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ABSTRACT

Introduction: Campylobacter is a leading cause of bacterial gastroenteritis globally, but
its molecular epidemiology remains poorly understood in sub-Saharan Africa. This study
investigates the genotypic population structure of Campylobacter jejuni isolates from
children with moderate-to-severe diarrhoea (MSD) and healthy controls in The Gambia.

Additionally, we determined the antimicrobial susceptibility levels of the isolates.

Methods: As part of the Global Enteric Multicenter Study (GEMS) in The Gambia, a total
of 49 C. jejuni isolates were collected from the stools of children under 5 years old,
including 22 with MSD and 27 healthy controls. These isolates were subjected to
multilocus sequence typing (MLST) and antimicrobial susceptibility testing using the disc-
diffusion method.

Results: The C. jejuni isolates belonged to 22 sequence types (STs), ten of which were
novel. The most common STs were ST-353 (19.1%, 9/47), ST-7784 (12.7%, 6/47), and
ST-1038 (10.6%, 5/47). All isolates were fully susceptible to erythromycin, tetracycline,
gentamicin and chloramphenicol, with two isolates (4.4%, 2/45) resistant to ciprofloxacin
and nalidixic acid. Antimicrobial resistance or intermediate susceptibility to trimethoprim-
sulfamethoxazole, cefotaxime and ampicillin was observed in 91.1% (41/45), 90.9%
(40/44), and 44.4% (20/45) of the isolates, respectively. There was no strong evidence
linking C. jejuni antimicrobial susceptibility or MLST genotype to MSD status.

Conclusion: This study provides the first overview of the high genotypic diversity of
human C. jejuni isolates in The Gambia and reveals low-level resistance among the
isolates to antibiotics commonly used to treat campylobacteriosis. The study contributes
to understanding the epidemiology and resistance patterns of C. jejuni in this region.
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Introduction

Campylobacter infections (campylobacteriosis) are a leading cause of bacterial
gastroenteritis globally, accounting for approximately 14% of all diarrhoeal cases
(Kaakoush et al., 2015; Kirk et al., 2015; Sherman et al., 2010). In developing countries,
Campylobacter is the most frequently isolated bacterial pathogen among paediatric cases
of diarrhoea (Coker et al. 2002, Platts-Mills et al. 2015). At least 90% of
campylobacteriosis are due to the subspecies Campylobacter jejuni (Allos, 2001). Most
human campylobacteriosis cases are self-limiting and only require supportive treatment
(Allos 2001, Snelling et al. 2005). However, infections in immunocompromised
individuals, patients with prolonged diarrhoea, and cases of septicaemia require antibiotic
therapy (Allos 2001, Butzler 2004, Moore et al. 2006). Antibiotic treatment may also be
crucial for preventing potential post-infectious sequelae such as Guillain-Barre’
syndrome, irritable bowel syndrome, and reactive arthritis (Halvorson et al. 2006, WHO
2013). The antibiotics of choice for treating campylobacteriosis are macrolides and
fluoroquinolones (Kaakoush et al. 2015). However, increasing antibiotic resistance in
Campylobacter strains from both humans and animals has become a significant global
health challenge. The World Health Organization has listed Campylobacter as a high-
priority antibiotic-resistant bacterium (WHO 2017, Tacconelli et al. 2018). Consumption
and handling of contaminated poultry and poultry products are the most common risk

factors associated with C. jejuni infection (Kaakoush et al. 2015).

