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Abstract

In this work, we investigated the relationship between structural connectivity and the dynamics
of functional connectivity and how this relationship changes with age to benefit cognitive
functions. Visual working memory (VWM) is an important brain function that allows us to
maintain a mental representation of the world around us, but its capacity and precision peaks by
around 20 years old and decreases steadily throughout the rest of our lives. This research
examined the functional brain network dynamics associated with VWM throughout the lifespan
and found that Default Mode Network and Fronto-Parietal Network states were more well
represented in individuals with better VWM. Furthermore, transitions between the
Visual/Somatomotor Network state and the Attention Network state were more well-represented
in older adults, and a network control theory simulation demonstrated that structural connectivity
differences supporting this transition were associated with better VWM, especially in middle-
aged individuals. The structural connectivity of regions from all states was important for
supporting this transition in younger adults, while regions within the Visual/Somatomotor and
Attention Network states were more important in older adults. These findings demonstrate that
structural connectivity supports flexible, functional dynamics that allow for better VWM with

age and may lead to important interventions to uphold healthy VWM throughout the lifespan.

Keywords: resting-state functional magnetic resonance imaging, dynamic functional
connectivity, diffusion-weighted magnetic resonance imaging, network control theory, healthy

aging, visual working memory


https://doi.org/10.1101/2024.07.30.605891
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.07.30.605891; this version posted July 31, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

BRAIN NETWORK DYNAMICS SUPPORT WORKING MEMORY IN AGING 3
Dynamic network features of functional and structural brain networks support visual working

memory in aging adults

The healthy brain constantly adapts to changing contexts and task demands, and even
during rest. This adaptation can be described as a fluid motion through a high dimensional space
of possible brain states. Of particular interest is the question of how the transitions between one
brain state and another may be unique across individuals and tell us something about that person.
How is a person’s unique pattern of transitions between brain states related to the brain’s

structure, and other features that set individuals apart (e.g., age and cognitive ability)?

These brain states, separable across time and relying on different combinations of brain
regions, can be extracted from brain activation signals using modeling methods including Hidden
Markov Modelling (HMM; Haussler et al., 1992) and Leading Eigenvector Dynamics Analysis
(LEiDA; Cabral et al., 2017). HMM was initially developed for applications to protein and DNA
sequencing, and has been used widely for modelling data that follows a sequence, while LEiDA,
developed for neuroimaging data, accomplishes similar goals while integrating a step that
extracts the leading eigenvector from time x time phase coherence matrices, capturing dominant
connectivity patterns while diminishing the effects of noise. Both of these approaches have been
applied to neuroimaging data revealing distinct brain states at different points in time relying on
separable combinations of regions (e.g., Cabral et al., 2017; S. E. Faber et al., 2024; S. E. M.

Faber et al., 2023; Vidaurre et al., 2017).

Important questions arise from these findings that the brain coordinates the function of
different combinations of regions depending on when you observe its activity. Namely, how can
the brain produce multiple different repertoires of functional synchronization when the structural

connections (white matter tracts of axon bundles) between regions are static at short timescales?
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This question has been investigated previously (e.g., Deco et al., 2011; Honey et al., 2009), and
recent research using network control theory (NCT) has demonstrated that the structural
connectivity network of the brain is organized to afford transitions between states via efficient
stimulation to certain regions of the brain that produce cascading signals and push brain activity
into new states (Gu et al., 2015, 2017; Kim & Bassett, 2020; Lynn & Bassett, 2019; Parkes et al.,
2023). This work has demonstrated that although brain function can vary widely over time, the

structural connectivity does constrain to what extent certain functional states are possible.

On the one hand, NCT has allowed for interesting simulation-based predictions about
how structural connectivity constrains network dynamics, and on the other hand, a number of
modelling approaches including HMM and LEiDA allow for the data-driven extraction of
network states from real-world time series data such as resting-state fMRI. However, the
comparison of these structural and functional perspectives of brain dynamics remains a needed
research direction. Furthermore, investigating how the dynamics of the structural and functional
brain networks differ across stages of adulthood, and how these differences either support or
hinder the brain’s ability to perform important cognitive tasks, will give us a better sense of
which features of structural and functional brain dynamics are beneficial as opposed to

detrimental.

