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Summary

The human brain orchestrates object vision through an interplay of feedforward processing in
concert with recurrent processing. However, where, when and how recurrent processing
contributes to visual processing isincompletely understood due to the difficulties in teasing apart
feedforward and recurrent processing. We combined a backward masking paradigm with
multivariate analysis on EEG and fMRI data to isolate and characterize the nature of recurrent
processing. We find that recurrent processing substantially shapes visual representations across
the ventral visual stream, starting early on at around 100msin early visua cortex (EVC) and in
two later phases of around 175 and 300msin lateral occipital cortex (LOC), adding persistent
rather than transient neural dynamicsto visual processing. Using deep neural network models for
comparison with the brain, we show that recurrence changes the feature format in LOC from
predominantly mid-level to more high-level features. Finally, we show that recurrenceis
mediated by four distinct spectro-temporal neural componentsin EVC and LOC, which span the
theta to beta frequency range. Together, our results reveal the nature and mechanisms of the
effects of recurrent processing on the visual representations in the human brain.
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I ntroduction

Human visual object recognition is orchestrated by the interplay of feedforward and recurrent
computations. Anatomically, thisis evident by the number of feedforward and feedback
connections complementing each other in visual circuits 2. Functionally, the feedforward sweep
brings in information from the retina, enabling core object recognition through basic visual
analysis *°. Then, the recurrent computations begin right after the first influx of feedforward
information into the cortex. Recurrent activity contributes to object recognition not only when
the viewing conditions are challenging ™, but also when objects arein plain view .

While the existence and importance of both feedforward and recurrent computations in object
recognition is undoubted, their exact nature, i.e., where, when and how they affect visual
processing remains incompletely understood . Thisis partly because their empirical
dissection is challenging: shortly after the first feedforward sweep, feedforward and recurrent
activity overlap in space and time ?>%, hindering their unique characterization.

Here, we used the classical experimental protocol of backward masking % to isolate the role of

recurrent from feedforward activity 2. In backward masking a salient visual mask is shown
shortly after atarget image, impacting recurrent activity related to the target while leaving
feedforward activity unaffected 2=, Thus, the comparison of brain activity when participants
view masked versus unmasked target images isolates the contribution of recurrent activity.

We recorded human brain activity with EEG and fMRI to resolve visual responses in time and
space when a set of naturalistic object stimuli were either backward masked or not. We then used
multivariate pattern analysis >’ to recover the neural representations of the image contents
under the different masking regimes across time and space.

Comparing the neural activity related to the target images in the masked and unmasked
conditions, we determined where, when and how recurrent activity contributes to human object
vision. Wefirst identified and characterized the spatio-temporal dynamics of visual recurrent
activity. We then determined its respective spectral bases using time-frequency decomposition
%41 and finally resolved its resulting visual feature format by relating neural representations to
artificial neural network .

Results

We presented 24 images of everyday objects on real-world backgrounds (Fig. 1A) to human
participants while recording their brain activity with EEG (N = 31) and fMRI (N = 27) in
separate sessions. On each trial, the target image was backward masked in one of two masking
conditions: early mask or late mask (Fig. 1B). In the early mask condition, a dynamic mask
rapidly followed the target after 17ms. The rapid succession of target and mask yields effective
backward masking that disrupts recurrent processing 2. In contrast, in the late mask
condition, the mask appeared after a delay of 600ms, leaving recurrent processing unaffected
across an extended time window while otherwise keeping the stimulation across the whole trial
the same.

We used a multivariate pattern analysis framework to assess visual object representations
captured by EEG and fMRI %% to classify the objects in the target images from brain data
Because target images and masks were statistically independent by design across trials,
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classifying objectsisolated the neural activity that related to the target from neural activity
related to the mask.

We then characterized and compared object representations across the early mask and late mask
conditions, revealing the temporal, spatial, and spectral characteristics as well asthe
representational format of the recurrent aspects of visual processing.

The temporal dynamics of recurrent visual activity
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Figure 1 Experimental design and temporal dynamics of visual object representations.

(A) Stimulus set. We used 24 real-world object images on natural backgrounds as target stimuli and 24
synthesized image textures created from an additional set of real-world object images for dynamic masks.
(B) Experimental paradigm and timing parameters. On each trial, a briefly shown target object image was
backward masked by a dynamic mask (i.e., a sequence of image textures) in one of two conditions:. the
early mask condition (short 17ms 1SI) and the late mask condition (long 600ms ISl). (C) Results of object
identity decoding in the early mask (red) and late mask (blue) conditions and their difference (gray). (D)
Results of object identity decoding within (green) and across (black) masking conditions and their
difference (brown). For (C, D), chance level is 50%; significant above-chance level decoding is denoted
by colored asterisks at the corresponding time points (N = 31, p < 0.05, right-tailed permutation tests,
cluster definition threshold p < 0.005, cluster-threshold p < 0.05, 10,000 permutations); vertical gray line
at Oms indicates stimulus onset; shaded margins of time courses indicate 95% confidence intervals of the
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96  decoding performance determined by bootstrapping (1,000 iterations); horizontal error bars indicate 95%

97  confidence intervalsfor peak latencies. (E-G) Results of time-generalized decoding object identity in the

98 (E) early mask condition, (F) late mask condition, and (G) the difference. For (E-G), chance level is 50%;

99 time-point combinations with significantly above-chance level decoding are outlined in black dashed lines
100 (N =31, right-tailed permutation tests, cluster definition threshold p < 0.005, cluster-threshold p < 0.05,
101 10,000 permutations); vertical and horizontal gray lines indicate stimulus onset.

102 Toreveal the temporal dynamics of object representations in the early mask and late mask

103 conditions, we conducted time-resolved multivariate pattern classification of object identity

104 using EEG data. Classifying between all pairs of the 24 object images and averaging across pairs
105 yielded agrand average object decoding time course for both masking conditions (Fig. 1C, for
106  satistical details, see Supplementary Table 1). We assessed statistical significance using cluster-
107  based inference (N = 31, right-tailed permutation tests, cluster definition threshold p < 0.005,
108 cluster-threshold p < 0.05, 10,000 permutations), and report peak latencies as time points at

109  which objects are best discriminated by neural representations with 95% confidence intervals
110  derived by bootstrapping (1,000 samples) in brackets.

111  We observed a qualitatively similar and typical results pattern * in both masking conditions.

112  Decoding accuracies fluctuated around baseline until 70ms after image onset, when they steeply
113  roseto two peaks at ~100ms and ~200ms. The peak latencies for the objects in the early mask
114  condition (110ms[110 — 180msg]) and the late mask condition (180ms[110 — 190ms]) coincided
115 with thefirst and second peak respectively, without being significantly different (p > 0.05,

116  Supplementary Table 1). Thisresult demonstrates the presence of robust visual information in
117  both masking conditions, warranting further analysis.

118  Comparing the decoding performance between the two masking conditions, we observed higher
119 decoding in the late mask condition emerging after the first decoding peak (Fig. 1C, gray curve,
120  cluster 110 — 560ms, peak latency 230ms [220 — 420ms]). This pattern was also present when
121  decoding objects across the categorical boundary defined by naturalness or animacy

122  (Supplementary Fig. 1A, B, Supplementary Table 2). Together, this provides a first

123  characterization of the timing of recurrent activity.

124  The modest differencein the time-resolved decoding result patterns between the early and the
125 late mask conditions might be interpreted as indicating arelatively minor role of recurrent
126  processing in visual object processing. However, this conclusion is premature: similar overall
127  time courses might hide qualitatively different visual representations across the two masking
128  conditions.

