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ABSTRACT

Variants in the gene encoding the postsynaptic scaffolding protein SHANK2 are associated with
several neurodevelopmental disorders, including autism spectrum disorder. Here, we used in vitro
multielectrode arrays and pharmacological manipulations to characterize how functional
connectivity and network-level firing properties were altered in cultures of human iPSC-derived
SHANK2 neurons. Using two isogenic pairs of SHANK2 cell lines, we showed that the SHANK2
hyperconnectivity phenotype was recapitulated at the network level. SHANKZ2 networks displayed
significantly increased frequency and reduced duration of network burst events relative to
controls. SHANKZ2 network activity was hypersynchronous, with increased functional correlation
strength between recording channels. Analysis of intra-network burst firing dynamics revealed
that spikes within SHANKZ2 network bursts were organized into high-frequency trains, producing
a distinctive network burst shape. Calcium-dependent events called reverberating super bursts
(RSBs) were observed in control networks but rarely occurred in SHANK2 networks. SHANK2
network hypersynchrony and numbers of strong correlations were fully rescued by the group 1
mGIuR agonist DHPG, that also restored detection of RSBs and significantly improved network
burst frequency and duration metrics. Our results demonstrate that SHANK2 variants produce a
functional hyperconnectivity phenotype that deviates from the developmental trajectory of
isogenic control networks. Furthermore, the hypersynchronous phenotype was rescued by

pharmacologically regulating glutamatergic neurotransmission.
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INTRODUCTION

Autism spectrum disorder (ASD) is associated with protein coding and regulatory variants
of genes that are important for proper synaptic function (Trost et al., 2022, Satterstrom et al.,
2020, Wamsley et al., 2024). SHANKZ2 is a high-confidence ASD risk gene with heterozygous
loss-of-function variants being associated with ASD in humans (Berkel et al., 2010, Berkel et al.,
2012, Leblond et al., 2012). The SH3 and multiple ankyrin repeat domains (SHANK) gene family
(Monteiro and Feng, 2017, Leblond et al., 2014) encodes multidomain scaffold proteins that
primarily function at the postsynaptic density (PSD) of excitatory synapses and are regulated by
zinc (Daini et al., 2021, Vyas et al., 2021, Ha et al., 2018, Eltokhi et al., 2021). SHANK scaffolds
anchor neurotransmitter receptors including NMDARs and AMPARs into complexes together with
PSD95 and POSH (Yao et al., 2022, Shi et al., 2017). SHANKSs also interact with HOMER proteins
to couple group 1 metabotropic glutamate receptors (mGIuR) in a signalling complex (Tu et al.,
1999, Hayashi et al., 2009, Scheefhals et al., 2019). mGIuR signalling leads to increased
translation of synaptic proteins (Santini and Klann, 2014) that modulates synaptic plasticity
(Waung and Huber, 2009) influencing the development of neural circuitry. Dysregulation of this
process can lead to the formation of hyperconnected or hypoconnected neurons in
neuropsychiatric disorders (Citri and Malenka, 2008). Altered synaptic plasticity is observed in
Shank2 mice (Schmeisser et al., 2012, Won et al., 2012, Vyas et al., 2021) although distinct
phenotypes observed in homozygous mice are dependent on the SHANK?2 variant tested (Eltokhi

etal., 2018, Lee et al., 2024).

One way to model heterozygous SHANK2Z variants is to isolate human induced pluripotent
stem cells (iPSC) from ASD subjects and differentiate them into cortical neurons. We previously
showed that iPSC-derived neurons harboring ASD subject-specific variants in SHANKZ2 are
hyperconnected, having increased dendrite length and complexity and making more synaptic
connections with other cells in culture (Zaslavsky et al., 2019). In addition, SHANKZ2 neurons had

