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Abstract 

In this work, we investigated the relationship between structural connectivity and the dynamics 

of functional connectivity and how this relationship changes with age to benefit cognitive 

functions. Visual working memory (VWM) is an important brain function that allows us to 

maintain a mental representation of the world around us, but its capacity and precision peaks by 

around 20 years old and decreases steadily throughout the rest of our lives. This research 

examined the functional brain network dynamics associated with VWM throughout the lifespan 

and found that Default Mode Network and Fronto-Parietal Network states were more well 

represented in individuals with better VWM. Furthermore, transitions between the 

Visual/Somatomotor Network state and the Attention Network state were more well-represented 

in older adults, and a network control theory simulation demonstrated that structural connectivity 

differences supporting this transition were associated with better VWM, especially in middle-

aged individuals. The structural connectivity of regions from all states was important for 

supporting this transition in younger adults, while regions within the Visual/Somatomotor and 

Attention Network states were more important in older adults. These findings demonstrate that 

structural connectivity supports flexible, functional dynamics that allow for better VWM with 

age and may lead to important interventions to uphold healthy VWM throughout the lifespan. 

 Keywords: resting-state functional magnetic resonance imaging, dynamic functional 

connectivity, diffusion-weighted magnetic resonance imaging, network control theory, healthy 

aging, visual working memory 
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Dynamic network features of functional and structural brain networks support visual working 

memory in aging adults 

The healthy brain constantly adapts to changing contexts and task demands, and even 

during rest. This adaptation can be described as a fluid motion through a high dimensional space 

of possible brain states. Of particular interest is the question of how the transitions between one 

brain state and another may be unique across individuals and tell us something about that person. 

How is a person’s unique pattern of transitions between brain states related to the brain’s 

structure, and other features that set individuals apart (e.g., age and cognitive ability)? 

These brain states, separable across time and relying on different combinations of brain 

regions, can be extracted from brain activation signals using modeling methods including Hidden 

Markov Modelling (HMM; Haussler et al., 1992) and Leading Eigenvector Dynamics Analysis 

(LEiDA; Cabral et al., 2017). HMM was initially developed for applications to protein and DNA 

sequencing, and has been used widely for modelling data that follows a sequence, while LEiDA, 

developed for neuroimaging data, accomplishes similar goals while integrating a step that 

extracts the leading eigenvector from time × time phase coherence matrices, capturing dominant 

connectivity patterns while diminishing the effects of noise. Both of these approaches have been 

applied to neuroimaging data revealing distinct brain states at different points in time relying on 

separable combinations of regions (e.g., Cabral et al., 2017; S. E. Faber et al., 2024; S. E. M. 

Faber et al., 2023; Vidaurre et al., 2017). 

Important questions arise from these findings that the brain coordinates the function of 

different combinations of regions depending on when you observe its activity. Namely, how can 

the brain produce multiple different repertoires of functional synchronization when the structural 

connections (white matter tracts of axon bundles) between regions are static at short timescales? 
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This question has been investigated previously (e.g., Deco et al., 2011; Honey et al., 2009), and 

recent research using network control theory (NCT) has demonstrated that the structural 

connectivity network of the brain is organized to afford transitions between states via efficient 

stimulation to certain regions of the brain that produce cascading signals and push brain activity 

into new states (Gu et al., 2015, 2017; Kim & Bassett, 2020; Lynn & Bassett, 2019; Parkes et al., 

2023). This work has demonstrated that although brain function can vary widely over time, the 

structural connectivity does constrain to what extent certain functional states are possible. 

On the one hand, NCT has allowed for interesting simulation-based predictions about 

how structural connectivity constrains network dynamics, and on the other hand, a number of 

modelling approaches including HMM and LEiDA allow for the data-driven extraction of 

network states from real-world time series data such as resting-state fMRI. However, the 

comparison of these structural and functional perspectives of brain dynamics remains a needed 

research direction. Furthermore, investigating how the dynamics of the structural and functional 

brain networks differ across stages of adulthood, and how these differences either support or 

hinder the brain’s ability to perform important cognitive tasks, will give us a better sense of 

which features of structural and functional brain dynamics are beneficial as opposed to 

detrimental. 

Visual working memory (VWM) represents one of the earliest aspects of cognitive ability 

to decline over a lifespan, with decreasing capacity and precision starting at around 20 years of 

age that continues through middle and old age. In fact, by middle age VWM ability is 

indistinguishable from that of 8 to 9 year olds (Brockmole & Logie, 2013). For this reason, 

understanding how VWM is supported by the brain could benefit all adults regardless of their 

current stage in their lifespan. Understanding how brain adaptations stave off this decline could 
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lead to interventions that support these adaptations as early as the beginning of adulthood and 

have long-term benefits to cognitive health later in life. 