129 Toinvestigate whether the representations are strongly affected by recurrent processing, we

130  decoded object identity across the two masking conditions **®. The rationale is that if visual

131 representations are only weakly affected by recurrent processing, decoding results should be

132  similar for the decoding within- and across-masking conditions. However, if recurrent processing
133  affectsvisual representations more strongly, the across-condition decoding accuracy should be
134  lower than the within condition accuracy. We found that cross-decoding was strongly reduced
135  after thefirst peak (110ms[100 — 110ms], Fig. 1D, black curve) when compared to decoding
136  within each masking condition (Fig. 1D, green curve, corresponds to the average of the blue and
137 red curvein Fig. 1C). The difference between within- and across-conditions was significant after
138  thefirst within-condition decoding peak (Fig. 1D, brown curve, clusters between 120ms and
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800ms), with a peak at 200ms (200 — 210ms) (for statistical details, see Supplementary Table 1).
This result pattern was also obtained when comparing within- and across-conditions decoding for
training the classifiers on either the early or the late mask condition (Supplementary Fig. 1C, D,
Supplementary Table 2). Thisindicates that recurrent processing strongly affects visual object
representations after the first feedforward sweep from 120ms onward, thus detailing the temporal
dynamics of recurrent processing.

If recurrent processing strongly affects visual object representations, the dynamics with which
those representations emerge should also differ depending on the amount of recurrent activity
involved. To assess this, we used temporal generalization analysis (TGA) * by decoding object
identity across all time-point combinations in the EEG epoch. This resulted in time-time matrices
for each masking condition (Fig. 1E, F) and their difference (Fig. 1G).

We observed similarities and differences for the two masking conditions. Concerning the
similarities, in both masking conditions, significant effects were present from ~70ms onwards,
and decoding accuracies were highest close to the diagonal (i.e., similar time-points for training
and testing), indicating that fast-evolving, transient representations dominate the neural dynamics.
Further, we also observed significant off-diagonal generalization from 150ms on in both masking
conditions, indicating the additional presence of stable and persistent representations. This shows
that in both masking conditions, visua processing depends on both transient and persi stent
representations.

However, we also observed two key differences. For one, there was more widespread temporal
generalization in the late mask than in the early mask condition (Fig. 1E, F, indicated by the
length of the minor axis of the striped ellipses), and this difference was significant (Fig. 1G,
striped dlipse). This suggests a stronger presence of persistent representations due to recurrent
processing in the late mask condition. Second, we observed that below-chance decoding
accuracies at the time-point combinations, i.e., ~100ms and ~200ms (Fig. 1E-G, striped
rectangle), were lower in the early mask condition than in the late mask condition, emerging asa
positive difference in their comparison (Fig. 1G, striped rectangle).

Negative decoding accuracies in off-diagonal regions of the TGA can be interpreted as an
amplitude reversal of atime-locked (i.e., to the onset of the image) oscillatory neural component
with a half-cycle length corresponding to the time difference between the time-points of the
combination at which the negative decoding occurs **** (for graphical illustration, see
Supplementary Fig. 2). Assuming that in the early mask condition recurrent processing is
reduced while feedforward processing is unaffected. This links feedforward activity to time-
locked oscillatory components that are covered by time-varying recurrent activity in the late
mask condition. In turn, in the early mask condition recurrent activity is reduced, and the time-
locked feedforward-related oscillatory activity is uncovered. This result pattern was confirmed
when comparing the decoding between within-condition of the late mask and the cross-decoding
(Supplementary Fig. 3A-C), and it was reversed when comparing the decoding between the
within-condition of the early mask and the cross-decoding (Supplementary Fig. 3D-F),
supporting our interpretation.

Together, our results provide three key insights into the temporal dynamics of recurrent visual
processing: firstly, recurrent processing affects visual object representations from ~100ms
onward, after the first feed-forward sweep, and most strongly around 200ms; secondly, it
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182  contributes specifically to the emergence of persistent representations; thirdly, it isless phase-
183  locked to the onset of the stimulus than feed-forward activity.

184 The spatia profile of recurrent visual activity
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186  Figure2 Cortical locus of visual object representations.

187  (A) Visualization of the early visua cortex (EVC, i.e, V1, V2, and V3 combined) and the lateral occipital
188 complex (LOC) ROIs. (B) Results of object identity decoding in the early mask condition, the late mask
189  condition, and their difference. (C) Results of object identity decoding within and across masking

190 conditionsand their difference. For (B, C), chance level is 50%; significant above-chance level decoding
191 isdenoted by black asterisks above the bars (N = 27, p < 0.05, right-tailed permutation tests, FDR-

192  corrected); error bars indicate standard errors of the mean. (D-F) Results of the spatially unbiased

193  searchlight decoding in the (D) early mask condition, (E) late mask condition, and (F) the difference. For
194  (D-F), chance level is 50%; only voxels with significant above-chance level decoding are shown (N = 27,
195  right-tailed permutation tests, cluster definition threshold p < 0.005, cluster-threshold p < 0.05).

196  Next, we determined the spatial profile of recurrent processing across the visual brain. For this,
197  we used an equivalent multivariate pattern analysis scheme and comparison strategy between
198 masking conditions as for the tempora dynamics but applied in a spatially resolved way to fMRI
199 data

200 Wefocused on two regions of interest (ROI) in the visual ventral stream: the early visual cortex
201 (i.e, V1, V2, and V3 combined) asthe entry point of visual information in the cortex °** and the
202  lateral occipital complex (LOC) (Fig. 2A) as acentral high-level hub for object representations
203  **° We decoded object identity in both masking conditions (Fig. 2B) as well as across masking
204  conditions (Fig. 2C) and compared the results (N = 27, sign-permutation tests, FDR-corrected, p
205 <0.05).
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In line with the EEG results, there was above-chance decoding of object identity in both ROIsin
both masking conditions (Fig. 2B, blue and red bars, all ROI-results FDR-corrected). Further
comparing masking conditions, we found higher decoding accuracies for the late mask condition
in EVC and LOC (Fig. 2B, gray bars), indicating that recurrent processing affects representations
in both regions.

Akin to the EEG analysis, we next determined the degree to which recurrent activity alters visual
representations. For this, we compared the within-condition decoding results (Fig. 2C, black bars)
to the across-conditions results (Fig. 1D, green bars), noting their difference (Fig. 2C, brown
bars). In both ROIs, the decoding accuracy was strongly reduced when decoding across masking
conditions. In LOC, but not EVC, there was low but significant cross-decoding accuracy. An
equivalent results pattern emerged when comparing within- and across-conditions decoding for
training the classifiers on either the early or the late mask condition (Supplementary Fig. 4A, B).
Thisindicates that recurrent activity strongly impacts visual representationsin both EVC and
LOC.

To explore the differences between the two masking conditions across the whole brain, we used
aspatially unbiased fMRI searchlight analysis °"*%. Consistent with the ROI results, we found
object identity information across the ventral visual stream in both masking conditions (Fig. 2D,
E, right-tailed permutation tests, cluster definition threshold p < 0.005, cluster-threshold p < 0.05,
5,000 permutations). Comparing decoding in the early mask versus the late mask conditions
revealed widespread effectsin the ventral stream with a maximum in the high-level ventral

cortex (Fig. 2F). Thisreinforces the view that recurrent activity strongly affects visual
representations across the ventral stream.

Recurrent processing affects the format of visual representations
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Figure 3 Therepresentational format of visual representationsresolved in space or time.

