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Abstract

Computational approaches leveraging computer vision and machine learning have
transformed the quantification of animal behavior from video. However, existing
methods often rely on task-specific features or models, which struggle to gen-
eralize across diverse datasets and tasks. Recent advances in machine learning,
particularly the emergence of vision foundation models, i.e., large-scale models
pre-trained on massive, diverse visual repositories, offers a way to tackle these
challenges. Here, we investigate the potential of frozen video foundation models
across a range of behavior analysis tasks, including classification, retrieval, and
localization. We use a single, frozen model to extract general-purpose representa-
tions from video data, and perform extensive evaluations on diverse open-sourced
animal behavior datasets. Our results demonstrate that features with minimal
adaptation from foundation models achieve competitive performance compared
to existing methods specifically designed for each dataset, across species, behav-
iors, and experimental contexts. This highlights the potential of frozen video
foundation models as a powerful and accessible backbone for automated behav-
ior analysis, with the ability to accelerate research across diverse fields from
neuroscience, to ethology, and to ecology.
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1 Introduction

The proliferation of video recording technology has revolutionized the study of natu-
ralistic animal behavior, enabling researchers to capture vast amounts of behavioral
videos in unprecedented detail [1]. However, extracting meaningful insights from these
large-scale video datasets is challenging — manual annotation by experts to accurately
quantify complex behaviors is both time-consuming and expensive, and does not scale
well to the rapidly growing volume of video data. Additionally, the specific research
questions and target behaviors vary significantly across studies, further complicating
the development of a unified video analysis model for animal behavior.

Foundation models [2] represent a recent paradigm shift in machine learning,
and have already demonstrated remarkable generalization capabilities across diverse
domains [3, 4]. These large-scale models are pre-trained on massive, heterogeneous
datasets, enabling them to learn a wide range of representations that can be transferred
to new tasks with minimal or no model adaptations. This inherent advantage addresses
a common bottleneck in computational approaches of animal behavior analysis —
generalizability to new domains or tasks (Figure 1).
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Fig. 1 Overview of foundation model for animal behavior analysis. (A) Previous work
typically require pipelines with specially-designed modules and/or hand-crafted features specific for
individual domains and tasks. (B) In this work, we leverage recent development in foundation models
and demonstrate that a single set of frozen features from the pre-trained general-purpose models,
paired with minimal task-specific decoder heads, is able to generalize to a range of various downstream
tasks across various animal behavior domains.
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While existing computational methods have shown promising results on specific
tasks in animal behavior analysis [5-10], these approaches typically rely on models
or features that are highly tailored to the task. These features could be hand-crafted
(e.g., distance between agents, speed of an agent), learned from the data (e.g. using
machine learning), or a combination [5, 7, 8, 11]. Some approaches in this space use
pre-trained models (e.g., ResNet [12] trained on ImageNet [13]) for transfer learning [5,
14-16], which still require significant task-specific fine-tuning to adapt the backbone
to datasets containing different species or behaviors. In contrast, the core innovation
of foundation models lies in their ability to be used as a single, frozen backbone, with
fixed weights across diverse tasks and experiments. The use of a unified set of frozen
features for behavior analysis has the potential to streamline task-specific pipelines,
and reduce the need for individual fine-tuning.

Here, we present the first investigation of frozen video foundation models on a wide
range of animal behavior analysis tasks, including classification, retrieval, and local-
ization. In a significant departure from conventional approaches that rely on extensive
model adaptation, we utilize a single, frozen video foundation model (VideoPrism [17])
to extract general-purpose representations. This model was pre-trained on large-scale
general-domain Internet data, with no additional training on animal-specific videos.
We aim to study the effectiveness of using general visual representations learned from
Internet data to tasks important in animal behavior analysis.

Our evaluation on diverse open-sourced animal behavior datasets reveals the
capability of video foundation models to generalize across species, behaviors, and
experimental paradigms, with minimal or no decoder training. We focus on datasets
captured as part of real-world scientific experiments in fields such as neuroscience,
ethology, and ecology. While the majority of datasets in our evaluation feature
mice [5, 9, 18], a common model organism in behavioral research with many large-
scale open-sourced video datasets, we also assess performance on other species such
as flies [19], birds [20], giraffes, and zebras [21] when there are available, annotated
video datasets. We compare the video foundation model to existing baselines, including
domain-specific models designed by experts and trained specifically for each dataset,
as well as a frozen image foundation model (CLIP [4]).

Results demonstrate that frozen features from video foundation models achieve bet-
ter performance compared to image models, and competitive performance compared
to task-specific baselines, when expert-designed baselines are available. This suggests
that a unified video foundation backbone could potentially reduce the need for time-
consuming and costly development of task-specific pipelines. Ultimately, our finding
paves the way for a more interconnected computational framework that leverages state-
of-the-art machine learning and computer vision tools for studying animal behavior,
accelerating scientific discovery and promoting collaboration across disciplines.

Background on foundation models

Thanks to the recent success in large language models [22, 23], wide research inter-
ests in the fields of machine learning and computer vision are shifting from designing
domain-specific models to building large foundation models. Most recent foundation
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Table 1 Summary of datasets. We use open-sourced annotated video datasets released by
researchers from fields including neuroscience, ethology, and ecology (see more details in Section 4.5).
The number of annotations in the last column either represents one annotation per frame, per clip
(segmented from videos), or per video, depending on the expert annotations provided in the original
dataset. We use the dataset split published in the original papers, whenever this split is available.

