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 1

Summary 20 

The human brain orchestrates object vision through an interplay of feedforward processing in 21 
concert with recurrent processing. However, where, when and how recurrent processing 22 
contributes to visual processing is incompletely understood due to the difficulties in teasing apart 23 
feedforward and recurrent processing. We combined a backward masking paradigm with 24 
multivariate analysis on EEG and fMRI data to isolate and characterize the nature of recurrent 25 
processing. We find that recurrent processing substantially shapes visual representations across 26 
the ventral visual stream, starting early on at around 100ms in early visual cortex (EVC) and in 27 
two later phases of around 175 and 300ms in lateral occipital cortex (LOC), adding persistent 28 
rather than transient neural dynamics to visual processing. Using deep neural network models for 29 
comparison with the brain, we show that recurrence changes the feature format in LOC from 30 
predominantly mid-level to more high-level features. Finally, we show that recurrence is 31 
mediated by four distinct spectro-temporal neural components in EVC and LOC, which span the 32 
theta to beta frequency range. Together, our results reveal the nature and mechanisms of the 33 
effects of recurrent processing on the visual representations in the human brain. 34 

  35 
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Introduction 36 

Human visual object recognition is orchestrated by the interplay of feedforward and recurrent 37 
computations. Anatomically, this is evident by the number of feedforward and feedback 38 
connections complementing each other in visual circuits 1–3. Functionally, the feedforward sweep 39 
brings in information from the retina, enabling core object recognition through basic visual 40 
analysis 4,5. Then, the recurrent computations begin right after the first influx of feedforward 41 
information into the cortex. Recurrent activity contributes to object recognition not only when 42 
the viewing conditions are challenging 6–12, but also when objects are in plain view 13–15. 43 

While the existence and importance of both feedforward and recurrent computations in object 44 
recognition is undoubted, their exact nature, i.e., where, when and how they affect visual 45 
processing remains incompletely understood 16–19. This is partly because their empirical 46 
dissection is challenging: shortly after the first feedforward sweep, feedforward and recurrent 47 
activity overlap in space and time 20–22, hindering their unique characterization. 48 

Here, we used the classical experimental protocol of backward masking 23–26 to isolate the role of 49 
recurrent from feedforward activity 27–31. In backward masking a salient visual mask is shown 50 
shortly after a target image, impacting recurrent activity related to the target while leaving 51 
feedforward activity unaffected 28,32–34. Thus, the comparison of brain activity when participants 52 
view masked versus unmasked target images isolates the contribution of recurrent activity. 53 

We recorded human brain activity with EEG and fMRI to resolve visual responses in time and 54 
space when a set of naturalistic object stimuli were either backward masked or not. We then used 55 
multivariate pattern analysis 35–37 to recover the neural representations of the image contents 56 
under the different masking regimes across time and space. 57 

Comparing the neural activity related to the target images in the masked and unmasked 58 
conditions, we determined where, when and how recurrent activity contributes to human object 59 
vision. We first identified and characterized the spatio-temporal dynamics of visual recurrent 60 
activity. We then determined its respective spectral bases using time-frequency decomposition 61 
38–41, and finally resolved its resulting visual feature format by relating neural representations to 62 
artificial neural network 42–44. 63 

Results 64 

We presented 24 images of everyday objects on real-world backgrounds (Fig. 1A) to human 65 
participants while recording their brain activity with EEG (N = 31) and fMRI (N = 27) in 66 
separate sessions. On each trial, the target image was backward masked in one of two masking 67 
conditions: early mask or late mask (Fig. 1B). In the early mask condition, a dynamic mask 68 
rapidly followed the target after 17ms. The rapid succession of target and mask yields effective 69 
backward masking that disrupts recurrent processing 28,32–34. In contrast, in the late mask 70 
condition, the mask appeared after a delay of 600ms, leaving recurrent processing unaffected 71 
across an extended time window while otherwise keeping the stimulation across the whole trial 72 
the same. 73 

We used a multivariate pattern analysis framework to assess visual object representations 74 
captured by EEG and fMRI 36,45 to classify the objects in the target images from brain data. 75 
Because target images and masks were statistically independent by design across trials, 76 
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classifying objects isolated the neural activity that related to the target from neural activity 77 
related to the mask. 78 

We then characterized and compared object representations across the early mask and late mask 79 
conditions, revealing the temporal, spatial, and spectral characteristics as well as the 80 
representational format of the recurrent aspects of visual processing. 81 

The temporal dynamics of recurrent visual activity 82 

 83 

Figure 1 Experimental design and temporal dynamics of visual object representations. 84 
(A) Stimulus set. We used 24 real-world object images on natural backgrounds as target stimuli and 24 85 
synthesized image textures created from an additional set of real-world object images for dynamic masks. 86 
(B) Experimental paradigm and timing parameters. On each trial, a briefly shown target object image was 87 
backward masked by a dynamic mask (i.e., a sequence of image textures) in one of two conditions: the 88 
early mask condition (short 17ms ISI) and the late mask condition (long 600ms ISI). (C) Results of object 89 
identity decoding in the early mask (red) and late mask (blue) conditions and their difference (gray). (D) 90 
Results of object identity decoding within (green) and across (black) masking conditions and their 91 
difference (brown). For (C, D), chance level is 50%; significant above-chance level decoding is denoted 92 
by colored asterisks at the corresponding time points (N = 31, p < 0.05, right-tailed permutation tests, 93 
cluster definition threshold p < 0.005, cluster-threshold p < 0.05, 10,000 permutations); vertical gray line 94 
at 0ms indicates stimulus onset; shaded margins of time courses indicate 95% confidence intervals of the 95 
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decoding performance determined by bootstrapping (1,000 iterations); horizontal error bars indicate 95% 96 
confidence intervals for peak latencies. (E-G) Results of time-generalized decoding object identity in the 97 
(E) early mask condition, (F) late mask condition, and (G) the difference. For (E-G), chance level is 50%; 98 
time-point combinations with significantly above-chance level decoding are outlined in black dashed lines 99 
(N = 31, right-tailed permutation tests, cluster definition threshold p < 0.005, cluster-threshold p < 0.05, 100 
10,000 permutations); vertical and horizontal gray lines indicate stimulus onset. 101 

To reveal the temporal dynamics of object representations in the early mask and late mask 102 
conditions, we conducted time-resolved multivariate pattern classification of object identity 103 
using EEG data. Classifying between all pairs of the 24 object images and averaging across pairs 104 
yielded a grand average object decoding time course for both masking conditions (Fig. 1C, for 105 
statistical details, see Supplementary Table 1). We assessed statistical significance using cluster-106 
based inference (N = 31, right-tailed permutation tests, cluster definition threshold p < 0.005, 107 
cluster-threshold p < 0.05, 10,000 permutations), and report peak latencies as time points at 108 
which objects are best discriminated by neural representations with 95% confidence intervals 109 
derived by bootstrapping (1,000 samples) in brackets. 110 

We observed a qualitatively similar and typical results pattern 45,46 in both masking conditions. 111 
Decoding accuracies fluctuated around baseline until 70ms after image onset, when they steeply 112 
rose to two peaks at ~100ms and ~200ms. The peak latencies for the objects in the early mask 113 
condition (110ms [110 – 180ms]) and the late mask condition (180ms [110 – 190ms]) coincided 114 
with the first and second peak respectively, without being significantly different (p > 0.05, 115 
Supplementary Table 1). This result demonstrates the presence of robust visual information in 116 
both masking conditions, warranting further analysis. 117 

Comparing the decoding performance between the two masking conditions, we observed higher 118 
decoding in the late mask condition emerging after the first decoding peak (Fig. 1C, gray curve, 119 
cluster 110 – 560ms, peak latency 230ms [220 – 420ms]). This pattern was also present when 120 
decoding objects across the categorical boundary defined by naturalness or animacy 121 
(Supplementary Fig. 1A, B, Supplementary Table 2). Together, this provides a first 122 
characterization of the timing of recurrent activity. 123 

The modest difference in the time-resolved decoding result patterns between the early and the 124 
late mask conditions might be interpreted as indicating a relatively minor role of recurrent 125 
processing in visual object processing. However, this conclusion is premature: similar overall 126 
time courses might hide qualitatively different visual representations across the two masking 127 
conditions. 128 