Visual working memory (VWM) represents one of the earliest aspects of cognitive ability
to decline over a lifespan, with decreasing capacity and precision starting at around 20 years of
age that continues through middle and old age. In fact, by middle age VWM ability is
indistinguishable from that of 8 to 9 year olds (Brockmole & Logie, 2013). For this reason,
understanding how VWM is supported by the brain could benefit all adults regardless of their

current stage in their lifespan. Understanding how brain adaptations stave off this decline could
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lead to interventions that support these adaptations as early as the beginning of adulthood and

have long-term benefits to cognitive health later in life.

VWM allows individuals to remember and mentally manipulate visual information over
short time scales, and as such represents a foundational building block for more complex
cognitive tasks relying on a mental representation of the world around us, including navigation
and spatial problem solving. VWM utilizes multiple systems in the brain important for visual
processing of color and shape information, attentional orienting, and working memory encoding,
maintenance, and retrieval. Working memory (WM) in general engages a frontoparietal network
of brain regions including dorsolateral prefrontal cortex, posterior parietal cortex, and
presupplementary motor areas (D’Esposito, 2007; Smith & Jonides, 1999; Wager & Smith,
2003). VWM specifically relies on visual processing regions of the occipital cortex (Harrison &
Tong, 2009), and the posterior parietal cortex has been associated with spatial reasoning and
attentional processing, becoming more active as the number of items maintained increases to the
individual’s WM limit (Todd & Marois, 2004; see Schurgin, 2018 for a review). Dynamic
network analyses that consider how different brain networks are utilized over time have
demonstrated that WM tasks reduce the overall modularity in the brain compared to rest,
resulting in brain networks that communicate with one another more, leading to a whole-brain
effort to perform these tasks, and WM training produces more segregated default mode and task
positive (i.e., dorsal attention) networks (Bassett et al., 2015; Finc et al., 2020). Network control
theory analyses of brain function during a WM task have identified that signalling between the
salience network (i.e., ventral attention network), frontoparietal network, and default mode
networks predicts task performance, with the anterior insula and dorsolateral prefrontal cortex

acting as important regions facilitating this signalling (Cai et al., 2021). Further understanding of
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the brain network functional dynamics and structural connections supporting these dynamics is
needed, especially in the context of how specific subnetworks change the way they support

VWM across the lifespan.

Although age is commonly associated with declining cognitive ability, and negative brain
changes, we have estimated complexity with multiscale entropy to demonstrate that some
changes in the complexity of function activity with age are associated with spared cognitive
ability (Heisz et al., 2015), and that different aspects of structural brain network reorganizations
were associated with both declining as well as spared cognitive ability in older adults (Neudorf et
al., 2024). In particular, increased local interhemispheric connections and specific regional
differences in the organization of hub regions were associated with spared cognitive ability

(Neudorf et al., 2024).

For the current work, we investigated the dynamic connectivity patterns (brain states)
from both functional and structural brain network perspectives, how the time spent in these states
and the pattern of transitions between states differ across the lifespan from younger to older
adulthood, and whether some of these differences contribute to better VWM in older adulthood.
Recent research has demonstrated strong coupling between structural and functional networks in
the brain (Benkarim et al., 2022; Neudorf et al., 2022; Sarwar et al., 2021; Schirner et al., 2018),
that this coupling is altered across the lifespan (Zimmermann et al., 2016), and that the structural
network constrains the range of functional dynamics possible with an individual’s brain network
(Gu et al., 2015; Lynn & Bassett, 2019). For this reason, we will examine how differences in
structural connectivity with age may support specific functional dynamics to support better

VWM.
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Methods

Data came from the Cambridge Centre for Ageing and Neuroscience (Cam-CAN; Shafto
et al., 2014) dataset. Data collection followed the Helsinki Declaration, and was approved by the
local ethics committee, Cambridgeshire 2 Research Ethics Committee (reference: 10/H0308/50).
The full sample of subjects with neuroimaging data included 653 subjects. Participant ages
ranged from 18.5 to 88.92 (mean = 54.825, SD = 18.593). Younger adult ages ranged from 18.5
to 49.92 (mean = 36.420, SD = 8.495, N =279, 146 female, 133 male). Older adult ages ranged
from 50.17 to 88.92 (mean = 68.593, SD = 10.338, N =373, 184 female, 189 male). A single
participant was missing age information. The resting-state functional MRI (rs-fMRI) subsample
included 197 subjects that passed our quality control criteria (see below). Participant ages ranged
from 18.50 to 88.92 (mean = 48.310, SD = 17.388). Younger adult ages ranged from 18.5 to
49.83 (mean = 35.471, SD =8.176, N = 114, 67 female, 47 male). Older adult ages ranged from
51.92 to 86.08 (mean = 65.945, SD =9.308, N = 83, 43 female, 40 male). The diffusion-weighted
MRI (dMRI) subsample included 594 subjects that passed our quality control criteria (see
below). Participant ages ranged from 18.50 to 88.92 (mean = 55.414, SD = 18.090). Younger
adults (YA; age < 50) ranged from 18.50 to 49.92 years (mean = 36.966, SD = 8.385, N = 244,
131 female, 113 male) and older adults (OA; age > 50) ranged from 50.17 to 88.92 years (mean