Results Section Dataset Metric # Annotations (Train/Test)
Calico [55] mAP 1,253 / 400 clips
Behavior CalMS21 [18] mAP 507,660 / 262,107 frames
classification CRIM13-Top [9] mAP 1,630,114 / 1,994, 885 frames
CRIM13-Side [9] mAP 1,612,327 / 1,892,817 frames
Few-shot behavior Calico [55] mAP (10/50/100)-shot / 400 clips
classification CalMS21 [18] mAP (10/50/100)-shot / 262,107 frames
Behavior retrieval Calico [55] mean HitQK 1,253 / 400 clips
CalMS21 [18] mean HitQK 507,660 / 262,107 frames
Calico-Detection [55] APQ@IoU 5,460 / 2,124 frames
Localization MARS-Top [5] AP@QIoU 10,000 / 5,000 frames
MARS-Side [5] APQIoU 10,000 / 5,000 frames
Broader Fly vs. Fly [19] mAP 1,067,329 / 322,393 frames
Applications KABR [21] Macro-Acc. 1,545,513 / 290, 021 frames
pp SSW60 [20] Accuracy 3,462 / 1,938 videos

models in the vision domain focus on images [24-28]. These models employ transform-
ers specifically trained to align web-scale image-text paired data through contrastive
learning [4, 29], predicting the next token in the language modality [30] or in the
interleaved image-text sequence [31]. Recent models are also trained on a mixture of
these objectives [32, 33]. While some of these foundation models are able to take video
frames as input, they fall short on motion and temporal modeling [34]. In this paper,
we consider CLIP [4] as the representative image foundation model for evaluation due
to its strong performances on a wide range of vision tasks [35-37].

Compared with image inputs, videos contain additional temporal dynamics, and
hence are more challenging to model. Existing video foundation models are mainly
trained to model temporal information using self-supervised learning over the video-
only modality [38—46] or video-language modeling of videos with captions [47-53] (e.g.,
alt-text or transcribing text from audio). However, a recent study [54] points out that
existing video-language models lack knowledge of actions, while self-supervised mod-
els from video-only data usually struggle with semantics. In contrast, a recent video
foundation model, VideoPrism [17], tackles both of these challenges. It obtains state-
of-the-art results over 31 video understanding tasks by producing video representations
from one single frozen model. Therefore, we use VideoPrism as the video foundation
model in our experiments. We aim to unlock the potential of video foundation mod-
els for automated animal behavior analysis and pave the way for the development of
more generalizable and effective video understanding models in the future.

2 Results

Across ten datasets, we find that VideoPrism outperforms baselines on tasks includ-
ing video behavior classification, few-shot classification, retrieval, and localization
(Figure 2).
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Fig. 2 Summary of experiments. We study the performance of image foundation model (CLIP)
and video foundation model (VideoPrism) on a wide range of open-sourced animal video benchmarks,
including (A) behavior classification on four mouse datasets, (B) few-shot behavior classification and
(C) behavior video retrieval on two mouse datasets, (D) mouse localization on three mouse datasets,
and (E) broader applications on fly behavior classification (Fly vs. Fly), Kenyan animal behavior
classification from drone videos (KABR), bird species classification (SSW60). Results demonstrate
that video foundation models significantly improve performance relative to image models.

We briefly summarize each dataset in Table 1, and compare performance of each
method on these datasets. We include VideoPrism (video foundation model), CLIP
(image foundation model), as well as specialized models developed by the originally
published dataset papers, when available. Notably, the backbone weights of the founda-
tion models are not trained on these datasets, and features from one frozen foundation
model is used for all experiments, with either no or minimal decoder adaptations.
Our tasks include behavior classification (Section 2.1), few-shot behavior classification
(Section 2.2), video-based behavior retrieval (Section 2.3), localization (Section 2.4),
as well as broader applications to other organisms and tasks (Section 2.5).
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2.1 Behavior classification

We assess the ability of frozen foundation models to generalize across diverse mouse
behavior datasets and tasks (Table 2). Our evaluation spans three mouse datasets:
Calico [55], CalMS21 [18], and CRIM13 [9]. Calico and CalMS21 are top-view only,
while CRIM13 consists of both top and side view. These datasets encompass a wide
range of behaviors, from social interactions in resident-intruder assays to actions in
home-cage environments. For each dataset, we compare the performance of domain-
specific baselines, developed by experts and trained on each dataset, with frozen image
foundation model (CLIP) and video foundation model (VideoPrism). The specialized
model for Calico is ResNet with a 2-layer MLP classification head, following [55]. The
specialized model for CalMS21 first extracts trajectory features, then uses a 1D-CNN
for temporal aggregation [18]. For CRIM13, we conduct evaluations for top-view and
side-view separately'. For the foundation models, a trainable pooling layer and a linear
classifier is used to map the features to the class outputs.

The video foundation model consistently matches or exceeds the performance of
domain-specific models, highlighting its potential to reduce the need for laborious
and costly development of task-specific approaches. Additionally, the video foundation
model significantly outperforms the image-based model, showing the importance of
incorporating temporal information during feature extraction for studying behavior.
Visual comparison of VideoPrism predictions and expert annotations on CalMS21 and
CRIM13 datasets (Figure 3), both containing frame-level annotated videos, demon-
strates the model’s capacity to capture both extended behaviors (e.g., “mount”) and
those characterized by rapid transitions (e.g., “attack”). The VideoPrism model misses
bouts of certain behaviors (e.g., “walk away”, “approach”) on CRIM13, indicating the
room for future improvement, for example, by integrating a larger window of temporal
context.