VWM allows individuals to remember and mentally manipulate visual information over 

short time scales, and as such represents a foundational building block for more complex 

cognitive tasks relying on a mental representation of the world around us, including navigation 

and spatial problem solving. VWM utilizes multiple systems in the brain important for visual 

processing of color and shape information, attentional orienting, and working memory encoding, 

maintenance, and retrieval. Working memory (WM) in general engages a frontoparietal network 

of brain regions including dorsolateral prefrontal cortex, posterior parietal cortex, and 

presupplementary motor areas (D’Esposito, 2007; Smith & Jonides, 1999; Wager & Smith, 

2003). VWM specifically relies on visual processing regions of the occipital cortex (Harrison & 

Tong, 2009), and the posterior parietal cortex has been associated with spatial reasoning and 

attentional processing, becoming more active as the number of items maintained increases to the 

individual’s WM limit (Todd & Marois, 2004; see Schurgin, 2018 for a review). Dynamic 

network analyses that consider how different brain networks are utilized over time have 

demonstrated that WM tasks reduce the overall modularity in the brain compared to rest, 

resulting in brain networks that communicate with one another more, leading to a whole-brain 

effort to perform these tasks, and WM training produces more segregated default mode and task 

positive (i.e., dorsal attention) networks (Bassett et al., 2015; Finc et al., 2020). Network control 

theory analyses of brain function during a WM task have identified that signalling between the 

salience network (i.e., ventral attention network), frontoparietal network, and default mode 

networks predicts task performance, with the anterior insula and dorsolateral prefrontal cortex 

acting as important regions facilitating this signalling (Cai et al., 2021). Further understanding of 
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the brain network functional dynamics and structural connections supporting these dynamics is 

needed, especially in the context of how specific subnetworks change the way they support 

VWM across the lifespan. 

Although age is commonly associated with declining cognitive ability, and negative brain 

changes, we have estimated complexity with multiscale entropy to demonstrate that some 

changes in the complexity of function activity with age are associated with spared cognitive 

ability (Heisz et al., 2015), and that different aspects of structural brain network reorganizations 

were associated with both declining as well as spared cognitive ability in older adults (Neudorf et 

al., 2024). In particular, increased local interhemispheric connections and specific regional 

differences in the organization of hub regions were associated with spared cognitive ability 

(Neudorf et al., 2024). 

 For the current work, we investigated the dynamic connectivity patterns (brain states) 

from both functional and structural brain network perspectives, how the time spent in these states 

and the pattern of transitions between states differ across the lifespan from younger to older 

adulthood, and whether some of these differences contribute to better VWM in older adulthood. 

Recent research has demonstrated strong coupling between structural and functional networks in 

the brain (Benkarim et al., 2022; Neudorf et al., 2022; Sarwar et al., 2021; Schirner et al., 2018), 

that this coupling is altered across the lifespan (Zimmermann et al., 2016), and that the structural 

network constrains the range of functional dynamics possible with an individual’s brain network 

(Gu et al., 2015; Lynn & Bassett, 2019). For this reason, we will examine how differences in 

structural connectivity with age may support specific functional dynamics to support better 

VWM. 
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Methods 

Data came from the Cambridge Centre for Ageing and Neuroscience (Cam-CAN; Shafto 

et al., 2014) dataset. Data collection followed the Helsinki Declaration, and was approved by the 

local ethics committee, Cambridgeshire 2 Research Ethics Committee (reference: 10/H0308/50). 

The full sample of subjects with neuroimaging data included 653 subjects. Participant ages 

ranged from 18.5 to 88.92 (mean = 54.825, SD = 18.593). Younger adult ages ranged from 18.5 

to 49.92 (mean = 36.420, SD = 8.495, N = 279, 146 female, 133 male). Older adult ages ranged 

from 50.17 to 88.92 (mean = 68.593, SD = 10.338, N = 373, 184 female, 189 male). A single 

participant was missing age information. The resting-state functional MRI (rs-fMRI) subsample 

included 197 subjects that passed our quality control criteria (see below). Participant ages ranged 

from 18.50 to 88.92 (mean = 48.310, SD = 17.388). Younger adult ages ranged from 18.5 to 

49.83 (mean = 35.471, SD = 8.176, N = 114, 67 female, 47 male). Older adult ages ranged from 

51.92 to 86.08 (mean = 65.945, SD = 9.308, N = 83, 43 female, 40 male). The diffusion-weighted 

MRI (dMRI) subsample included 594 subjects that passed our quality control criteria (see 

below). Participant ages ranged from 18.50 to 88.92 (mean = 55.414, SD = 18.090). Younger 

adults (YA; age < 50) ranged from 18.50 to 49.92 years (mean = 36.966, SD = 8.385, N = 244, 

131 female, 113 male) and older adults (OA; age > 50) ranged from 50.17 to 88.92 years (mean 

= 68.275, SD = 10.163, N = 350, 170 female, 180 male). 