=68.275,SD =10.163, N =350, 170 female, 180 male).

Structural MRI

The T1-weighted Magnetization Prepared RApid Gradient Echo (MPRAGE) sequence
was performed using a repetition time (TR) of 2250 ms and echo time (TE) of 2.99 ms, with a
flip angle of 9°, field of view (FOV) of 256x240x192mm, and 1x1x1 mm voxel size. The T2-

weighted sampling perfection with application-optimized contrasts using different flip angle
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evolution (SPACE) sequence was performed using a TR of 2800 ms, a TE of 408 ms, a FOV of

256x256x192mm, and 1x1x1 mm voxel size.

Functional MRI

The rs-fMRI sequence was performed using a Gradient-Echo Echo-Planar Imaging (EPI)
sequence with a TR of 1970 ms, TE of 30 ms, flip angle of 78°, FOV of 192x192mm, and
3x3x4.44mm voxel size. This sequence acquired a total of 261 volumes over 8 minutes and 40
seconds, with each volume containing 32 axial slices. The preprocessing of these data relied on
the TheVirtualBrain-UK Biobank pipeline (Frazier-Logue et al., 2022), which has updated the
FMRIB Software Library (FSL; Jenkinson et al., 2012) based UK Biobank pipeline (Littlejohns
et al., 2020) to account for issues that can occur due to atrophy in aging brains using quality
control methods to minimize artifacts (Lutkenhoff et al., 2014). This pipeline also outputs
parcellation-based blood oxygen level dependent (BOLD) time-series data which were used for

the dynamic functional connectivity analyses.

Using 41 imaging-derived phenotypes (IDPs) related to the T1w and T2w structural
image quality, rs-fMRI imaging quality, and structural-functional registration from the TVB
UKBB pipeline (Frazier-Logue et al., 2022) as predictor variables and human rated scores of rs-
fMRI quality (based on visual assessment of the fMRI fieldmaps, motion, registration, F'SL
MELODIC independent component labelling accuracy, functional connectivity matrix, and
timeseries carpet plot) on a scale of 1-5 (1 is excellent, 2 is good, 4 is poor, and 5 is very poor) as
the criterion variable, a random forest regression machine learning approach was trained to
predict rs-fMRI quality on a subset of the Cam-CAN data (140 participants). The auto-sklearn
(Feurer et al., 2015) Python library was used to aid selection the best performing machine

learning algorithm and parameters, and Random Forest Regression was selected (scikit-learn;
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Pedregosa et al., 2011). Human rated quality was rescaled to the range of 0 to 1, with an original
score of 1 corresponding to 0.1 and with 0.2 increments between scores. When applying this
model to the unrated subjects (N=499), a score less than 0.4 corresponded to a passing value, a
score greater than 0.6 corresponded to a failing value, and scores between 0.4 and 0.6 were
selected for manual human rating. Using this same procedure with the manually human rated
subjects (N=140), in a K-fold validation scheme (K=5) repeated over 100 iterations, setting aside
the subjects in the medium range of 0.4 to 0.6 and looking only at those subjects identified
confidently as good or bad we observed a false negative detection of a bad result (falsely
indicating the result was good) in a mean number of 4.990 subjects (standard deviation; SD =
1.396) out of the 63 empirically good results (.079% false negative; 92.1% accuracy), and a false
positive detection of a bad result (falsely indicating the result was bad) in a mean number of
6.990 subjects (SD = 1.179) out of the 77 empirically bad results (.091% false positive; 90.9%
accuracy). When applying the trained model to the unrated subjects’ data, we identified 143
subjects with good results, 206 subjects with bad results, and 150 subjects with results selected
for manual human rating. The manual human rating of the remaining subjects resulted in 10
more good results, for a total of 216. Out of these results, 197 had corresponding structural

connectivity, demographic, and behavioral measures of interest and were therefore retained.