increased excitatory synaptic function including increases in spontaneous excitatory postsynaptic
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potentials (sEPSC) frequency and amplitude in intracellular recordings. Chronic treatment of
SHANK2 neurons with the mGIuR agonist (S)-3,5-Dihydroxyphenylglycine (DHPG) prevented the
increased dendrite length phenotype in neurons carrying a heterozygous nonsense variant
(SHANK2 R841X). DHPG was also used to demonstrate that Shank proteins are required for
mMGIuRS5 internalization and signalling in mouse neurons (Scheefhals et al., 2019, Verpelli et al.,
2011). Further evidence supporting a role for dysregulated mGIuR signaling in SHANK2 ASD is
that mGIuRS5 protein was reduced in cultured iPSC-derived SHANK?2 subject neurons and in the
striatum of P7 Shank2(+/-) and Shank2 (-/-) mice (Lutz et al., 2021). In addition, this reduced
abundance of mGIuR5 was accompanied by dysregulation of the extracellular signal-regulated
kinase 1/2 (ERK1/2) signaling pathway, which is known to function downstream of mGIuRS

activation.

In vitro multielectrode array (MEA) circuitry studies on iPSC-derived neurons often
complement single neuron patch-clamp results (Deneault et al., 2019, Mok et al., 2022, Frega et
al., 2019, Pradeepan et al., 2024). They allow longitudinal recordings of connectivity, and track
the establishment of functional network burst events or emergence of more complex patterns of
network burst activity that reverberate (Lau and Bi, 2005, Volman et al., 2007). Such reverberating
super bursts (RSBs) have been found in typical and neurodevelopmental disorder networks in
vitro (Pradeepan et al., 2024, Doorn et al., 2024). While our previous findings show that SHANK2
neurons are hyperconnected at the single neuron level, it is unknown how this increased synaptic
connectivity and glutamatergic signaling impact network activity dynamics. DHPG treatment for
24 hours was shown to enhance spike frequency of mouse neuronal networks in MEAs (Liu et
al., 2020). However, the impact of DHPG treatment on the functional activity of SHANK2 neurons

remains entirely unexplored.

To address these questions, we utilized in vifro MEAs to extend the functional

characterization of iPSC-derived SHANK2 neurons to their network-level firing activity and
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collective firing dynamics. MEA recordings on isogenic pairs of iPSC-derived homozygous (-/-)
SHANK?Z knockout (KO) and heterozygous (+/-) SHANK2 R841X networks in vitro were analyzed
for their patterns of activity from week 4 to week 8 of development. These SHANKZ2 networks
were hyperactive and hypersynchronous compared to controls, displaying network bursts that
were significantly more frequent and shorter in duration. Calcium-dependent RSBs were detected
in the isogenic control networks but were almost undetectable in SHANK2 networks. Finally,
chronic treatment of SHANKZ2 networks with DHPG rescued network synchrony, and significantly
improved the network burst frequency and duration, as well as partially restoring the proportion
of RSBs. Overall, the hypersynchronous SHANKZ2 network phenotype deviated from the
developmental trajectory of isogenic controls, and was rescued by pharmacologically regulating

glutamatergic neurotransmission.

MATERIALS AND METHODS
iPSC culturing and maintenance
IPS cells were cultured on Matrigel (Corning) or Geltrex (Gibco) coated plates with 1.5-2 ml of

mTeSR1 media (STEMCELL Technologies), media were changed daily except the day after
passing. IPS cells were passed once a week with ReLeSR (STEMCELL technologies) into 1:3-
1:10 dilution depending on the density of the culture. Accutase (InnovativeCellTechnologies)
was used for single-cell dissociation while cells cultured in MTeSR1 media supplemented with
10 uM Rho-associated Kinase(ROCK) inhibitor. Mycoplasma test was performed routinely.
Ngn2 neuronal differentiation

Ngn2 induced cortical neurons were differentiated as previously described (Zhang et al., 2013,
Mok et al., 2022). Briefly, On day 0 IPS cells were dissociated into single cells with accutase,
300,000 - 750,000 cells in 2 ml of mTeSR1 Supplemented with 10 yM ROCK inhibitor were
seed into each well of Matrigel-coated 6 well plates. On Day 1 and day 2 cells were cultured