Structural MRI 

The T1-weighted Magnetization Prepared RApid Gradient Echo (MPRAGE) sequence 

was performed using a repetition time (TR) of 2250 ms and echo time (TE) of 2.99 ms, with a 

flip angle of 9°, field of view (FOV) of 256×240×192mm, and 1×1×1 mm voxel size. The T2-

weighted sampling perfection with application-optimized contrasts using different flip angle 
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evolution (SPACE) sequence was performed using a TR of 2800 ms, a TE of 408 ms, a FOV of 

256×256×192mm, and 1×1×1 mm voxel size. 

Functional MRI 

The rs-fMRI sequence was performed using a Gradient-Echo Echo-Planar Imaging (EPI) 

sequence with a TR of 1970 ms, TE of 30 ms, flip angle of 78°, FOV of 192×192mm, and 

3×3×4.44mm voxel size. This sequence acquired a total of 261 volumes over 8 minutes and 40 

seconds, with each volume containing 32 axial slices. The preprocessing of these data relied on 

the TheVirtualBrain-UK Biobank pipeline (Frazier-Logue et al., 2022), which has updated the 

FMRIB Software Library (FSL; Jenkinson et al., 2012) based UK Biobank pipeline (Littlejohns 

et al., 2020) to account for issues that can occur due to atrophy in aging brains using quality 

control methods to minimize artifacts (Lutkenhoff et al., 2014). This pipeline also outputs 

parcellation-based blood oxygen level dependent (BOLD) time-series data which were used for 

the dynamic functional connectivity analyses. 

Using 41 imaging-derived phenotypes (IDPs) related to the T1w and T2w structural 

image quality, rs-fMRI imaging quality, and structural-functional registration from the TVB 

UKBB pipeline (Frazier-Logue et al., 2022) as predictor variables and human rated scores of rs-

fMRI quality (based on visual assessment of the fMRI fieldmaps, motion, registration, FSL 

MELODIC independent component labelling accuracy, functional connectivity matrix, and 

timeseries carpet plot) on a scale of 1-5 (1 is excellent, 2 is good, 4 is poor, and 5 is very poor) as 

the criterion variable, a random forest regression machine learning approach was trained to 

predict rs-fMRI quality on a subset of the Cam-CAN data (140 participants). The auto-sklearn 

(Feurer et al., 2015) Python library was used to aid selection the best performing machine 

learning algorithm and parameters, and Random Forest Regression was selected (scikit-learn; 
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Pedregosa et al., 2011). Human rated quality was rescaled to the range of 0 to 1, with an original 

score of 1 corresponding to 0.1 and with 0.2 increments between scores. When applying this 

model to the unrated subjects (N=499), a score less than 0.4 corresponded to a passing value, a 

score greater than 0.6 corresponded to a failing value, and scores between 0.4 and 0.6 were 

selected for manual human rating. Using this same procedure with the manually human rated 

subjects (N=140), in a K-fold validation scheme (K=5) repeated over 100 iterations, setting aside 

the subjects in the medium range of 0.4 to 0.6 and looking only at those subjects identified 

confidently as good or bad we observed a false negative detection of a bad result (falsely 

indicating the result was good) in a mean number of 4.990 subjects (standard deviation; SD = 

1.396) out of the 63 empirically good results (.079% false negative; 92.1% accuracy), and a false 

positive detection of a bad result (falsely indicating the result was bad) in a mean number of 

6.990 subjects (SD = 1.179) out of the 77 empirically bad results (.091% false positive; 90.9% 

accuracy). When applying the trained model to the unrated subjects’ data, we identified 143 

subjects with good results, 206 subjects with bad results, and 150 subjects with results selected 

for manual human rating. The manual human rating of the remaining subjects resulted in 10 

more good results, for a total of 216. Out of these results, 197 had corresponding structural 

connectivity, demographic, and behavioral measures of interest and were therefore retained. 