Diffusion-weighted MRI

The dMRI imaging was performed using a twice-refocused sequence with a TR of 9100
ms, TE of 104 ms, FOV of 192x192 mm, and voxel size of 2x2x2 mm, with 30 directions of 66
axial slices having a b-value of 1000, 30 directions of 66 axial slices having a b-value of 2000,
and 3 images of 66 axial slices having a b-value of 0. The structural connectivity (SC) measures

of streamline probability and distance were calculated from the dMRI data using the TVB-UK
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Biobank pipeline (Frazier-Logue et al., 2022), which uses probabilistic tractography (FSL
bedpostx to fit the probabilistic model and probtrackx to perform tractography; Hernandez-
Fernandez et al., 2019; Jenkinson et al., 2012). The SC streamline probability is the number of
connecting streamlines identified by the tractography divided by the total number of possible
connections (i.e., normalized by the size of the region) and represents the probability of
connection between all combinations of the 218 regions of interest in a combined atlas of the
Schaefer 200 region atlas (Schaefer et al., 2018) and the subcortical Tian atlas (Tian et al., 2020).
The subcortical regions were comprised of regions from the Tian Scale 1 atlas excluding the
hippocampus. For hippocampus, the Scale 3 atlas was used with the two head divisions collapsed
into a single parcel. The globus pallidus was excluded due to a large number of subjects without
any detectible connections to or from this region, resulting in a total of 18 subcortical regions.
The SC matrices were consistency thresholded (at least 50% of participants have the connection)
and participants’ data were excluded if they did not have behavioral data, had regions with no
connections, or had SC density (number of non-zero connections divided by the total number of

possible connections) 3 SD or more away from the mean (retained N = 594).

Visual Working Memory

Precision on the visual working memory task designed by Zhang & Luck (2008) was
used to measure VWM (see Shafto et al., 2014 for more details). In this task 1 to 4 colored
circles are presented peripherally to fixation and after a 900 ms delay participants are required to
report the hue of the circle at the cued location. This measure declines significantly with age in
this population, R(592) =-.291, p <.001 (see Figure 1; as demonstrated previously by

Brockmole & Logie, 2013).
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Figure 1. Relationship between age and visual working memory. Visual working memory
decreases significantly with age, R(592) =-.291, p <.001.

Dynamic Functional Connectivity

The rs-fMRI data was analyzed using a dynamic functional connectivity (dFC) analysis
approach called Leading Eigenvector Dynamics Analysis (LEiDA; Cabral et al., 2017). This
method uses phase coherence connectivity (e.g., Deco et al., 2017; Deco & Kringelbach, 2016;
Glerean et al., 2012; Ponce-Alvarez et al., 2015) to compute a functional connectivity (FC)
matrix at each timepoint of the resting-state fMRI scan. In contrast to other dFC methods that
compare the full FC matrices across timepoints, LEiDA first computes the leading eigenvector of

each FC matrix, making the method less susceptible to noise and better able to detect the
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recurrence of a particular state. The dFC matrices are separated into distinct states by applying a
clustering analysis on the leading eigenvectors for all subjects and timepoints, resulting in states
that are common to all subjects. The ideal number of states was chosen based on an evaluation of
the clustering analysis that maximized the Dunn’s score (Dunn, 1973), average Sihouette
coefficient (Rousseeuw, 1987), Calinski—Harabasz index (Calinski & Harabasz, 1974). With
these states defined, each timepoint was then labelled according to which state the participant’s
brain function was in at that timepoint, which allowed for calculation of the fractional occupancy
(FO) of each state (probability of that state occurring at any given time) and the transition
probability matrices (probability of the brain state changing from a specific state to another, or

maintaining the same state, represented as a KxK matrix where K is the total number of states).