Data on the molecular epidemiology and genetic diversity of Campylobacter is not
available for The Gambia and is sparse for the rest of sub-Saharan Africa (WHO 2013,
Kaakoush et al. 2015). As early as 1979, Campylobacter infection was identified as an
important cause of gastroenteritis among Gambian children under 5 years old, accounting
for about twice as many cases as Shigella and Salmonella (Billingham 1981). The Global
Enteric Multicenter Study (GEMS) was conducted in The Gambia and six other low-and-
middle-income countries in Sub-Saharan Africa and South Asia from 2007 to 2010 (Kotloff
et al. 2013). Findings from GEMS showed significant associations between C jejuni
infections and diarrhoeal disease in children under 5 years in the three Asian sites (India,
Bangladesh, Pakistan), but not in the sub-Saharan African sites (The Gambia, Kenya,
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86 Mozambique, Mali) (Kotloff et al. 2013). In The Gambia, the proportion of C. jejuni isolated
87 from stools of moderate-to-severe diarrhoea (MSD) cases and healthy controls was
88 identical (Kotloff et al. 2013).
89
90 We investigated the genotypic structure of C. jejuni in The Gambia and explored the
91 hypothesis that C. jejuni isolated from MSD cases and controls have distinct genotypes.
92  We used Multilocus sequence typing (MLST) to characterise C. jejuni isolates from The
93  Gambia during GEMS and determined antimicrobial susceptibility patterns using disk
94  diffusion method. MLST is renowned for its capacity to decipher the genetic epidemiology
95  of bacterial pathogens and allows for comparisons of the population structure of strains
96 from different locations (Dingle et al. 2002, Sails et al. 2003).
97
98 This study contributes a baseline understanding of the population dynamics among C.
99  jejuni isolates in The Gambia, provides an update on antibiotic susceptibility patterns of
100  the isolates, and offers insights into genetic relatedness to circulating strains from other
101  parts of sub-Saharan Africa.
102
103  Methods
104 GEMS study setting in The Gambia
105 The Global Enteric Multicenter Study (GEMS) was a three-year, prospective, age-
106  stratified, matched case-control study of moderate-to-severe diarrhoea (MSD) conducted
107  in the Upper River Region of The Gambia from December 2007 to December 2010. The
108  study focused on children aged 0-59 months residing in a population under demographic
109  surveillance system (DSS) (Kotloff et al., 2013). Stool samples were collected from
110  children presenting with MSD at healthcare facilities covered by the DSS. For each MSD
111  case, stool samples were also collected from 1-3 diarrhoea-free controls matched by age,
112 sex, and residence. Subjects were recruited into three age strata: 0-11 months, 12-23
113 months, and 24-59 months. Detailed descriptions of case definitions, inclusion criteria,
114  and participant recruitment have been previously published (Kotloff et al., 2012).
115
116
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117  Ethics

118  Study participants were enrolled, and stool samples collected only after obtaining written
119 informed consent from their parents or guardians. Ethical approval for the study was
120  granted by the joint Medical Research Council Unit The Gambia at the London School of
121  Hygiene and Tropical Medicine and the Government of The Gambia ethics committee.
122

123  Campylobacter isolation and antimicrobial susceptibility testing

124 The methods for identifying Campylobacter in GEMS were detailed by Panchalingam et
125 al. (2012). Pure colonies of C. jejuni were suspended in 2 mL of tryptone soya broth (TSB)
126  to achieve turbidity equivalent to a 0.5 McFarland standard. The suspension was then
127  inoculated and uniformly spread onto Mueller-Hinton agar supplemented with 5% sheep
128  blood using sterile swabs (Sterilin, UK). The Kirby-Bauer disc diffusion technique was
129  employed to test susceptibility to nine antimicrobials (Oxoid, UK): ciprofloxacin (5 ug),
130  nalidixic acid (30 pg), erythromycin (15 ug), tetracycline (30 pg), ampicillin (10 ug),
131  gentamicin (10 pg), cefotaxime (30 pg), trimethoprim-sulfamethoxazole (1.25/23.75 ug),
132 and chloramphenicol (30 pg). Plates were incubated at 42°C under microaerophilic
133 conditions for 48 hours. Susceptibility was determined by measuring the zone of inhibition
134 in millimetres and interpreting results according to Clinical and Laboratory Standards
135 Institute (CLSI) guidelines for Enterobacteriaceae (CLSI, 2014).