Diffusion-weighted MRI 

The dMRI imaging was performed using a twice-refocused sequence with a TR of 9100 

ms, TE of 104 ms, FOV of 192×192 mm, and voxel size of 2×2×2 mm, with 30 directions of 66 

axial slices having a b-value of 1000, 30 directions of 66 axial slices having a b-value of 2000, 

and 3 images of 66 axial slices having a b-value of 0. The structural connectivity (SC) measures 

of streamline probability and distance were calculated from the dMRI data using the TVB-UK 
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Biobank pipeline (Frazier-Logue et al., 2022), which uses probabilistic tractography (FSL 

bedpostx to fit the probabilistic model and probtrackx to perform tractography; Hernandez-

Fernandez et al., 2019; Jenkinson et al., 2012). The SC streamline probability is the number of 

connecting streamlines identified by the tractography divided by the total number of possible 

connections (i.e., normalized by the size of the region) and represents the probability of 

connection between all combinations of the 218 regions of interest in a combined atlas of the 

Schaefer 200 region atlas (Schaefer et al., 2018) and the subcortical Tian atlas (Tian et al., 2020). 

The subcortical regions were comprised of regions from the Tian Scale 1 atlas excluding the 

hippocampus. For hippocampus, the Scale 3 atlas was used with the two head divisions collapsed 

into a single parcel. The globus pallidus was excluded due to a large number of subjects without 

any detectible connections to or from this region, resulting in a total of 18 subcortical regions. 

The SC matrices were consistency thresholded (at least 50% of participants have the connection) 

and participants’ data were excluded if they did not have behavioral data, had regions with no 

connections, or had SC density (number of non-zero connections divided by the total number of 

possible connections) 3 SD or more away from the mean (retained N = 594). 

Visual Working Memory 

Precision on the visual working memory task designed by Zhang & Luck (2008) was 

used to measure VWM (see Shafto et al., 2014 for more details). In this task 1 to 4 colored 

circles are presented peripherally to fixation and after a 900 ms delay participants are required to 

report the hue of the circle at the cued location. This measure declines significantly with age in 

this population, R(592) = -.291, p < .001 (see Figure 1; as demonstrated previously by 

Brockmole & Logie, 2013). 
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Figure 1. Relationship between age and visual working memory. Visual working memory 

decreases significantly with age, R(592) = -.291, p < .001. 

Dynamic Functional Connectivity 

 The rs-fMRI data was analyzed using a dynamic functional connectivity (dFC) analysis 

approach called Leading Eigenvector Dynamics Analysis (LEiDA; Cabral et al., 2017). This 

method uses phase coherence connectivity (e.g., Deco et al., 2017; Deco & Kringelbach, 2016; 

Glerean et al., 2012; Ponce-Alvarez et al., 2015) to compute a functional connectivity (FC) 

matrix at each timepoint of the resting-state fMRI scan. In contrast to other dFC methods that 

compare the full FC matrices across timepoints, LEiDA first computes the leading eigenvector of 

each FC matrix, making the method less susceptible to noise and better able to detect the 
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recurrence of a particular state. The dFC matrices are separated into distinct states by applying a 

clustering analysis on the leading eigenvectors for all subjects and timepoints, resulting in states 

that are common to all subjects. The ideal number of states was chosen based on an evaluation of 

the clustering analysis that maximized the Dunn’s score (Dunn, 1973), average Sihouette 

coefficient (Rousseeuw, 1987), Calinski–Harabasz index (Caliński & Harabasz, 1974). With 

these states defined, each timepoint was then labelled according to which state the participant’s 

brain function was in at that timepoint, which allowed for calculation of the fractional occupancy 

(FO) of each state (probability of that state occurring at any given time) and the transition 

probability matrices (probability of the brain state changing from a specific state to another, or 

maintaining the same state, represented as a K×K matrix where K is the total number of states). 

Network Control Theory 

 Network control theory is a method that allows for observing the constraints that a 

structural connectivity network exerts on the functional dynamics of that system. By assuming a 

linear model of diffusion for simulating how activation spreads in parallel across the network, 

computationally efficient calculations can be performed to minimize the total input energy 

needed to guide the network from an initial state to a target state. The regions in the network that 

were given the largest amount of control energy were selected by this model as ideal recipients 

of the limited input energy. In the context of the brain, these control energy values provide 

insight into which regions are able to most efficiently drive a state transition given limited 

metabolic energy, and the utility of this method for network neuroscience has been well 

demonstrated in recent research (Gu et al., 2015, 2017; Kim & Bassett, 2020). This method 

provides an important opportunity to investigate how the structural connectivity network may 

reorganize to support a state transition identified as differing across the aging process via the 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 31, 2024. ; https://doi.org/10.1101/2024.07.30.605891doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.30.605891
http://creativecommons.org/licenses/by-nc-nd/4.0/


BRAIN NETWORK DYNAMICS SUPPORT WORKING MEMORY IN AGING 13 

 

LEiDA analysis of dynamic functional connectivity. The network control theory analysis was 

performed with nctpy (Parkes et al., 2023), using a continuous-time simulation, with a mixing 

parameter ρ of 1 to set equal weight to minimizing the control input energy and the neural 

activity, placing no constraints on which regions could be utilized for control inputs, and using a 

uniform full control set allowing all regions to act as controllers with equal control over the 

system dynamics. 