Network Control Theory

Network control theory is a method that allows for observing the constraints that a
structural connectivity network exerts on the functional dynamics of that system. By assuming a
linear model of diffusion for simulating how activation spreads in parallel across the network,
computationally efficient calculations can be performed to minimize the total input energy
needed to guide the network from an initial state to a target state. The regions in the network that
were given the largest amount of control energy were selected by this model as ideal recipients
of the limited input energy. In the context of the brain, these control energy values provide
insight into which regions are able to most efficiently drive a state transition given limited
metabolic energy, and the utility of this method for network neuroscience has been well
demonstrated in recent research (Gu et al., 2015, 2017; Kim & Bassett, 2020). This method
provides an important opportunity to investigate how the structural connectivity network may

reorganize to support a state transition identified as differing across the aging process via the
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LEiDA analysis of dynamic functional connectivity. The network control theory analysis was
performed with nctpy (Parkes et al., 2023), using a continuous-time simulation, with a mixing
parameter p of 1 to set equal weight to minimizing the control input energy and the neural
activity, placing no constraints on which regions could be utilized for control inputs, and using a
uniform full control set allowing all regions to act as controllers with equal control over the

system dynamics.

Partial Least Squares Analysis

Multivariate partial least squares (PLS) analysis (McIntosh & Lobaugh, 2004) was used
to identify latent variables (LVs), each containing weights that describe the relationship of all
brain measures with age and VWM. Behavioral PLS was used to examine effects of age and
VWM as continuous measures. Models including sex as a group variable were examined, but
produced no significant group effects so they were not included in the reported analyses.
Secondary mean-centered PLS analyses were performed by categorizing subjects into 4 groups
based on their age (YA or OA) and VWM (median split): YA with low VWM, YA with high
VWM, OA with low VWM, and OA with high VWM. PLS uses singular value decomposition to
project the data matrix onto orthogonal LV (similar to canonical correlation analysis). The
significance of the identified LVs was determined via permutation testing. We report only the
most reliable PLS weights as determined by bootstrap resampling, which is used to calculate
bootstrap ratios (BSR), which are the ratios of the PLS weights (saliences) to their standard
errors as determined by bootstrap resampling (Kovacevic et al., 2013; McIntosh & Lobaugh,
2004). The resampling procedures were done using 1000 iterations for each. For the mean-
centered PLS, brainscores were derived for each LV using the dot-product of the PLS weights for

the brain metric and the values for the metric for each participant. The brainscores are similar to
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factor scores and can indicate the degree to which a subject or group show the pattern captured in
the LV. In the present paper, we use these to convey the relative difference in LV expression

between groups, using the mean brainscore and the bootstrap estimated standard error.

Results

Dynamic Functional Connectivity

LEiDA identified 5 states that were occupied during the course of the resting-state fMRI
scan. The first state identified was the Global Coherence state, which is described as a state in
which brain regions demonstrate overall coherence in their signals (Cabral et al., 2017). The
second state overlapped primarily with a set of regions commonly referred to as the Default
Mode Network (DMN). The third state overlapped primarily with the ventral attention network
but also included dorsal regions from the dorsal attention network and will, therefore, be referred
to simply as the Attention Network state. The fourth state overlapped primarily with the
Frontoparietal Network (FPN), and the fifth state overlapped with regions corresponding to both
the Somatomotor Network and the Visual Network (as defined by the Yeo et al., 2011 functional

atlas; see Figure 2), and will be referred to as the Somatomotor/Visual Network state.
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Figure 2. Dynamic functional connectivity states identified by the LEiDA analysis. State 1 in
green represents the Global Coherence state, State 2 in pink represents the Default Mode
Network (DMN) state, State 3 in purple represents the Attention Network state, State 4 in yellow
represents the Frontoparietal Network (FPN) state, and State 5 in blue represents the
Somatomotor/Visual Network state.

hemisphere

With these states defined, state timecourses were then produced for each individual,
which allowed for the calculation of each individual’s fractional occupancy (FO; the percentage
of time spent in each state). Behavioral PLS analyses were conducted with FO of each state as
independent variables and age as the dependent variable in the first analysis, with VWM as the
dependent variable in the second analysis, and with age and VWM as dependent variables in the
third analysis. The first analysis with age identified a significant LV (permutation p = .048) that