with CM1 media [DMEM -F12(Giboco), 1 x N2 (Gibco), 1 x pen/strep(Gibco), 1 x NEAA(Gibco),
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1 pg/ml laminin (sigma)] supplemented with BDNF (Peprotech) and 10 ng/mL GDNF
(Peprotech) and 2 ug/mL doxycycline hyclate (Sigma) with the exception that day 1 cells were
still cultured in 10 uM Rock inhibitor and on day 2, Rock inhibitor was withdrawn and cell
selection was started with (2-5 pg/mL) puromycin(Sigma). From day 3 to day 8, cells were
cultured in CM2 media [Neurobasal media (Gibco), 1 x B27(Gibco), 1 x Glutamax (Gibco), 1 x
pen/strep, 1 ug/ml laminin 10 ng/ml BDNF, 10 ng/ml GDNF] supplemented with 2 ug/mL
doxycycline hyclate, where on day 3 the cells were still under puromycin selection and from day
4 to day 8, the selection was withdrawn. From day 6-8, 10 yM Ara-C (Sigma) was added to CM2
media. On day 8, post-Ngn2 induced neurons were dissociated with accutase and filtered
through a 70m filter reseeded on plates for future assays. FUW-TetO-Ngn2-P2A-EGFP-T2A-
puromycin and FUW-rtTA plasmids for excitatory cortical neuron differentiations were kindly
gifted by T. Sudhof (Zhang et al., 2013).

MEA plating and recording

Day 8 post-Ngn2 induced neurons were plated on MEA plate as previously described (Mok et
al., 2022). Briefly, 12 well MEA plates with 64 electrodes (Axion Biosystems) were coated with
filter sterilized 0.1% PEI solution in borate buffer pH 8.4 at room temperature for 1 hour,
followed by 4 times wash with water and dried overnight. 100,000 of Day 8 Ngn2 neurons in
100ul of droplets were seeded on each well in CM2 Brainphys media [Brainphys (STEMCELL
Technologies), 1 x Glutamax, 1 x pen/strep 10 ng/ml BDNF, 10 ng/ml GDNF] supplemented
with 400 pg/ml laminin and 10 yuM ROCK inhibitor. Cells adhered to the well with hydration for 2
hours and each well was topped up with 1 ml of CM2 brainphys media supplemented with
40ug/ml laminin. Next day 20,000 P1 mouse astrocytes were added to each well. Media was

changed twice a week exactly 24 hours before recording.

For MEA recordings, each plate was allowed to incubate for 5 minutes on a Axion Maestro

device heated to 37°C under 5% CO,. Spontaneous activity was then recorded at a sampling


https://doi.org/10.1101/2024.07.30.605451
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.07.30.605451; this version posted July 30, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

frequency of 12.5 kHz for 5 minutes using AxIS v2.0 software (Axion Biosystems), with the
analog settings set to “Field Potentials” recording mode (1200X gain, 1 — 2000 Hz bandwidth,
median referencing). The analog settings were then changed to “Neural: Spikes” mode (1200X
gain, 200 — 5000 Hz bandwidth, median referencing) and an additional 5 minutes of
spontaneous activity was recorded. Field potential recordings were used exclusively for
correlated spectral entropy synchrony analysis (see associated methods section). Neural spikes
recordings were further bandpass filtered at 0.2 — 3 kHz and spikes were detected using a
threshold crossing method with the threshold set at 6x the standard deviation of the noise of
recording electrodes. These data were used as the starting point for all other network analyses
performed.

Network burst detection and offline analysis

Network burst detection and offline analysis of MEA recordings was performed using Neural
Metric Tool v2.5.7 software (Axion Biosystems). Electrodes were considered active if spikes
were detected at a rate of at least 5 spikes per minute. Single-channel bursts were detected
using the poisson surprise algorithm with the minimum surprise parameter set to 3. Network
burst detection settings were tailored for each individual well to avoid spurious network burst
calls and can be found listed in Supplemental Table 1. Supplemental neural metrics and
network burst lists were exported for each recording and further analyses were completed in
RStudio, Python, and MATLAB.