136

137 DNA extraction and multilocus sequence typing (MLST)

138  Genomic DNA was extracted from liquid cultures of pure C. jejuni colonies grown in TSB
139 using the automated NucliSens® easyMAG™ nucleic acid extraction system
140  (Biomerieux, France). A 100 L aliquot of the C. jejuni suspension was added to 2 mL of
141  lysis buffer, vortexed for 1 minute to achieve homogeneity, and incubated overnight at
142 4°C. The NucliSens® easyMAG™ generic protocol was used with a final elution volume
143  of 100 yL. MLST PCR and sequencing reactions were performed using primers and
144  conditions for seven housekeeping genes (aspA, glnA, gltA, glyA, pgm, tkt, and uncA) as
145  previously described (Dingle et al., 2001). Sequencing of the housekeeping gene
146  amplicons was conducted at Macrogen Inc., South Korea.

147
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148 Bioinformatics analyses
149  Sequences were aligned and assembled using LaserGene DNA Star (v7.1) software.
150  Alleles, sequence types (STs), and clonal complexes (CC) were identified by querying

151 the MLST website from the Campylobacter database (https://pubmist.org/campylobacter/

152 ). Novel alleles and ST profiles were submitted to the database curator for assignment of
153  new alleles or STs. Clustering and minimum spanning tree construction were performed
154 using BioNumerics (v6.6) software. Maximum likelihood (ML) phylogeny was
155 reconstructed based on the concatenated MLST alleles using the General Time
156  Reversible model with 100 replicates in SeaView (v4).

157

158 Results

159 Prevalence of Campylobacter in children with MSD and healthy controls

160 A total of 2,598 children under five years old were enrolled in the GEMS study in The
161  Gambia, comprising 1,029 MSD cases and 1,569 healthy controls (Kotloff et al., 2012).
162  Campylobacter species were isolated from 105 independent stool samples, yielding an
163  overall prevalence of 4.0%, with similar rates between MSD cases (4.0%, 41/1,029) and
164  healthy controls (4.1%, 64/1,569) (Table 1). The majority of Campylobacter species
165 (89.5%, 94/105) were isolated from children under two years old. Approximately 57%
166  (60/105) of the Campylobacter isolates were classified as C. jejuni, which are the focus
167  of this study (Table 1). Due to missing or non-viable isolates, MLST and antimicrobial
168  susceptibility testing were conducted on the remaining 49 (81.7%) C. jejuni isolates.

169

170  Genetic diversity of C. jejuni isolates in Gambian children

171  Complete MLST profiles were obtained for 47 of the 49 (95.9%) C. jejuni isolates,
172 revealing 22 different STs and indicating high genetic diversity. Ten novel STs (ST-7772,
173  ST-7782, ST-7783, ST-7784, ST-7790, ST-7791, ST-7792, ST-7793, ST-8112, and ST-
174  8113) and one novel allele for the tkt loci (assigned allele 491) were identified
175  (Supplementary Table 1). The tkt 491 allele has a single nucleotide difference to tkt
176  allele 3. The most common genotypes were ST-353 (19.1%, 9/47), the novel ST-7784
177  (12.8%, 6/47), ST-1038 (10.6%, 5/47), ST-607 (8.5%, 4/47), and ST-52 (8.5%, 4/47). ST-
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178 1036 and ST-1039 were each found in 2/47 (4.3%) isolates, while fifteen other STs were
179  each detected once. Overall, the novel STs comprised 31.9% (15/47) of the total isolates.
180

181 A total of 43/47 (91.5%) isolates were distributed into 10 clonal complexes (CCs), with
182 CC353 (42.6%, 20/47), CC607 (14.9%, 7/47), CC354 (12.8%, 6/47), and CC52 (8.5%,
183  4/47) being the most prevalent. Other clonal complexes identified included CC22, CC206,
184 CC362, CC460, CC48, and CC574, each represented by a single isolate. Three STs (ST-
185 1039, ST-7772, and ST-7793) did not belong to any clonal complex (Supplementary
186 Table 1).

187

188  MLST genotype distribution in MSD cases vs healthy controls

189  The two most prevalent STs, ST-353 and ST-7784, were found equally in isolates from
190  both MSD cases and healthy controls (Figure 1). However, certain MLST genotypes were
191 more common in one group compared to the other. For instance, 80% (4/5) of isolates
192 with the ST-1038 genotype were from MSD cases, whereas 75% (3/4) of isolates with the
193  ST-607 genotype were from healthy controls (Figure 1). The small sample size limits the
194  power of this study to draw definitive conclusions about these associations, necessitating
195  further investigation.