(A) RSA linking brain responses to layer-wise activation patternsin aDNN model (AlexNet trained on
object categorization). We obtained RDMs for each layer of the DNN, each ROI in fMRI, and each time
point in EEG. We then compared (Spearman’s R) the DNN RDMs with the EEG and fMRI RDMs,
respectively. (B, C) RSA resultslinking (B) EVC and (C) LOC to DNN layers. For (B, C), significant
correl ations are marked by black asterisks above bars (N = 27, p<0.05, right-tailed permutation tests, FDR
corrected); error bars depict standard errors of the mean; shaded gray areas indicate the noise ceiling. (D-
F) RSA results linking DNNsto EEG in the (D) early mask condition, (E) late mask condition, and (F)
difference therein. For (D-F), significant correlations at time points are denoted by asterisks colored by
layer (N = 31, right-tailed permutation tests, cluster definition threshold p < 0.005, cluster-threshold p <
0.05, 10,000 permutations); horizontal error bars indicate 95% confidence intervals for peak |atencies,
shaded gray areas represented the noise ceiling.

We next investigated how recurrent processing affects the format of visual representations. For
this, we used representational similarity analysis (RSA) *"®* to compare representationsin the
brain and in the layers of an 8-layer AlexNet deep neural network (DNN) model trained on
object categorization **® (Fig. 3A). Therationale is that correspondence to layers along the
DNN hierarchy reveals the complexity of the representational format in the brain, from low-
complexity features in the early layers to high-complexity featuresin the late layers %,

We began the investigation of the format of visual representations aslocalized in EVC and LOC
using fMRI. In EVC, we identified the strongest correspondences with the early to middie DNN
layersin both masking conditions (Fig. 3B). The differences between masking conditions were
numerically most pronounced in the early layers, albeit not significantly. This suggests that
feedforward and recurrent processing in EVC primarily involve the processing of low-level
features. A supplementary analysis that compared the visual representations as revealed by the
within- and across-conditions decoding to the DNN model showed an equivalent result pattern
(Supplementary Fig. 5A), further strengthening this view.

In contrast, in LOC, we made two key observations. First, while there were correspondences
with the middle to deep layers in both masking conditions (Fig. 3C), there was a shift in the peak
correspondence from the highest layer (i.e., layer 8) in the late mask condition to amiddle layer
(i.e., layer 4) in the early mask condition. Correspondingly, the comparison of results between
masking conditions revealed differencesin mid-to-late layers, with a peak in the latest layer.
Second, there was correspondence in LOC to early layers (i.e., layers 1-2) in the early mask
condition but not in the late mask condition. Both observations were a so present when
comparing within- and across-conditions decoding results (Supplementary Fig. 5B). This
suggests that in LOC the representational format shifts from lower to higher complexity through
recurrent activity.

Next, we assessed the change in the representational format of visual representations across time
using EEG. We observed correspondence to all layers of the DNN in both masking conditions
(Fig. 3D, E) with atemporal grogr on in peak correspondence from lower layers early in time
to higher layers later in time °>% (for statistical details, see Supplementary Table 3). This shows
that in both masking conditions, visua representations emerge along a cascaded processing
hierarchy characterized by increasing feature complexity >*"°*®. To assess the feature
complexity and timing of recurrent processing directly, we determined the differencein
correspondence between the masking conditions (Fig. 3F). We found that the difference was
highest in the middle and high layers between ~300ms and 500ms. This indicates that recurrent
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275  activity changes the representational format to one of higher complexity features. Cons stent

276  with this conclusion, equivalent results patterns were observed in a supplementary analysis

277  comparing the visual representations revealed by the within- to across-conditions decoding to the
278  DNN mode (Supplementary Fig. 5D).

279  Findly, for both EEG- and fMRI-based analyses, we confirmed the main results pattern using
280  another DNN architecture (i.e., ResNet50 *, Supplementary Fig. 6), indicating the
281  generalizability of the conclusions across models.

282  Together, this shows that recurrent processing leaves the format of EVC representations

283  unaffected in terms of visual feature complexity. In contrast, recurrent processing changes the
284  format of LOC and late representations from lower to higher complexity, revealing the nature of
285 itseffect on the representational format.

286  The gpatiotemporal dynamics of changes in representational format through
287  recurrence
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289  Figure4 Theformat of spatiotemporally resolved visual representations.

290 (A) Commonality analysis based on RSA, linking temporal dynamics (EEG), cortical locus (fMRI) and
291  feature complexity (DNN layers of AlexNet). This yielded time courses of shared variance for each DNN
292 layerin EVC and LOC respectively (here: layer 3in LOC). (B-G) Time courses of shared variance with
293  DNN featuresin the (B, E) early mask condition, (C, F) late mask condition, and (D, G) difference

294  between them, in EVC (B-D) and LOC (E-G) respectively. For (B-G), significant effects at time points
295  aredenoted by asterisks color-coded by DNN layer (N = 31, right-tailed permutation tests, cluster

296  definition threshold p < 0.005, cluster-threshold p < 0.05, 10,000 permutations).

297  Visual processing evolves dynamically across spatial locationsin the brain and across time
298  simultaneously, necessitating a spatiotemporally resolved view **". However, the analyses so far
299  assessed visual representations and their format separately in space and time. For afully spatio-
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300 temporally resolved view, we used RSA-based commonality analysis ® (Fig. 4A), providing

301 time courses of shared variance with each DNN layer in EVC and LOC (for statistical details,
302  see Supplementary Table 5).

303 InEVC, we observed an emergence of visual representations of low- to mid-complexity with
304 peaksearly intime, predominantly at 120 — 130ms, both in the early mask condition and the late
305 mask condition (DNN layers 1-6, Fig. 4B, C). The difference between masking conditions

306 emerged early (peaks at ~90 — 130ms) and wasin low-to-middle complexity, too (DNN layers 1-
307 5, Fig. 4D). This shows that recurrent activity impacts visual representationsin EVC early in
308 timeand in alow-to-mid-complexity format.

309 InLOC, we observed the emergence of visual representations of all complexity levels at alater
310 stagethanin EVC, with two peaks at ~ 200ms and 300ms in both masking conditions (Fig. 4E,
311 F). Thedifference between masking conditions was in features of middle-to-high complexity
312 (DNN layers 4-8, Fig. 4G). This shows that recurrent activity impacts visual representationsin
313 LOC later in time and in a mid-to-high complexity format.

314  Insum, recurrent activity modulates EV C representations early in processing in low-to-mid
315 complexity format, and LOC representations later in processing in mid-to-high complexity
316 format.

317 The spectro-temporal basis of recurrent processing
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319  Figure5 Spectral characteristics of visual representations.

320 (A) Using time-frequency decomposition we extracted frequency-specific response pattern vectors across
321  EEG channelsfor power (63) and phase values (63 x 2 = 126) separately. (B-G) Results of time- and
322  frequency-resolved object identity decoding in the (B, E) early mask condition and (C, F) late mask
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condition, and (D, G) difference between them, based on power values (B-D) and phase values (E-G).
For (B-G), chance level was 50%; time-frequency combinations with significant above-chance decoding
are outlined by black dash lines (N = 31, right-tailed permutation tests, cluster definition p < 0.05,
significance p < 0.05, 10,000 permutations); the vertical gray line indicates stimulus onset, and the right
y-axis labels indicate frequency bands.

The transmission of visual information and the formation of visual representations " is

fundamentally indexed by oscillatory neural activity. Based on previous work in human and non-
human primates, we hypothesized that recurrent processing should be evident in the low-
frequency range between the theta- and the beta-range >, Thus, in the next step, we
investigated the spectral characteristics of visual processing in the early mask condition and the
late mask condition. For this, we decoded object identity from EEG data resolved both in time
and frequency (Fig. 5A), considering power and phase of the signals separately.