Correlated spectral entropy synchrony analysis

Correlated spectral entropy based network synchrony analysis was performed as described
(Kapucu et al., 2016). Field potential recordings were first filtered with a 60 Hz notch to remove
powerline noise, then a 7 HZ high pass filter to remove low-frequency fluctuations. The filtered
voltage signal for each electrode was then split into 0.5 second windows, with 50% overlap

between consecutive windows. The frequency power spectrum of each segment, P(f), was
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calculated using the pwelch function in MATLAB R2022a and was normalized by the total power

of each segment:

_ P
frorm = SR

The spectral entropy of each signal segment (Si) was then calculated as

2 Puorm (f) log (m)
log N

Si=

Where Y P,orm (f) is the sum of the normalized power spectrum for a signal segment containing
N samples (e.g. for our recordings, N = 12500 for a 1 second segment of an extracellular

voltage signal recorded at a sampling frequency of 12.5 kHz).
The cross-correlation of the spectral entropy of two signals, S, and S, atlag [ = 0

was then estimated using the crosscor function in MATLAB R2022a. This cross-correlation
values is reported as the CorSE synchrony score for each electrode pair.

Average network burst alignment

For each recording, intra-network burst spike times were binned in 10 ms time intervals. Binned
network bursts were then zero-padded and aligned in a window ranging from t = -3 seconds to t
= 3 seconds, with the bin containing the greatest number of spikes centered att =0
(representing the “burst peak”). The average network burst for each recording was then
estimated by calculating the average number of spikes per bin across all aligned network bursts
from that recording. A final “average network burst heatmap” for each cell line were then
generated by plotting the number of spikes per bin in the averaged network burst from each

recording.
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Formulation of the AceDimer Machine Learning Algorithm

The AceDimer algorithm core function is to evaluate feature contributions in neuroinformatic
datasets. This involves generating feature subsets and assessing their impact on classification

accuracy. The process can be summarized as follows:

1. Feature Subset Generation: AceDimer generates all possible subsets of features for a dataset

with N features. Each subset S;is a combination of features where i is a subset of (1, 2, ..., N).
-Si=(f1,f2,...,fm), where m< N

2. Classification Accuracy Calculation: The classification accuracy A(Si) is calculated using the

chosen classifier for each feature subset Si.
- A(Si) = Accuracy of Classifier with Features S

3. Feature Contribution Analysis: The contribution of each feature is assessed by comparing the
accuracy of models with and without the feature. For a given feature f;, its contribution C(f)) is

determined by the change in accuracy when fj is included in the subset.
- C(fi) = A(Si U () - A(Si\ (f})

4. Overall Feature Importance: The overall importance of each feature is calculated by taking the
sum of its contributions across all subsets where it appears and then dividing this sum by the
standard deviation of the feature's contributions across these subsets. This method offers a

normalized measure of a feature's importance, accounting for the variability of its contributions.
The formula for the overall importance of a feature fj is as follows:

OI(f;) = (Sum of C(fj) for all i where fjis in S;) / Standard Deviation of C(f))

Where:

e "Sum of C(fy) for all i where fj is in S" represents the total contribution of the feature f;

across all subsets that include it.
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o "Standard Deviation of C(fj)" refers to the standard deviation of the contributions of the

feature fj across these subsets.

This updated method in AceDimer offers a more detailed and balanced analysis of each feature's

significance, considering its contribution and its consistency across different combinations.

These steps and calculations form the basis of the AceDimer algorithm, allowing for a
comprehensive analysis of feature contributions and their interdependencies in neuroinformatic
data.

Pharmacological treatments

All MEA plates were recorded twice per week, using the same recording practices and filter
settings described in the MEA Plating and Recording section. During each recording, all wells
were monitored for the appearance of RSBs through simple visual inspection of live raster plots
generated by on-line spike and network burst detection in AxIS v2.0 software. Pharmacological
treatments began after RSBs were detected in cultures. Before testing of pharmacological
compounds, cell culture media was changed with fresh CM2 media and plates were allowed to
incubate for 1 hour to allow neuronal activity to stabilize. A baseline recording of spontaneous
neural activity was then taken for 10 minutes at 37 °C. Immediately following baseline recording,
one pharmacological agent (0.1% DMSO, or 10 uM bicuculline) was added to each well, and an
additional 10 minutes of spontaneous activity was recorded in the presence of drug compound.
Washout of pharmacological agents was then achieved by changing culture media with fresh
CM2 a total of 3 times, and plates were then allowed to incubate for another hour to allow
activity to stabilize. A new 10-minute baseline recording was then taken, and the process was
repeated until all pharmacological agents had been tested. 25 yM EGTA-AM was always added
as the final drug compound in the rounds of testing as it was observed that normal baseline

spontaneous activity did not return after drug washout.
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Statistical analysis

Statistical tests were performed in RStudio v2023.06.0 running R v4.3.1. Normality assumptions
were formally tested using a Kolmogorov-Smirnov normality test. Comparisons between
isogenic pairs were conducted by Mann-Whitney test with Benjamini-Hochberg correction for
multiple testing (*p < 0.05, **p <0.01, ***p < 0.001).