To investigate whether the representations are strongly affected by recurrent processing, we 129 
decoded object identity across the two masking conditions 47,48. The rationale is that if visual 130 
representations are only weakly affected by recurrent processing, decoding results should be 131 
similar for the decoding within- and across-masking conditions. However, if recurrent processing 132 
affects visual representations more strongly, the across-condition decoding accuracy should be 133 
lower than the within condition accuracy. We found that cross-decoding was strongly reduced 134 
after the first peak (110ms [100 – 110ms], Fig. 1D, black curve) when compared to decoding 135 
within each masking condition (Fig. 1D, green curve, corresponds to the average of the blue and 136 
red curve in Fig. 1C). The difference between within- and across-conditions was significant after 137 
the first within-condition decoding peak (Fig. 1D, brown curve, clusters between 120ms and 138 
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800ms), with a peak at 200ms (200 – 210ms) (for statistical details, see Supplementary Table 1). 139 
This result pattern was also obtained when comparing within- and across-conditions decoding for 140 
training the classifiers on either the early or the late mask condition (Supplementary Fig. 1C, D, 141 
Supplementary Table 2). This indicates that recurrent processing strongly affects visual object 142 
representations after the first feedforward sweep from 120ms onward, thus detailing the temporal 143 
dynamics of recurrent processing. 144 

If recurrent processing strongly affects visual object representations, the dynamics with which 145 
those representations emerge should also differ depending on the amount of recurrent activity 146 
involved. To assess this, we used temporal generalization analysis (TGA) 49 by decoding object 147 
identity across all time-point combinations in the EEG epoch. This resulted in time-time matrices 148 
for each masking condition (Fig. 1E, F) and their difference (Fig. 1G). 149 

We observed similarities and differences for the two masking conditions. Concerning the 150 
similarities, in both masking conditions, significant effects were present from ~70ms onwards, 151 
and decoding accuracies were highest close to the diagonal (i.e., similar time-points for training 152 
and testing), indicating that fast-evolving, transient representations dominate the neural dynamics. 153 
Further, we also observed significant off-diagonal generalization from 150ms on in both masking 154 
conditions, indicating the additional presence of stable and persistent representations. This shows 155 
that in both masking conditions, visual processing depends on both transient and persistent 156 
representations. 157 

However, we also observed two key differences. For one, there was more widespread temporal 158 
generalization in the late mask than in the early mask condition (Fig. 1E, F, indicated by the 159 
length of the minor axis of the striped ellipses), and this difference was significant (Fig. 1G, 160 
striped ellipse). This suggests a stronger presence of persistent representations due to recurrent 161 
processing in the late mask condition. Second, we observed that below-chance decoding 162 
accuracies at the time-point combinations, i.e., ~100ms and ~200ms (Fig. 1E-G, striped 163 
rectangle), were lower in the early mask condition than in the late mask condition, emerging as a 164 
positive difference in their comparison (Fig. 1G, striped rectangle). 165 

Negative decoding accuracies in off-diagonal regions of the TGA can be interpreted as an 166 
amplitude reversal of a time-locked (i.e., to the onset of the image) oscillatory neural component 167 
with a half-cycle length corresponding to the time difference between the time-points of the 168 
combination at which the negative decoding occurs 50,51 (for graphical illustration, see 169 
Supplementary Fig. 2). Assuming that in the early mask condition recurrent processing is 170 
reduced while feedforward processing is unaffected. This links feedforward activity to time-171 
locked oscillatory components that are covered by time-varying recurrent activity in the late 172 
mask condition. In turn, in the early mask condition recurrent activity is reduced, and the time-173 
locked feedforward-related oscillatory activity is uncovered. This result pattern was confirmed 174 
when comparing the decoding between within-condition of the late mask and the cross-decoding 175 
(Supplementary Fig. 3A-C), and it was reversed when comparing the decoding between the 176 
within-condition of the early mask and the cross-decoding (Supplementary Fig. 3D-F), 177 
supporting our interpretation. 178 

Together, our results provide three key insights into the temporal dynamics of recurrent visual 179 
processing: firstly, recurrent processing affects visual object representations from ~100ms 180 
onward, after the first feed-forward sweep, and most strongly around 200ms; secondly, it 181 
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contributes specifically to the emergence of persistent representations; thirdly, it is less phase-182 
locked to the onset of the stimulus than feed-forward activity. 183 

The spatial profile of recurrent visual activity 184 

 185 

Figure 2 Cortical locus of visual object representations. 186 
(A) Visualization of the early visual cortex (EVC, i.e., V1, V2, and V3 combined) and the lateral occipital 187 
complex (LOC) ROIs. (B) Results of object identity decoding in the early mask condition, the late mask 188 
condition, and their difference. (C) Results of object identity decoding within and across masking 189 
conditions and their difference. For (B, C), chance level is 50%; significant above-chance level decoding 190 
is denoted by black asterisks above the bars (N = 27, p < 0.05, right-tailed permutation tests, FDR-191 
corrected); error bars indicate standard errors of the mean. (D-F) Results of the spatially unbiased 192 
searchlight decoding in the (D) early mask condition, (E) late mask condition, and (F) the difference. For 193 
(D-F), chance level is 50%; only voxels with significant above-chance level decoding are shown (N = 27, 194 
right-tailed permutation tests, cluster definition threshold p < 0.005, cluster-threshold p < 0.05). 195 

Next, we determined the spatial profile of recurrent processing across the visual brain. For this, 196 
we used an equivalent multivariate pattern analysis scheme and comparison strategy between 197 
masking conditions as for the temporal dynamics but applied in a spatially resolved way to fMRI 198 
data. 199 

We focused on two regions of interest (ROI) in the visual ventral stream: the early visual cortex 200 
(i.e., V1, V2, and V3 combined) as the entry point of visual information in the cortex 52,53 and the 201 
lateral occipital complex (LOC) (Fig. 2A) as a central high-level hub for object representations 202 
54–56. We decoded object identity in both masking conditions (Fig. 2B) as well as across masking 203 
conditions (Fig. 2C) and compared the results (N = 27, sign-permutation tests, FDR-corrected, p 204 
< 0.05). 205 
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In line with the EEG results, there was above-chance decoding of object identity in both ROIs in 206 
both masking conditions (Fig. 2B, blue and red bars, all ROI-results FDR-corrected). Further 207 
comparing masking conditions, we found higher decoding accuracies for the late mask condition 208 
in EVC and LOC (Fig. 2B, gray bars), indicating that recurrent processing affects representations 209 
in both regions. 210 

Akin to the EEG analysis, we next determined the degree to which recurrent activity alters visual 211 
representations. For this, we compared the within-condition decoding results (Fig. 2C, black bars) 212 
to the across-conditions results (Fig. 1D, green bars), noting their difference (Fig. 2C, brown 213 
bars). In both ROIs, the decoding accuracy was strongly reduced when decoding across masking 214 
conditions. In LOC, but not EVC, there was low but significant cross-decoding accuracy. An 215 
equivalent results pattern emerged when comparing within- and across-conditions decoding for 216 
training the classifiers on either the early or the late mask condition (Supplementary Fig. 4A, B). 217 
This indicates that recurrent activity strongly impacts visual representations in both EVC and 218 
LOC. 219 

To explore the differences between the two masking conditions across the whole brain, we used 220 
a spatially unbiased fMRI searchlight analysis 57,58. Consistent with the ROI results, we found 221 
object identity information across the ventral visual stream in both masking conditions (Fig. 2D, 222 
E, right-tailed permutation tests, cluster definition threshold p < 0.005, cluster-threshold p < 0.05, 223 
5,000 permutations). Comparing decoding in the early mask versus the late mask conditions 224 
revealed widespread effects in the ventral stream with a maximum in the high-level ventral 225 
cortex (Fig. 2F). This reinforces the view that recurrent activity strongly affects visual 226 
representations across the ventral stream. 227 

