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Abstract 
 

Neuroanatomical changes to the cortex during adolescence have been well documented using MRI, 
revealing ongoing cortical thinning and volume loss with age. However, the underlying cellular 
mechanisms remain elusive with conventional neuroimaging. Recent advances in MRI hardware and new 
biophysical models of tissue informed by diffusion MRI data hold promise for identifying the cellular 
changes driving these morphological observations. This study used ultra-strong gradient MRI to obtain 
high-resolution, in vivo estimates of cortical neurite and soma microstructure in sample of typically 
developing children and adolescents. Cortical neurite signal fraction, attributed to neuronal and glial 
processes, increased with age (mean R2

fneurite=.53, p<3.3e-11, 11.91% increase over age), while apparent 
soma radius decreased (mean R2

Rsoma=.48, p<4.4e-10, 1% decrease over age) across domain-specific 
networks. To complement these findings, developmental patterns of cortical gene expression in two 
independent post-mortem databases were analysed. This revealed increased expression of genes 
expressed in oligodendrocytes, and excitatory neurons, alongside a relative decrease in expression of 
genes expressed in astrocyte, microglia and endothelial cell-types. Age-related genes were significantly 
enriched in cortical oligodendrocytes, oligodendrocyte progenitors and Layer 5-6 neurons (pFDR<.001) and 
prominently expressed in adolescence and young adulthood. The spatial and temporal alignment of 
oligodendrocyte cell-type gene expression with neurite and soma microstructural changes suggest that 
ongoing cortical myelination processes contribute to adolescent cortical development. These findings 
highlight the role of intra-cortical myelination in cortical maturation during adolescence and into 
adulthood. 
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1. Context 
 

Over the last two decades, magnetic resonance imaging (MRI) has provided invaluable insights into the 
developing brain, revealing ongoing cortical thinning and cortical volume loss throughout adolescence 

(Mills et al., 2016; Tamnes et al., 2017). However, the underlying cellular processes driving these changes 

are less understood. Cortical cytoarchitecture can be broadly categorised into neurites (e.g., axons, 

dendrites, and glial processes) and soma (e.g., neuronal, and glial cell bodies). Traditionally, synaptic 
pruning has been considered the primary driver of developmental changes in cortical morphology 

(Huttenlocher, 1979). Recent evidence, however, suggests that myelin encroachment into the grey/white 

matter boundary may also contribute to changes in MR contrast typically used for volumetrics, such as T1 

(Natu et al., 2019). Developmental patterns of cortical myelination have been elucidated using 
magnetization transfer (MT) imaging (Paquola et al., 2019), and indirectly using T1w/T2w ratio (Grydeland 

et al., 2019). Despite these advances, how microstructural changes – specifically neurite and soma 

properties – contribute to these distinct morphological changes remains unclear. 

 

Diffusion-weighted MRI (dMRI) is the main non-invasive MRI technique capable of probing the tissue 
microstructure, orders of magnitude smaller than the typical millimetre image resolution of structural MRI 

(Le Bihan et al., 2001). This microstructural imaging method is highly sensitive to the magnitude and 

direction of water diffusing within brain tissue. By employing biophysical models, it is possible to infer 

microscopic properties of different tissues, such as neurite signal fraction in the brain’s white matter 
(Alexander et al., 2019; Zhang et al., 2012). In comparison with white matter, grey matter cytoarchitecture, 

broadly categorized into neurites (e.g., elongated structures such as axons, dendrites and glial processes) 

and soma (e.g., spherical structures such as neuronal and glial cell-bodies) is more locally complex, 

requiring extensions of the standard models of microstructure developed for studying the white matter. 
Recent hardware (Fan et al., 2022; Jones et al., 2018) and biophysical modelling (Jelescu et al., 2022; 

Palombo et al., 2020; Tax et al., 2020) developments have enabled diffusion-weighted microstructural 

quantification of soma and neurite components in the cortex in vivo. The Soma and Neurite Density 

Imaging (SANDI; Palombo et al. (2020)), is robust, reliable (Genc et al., 2021), clinically feasible for 

sufficiently short diffusion times (Schiavi et al., 2023) and has been validated in ex vivo data (Ianuş et al., 
2022). 

 

Here, we examine cortical microstructural development in a sample of children and adolescents using 

ultra-strong gradient dMRI to identify specific changes in neurite and soma properties with age. To 
identify potential cellular substrates, we analyse developmental patterns of neurite and soma 

microstructure alongside contemporaneous trajectories of cortical cell-type specific gene expression 

measured in the developing cortex using data from two independent, post-mortem databases. We reveal 

key developmental patterns in cortical neurite and soma architecture, highlighting the contribution of 
active and ongoing cortical myelination processes to the macroscale changes observed in the cortex 

during adolescence. 
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2. Results 
 
We apply a framework for cortical microstructure and cell-type specific gene expression analysis (Fig 1) to 
evaluate the cellular properties underpinning human cortical microstructural development. 