Across both masking conditions and for both power (Fig. 5B, C) and phase (Fig. 5E, F), we
observed significant object decoding in a broad frequency range. The decoding peak was
consistently within the theta band (~6 Hz) at ~200ms (for statistical details see Supplementary
Table 6). This establishes the sengitivity of the analysis and warrants further inspection by
contrasting the masking conditions.

Comparing the results of the early mask condition to the late mask condition, we observed four
components with distinct temporal and spectral characteristics (Fig. 5D, G; for statistical details
see Supplementary Table 6). Two clusters were in the power domain (Fig. 5D) and two in the
phase domain (Fig. 5G). In detail, in the power domain, there was a cluster before 300ms in the
theta-alpha frequency range (peak at 4.27 Hz, 160ms), and a later cluster after 400msin the
alpha-beta frequency range (peak at 10.72 Hz, ~540ms). In the phase domain, there was a cluster
between 100ms and 400ms in the al pha-beta frequency range (peak at 19.35 Hz, 200ms) and a
cluster in the theta range across the entire temporal range after stimulus onset (peak at 10.03 Hz,
560ms). A supplementary analysis comparing the within- and across-conditions decoding
(Supplementary Fig. 7) revealed a more widespread effect that largely encompassed the clusters
observed here.

Together, this establishes the spectro-temporal basis underlying recurrent visual processing as
four distinct components with specific spectro-temporal profiles.

11


https://doi.org/10.1101/2024.07.30.605751
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.07.30.605751; this version posted July 30, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

353 Feature format and cortical origin of the spectral components underlying recurrent
354 processing
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356  Figure6 Spatial profile and feature format of the spectral components underlying recurrent

357  processing.

358 (A) Commonality analysis based on RSA linking identified time-frequency resolved dynamics (EEG),
359  cortical locus (FMRI) and feature complexity (DNN layers of AlexNet). Thisanaysis yielded coefficients
360 of shared variance for each of the four identified components and for each DNN layer in EVC and LOC
361  respectively. (B-G) Shared variance in the (B, E) early mask condition, (C, F) late mask condition, and
362 (D, G) difference between them, in EVC (B-D) and LOC (E-G) respectively. For (B-G), significant

363 effectsat DNN layers are denoted by asterisks (N = 31, right-tailed permutation tests, cluster definition
364  threshold p < 0.005, cluster-threshold p < 0.05, 10,000 permutations).

365 Inafina step, we asked for each of the four spectro-temporally identified components: what is
366 their gpatial originin the brain, and in what feature format do they represent object information?
367  To address both questions, we again used RSA-based commonality analysis ®, relating

368 freguency-based EEG signalsto fMRI signals from EVC and LOC and layers of the DNN model
369 (Fig. 6A).

370  Wefirst note results common to all four components, forming the basis for further discriminative
371 investigation. First, we observed significant relationshipsto DNN layersfor all components,

372  regions, and both masking conditions (Fig. 6 B, C and Fig. 6 E, F; except for EVC and the alpha-
373  betapower component in the early mask condition, see Fig. 6B), demonstrating the analytical
374  feasibility of the approach. Second, similar to the previous analyses, the shared variance was

375 generaly lower in the early mask condition compared to the late mask condition.

376  However, key differences emerged when isolating recurrent processing by considering the
377  difference between the early and late mask conditions with respect to the feature complexity of
378  visual representations (Fig. 6D, G). Concerning EVC (Fig. 6D), we found arelationship between
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the two components emerging early in time, that is, the theta-alpha power component and the
alpha-beta phase component, but not for the other two clusters. This relationship was strongest in
low-and mid-level visual features. In contrast, concerning LOC (Fig. 6G), we found a
relationship between the two power-defined components, one early in time and the other late in
time, strongest for high-level visual features.

Together, these results reveal the spectro-temporal basis of recurrent processing in EVC and
LOC by comprehensively characterizing its distinct spectrally identified components, in terms of
their specific feature complexity and temporal profile.

Discussion
Summary

We combined a backward masking paradigm with multivariate analysis on EEG and fMRI data,
along with computational modelling, to characterize when, where and how recurrent processing
affects object representations. Harvesting the detailed structure of visual representations beyond
grand-average responses to visual stimulation, we showed that recurrence substantially affects
the image-specific geometry of visual representations.

First, regarding the spatiotemporal dynamics, we found that recurrence affects visua
representations across the ventral visual stream, early on at ~100msin EVC and in two later
phases of ~175 and 300msin LOC, adding persistent rather than transient neural dynamicsto
visual processing. Next, we determined the feature complexity and spectral basis of the effect of
recurrence on visual representations. We found that recurrence changes the feature format in
LOC from mid- to high-level features and is mediated by four distinct spectro-temporal
componentsin EVC and LOC in the theta to beta frequency range.

The spatio-temporal dynamics of recurrent processing

Our separate analyses of EEG and fMRI data revealed a broad impact of recurrent processing: it
affects visual representations starting at 100-120ms, with a peak at 200ms in awide plateau, and
across the ventral visual stream.

The combination of EEG and fMRI dissected these broad effects into distinct components for
EVC and LOC. In EVC, recurrence affected visual representations early with a peak at 100ms.
Thisisin the range of previously observed early effects of recurrence in non-human primate
EVC ”, associated with contextua modulation and figure-ground segregation ' that originate
from within the ventral visual stream rather than with attentional effects **"*%,

In LOC, recurrence affected visual representations later, with two peaks at ~175 and 300ms. The
earlier peak at 175msis congstent with effects of masking observed in humansinvasively in
V4/pIT *, potentially originating from prefrontal cortex % and modulating visual activity in
monkey V4 and IT 8% Thelater peak at 300ms might reflect pattern completion, asindicated
by delayed responsesin invasive studies of human IT in asimilar time frame **®. The origin of
this late effect might be medial temporal lobe regions such as parahippocampal cortex that
activates as early as 270ms after stimulus onset *8, Alternatively, attentional effects might be
driving the late effect, consistent with reports of human and non-human attentional modulation in
high-level ventral visual cortex starting at 150ms ">,
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419  Our results cannot ultimately determine whether non-visual regions contributed to the observed
420 effects ashere, fMRI coverage was restricted to the ventral visual stream. Future research
421  assessing the whole brain, including frontal #%° and parietal **° regions, is needed.

422  Tempora generalization analysis added two further insightsinto the temporal dynamics of

423  recurrent processing. For one, recurrence specifically contributed to the emergence of persistent,
424 rather than transient representations. Thisis consistent with the observation that masking reduces
425  firing duration in single cellsin monkey 1T *** and that masking reduces persistence in the
426  visual representations of occluded objectsin humans °. Together this supports the view that

427  recurrence plays an active role in accruing and maintaining important information online for

428  further processing and decision making *%%%,

429  The second insght isthat recurrent activity is less phase-locked to the onset of the stimulus than
430 feedforward activity. Notably, the spectral basis of recurrent activity in LOC isin power only
431 (Fig. 6G), in contrast to EVC whereit isin power and phase (Fig. 6D). This suggests an increase
432  of variability in phase over the course of processing, possibly due to accruing variability as

433  information propagates increasingly back and forth along the visual processing hierarchy.

434  Recurrencetransformsthe featureformat in LOC from mid- to high-level complexity

435  Using deep neural networks to model the representations from EEG and fMRI data **™**, we

436  found that recurrence changes the feature complexity of representationsin LOC, but not in EVC.

