.78, -.43],
networks (all p<.001). Similarly, grey matter volume decreased with age in the default mode, = -.37 [-.55, -
.20], dorsal attention, = -.34 [-.54, -.15], and visual B= -.29 [-.47, -.11], networks (all p<.002). Cortical
surface area did not show significant age-related differences. The magnitude and direction of age effects
across all microstructural and morphological measures are shown in Figure S1.

2.2. Unique sex and pubertal differences in the visual network

Sex differences in brain structure have been well reported, with pubertal onset playing a critical role in
initiating developmental changes to morphology (Vijayakumar et al., 2018) and microstructure (Tamnes et
al., 2018). We found that grey matter volume and surface area were higher in males than females (p<.005)
across all brain networks (Figure S2), following known patterns of larger brain volume in males. We
observed sex differences in only two microstructural measures, Rsoma and fractional anisotropy (FA;
derived from the diffusion tensor at b=1000s/mm?), in the visual network (Fig S2, S3). Females had higher
Rsoma, B=-.57 [-.91, -.24], p=.001, and lower FA, f= .55, [.18, .92], p=.004, compared to males. We observed
a pubertal stage by sex interaction on fs.mas, Wwhere males had lower soma signal fraction in early puberty,
B=.73[.28, 1.18], p=.002, which stabilised in late puberty. Males had lower fexraceiuar throughout puberty f=
-74[-1.18, -.31], p=.001.

Using an age-prediction random forest model for each microstructural measure in the visual network, we
found that Rsoma provided the most accurate age-prediction (cross-validated R*= .58), followed by freurite
(R?=.56), and fsoma (R?=.28). Model fitting did not converge for fexaceiva. NODDI measures showed
R2%.4=.46, and R3,.=.36. Feature importance analysis revealed that association cortices within the visual
network had the highest contribution (top 5%) to age prediction (Fig 3b,c,d). Notably, region 31a (posterior
cingulate cortex) consistently influenced age prediction across multiple measures, with Rsoma contributing
63%, ODI 7% and vi; 5.4%. Additional top-ranking regions included dorsal visual area, V3A (vic = 45%),
lateral temporal area, TE2a (Vie= 17.8 %, freurte = 5.1%), retrosplenial cortex, RSC, (vic=7.9%), auditory
association area, A5 (freurite=5.5%), and lateral occipital area, LO3, (fsoma=5.4%). These regions (depicted in
Fig 3c) represent cortical endpoints of developmentally sensitive tracts, identified through tractography,
such as the posterior corpus callosum, cingulum, and inferior longitudinal fasciculus (Fig 3d).
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Figure 2: Developmental patterns of MRI-derived cortical morphology and microstructure: (a) regions in atlas used to
derive domain-specific networks (Yeo et al., 2011) overlaid on a representative participant; (b) developmental patterns of
cortical morphology and microstructure averaged across the cortical ribbon; (c) demonstration of high repeatability of
SANDI measures in six adults scanned over 5 time-points within two weeks; (d) network-wide patterns of microstructure
and morphology, indicating age-related increases in neurite fraction and reductions in cortical thickness, apparent soma
radius, soma fraction and extracellular fraction. Significant age relationships (p<.005) are annotated (*). Abbreviations:
CTh: cortical thickness, in mm; fextracenuiar: €xtracellular signal fraction; feurite: Neurite signal fraction; fsoma: SOMa signal fraction;
GM: grey matter; ICC: intra-class coefficient; Rsoma: apparent soma radius, in um.
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Figure 3: Developmental patterns of microstructure in the visual network. (a) Sex differences in apparent soma radius, and
sex by puberty interactions for soma and extracellular signal fractions. (b) Feature importance of regions overlapping visual
network (Glasser et al., 2016) to brain age estimation; top ranking regions with a weighting >5% (width of coloured bin) are
in white text and accuracy of prediction model is represented (as R?) on the leftmost point of the bar plot. (c) Top ranking
regions overlaid on a representative participant, coloured by labels in (b). (d) White matter pathways derived from
tractography connecting cortical endpoints identified in age prediction analysis, such as the cingulum, posterior corpus
callosum (CC) and inferior longitudinal fasciculus (ILF) which traverse regions in (c).
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2.3. Contemporaneous gene expression trajectories