Partial Least Squares Analysis 

Multivariate partial least squares (PLS) analysis (McIntosh & Lobaugh, 2004) was used 

to identify latent variables (LVs), each containing weights that describe the relationship of all 

brain measures with age and VWM. Behavioral PLS was used to examine effects of age and 

VWM as continuous measures. Models including sex as a group variable were examined, but 

produced no significant group effects so they were not included in the reported analyses. 

Secondary mean-centered PLS analyses were performed by categorizing subjects into 4 groups 

based on their age (YA or OA) and VWM (median split): YA with low VWM, YA with high 

VWM, OA with low VWM, and OA with high VWM. PLS uses singular value decomposition to 

project the data matrix onto orthogonal LVs (similar to canonical correlation analysis). The 

significance of the identified LVs was determined via permutation testing. We report only the 

most reliable PLS weights as determined by bootstrap resampling, which is used to calculate 

bootstrap ratios (BSR), which are the ratios of the PLS weights (saliences) to their standard 

errors as determined by bootstrap resampling (Kovacevic et al., 2013; McIntosh & Lobaugh, 

2004). The resampling procedures were done using 1000 iterations for each. For the mean-

centered PLS, brainscores were derived for each LV using the dot-product of the PLS weights for 

the brain metric and the values for the metric for each participant. The brainscores are similar to 
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factor scores and can indicate the degree to which a subject or group show the pattern captured in 

the LV. In the present paper, we use these to convey the relative difference in LV expression 

between groups, using the mean brainscore and the bootstrap estimated standard error. 

Results 

Dynamic Functional Connectivity 

LEiDA identified 5 states that were occupied during the course of the resting-state fMRI 

scan. The first state identified was the Global Coherence state, which is described as a state in 

which brain regions demonstrate overall coherence in their signals (Cabral et al., 2017). The 

second state overlapped primarily with a set of regions commonly referred to as the Default 

Mode Network (DMN). The third state overlapped primarily with the ventral attention network 

but also included dorsal regions from the dorsal attention network and will, therefore, be referred 

to simply as the Attention Network state. The fourth state overlapped primarily with the 

Frontoparietal Network (FPN), and the fifth state overlapped with regions corresponding to both 

the Somatomotor Network and the Visual Network (as defined by the Yeo et al., 2011 functional 

atlas; see Figure 2), and will be referred to as the Somatomotor/Visual Network state. 
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Figure 2. Dynamic functional connectivity states identified by the LEiDA analysis. State 1 in 

green represents the Global Coherence state, State 2 in pink represents the Default Mode 

Network (DMN) state, State 3 in purple represents the Attention Network state, State 4 in yellow 

represents the Frontoparietal Network (FPN) state, and State 5 in blue represents the 

Somatomotor/Visual Network state. 

With these states defined, state timecourses were then produced for each individual, 

which allowed for the calculation of each individual’s fractional occupancy (FO; the percentage 

of time spent in each state). Behavioral PLS analyses were conducted with FO of each state as 

independent variables and age as the dependent variable in the first analysis, with VWM as the 

dependent variable in the second analysis, and with age and VWM as dependent variables in the 

third analysis. The first analysis with age identified a significant LV (permutation p = .048) that 

was positively associated with age, indicating that older adults spend more time in the DMN and 
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FPN states (see Figure 3 A and B). The second analysis identified a significant LV (permutation 

p = .028) that was positively associated with VWM, indicating that less time spent in the Global 

Coherence state and more time spent in DMN was associated with better VWM (see Figure 3 C 

and D). The third analysis identified a significant LV (permutation p < .001) that was positively 

associated with both age and VWM, indicating that less time spent in the Global Coherence state 

and more time spent in DMN and FPN was associated with a better VWM in older age (see 

Figure 3 E and F). An additional mean-centered PLS was performed comparing FO in 4 groups: 

YA with low VWM, YA with high VWM, OA with low VWM, and OA with high VWM. This 

analysis identified 1 significant LV (permutation p < .001) with brainscores indicating that it 

identified how FO was associated with the OA high VWM group (YA low VWM: brainscore 