Data visualization

Representative raster plots were generated in Python using the eventplot function from the
Matplotlib library (v3.7.1). Representative voltage races were plotted in MATLAB R2022A using
functions provided by Axion Biosystems. Circular connectivity plots were generated in Python
using the circular_layout and plot_connectivity_circle functions from the MNE tools library
(v1.4.2). CorSE heatmaps were generated in Python using the heatmap function from the
seaborn library (v0.12.2). CorSE network maps were generated in RStudio using the
graph_from_data_frame function from the igraph package (v1.4.3). All other plots were
generated in Rstudio using the ggplot function from the ggplot2 package (v3.4.2). Margin
distributions were added to 2D scatterplots using the ggMarginal function from the ggExtra

package (v.0.10.0).
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RESULTS

iPSC-derived SHANK2 neurons assemble into functional networks in vitro

We previously reported that ASD-associated variants in SHANK2 result in
hyperconnectivity of single neurons. To examine how population-level network activity is impacted
by SHANK?Z variants, we used in vitro MEAs to record spontaneous firing activity from SHANK2
neurons. We used two pairs of isogenic SHANKZ2 and control lines that were previously described
(Zaslavsky et al., 2019) (Figure 1A). The first isogenic pair consists of an ASD subject-derived
line which harbours a single base pair non-sense variant (SHANK2 R841X) and an isogenic
correction line (R841X-C), which was generated by using CRISPR-Cas9n gene editing to correct
the point mutation back to the wild-type allele. The second pair consists of a control line
reprogrammed from an unaffected control individual (CTRL) and an isogenic, homozygous

knockout line (SHANK2 KO).

Excitatory neurons were generated from each line by forced overexpression of the pro-
neurogenic transcription factor Neurogenin2 (Ngn2) and were subsequently co-cultured with
primary mouse astrocytes on 12-well multielectrode array plates (Axion Biosystems) containing
64 extracellular electrodes per well. Five minutes of spontaneous network activity was recorded
twice a week, starting from 16 days after Ngn2 induction (DIV16) until DIV60. All four lines
developed robust spontaneous firing activity, with the weighted mean firing rate (WMFR) of all
lines increasing from week 2 — week 8 of recording (Figure 1B-C). Additionally, we observed
network bursts by week 3 in all lines, with the average number of detected network bursts
increasing from week 3 — week 8 (Figure 1D). Network bursts are a stereotyped pattern of
spontaneous activity where bursts of high-frequency spiking activity are detected across multiple
spatial locations in the network simultaneously, and their appearance is indicative of the
establishment of network circuitry and functional network activity. These results indicate that
neurons derived from all four iPSC lines produce robust spontaneous spiking activity and self-

organize into functional networks.
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Optimization of network burst detection

Our detection of network burst events in the MEA recordings was initially handled by
automated network burst detection algorithms. Importantly, the choice of detection algorithm and
its associated parameters must be optimized to ensure that network burst identification is
accurate. Indeed, suboptimal detection has been shown to significantly influence the results of
downstream network activity analyses and phenotyping metrics (Mossink et al., 2022). Thus, to
ensure the reliability of our network metrics, we ran automated network burst detection using fixed
interspike interval (ISI) threshold, adaptive 1S| threshold, and envelope detection algorithms (see
methods for a detailed description of each detection algorithm). We then manually inspected the
resultant network burst calls for every recording to evaluate the accuracy of each algorithm. We
found that no single set of algorithm and parameter settings was appropriate for accurate network
burst detection in all cultures across all time points, and this bulk approach to detection led to
erroneous network burst calls in a significant number of recordings (Supplemental Figure 1). We
found that ISI threshold algorithms tended to underestimate network burst frequency and
overestimate network burst duration in many of our recordings grouping many distinct network
bursts together as a single event. Accordingly, we instead chose to tailor network burst detection
parameters for each culture individually. The detection algorithm and parameter settings used for
each recording are listed in Supplemental Table 1.