Using n=214 post-mortem tissue samples from the dorsolateral prefrontal cortex (DLFPC; BrainCloud;
Colantuoni et al. (2011)), we identified n=2057 genes with differential expression over the lifespan (0.5 —
72 years; pror<0.05). We validated this selection in an independent RNA-seq dataset (PsychENCODE; Li
et al. (2018); n=20; DLPFC samples only), identifying n=467 (22.7%) genes with significant age-
associations in both datasets (age-genes; Supp Info).

We identified sets of differentially expressed genes across 7 cortical cell-types (see Methods). Mean
trajectories of gene expression across the age range 0 and 30 years, averaged within each cell-type, are
shown as standardized curves in Figure 4 for PsychENCODE (Fig 4a) and BrainCloud (Fig 4b) datasets.
Non-normalized gene expression curves for PsychENCODE are presented in Figure S4 to aid in
interpreting relative differences gene expression magnitudes. Among genes expressed in excitatory
neuronal populations and oligodendrocytes, mean expression levels increased with age. In contrast, genes
expressed in inhibitory neurons showed no age-related variation. Genes expressed in endothelial cells,
astrocytes, microglia and OPCs, exhibited a decrease in mean gene expression with age. Overall,
microglial gene expression (average log.RPKM =1.96) was lower compared to astrocytes (log.RPKM
=3.70), oligodendrocytes (log.RPKM =3.11), OPCs (log.RPKM =3.01), excitatory neurons (log.RPKM
=4.15) and inhibitory neurons (log.RPKM =2.94).

We validated the enrichment of these cell-types in these age-related genes using an independent cell-
type specific expression analysis (CSEA). Significant enrichment of age-genes (n=467) was observed in
cortical oligodendrocytes, oligodendrocyte progenitors, and Layer 5-6 neurons (Fig S5). These genes
were prominently expressed across developmental stages in childhood adolescence, and young adulthood
(Fig S6, Fig 4c). The number (Fig 4d) and proportion (Fig 4e) of age-related genes expressed by
oligodendrocytes increased significantly in adolescence and young adulthood (Fig 4d,e). These included
genes associated with CNS (re)myelination, RCAN2 (Huang et al., 2011), GRIA3 (Kougioumtzidou et al.,
2017), and the differentiation of OPCs and oligodendrocytes, PLEHA1/TAPP1 (Chen et al., 2015);
AATK/AATYK (Jiang et al., 2018).

For each cell-type, we quantified the spatiotemporal patterns of gene expression using PsychENCODE
data by identifying the peak growth of expression in cell-specific genes. Oligodendrocyte gene expression
peaked earliest in primary motor (M1), primary visual (V1) cortices, and latest in the medial frontal (MFC)
cortex (Fig S8). A notable pattern emerged in which the peak expression of oligodendrocyte genes
coincided with a shift in oligodendrocyte-to-astrocyte specific expression ratio. This shift, indicating a
relative increase in oligodendrocyte over astrocyte cell-type gene expression, occurred around 20 years of
age in M1 and V1, and after age 25 in DLPFC, ITC and MFC (Fig 4g,h). This sequence aligns with the
known earlier myelination timing in sensorimotor cortices followed by prolonged myelination in the pre-
frontal cortex into the third decade of life (Grydeland et al., 2019; Paquola et al., 2019; Sydnor et al., 2021).
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Figure 4: Developmental trajectories of cell-type specific gene expression. Data shown for samples aged 0-30 years from:
(a) BrainCloud (Z-score), and (b) PsychENCODE (expressed in log.-reads-per-kilobase of transcript per million
(log:RPKM)) datasets, demeaned to account for overall higher expression in some cell-types. Age effects were modelled in
all postnatal samples to maximise sample size. Grey shaded areas highlight the age range of the microstructural imaging
cohort (8-19 years) for visual comparison of developmental profiles. (c) SEA results (Xu et al., 2014) showing significant
enrichment of age-related genes through adolescence and adulthood, where hexagon size scales with enrichment
(overlap) of age-related genes in genes expressed by each cell type, and darker rings indicate significant associations at
pror<.001 with inner rings indicating high cell specificity. Age-related genes overlapping postnatal developmental stages
are shown as (d) total number of genes, and (e) proportion of genes, indicating an increase in neuronal, glial and
oligodendrocyte-specific genes. (f) Trajectories of glial genes overlapping the SEA and our age-genes. (g) Regional shifts
in the glial cell-type expression ratio (logz2RPKM) across development, with the astrocyte-to-oligodendrocyte expression
ratio crossing earliest at age 20 years in primary motor and visual cortices. (h) Timing of this cross-over, with darker values
indicating regions with an earlier crossing point. Note that white coloured regions are not represented in the data set.
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2.4. Concordant profiles of microstructure and gene expression indicate developmental cortical