[95% CI] = -.0482 [-.079 to -.017]; YA high VWM: brainscore [95% CI] = -.007 [-.035 to .021]; 

OA low VWM: brainscore [95% CI] = -.022 [-.050 to .006]; OA high VWM: brainscore [95% 

CI] = .076 [.039 to .114]). This effect for OA with high VWM were consistent with the 

behavioral PLS LV associated with increasing age and VWM (see Figure 3 F), with BSRs that 

were reliably negative for Global Coherence and reliably positive for DMN and FPN states. The 

identified positive BSRs for DMN and FPN indicate that the increased time spent in DMN and 

FPN is not a detrimental aspect of the aging brain’s functional dynamics, but rather that this 

difference is advantageous for VWM. 
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Figure 3. PLS analyses with independent variables of FO and dependent variable age (A and B), 

dependent variable VWM (C and D) and dependent variables of age and VWM (E and F). (A), 

(C), and (E) depict the behavioral correlation between the dependent variables and the LV, while 

(B), (D), and (F) represent the BSRs highlighting the reliable positive behavior-FO associations 

in red and the reliable negative behavior-FO associations in blue. 

 LEiDA also allows for the calculation of a state transition probability matrix, representing 

the probability of a transition occurring from state i in row i to state j in column j in the 5×5 

matrix, where 5 is the total number of states (see Figure 4 B). Diagonal elements in the transition 

probability matrix represent maintenance of that state without a transition to another state. A PLS 

analysis with the transition probability matrix values as the independent variables and age as the 

dependent variable identified a significant LV (permutation p = .009). This LV was positively 

associated with age (see Figure 4 A), so that positive BSRs represent transitions (off diagonal 

elements) or maintenances (diagonal elements) that were more probable in older adults while 
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negative BSRs represent transitions or maintenances that were less probable in older adults. The 

analysis identified the maintenance of State 2 (DMN) and State 3 (Attention) as being more 

prevalent in older adults, consistent with the FO analysis finding that DMN and FPN FO were 

greater for older adults, while adding Attention as another state that is more prevalent in older 

adults. The probability of transition from State 5 (Somatomotor/Visual) to State 3 (Attention) 

was also greater for older adults. Conversely, the probability of transition from State 2 (DMN) to 

State 1 (Global Coherence), from State 1 (Global Coherence) to State 4 (FPN), and from State 3 

(Attention) to State 4 (FPN) were decreased in older age (see Figure 4 B as well as Figure 4 C 

for a graph representation of reliably age-related transitions and maintenances). As the only 

reliably age-related transition probability that increased with age, the transition from State 5 

(Somatomotor/Visual) to State 3 (Attention) was investigated further from a structural 

connectivity perspective using network control theory. 
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Figure 4. PLS analysis with independent variables of transition probabilities and dependent 

variable age. (A) depicts the behavioral correlation between age and the LV, while (B) and (C) 

represent the BSRs highlighting the reliable positive associations with age in red and the reliable 

negative associations with age in blue. BSRs are represented as both a transition probability 

matrix (B) and a transition probability graph (C). 

Network Control Theory 

 The network control theory analysis identified a combination of control energies given to 

each region corresponding to the optimal (minimized) total inputs to the simulation resulting in a 

transition from State 5 (Somatomotor/Visual) to State 3 (Attention; see Figure 5 A). A high value 

of control energy in a region can therefore be interpreted as that region being situated in the 

structural network architecture in a such a way that affords an ideal level of efficient control over 

the transition from the Somatomotor/Visual Network state to the Attention Network state (i.e., 

the brain relies heavily on that region for this transition). Separate PLS analyses for YA and OA 

were conducted, with control energies as independent variables and age and VWM as dependent 
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variables. The YA analysis identified a significant LV (permutation p = .029) positively 

associated with age and VWM, indicating that VWM was better with age in individuals with 

greater control energies in regions with positive BSRs and with lower control energies in regions 

with negative BSRs (see Figure 5 B). The OA analysis identified a significant LV (permutation p 

< .001) negatively associated with age and positively associated with VWM, indicating that 

VWM was greater for individuals on the younger end of this age range if they had greater control 

energies in regions with positive BSRs and with lower control energies in regions with negative 

BSRs (see Figure 5 D). The YA and OA analyses both identified LVs associated with better 

VWM, and both analyses identified an effect of age towards the age category boundary of 50 

years, indicating an effect on VWM that is maximized in middle age. The regions identified in 

these age groups had some overlap but also clear differences. For both YA and OA the RH 

hippocampus tail, RH caudate, LH central sulcus, LH frontal operculum, and bilateral dorsal 

parietal regions were negatively associated with VWM, indicating that a reliance on these 

regions for the Somatomotor/Visual to Attention state transition was disadvantageous (see Figure 