437  In LOC, we observed a shift of representational format from predominantly mid-level to more
438 high-level features through recurrent processing. This has three implications. First, it adds

439  agorithmic specificity to the observations from invasive recordings in non-human primates that
440 feature codingin high-level ventral visual cortex is dynamic, changing the code over time from
441  global to fine-grained ', individual object parts to multipart configuration ', and from a code
442  supporting detection to one for discrimination *®. Second, it qualifies the finding that masking
443 affectsfiring rate and stimulus specificity in monkey 1T 3%, |inking those observations to the
444 lack of recurrent activity mediating high-complexity features "®*. Finally, it converges with

445  visua imagery and working memory studies indicating that recurrent processing carries high-
446 complexity features “+*'°. However, alimitation of our finding is that we cannot distinguish
447  whether the observed effect indicates the addition of new features to LOC representations

448  through recurrencethat are absent in feedforward processing 2, or the modulation of the gain of
449  aready present features, e.g., through attention 4,

450 Incontrast to LOC, we did not find evidence for a change in feature complexity in EVC from its
451  low-level complexity format (Fig. 4D and Fig. 6D). Analogous to the case of LOC, this suggests
452  two different mechanisms underlying recurrencein EVC. Oneisthat recurrent activity in EVC
453  amplifies features encoded already in the feed-forward sweep *°. The other is that it adds new
454  features of low-level complexity, consistent with observations of dynamical feature codingin
455  orientation and color ****® and changes to receptive field structure *’. To distinguish these
456  potential mechanisms of recurrence in both LOC and EV C future work is needed, for examgple,
457  investigating the finer-grained encoding of single features rather than feature complexity 5
458  and modulating attentional state 7%,
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Note that here we used DNNs as atool to characterize feature complexity rather than to directly
model human visual processing. Future work is needed that carefully and explicitly models how
feedforward and recurrent activity **%*** account for core object recognition 3, aswell as

visual behavior 1%,

The spectral basis of recurrent processing

Our results on the spectral basis of recurrent processing go beyond previous work in several
ways: by identifying distinct oscillatory components of the spectral basis of recurrent processing,
by linking those components differentially and directly to stimulus properties and by clarifying
their distinct relationship to EVC and LOC as well as their distinct feature format 3228,

We find that a set of distinct spectro-temporal components of power and phase in the theta to
beta frequency range subserve recurrent processing. Our findings refine the view that low-
frequency rhythms may generally serve as aneural index for recurrent processing > by
showing that recurrent processes can further be subdivided into early recurrent processes (in the
phase domain) that refine the representations of basic visual features, followed by later recurrent
processes (in the power domain) that sculpt the representations of complex visual featuresin
higher levels of the visual hierarchy (for a detailed discussion of each component, see
Supplementary Discussion 1).

Our results further support the broad notion that theta *°, alpha “***° and beta >"**** frequencies
mediate recurrent activity and play an active rolein cognition ***** and vision in particular
41136-138 rather than in inhibition of irrelevant information *****° or cortical idling *4%**.

Backward masking asa tool to dissect recurrent processing

A key assumption on which our interpretationsrest is that the difference between early and late
mask conditionsin neural activity isolates recurrent processing to a relevant degree. While not
undoubted ***'*®, this assumption is supported by a large number of studies linking backward
masking to recurrent rather than feedforward processing 23234144 impacting the
communication between and to visual regions >4,

Our results invite future backward masking studies employing multivariate analysis to further
confirm and dissect the sources of recurrent activity identified here. This might in particular
involve causal interventions such as TMS * to determine the sources of recurrent activity across
cortex, and layer-specific fMRI analysis **"**° to distinguish recurrent from feedforward
processing based on cortical layers %%,

Conclusion

In sum, recurrent activity substantially affects the ventral visual stream, first in EVC and
subsequently in LOC. Recurrent processing drives a shift in the feature format of LOC from mid-
to high-level complexity and is linked to distinct spectro-temporal componentsin the thetato the
beta frequency range. These findings characterize where, when, and how recurrence affects
visual representations, furthering the understanding of how the recurrent information flow in the
brain mediates visual object perception.
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M aterials and M ethods

Participantsin EEG and fMRI experiments

We conducted two independent experiments: an EEG and an fMRI experiment. Thirty-two
participants took part in the EEG experiment, of whom one was excluded due to high-frequency
noise in the recordings (N = 31, mean age 26.6 years, standard deviation 4.8 years, 20 female).
Twenty-eight participants took part in the MRI experiment, of whom one was excluded due to
failure of the stimulus presentation equipment (N = 27, mean age 27.7 years, standard deviation
4.6 years, 19 female). There was an overlap of four participants between the EEG and the fMRI
participant sample. All participants had normal or corrected-to-normal vision. The study was
conducted according to the Declaration of Helsinki and approved by the local ethics committee
of the Freie Universitéat Berlin.

Stimulus set

The stimulus set consisted of a set of target object images and a set of image textures used to
create dynamic object masks.

The set of target object images consisted of 24 object images (Fig. 1A). Each image showed an
object of adifferent object category and was cropped quadratically to the size of the centrally
presented object. The 24 object images were a subset of alarger set of 118 images ***. The
rationale for selecting the stimulus subset was as follows. Brain responses to natural images are
typically highly correlated across the stages of the visual processing hierarchy. That is, two
images that elicit similar responses at one stage tend to elicit similar responses at another stage,
too. This makes assessing the role of different processing stages and the information they send in
aforward or backward direction using multivariate analysis methods particularly difficult: dueto
the high correlations observed, experimental effects cannot be uniquely assigned to particular
stages. To improve the chances of diciting dissociable responses across the visual processing
hierarchy in our experiment, we selected the stimulus set that yielded low correlations between
the entry (early visual cortex, EVC) and the endpoint (inferior temporal cortex, I1T) of the ventral
visual pathway. For this, we used fMRI datain EVC and IT for the 118-image superset from a
previous experiment **. We assessed the similarity of representationsin EVC and I T for the 118
images using representational similarity analysis (RSA) **. To select 24 images that yielded
uncorrelated responses, we used a genetic algorithm > for optimization. In detail, the
optimization constraint was to minimize the absolute value of correlation between EVC and IT
representational dissimilarity matrices (RDMs). The RDMs for the chosen 24-stimulus set
yielded the desired low similarity between EVC and IT (R = 0.0018) on the preexisting fMRI
data set. In comparison, this was lower than a random selection of 24 stimuli would have been
(as assessed by 1,000 random draws, average R = 0.211, standard deviation = 0.101).

We created a set of image textures to be used for dynamic backward masks. For this, we chose a
different subset of 24 object images randomly from the 118-image set and converted the images
to textures that conserved the low- and mid-level image statistics of the images without
portraying identifiable objects *°. We next created 24 dynamic masks that consisted of a
sequence of 12 textures each, by randomly assigning 12 of the 24 texture images in random order
to adynamic mask.
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Experimental procedures

Main experiment & experimental design

We presented object images to participants in a backward masking paradigm (Fig. 1B). The
genera experimental design, stimulus presentation parameters, and trial structure were
equivalent in both the EEG and the fMRI experiments. We describe the crucial elements
common to EEG and fMRI first before detailing the modality-specific differences.