myelination

To elucidate the cell-specific basis of our imaging findings, we examined neurite and soma microstructural
measures in the same four frontal regions sampled in the PsychENCODE data (MFC, IFC, DLPFC,
VLPFC; see Fig 5a,b) using a fine-grained parcellation of the frontal lobe. Microstructural MRI revealed
regional increases in freurite and decreases in Rsoma (Fig 5¢). This pattern corresponded with increased
regional oligodendrocyte cell-type gene expression profiles in the same regions over the same age period
(Fig5d,e). The spatial distribution of oligodendrocyte cell-type expression was aligned with regional
differences in peak growth of the neurite fraction (Fig S7). Thus, the dMRI-derived neurite signal fraction
likely reflects spatiotemporal patterns of cortical myelination, matching the peak expression of
oligodendrocyte-genes.

Numerical simulations exploring the effect of cell-type composition based on known cell counts (Keller et
al., 2018) on the actual expected distribution of cell body radii within an imaging voxel reveal close
correspondence between simulated and in vivo modelling results of Rsoma (Fig S9), showing a 1% age-
related decrease in both simulated and dMRI-derived data.
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Figure 5: Regional variation of microstructure and gene expression in the frontal cortex. (a) Structural MRI-based
segmentation of four frontal regions: medial pre-frontal cortex (mPFC); dorsolateral prefrontal cortex (DLPFC); orbito and
polar frontal cortex (OPFC), and inferior frontal cortex (IF); (b) sub-regions from the HCP-MMP1 atlas (Glasser et al., 2016),
which comprised the regions in (a); (c) age-related patterns of microstructural measures (*:p<.005); oligodendrocyte cell-
type gene expression in (d) PsychENCODE data sampled in the same 4 frontal cortical regions as (a), and (e) BrainCloud
data sampled in the DLPFC.
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3. Discussion

We combined in vivo ultra-strong gradient dMRI with independent ex vivo gene expression analyses to
map tissue microstructural architecture during human development. We now discuss each of the key
findings and their implications, before summarising the strengths and limitations of our study.

Neurite Signal Fraction Increases from Childhood to Adolescence

The neurite signal fraction, freurite, attributed to elongated cortical structures (e.g., axons, processes),
increased with age across the whole cortex, but peaked earliest in the visual and somatomotor networks,
mirroring previous findings (Lynch et al., 2024). Intracortical myelination continues over adolescence
(Bartzokis, 2012; Gibson et al., 2014; Grydeland et al., 2019; Natu et al.,, 2019; Whitaker et al., 2016),
following a stereotyped sensorimotor-to-association (S-A) axis of development (Sydnor et al., 2023).
Although dMRI is relatively insensitive to water within the myelin sheath itself, due to its short T, (D. K.
Jones et al., 2013), the observed increase in f.euite May nevertheless reflect intra-cortical myelination. This
is supported by ex vivo macaque data showing developmental increases in glial process length and
complexity (Robillard et al., 2016), and an increase in the number of myelinated axons and dendrites
(Fukutomi et al., 2018), which limits water exchange and leads to a greater signal contribution from inside
the neurite (Jelescu et al.,, 2022; Olesen et al., 2022).