Recurrent processing affects the format of visual representations 228 

 229 
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Figure 3 The representational format of visual representations resolved in space or time. 230 
(A) RSA linking brain responses to layer-wise activation patterns in a DNN model (AlexNet trained on 231 
object categorization). We obtained RDMs for each layer of the DNN, each ROI in fMRI, and each time 232 
point in EEG. We then compared (Spearman’s R) the DNN RDMs with the EEG and fMRI RDMs, 233 
respectively. (B, C) RSA results linking (B) EVC and (C) LOC to DNN layers. For (B, C), significant 234 
correlations are marked by black asterisks above bars (N = 27, p<0.05, right-tailed permutation tests, FDR 235 
corrected); error bars depict standard errors of the mean; shaded gray areas indicate the noise ceiling. (D-236 
F) RSA results linking DNNs to EEG in the (D) early mask condition, (E) late mask condition, and (F) 237 
difference therein. For (D-F), significant correlations at time points are denoted by asterisks colored by 238 
layer (N = 31, right-tailed permutation tests, cluster definition threshold p < 0.005, cluster-threshold p < 239 
0.05, 10,000 permutations); horizontal error bars indicate 95% confidence intervals for peak latencies, 240 
shaded gray areas represented the noise ceiling. 241 

We next investigated how recurrent processing affects the format of visual representations. For 242 
this, we used representational similarity analysis (RSA) 37,61 to compare representations in the 243 
brain and in the layers of an 8-layer AlexNet deep neural network (DNN) model trained on 244 
object categorization 59,60 (Fig. 3A). The rationale is that correspondence to layers along the 245 
DNN hierarchy reveals the complexity of the representational format in the brain, from low-246 
complexity features in the early layers to high-complexity features in the late layers 42–44. 247 

We began the investigation of the format of visual representations as localized in EVC and LOC 248 
using fMRI. In EVC, we identified the strongest correspondences with the early to middle DNN 249 
layers in both masking conditions (Fig. 3B). The differences between masking conditions were 250 
numerically most pronounced in the early layers, albeit not significantly. This suggests that 251 
feedforward and recurrent processing in EVC primarily involve the processing of low-level 252 
features. A supplementary analysis that compared the visual representations as revealed by the 253 
within- and across-conditions decoding to the DNN model showed an equivalent result pattern 254 
(Supplementary Fig. 5A), further strengthening this view. 255 

In contrast, in LOC, we made two key observations. First, while there were correspondences 256 
with the middle to deep layers in both masking conditions (Fig. 3C), there was a shift in the peak 257 
correspondence from the highest layer (i.e., layer 8) in the late mask condition to a middle layer 258 
(i.e., layer 4) in the early mask condition. Correspondingly, the comparison of results between 259 
masking conditions revealed differences in mid-to-late layers, with a peak in the latest layer. 260 
Second, there was correspondence in LOC to early layers (i.e., layers 1-2) in the early mask 261 
condition but not in the late mask condition. Both observations were also present when 262 
comparing within- and across-conditions decoding results (Supplementary Fig. 5B). This 263 
suggests that in LOC the representational format shifts from lower to higher complexity through 264 
recurrent activity. 265 

Next, we assessed the change in the representational format of visual representations across time 266 
using EEG.  We observed correspondence to all layers of the DNN in both masking conditions 267 
(Fig. 3D, E) with a temporal progression in peak correspondence from lower layers early in time 268 
to higher layers later in time 62,63 (for statistical details, see Supplementary Table 3). This shows 269 
that in both masking conditions, visual representations emerge along a cascaded processing 270 
hierarchy characterized by increasing feature complexity 5,17,64,65. To assess the feature 271 
complexity and timing of recurrent processing directly, we determined the difference in 272 
correspondence between the masking conditions (Fig. 3F). We found that the difference was 273 
highest in the middle and high layers between ~300ms and 500ms. This indicates that recurrent 274 
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activity changes the representational format to one of higher complexity features. Consistent 275 
with this conclusion, equivalent results patterns were observed in a supplementary analysis 276 
comparing the visual representations revealed by the within- to across-conditions decoding to the 277 
DNN model (Supplementary Fig. 5D). 278 

Finally, for both EEG- and fMRI-based analyses, we confirmed the main results pattern using 279 
another DNN architecture (i.e., ResNet50 66, Supplementary Fig. 6), indicating the 280 
generalizability of the conclusions across models. 281 

Together, this shows that recurrent processing leaves the format of EVC representations 282 
unaffected in terms of visual feature complexity. In contrast, recurrent processing changes the 283 
format of LOC and late representations from lower to higher complexity, revealing the nature of 284 
its effect on the representational format. 285 

The spatiotemporal dynamics of changes in representational format through 286 
recurrence 287 

 288 

Figure 4 The format of spatiotemporally resolved visual representations. 289 
(A) Commonality analysis based on RSA, linking temporal dynamics (EEG), cortical locus (fMRI) and 290 
feature complexity (DNN layers of AlexNet). This yielded time courses of shared variance for each DNN 291 
layer in EVC and LOC respectively (here: layer 3 in LOC). (B-G) Time courses of shared variance with 292 
DNN features in the (B, E) early mask condition, (C, F) late mask condition, and (D, G) difference 293 
between them, in EVC (B-D) and LOC (E-G) respectively. For (B-G), significant effects at time points 294 
are denoted by asterisks color-coded by DNN layer (N = 31, right-tailed permutation tests, cluster 295 
definition threshold p < 0.005, cluster-threshold p < 0.05, 10,000 permutations). 296 

Visual processing evolves dynamically across spatial locations in the brain and across time 297 
simultaneously, necessitating a spatiotemporally resolved view 35,67. However, the analyses so far 298 
assessed visual representations and their format separately in space and time. For a fully spatio-299 
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temporally resolved view, we used RSA-based commonality analysis 68,69 (Fig. 4A), providing 300 
time courses of shared variance with each DNN layer in EVC and LOC (for statistical details, 301 
see Supplementary Table 5). 302 

In EVC, we observed an emergence of visual representations of low- to mid-complexity with 303 
peaks early in time, predominantly at 120 – 130ms, both in the early mask condition and the late 304 
mask condition (DNN layers 1-6, Fig. 4B, C). The difference between masking conditions 305 
emerged early (peaks at ~90 – 130ms) and was in low-to-middle complexity, too (DNN layers 1-306 
5, Fig. 4D). This shows that recurrent activity impacts visual representations in EVC early in 307 
time and in a low-to-mid-complexity format. 308 

In LOC, we observed the emergence of visual representations of all complexity levels at a later 309 
stage than in EVC, with two peaks at ~ 200ms and 300ms in both masking conditions (Fig. 4E, 310 
F). The difference between masking conditions was in features of middle-to-high complexity 311 
(DNN layers 4-8, Fig. 4G). This shows that recurrent activity impacts visual representations in 312 
LOC later in time and in a mid-to-high complexity format. 313 

In sum, recurrent activity modulates EVC representations early in processing in low-to-mid 314 
complexity format, and LOC representations later in processing in mid-to-high complexity 315 
format. 316 

The spectro-temporal basis of recurrent processing 317 

 318 
Figure 5 Spectral characteristics of visual representations. 319 
(A) Using time-frequency decomposition we extracted frequency-specific response pattern vectors across 320 
EEG channels for power (63) and phase values (63 × 2 = 126) separately. (B-G) Results of time- and 321 
frequency-resolved object identity decoding in the (B, E) early mask condition and (C, F) late mask 322 
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condition, and (D, G) difference between them, based on power values (B-D) and phase values (E-G). 323 
For (B-G), chance level was 50%; time-frequency combinations with significant above-chance decoding 324 
are outlined by black dash lines (N = 31, right-tailed permutation tests, cluster definition p < 0.05, 325 
significance p < 0.05, 10,000 permutations); the vertical gray line indicates stimulus onset, and the right 326 
y-axis labels indicate frequency bands. 327 

The transmission of visual information and the formation of visual representations 70,71 is 328 
fundamentally indexed by oscillatory neural activity. Based on previous work in human and non-329 
human primates, we hypothesized that recurrent processing should be evident in the low-330 
frequency range between the theta- and the beta-range 72–74. Thus, in the next step, we 331 
investigated the spectral characteristics of visual processing in the early mask condition and the 332 
late mask condition. For this, we decoded object identity from EEG data resolved both in time 333 
and frequency (Fig. 5A), considering power and phase of the signals separately. 334 