Table 2 Behavior classification results. We use mean average precision across all classes. For
CalMS21 and CRIM13, we only average over behaviors-of-interest and do not include the
background class in metric computation, following [18].

Method Calico CalMS21 CRIM13 Side CRIM13 Top
Specialized models 52.6 88.9 - -
CLIP 51.8 62.7 34.0 14.1
VideoPrism 71.2 91.1 64.5 64.9

2.2 Few-shot behavior classification

We further evaluate the ability of the frozen foundation models to perform few-shot
behavior classification (Table 3). Similar to classification in the previous section, we
use a trainable pooling layer followed by a linear classifier to map model features to

!The original CRIM13 study proposed a specialized model using multi-view videos [9]. However, the
current public release have mis-matched sequences in each view. Therefore, we evaluate separately in each
view instead of combining the views.
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Fig. 3 Behavior classification using VideoPrism. We show examples of VideoPrism’s behavior
classification performance on CalMS21 and CRIM13. The top strips in each setting show the expert
annotations, and the bottom are model predictions. These predictions are obtained by applying the
classifier in a 16-frame sliding window, averaging the predictions across all sliding windows applied
to a single frame, and taking the class with the maximum likelihood.

class labels, with the difference that the training set only contains a small number of
annotated examples per class. These training sets are uniformly randomly sampled
for each behavior class from the full set. Results show that VideoPrism outperforms
CLIP on all amounts of training data. Notably, VideoPrism achieves results compa-
rable to both the domain-specific baseline and CLIP (Table 2) on Calico (trained
on 1,253 clips) with only 10-shot learning. On both datasets, VideoPrism at 10-shot
outperforms CLIP at 100-shot, and further improves as the number of training sam-
ples increase. Our training set is randomly sampled to perform this evaluation, and
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future research integrating foundation models with active learning techniques holds
the potential to further improve few-shot performance.

Table 3 Few-shot behavior classification results. We use mean average precision over all
classes, with the same evaluation setup as Section 2.1. Here, the training set is sampled to 10-shot,
50-shot and 100-shot. Mean and standard deviations of the results are reported over 3 random
samples of the training set.

Dataset Method ‘ 10-shot 50-shot 100-shot
Calico CLIP 39.8 £ 2.1 42.6 £ 1.0 47.54+0.1
VideoPrism 50.5 + 3.9 66.3 £ 0.9 60.2 £0.5
CLIP 27.5 +4.7 42.0£ 1.8 49.1+4.0
CalMS21 VideoPrism 55.5 + 3.1 69.8 £ 2.5 75.0 £ 2.2

2.3 Video-based behavior retrieval

Given a query video from a user, the goal of video-based retrieval is to find similar
videos in a large index set of other videos. Retrieval enables researchers to perform
targeted search for specific behaviors or events, and rapidly identify relevant footage
within large video archives. This capability is particularly crucial in the study of rare
behaviors, where manual review to find similar videos over hundreds of hours of data
would be prohibitively time-consuming. To assess the potential of foundation models
for this task, we investigate their performance in nearest-neighbor retrieval of similar
videos using frozen embeddings, without any downstream adaptation.

Table 4 Video-based behavior retrieval results. We use mean Hit@QK averaged over each of
the classes (except for the background class “other” in CalMS21, consistent with the behavior
classification experiments), computed using the test set as the query set, and the train set as the
index set. Random corresponds to randomly retrieving examples from the index set.

Dataset Method ‘ mean Hit@Q1 mean Hit@Q5 mean Hit@Q10
Random 16.0 47.1 65.8

Calico CLIP 28.4 58.4 75.6
VideoPrism 36.4 73.6 85.8
Random 19.7 47.4 62.2

CalMS21 CLIP 28.5 56.1 69.9
VideoPrism 42.0 66.2 75.1

We present video-based retrieval results on Calico and CalMS21 (Table 4). We
visualize retrieval examples (Figure 4, Figure 5) as well as evaluate the models quanti-
tatively using mean Hit@QK . Hit@QK is a common metric used to evaluate how accurate
the retrievals match the class of the query (over K retrievals). Here we use mean
Hit@QK, which is the Hit@QK averaged over each class of interest to account for class
imbalance. We use the test set as the query set, and the train set as the index. We
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Retrieval 2 Retrieval

Fig. 4 Qualitative video-based retrieval results on Calico. The first column in each row
corresponds to an query video (sampled from the test set), and the second to last column corresponds
to the three nearest neighbor retrieval results using VideoPrism features on the index set. The expert-
annotated behaviors are visualized on each video to show correctness (whether the annotations of the
retrieved video matches the query).

apply global average pooling over spatiotemporal features from both models into a
single embedding vector for nearest-neighbor retrieval. On both datasets, we find that
VideoPrism features outperform CLIP, and with a high probability of retrieving a
video with the same behavior-of-interest with just 5 to 10 retrieval samples. This is
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Fig. 5 Qualitative video-based retrieval results on CalMS21. The first column in each row
corresponds to an query video (sampled from the test set), and the second to last column corresponds
to the three nearest neighbor retrieval results using VideoPrism features on the index set. The expert-
annotated behaviors are visualized on each video to show correctness (whether the annotations of the
retrieved video matches the query).

especially important for rare behaviors (e.g., “attack” in CalMS21 which only occurs
in 2.8% of the frames), suggesting the potential of foundation models for finding videos
with similar behaviors in large index sets. However, we observe that in datasets with
lighting variations (Figure 4), this retrieval process may prioritize examples with sim-
ilar lighting conditions alongside similar behaviors. A potential mitigation strategy
could involve data augmentation on both the query and index set. This highlights
opportunities for further improvements in video retrieval systems using foundation
models.