196

197  Antimicrobial susceptibility of C. jejuni isolates from Gambia children

198  Antimicrobial susceptibility data were available for 45 of the 49 (91.8%) C. jejuni isolates.
199  For 4 out of 49 (8.2%) isolates for which MLST genotypes were obtained, antimicrobial
200  susceptibility data was not available. All isolates tested (n=45) were fully susceptible to
201  erythromycin, tetracycline, chloramphenicol, and gentamicin (Table 2). Susceptibility to
202  trimethoprim-sulfamethoxazole, cefotaxime, and ampicillin was observed in 8.9% (4/45),
203 9.1% (4/44), and 55.6% (25/45) of the isolates, respectively. The fluoroquinolones
204  ciprofloxacin and nalidixic acid had identical profiles, with 95.6% (43/45) of isolates
205  susceptible and 4.4% (2/45) resistant to both agents. One isolate from an MSD case with
206 the ST-1039 genotype was susceptible to all nine antimicrobials tested. The antimicrobial
207  profile for the other ST-1039 isolate was unavailable, leaving it undetermined whether
208  pan-susceptibility is characteristic of this genotype (Figure 2). Approximately 37.8%
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209  (17/45) of isolates exhibited resistance or intermediate susceptibility to three or more
210  antimicrobials, suggesting the presence of potentially multi-drug resistant (MDR) strains
211  (Figure 2). Disk diffusion method-generated antimicrobial susceptibility profiles will need
212 confirmation via the minimum inhibitory concentration (MIC) by E-test or agar dilution
213 method to verify MDR profiles.

214

215 Relationship between antimicrobial susceptibility and MLST genotypes

216  Complete antimicrobial susceptibility and MLST genotype data were obtained for 43 of
217 the 49 (87.8%) C. jejuni isolates. A maximum likelihood (ML) phylogeny based on the
218 concatenated MLST sequences of each isolate was reconstructed and compared to the
219  respective antimicrobial profiles (Figure 2). No clear correlation was observed between
220  antimicrobial susceptibility patterns and MLST genotypes or MSD status in this dataset.
221 Isolates with the same MLST genotype clustered together in the ML phylogeny often
222  exhibited different antimicrobial profiles, regardless of MSD status or age strata (Figure
223 2). The two fluoroquinolone-resistant isolates (one from an MSD case aged 0-11 months
224 and the other from a healthy control aged 12-23 months) exhibited a unique antimicrobial
225 resistance profile, being resistant to trimethoprim-sulfamethoxazole, cefotaxime,
226  ciprofloxacin, and nalidixic acid. These isolates shared the same MLST profile (ST-353).
227  However, other ST-353 isolates were susceptible to both ciprofloxacin and nalidixic acid,
228 indicating variability in antimicrobial resistance within the same genotype (Figure 2).

229

230 Discussion

231 In this study, we used multilocus sequence typing (MLST) to describe for the first time the
232 circulating genotypes of Campylobacter jejuni isolates obtained from children under five
233  years old with moderate-to-severe diarrhoea (MSD) and healthy controls in The Gambia.
234  We also evaluated the susceptibility of these isolates to commonly used antibiotics.

235

236  Globally, antibiotic resistance in Campylobacter species has been increasing. Consisted
237  with the findings by Billingham (1981) from four decade ago, our study found that all C.
238  jejuni isolates in The Gambia were fully susceptible to erythromycin, tetracycline,
239  chloramphenicol, and gentamicin. The antibiotics of choice for the treatment of
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240  campylobacteriosis are macrolides (e.g., erythromycin, azithromycin) and fluroquinolones
241 (e.g., ciprofloxacin, nalidixic acid) (Kaakoush et al. 2015). However, we identified
242  fluoroquinolone-resistant C. jejuni strains, with 4.4% (2/45) of isolates resistant to both
243  ciprofloxacin and nalidixic acid. Furthermore, high levels of resistance were observed
244  against ampicillin, trimethoprim-sulfamethoxazole, and cefotaxime. These antibiotics
245 were not tested in the earlier study by Bilingham (1981), so we cannot definitively
246  conclude if resistance has increased over time. The association between antibiotic use in
247 food animals and the rise of antimicrobial-resistant Campylobacter strains in humans is
248  well-documented (Endtz 1991, Allos 2001, McCrackin et al. 2016, Hoelzer et al. 2017).
249  However, data on antimicrobial usage in Gambian food animals is limited, but likely lower
250 than in developed countries. Additionally, confirmation of resistant strains using
251 alternative methods, such as the minimum inhibitory concentration (MIC) method, was
252 not performed, which might have affected our observed resistance frequency (Lehtopolku
253  etal. 2012).