was positively associated with age, indicating that older adults spend more time in the DMN and
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FPN states (see Figure 3 A and B). The second analysis identified a significant LV (permutation
p = .028) that was positively associated with VWM, indicating that less time spent in the Global
Coherence state and more time spent in DMN was associated with better VWM (see Figure 3 C
and D). The third analysis identified a significant LV (permutation p <.001) that was positively
associated with both age and VWM, indicating that less time spent in the Global Coherence state
and more time spent in DMN and FPN was associated with a better VWM in older age (see
Figure 3 E and F). An additional mean-centered PLS was performed comparing FO in 4 groups:
YA with low VWM, YA with high VWM, OA with low VWM, and OA with high VWM. This
analysis identified 1 significant LV (permutation p <.001) with brainscores indicating that it
identified how FO was associated with the OA high VWM group (YA low VWM: brainscore
[95% CI] =-.0482 [-.079 to -.017]; YA high VWM: brainscore [95% CI] =-.007 [-.035 to .021];
OA low VWM: brainscore [95% CI] =-.022 [-.050 to .006]; OA high VWM: brainscore [95%
CI1=.076 [.039 to .114]). This effect for OA with high VWM were consistent with the
behavioral PLS LV associated with increasing age and VWM (see Figure 3 F), with BSRs that
were reliably negative for Global Coherence and reliably positive for DMN and FPN states. The
identified positive BSRs for DMN and FPN indicate that the increased time spent in DMN and
FPN is not a detrimental aspect of the aging brain’s functional dynamics, but rather that this

difference is advantageous for VWM.
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Figure 3. PLS analyses with independent variables of FO and dependent variable age (A and B),
dependent variable VWM (C and D) and dependent variables of age and VWM (E and F). (A),
(C), and (E) depict the behavioral correlation between the dependent variables and the LV, while
(B), (D), and (F) represent the BSRs highlighting the reliable positive behavior-FO associations
in red and the reliable negative behavior-FO associations in blue.
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LEiDA also allows for the calculation of a state transition probability matrix, representing
the probability of a transition occurring from state i in row i to state j in column j in the 5x5
matrix, where 5 is the total number of states (see Figure 4 B). Diagonal elements in the transition
probability matrix represent maintenance of that state without a transition to another state. A PLS
analysis with the transition probability matrix values as the independent variables and age as the
dependent variable identified a significant LV (permutation p =.009). This LV was positively
associated with age (see Figure 4 A), so that positive BSRs represent transitions (off diagonal

elements) or maintenances (diagonal elements) that were more probable in older adults while
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negative BSRs represent transitions or maintenances that were less probable in older adults. The
analysis identified the maintenance of State 2 (DMN) and State 3 (Attention) as being more
prevalent in older adults, consistent with the FO analysis finding that DMN and FPN FO were
greater for older adults, while adding Attention as another state that is more prevalent in older
adults. The probability of transition from State 5 (Somatomotor/Visual) to State 3 (Attention)
was also greater for older adults. Conversely, the probability of transition from State 2 (DMN) to
State 1 (Global Coherence), from State 1 (Global Coherence) to State 4 (FPN), and from State 3
(Attention) to State 4 (FPN) were decreased in older age (see Figure 4 B as well as Figure 4 C
for a graph representation of reliably age-related transitions and maintenances). As the only
reliably age-related transition probability that increased with age, the transition from State 5
(Somatomotor/Visual) to State 3 (Attention) was investigated further from a structural

connectivity perspective using network control theory.
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Figure 4. PLS analysis with independent variables of transition probabilities and dependent
variable age. (A) depicts the behavioral correlation between age and the LV, while (B) and (C)
represent the BSRs highlighting the reliable positive associations with age in red and the reliable
negative associations with age in blue. BSRs are represented as both a transition probability
matrix (B) and a transition probability graph (C).

Network Control Theory

The network control theory analysis identified a combination of control energies given to
each region corresponding to the optimal (minimized) total inputs to the simulation resulting in a
transition from State 5 (Somatomotor/Visual) to State 3 (Attention; see Figure 5 A). A high value
of control energy in a region can therefore be interpreted as that region being situated in the
structural network architecture in a such a way that affords an ideal level of efficient control over
the transition from the Somatomotor/Visual Network state to the Attention Network state (i.e.,
the brain relies heavily on that region for this transition). Separate PLS analyses for YA and OA