On each trial, asingle object image (referred to as “target”) was briefly displayed for 17ms,
followed by a 200ms dynamic mask. Object images and dynamic masks were randomly paired
for each trial. We manipulated the target’ s visibility by varying the inter-stimulus interval (1SI)
between target and mask. This defined two conditions: in the early mask condition, the ISl was
17ms; in the late mask condition, the ISl was 600ms. During each trial, one of the 24 dynamic
masks was presented. Stimuli were presented centrally on a gray background with asizeof 5x 5
degrees visual angle, overlaid with abull’ s-eye fixation symbol with a diameter of 0.1-degree
visual angle ***. The texture images of dynamic mask were positioned and sized identically to the
target object images. Participants were instructed to fixate on the fixation symbol throughout the
experiment. We used Psychophysics Toolbox > for experimental presentation.

EEG experimental procedures

In the EEG experiment, participants completed atotal of 2,544 main trials partitioned into 26
blocks of 3.5 minutes each. Throughout the experiment, each object image was presented atotal
of 53 times in both the early mask condition and the late mask condition.

We assessed the participants' recognition performance with additional task trials that were
interspersed every 4 to 6 (average: 5) main trials. The task was to identify the object image in the
previous trial from apair of images in atwo-alternative forced choice (2-AFC) task. For this, two
images were presented side by side for 500ms:. one of the images presented was the image from
the previous trial, and the other image was randomly chosen from the remaining 23 images.
Participants indicated their response with a button press.

Participants were instructed to refrain from blinking throughout the experiment except during the
additional interspersed task trials, when participants were asked to blink when they gave their
responses. While the inter-trial interval (1T1) between main trials was between 900ms and
1,100ms, following the 2-AFC tria, the ITI was extended to 2,000msto prevent motor artifacts
from influencing the EEG recordings of the subsequent trial.

Participants had high task performance in both masking conditions, suggesting that they attended
to the stimuli even under viewing challenging conditions (for details and statistics, see
Supplementary Table 7). Further, as expected, the task performance was worse for the early
mask condition than for the late mask condition trials. This confirms the efficacy of the
backward masking procedure in reducing object visibility.

fMRI experimental procedures

In the fIMRI experiment, participants performed atotal of 12 runs, each lasting 6.5 minutes. In
each run, each object image was presented twice in the early mask condition and the late mask
condition, resulting in 96 main trials per run. Thetrial-onset synchrony (TOA) was 3,000ms.
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Main trials were interspersed with null trials (34 per run), during which only the background but
no stimulus was shown.

Participants were instructed to attend to the object images and respond with a button pressif an
object image was repeated in two consecutive trials (i.e., aone-back task on the target images).
Obj ect repetitions occurred ten times per run.

Asin the EEG experiment, participants had overall high task performance, with worse
performance for the early mask condition than for the late mask condition trials (for details and
statistics, see Supplementary Table 7).

fMRI localizer experiment

To define the regions-of-interest (ROIS) early visual cortex (EVC) and object-selective lateral
occipital cortex (LOC), we performed a separate fMRI localizer run. The localizer run was
conducted prior to the fMRI main experiment runs. The stimulus set comprised 40 images of
objects and scrambled objects each.

Thelocalizer run used a fMRI block design. Each block lasted 15 s. During each block, 20
stimuli were centrally presented within an area of 5 x 5 degrees visual angle at arate of 650ms
on and 100ms off. There were 6 object and scrambled object blocks each. They were presented
in counterbalanced order and randomly interspersed with 7 baseline blocks during which only
the background was shown.

Participants were instructed to fixate on a centrally presented fixation symbol that was presented
throughout the experiment, and to respond to one-back repetitions of images with a button press.
Repetitions occurred atotal of 9 times over the course of the localizer experiment.

EEG data acquisition, preprocessing, and time-frequency decomposition

We recorded EEG data using an ActiCap 64 electrodes system and a Brainvision actiChamp
amplifier. 64 electrodes were placed according to the 10-10 system, with an additional ground
electrode and a reference electrode placed on the scalp. The signals were sampled at arate of
1,000 Hz and online filtered between 0.03 and 100 Hz. All electrodes’ impedances were kept
below 10 kQ during the recording.

We preprocessed EEG data offline using the Brainstorm-3 toolbox **°. We removed noisy
channels (average 2.2 channels per participant, standard deviation 1.8 channels) identified
through visual inspection. We then filtered the data with alow-pass filter at 40 Hz. Eyeblinks
and eye movement artifacts were detected using independent component analysis (ICA). We
visually inspected the resulting components and removed those resembling the spatial properties
of eyeblinks and eye movements (average 2.7 components per participant, standard deviation 0.9
components). We segmented the continuous data in epochs between -200ms and 800ms with
respect to target image onset and baseline-corrected the segmented data by subtracting the mean
of the 200msinterval before stimulus onset from the entire epoch. We finally applied
multivariate noise normalization on the preprocessed data to improve the signal-to-noise ratio
and reliability of the data **’. This formed the data for the temporally resolved decoding analyses.
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For time-frequency analysis, we preprocessed the data again the same way except for two
differences: 1) we did not apply offline filtering, and 2) we segmented the continuous data into
longer epochs (-600ms to 1,200ms) to enable better estimation of signals at lower frequencies.

Time-frequency decomposition of the EEG data

We performed time-frequency decomposition by applying complex Morlet wavelets. The
wavelets, resembling complex sine waves modified by a Gaussian function, covered frequencies
from 4 to 100 Hz in 50 logarithmically spaced increments. The Gaussian taper characteristics
varied across this frequency range, with temporal full-width-half-maximum (FWHM) ranging
from 20ms to 500ms as frequency decreased and spectral FWHM ranging from 1Hz to 31Hz as
frequency increased.

We applied the complex Morlet wavelets for each channel and each trial of the EEG data at 2ms
intervals (i.e., 500Hz). At each time point, thisyielded 50 distinct frequency coefficients
corresponding to the range of 4 to 100 Hz. At each time-frequency point, we computed two
measures. the power and phase of the oscillation. To determine the absolute power values, we
took the square root of the resulting time-frequency coefficients. To determine the phase values,
we determined the real (sine) and imaginary (cosine) components from the time-frequency
coefficients. This decomposition procedure yielded frequency-resolved EEG signals to be used
for further time-frequency resolved decoding analyses. To decrease computation time and disk
space usage, we downsampled the time points of frequency-resolved signals at 20msintervals
after time-frequency decomposition.

fMRI data acquisition, preprocessing and univariate analysis

We acquired T2* and T1-weighted MRI datausing a 3T Siemens Tim Trio scanner with a 32-
channel head coil. We acquired T2*-weighted BOLD images using a gradient-echo EPI
sequence. The acquisition parameters were as follows. TR = 2,000ms, TE = 30ms, FOV = 224 x
224 mm?, matrix size = 112 x 112, voxel size= 2 x 2 x 2 mm?®, flip angle = 70°, with 30 slices
and a 20% gap. The acquisition volume covered the occipital and temporal lobes and was
oriented paralléd to the inferior temporal cortex. Additionally, we obtained a T1-weighted image
for each participant as an anatomical reference (MPRAGE; TR = 1,900ms, TE = 2.52ms, Tl =
900ms, matrix size = 256 x 256, voxel size=1x 1 x 1 mm®, and 176 slices).

We performed fMRI data preprocessing usng SPM12
(https://www.fil.ion.ucl.ac.uk/spm/software/spm12/). Thisinvolved realignment, slice-time
correction, co-registration to the anatomical image, and normalization to MNI space. For the
fMRI data of the localizer experiment, but not the main experiment, we additionally applied
smoothing with a Gaussian kernel (FWHM = 5 mm). For the fMRI datafrom the main
experiment, we additionally estimated noise components using the Tapas Physl O toolbox
by creating tissue-probability maps from each participant's anatomical image and extracting
noise components from the white matter and CSF maps combined with the fMRI time series.