Oligodendrocyte-Specific Gene Expression Increases from Childhood to Adolescence

Supporting our in vivo MRI findings, oligodendrocyte-specific gene expression increased with age (Fig
5a,b), aligning with previous observations in independent data (Paquola et al., 2019). Age-related genes
were also enriched in cortical neurons (layers 5 and 6) and OPCs (Fig S6). The concordance between the
human gene expression analysis (Fig S5) and the CSEA analysis based on mouse transcriptomic profiling
(Fig S6; Xu et al. (2014)) indicates conservation of myelination processes via cortical oligodendrocytes.
Oligodendrocyte cell turnover in the frontal cortex is dynamic, especially in adulthood, and 10 times higher
in the cortex than in the white matter (Yeung et al., 2014). OPCs can generate myelinating
oligodendrocytes in adulthood, even in fully myelinated regions (Richardson et al., 2011; Young et al.,
2013). Importantly, oligodendrocyte function is not restricted to myelination, rather, they also perform
many critical neuronal support functions beyond myelination (Bradl & Lassmann, 2010). Together our
microstructural MRI and gene-expression findings converge towards increased cortical myelination
through adolescence.

Apparent Soma Radius Decreases from Childhood to Adolescence

The dMRI-derived apparent soma radius, Rsoma, decreased cortex-wide from childhood to adolescence.
Neuronal soma are much larger than glial soma, measuring ~16um in diameter in layers 5-6 of the adult
human prefrontal cortex, whereas glial soma range in diameter from 1-11um (Rajkowska et al., 1998). Our
gene expression analysis suggests specific changes in the cellular composition of the cortex with age:
decreasing expression levels for astrocyte, microglia and endothelial cell-types, and (much larger)
increasing expression levels for oligodendrocyte cell-types. Glial composition in the neocortex is mostly
comprised of oligodendrocytes (~75%), followed by astrocytes (~20%) and a smaller prevalence of
microglia (~5%) (Pelvig et al., 2008). Assuming gene expression levels are proportional to cell
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number/density, our observations suggest a decrease in large-soma cells (e.g., endothelial), outweighed by
a larger increase in small-soma cells (e.g., oligodendrocytes).

The estimated Rsoma is dependent on the higher order moments of the soma radii distribution (i.e.
skewdness and tailedness) within an MRI voxel (Olesen et al., 2022). Our own simulations of Reoma based
on known cell composition in the human brain (Keller et al., 2018) revealed a decrease in apparent soma
radii with age matching our in vivo imaging observations (i.e., a 1% decrease). This would in turn lead to a
reduction in the measured dMRI signal coming from water molecules fully restricted in soma, aligning with
our in vivo observations of decreasing fs.ma With age in the limbic, somatomotor, and dorsal attention
networks. It is plausible that an increase in oligodendrocyte (Peters & Sethares, 2004), not astrocyte or
microglial (Robillard et al., 2016), composition could concomitantly result in a smaller average soma radii
and lower soma signal fraction in the cortex through adolescence to early adulthood.

Sex Differences in Microstructural Properties

Females have larger apparent soma radii than males, and fsoma and fexracenuiar Varies with pubertal stage in
the visual network (Fig 3a). Pubertal hormones can stimulate apoptosis (seen in female rat visual cortex;
Nunez et al. (2002)), which could explain the lower fsma. as puberty progresses in females. Selective
neuronal cell death with unchanged glial cell number can also occur during puberty in the medial pre-
frontal cortex (Markham et al., 2007; Willing & Juraska, 2015), however we did not observe any sex or

pubertal differences in microstructure of the frontal cortex.

Extracellular Signal Fraction and Myelination

In dMRI, myelin thickening can decrease the extracellular signal fraction, due to less physical space in the
extracellular matrix (Jelescu et al., 2016; Derek K Jones et al., 2013). Age-related decreases in fexraceliuiar
were confined to the visual network and orbito-frontal and inferior frontal cortices. Comprehensive
evaluation of the myelin content is warranted to confirm the contributions of intracortical myelination to
developmental changes in cortical morphology (Mancini et al., 2020).