 

 

 
 

 
Figure 1: Framework for cortical microstructure and gene expression analysis. This study employs a biophysical model of 
cortical neurite and soma microstructure using ultra-strong gradient dMRI (Jones et al., 2018) data collected from 88 
children and adolescents aged 8-19 years. Representative maps of neurite signal fraction (fneurite), soma signal fraction 
(fsoma), apparent soma radius (Rsoma, µm) and extracellular signal fraction (fextracellular) are shown for one 8-year-old female 
participant. We also analyse two human gene expression datasets (Colantuoni et al., 2011; Li et al., 2018) to estimate cell-
type specific and spatial (where arrows on brain render indicate a subset of regions sampled) gene expression profiles and 
examine their concordance with developmental patterns of cortical microstructure. 
 
 

2.1. Cortical microstructure and morphology in domain-specific networks 
 

First, we studied the repeatability of cortical microstructural estimates from the SANDI model in a sample 

of 6 healthy adults scanned over 5 sessions. Intra-class coefficients (ICCs) for neurite signal fraction 
(fneurite), soma signal fraction (fsoma) and extracellular signal fraction (fextracellular) were very high (Fig 2c) across 

seven domain-specific networks (mean ICC=.97, all p<.001). Apparent soma radius (Rsoma, in µm) showed 

lower repeatability on average (mean ICC=.92) with lower mean repeatability driven by the limbic network 

(ICC=.66, p=.04). 
 

We then studied age-related patterns of cortical microstructure and morphology in a sample of 88 

typically developing children and adolescents aged 8-19 years (Table S2). Cortical fneurite and intracellular 

volume fraction (vic; derived from the NODDI model, Zhang et al. (2012)) increased with age across all 
cortical networks (mean R2

fneurite=.53, all networks p<3.3e-11; mean R2
vic=.46, all networks p<1.6e-9) (Fig 

2d, Fig S1). Orientation dispersion index (ODI; derived from the NODDI model, Zhang et al. (2012)) also 
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increased with age across all studied networks (mean R2
odi=.42, all networks p<1.9e-5). In contrast, we 

observed decreasing Rsoma with age across all networks (mean R2
Rsoma=.48, all networks p<4.4e-10) and 

fsoma decreased with age in the dorsal attention (R2
fsoma=.12), limbic (R2

fsoma=.09) and somatomotor 
(R2

fsoma=.23), networks (all p<.002). fextracellular decreased in the default mode (R2
fe=.12), limbic (R2

fe=.21) and 

visual (R2
fe=.09) networks (all p<.004).  

 

Consistent with established developmental patterns, cortical thickness and grey matter volume decreased 
with age (Fig 2b). The strength of these associations varied across brain networks (see Fig S1 and Table 

S2). Specifically, cortical thickness exhibited age-related decline in the default mode, β= -.59 [-.77, -.41], 

dorsal attention, β= -.40 [-.61, -.19], somatomotor, β= -.40 [-.60, -.19], and visual, β= -.61 [-.78, -.43], 

networks (all p<.001). Similarly, grey matter volume decreased with age in the default mode, β= -.37 [-.55, -

.20], dorsal attention, β= -.34 [-.54, -.15], and visual β= -.29 [-.47, -.11], networks (all p<.002). Cortical 

surface area did not show significant age-related differences. The magnitude and direction of age effects 

across all microstructural and morphological measures are shown in Figure S1. 

 
2.2. Unique sex and pubertal differences in the visual network  

 

Sex differences in brain structure have been well reported, with pubertal onset playing a critical role in 

initiating developmental changes to morphology (Vijayakumar et al., 2018) and microstructure (Tamnes et 
al., 2018). We found that grey matter volume and surface area were higher in males than females (p<.005) 

across all brain networks (Figure S2), following known patterns of larger brain volume in males. We 

observed sex differences in only two microstructural measures, Rsoma and fractional anisotropy (FA; 

derived from the diffusion tensor at b=1000s/mm2), in the visual network (Fig S2, S3). Females had higher 

Rsoma, β= -.57 [-.91, -.24], p=.001, and lower FA, β= .55, [.18, .92], p=.004, compared to males. We observed 

a pubertal stage by sex interaction on fsoma, where males had lower soma signal fraction in early puberty, 

β= .73 [.28, 1.18], p=.002, which stabilised in late puberty. Males had lower fextracellular throughout puberty β= 

-.74 [-1.18, -.31], p=.001. 
 

Using an age-prediction random forest model for each microstructural measure in the visual network, we 

found that Rsoma provided the most accurate age-prediction (cross-validated R2= .58), followed by fneurite 

(R2= .56), and fsoma (R2=.28). Model fitting did not converge for fextracellular. NODDI measures showed 
R2

odi=.46, and R2
vic=.36. Feature importance analysis revealed that association cortices within the visual 

network had the highest contribution (top 5%) to age prediction (Fig 3b,c,d). Notably, region 31a (posterior 

cingulate cortex) consistently influenced age prediction across multiple measures, with Rsoma contributing 

63%, ODI 7% and vic 5.4%. Additional top-ranking regions included dorsal visual area, V3A (vic = 45%), 

lateral temporal area, TE2a (vic = 17.8 %, fneurite = 5.1%), retrosplenial cortex, RSC, (vic=7.9%), auditory 
association area, A5 (fneurite=5.5%), and lateral occipital area, LO3, (fsoma=5.4%). These regions (depicted in 