158,159

We used a general linear model (GLM) to estimate responses for the 48 experimental conditions
(i.e., the 24 object images presented in either the early mask condition or the late mask
condition). The analysis was conducted in a participant-specific fashion. We applied the GLM
estimation to the preprocessed fMRI data for each run. We entered experimental condition onsets
and durations as regressors into the GLM. Nuisance regressors comprised noise components and
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movement parameters. We evaluated 20 different GLMs by convolving regressors with 20
distinct hemodynamics response functions (HRFs) as derived from alarge fMRI dataset *°. For
each voxel, we then identified the HRF that resulted in the lowest average residual *** and chose
the corresponding estimates for further analysis. This approach resulted in 48 beta maps (one for
each experimental condition) for each run and participant.

We used a separate GLM to estimate responses for the localizer run. We included block onsets
and durations as regressors for the 3 conditions (i.e., objects, scrambled objects, and baseline),
along with movement parameters as nuisance regressors. We convolved the regressors with the
canonical HRF. We computed two contrasts from the resulting GLM parameter estimates that
were used at a later step for voxel selection in the ROI analysis. Thefirst contrast was defined as
object + scrambled objects > baseline to define EVC. The second contrast was defined as

objects > scrambled objectsto define LOC. Thisyielded two t-value maps for the localizer run
per participant.

Definition of fMRI regions of interest (ROISs)

For each participant, we identified two regions of interest (ROIs) within the ventral visual stream:
early visual cortex (EVC) and lateral occipital complex (LOC). To determine the boundaries of
these ROIs, we used participant-specific t-value maps from the localizer run threshold at p <
0.0001 intersected with anatomical masks. For the EV C definition, we intersected the
thresholded t-value map (object + scrambled objects > baseline) with the combined anatomical
region masks of V1, V2, and V3 obtained from the Glasser Brain Atlas '®. For the LOC
definition, we intersected the thresholded t-value map (objects > scrambled objects) with a mask
of LOC derived from a functional atlas ***. We removed any voxels shared between the EVC and
LOC ROIsto avoid overlap. This process resulted in the definitions of two ROIs for each
participant.

Multivariate pattern analysis on EEG and fMRI data

An analytical challenge in comparing neural activity evoked by target images versus target
image with a backward mask is the confounding effect introduced by the mask. Previous studies
addressed this challenge by using subtraction design, for example, by including trials showing
only the mask and subtracting the resulting neural activity from the neural activity evoked by the
stimulus plus mask 2%, Here, instead, we used a content-sensitive multivariate pattern analysis
on EEG and fMRI data to dissect neural activity of the target image from neural activity evoked
by the mask. Therationaleisthat in our design, target and mask stimuli were statistically
independent, so multivariate pattern analysis classifying target object images revealed neural
activity related to object images rather than the mask.

We performed multivariate pattern analysis on EEG and fMRI data using linear support vector
machines *® asimplemented in the LIBSVM toolbox **® in MATLAB (2021a). We conducted
all analyses on a participant-specific basis.

Temporally resolved decoding analysis from EEG data

To determine when the brain processes object information, we conducted atime-resolved
decoding analysis *>*’. We examined EEG data from -200ms to 800ms with respect to target
image onset, in 10msintervals. At each time point, we extracted trial-specific EEG channel
activations and arranged them into 64-dimensional pattern vectors for each of the 24 object
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image conditions for each masking condition, separately. We conducted two types of analysis:
within- and across-masking conditions object decoding.

In the within-masking condition analysis, we separately decoded object conditions for the early
mask and the late mask conditions. For each of the 24 image conditions, we first randomly
grouped trials into four equally sized bins and averaged them to create four pseudo-trials to
enhance the signal-to-noise ratio (SNR). Employing a leave-one-out cross-validation approach,
we then divided these pseudo-trials into training (three pseudo trials) and testing sets (one pseudo
trial) to pairwise decode object identity. We then decoded object conditions pairwise for all
object condition combinations. The resulting decoding accuracies were arranged into a 24 x 24
decoding accuracy matrix, with rows and columns corresponding to the decoded object
conditions. This matrix is symmetric across the diagonal, with the diagonal being undefined. We
repeated this analysis 100 times, randomly assigning trials to pseudo-trials each time. Averaging
results over repetitions yielded one 24 x 24 decoding accuracy matrix for each time point,
separately for the early and late mask conditions.

In the across-masking conditions analysis, we proceeded accordingly but assigned pseudo-trials
to the training set and testing set from different masking conditions. That is, we trained on data
recorded in the early mask condition and tested on data from the late mask condition (or vice
versa). We averaged the results across both training and testing directions. Thisyielded one 24 x
24 decoding accuracy matrix for each time point.

In both analyses, averaging across the 24 x 24 entries of decoding accuracy at each time point
resulted in a grand-average decoding accuracy time course.

Time generalization decoding analysis

We used time-generalization decoding analysis to determine how visual representations relate to
each other across different time points. We proceeded as for the within masking condition time-
resolved decoding analysis, except that classifierstrained on data from a particular time point
were tested iteratively on datafrom all other time points. The rationale here is that successful
generalization across time points indicates the smilarity of visual representations over time. This
analysis yielded 24 x 24 decoding accuracy matrices for each combination of time points from -
200 to +800ms. By averaging the entries of each decoding accuracy matrix across time point
combinations, we obtained atemporal generalization matrix (TGM), where rows and columns
are indexed by training and testing time points, respectively.

Time-frequency-resolved decoding analysis from EEG frequency power and phase

To determine the spectral properties of visual object representations in the two masking
conditions, we conducted a time-frequency-resolved decoding analysis. This analysis was
identical to the time-resolved analysis described above, but instead of decoding from raw
activation values, we decoded object identity from patterns of power or phase value. We
performed the analysis separately for 50 frequency bins spanning from 4 Hz to 100 Hz, using
either power or phase values. In the power-based analysis, decoding was based on 64 power
values corresponding to the 64 EEG channels. For the phase-based analysis, decoding used 128
values corresponding to the concatenation of the 64 sine and 64 cosine values. Thisresulted in
one 24 x 24 decoding accuracy matrix for each time point and frequency bin, for the power- and
phase-based analyses. Averaging across the 24 x 24 entries of decoding accuracy resulted in a
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grand average time-frequency matrix, where time points and frequency bins are indexed in rows
and columns, respectively.

Spatially resolved decoding analysis from fMRI data

We conducted two types of decoding analyses on the fMRI data: region-of-interest (ROI)-based
and spatially unbiased volumetric searchlight-based decoding °® on the fMRI data.

For the ROI-based analysis, we arranged beta values from voxels of a given ROI into pattern
vectors for each of the 24 experimental conditions and each of the 12 runs of the main fMRI
experiment. To enhance signal-to-noise ratio, we grouped 3 runs into 4 bins and averaged across
runs, creating four pseudo-run fMRI pattern vectors **. Then for each ROI, we performed object
decoding on these pseudo-run fMRI pattern vectors in aleave-one-pseudo-run-out manner.
Averaging across iterations yielded a 24 x 24 decoding accuracy matrix for each ROI, participant,
and masking condition.

For the searchlight-based analysis, for each voxel in the 3D fMRI volume, we defined spheres of
voxels around it with aradius of four voxels. For each sphere, we arranged voxel valuesinto
pattern vectors. We then decoded object identity as described for the ROI-based analysis. This
yielded a 24 x 24 decoding accuracy matrix for each voxel in the 3D fMRI volume for each
participant, and each masking condition.