2.4 Localization

To study the applicability of foundation models to spatial vision tasks, we assess
their performance in localizing animal agents. We present localization results on a
video-based mouse dataset Calico-Detection [55] and an image-based mouse dataset
MARS [5] ! (Table 5). Calico contains annotated videos (12 frames each) with bound-
ing boxes annotated for each frame, containing a single mouse, while MARS contains
one black mouse and one white mouse with two views (top and side). VideoPrism is
designed to take a video clip of 16 frames as input, and for the image-based dataset,
we repeat the image 16 times to form the input video clip. For evaluation, we follow
the standard COCO detection protocol [56] and report the mean average precision
over multiple intersection over union thresholds (mAP), in addition to the average
precision under 50% and 75% intersection over union (AP@50IoU and AP@75I0U).
Results demonstrate that VideoPrism outperforms CLIP under mAP metric on
all datasets (Calico-Detection, MARS-Top, and MARS-Side). Both VideoPrism and

'The original MARS dataset is video-based, however, the authors of [5] only open sourced selected
frames from the original video dataset.

10
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VideoPrism CLIP VideoPrism CLIP

Fig. 6 Qualitative comparison of VideoPrism and CLIP on localization. Each row shows
localization examples from VideoPrism and CLIP. First row is on the Calico-Detection dataset, second
row shows results on MARS-T and third row shows results on MARS-S.

CLIP achieve a high performance for AP under 50%IoU, which means that fea-
tures from both models can roughly locate the mouse; however for AP under 75%
ToU, VideoPrism generally performs better than CLIP, which indicates VideoPrism
produces more accurate bounding boxes compared to CLIP. For qualitative results
(Figure 6), we find that on Calico-Detection, where there is only one mouse, both
VideoPrism and CLIP work well. However, on MARS-Top and MARS-Side, which
have two mice in each frame, the bounding boxes from VideoPrism is more accurate.
Similar results can be observed from Figure 7, in which we compare the precision-recall
curves of VideoPrism and CLIP model on these datasets.

Table 5 Mouse localization results. We follow the standard COCO detection metrics and
report the mean average precision over multiple intersection-over-unions (mAP). We also highlight
the APs over 50% and 75% IoU.

Dataset Method ‘ mAP AP@50IoU APQ75I0U
Calico Detection Videopsim | o35 059 %60
MARS Top Videwprm | oa o8 3 oE
MARS-Side S/iI:iIelf)Prism ‘ 323 g;é Zgg

2.5 Broader applications

To evaluate the generalizability of foundation models across diverse species and
domains, we evaluate performance on three distinct video-based animal datasets cap-
tured across different fields of science: Fly vs. Fly (fly behavior classification), KABR

11
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Fig. 7 Precision-recall curves for localization. (a) (b) and (c) show the precision recall curve
at 50% IoU on Calico, MARS-T and MARS-S dataset. (d) (e) and (f) show the precision recall curve
at 75% IoU on Calico, MARS-T and MARS-S dataset.

(ecological behavior classification of zebras and giraffes), and SSW60 (fine-grained bird
species classification) (Table 6).

Across all datasets, VideoPrism outperforms CLIP and achieves comparable or bet-
ter performance to specialized baselines. In the Fly vs. Fly dataset [19], the specialized
baseline is a model that leverages preprocessed trajectory information and hand-
crafted features [11]. In SSW60 [20], the specialized model is a ResNet-50 pre-trained
on iNaturalist and fine-tuned end-to-end on the train split of SSW60. On KABR, the
specialized model is a X3D network [57] trained end-to-end on the train split. Each
of these specialized models requires either specialized model design, or fine-tuning
of the entire pipeline. In comparison, the backbones of both CLIP and VideoPrism
are frozen across all the settings. While CLIP does not perform as well as special-
ized models, VideoPrism is able to achieve comparable performance across species
and behaviors, demonstrating its potential to streamline animal behavior research in
various ecological and experimental contexts.

Table 6 Broader application results. We evaluate model performances using the metrics
defined in the original dataset papers. For Fly vs. Fly [19], we use the split in [11] with the mAP
metric for behavior classification. For SSW60 [20], we use accuracy as the dataset is balanced. For
KABR [21], we use macro-accuracy averaged over classes.

Method Fly vs. Fly SSW60 KABR
Specialized models 88.6 71.9 61.9
CLIP 61.7 48.3 32.2
VideoPrism 89.1 70.1 61.6
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3 Discussion

The widespread adoption of video technology in animal behavior research has resulted
in an explosion of available data, yet the extraction of meaningful insights from these
vast video archives remains a significant bottleneck. This usually requires a team of
computer vision and machine learning experts to develop a bespoke model for a specific
task, under a special setting. Our findings suggest a paradigm shift in this landscape.
We demonstrate the generalizability of frozen video foundation models across diverse
datasets and tasks and highlight the potential of using a single set of general-purpose
video features for animal behavior analysis, without data-specific fine-tuning. This
could empower researchers from various disciplines to readily leverage these powerful
models, potentially accelerating discoveries in ethology, neuroscience, ecology, and
conservation biology.