Fig 3c) represent cortical endpoints of developmentally sensitive tracts, identified through tractography, 

such as the posterior corpus callosum, cingulum, and inferior longitudinal fasciculus (Fig 3d).  
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Figure 2: Developmental patterns of MRI-derived cortical morphology and microstructure: (a) regions in atlas used to 
derive domain-specific networks (Yeo et al., 2011) overlaid on a representative participant; (b) developmental patterns of 
cortical morphology and microstructure averaged across the cortical ribbon; (c) demonstration of high repeatability of 
SANDI measures in six adults scanned over 5 time-points within two weeks; (d) network-wide patterns of microstructure 
and morphology, indicating age-related increases in neurite fraction and reductions in cortical thickness, apparent soma 
radius, soma fraction and extracellular fraction. Significant age relationships (p<.005) are annotated (*). Abbreviations: 
CTh: cortical thickness, in mm; fextracellular: extracellular signal fraction; fneurite: neurite signal fraction; fsoma: soma signal fraction; 
GM: grey matter; ICC: intra-class coefficient; Rsoma: apparent soma radius, in µm.	
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Figure 3: Developmental patterns of microstructure in the visual network. (a) Sex differences in apparent soma radius, and 
sex by puberty interactions for soma and extracellular signal fractions. (b) Feature importance of regions overlapping visual 
network (Glasser et al., 2016) to brain age estimation; top ranking regions with a weighting >5% (width of coloured bin) are 
in white text and accuracy of prediction model is represented (as R2) on the leftmost point of the bar plot. (c) Top ranking 
regions overlaid on a representative participant, coloured by labels in (b). (d) White matter pathways derived from 
tractography connecting cortical endpoints identified in age prediction analysis, such as the cingulum, posterior corpus 
callosum (CC) and inferior longitudinal fasciculus (ILF) which traverse regions in (c).  
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2.3. Contemporaneous gene expression trajectories 
 

Using n=214 post-mortem tissue samples from the dorsolateral prefrontal cortex (DLFPC; BrainCloud; 
Colantuoni et al. (2011)), we identified n=2057 genes with differential expression over the lifespan (0.5 – 

72 years; pFDR<0.05). We validated this selection in an independent RNA-seq dataset (PsychENCODE; Li 

et al. (2018); n=20; DLPFC samples only), identifying n=467 (22.7%) genes with significant age-

associations in both datasets (age-genes; Supp Info).  
 

We identified sets of differentially expressed genes across 7 cortical cell-types (see Methods). Mean 

trajectories of gene expression across the age range 0 and 30 years, averaged within each cell-type, are 

shown as standardized curves in Figure 4 for PsychENCODE (Fig 4a) and BrainCloud (Fig 4b) datasets. 
Non-normalized gene expression curves for PsychENCODE are presented in Figure S4 to aid in 

interpreting relative differences gene expression magnitudes. Among genes expressed in excitatory 

neuronal populations and oligodendrocytes, mean expression levels increased with age. In contrast, genes 

expressed in inhibitory neurons showed no age-related variation. Genes expressed in endothelial cells, 

astrocytes, microglia and OPCs, exhibited a decrease in mean gene expression with age. Overall, 
microglial gene expression (average log2RPKM =1.96) was lower compared to astrocytes (log2RPKM 

=3.70), oligodendrocytes (log2RPKM =3.11), OPCs (log2RPKM =3.01), excitatory neurons (log2RPKM 

=4.15) and inhibitory neurons (log2RPKM =2.94).  

 
We validated the enrichment of these cell-types in these age-related genes using an independent cell-

type specific expression analysis (CSEA). Significant enrichment of age-genes (n=467) was observed in 

cortical oligodendrocytes, oligodendrocyte progenitors, and Layer 5-6 neurons (Fig S5). These genes 

were prominently expressed across developmental stages in childhood adolescence, and young adulthood 
(Fig S6, Fig 4c). The number (Fig 4d) and proportion (Fig 4e) of age-related genes expressed by 

oligodendrocytes increased significantly in adolescence and young adulthood (Fig 4d,e). These included 

genes associated with CNS (re)myelination, RCAN2 (Huang et al., 2011), GRIA3 (Kougioumtzidou et al., 

2017), and the differentiation of OPCs and oligodendrocytes, PLEHA1/TAPP1 (Chen et al., 2015); 

AATK/AATYK (Jiang et al., 2018). 
 

For each cell-type, we quantified the spatiotemporal patterns of gene expression using PsychENCODE 

data by identifying the peak growth of expression in cell-specific genes. Oligodendrocyte gene expression 

peaked earliest in primary motor (M1), primary visual (V1) cortices, and latest in the medial frontal (MFC) 
cortex (Fig S8). A notable pattern emerged in which the peak expression of oligodendrocyte genes 

coincided with a shift in oligodendrocyte-to-astrocyte specific expression ratio. This shift, indicating a 

relative increase in oligodendrocyte over astrocyte cell-type gene expression, occurred around 20 years of 

age in M1 and V1, and after age 25 in DLPFC, ITC and MFC (Fig 4g,h). This sequence aligns with the 
known earlier myelination timing in sensorimotor cortices followed by prolonged myelination in the pre-