5 C and E). Regions unique to YA demonstrating this negative relationship between control 

energy and VWM included RH inferior extrastriate, RH anterior insula, and LH anterior inferior 

temporal lobe (see Figure 5 C). Regions unique to OA demonstrating this negative relationship 

between control energy and VWM included the LH anterior thalamus, LH caudate, LH ventral 

prefrontal cortex (PFC), RH calcarine and RH striate cortex (see Figure 5 E). For the YA, higher 

control energies were associated with better VWM in a cluster of regions the RH insula and 

frontal operculum, as well as a RH dorsal parietal region, LH dorsolateral and medial PFC, LH 

inferior parietal lobule (IPL), and LH posterior cingulate cortex (PCC; see Figure 5 C). For the 

OA, higher control energies were associated with better VWM in two regions of the LH insula, 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 31, 2024. ; https://doi.org/10.1101/2024.07.30.605891doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.30.605891
http://creativecommons.org/licenses/by-nc-nd/4.0/


BRAIN NETWORK DYNAMICS SUPPORT WORKING MEMORY IN AGING 21 

 

LH postcentral gyrus, a cluster of regions in the LH posterior parietal cortex including the IPL, 

SPL, and postcentral gyrus, LH striate/calcarine, LH midcingulate, RH postcentral gyrus, RH 

medial parietal, and RH superior extrastriate (see Figure 5 E). 
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Figure 5. PLS analyses with independent variables of control energies for a state transition from 

the Somatomotor/Visual to the Attention state (A) and dependent variables of age and VWM. (B) 

and (D) depict the behavioral correlation of age and VWM with the LV, while (C) and (E) 

represent the BSRs highlighting the regions with reliable positive associations with age and 

VWM in yellow to red and the reliable negative associations with age and VWM in green to 

blue. 
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 The secondary mean-centered PLS analysis identified 2 significant LVs. The first LV 

(permutation p < .001) identified an age contrast, whereby positive BSRs were associated with 

OA and negative BSRs were associated with YA (YA low VWM: brainscore [95% CI] = -.466 [-

.588 to -.345]; YA high VWM: brainscore [95% CI] = -.119 [-.234 to -.004]; OA low VWM: 

brainscore [95% CI] = .188 [.075 to .300]; OA high VWM: brainscore [95% CI] = .398 [.287 to 

.508]; see Figure 6 A). The second LV (permutation p = .024) identified a VWM contrast within 

the YAs, whereby positive BSRs were associated with YA high VWM and negative BSRs were 

associated with YA low VWM (YA low VWM: brainscore [95% CI] = -.234 [-.370 to -.098]; YA 

high VWM: brainscore [95% CI] = .434 [.338 to .529]; OA low VWM: brainscore [95% CI] = -

.104 [-.214 to .006]; OA high VWM: brainscore [95% CI] =  -.096 [-.230 to .039]; see Figure 6 

B). 

 

Figure 6. BSRs from mean-centered PLS, identifying 2 significant LVs. LV1 (A) identified an 

age contrast whereby positive BSRs are associated with OA and negative BSRs are associated 

with YA, while LV2 (B) identified a VWM contrast within the YA group, whereby positive BSRs 

are associated with high VWM and negative BSRs are associated with low VWM. 
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Discussion 

 We have demonstrated that dynamic characteristics of the brain’s structural connectivity 

are related to data-driven measures of functional dynamics, that this relationship matures across 

the lifespan, and that elements of these dynamics support better VWM in middle age. Time spent 

in the DMN and FPN states increased with age and was associated with better VWM, as were 

decreases in Global Coherence time. Maintenance of the DMN and Attention Network states 

increased with age, while state transition probability from the DMN state to Global Coherence, 

Global Coherence to the FPN state, and the Attention Network state to the FPN state decreased 

with age. State transition probability from the Somatomotor/Visual Network state to the 

Attention Network state increased with age, and adaptations of the structural connectivity 

network supporting this state transition were associated with better VWM, particularly in middle 

age. 