Spatiotemporal Patterns of Gene Expression

Peak oligodendrocyte cell-type gene expression progressed along the S-A axis, with earliest peaks in M1
and V1, and latest in MFC (Fig S8), mirroring spatial patterns of peak freuite (Fig S7). This also coincided
with a relative age-related decrease in astrocyte cell-type gene expression (Fig 5g) consistent with early-
life maturation of astrocytes (Bushong et al., 2004; Cahoy et al., 2008). The S-A developmental axis
describes a maturation process from lower-order, primary sensory and motor (unimodal) cortices to
higher-order transmodal association cortices, which support complex heurocognitive, and socioemotional
functions (Margulies et al., 2016; Sydnor et al., 2021). Prolonged maturation of the pre-frontal cortex has
been reported with lower myelin content in fronto-polar cortex compared with visual or somatomotor
regions from childhood to adulthood (Miller et al., 2012) indicating later myelination timing. Within the
frontal cortex, age-related patterns of microstructural neurite signal fraction and soma radius were
prolonged in the MFC and DLPFC (Fig 5c-e). This reflects the value of estimating in vivo neurite signal
fraction as these developmental hierarchies have been reproduced across various modalities (Burt et al.,
2018; Gao et al,, 2020; Satterthwaite et al., 2014; Sydnor et al., 2021; Vaishnavi et al., 2010; Wagstyl et al.,
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2015), particularly when considering the regions reaching peak maturation earliest and latest. Overall, our
combined imaging genetic analyses supports the evidence of an orderly and hierarchical progression of

intracortical myelination.

Implications for Cortical Thinning

A recent study showed that cortical thinning during development is associated with genes expressed
predominantly in astrocytes, microglia, excitatory and inhibitory neurons (Zhou et al., 2023). We observed
faster cortical thinning of default-mode and visual networks, consistent with previous studies (Ball, Seidlitz,
Beare, et al., 2020; Zhou et al., 2023). Apparent thinning may be a result of the macrostructural shift in the
boundary between grey matter and white matter, in this scenario due to myelin encroachment into the
cortex (Mournet et al., 2020; Natu et al., 2019). The microstructural composition of the grey matter itself
may be better studied by the biophysical models used here.

Clinical implications

Cortical morphology and myelination abnormalities are linked to various neuropsychiatric disorders (Chen
et al., 2024) including schizophrenia (Alexander-Bloch et al., 2014; Wannan et al., 2019) which is
characterised by deficiencies in myelination and oligodendrocyte production (Davis et al., 2003; Katsel et
al., 2005). Schizophrenia patients exhibit downregulation of myelination-related genes (Tkachev et al.,
2003) and post-mortem studies have shown reduced oligodendrocyte density in layer 5 of dorsolateral
prefrontal cortex compared to healthy controls (Kolomeets & Uranova, 2019). Additionally, young children
with autism show age-related deficits in cortical T1w/T2w ratios (Chen et al., 2022). Given these findings,
quantifying cortical microstructure in such clinical cohorts is crucial, especially with adaptations towards
clinically feasible acquisition protocols (Barakovic et al., 2024; Margoni et al., 2023; Schiavi et al., 2023).

Strengths and limitations

Several methodological advancements have advanced the understanding of underlying compositional
changes to cortical microstructure across development in our study. Using in vivo microstructural imaging
with ultra-strong gradients (Gnx=300 mT/m; Jones et al. (2018)), we achieved sensitivity to micrometer-
level imaging contrast with significant SNR improvements over clinical MRI scanners (Raven et al., 2023).
Although we used a specialised system, recent advancements have enabled these measurements on
more accessible, lower-gradient strength MRI systems (e.g. Gmax=80mT/m; Schiavi et al. (2023)).
Combined with two ex vivo gene expression data sets sampled from the human brain, we provide
compelling evidence in favour of a framework for monitoring intra-cortical cellular composition in vivo.
Further work should evaluate in vivo imaging acquisition techniques and models that account for water
exchange, which can influence biophysical modelling of grey matter compartments.