3.1 In-context learning with a general multi-modal LLM

State-of-the-art multi-modal large language models (LLMs) have also been applied
to video understanding tasks [3, 58]. Long context windows of such models allow in-
context learning, where video frames and associated labels are provided in the prompt.
However, the high dimensionality of video data currently requires significant temporal
downsampling, limiting their applicability to analyses requiring fine-grained temporal
resolution, such as discerning behaviors involving rapid movements or localization.

Despite this limitation, the integration of video foundation models with multi-
modal LLMs holds significant promise for unlocking a new paradigm of in-context
learning for animal behavior analysis. By leveraging the LLMs’ capacity to process
natural language instructions alongside the video foundation model’s ability to extract
meaningful representations from video data, we envision a system capable of rapidly
adapting to novel behaviors or species without the need for costly and time-consuming
retraining or annotation.

Researchers could define new behaviors using simple language descriptions and
provide a few illustrative video examples. The multi-modal LLM would then gener-
ate task-specific embeddings based on both the language and video input, effectively
“tuning” the video foundation model on-the-fly. This approach could empower sci-
entists to explore a wider range of behaviors with minimal effort, significantly
accelerating research across fields. Furthermore, integrating data from diverse sources,
such as species descriptions, ecological metadata, and scientific literature, could
enhance the model’s contextual understanding, leading to more accurate and nuanced
interpretations of animal behaviors.

3.2 Model cost and latency

The foundation models used in this work currently require considerable memory and
computing power to run, and are not yet able to support real-time inference on gen-
eral hardwares. There are a multitude of ways to alleviate both issues. One way that
researchers have studied is to perform model distillation [59]. This approach aims to
distill larger models using domain-specific data, and produce a compact model that
is economical to run. Additionally, while the foundation models studied in this paper
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use standard Vision Transformer [60], efficient vision models, such as [61-63], that sig-
nificantly reduce the computational cost while maintaining competitive performances
are an active research topic and provide another promising option for cost reduction.

3.3 Role of behavioral video datasets

The success and continued advancement of video foundation models for behavior quan-
tification are closely linked to the availability of diverse and well-annotated video
datasets. While we have demonstrated the effectiveness of such models on existing
datasets, the limited availability of large-scale, well-annotated, open-sourced video
data remains a bottleneck. A concerted effort to curate and release open-sourced
datasets, encompassing a wide range of species, behaviors, and environmental con-
texts, would provide invaluable evaluation data for understanding the capabilities and
gaps of video foundation models. Additionally, these data could also be part of train-
ing, in order to improve their ability to generalize across scenarios and improve their
performance on real-world applications.

Open-sourced video datasets also have the potential to revolutionize the broader
field of animal behavior research. By fostering collaboration and knowledge exchange
among scientists, these datasets would enable the development of standardized anno-
tation protocols, benchmarking tools, and novel analytical approaches. This collective
effort would accelerate methodological advancements, improve reproducibility and
comparability across studies, and ultimately deepen our understanding of the complex
mechanisms underlying animal behaviors. Moreover, open data would democratize
access to cutting-edge research, enabling scientists from diverse backgrounds and
institutions to contribute to, and benefit from, this exciting field.

3.4 Conclusion

In this work, we have demonstrated the effectiveness of frozen video foundation model
on a range of animal behavior datasets and tasks. By leveraging recent machine learn-
ing developments, we show that a foundation model’s ability to extract general-purpose
features from high-dimensional video data could be applied to a range of tasks with-
out task-specific fine-tuning. These models could be used to compute genera-purpose
features in a wide range of settings, opening new avenues for research in ethology,
neuroscience, ecology, and conservation biology. While our results demonstrate the
strong potential of frozen video foundation models for animal behavior analysis, several
promising avenues for future research remain. These include integrating video foun-
dation models with LLMs to enable in-context learning, reducing the computational
requirements of video foundation models, and expanding their application to broader
ethological questions. We envision a future where video foundation models serve as a
robust and adaptable backbone for video-based behavior analysis, enabling researchers
to address complex biological questions at unprecedented scales and efficiency.
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4 Method

We use VideoPrism as our pre-trained video foundation model in our experiments.
This model is pre-trained on general Internet videos, without any specific focus to
animal datasets. The weights of the model are frozen for all our experiments. In
Section 4.1, we summarize the pre-training data used by VideoPrism, Section 4.2
summarizes the VideoPrism architecture, Section 4.3 summarizes the VideoPrism pre-
training approach. Finally, Section 4.4 describes our downstream adaptation method
for classification, few-shot classification, retrieval, and localization.

4.1 Pre-training data

We choose VideoPrism [17] as the video foundation model for our experiments in this

paper. At its core, VideoPrism is a general-purpose video encoder. It is pre-trained on
618M web video clips from various internal and external sources. Among them, 36 M
clips are paired with high-quality manually labelled captions, while captions of the
rest video clips are noisy parallel text obtained through automatic speech recognition,
metadata, and large multi-modal models [64, 65]. These pre-training data offer an
effective source for VideoPrism to learn semantic clues on both object motions and
appearances in the video domain, which is fundamental to foundation models [2]. It
is noteworthy that we consider the training video corpus general-purpose and has
significant difference in distribution from the animal behavior video datasets.