254

255  Our study revealed high genetic diversity among the C. jejuni strains, identifying 22
256  sequence types (STs) and 10 clonal complexes (CCs) from 47 isolates. Notably, some
257 common human genotypes, such as CC21 and CC45, were absent (Dingle et al. 2001,
258 Dingle, Colles et al. 2002, Schouls et al. 2003, Levesque et al. 2008, de Haan et al. 2010).
259  The predominant clone in The Gambia was CC353, prevalent in West Africa and
260 associated with both human and animal sources (Kinana et al. 2006, Ngulukun et al.
261  2016). In our study, CC353 was present in both MSD cases and healthy controls,
262  conflicting with findings from Europe where CC353 was linked to disease in children
263  (Ramonaite et al. 2014). Other common clones in our data, such as CC607, CC354, and
264  CC52, which are also associated with disease in Europe, were identified in both MSD
265 cases and healthy controls (Supplement Table 1). The second most common genotype,
266 the novel ST-7784, belonged to the same clonal complex (CC353) as the prevalent ST-
267 353, indicating genetic divergence within this complex (Figure 2).

268

269  Although certain STs, such as ST-607 and ST-1038, were more commonly identified in
270  MSD cases or controls, our limited sample size prevents definitive conclusions about the
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271  association between MLST genotypes and MSD status (Figure 1). Previous studies have
272 shown mixed results regarding the correlation between MLST genotypes and antibitic
273  resistance patterns (Kinana et al. 2006, Levesque et al. 2008, Shin et al. 2013, Cha et al.
274 2016). Our findings align with studies by Kinana et al. (2006) and Levesque et al. (2008),
275  which found no clear association between antibiotic resistance profiles and C. jejuni
276  genotypes.

277

278  The present study has some limitations. First, the culture method used in GEMS has been
279  shown to under-detect Campylobacter spp by twice compared to quantitative molecular
280  diagnostic approaches (Liu et al. 2016), potentially missing other circulating genotypes.
281  For example, the ST-2928 genotype, which was first described from a child resident in
282  the urban area of The Gambia and belonging to CC443, was not present in our study
283  (Morris et al. 2008). Second, the MLST methodology indexes sequence variation in only
284  seven housekeeping genes, whereas whole genome sequencing (WGS) could provide
285  higher discriminatory power and identify antibiotic resistance genes. Third, the small
286 sample size limits the statistical power to test associations between genotypes and
287  disease status and to draw definitive conclusions. Finally, the MSD cases and controls in
288  this sub-study were not matched.

289

290  Contrary to the early report by Billingham (1981), Campylobacter was not a major cause
291  of diarrhoea during GEMS in The Gambia (Kotloff et al. 2013). The findings from GEMS
292  were more aligned with a longitudinal study in The Gambia showing higher isolation of
293  Campylobacter during control periods than diarrhoeal episodes (Rowland et al. 1985).
294  Despite this, Campylobacter infections are crucial for child health, as both symptomatic
295  and asymptomatic infections are associated with growth faltering in developing countries
296 (Lee et al. 2013, Amour et al. 2016). Consistent with the epidemiology of Campylobacter
297 in developing countries, Campylobacter was predominantly detected from the stools of
298  children 0-23 months old in GEMS.