Across both masking conditions and for both power (Fig. 5B, C) and phase (Fig. 5E, F), we 335 
observed significant object decoding in a broad frequency range. The decoding peak was 336 
consistently within the theta band (~6 Hz) at ~200ms (for statistical details see Supplementary 337 
Table 6). This establishes the sensitivity of the analysis and warrants further inspection by 338 
contrasting the masking conditions. 339 

Comparing the results of the early mask condition to the late mask condition, we observed four 340 
components with distinct temporal and spectral characteristics (Fig. 5D, G; for statistical details 341 
see Supplementary Table 6). Two clusters were in the power domain (Fig. 5D) and two in the 342 
phase domain (Fig. 5G). In detail, in the power domain, there was a cluster before 300ms in the 343 
theta-alpha frequency range (peak at 4.27 Hz, 160ms), and a later cluster after 400ms in the 344 
alpha-beta frequency range (peak at 10.72 Hz, ~540ms). In the phase domain, there was a cluster 345 
between 100ms and 400ms in the alpha-beta frequency range (peak at 19.35 Hz, 200ms) and a 346 
cluster in the theta range across the entire temporal range after stimulus onset (peak at 10.03 Hz, 347 
560ms). A supplementary analysis comparing the within- and across-conditions decoding 348 
(Supplementary Fig. 7) revealed a more widespread effect that largely encompassed the clusters 349 
observed here. 350 

Together, this establishes the spectro-temporal basis underlying recurrent visual processing as 351 
four distinct components with specific spectro-temporal profiles. 352 
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Feature format and cortical origin of the spectral components underlying recurrent 353 
processing 354 

 355 
Figure 6 Spatial profile and feature format of the spectral components underlying recurrent 356 
processing. 357 
(A) Commonality analysis based on RSA linking identified time-frequency resolved dynamics (EEG), 358 
cortical locus (fMRI) and feature complexity (DNN layers of AlexNet). This analysis yielded coefficients 359 
of shared variance for each of the four identified components and for each DNN layer in EVC and LOC 360 
respectively. (B-G) Shared variance in the (B, E) early mask condition, (C, F) late mask condition, and 361 
(D, G) difference between them, in EVC (B-D) and LOC (E-G) respectively. For (B-G), significant 362 
effects at DNN layers are denoted by asterisks (N = 31, right-tailed permutation tests, cluster definition 363 
threshold p < 0.005, cluster-threshold p < 0.05, 10,000 permutations). 364 

In a final step, we asked for each of the four spectro-temporally identified components: what is 365 
their spatial origin in the brain, and in what feature format do they represent object information? 366 
To address both questions, we again used RSA-based commonality analysis 68,69, relating 367 
frequency-based EEG signals to fMRI signals from EVC and LOC and layers of the DNN model 368 
(Fig. 6A). 369 

We first note results common to all four components, forming the basis for further discriminative 370 
investigation. First, we observed significant relationships to DNN layers for all components, 371 
regions, and both masking conditions (Fig. 6 B, C and Fig. 6 E, F; except for EVC and the alpha-372 
beta power component in the early mask condition, see Fig. 6B), demonstrating the analytical 373 
feasibility of the approach. Second, similar to the previous analyses, the shared variance was 374 
generally lower in the early mask condition compared to the late mask condition. 375 

However, key differences emerged when isolating recurrent processing by considering the 376 
difference between the early and late mask conditions with respect to the feature complexity of 377 
visual representations (Fig. 6D, G). Concerning EVC (Fig. 6D), we found a relationship between 378 
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the two components emerging early in time, that is, the theta-alpha power component and the 379 
alpha-beta phase component, but not for the other two clusters. This relationship was strongest in 380 
low-and mid-level visual features. In contrast, concerning LOC (Fig. 6G), we found a 381 
relationship between the two power-defined components, one early in time and the other late in 382 
time, strongest for high-level visual features. 383 

Together, these results reveal the spectro-temporal basis of recurrent processing in EVC and 384 
LOC by comprehensively characterizing its distinct spectrally identified components, in terms of 385 
their specific feature complexity and temporal profile. 386 

Discussion 387 

Summary 388 

We combined a backward masking paradigm with multivariate analysis on EEG and fMRI data, 389 
along with computational modelling, to characterize when, where and how recurrent processing 390 
affects object representations. Harvesting the detailed structure of visual representations beyond 391 
grand-average responses to visual stimulation, we showed that recurrence substantially affects 392 
the image-specific geometry of visual representations. 393 

First, regarding the spatiotemporal dynamics, we found that recurrence affects visual 394 
representations across the ventral visual stream, early on at ~100ms in EVC and in two later 395 
phases of ~175 and 300ms in LOC, adding persistent rather than transient neural dynamics to 396 
visual processing. Next, we determined the feature complexity and spectral basis of the effect of 397 
recurrence on visual representations. We found that recurrence changes the feature format in 398 
LOC from mid- to high-level features and is mediated by four distinct spectro-temporal 399 
components in EVC and LOC in the theta to beta frequency range. 400 

The spatio-temporal dynamics of recurrent processing 401 

Our separate analyses of EEG and fMRI data revealed a broad impact of recurrent processing: it 402 
affects visual representations starting at 100–120ms, with a peak at 200ms in a wide plateau, and 403 
across the ventral visual stream.  404 

The combination of EEG and fMRI dissected these broad effects into distinct components for 405 
EVC and LOC. In EVC, recurrence affected visual representations early with a peak at 100ms. 406 
This is in the range of previously observed early effects of recurrence in non-human primate 407 
EVC 75, associated with contextual modulation and figure-ground segregation 76–78 that originate 408 
from within the ventral visual stream rather than with attentional effects 16,79,80. 409 

In LOC, recurrence affected visual representations later, with two peaks at ~175 and 300ms. The 410 
earlier peak at 175ms is consistent with effects of masking observed in humans invasively in 411 
V4/pIT 32, potentially originating from prefrontal cortex 81,82 and modulating visual activity in 412 
monkey V4 and IT 83,84. The later peak at 300ms might reflect pattern completion, as indicated 413 
by delayed responses in invasive studies of human IT in a similar time frame 11,85. The origin of 414 
this late effect might be medial temporal lobe regions such as parahippocampal cortex that 415 
activates as early as 270ms after stimulus onset 86–88. Alternatively, attentional effects might be 416 
driving the late effect, consistent with reports of human and non-human attentional modulation in 417 
high-level ventral visual cortex starting at 150ms 75,89–92. 418 
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Our results cannot ultimately determine whether non-visual regions contributed to the observed 419 
effects as here, fMRI coverage was restricted to the ventral visual stream. Future research 420 
assessing the whole brain, including frontal 84,93–95 and parietal 96–99 regions, is needed. 421 

Temporal generalization analysis added two further insights into the temporal dynamics of 422 
recurrent processing. For one, recurrence specifically contributed to the emergence of persistent, 423 
rather than transient representations. This is consistent with the observation that masking reduces 424 
firing duration in single cells in monkey IT 100,101, and that masking reduces persistence in the 425 
visual representations of occluded objects in humans 9. Together this supports the view that 426 
recurrence plays an active role in accruing and maintaining important information online for 427 
further processing and decision making 45,102–106. 428 

The second insight is that recurrent activity is less phase-locked to the onset of the stimulus than 429 
feedforward activity. Notably, the spectral basis of recurrent activity in LOC is in power only 430 
(Fig. 6G), in contrast to EVC where it is in power and phase (Fig. 6D). This suggests an increase 431 
of variability in phase over the course of processing, possibly due to accruing variability as 432 
information propagates increasingly back and forth along the visual processing hierarchy. 433 

Recurrence transforms the feature format in LOC from mid- to high-level complexity 434 

Using deep neural networks to model the representations from EEG and fMRI data 42–44, we 435 
found that recurrence changes the feature complexity of representations in LOC, but not in EVC. 436 