4.2 Model architecture

The VideoPrism model adopts a spatial-temporal factorized design based on the
Vision Transformer [60] architecture following [66]. At inference time, the model takes
16 video frames of size 288 x 288, each of which is evenly partitioned into 16 x 16
non-overlapping patches (i.e., visual tokens). These patches are first input to the spa-
tial layers of model in a frame-by-frame fashion. Then, the temporal layers are used
for capturing visual semantics across patches in the same spatial locations along the
time dimension. We note that the VideoPrism model produces spatiotemporal fea-
tures in the output token sequence, facilitating the downstream tasks that require
fine-grained features (e.g., spatiotemporal action localization). VideoPrism offers two
model configurations: VideoPrism-g contains 1B parameters in the spatial encoder,
and VideoPrism-B is a base-scale variant with the ViT-Base network [67] (with 80M
parameters) as the spatial encoder. For the experiments in this paper, we use the
base-scale VideoPrism-B model.

4.3 Pre-training approach

The VideoPrism model is pre-trained with a two-stage approach including video-
text contrastive learning and masked video modeling. In the first stage, videos and
their corresponding captions are encoded individually through a video encoder and
a text encoder, producing a global embedding for each modality, respectively. The
contrastive loss [4, 29] is optimized between the embeddings of video-text pairs so that

15


https://doi.org/10.1101/2024.07.30.605655
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.07.30.605655; this version posted July 31, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

they are gradually aligned. This stage yields a video encoder capturing rich visual
semantics from language supervision, which supplies semantic video embeddings for
the second-stage training. In the second-stage, the video encoder is continually trained
with only videos based on an improved paradigm of masked video modeling [42, 68,
69]. To be specific, the VideoPrism model is trained to predict the video-level global
embedding and also token-wise embeddings from the first-stage model to effectively
leverage the knowledge acquired in that stage. Meanwhile, the predicted tokens are
randomly shuffled to prevent the model from learning shortcuts. The training of this
stage focuses on learning both appearance and motion information from only videos.

4.4 Adaptation to downstream tasks

We adapt VideoPrism to four animal behavioral analysis tasks including behav-
ior video classification, few-shot behavior video classification, video-based behavior
retrieval, and localization. The pre-trained VideoPrism is used as an encoder to extract
features from the input video clips. For all these tasks, the VideoPrism is fixed and
only the task-specific decoder is trained to adapt to the task when necessary. We also
adapt the frozen image foundation model CLIP in a comparable way, described in
more detail below.

4.4.1 Behavior classification

In behavior classification, a model is designed to take a video clip containing animal

behavior and classify it into several expert-defined categories. For this task, following
[34], a multi-head attention pooling (MAP) layer is employed as the task-specific
decoder which plays the role of a classification head. It contains a Transformer layer
which takes a trainable query token and the spatiotemporal tokens from VideoPrism
as input. The query token aggregates information from the visual tokens through cross
attention and a softmax layer takes the aggregated feature as input and predicts the
class probability.

To handle videos with an image foundation model (e.g., CLIP), a conventional
approach [32] is to apply the image encoder on video frames individually without
early fusion of temporal information and append an MAP layer to extract the global
representation from concatenated per-frame features. However, this approach is prob-
lematic when input videos are motion-heavy, because there are no temporal signals
incorporated during the downstream adaptation. To address this issue, we introduce
an improved pooling method with a factorized design in space and time. Specifi-
cally, we first apply a spatial pooling layer to video frames separately to produce a
per-frame global representation for each of them. After adding temporal positional
embeddings [22] to all per-frame global embeddings to encode temporal information,
we apply a temporal pooling layer to extract the global representation for the entire
video. By doing so, we observe a notable improvement over the conventional pooling
approach, and thus we use this method in our experiments. We call this method the
factorized multi-head attention pooling (FMAP).
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Fig. 8 Methods overview. VideoPrism [17] is pre-trained with a two-stage approach. (A) In the
first stage, a video encoder and a paired text encoder are via contrastive loss over a large amount
of video-text pairs. (B) In the second stage, VideoPrism is trained via a masked modeling approach
with token-wise and global self-distillation losses. (C) The VideoPrism model is based on a spatial-
temporal factorized encoder architecture [66], which encodes spatial information frame-by-frame,
followed by temporal aggregation. The encoder layers use standard self-attention Transformer archi-
tecture [70]. (D) For downstream classification tasks, we further train multi-head attention pooling
layer over frozen spatiotemporal features from a video clip, followed by a linear classifier. (E) For
video retrieval tasks, we do global average pooling over frozen spatiotemporal features and use the
pooled embedding for nearest neighbor retrieval for top-K similar clips. (F) For localization tasks,
we apply a Faster-RCNN head [71] frame-by-frame on top of frozen spatial-temporally aggregated
features for bounding box prediction.

4.4.2 Few-shot behavior classification

Few-shot classification is similar to behavior classification, but only a few labeled
examples for each category is used to train the task specific decoder. We use the same
MAP layer as the classification method for VideoPrism, and the same FMAP layer
as the classification method for CLIP described in Section 4.4.1. Similar to before, a
softmax operator is used to output the class probability.
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4.4.3 Video-based behavior retrieval

The goal of video-based retrieval is to search through a large database of videos for
ones that are similar to the query video. For animal behavior analysis, we would like
to search for videos that show similar behaviors as the query. In this task, we use pre-
trained VideoPrism, without any task-specific decoder, to extract embeddings from all
query videos and videos in the index dataset. We first apply VideoPrism to the input
video clip to obtain the spatiotemporal tokens for the query, then a non-trainable
global average pooling is applied to these tokens to get the final representation embed-
ding for the input video. The most similar videos from the index dataset are selected
based on the Lo distance of their embedding with that of the query video. There is no
training for obtaining the retrieval embeddings, and the same setup of average pooling
over the tokens is used for CLIP.