299

300  Our study highlights the high genotypic diversity of C. jejuni and identifies ten novel STs,
301 underlining the unique population structure in The Gambia. The high susceptibility to

10
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302 erythromycin and alternative antibiotics supports their continued use for treating
303 campylobacteriosis. Given the scarcity of data from this region, our study contributes to
304 an important knowledge gap in the epidemiology of C. jejuni infections in Africa and may
305 inform future vaccine development strategies (Monteiro et al. 2009, Nothaft et al. 2016).
306 Future research should include larger sample sizes and samples from animals and
307 environmental sources to provide a more comprehensive understanding of C. jejuni
308 epidemiology in The Gambia.

309
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TABLES AND FIGURES
Table 1: Distribution of Campylobacter species isolated from the stools of children five
years old during the GEMS study in The Gambia (December 2007 — December 2010)
Campylobacter spp C. jejuni C. coli
Total (N) n (%) n (%) n (%)
MSD No 1569 4 (4.08) 0 (1.91) 34 (2.17)
Yes 1029 1(3.98) 0 (2.92) 1(1.07)
Age 0-11 985 9 (4.97) 0 (3.05) 9 (1.93)
12-23 1094 5(4.11) 25 (2.29) 0(1.83)
24-49 519 1(2.12) 5 (0.96) 6 (1.16)
Gender Male 1426 6 (3.93) 35 (2.45) 21 (1.47)
Female 1172 9 (4.18) 25 (2.13) 24 (2.05)

MSD = Moderate-to-severe diarrhoea
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512 Table 2: Susceptibility of C. jejuni isolates from Gambian children under five to nine
513  antimicrobials agents.

C. jejuni isolates (n)

Antimicrobial agent (concentration) S I R S (%)
Ampicillin (10ug) 25 10 10 55.6
Trimethoprim-Sulfamethoxazole (25uQ) 4 0 41 8.9
Chloramphenicol (30ug) 45 0 0 100
Tetracycline (30ug) 45 0 0 100
Gentamicin (10ug) 45 0 0 100
Ciprofloxacin (5ug) 43 0 2 95.6
Cefotaxime (30ug) 4 3 37 90.9
Nalidixic acid (30ug) 43 0 2 95.6
Erythromycin (15ug) 45 0 0 100
514 S = Susceptible; | = Intermediately susceptible; R = Resistant

515
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Figure 1: Clustering of MLST genotypes of C. jejuni from stools of children with
moderate-to-severe diarrhoea (MSD) and healthy controls using minimum
spanning tree. Each circle represents an ST profile, with the area of each circle
corresponding to the number of isolates with that profile. The length of the lines represents
the number of locus variants: Thick, short, solid lines connect single-locus variants; thick
longer solid lines connect double-locus variants; thin, long solid lines connect triple-locus
variants; dashed lines connect quadruple-locus variants, and dotted lines connect
quintuple-locus variants. Red segments represent MSD cases, and green segments

represent healthy controls.
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102373 607 ST-607 complex Case 2 R R S S S S R S S
- 102895 607 ST-607 complex Case 1 I S S S S S R S 5]
103067 2103 ST-607 complex Control 1 5] R 5] S S ] R ) 9
—{ 102470 52 ST-52 complex Case 2 1 R S S S S R S S
100070 52 ST-52 complex Control 1 R R S S S S R S S
102500 52 ST-52 complex Case 2 S R S S S S R S S
102879 52 ST-52 complex Control 1 S R S S S S R S S
102389 8113 ST-353 complex Control 1 S R S S S S R S S
102405 1036 ST-353 complex Control 2 R R S 5 5 5 R S S
102495 1040 ST-574 complex Case 1 R R S S S S | S S
102406 1036 ST-353 complex Control 1 S R S S S S R S S
102172 362 ST-362 complex Case 2 5] S S S S S R S S
102624 7772 Case 2 I R S 5 5 S R S 5]
102774 7791 ST-607 complex Control 1 R S S S S S R S S
102920 1038 ST-354 complex Control 2 R R S S S S R S S
- 100167 7790 ST-354 complex Control 3 R R 5 S S ] R S S
102305 1038 ST-354 complex Case 1 I R S S S S R S S

103644 1038 ST-354 complex Control 1
103157 1038 ST-354 complex Control 2 R R S S S S 1 S S
103022 1038 ST-354 complex Control 3 | R S S S S R S S
103092 460 ST-460 complex Control 1 R R S S S S R S S
102878 1039 Case 1 S S S S S S S S S