In LOC, we observed a shift of representational format from predominantly mid-level to more 437 
high-level features through recurrent processing. This has three implications. First, it adds 438 
algorithmic specificity to the observations from invasive recordings in non-human primates that 439 
feature coding in high-level ventral visual cortex is dynamic, changing the code over time from 440 
global to fine-grained 107, individual object parts to multipart configuration 108, and from a code 441 
supporting detection to one for discrimination 109. Second, it qualifies the finding that masking 442 
affects firing rate and stimulus specificity in monkey IT 31,100, linking those observations to the 443 
lack of recurrent activity mediating high-complexity features 7,84. Finally, it converges with 444 
visual imagery and working memory studies indicating that recurrent processing carries high-445 
complexity features 41,110. However, a limitation of our finding is that we cannot distinguish 446 
whether the observed effect indicates the addition of new features to LOC representations 447 
through recurrence that are absent in feedforward processing 13, or the modulation of the gain of 448 
already present features, e.g., through attention 111–114. 449 

In contrast to LOC, we did not find evidence for a change in feature complexity in EVC from its 450 
low-level complexity format (Fig. 4D and Fig. 6D). Analogous to the case of LOC, this suggests 451 
two different mechanisms underlying recurrence in EVC. One is that recurrent activity in EVC 452 
amplifies features encoded already in the feed-forward sweep 16. The other is that it adds new 453 
features of low-level complexity, consistent with observations of dynamical feature coding in 454 
orientation and color 115,116 and changes to receptive field structure 117. To distinguish these 455 
potential mechanisms of recurrence in both LOC and EVC future work is needed, for example, 456 
investigating the finer-grained encoding of single features rather than feature complexity 118,119 457 
and modulating attentional state 120–122. 458 
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Note that here we used DNNs as a tool to characterize feature complexity rather than to directly 459 
model human visual processing. Future work is needed that carefully and explicitly models how 460 
feedforward and recurrent activity 18,123,124 account for core object recognition 13, as well as 461 
visual behavior 125. 462 

The spectral basis of recurrent processing 463 

Our results on the spectral basis of recurrent processing go beyond previous work in several 464 
ways: by identifying distinct oscillatory components of the spectral basis of recurrent processing, 465 
by linking those components differentially and directly to stimulus properties and by clarifying 466 
their distinct relationship to EVC and LOC as well as their distinct feature format 39,126–128. 467 

We find that a set of distinct spectro-temporal components of power and phase in the theta to 468 
beta frequency range subserve recurrent processing. Our findings refine the view that low-469 
frequency rhythms may generally serve as a neural index for recurrent processing 73,74 by 470 
showing that recurrent processes can further be subdivided into early recurrent processes (in the 471 
phase domain) that refine the representations of basic visual features, followed by later recurrent 472 
processes (in the power domain) that sculpt the representations of complex visual features in 473 
higher levels of the visual hierarchy (for a detailed discussion of each component, see 474 
Supplementary Discussion 1). 475 

Our results further support the broad notion that theta 129, alpha 74,130 and beta 72–74,131 frequencies 476 
mediate recurrent activity and play an active role in cognition 132–135 and vision in particular 477 
41,136–138, rather than in inhibition of irrelevant information 130,139 or cortical idling 140,141. 478 

Backward masking as a tool to dissect recurrent processing 479 

A key assumption on which our interpretations rest is that the difference between early and late 480 
mask conditions in neural activity isolates recurrent processing to a relevant degree. While not 481 
undoubted 142,143, this assumption is supported by a large number of studies linking backward 482 
masking to recurrent rather than feedforward processing 20,28,32,34,144, impacting the 483 
communication between and to visual regions 34,84,145. 484 

Our results invite future backward masking studies employing multivariate analysis to further 485 
confirm and dissect the sources of recurrent activity identified here. This might in particular 486 
involve causal interventions such as TMS 146 to determine the sources of recurrent activity across 487 
cortex, and layer-specific fMRI analysis 147–149 to distinguish recurrent from feedforward 488 
processing based on cortical layers 1,2,150. 489 

Conclusion 490 

In sum, recurrent activity substantially affects the ventral visual stream, first in EVC and 491 
subsequently in LOC. Recurrent processing drives a shift in the feature format of LOC from mid- 492 
to high-level complexity and is linked to distinct spectro-temporal components in the theta to the 493 
beta frequency range. These findings characterize where, when, and how recurrence affects 494 
visual representations, furthering the understanding of how the recurrent information flow in the 495 
brain mediates visual object perception. 496 
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Materials and Methods 497 

Participants in EEG and fMRI experiments 498 

We conducted two independent experiments: an EEG and an fMRI experiment. Thirty-two 499 
participants took part in the EEG experiment, of whom one was excluded due to high-frequency 500 
noise in the recordings (N = 31, mean age 26.6 years, standard deviation 4.8 years, 20 female). 501 
Twenty-eight participants took part in the MRI experiment, of whom one was excluded due to 502 
failure of the stimulus presentation equipment (N = 27, mean age 27.7 years, standard deviation 503 
4.6 years, 19 female). There was an overlap of four participants between the EEG and the fMRI 504 
participant sample. All participants had normal or corrected-to-normal vision. The study was 505 
conducted according to the Declaration of Helsinki and approved by the local ethics committee 506 
of the Freie Universität Berlin. 507 

Stimulus set 508 

The stimulus set consisted of a set of target object images and a set of image textures used to 509 
create dynamic object masks. 510 

The set of target object images consisted of 24 object images (Fig. 1A). Each image showed an 511 
object of a different object category and was cropped quadratically to the size of the centrally 512 
presented object. The 24 object images were a subset of a larger set of 118 images 151. The 513 
rationale for selecting the stimulus subset was as follows. Brain responses to natural images are 514 
typically highly correlated across the stages of the visual processing hierarchy. That is, two 515 
images that elicit similar responses at one stage tend to elicit similar responses at another stage, 516 
too. This makes assessing the role of different processing stages and the information they send in 517 
a forward or backward direction using multivariate analysis methods particularly difficult: due to 518 
the high correlations observed, experimental effects cannot be uniquely assigned to particular 519 
stages. To improve the chances of eliciting dissociable responses across the visual processing 520 
hierarchy in our experiment, we selected the stimulus set that yielded low correlations between 521 
the entry (early visual cortex, EVC) and the endpoint (inferior temporal cortex, IT) of the ventral 522 
visual pathway. For this, we used fMRI data in EVC and IT for the 118-image superset from a 523 
previous experiment 151. We assessed the similarity of representations in EVC and IT for the 118 524 
images using representational similarity analysis (RSA) 37,61. To select 24 images that yielded 525 
uncorrelated responses, we used a genetic algorithm 152 for optimization. In detail, the 526 
optimization constraint was to minimize the absolute value of correlation between EVC and IT 527 
representational dissimilarity matrices (RDMs). The RDMs for the chosen 24-stimulus set 528 
yielded the desired low similarity between EVC and IT (R = 0.0018) on the preexisting fMRI 529 
data set. In comparison, this was lower than a random selection of 24 stimuli would have been 530 
(as assessed by 1,000 random draws, average R = 0.211, standard deviation = 0.101). 531 

We created a set of image textures to be used for dynamic backward masks. For this, we chose a 532 
different subset of 24 object images randomly from the 118-image set and converted the images 533 
to textures that conserved the low- and mid-level image statistics of the images without 534 
portraying identifiable objects 153. We next created 24 dynamic masks that consisted of a 535 
sequence of 12 textures each, by randomly assigning 12 of the 24 texture images in random order 536 
to a dynamic mask. 537 
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Experimental procedures 538 

Main experiment & experimental design 539 
We presented object images to participants in a backward masking paradigm (Fig. 1B). The 540 
general experimental design, stimulus presentation parameters, and trial structure were 541 
equivalent in both the EEG and the fMRI experiments. We describe the crucial elements 542 
common to EEG and fMRI first before detailing the modality-specific differences. 543 