frontal cortex into the third decade of life (Grydeland et al., 2019; Paquola et al., 2019; Sydnor et al., 2021).  
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Figure 4: Developmental trajectories of cell-type specific gene expression. Data shown for samples aged 0-30 years from: 
(a) BrainCloud (Z-score), and (b) PsychENCODE (expressed in log2-reads-per-kilobase of transcript per million 
(log2RPKM)) datasets, demeaned to account for overall higher expression in some cell-types. Age effects were modelled in 
all postnatal samples to maximise sample size. Grey shaded areas highlight the age range of the microstructural imaging 
cohort (8-19 years) for visual comparison of developmental profiles. (c) SEA results (Xu et al., 2014) showing significant 
enrichment of age-related genes through adolescence and adulthood, where hexagon size scales with enrichment 
(overlap) of age-related genes in genes expressed by each cell type, and darker rings indicate significant associations at 
pFDR<.001 with inner rings indicating high cell specificity. Age-related genes overlapping postnatal developmental stages 
are shown as (d) total number of genes, and (e) proportion of genes, indicating an increase in neuronal, glial and 
oligodendrocyte-specific genes. (f) Trajectories of glial genes overlapping the SEA and our age-genes. (g) Regional shifts 
in the glial cell-type expression ratio (log2RPKM) across development, with the astrocyte-to-oligodendrocyte expression 
ratio crossing earliest at age 20 years in primary motor and visual cortices. (h) Timing of this cross-over, with darker values 
indicating regions with an earlier crossing point. Note that white coloured regions are not represented in the data set. 
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2.4. Concordant profiles of microstructure and gene expression indicate developmental cortical 
myelination 

 
To elucidate the cell-specific basis of our imaging findings, we examined neurite and soma microstructural 

measures in the same four frontal regions sampled in the PsychENCODE data (MFC, IFC, DLPFC, 

VLPFC; see Fig 5a,b) using a fine-grained parcellation of the frontal lobe. Microstructural MRI revealed 

regional increases in fneurite and decreases in Rsoma (Fig 5c). This pattern corresponded with increased 
regional oligodendrocyte cell-type gene expression profiles in the same regions over the same age period 

(Fig5d,e). The spatial distribution of oligodendrocyte cell-type expression was aligned with regional 

differences in peak growth of the neurite fraction (Fig S7). Thus, the dMRI-derived neurite signal fraction 

likely reflects spatiotemporal patterns of cortical myelination, matching the peak expression of 
oligodendrocyte-genes. 

 

Numerical simulations exploring the effect of cell-type composition based on known cell counts (Keller et 

al., 2018) on the actual expected distribution of cell body radii within an imaging voxel reveal close 

correspondence between simulated and in vivo modelling results of Rsoma (Fig S9), showing a 1% age-
related decrease in both simulated and dMRI-derived data. 

 

 

 
 
Figure 5: Regional variation of microstructure and gene expression in the frontal cortex. (a) Structural MRI-based 
segmentation of four frontal regions: medial pre-frontal cortex (mPFC); dorsolateral prefrontal cortex (DLPFC); orbito and 
polar frontal cortex (OPFC), and inferior frontal cortex (IF); (b) sub-regions from the HCP-MMP1 atlas (Glasser et al., 2016), 
which comprised the regions in (a); (c) age-related patterns of microstructural measures (*:p<.005); oligodendrocyte cell-
type gene expression in (d) PsychENCODE data sampled in the same 4 frontal cortical regions as (a), and (e) BrainCloud 
data sampled in the DLPFC.  
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3. Discussion  
 

We combined in vivo ultra-strong gradient dMRI with independent ex vivo gene expression analyses to 
map tissue microstructural architecture during human development. We now discuss each of the key 

findings and their implications, before summarising the strengths and limitations of our study. 

 

Neurite Signal Fraction Increases from Childhood to Adolescence 
The neurite signal fraction, fneurite, attributed to elongated cortical structures (e.g., axons, processes), 

increased with age across the whole cortex, but peaked earliest in the visual and somatomotor networks, 

mirroring previous findings (Lynch et al., 2024). Intracortical myelination continues over adolescence 

(Bartzokis, 2012; Gibson et al., 2014; Grydeland et al., 2019; Natu et al., 2019; Whitaker et al., 2016), 
following a stereotyped sensorimotor-to-association (S-A) axis of development (Sydnor et al., 2023). 

Although dMRI is relatively insensitive to water within the myelin sheath itself, due to its short T2 (D. K. 

Jones et al., 2013), the observed increase in fneurite may nevertheless reflect intra-cortical myelination. This 

is supported by ex vivo macaque data showing developmental increases in glial process length and 

complexity (Robillard et al., 2016), and an increase in the number of myelinated axons and dendrites 
(Fukutomi et al., 2018), which limits water exchange and leads to a greater signal contribution from inside 

the neurite (Jelescu et al., 2022; Olesen et al., 2022).  

 

Oligodendrocyte-Specific Gene Expression Increases from Childhood to Adolescence 
Supporting our in vivo MRI findings, oligodendrocyte-specific gene expression increased with age (Fig 

5a,b), aligning with previous observations in independent data (Paquola et al., 2019). Age-related genes 

were also enriched in cortical neurons (layers 5 and 6) and OPCs (Fig S6). The concordance between the 

human gene expression analysis (Fig S5) and the CSEA analysis based on mouse transcriptomic profiling 
(Fig S6; Xu et al. (2014)) indicates conservation of myelination processes via cortical oligodendrocytes. 