Our results highlight the importance of investigating both functional and structural brain 

networks from the perspective of how they support dynamics across the lifespan. Brain structure 

may be relatively fixed at physical and temporal macroscales, but the functions they support are 

dynamic. The dynamics that support better VWM with age provide an example of how the 

structural network informs the behavior of functional networks that support cognitive abilities. It 

is also interesting to see that VWM was associated with signatures of brain function during rest, 

separate from any related or demanding task, suggesting that individuals’ patterns of functional 

switching in the brain and the structural connections that make the transition between the 

Somatomotor/Visual Network state and the Attention Network state easier represent an important 

indicator of visual working memory as a person ages. The identification of the transition between 

these states specifically suggests that regardless of task demands (even at rest in this case), an 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 31, 2024. ; https://doi.org/10.1101/2024.07.30.605891doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.30.605891
http://creativecommons.org/licenses/by-nc-nd/4.0/


BRAIN NETWORK DYNAMICS SUPPORT WORKING MEMORY IN AGING 25 

 

individual’s ability to transition from a sensory/visual input state to an attention state that can 

attend to these inputs translates to their ability in a visual working memory task that requires 

taking visual inputs and attending to them effectively. 

It is interesting to note that the structural connectivity network control theory analysis for 

younger adults implicated a number of regions associated positively with VWM that overlap 

with the Somatomotor/Visual and Attention networks, indicating that part of the role of 

influencing the efficiency of these transitions lies within these networks themselves, while also 

implicating regions from both the DMN and FPN. This suggests that performing the state 

transition efficiently relies on multinetwork coordination, and that this develops towards middle 

age. Conversely, regions positively associated with VWM for older adults were primarily within 

the Somatomotor/Visual and Attention networks, suggesting an ideal multinetwork coordination 

is established by middle age and that age-related differences occur locally within the 

Somatomotor/Visual and Attention networks after middle age. 

Connections to Past Research 

The regions positively related to VWM in the network control theory analysis 

demonstrated consistency with past research, identifying the insula (RH for YA and LH for OA) 

as highlighted in previous network control theory research on WM task-based fMRI data (Cai et 

al., 2021). Furthermore, the dynamic functional connectivity analyses identified that time spent 

in the DMN and FPN states not was only not only greater in older adults, but that time spent in 

these states was associated with better VWM, adding to evidence from past research finding that 

the DMN becomes more segregated after WM training (Finc et al., 2020). Our finding that 

increased time spent in the FPN state at rest was associated with better VWM is also consistent 

with long-standing knowledge of the importance of the FPN to WM (D’Esposito, 2007; Smith & 
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Jonides, 1999; Wager & Smith, 2003). The Global Coherence state identified by the LEiDA 

analysis represents a state in which brain regions are working together overall, rather than 

isolating a certain specialized subnetwork. Past research using this method has identified the 

Global Coherence state as being more prominently represented in older adults with good 

cognitive performance compared to those with poor cognitive performance (Cabral et al., 2017). 

Cognitive performance in this previous research was assessed using multiple measures sensitive 

to executive function, memory, and mood. Interestingly, our results found that decreases in the 

prevalence of Global Coherence were associated with better VWM. It seems the specific domain 

of cognitive ability may affect the relevance of time spent in the Global Coherence state, and 

that, for VWM, individuals with the ability to spend more time in specific states (DMN and 

FPN) rather than in a Global Coherence state, and to efficiently transition from the 

Sensorimotor/Visual to the Attention state, are more likely to have better VWM. 

Limitations and Future Directions 

 A longitudinal investigation utilizing this approach would provide a fuller picture of the 

relationship between structure, functional network dynamics, and cognitive ability. Recent 

research has highlighted the important differences between longitudinal and cross-sectional brain 

age research (Vidal-Pineiro et al., 2021). Adding a longitudinal perspective would represent an 

important contribution to this research investigating how the dynamic functional repertoires 

available are also dynamic across the lifespan, from infancy to childhood, adolescence, young 

adulthood, and old age. We know from both this and past research (Neudorf et al., 2024) that the 

network regimes that are ideal for healthy young adults are not the same as those that are ideal 

for older adults, so a continued exploration of brain networks across the lifespan with an eye for 
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how these architectures address unique demands represents an important effort to diversify our 

understanding of how dynamic the brain network is across the lifespan. 

Conclusion 

 An investigation of the functional and structural brain networks’ dynamics allowed us to 

uncover how these different perspectives on brain dynamics are related. Furthermore, visual 

working memory relies on specifically tuned brain networks in middle age that can efficiently 

transition from a sensorimotor/visual focused state to a state wherein the individual is ready to 

attend to important information and maintain default mode and frontoparietal network states. The 

sensorimotor/visual to attention functional state transition was supported by the structural 

connectivity network, and different regions of the structural network were important during the 

approach to and the departure from middle age. This work has identified brain network 

signatures related to task performance based on brain structure and function at rest, suggesting 

that intrinsic features of brain dynamics may be valuable for assessing brain aging trajectories 

and relating to clinical conditions such as dementia. 
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