Our observation of oligodendrocyte-specific gene expression increasing towards adulthood indicates the
value of imaging a broader age range of young adults to fully assess trajectories of in vivo microstructural
properties. It is also important to recognise that gene expression patterns do not necessarily correlate with
cellular density. Histopathological confirmation is needed to verify cell size and density with biophysical
signal fractions, as well as their relevancy to functional gene expression patterns.
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Overall, our study provides novel /nn vivo evidence of distinct developmental differences in neurite and
soma architecture, aligning with cell-type specific gene expression patterns observed in ex vivo human
data. This provides a window into the role of intracortical myelination through adolescence, and how it
shapes the developmental patterns of cortical microstructure in vivo.

4. Methods

4.1. Imaging set
4.1.1.Participant characteristics

We included a sample of 88 typically developing children aged 8-19 years recruited as part of the Cardiff
University Brain Research Imaging Centre (CUBRIC) Kids study. The study was approved by the School
of Psychology ethics committee at Cardiff University. Participants and their parents/guardians were
recruited via public outreach events. Written informed consent was obtained from the primary caregiver of
each child participating in the study, and adolescents aged 16-19 years also provided written consent.
Children were excluded from the study if they had non-removable metal implants or reported history of a

major head injury or epilepsy.

We administered a survey to parents of all participants, and to children aged 11-19 years. The Strengths
and Difficulties Questionnaire (SDQ) was used to assess emotional/behavioural difficulties (Goodman,
1997). The Pubertal Development Scale (Petersen et al.,, 1988) was used to determine pubertal stage
(PDSS; Shirtcliff et al. (2009)). Additionally, we measured each child’s height and weight to calculate their
Body-Mass index (BMI) (kg/m?).

All children and adolescents underwent in-person training to prepare them for the MRI procedure using a
dedicated mock MRI scanner. This protocol was 15-30 minutes long, and designed to familiarise them to
the scanner environment, to minimize head motion during the scan. All procedures were completed in
accordance with the Declaration of Helsinki.

Table 1: Characteristics of in vivo imaging cohort.

Summary statistics Age relationship*
Measure Mean SD Range R? p-value
Age, years' 12.56 2.94 8.0-19.0
Pubertal stage (PDSS)" 2.89 1.50 1-5 72 <.001
SDQ, total score’ 6.45 3.90 0-19 .01 .60
Body mass index, kg/m? 19.29 3.25 13.7 —29.2 25 <.001
FSIQ 108 12.6 86 — 145

" Full sample: N=88 (42 males, 46 females)
*Subsample: N=79 (40 males, 39 females)
~ Subsample: N=48 (23 males, 25 females)
*Age relationships determined by linear regression.
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4.1.2. Acquisition and processing

Discovery data: Participants aged 8-19 years (N=88, mean age=12.6 years, 46 female) underwent MRI on
a 3T Siemens Connectom system with ultra-strong (300 mT/m) gradients. Structural T+-weighted (voxel-

size=1x1x1mm?; TE/TR=2/2300 ms) and multi-shell dMRI (TE/TR=59/3000 ms; voxel-size=2x2x2 mm?;

A=23.3ms,5=7ms,b-values = 0 (14 vols), 500, 1200(30 dirs), 2400, 4000, 6000 (60 dirs) s/mm?) data

were acquired.

Repeatability data: Six healthy adults aged 24-30 years (3 female) were scanned five times in the span of
two weeks (Koller et al., 2021) on the same Connectom system. Multi-shell dMRI data were collected as
above, with an additional 20 diffusion directions acquired at b=200 s/ mm?.