Oligodendrocyte cell turnover in the frontal cortex is dynamic, especially in adulthood, and 10 times higher 

in the cortex than in the white matter (Yeung et al., 2014). OPCs can generate myelinating 

oligodendrocytes in adulthood, even in fully myelinated regions (Richardson et al., 2011; Young et al., 

2013). Importantly, oligodendrocyte function is not restricted to myelination, rather, they also perform 
many critical neuronal support functions beyond myelination (Bradl & Lassmann, 2010). Together our 

microstructural MRI and gene-expression findings converge towards increased cortical myelination 

through adolescence. 

 
Apparent Soma Radius Decreases from Childhood to Adolescence 
The dMRI-derived apparent soma radius, Rsoma, decreased cortex-wide from childhood to adolescence. 

Neuronal soma are much larger than glial soma, measuring ~16µm in diameter in layers 5-6 of the adult 

human prefrontal cortex, whereas glial soma range in diameter from 1-11µm (Rajkowska et al., 1998). Our 
gene expression analysis suggests specific changes in the cellular composition of the cortex with age: 

decreasing expression levels for astrocyte, microglia and endothelial cell-types, and (much larger) 

increasing expression levels for oligodendrocyte cell-types. Glial composition in the neocortex is mostly 

comprised of oligodendrocytes (~75%), followed by astrocytes (~20%) and a smaller prevalence of 
microglia (~5%) (Pelvig et al., 2008). Assuming gene expression levels are proportional to cell 
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number/density, our observations suggest a decrease in large-soma cells (e.g., endothelial), outweighed by 

a larger increase in small-soma cells (e.g., oligodendrocytes).  

 
The estimated Rsoma is dependent on the higher order moments of the soma radii distribution (i.e. 

skewdness and tailedness) within an MRI voxel (Olesen et al., 2022). Our own simulations of Rsoma based 

on known cell composition in the human brain (Keller et al., 2018) revealed a decrease in apparent soma 

radii with age matching our in vivo imaging observations (i.e., a 1% decrease). This would in turn lead to a 
reduction in the measured dMRI signal coming from water molecules fully restricted in soma, aligning with 

our in vivo observations of decreasing fsoma with age in the limbic, somatomotor, and dorsal attention 

networks. It is plausible that an increase in oligodendrocyte (Peters & Sethares, 2004), not astrocyte or 

microglial (Robillard et al., 2016), composition could concomitantly result in a smaller average soma radii 
and lower soma signal fraction in the cortex through adolescence to early adulthood. 

 
Sex Differences in Microstructural Properties 
Females have larger apparent soma radii than males, and fsoma and fextracellular varies with pubertal stage in 

the visual network (Fig 3a). Pubertal hormones can stimulate apoptosis (seen in female rat visual cortex; 
Nunez et al. (2002)), which could explain the lower fsoma as puberty progresses in females. Selective 

neuronal cell death with unchanged glial cell number can also occur during puberty in the medial pre-

frontal cortex (Markham et al., 2007; Willing & Juraska, 2015), however we did not observe any sex or 

pubertal differences in microstructure of the frontal cortex. 
 
Extracellular Signal Fraction and Myelination 
In dMRI, myelin thickening can decrease the extracellular signal fraction, due to less physical space in the 

extracellular matrix (Jelescu et al., 2016; Derek K Jones et al., 2013). Age-related decreases in fextracellular 

were confined to the visual network and orbito-frontal and inferior frontal cortices. Comprehensive 

evaluation of the myelin content is warranted to confirm the contributions of intracortical myelination to 

developmental changes in cortical morphology (Mancini et al., 2020). 
 
Spatiotemporal Patterns of Gene Expression 
Peak oligodendrocyte cell-type gene expression progressed along the S-A axis, with earliest peaks in M1 

and V1, and latest in MFC (Fig S8), mirroring spatial patterns of peak fneurite (Fig S7). This also coincided 

with a relative age-related decrease in astrocyte cell-type gene expression (Fig 5g) consistent with early-

life maturation of astrocytes (Bushong et al., 2004; Cahoy et al., 2008). The S-A developmental axis 
describes a maturation process from lower-order, primary sensory and motor (unimodal) cortices to 

higher-order transmodal association cortices, which support complex neurocognitive, and socioemotional 

functions (Margulies et al., 2016; Sydnor et al., 2021). Prolonged maturation of the pre-frontal cortex has 

been reported with lower myelin content in fronto-polar cortex compared with visual or somatomotor 
regions from childhood to adulthood (Miller et al., 2012) indicating later myelination timing. Within the 

frontal cortex, age-related patterns of microstructural neurite signal fraction and soma radius were 

prolonged in the MFC and DLPFC (Fig 5c-e). This reflects the value of estimating in vivo neurite signal 

fraction as these developmental hierarchies have been reproduced across various modalities (Burt et al., 

2018; Gao et al., 2020; Satterthwaite et al., 2014; Sydnor et al., 2021; Vaishnavi et al., 2010; Wagstyl et al., 
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2015), particularly when considering the regions reaching peak maturation earliest and latest. Overall, our 

combined imaging genetic analyses supports the evidence of an orderly and hierarchical progression of 

intracortical myelination.  
 