103290 1039 Case 1
100759 7782 ST-48 complex Case 3 | R S S S S S S S
m 102163 227 ST-206 complex Control 1 1 R S S S S| R S 5
102958 462 ST-353 complex Control 2 S R S S S S R S S
ST Sequence Type 102786 353 ST-353 complex |  Control 2 S R S S S R R R S
cc Clonal Complex 1027708112 | ST-353 complex | _Control 1 R R s s s s R s s
AMP Ampicillin 103169 7784 ST-353 complex Control 1 S R S S S S R S S
SXT Trimethroprim- 102954 7784 ST-353 complex Control 2 [] R S S S S | S S
Sulfamethoxazole 102796 | 7784 | 5T-353 complex | _Control 2 s R s s s s R s s
CHL  Chloramphenicol 102928 7784 | sT-353 complex |  Case 2 s R s s s s R s s
TET Tetracycline 100179 7784 ST-353 complex Case 1 S R S 5] 5] S S S S
CN Gentamycin 100667 7784 ST-353 complex Case 3 S R S S S S R S S
CIp Ciprofloxacin 102800 353 ST-353 complex Control 1 S R S S S S R S S
CTX Cefotaxime 102727 353 ST-353 complex Control 1 S R S S S S R S S

NA Nalidixic acid 100212 353 ST-353 complex Control 1
ERY Erythromycin 100040 353 ST-353 complex Control 2 S) R 8 S S} S S S S
S SENSITIVE 103521 353 ST-353 complex Case 1 S R S S S R R R S
| INTERMEDIATE 102930 353 ST-353 complex Case 1 S R S S S S R S S
R RESISTANT 100783 353 ST-353 complex Case 1 S R S S S S R S S
102808 353 ST-353 complex Case 1 S R S S S S R S S

52 8 0.0030

529  Figure 2: Maximum likelihood phylogeny of 7 concatenated MLST alleles. The phylogeny is presented alongside participant
530 metadata and isolate antimicrobial susceptibility profiles. Age strata are indicated as follows: 1= 0-11 months, 2= 12-23 months, 3=
531  24-59 months.
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534

Supplementary Table 1: Distribution of Campylobacter jejuni MLST genotypes across three age strata in Gambian children under 5
years old with moderate-to-severe diarrhoea (MSD) and healthy controls.
ST C. jejuni MLST profile CcC MSD Status (n) Age in months (n)
aspA ginA gltA glyA pgm tkt PgmA Case Control  0-11 12-23 24-59
227 2 4 5 2 2 1 5 206 - 1 1 - -
7783 33 3 6 4 3 3 3 22 1 - - 1 -
353 7 17 5 2 10 3 6 353 4 5 7 2 -
462 7 17 5 2 11 3 6 353 - 1 - 1 -
1036 7 84 5 10 11 3 6 353 2 2 1 1 2
7784 8 17 5 2 10 491 6 353 3 3 2 3 1
8112 9 17 5 2 624 3 6 353 - 1 1 - -
8113 7 84 5 10 56 3 6 353 - 1 1 - -
1038 8 10 5 2 11 12 6 354 1 4 2 2 1
7790 8 10 5 72 11 12 6 354 - 1 - - 1
362 1 2 49 4 11 66 8 362 1 - - 1 -
460 24 30 2 2 89 59 6 460 - 1 1 - -
7782 2 4 5 2 20 1 5 48 1 0 - - 1
52 9 25 2 10 22 3 6 52 2 2 2 2 -
1040 7 84 1 10 11 3 6 574 1 - 1 - -
607 8 2 5 53 11 3 1 607 3 1 1 3 -
7791 9 2 5 2 13 3 1 607 - 1 1 - -
7792 33 2 5 53 56 3 1 607 - 1 - 1 -
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536
537
538

2103 8
1039 2
7772 7
7793 58
Total

17
4
84
21

119

42

53

25
71

11
11
13
11

w o o,

607
UA
UA
UA

20

27

24

19

Novel STs and allele identified in this study are in bold.

UA = un-assigned
n = number
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