Pre-processing of dMRI data followed steps interfacing tools such as FSL (Smith et al., 2004), MRtrix3
(Tournier et al., 2019), and ANTS (Avants et al., 2011) as reported previously (Genc et al., 2020). Briefly,
this included denoising, and correction for drift, motion, eddy, and susceptibility-induced distortions, Gibbs
ringing artefact, bias field, and gradient non-uniformities. For each subject, the soma and neurite density
imaging (SANDI) compartment model was fitted (Palombo et al., 2020) to dMRI data using the SANDI
Matlab Toolbox v1.0, publicly available at https://github.com/palombom/SANDI-Matlab-Toolbox-v1.0, to
compute whole brain maps of neurite, soma and extracellular signal fraction (freurite, fsoma, fextracetiuiar = 1 = freurite
- fsoma); the soma radius (Rsoma, in pm); and the extracellular and intra-neurite axial diffusivities (D. and Din,
respectively, in um?/ms) (Fig 1). To put our results in context with previous studies, the neurite orientation
dispersion and density imaging (NODDI) model (Zhang et al., 2012) was fitted to all b-values using the
NODDI Matlab toolbox, publicly available at http://mig.cs.ucl.ac.uk/index.ohp?n=Tutoria.NODDImatlab , to
estimate the intra-cellular volume fraction (vi;) and orientation dispersion (OD) and diffusion tensor

imaging (DTI) metrics were estimated using the b=1000 s/mm? shell (Fractional anisotropy (FA); mean
diffusivity (MD, in s/mm?).

T1-weighted data were processed using FreeSurfer version 6.0 (http:/surfer.nmr.mgh.harvard.edu) and
post-processed to obtain network-level (N=7 ROls; Yeo et al. (2011)) and fine-grained cortical
parcellations (N=360, HCP-MMP1; (Glasser et al., 2016)). Follow-up analyses using fine-grained HCP-
MMP1 parcellations in visual and frontal cortices were performed based on a priori hypotheses of earlier

maturation of visual (Natu et al., 2019) and later maturation of frontal (Robillard et al., 2016) cortices, as
well as for comparison with gene expression data sampled from multiple regions in the frontal cortex.
Morphological measures including cortical thickness (CTh, mm), surface area (SA, mm?), and grey matter
volume (GMvol, mm?) were computed at the whole brain, and parcel level. The analysis framework is
detailed in Figure 1 and networks studied are depicted in Fig 2a.

4.2. Cortical gene expression set
Pre-processed, batch-corrected and normalised microarray and bulk RNA-seq data from postmortem

human tissue samples were obtained from the BrainCloud (Colantuoni et al., 2011) (n=214; aged 6mo —
78.2y; 144 male; postmortem interval [PMI] = 29.96 [15.28]; RNA integrity [RIN] = 8.14 [0.83]) and
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PsychENCODE (n=20; 6mo-40y; 10 male; PMI = 17.85 [6.75]; RIN = 8.45 [0.79]) projects, respectively (Li
et al.,, 2018). The cortical regions sampled are summarised in Table S1. Tissue was collected after
obtaining parental or next of kin consent and with approval by the institutional review boards at the Yale
University School of Medicine, the National Institutes of Health, and at each institution from which tissue
specimens were obtained. Tissue processing is detailed elsewhere (Ball, Seidlitz, O’Muircheartaigh, et al.,
2020; Li et al., 2018). Gene expression for PsychENCODE was measured as rates per kilobase of
transcript per million mapped (RPKM). Gene expression for Braincloud was preprocessed and normalized
following data cleaning and regressing out technical variability (see
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE30272).

Genes were initially filtered to include only protein-coding genes expressed in cortical cell types (n=3100,
Ball, Seidlitz, O’Muircheartaigh, et al. (2020)). Using a database of single-cell RNA-seq studies, we
identified genes differentially expressed across major cortical cell types (excitatory and inhibitory neurons,
oligodendrocytes, oligodendrocyte precursor cells [OPCs], microglia, astrocytes, and endothelial cells
(Ball, Seidlitz, Beare, et al., 2020)).

4.3. Statistical analyses
4.3.1.In vivo imaging

We used linear regression to test for main effects of age and sex, puberty, and sex by puberty interactions.
To identify the most parsimonious model and to avoid over-fitting, we used the Akaike Information
Criterion (AIC) (Akaike, 1974), selecting the model with the lowest AIC. Individual general linear models
were used to determine age-related differences in cortical thickness and microstructural measures in all
seven Yeo networks. Evidence for an association was deemed statistically significant when p <.005
(Benjamin et al., 2018). Results from linear models are presented as the normalized coefficient of variation
(B) and the corresponding 95% confidence interval [lower bound, upper bound]. We also report the
adjusted correlation coefficient of the full model (R?).