Implications for Cortical Thinning 
A recent study showed that cortical thinning during development is associated with genes expressed 

predominantly in astrocytes, microglia, excitatory and inhibitory neurons (Zhou et al., 2023). We observed 
faster cortical thinning of default-mode and visual networks, consistent with previous studies (Ball, Seidlitz, 

Beare, et al., 2020; Zhou et al., 2023). Apparent thinning may be a result of the macrostructural shift in the 

boundary between grey matter and white matter, in this scenario due to myelin encroachment into the 

cortex (Mournet et al., 2020; Natu et al., 2019). The microstructural composition of the grey matter itself 
may be better studied by the biophysical models used here.  

 

Clinical implications 
Cortical morphology and myelination abnormalities are linked to various neuropsychiatric disorders (Chen 

et al., 2024) including schizophrenia (Alexander-Bloch et al., 2014; Wannan et al., 2019) which is 
characterised by deficiencies in myelination and oligodendrocyte production (Davis et al., 2003; Katsel et 

al., 2005). Schizophrenia patients exhibit downregulation of myelination-related genes (Tkachev et al., 

2003) and post-mortem studies have shown reduced oligodendrocyte density in layer 5 of dorsolateral 

prefrontal cortex compared to healthy controls (Kolomeets & Uranova, 2019). Additionally, young children 
with autism show age-related deficits in cortical T1w/T2w ratios (Chen et al., 2022). Given these findings, 

quantifying cortical microstructure in such clinical cohorts is crucial, especially with adaptations towards 

clinically feasible acquisition protocols (Barakovic et al., 2024; Margoni et al., 2023; Schiavi et al., 2023). 

 
Strengths and limitations 
Several methodological advancements have advanced the understanding of underlying compositional 

changes to cortical microstructure across development in our study. Using in vivo microstructural imaging 

with ultra-strong gradients (Gmax=300 mT/m; Jones et al. (2018)), we achieved sensitivity to micrometer-

level imaging contrast with significant SNR improvements over clinical MRI scanners (Raven et al., 2023). 
Although we used a specialised system, recent advancements have enabled these measurements on 

more accessible, lower-gradient strength MRI systems (e.g. Gmax≥80mT/m; Schiavi et al. (2023)). 

Combined with two ex vivo gene expression data sets sampled from the human brain, we provide 

compelling evidence in favour of a framework for monitoring intra-cortical cellular composition in vivo. 
Further work should evaluate in vivo imaging acquisition techniques and models that account for water 

exchange, which can influence biophysical modelling of grey matter compartments. 

 

Our observation of oligodendrocyte-specific gene expression increasing towards adulthood indicates the 
value of imaging a broader age range of young adults to fully assess trajectories of in vivo microstructural 

properties. It is also important to recognise that gene expression patterns do not necessarily correlate with 

cellular density. Histopathological confirmation is needed to verify cell size and density with biophysical 

signal fractions, as well as their relevancy to functional gene expression patterns.  
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Overall, our study provides novel in vivo evidence of distinct developmental differences in neurite and 

soma architecture, aligning with cell-type specific gene expression patterns observed in ex vivo human 

data. This provides a window into the role of intracortical myelination through adolescence, and how it 
shapes the developmental patterns of cortical microstructure in vivo.	
	
 
4. Methods 
 

4.1. Imaging set 
4.1.1. Participant characteristics  

 
We included a sample of 88 typically developing children aged 8-19 years recruited as part of the Cardiff 

University Brain Research Imaging Centre (CUBRIC) Kids study. The study was approved by the School 

of Psychology ethics committee at Cardiff University. Participants and their parents/guardians were 

recruited via public outreach events. Written informed consent was obtained from the primary caregiver of 

each child participating in the study, and adolescents aged 16-19 years also provided written consent. 
Children were excluded from the study if they had non-removable metal implants or reported history of a 

major head injury or epilepsy. 

 

We administered a survey to parents of all participants, and to children aged 11-19 years. The Strengths 
and Difficulties Questionnaire (SDQ) was used to assess emotional/behavioural difficulties (Goodman, 

1997). The Pubertal Development Scale (Petersen et al., 1988) was used to determine pubertal stage 

(PDSS; Shirtcliff et al. (2009)). Additionally, we measured each child’s height and weight to calculate their 

Body-Mass index (BMI) (kg/m2). 
 

All children and adolescents underwent in-person training to prepare them for the MRI procedure using a 

dedicated mock MRI scanner. This protocol was 15-30 minutes long, and designed to familiarise them to 

the scanner environment, to minimize head motion during the scan. All procedures were completed in 

accordance with the Declaration of Helsinki. 
 