4.4.4 Localization

A localization model usually indicates the location of the target objects by predicting
the boxes tightly bounding them. To localize animals with VideoPrism, we concatenate
a Faster-RCNN [71] detection head as the task-specific decoder to the VideoPrism
backbone. Following [72], we take the the features output from VideoPrism and apply
convolutions with stride {4,2,1,1/2,1/4} to form the simple feature pyramid. This
feature pyramid will then be input to the Faster-RCNN head for predicting bounding
boxes. More specifically, to apply detection on the i-th frame f; in a video, we extract
16 frames around the target frame f; to form the input video clip {fi_7, ... fi, ..., fi+s}-
After extracting features from VideoPrism, only the features that correspond to the
target frame f; are fed into the Faster-RCNN head to predict bounding boxes in the
target frame. To apply detection on a single image, we directly repeat the image 16
times to form a static video clip and only use the feature of the middle frame from
VideoPrism for detection. We use CLIP in the same way for the localization tasks.

4.5 Experimental setup
We use the following open-sourced, annotated datasets:

e CalMS21 [18]: CalMS21 Task 1 contains top-view videos capturing mice social
behavior in a standard resident-intruder assay at 30Hz. The videos consist of
freely interacting mice, annotated with frame-level labels for social behaviors
(e.g., “attack”, “mount”, “sniff”). The challenge lies in accurately recognizing and
classifying these behaviors from the raw video data.

e Calico [55]: Calico consists of annotated video clips of mice in their home cage at
24Hz. Each video clip has one mouse, and is annotated with clip-level labels for
common behaviors (e.g., “walking”, “grooming”, “drinking”).

e Calico-Detection [55]: Calico-Detection is a part of the Calico dataset that has
additional bounding box annotations to study localization methods. There is a
bounding box annotated per frame for the mouse.

e CRIM13 [9]: CRIM13 consists of videos collected in a standard resident-intruder
assay at 25Hz. Different from CalMS21, this set includes conditions such as human
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interventions (e.g., hands reaching into the cage), as well as two camera views (top-
view and side-view). The videos are annotated at the frame-level with behaviors-
of-interest (e.g., “approach”, “chase”, “drink”). We present results of our models
on both CRIM13-Top and CRIM13-Side. In the original paper, CRIM13 contains
matching top and side videos, but in the dataset available to download, not all
recorded videos match between the top and side views. We report our performance
separately on each view.

e MARS [5]: We use the MARS dataset for its annotated detection bounding boxes
— the original dataset is captured as video, but only non-continuous images are
annotated with bounding boxes. There is one box annotated for each of two mice.
We evaluate on both the top view and side view of MARS.

¢ Fly vs. Fly [19]: Fly vs. Fly consists of per-frame expert-annotated behaviors of
a pair of flies. We use the videos captured at 30Hz that study the effect of genetic
manipulation on behaviors including aggression and courtship. The baseline for this
model uses trajectory data, and as not all frames of the video contains valid tracks,
we use the same data split as [11] for this dataset to match the video and trajectory
dataset for evaluation. The dataset contains the following behaviors: “lunge”, “wing”
“threat”, “tussle”, “wing” “extension”, “circle”, and “copulation”.

e KABR [21]: KABR captures drone videos of Kenyan wildlife, including reticulated
giraffes, plains zebras, and Grevy’s zebras. The dataset is captured as sequences of
videos containing different individuals of interest, and annotated by ecologists for
behaviors such as “graze”, “trot”, and “head up”.

® SSW60 [20]: SSW60 consists of videos of birds collected from the Sapsucker Woods.
The dataset is balanced in terms of classes, with 60 species of birds for fine-
grained species classification. As the birds are moving, and not all frames of the
video contains the birds, video information is helpful for classification. The dataset
additionally includes audio, which we do not use in this evaluation.

To facilitate comparison of the evaluation results, we use the same train and test
split of the data as domain-specific baselines, when reproducible splits exist and are
available. Notably, the foundation models are not trained on the train split, and require
no or minimal adaptation. In tasks where adaptation is required, the train split is used
to update downstream task decoders, described in Section 4.4.
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Supplementary: Implementation Details

Evaluation Setup

We extract frozen features from foundation models, and use this set of features across
all datasets. We summarize the domain specific models used in each dataset below.
Calico [55] is used for mouse behavior classification from the top view, and the domain
expert model [55] is a ResNet encoder with features averaged temporally, trained
with a 2-layer multi-layer perceptron on Calico. CalMS21 [18] is used for mouse social
behavior video classification from top view, and the domain expert model [18] is
trained on a combination of unlabelled and labelled data with hand-crafted trajectory
features using task programming [11]. CRIM13 [9] is used for mouse behavior video
classification with top and side views, and in the original dataset paper, the domain-
specific model combines side and top views. However, in the current open-sourced
version, the sequences are mis-matched between the views, and we evaluate on each
separately. Fly vs. Fly [19] is used for fly behavior video classification, and the data
split and domain expert model is from task programming [11], trained using a combi-
nation of hand-crafted features and the annotated training set. KABR [21] is used for
for behavior video classification with Kenyan animals, and the domain-specific model
is an X3D [57] video architecture trained on KABR. SSW60 [20] is used for fine-
grained bird species video classification, and the domain-specific model is a ResNet50
pre-trained on iNaturalist [73] (a dataset for fine-grained animal species classification)
and fine-tuned on SSW60.