were conducted, with control energies as independent variables and age and VWM as dependent
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variables. The YA analysis identified a significant LV (permutation p = .029) positively
associated with age and VWM, indicating that VWM was better with age in individuals with
greater control energies in regions with positive BSRs and with lower control energies in regions
with negative BSRs (see Figure 5 B). The OA analysis identified a significant LV (permutation p
<.001) negatively associated with age and positively associated with VWM, indicating that
VWM was greater for individuals on the younger end of this age range if they had greater control
energies in regions with positive BSRs and with lower control energies in regions with negative
BSRs (see Figure 5 D). The YA and OA analyses both identified LVs associated with better
VWM, and both analyses identified an effect of age towards the age category boundary of 50
years, indicating an effect on VWM that is maximized in middle age. The regions identified in
these age groups had some overlap but also clear differences. For both YA and OA the RH
hippocampus tail, RH caudate, LH central sulcus, LH frontal operculum, and bilateral dorsal
parietal regions were negatively associated with VWM, indicating that a reliance on these
regions for the Somatomotor/Visual to Attention state transition was disadvantageous (see Figure
5 C and E). Regions unique to YA demonstrating this negative relationship between control
energy and VWM included RH inferior extrastriate, RH anterior insula, and LH anterior inferior
temporal lobe (see Figure 5 C). Regions unique to OA demonstrating this negative relationship
between control energy and VWM included the LH anterior thalamus, LH caudate, LH ventral
prefrontal cortex (PFC), RH calcarine and RH striate cortex (see Figure 5 E). For the YA, higher
control energies were associated with better VWM in a cluster of regions the RH insula and
frontal operculum, as well as a RH dorsal parietal region, LH dorsolateral and medial PFC, LH
inferior parietal lobule (IPL), and LH posterior cingulate cortex (PCC; see Figure 5 C). For the

OA, higher control energies were associated with better VWM in two regions of the LH insula,
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LH postcentral gyrus, a cluster of regions in the LH posterior parietal cortex including the IPL,
SPL, and postcentral gyrus, LH striate/calcarine, LH midcingulate, RH postcentral gyrus, RH

medial parietal, and RH superior extrastriate (see Figure 5 E).
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Figure 5. PLS analyses with independent variables of control energies for a state transition from
the Somatomotor/Visual to the Attention state (A) and dependent variables of age and VWM. (B)
and (D) depict the behavioral correlation of age and VWM with the LV, while (C) and (E)
represent the BSRs highlighting the regions with reliable positive associations with age and
VWM in yellow to red and the reliable negative associations with age and VWM in green to

blue.
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The secondary mean-centered PLS analysis identified 2 significant LVs. The first LV
(permutation p < .001) identified an age contrast, whereby positive BSRs were associated with
OA and negative BSRs were associated with YA (YA low VWM: brainscore [95% CI] = -.466 [-
.588 to -.345]; YA high VWM: brainscore [95% CI] =-.119 [-.234 to -.004]; OA low VWM:
brainscore [95% CI] = .188 [.075 to .300]; OA high VWM: brainscore [95% CI] = .398 [.287 to
.508]; see Figure 6 A). The second LV (permutation p = .024) identified a VWM contrast within
the YAs, whereby positive BSRs were associated with YA high VWM and negative BSRs were
associated with YA low VWM (YA low VWM: brainscore [95% CI] =-.234 [-.370 to -.098]; YA
high VWM: brainscore [95% CI] = .434 [.338 to .529]; OA low VWM: brainscore [95% CI] = -

.104 [-.214 to .006]; OA high VWM: brainscore [95% CI] = -.096 [-.230 to .039]; see Figure 6
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Figure 6. BSRs from mean-centered PLS, identifying 2 significant LVs. LV1 (A) identified an
age contrast whereby positive BSRs are associated with OA and negative BSRs are associated
with YA, while LV2 (B) identified a VWM contrast within the YA group, whereby positive BSRs
are associated with high VWM and negative BSRs are associated with low VWM.
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Discussion

We have demonstrated that dynamic characteristics of the brain’s structural connectivity
are related to data-driven measures of functional dynamics, that this relationship matures across
the lifespan, and that elements of these dynamics support better VWM in middle age. Time spent
in the DMN and FPN states increased with age and was associated with better VWM, as were
decreases in Global Coherence time. Maintenance of the DMN and Attention Network states
increased with age, while state transition probability from the DMN state to Global Coherence,
Global Coherence to the FPN state, and the Attention Network state to the FPN state decreased
with age. State transition probability from the Somatomotor/Visual Network state to the
Attention Network state increased with age, and adaptations of the structural connectivity
network supporting this state transition were associated with better VWM, particularly in middle

age.