Table 1: Characteristics of in vivo imaging cohort. 
   Summary statistics  Age relationship* 
Measure   Mean SD Range  R2 p-value 
Age, years†   12.56 2.94 8.0 – 19.0    

Pubertal stage (PDSS)†  2.89 1.50 1 – 5  .72 <.001 

SDQ, total score†  6.45 3.90 0 – 19  .01 .60 

Body mass index, kg/m2‡  19.29 3.25 13.7 – 29.2  .25 <.001 

FSIQˆ  108 12.6 86 – 145    
† Full sample: N=88 (42 males, 46 females) 
‡ Subsample: N=79 (40 males, 39 females) 

ˆ Subsample: N=48 (23 males, 25 females) 

*Age relationships determined by linear regression. 
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4.1.2. Acquisition and processing 
 
Discovery data: Participants aged 8-19 years (N=88, mean age=12.6 years, 46 female) underwent MRI on 
a 3T Siemens Connectom system with ultra-strong (300 mT/m) gradients. Structural T1-weighted (voxel-

size=1x1x1mm3; TE/TR=2/2300 ms) and multi-shell dMRI (TE/TR=59/3000 ms; voxel-size=2x2x2 mm3; 

Δ = 23.3 ms, δ = 7 ms, b-values = 0 (14 vols), 500, 1200(30 dirs), 2400, 4000, 6000 (60 dirs) s/mm2) data 

were acquired.  
 

Repeatability data: Six healthy adults aged 24-30 years (3 female) were scanned five times in the span of 

two weeks (Koller et al., 2021) on the same Connectom system. Multi-shell dMRI data were collected as 

above, with an additional 20 diffusion directions acquired at b=200 s/ mm2.  
 

Pre-processing of dMRI data followed steps interfacing tools such as FSL (Smith et al., 2004), MRtrix3 

(Tournier et al., 2019), and ANTS (Avants et al., 2011) as reported previously (Genc et al., 2020). Briefly, 

this included denoising, and correction for drift, motion, eddy, and susceptibility-induced distortions, Gibbs 

ringing artefact, bias field, and gradient non-uniformities. For each subject, the soma and neurite density 
imaging (SANDI) compartment model was fitted (Palombo et al., 2020) to dMRI data using the SANDI 

Matlab Toolbox v1.0, publicly available at https://github.com/palombom/SANDI-Matlab-Toolbox-v1.0, to 

compute whole brain maps of neurite, soma and extracellular signal fraction (fneurite, fsoma, fextracellular = 1 - fneurite 

- fsoma); the soma radius (Rsoma, in µm); and the extracellular and intra-neurite axial diffusivities (De and Din, 

respectively, in µm2/ms) (Fig 1). To put our results in context with previous studies, the neurite orientation 

dispersion and density imaging (NODDI) model (Zhang et al., 2012) was fitted to all b-values using the 

NODDI Matlab toolbox, publicly available at http://mig.cs.ucl.ac.uk/index.php?n=Tutorial.NODDImatlab , to 

estimate the intra-cellular volume fraction (vic) and orientation dispersion (OD) and diffusion tensor 
imaging (DTI) metrics were estimated using the b=1000 s/mm2 shell (Fractional anisotropy (FA); mean 

diffusivity (MD, in s/mm2). 

 

T1-weighted data were processed using FreeSurfer version 6.0 (http://surfer.nmr.mgh.harvard.edu) and 
post-processed to obtain network-level (N=7 ROIs; Yeo et al. (2011)) and fine-grained cortical 

parcellations (N=360, HCP-MMP1; (Glasser et al., 2016)). Follow-up analyses using fine-grained HCP-

MMP1 parcellations in visual and frontal cortices were performed based on a priori hypotheses of earlier 

maturation of visual (Natu et al., 2019) and later maturation of frontal (Robillard et al., 2016) cortices, as 
well as for comparison with gene expression data sampled from multiple regions in the frontal cortex. 

Morphological measures including cortical thickness (CTh, mm), surface area (SA, mm2), and grey matter 

volume (GMvol, mm3) were computed at the whole brain, and parcel level. The analysis framework is 

detailed in Figure 1 and networks studied are depicted in Fig 2a. 

 
4.2. Cortical gene expression set 

 

Pre-processed, batch-corrected and normalised microarray and bulk RNA-seq data from postmortem 

human tissue samples were obtained from the BrainCloud (Colantuoni et al., 2011) (n=214; aged 6mo – 
78.2y; 144 male; postmortem interval [PMI] = 29.96 [15.28]; RNA integrity [RIN] = 8.14 [0.83]) and 
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PsychENCODE (n=20; 6mo-40y; 10 male; PMI = 17.85 [6.75]; RIN = 8.45 [0.79]) projects, respectively (Li 

et al., 2018). The cortical regions sampled are summarised in Table S1. Tissue was collected after 

obtaining parental or next of kin consent and with approval by the institutional review boards at the Yale 
University School of Medicine, the National Institutes of Health, and at each institution from which tissue 

specimens were obtained. Tissue processing is detailed elsewhere (Ball, Seidlitz, O’Muircheartaigh, et al., 

2020; Li et al., 2018). Gene expression for PsychENCODE was measured as rates per kilobase of 

transcript per million mapped (RPKM). Gene expression for Braincloud was preprocessed and normalized 
following data cleaning and regressing out technical variability (see 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE30272). 

 

Genes were initially filtered to include only protein-coding genes expressed in cortical cell types (n=3100, 
Ball, Seidlitz, O’Muircheartaigh, et al. (2020)). Using a database of single-cell RNA-seq studies, we 

identified genes differentially expressed across major cortical cell types (excitatory and inhibitory neurons, 

oligodendrocytes, oligodendrocyte precursor cells [OPCs], microglia, astrocytes, and endothelial cells 

(Ball, Seidlitz, Beare, et al., 2020)).  