For localization, Calico-Detection [55] did not provide a domain-specific local-
ization baseline. MARS [5] originally uses a multi-scale convolutional MultiBox [74]
approach for detection, but only the train split of the original paper is open-sourced
(15k frames). We create our own train/test split from the open-sourced dataset.

For all other datasets, we use the train and test splits defined by existing work
when videos are available. Notably, existing work split train and test sets at the
video-level (not the frame-level). We use the same metrics as domain-specific models
when available, which is mAP for all works, except KABR (macro-accuracy aver-
aged across classes) and SSW60 (accuracy). We also note that following previous
work [11, 18], in datasets where there are frame-level annotations including back-
ground classes (CalMS21, CRIM13, Fly vs. Fly), the metric is only averaged across
behaviors-of-interest (not including background classes).

We extract all frames from the video at the original FPS of each dataset. We use
16 consecutive frames as input for all datasets, and 16 frames with a stride of 5 for
KABR (following the baseline).

Downstream Adaptation

We include more details about each downstream application.

Behavior classification

We study behavior classification on four datasets: Calico [55], CalMS21 [18] for mouse
video classification from top view, CRIM13 [9] for mouse video classification with top
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and side views. We follow existing work to split the four datasets into train and test
subset. We use mAP as the metric to evaluate the classification performance. For
datasets such as CalMS21 [18] which includes background classes, the metric is only
averaged across behaviors-of-interest without background class.

When training behavior classification, we follow the VideoGLUE [34] frozen-
backbone setup which is also adapted in VideoPrism [17] for downstream tasks. To
train the classification head, we employ the cross entropy loss defined as follows:

N ¢

L= %?ﬁj log; gij» 1)

i=1 j=1

where N is the number of training samples and c is the number of behavior categories.
yij € {0,1} represents the ground truth class label for each sample and ¢;; represents
the predicted probability of the i-th sample being assigned to j-the class through our
classification model. We use AdamW [75] as the optimizer with a cosine learning rate
decay. For all the experiments, we set the learning rate to be 5¢~® and use dropout
rate 0.5.

Few-shot behavior classification

Few-shot behavior classification has the same setup as behavior classification, except
the training set is sampled. Following the common few-shot setup, we sample 10, 50,
and 100-shot per class in each dataset. We perform three random sets of samples, and
apply them on each of the models to compute mean and variance. The implementation
details are the same as for behavior classification.

Behavior retrieval

Retrieval does not require any training, and we simply take the average of spatiotem-
poral tokens across all frames. We then perform nearest neighbor retrieval based on
[2 distance between features computed for each clip. We use 16 frames for each of
the query and index clips. On Calico, we use the full train and test split as the index
and query. On CalMS21, we remove the background class “other” from the query set,
since we want to focus on retrieving the behaviors-of-interest (the background class is
not removed from the index set). We then perform three runs at 10% subsampling to
obtain the average performance using mean Hit@QK.

Localization

For Calico dataset, since there is one mouse in each video, the localization is formulated
as single class object detection problem, i.e., each predicted boxes is assigned with
either “Mouse” or “Background”. For MARS-Top and MARS-Side dataset, we treat
“Black mouse” and “White mouse” as different classes, as a results, localization on
these two datasets are formulated as a multiple class object detection problem, each
predicted box will be assigned to “Black mouse”, “White mouse” or “Background”.
Following general object detection tasks, our loss is defined to have a classification
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loss and regression loss as follows:

L = Lcls + Lreg7 (2)
N ¢ 1
where Los = » Y v Vi 1082 ¢ij
=1 j=1
Ny
Lyeg =Y ~ /16 = bill,
i=1

where L5 is a cross entropy loss used to supervise the predicted class. N is the number
of samples and ¢ is the number of classes (2 for Calico dataset and 3 for MARS-
Top and MARS-Side dataset). y;; € {0,1} represents the ground truth class label
for each sample and g¢;; represents the probability of the i-th sample being assigned
to j-the class. L4 is a L1 regression loss used to supervise the predicted bounding
box coordinate. b; and b; are predicted and ground truth bounding boxes. We use
AdamW [75] optimizer to train our localization model for 3,000 epochs on Calico
dataset and 300 epochs for MARS-Top and MARS-Side dataset. During training, we
use the first 10% epochs as the warm up steps in which the learning rate linearly
increasing from 0 to le~*. After that, the learning rate is decayed to 0 following the
cosine annealing schedule. We set the weight decay as le~® through out the training
process. Following their pre-training strategy, the input resolution to our localization
model with VideoPrism and CLIP backbone are 228 x 228 and 224 x 224 respectively.
For Calico dataset, during training, no data augmentation is used, we direclty pad and
resize the video to the target resolution. For MARS-Top and MARS-Side dataset, we
apply large-scale jittering [76] and random shift the image horizontaly and vertically
as the data augmentation. We use batch size 64 during training.

Broader applications

The datasets for broader applications are Fly vs. Fly, SSW60, and KABR. All models
are trained with the same implementation details as described in behavior classifica-
tion. We note that the exception is KABR, which is trained with the EQL loss [77],
with 5¢76 learning rate, following baseline to account for class imbalance.
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