On each trial, a single object image (referred to as “target”) was briefly displayed for 17ms, 544 
followed by a 200ms dynamic mask. Object images and dynamic masks were randomly paired 545 
for each trial. We manipulated the target’s visibility by varying the inter-stimulus interval (ISI) 546 
between target and mask. This defined two conditions: in the early mask condition, the ISI was 547 
17ms; in the late mask condition, the ISI was 600ms. During each trial, one of the 24 dynamic 548 
masks was presented. Stimuli were presented centrally on a gray background with a size of 5 x 5 549 
degrees visual angle, overlaid with a bull’s-eye fixation symbol with a diameter of 0.1-degree 550 
visual angle 154. The texture images of dynamic mask were positioned and sized identically to the 551 
target object images. Participants were instructed to fixate on the fixation symbol throughout the 552 
experiment. We used Psychophysics Toolbox 155 for experimental presentation. 553 

EEG experimental procedures 554 
In the EEG experiment, participants completed a total of 2,544 main trials partitioned into 26 555 
blocks of 3.5 minutes each. Throughout the experiment, each object image was presented a total 556 
of 53 times in both the early mask condition and the late mask condition. 557 

We assessed the participants’ recognition performance with additional task trials that were 558 
interspersed every 4 to 6 (average: 5) main trials. The task was to identify the object image in the 559 
previous trial from a pair of images in a two-alternative forced choice (2-AFC) task. For this, two 560 
images were presented side by side for 500ms: one of the images presented was the image from 561 
the previous trial, and the other image was randomly chosen from the remaining 23 images. 562 
Participants indicated their response with a button press. 563 

Participants were instructed to refrain from blinking throughout the experiment except during the 564 
additional interspersed task trials, when participants were asked to blink when they gave their 565 
responses. While the inter-trial interval (ITI) between main trials was between 900ms and 566 
1,100ms, following the 2-AFC trial, the ITI was extended to 2,000ms to prevent motor artifacts 567 
from influencing the EEG recordings of the subsequent trial. 568 

Participants had high task performance in both masking conditions, suggesting that they attended 569 
to the stimuli even under viewing challenging conditions (for details and statistics, see 570 
Supplementary Table 7). Further, as expected, the task performance was worse for the early 571 
mask condition than for the late mask condition trials. This confirms the efficacy of the 572 
backward masking procedure in reducing object visibility. 573 

fMRI experimental procedures 574 
In the fMRI experiment, participants performed a total of 12 runs, each lasting 6.5 minutes. In 575 
each run, each object image was presented twice in the early mask condition and the late mask 576 
condition, resulting in 96 main trials per run. The trial-onset synchrony (TOA) was 3,000ms. 577 
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Main trials were interspersed with null trials (34 per run), during which only the background but 578 
no stimulus was shown. 579 

Participants were instructed to attend to the object images and respond with a button press if an 580 
object image was repeated in two consecutive trials (i.e., a one-back task on the target images). 581 
Object repetitions occurred ten times per run. 582 

As in the EEG experiment, participants had overall high task performance, with worse 583 
performance for the early mask condition than for the late mask condition trials (for details and 584 
statistics, see Supplementary Table 7). 585 

fMRI localizer experiment 586 
To define the regions-of-interest (ROIs) early visual cortex (EVC) and object-selective lateral 587 
occipital cortex (LOC), we performed a separate fMRI localizer run. The localizer run was 588 
conducted prior to the fMRI main experiment runs. The stimulus set comprised 40 images of 589 
objects and scrambled objects each. 590 

The localizer run used a fMRI block design. Each block lasted 15 s. During each block, 20 591 
stimuli were centrally presented within an area of 5 x 5 degrees visual angle at a rate of 650ms 592 
on and 100ms off. There were 6 object and scrambled object blocks each. They were presented 593 
in counterbalanced order and randomly interspersed with 7 baseline blocks during which only 594 
the background was shown. 595 

Participants were instructed to fixate on a centrally presented fixation symbol that was presented 596 
throughout the experiment, and to respond to one-back repetitions of images with a button press. 597 
Repetitions occurred a total of 9 times over the course of the localizer experiment. 598 

EEG data acquisition, preprocessing, and time-frequency decomposition 599 

We recorded EEG data using an ActiCap 64 electrodes system and a Brainvision actiChamp 600 
amplifier. 64 electrodes were placed according to the 10-10 system, with an additional ground 601 
electrode and a reference electrode placed on the scalp. The signals were sampled at a rate of 602 
1,000 Hz and online filtered between 0.03 and 100 Hz. All electrodes’ impedances were kept 603 
below 10 kΩ during the recording. 604 

We preprocessed EEG data offline using the Brainstorm-3 toolbox 156. We removed noisy 605 
channels (average 2.2 channels per participant, standard deviation 1.8 channels) identified 606 
through visual inspection. We then filtered the data with a low-pass filter at 40 Hz. Eyeblinks 607 
and eye movement artifacts were detected using independent component analysis (ICA). We 608 
visually inspected the resulting components and removed those resembling the spatial properties 609 
of eyeblinks and eye movements (average 2.7 components per participant, standard deviation 0.9 610 
components). We segmented the continuous data in epochs between -200ms and 800ms with 611 
respect to target image onset and baseline-corrected the segmented data by subtracting the mean 612 
of the 200ms interval before stimulus onset from the entire epoch. We finally applied 613 
multivariate noise normalization on the preprocessed data to improve the signal-to-noise ratio 614 
and reliability of the data 157. This formed the data for the temporally resolved decoding analyses. 615 
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For time-frequency analysis, we preprocessed the data again the same way except for two 616 
differences: 1) we did not apply offline filtering, and 2) we segmented the continuous data into 617 
longer epochs (-600ms to 1,200ms) to enable better estimation of signals at lower frequencies. 618 

Time-frequency decomposition of the EEG data 619 
We performed time-frequency decomposition by applying complex Morlet wavelets. The 620 
wavelets, resembling complex sine waves modified by a Gaussian function, covered frequencies 621 
from 4 to 100 Hz in 50 logarithmically spaced increments. The Gaussian taper characteristics 622 
varied across this frequency range, with temporal full-width-half-maximum (FWHM) ranging 623 
from 20ms to 500ms as frequency decreased and spectral FWHM ranging from 1Hz to 31Hz as 624 
frequency increased. 625 

We applied the complex Morlet wavelets for each channel and each trial of the EEG data at 2ms 626 
intervals (i.e., 500Hz). At each time point, this yielded 50 distinct frequency coefficients 627 
corresponding to the range of 4 to 100 Hz. At each time-frequency point, we computed two 628 
measures: the power and phase of the oscillation. To determine the absolute power values, we 629 
took the square root of the resulting time-frequency coefficients. To determine the phase values, 630 
we determined the real (sine) and imaginary (cosine) components from the time-frequency 631 
coefficients. This decomposition procedure yielded frequency-resolved EEG signals to be used 632 
for further time-frequency resolved decoding analyses. To decrease computation time and disk 633 
space usage, we downsampled the time points of frequency-resolved signals at 20ms intervals 634 
after time-frequency decomposition. 635 

fMRI data acquisition, preprocessing and univariate analysis 636 

We acquired T2* and T1-weighted MRI data using a 3T Siemens Tim Trio scanner with a 32-637 
channel head coil. We acquired T2*-weighted BOLD images using a gradient-echo EPI 638 
sequence. The acquisition parameters were as follows: TR = 2,000ms, TE = 30ms, FOV = 224 x 639 
224 mm2, matrix size = 112 x 112, voxel size = 2 x 2 x 2 mm3, flip angle = 70°, with 30 slices 640 
and a 20% gap. The acquisition volume covered the occipital and temporal lobes and was 641 
oriented parallel to the inferior temporal cortex. Additionally, we obtained a T1-weighted image 642 
for each participant as an anatomical reference (MPRAGE; TR = 1,900ms, TE = 2.52ms, TI = 643 
900ms, matrix size = 256 x 256, voxel size = 1 x 1 x 1 mm3, and 176 slices). 644 

We performed fMRI data preprocessing using SPM12 645 
(https://www.fil.ion.ucl.ac.uk/spm/software/spm12/). This involved realignment, slice-time 646 
correction, co-registration to the anatomical image, and normalization to MNI space. For the 647 
fMRI data of the localizer experiment, but not the main experiment, we additionally applied 648 
smoothing with a Gaussian kernel (FWHM = 5 mm). For the fMRI data from the main 649 
experiment, we additionally estimated noise components using the Tapas PhysIO toolbox 158,159 650 
by creating tissue-probability maps from each participant's anatomical image and extracting 651 
noise components from the white matter and CSF maps combined with the fMRI time series. 652 