In both ROI and searchlight-based analyses, averaging across the 24 x 24 entries of decoding
accuracy resulted in either asingle value or a 3D map of grand average decoding accuracy,
respectively.

Representational similarity analysis (RSA)

RSA isaframework to relate representations across different measurement and signal spaces,

such as those defined by different brain imaging modalities (EEG and fMRI) or computational
models *"°!. Theidea is to abstract from incommensurate measurement spaces into a common
similarity space where representations can be directly compared.

For each masking condition, the analysis proceeded in two steps. In the first step, within each
signal space of interest (e.g., fMRI responsesin ROI, EEG broadband responses at particular
time points, EEG spectral responses at time-frequency combinations, and activations of DNN
layers), we calculated the dissmilarity between condition-specific multivariate activity patterns
for all pairwise combinations of the 24 object conditions. We aggregated the results in
representational dissimilarity matrices (RDMs), where rows and columns were indexed by the 24
object conditions. These RDMs summarize the representational geometry within each signal
space. In the second step, we compared the RDM s across signal spaces using Spearman
correlations, yielding a measure of their similarity. We provide the details for each of the two
steps below.

Step 1: Congtruction of RDMs

For the brain data, we used the decoding accuracy matrices resulting from the decoding analyses
detailed above as RDMs. Thisyielded RDMs a) from the temporally resolved EEG decoding
analysis for each time point, b) from the time-frequency-resolved EEG decoding analysis for
every time-point and frequency combination, separately for power and phase, and ¢) from the
gpatially resolved fMRI decoding analysis for each ROI.
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For the computational model, we built RDMs from an AlexNet architecture trained for object
categorization on the ImageNet dataset **®°. AlexNet is an 8-layer deep neural network (DNN)
commonly used as a baseline for brain-DNN comparisons **°. Using the MatConvNet toolbox *,
we fed our object stimuli into the pre-trained AlexNet and extracted the activation patterns for
each stimulus from each of the five convolutional layers (conv1l to conv5) and the three fully
connected layer (fc6, fc7, and fc8).

To test the generalizability of our conclusion across different DNN models, we also built RDMs
using the ResNet50 architecture ®, pre-trained on the ImageNet dataset *° for object
categorization. ResNet50 features a distinct architecture compared to AlexNet, consisting of an
initial convolutional layer followed by four residual blocks, each containing multiple
convolutional layers with skip connections, and leading to afinal classification layer. We fed the
object stimuli into ResNet50 and extracted the activation patterns for each stimulus from the last
layer of each of the four residual blocks (block1 to block4) aswell as from the final classification

layer (fc).

We quantified the dissimilarity of the activation patterns by calculating 1-Pearson’s R for each
pair of stimuli. Thisresulted in eight RDMsfor AlexNet layers and five RDMs for ResNet50
layers.

Step 2a: Standard RSA - relating DNN RDMsto EEG and fMRI RDMs

To characterize the format of neural representations, we related DNN RDMs from each layer to
EEG and fMRI RDMs (Fig. 3a). Theideaisthat ascending layers of a DNN capture features of
increasing complexity. Thus, relating neural representations to each DNN layer informs about
the feature complexity of the neural representations “*,

For the EEG-based analysis, we correlated the DNN RDMs with EEG RDMs across all time
points obtained from temporally resolved EEG decoding analysis. Thisyielded a time course of
correlation values for each DNN layer, participant, and masking condition. For the fMRI-based
analysis, we correlated the DNN RDMs with RDMs from two ROIs (i.e., EVC and LOC),
yielding a correlation value per ROI for each DNN layer, participant, and masking condition.

Step 2b: Commonality analysis - shared variance among EEG, fMRI and DNN RDMs

To investigate the temporal dynamics of specific visual features emerging in brain regions, we
extended standard RSA to commonality analysis ® (Fig. 4A). Specifically, we computed the
coefficients of shared variance separately among EEG RDMs at each time point, fIMRI RDMsin
each ROI, and DNN RDM s for each layer. This resulted in atime course of shared variance (R%)
for each DNN layer, ROI, participant, and masking condition.

To investigate where in the brain the specific visual features originate and how each of the four
spectro-temporally identified components carries them, we conducted commonality analysis
once more (Fig. 6A). Here, we calculated coefficients of shared variance among frequency-based
EEG RDMs corresponding to each spectro-temporally identified component, fMRI RDMs within
each ROI, and DNN RDMs across each layer. This analysis resulted in a coefficient of shared
variance (R?) for each DNN layer, ROI, power- or phase-based component, participant, and
masking condition.
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823 Noiseceilings

824  We calculated an upper and lower bound for the noise ceiling ®, that is the maximal correlation
825 inthe RSA analysesthat might be achieved given the noisiness of the data. This was done for the
826 EEG dataand fMRI data(i.e., ROIs) separately. To estimate the lower bound, we correlated each
827  participant’s RDM with the average RDM of all other participants. To estimate the upper bound,
828  we correlated each participant’s RDM with the average RDM of all participants. We averaged
829 theresults, thus obtaining estimates of the lower and upper noise ceilings for each EEG time

830 point or time-point and frequency combination, aswell asfor all fMRI ROIs.

831 Statigtical analyses

832  We used sign permutation tests ** that do not make assumptions about the data distribution. We
833 compared the statistic of interest (i.e., mean decoding accuracy, correlation coefficientsin RSA,
834  coefficients of shared variance in commonality analysis, or differences therein between the

835 masking conditions) against the null hypothesis that the statistic of interest was equal to chance
836 (i.e, 50 % decoding accuracy for pair-wise decoding, a correlation of 0, a coefficient of shared
837 varianceof 0, or adifference of 0). To obtain anull distribution, we multiplied participant-

838  gspecific datarandomly by either +1 or -1 and computed the statistic of interest for 10,000

839 permutations. Based on these null distributions, we obtained p-values by comparing the original
840 satistic to the null distribution. We conducted one-tailed (i.e., the right-tailed) tests for all

841  satisticsof interest except for differences, for which we used two-tailed tests.

842  To correct for multiple comparisons with a small number of unrelated comparisons, we used
843  FDR correction at ap < 0.05 *2 In casesinvolving a large number of comparisonsin contiguous
844  and correlated results (i.e., time points, frequencies, or voxels), we used cluster-based inference
845 7 For the cluster-size-based inference, we calculated the statistic of interest both for the

846  empirical results and for each permutation sample under the null hypothesis. Thisresulted in 1-
847 dimensiona (e.g., decoding time courses, RSA-based correlation time courses, time courses of
848  shared variance), 2-dimensional (e.g., decoding time-time matrices, decoding time-frequency
849  matrices, RSA-based correlation matrices), or 3-dimensional (i.e., fMRI volumetric decoding
850 results) p-value maps. We defined clusters based on temporal or spatial contiguity withap <
851 0.005 (i.e., cluster-definition threshold) for most analyses, except for time-frequency decoding
852  matrices, which used athreshold of p < 0.05. We determined the maximum cluster size for each
853  permutation sample, yielding a distribution of the maximum cluster size statistic. We set the
854  cluster threshold at p < 0.05.

855 We calculated 95% confidence intervals for the peak latencies in the resulted time courses (e.g.,
856  decoding time courses, RSA-based correlation time courses, time courses of shared variance).
857  For this, we randomly sampled participants with replacements 1,000 times. For each bootstrap
858 sample, we determined the peak latency. Thisyielded a distribution of peak latencies for which
859  we report the 95 % confidence intervals.
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