 
4.3. Statistical analyses 

4.3.1. In vivo imaging  
 

We used linear regression to test for main effects of age and sex, puberty, and sex by puberty interactions. 
To identify the most parsimonious model and to avoid over-fitting, we used the Akaike Information 

Criterion (AIC) (Akaike, 1974), selecting the model with the lowest AIC. Individual general linear models 

were used to determine age-related differences in cortical thickness and microstructural measures in all 

seven Yeo networks. Evidence for an association was deemed statistically significant when p < .005 
(Benjamin et al., 2018). Results from linear models are presented as the normalized coefficient of variation 

(β) and the corresponding 95% confidence interval [lower bound, upper bound]. We also report the 

adjusted correlation coefficient of the full model (R2).	
 
To identify important regions that contribute to age-related differences in all the studied microstructural 

measures, we performed age-prediction using a random forest regressor (5-fold cross-validation) for age 

prediction with PyCaret (www.pycaret.org). For each microstructural measure, we randomly split the data 

into training and validation sets using an 80-20 ratio (total N=88: 70 training; 18 testing). Then, we 

performed feature scaling to ensure that all input variables (for each HCPMMP1 ROI) were on a similar 
scale prior to model fitting. The performance of the model was evaluated on the validation dataset. Finally, 

the features with the largest weight coefficients were extracted to identify specific cortical regions where 

variance in cortical microstructure was associated with age-related changes. 

 
4.3.2. Gene expression profiles 

 

To identify genes differentially expressed over age (pFDR<.05), we modelled age-related changes in 

normalised expression in all available postnatal tissue samples using nonlinear generalised additive 
models with thin plate splines (k=5) (Wood, 2003) in R. 
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BrainCloud 
 

The relationship between normalised gene expression and age was modelled with a nonlinear general 
additive model (GAM) using a penalised thin-plate spline with a maximum 5 knots: 

 

M1a. gam(expression ~  

1 + s(age, k=5, bs=’tp’)  
 

Note that the available BrainCloud data are already preprocessed to remove variance due to batch and 

sample effects (see https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE30272). 

 
PsychENCODE 
 

We repeated the above models, now with a measure of RNA integrity (RIN) as a confounder, and gene 

expression defined as log2(RPKM). First, we included region as an additional factor to account for spatial 

variation across the cortex and included donor ID as a random effect to account for repeated samples 
from the same specimen. 

 

M2a. gam(expression ~  

1 + s(age, k=5, bs='tp', by=region, id=1) 
+ RIN + sex + region + s(sample, bs='re'), data = data)) 

 

Then, we analysed data only in the DLPFC, for comparison with the BrainCloud geneset. 

 
M2a. gam(expression(DLPFC) ~  

1 + s(age, k=5, bs='tp') 

+ RIN + sex + s(sample, bs='re'), data = data)) 

  

We calculated measures of goodness of fit using Akaike Information Criterion (AIC) and Bayesian 
Information Criterion (BIC) for all gene models.  

 

Using a set of independent single-cell RNA studies of the human cortex (see Ball, Seidlitz et al. (2020) for 

details), we identified genes exhibiting differential expression across various cortical cells-types, including 
excitatory neurons, inhibitory neurons, oligodendrocytes, microglia, astrocytes, and endothelial cells. We 

then compiled gene lists for each cell-type, comprising genes that are both differentially expressed by that 

cell-type, and uniquely expressed by that cell-type. Mean trajectories across all cortical regions sampled 

were computed for each cell-type.		
	
After identifying age-related genes, we entered our list to an independent cell-type specific expression 

analysis (CSEA; Xu et al. (2014)) to elucidate: 1) if genes were enriched for specific cell-types, and 2) in 

which developmental period was gene expression highest. 
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4.3.3. Simulations 
 

We performed numerical simulations using realistic cell counts to explain the observed trends in Rsoma 
derived from in vivo dMRI data. We modelled the variability in cell body sizes within an MRI voxel by 

generating distributions of radii for microglia, astrocytes, oligodendrocytes, neurons, and endothelial cells. 

For each cell-type, we assumed the observed age-related slope of gene expression was proportional to 

the number of cells within an MRI voxel. Based on realistic cell counts outlined in Keller et al. (2018), we 
set the number of cells in mm3 as follows: Nmicro = 6,500; Nastro = 15,700; Noligo = 12,500; Nneuro = 92,000; 

Nendo = Nneuro*.35 (Ventura-Antunes et al., 2022). For each cell type, we generated random samples of 

radii based on the specified cell counts assuming a Gaussian distribution with cell-type specific baseline 

mean and standard deviation: microglia = 2.0±0.5 µm; astrocytes and oligodendrocytes = 5.5±1.5 µm; 

neurons = 8.0±2.0 µm for neurons and 9.0±0.5 µm for endothelial. The resulting radii were concatenated 

to form a comprehensive distribution and the MR apparent soma radius Rsoma estimated as #!
!

!"
$
"/$

 as per 

Olesen et al. (2022). 
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