SHANK2 neurons collectively fire frequent network bursts with short durations

To begin characterizing population-level differences in network firing dynamics, we first
requantified the mean firing rate (MFR) in recordings of SHANK?2 and isogenic control networks
from week 4 (DIV29 — DIV35) to week 8 (DIV57 — DIV63) of development. We found that SHANK2
networks were significantly more active than their respective isogenic controls, with the SHANK2
R841X and SHANK2 KO lines both exhibiting a 1.8-fold and 2-fold increase in MFR at week 7,
respectively (Figure 2A). The wMFR was also increased in SHANKZ2 networks, indicating that the

increased firing rate was not caused by an increase in the number of active recording sites in
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SHANK?2 cultures (Figure 2B). In addition to an increase in baseline firing rate, SHANK2 networks
displayed a significant increase in the frequency of network burst events across all time points
examined (Figure 2C). Average network burst frequency was increased 4.1-fold in SHANK?2
R841X cultures when compared to isogenic R841X-C networks at week 7 of recording. This was
accompanied by a concurrent 2.6-fold increase in the frequency of single-channel bursts (Figure
2D). An increased frequency of network bursting was also observed in SHANK2 KO cultures (1.4-
fold increase at week 7) (Figure 2C). A trend of increased single-channel burst frequency was
also observed in SHANKZ2 KO cultures, reaching statistical significance at week 4 and week 5 of

development (Figure 2D).

Network bursts occurring in SHANKZ cultures were considerably shorter in duration than
those of control networks. Again, this difference was more pronounced in the ASD subject-derived
SHANK2 R841X networks, which showed a 3.9-fold reduction in average network burst duration
compared to a 1.3-fold reduction in SHANK2 KO networks (Figure 2E). In addition, the durations
of network bursts within a given recording period were considerably less variable in SHANK2
cultures than in controls. This resulted in a striking 9-fold reduction in the standard deviation of
network burst durations in SHANK2 R841X networks at week 7 of development, while a 4.3-fold
reduction was observed for SHANK2 KO cultures (Figure 2F). Together, these results indicate
that SHANK2 networks fire network bursts that are shorter, more regular in duration, and more
frequent than controls.

SHANK?2 networks exhibit hypersynchronous firing activity

We next sought to characterize differences in network synchronization in SHANK2 and
control cultures by conducting a pairwise analysis of neural synchrony between all 64 recording
channels in each network recording. To evaluate pairwise correlation strengths in our networks,
we chose to employ the correlated spectral entropy (CorSE) method (Kapucu et al., 2016). In

contrast to event-based synchrony measures which evaluate spike train synchrony by looking for
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correlations in the timing of binary spike events detected at different recording channels, the
CorSE method takes the continuous voltage signal from each recording channel as inputs and
evaluates synchrony by looking for correlated temporal changes in the contents of the signal’s
frequency spectrum distribution (Figure 3A). A significant benefit to this approach is that it does
not rely on spike detection prior to analysis and is thus not affected by sub-optimal spike detection,
which could arise from high signal noise, low-amplitude spikes, or experimenter choice of
detection algorithm. In addition, since the CorSE method is performed on continuous filtered
voltage signals, low-frequency information contained in local field potentials (LFPs) generated by
subthreshold and population-level activity is retained in the analysis and contributes to synchrony

calculations (Kapucu et al., 2016).

Accordingly, we also conducted network recordings with analog filter settings set to “field
potential mode” (1 — 2000 Hz bandwidth, see Methods) to capture these low-frequency signal
contributions and used these data for our functional connectivity analysis. Representative raster
plots and corresponding adjacency matrices showing pairwise CorSE synchrony scores are
shown in Figure 3B and Supplemental Figure 2A. Network graphs showing all pairwise
connections with a synchrony score > 0.5 are also shown. These same data are also presented
as circular connectivity graphs in Figure 3C to better visualize connections at the expense of

retaining spatial information about the network structure.