Our results highlight the importance of investigating both functional and structural brain
networks from the perspective of how they support dynamics across the lifespan. Brain structure
may be relatively fixed at physical and temporal macroscales, but the functions they support are
dynamic. The dynamics that support better VWM with age provide an example of how the
structural network informs the behavior of functional networks that support cognitive abilities. It
is also interesting to see that VWM was associated with signatures of brain function during rest,
separate from any related or demanding task, suggesting that individuals’ patterns of functional
switching in the brain and the structural connections that make the transition between the
Somatomotor/Visual Network state and the Attention Network state easier represent an important
indicator of visual working memory as a person ages. The identification of the transition between

these states specifically suggests that regardless of task demands (even at rest in this case), an
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individual’s ability to transition from a sensory/visual input state to an attention state that can
attend to these inputs translates to their ability in a visual working memory task that requires

taking visual inputs and attending to them effectively.

It is interesting to note that the structural connectivity network control theory analysis for
younger adults implicated a number of regions associated positively with VWM that overlap
with the Somatomotor/Visual and Attention networks, indicating that part of the role of
influencing the efficiency of these transitions lies within these networks themselves, while also
implicating regions from both the DMN and FPN. This suggests that performing the state
transition efficiently relies on multinetwork coordination, and that this develops towards middle
age. Conversely, regions positively associated with VWM for older adults were primarily within
the Somatomotor/Visual and Attention networks, suggesting an ideal multinetwork coordination
is established by middle age and that age-related differences occur locally within the

Somatomotor/Visual and Attention networks after middle age.

Connections to Past Research

The regions positively related to VWM in the network control theory analysis
demonstrated consistency with past research, identifying the insula (RH for YA and LH for OA)
as highlighted in previous network control theory research on WM task-based fMRI data (Cai et
al., 2021). Furthermore, the dynamic functional connectivity analyses identified that time spent
in the DMN and FPN states not was only not only greater in older adults, but that time spent in
these states was associated with better VWM, adding to evidence from past research finding that
the DMN becomes more segregated after WM training (Finc et al., 2020). Our finding that
increased time spent in the FPN state at rest was associated with better VWM is also consistent

with long-standing knowledge of the importance of the FPN to WM (D’Esposito, 2007; Smith &
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Jonides, 1999; Wager & Smith, 2003). The Global Coherence state identified by the LEiDA
analysis represents a state in which brain regions are working together overall, rather than
isolating a certain specialized subnetwork. Past research using this method has identified the
Global Coherence state as being more prominently represented in older adults with good
cognitive performance compared to those with poor cognitive performance (Cabral et al., 2017).
Cognitive performance in this previous research was assessed using multiple measures sensitive
to executive function, memory, and mood. Interestingly, our results found that decreases in the
prevalence of Global Coherence were associated with better VWM. It seems the specific domain
of cognitive ability may affect the relevance of time spent in the Global Coherence state, and
that, for VWM, individuals with the ability to spend more time in specific states (DMN and
FPN) rather than in a Global Coherence state, and to efficiently transition from the

Sensorimotor/Visual to the Attention state, are more likely to have better VWM.

Limitations and Future Directions

A longitudinal investigation utilizing this approach would provide a fuller picture of the
relationship between structure, functional network dynamics, and cognitive ability. Recent
research has highlighted the important differences between longitudinal and cross-sectional brain
age research (Vidal-Pineiro et al., 2021). Adding a longitudinal perspective would represent an
important contribution to this research investigating how the dynamic functional repertoires
available are also dynamic across the lifespan, from infancy to childhood, adolescence, young
adulthood, and old age. We know from both this and past research (Neudorf et al., 2024) that the
network regimes that are ideal for healthy young adults are not the same as those that are ideal

for older adults, so a continued exploration of brain networks across the lifespan with an eye for
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how these architectures address unique demands represents an important effort to diversify our

understanding of how dynamic the brain network is across the lifespan.

Conclusion

An investigation of the functional and structural brain networks’ dynamics allowed us to
uncover how these different perspectives on brain dynamics are related. Furthermore, visual
working memory relies on specifically tuned brain networks in middle age that can efficiently
transition from a sensorimotor/visual focused state to a state wherein the individual is ready to
attend to important information and maintain default mode and frontoparietal network states. The
sensorimotor/visual to attention functional state transition was supported by the structural
connectivity network, and different regions of the structural network were important during the
approach to and the departure from middle age. This work has identified brain network
signatures related to task performance based on brain structure and function at rest, suggesting
that intrinsic features of brain dynamics may be valuable for assessing brain aging trajectories

and relating to clinical conditions such as dementia.
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