We used a general linear model (GLM) to estimate responses for the 48 experimental conditions 653 
(i.e., the 24 object images presented in either the early mask condition or the late mask 654 
condition). The analysis was conducted in a participant-specific fashion. We applied the GLM 655 
estimation to the preprocessed fMRI data for each run. We entered experimental condition onsets 656 
and durations as regressors into the GLM. Nuisance regressors comprised noise components and 657 
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movement parameters. We evaluated 20 different GLMs by convolving regressors with 20 658 
distinct hemodynamics response functions (HRFs) as derived from a large fMRI dataset 160. For 659 
each voxel, we then identified the HRF that resulted in the lowest average residual 161 and chose 660 
the corresponding estimates for further analysis. This approach resulted in 48 beta maps (one for 661 
each experimental condition) for each run and participant. 662 

We used a separate GLM to estimate responses for the localizer run. We included block onsets 663 
and durations as regressors for the 3 conditions (i.e., objects, scrambled objects, and baseline), 664 
along with movement parameters as nuisance regressors. We convolved the regressors with the 665 
canonical HRF. We computed two contrasts from the resulting GLM parameter estimates that 666 
were used at a later step for voxel selection in the ROI analysis.  The first contrast was defined as 667 
object + scrambled objects > baseline to define EVC. The second contrast was defined as 668 
objects > scrambled objects to define LOC. This yielded two t-value maps for the localizer run 669 
per participant. 670 

Definition of fMRI regions of interest (ROIs) 671 
For each participant, we identified two regions of interest (ROIs) within the ventral visual stream: 672 
early visual cortex (EVC) and lateral occipital complex (LOC). To determine the boundaries of 673 
these ROIs, we used participant-specific t-value maps from the localizer run threshold at p < 674 
0.0001 intersected with anatomical masks. For the EVC definition, we intersected the 675 
thresholded t-value map (object + scrambled objects > baseline) with the combined anatomical 676 
region masks of V1, V2, and V3 obtained from the Glasser Brain Atlas 162. For the LOC 677 
definition, we intersected the thresholded t-value map (objects > scrambled objects) with a mask 678 
of LOC derived from a functional atlas 163. We removed any voxels shared between the EVC and 679 
LOC ROIs to avoid overlap. This process resulted in the definitions of two ROIs for each 680 
participant. 681 

Multivariate pattern analysis on EEG and fMRI data 682 

An analytical challenge in comparing neural activity evoked by target images versus target 683 
image with a backward mask is the confounding effect introduced by the mask.  Previous studies 684 
addressed this challenge by using subtraction design, for example, by including trials showing 685 
only the mask and subtracting the resulting neural activity from the neural activity evoked by the 686 
stimulus plus mask 28,164. Here, instead, we used a content-sensitive multivariate pattern analysis 687 
on EEG and fMRI data to dissect neural activity of the target image from neural activity evoked 688 
by the mask. The rationale is that in our design, target and mask stimuli were statistically 689 
independent, so multivariate pattern analysis classifying target object images revealed neural 690 
activity related to object images rather than the mask. 691 

We performed multivariate pattern analysis on EEG and fMRI data using linear support vector 692 
machines 165 as implemented in the LIBSVM toolbox 166 in MATLAB (2021a). We conducted 693 
all analyses on a participant-specific basis. 694 

Temporally resolved decoding analysis from EEG data 695 
To determine when the brain processes object information, we conducted a time-resolved 696 
decoding analysis 45,167. We examined EEG data from -200ms to 800ms with respect to target 697 
image onset, in 10ms intervals. At each time point, we extracted trial-specific EEG channel 698 
activations and arranged them into 64-dimensional pattern vectors for each of the 24 object 699 
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image conditions for each masking condition, separately. We conducted two types of analysis: 700 
within- and across-masking conditions object decoding.  701 

In the within-masking condition analysis, we separately decoded object conditions for the early 702 
mask and the late mask conditions. For each of the 24 image conditions, we first randomly 703 
grouped trials into four equally sized bins and averaged them to create four pseudo-trials to 704 
enhance the signal-to-noise ratio (SNR). Employing a leave-one-out cross-validation approach, 705 
we then divided these pseudo-trials into training (three pseudo trials) and testing sets (one pseudo 706 
trial) to pairwise decode object identity. We then decoded object conditions pairwise for all 707 
object condition combinations. The resulting decoding accuracies were arranged into a 24 × 24 708 
decoding accuracy matrix, with rows and columns corresponding to the decoded object 709 
conditions. This matrix is symmetric across the diagonal, with the diagonal being undefined. We 710 
repeated this analysis 100 times, randomly assigning trials to pseudo-trials each time. Averaging 711 
results over repetitions yielded one 24 × 24 decoding accuracy matrix for each time point, 712 
separately for the early and late mask conditions. 713 

In the across-masking conditions analysis, we proceeded accordingly but assigned pseudo-trials 714 
to the training set and testing set from different masking conditions. That is, we trained on data 715 
recorded in the early mask condition and tested on data from the late mask condition (or vice 716 
versa). We averaged the results across both training and testing directions. This yielded one 24 × 717 
24 decoding accuracy matrix for each time point. 718 

In both analyses, averaging across the 24 × 24 entries of decoding accuracy at each time point 719 
resulted in a grand-average decoding accuracy time course. 720 

Time generalization decoding analysis 721 
We used time-generalization decoding analysis to determine how visual representations relate to 722 
each other across different time points. We proceeded as for the within masking condition time-723 
resolved decoding analysis, except that classifiers trained on data from a particular time point 724 
were tested iteratively on data from all other time points. The rationale here is that successful 725 
generalization across time points indicates the similarity of visual representations over time. This 726 
analysis yielded 24 × 24 decoding accuracy matrices for each combination of time points from -727 
200 to +800ms. By averaging the entries of each decoding accuracy matrix across time point 728 
combinations, we obtained a temporal generalization matrix (TGM), where rows and columns 729 
are indexed by training and testing time points, respectively. 730 

Time-frequency-resolved decoding analysis from EEG frequency power and phase 731 
To determine the spectral properties of visual object representations in the two masking 732 
conditions, we conducted a time-frequency-resolved decoding analysis. This analysis was 733 
identical to the time-resolved analysis described above, but instead of decoding from raw 734 
activation values, we decoded object identity from patterns of power or phase value. We 735 
performed the analysis separately for 50 frequency bins spanning from 4 Hz to 100 Hz, using 736 
either power or phase values. In the power-based analysis, decoding was based on 64 power 737 
values corresponding to the 64 EEG channels. For the phase-based analysis, decoding used 128 738 
values corresponding to the concatenation of the 64 sine and 64 cosine values. This resulted in 739 
one 24 × 24 decoding accuracy matrix for each time point and frequency bin, for the power- and 740 
phase-based analyses. Averaging across the 24 × 24 entries of decoding accuracy resulted in a 741 
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grand average time-frequency matrix, where time points and frequency bins are indexed in rows 742 
and columns, respectively. 743 

Spatially resolved decoding analysis from fMRI data 744 
We conducted two types of decoding analyses on the fMRI data: region-of-interest (ROI)-based 745 
and spatially unbiased volumetric searchlight-based decoding 57,58 on the fMRI data. 746 

For the ROI-based analysis, we arranged beta values from voxels of a given ROI into pattern 747 
vectors for each of the 24 experimental conditions and each of the 12 runs of the main fMRI 748 
experiment. To enhance signal-to-noise ratio, we grouped 3 runs into 4 bins and averaged across 749 
runs, creating four pseudo-run fMRI pattern vectors 168. Then for each ROI, we performed object 750 
decoding on these pseudo-run fMRI pattern vectors in a leave-one-pseudo-run-out manner. 751 
Averaging across iterations yielded a 24 × 24 decoding accuracy matrix for each ROI, participant, 752 
and masking condition. 753 