To identify important regions that contribute to age-related differences in all the studied microstructural
measures, we performed age-prediction using a random forest regressor (5-fold cross-validation) for age
prediction with PyCaret (www.pycaret.org). For each microstructural measure, we randomly split the data
into training and validation sets using an 80-20 ratio (total N=88: 70 training; 18 testing). Then, we
performed feature scaling to ensure that all input variables (for each HCPMMP1 ROI) were on a similar

scale prior to model fitting. The performance of the model was evaluated on the validation dataset. Finally,
the features with the largest weight coefficients were extracted to identify specific cortical regions where
variance in cortical microstructure was associated with age-related changes.

4.3.2.Gene expression profiles
To identify genes differentially expressed over age (pror<.05), we modelled age-related changes in

normalised expression in all available postnatal tissue samples using nonlinear generalised additive
models with thin plate splines (k=5) (Wood, 2003) in R.
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BrainCloud

The relationship between normalised gene expression and age was modelled with a nonlinear general
additive model (GAM) using a penalised thin-plate spline with a maximum 5 knots:

M1a. gam(expression ~
1 + s(age, k=5, bs="tp’)

Note that the available BrainCloud data are already preprocessed to remove variance due to batch and
sample effects (see https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE30272).

PsychENCODE

We repeated the above models, now with a measure of RNA integrity (RIN) as a confounder, and gene
expression defined as log.(RPKM). First, we included region as an additional factor to account for spatial
variation across the cortex and included donor ID as a random effect to account for repeated samples
from the same specimen.

M2a. gam(expression ~
1 + s(age, k=5, bs="tp', by=region, id=1)
+ RIN + sex + region + s(sample, bs='"re'), data = data))

Then, we analysed data only in the DLPFC, for comparison with the BrainCloud geneset.

M2a. gam(expression(DLPFC) ~
1 + s(age, k=5, bs='tp')
+ RIN + sex + s(sample, bs='re'), data = data))

We calculated measures of goodness of fit using Akaike Information Criterion (AIC) and Bayesian
Information Criterion (BIC) for all gene models.

Using a set of independent single-cell RNA studies of the human cortex (see Ball, Seidlitz et al. (2020) for
details), we identified genes exhibiting differential expression across various cortical cells-types, including
excitatory neurons, inhibitory neurons, oligodendrocytes, microglia, astrocytes, and endothelial cells. We
then compiled gene lists for each cell-type, comprising genes that are both differentially expressed by that
cell-type, and uniquely expressed by that cell-type. Mean trajectories across all cortical regions sampled

were computed for each cell-type.

After identifying age-related genes, we entered our list to an independent cell-type specific expression
analysis (CSEA; Xu et al. (2014)) to elucidate: 1) if genes were enriched for specific cell-types, and 2) in
which developmental period was gene expression highest.
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4.3.3.Simulations

We performed numerical simulations using realistic cell counts to explain the observed trends in Rsoma
derived from in vivo dMRI data. We modelled the variability in cell body sizes within an MRI voxel by
generating distributions of radii for microglia, astrocytes, oligodendrocytes, neurons, and endothelial cells.
For each cell-type, we assumed the observed age-related slope of gene expression was proportional to
the number of cells within an MRI voxel. Based on realistic cell counts outlined in Keller et al. (2018), we
set the number of cells in mm? as follows: Nmicro = 6,500; Nastro = 15,700; Noigo = 12,500; Nneuro = 92,000;
Nendo = Nneuro*.35 (Ventura-Antunes et al.,, 2022). For each cell type, we generated random samples of
radii based on the specified cell counts assuming a Gaussian distribution with cell-type specific baseline
mean and standard deviation: microglia = 2.0£0.5 um; astrocytes and oligodendrocytes = 5.5£1.5 um;

neurons = 8.012.0 um for neurons and 9.0+0.5 um for endothelial. The resulting radii were concatenated
s\ 1/2
to form a comprehensive distribution and the MR apparent soma radius Rsoma €stimated as (R ) as per

R®
Olesen et al. (2022).
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