For the searchlight-based analysis, for each voxel in the 3D fMRI volume, we defined spheres of 754 
voxels around it with a radius of four voxels. For each sphere, we arranged voxel values into 755 
pattern vectors. We then decoded object identity as described for the ROI-based analysis. This 756 
yielded a 24 × 24 decoding accuracy matrix for each voxel in the 3D fMRI volume for each 757 
participant, and each masking condition. 758 

In both ROI and searchlight-based analyses, averaging across the 24 × 24 entries of decoding 759 
accuracy resulted in either a single value or a 3D map of grand average decoding accuracy, 760 
respectively. 761 

Representational similarity analysis (RSA) 762 

RSA is a framework to relate representations across different measurement and signal spaces, 763 
such as those defined by different brain imaging modalities (EEG and fMRI) or computational 764 
models 37,61. The idea is to abstract from incommensurate measurement spaces into a common 765 
similarity space where representations can be directly compared. 766 

For each masking condition, the analysis proceeded in two steps. In the first step, within each 767 
signal space of interest (e.g., fMRI responses in ROI, EEG broadband responses at particular 768 
time points, EEG spectral responses at time-frequency combinations, and activations of DNN 769 
layers), we calculated the dissimilarity between condition-specific multivariate activity patterns 770 
for all pairwise combinations of the 24 object conditions. We aggregated the results in 771 
representational dissimilarity matrices (RDMs), where rows and columns were indexed by the 24 772 
object conditions. These RDMs summarize the representational geometry within each signal 773 
space. In the second step, we compared the RDMs across signal spaces using Spearman 774 
correlations, yielding a measure of their similarity. We provide the details for each of the two 775 
steps below. 776 

Step 1: Construction of RDMs 777 
For the brain data, we used the decoding accuracy matrices resulting from the decoding analyses 778 
detailed above as RDMs. This yielded RDMs a) from the temporally resolved EEG decoding 779 
analysis for each time point, b) from the time-frequency-resolved EEG decoding analysis for 780 
every time-point and frequency combination, separately for power and phase, and c) from the 781 
spatially resolved fMRI decoding analysis for each ROI. 782 
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For the computational model, we built RDMs from an AlexNet architecture trained for object 783 
categorization on the ImageNet dataset 59,60. AlexNet is an 8-layer deep neural network (DNN) 784 
commonly used as a baseline for brain-DNN comparisons 169. Using the MatConvNet toolbox 170, 785 
we fed our object stimuli into the pre-trained AlexNet and extracted the activation patterns for 786 
each stimulus from each of the five convolutional layers (conv1 to conv5) and the three fully 787 
connected layer (fc6, fc7, and fc8). 788 

To test the generalizability of our conclusion across different DNN models, we also built RDMs 789 
using the ResNet50 architecture 66, pre-trained on the ImageNet dataset 59 for object 790 
categorization. ResNet50 features a distinct architecture compared to AlexNet, consisting of an 791 
initial convolutional layer followed by four residual blocks, each containing multiple 792 
convolutional layers with skip connections, and leading to a final classification layer. We fed the 793 
object stimuli into ResNet50 and extracted the activation patterns for each stimulus from the last 794 
layer of each of the four residual blocks (block1 to block4) as well as from the final classification 795 
layer (fc). 796 

We quantified the dissimilarity of the activation patterns by calculating 1-Pearson’s R for each 797 
pair of stimuli. This resulted in eight RDMs for AlexNet layers and five RDMs for ResNet50 798 
layers. 799 

Step 2a: Standard RSA - relating DNN RDMs to EEG and fMRI RDMs 800 
To characterize the format of neural representations, we related DNN RDMs from each layer to 801 
EEG and fMRI RDMs (Fig. 3a). The idea is that ascending layers of a DNN capture features of 802 
increasing complexity. Thus, relating neural representations to each DNN layer informs about 803 
the feature complexity of the neural representations 42–44. 804 

For the EEG-based analysis, we correlated the DNN RDMs with EEG RDMs across all time 805 
points obtained from temporally resolved EEG decoding analysis. This yielded a time course of 806 
correlation values for each DNN layer, participant, and masking condition. For the fMRI-based 807 
analysis, we correlated the DNN RDMs with RDMs from two ROIs (i.e., EVC and LOC), 808 
yielding a correlation value per ROI for each DNN layer, participant, and masking condition. 809 

Step 2b: Commonality analysis - shared variance among EEG, fMRI and DNN RDMs 810 
To investigate the temporal dynamics of specific visual features emerging in brain regions, we 811 
extended standard RSA to commonality analysis 68,69 (Fig. 4A). Specifically, we computed the 812 
coefficients of shared variance separately among EEG RDMs at each time point, fMRI RDMs in 813 
each ROI, and DNN RDMs for each layer. This resulted in a time course of shared variance (R2) 814 
for each DNN layer, ROI, participant, and masking condition. 815 

To investigate where in the brain the specific visual features originate and how each of the four 816 
spectro-temporally identified components carries them, we conducted commonality analysis 817 
once more (Fig. 6A). Here, we calculated coefficients of shared variance among frequency-based 818 
EEG RDMs corresponding to each spectro-temporally identified component, fMRI RDMs within 819 
each ROI, and DNN RDMs across each layer. This analysis resulted in a coefficient of shared 820 
variance (R2) for each DNN layer, ROI, power- or phase-based component, participant, and 821 
masking condition. 822 
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Noise ceilings 823 
We calculated an upper and lower bound for the noise ceiling 61, that is the maximal correlation 824 
in the RSA analyses that might be achieved given the noisiness of the data. This was done for the 825 
EEG data and fMRI data (i.e., ROIs) separately. To estimate the lower bound, we correlated each 826 
participant’s RDM with the average RDM of all other participants. To estimate the upper bound, 827 
we correlated each participant’s RDM with the average RDM of all participants. We averaged 828 
the results, thus obtaining estimates of the lower and upper noise ceilings for each EEG time 829 
point or time-point and frequency combination, as well as for all fMRI ROIs. 830 

Statistical analyses 831 

We used sign permutation tests 171 that do not make assumptions about the data distribution. We 832 
compared the statistic of interest (i.e., mean decoding accuracy, correlation coefficients in RSA, 833 
coefficients of shared variance in commonality analysis, or differences therein between the 834 
masking conditions) against the null hypothesis that the statistic of interest was equal to chance 835 
(i.e., 50 % decoding accuracy for pair-wise decoding, a correlation of 0, a coefficient of shared 836 
variance of 0, or a difference of 0). To obtain a null distribution, we multiplied participant-837 
specific data randomly by either +1 or -1 and computed the statistic of interest for 10,000 838 
permutations. Based on these null distributions, we obtained p-values by comparing the original 839 
statistic to the null distribution. We conducted one-tailed (i.e., the right-tailed) tests for all 840 
statistics of interest except for differences, for which we used two-tailed tests. 841 

To correct for multiple comparisons with a small number of unrelated comparisons, we used 842 
FDR correction at a p < 0.05 172. In cases involving a large number of comparisons in contiguous 843 
and correlated results (i.e., time points, frequencies, or voxels), we used cluster-based inference 844 
173. For the cluster-size-based inference, we calculated the statistic of interest both for the 845 
empirical results and for each permutation sample under the null hypothesis. This resulted in 1-846 
dimensional (e.g., decoding time courses, RSA-based correlation time courses, time courses of 847 
shared variance), 2-dimensional (e.g., decoding time-time matrices, decoding time-frequency 848 
matrices, RSA-based correlation matrices), or 3-dimensional (i.e., fMRI volumetric decoding 849 
results) p-value maps. We defined clusters based on temporal or spatial contiguity with a p < 850 
0.005 (i.e., cluster-definition threshold) for most analyses, except for time-frequency decoding 851 
matrices, which used a threshold of p < 0.05. We determined the maximum cluster size for each 852 
permutation sample, yielding a distribution of the maximum cluster size statistic. We set the 853 
cluster threshold at p < 0.05. 854 

We calculated 95% confidence intervals for the peak latencies in the resulted time courses (e.g., 855 
decoding time courses, RSA-based correlation time courses, time courses of shared variance). 856 
For this, we randomly sampled participants with replacements 1,000 times. For each bootstrap 857 
sample, we determined the peak latency. This yielded a distribution of peak latencies for which 858 
we report the 95 % confidence intervals. 859 
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