To gain a broad understanding of how connectivity may be altered in established SHANK2
networks, we pooled CorSE synchrony scores from mature SHANK2 and control networks at
weeks 7 and 8 of development and compared their distributions. We found that the distribution of
correlation strengths from both SHANK2 R841X and SHANK2 KO networks showed a significant
shift towards higher synchrony values in comparison to their isogenic controls (P < 0.0001, single
tailed, two-sample Kolmogorov-Smirnov test, Figure 3D-E and Supplemental Figure 2B-C).

Notably, while the distributions for all lines were approximately bell shaped with a primary peak
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centered around CorSE values close to zero, the SHANK2 R841X distribution contained a
prominent secondary peak centered around CorSE synchrony value of approximately 0.6, which
was markedly absent from the other distributions (Figure 3D). While the SHANKZ2 KO distribution
also lacked this notable secondary peak at higher synchrony values, it contained greater density

in its right tail than either control distribution (Supplemental Figure 2B).

To further quantify differences in pairwise correlation strengths between cell lines, we
calculated the mean CorSE synchrony score for each network recording and compared the mean
CorSE values from SHANK2 and control cultures. As expected, mean synchrony scores were
increased 3.1-fold in SHANKZ2 R841X networks (Figure 3F) and 1.7-fold in SHANK2 KO networks
(Supplemental Figure 2D-E). Given the shift towards high CorSE synchrony values in SHANK2
networks, we next asked how strong correlations develop in SHANKZ2 cultures. As done
previously (Kapucu et al., 2016), we defined strong correlations as any connection with a
synchronization score greater than 0.5 and then quantified the number of strong correlations

present in each network recording.

Concurrent with the increase in mean CorSE values, we found a significant 4.9-fold
increase in the mean number of strong correlations in SHANK2 R841X networks (Figure 3G) and
a 2.2-fold increase in the number of strong correlations in SHANK2 KO cultures (Supplemental
Figure 2F). Taken together, these results show that SHANKZ2 networks are hypersynchronous.
Altered intra-network burst shapes and firing dynamics in SHANK2 networks

Given the shorter and more regular duration of network bursts in SHANKZ2 cultures, we
next asked how intra-network burst firing activity might be structured differently in SHANK2
networks. A technique of network burst alignment and comparison of network burst shapes was
used to characterize the effects of cadherin-13 knockdown on network activity in cultures of iPSC-
derived neurons (Mossink et al., 2022). Moreover, such characteristic network burst shapes can

be used to discriminate between healthy and disease state dopaminergic and motor neurons in
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an iPSC model of Parkinson’s disease (Ronchi et al., 2021). We noted that while our control
network bursts generally appeared to consist of a mixture of rapid burst firing and tonic, low-
frequency spiking, SHANKZ2 network bursts appeared to consist primarily of high-frequency short
burst firing (see Figure 1B). To better visualize these network burst shapes, we binned intra-
network burst spikes from each recording into 50 ms time intervals and then calculated the
average number of spikes per bin across all network bursts for each recording. Within each
recording, detected network bursts were aligned so that the bin containing the greatest number
of spikes (i.e. the network burst “peak”) was centered at time t = 0 before averaging. Intra-network
burst spiking intensity was then visualized by plotting this aligned, average network burst from
each recording together to produce an average network burst heatmap for each line (Figure 4A).
Moreover, by plotting the average number of spikes per bin across each heatmap, we were able
to obtain a characteristic network burst shape for each cell line, which provides insight into how

intra-network burst firing rates change as a function of time (Figure 4B).

Interestingly, despite notable differences in the average network burst frequency, duration,
and total spike content observed between the two control lines, their average network burst
shapes were remarkably similar (Figure 4C, top), suggesting similar intra-network burst firing
dynamics. Qualitatively, control network bursts appeared to consist of two distinct phases — a
sharp increase in firing rate from network burst initiation to network burst peak, followed by a
smooth exponential-like decay of the network-wide firing rate until network burst termination.
Moreover, we observed that the network burst shapes of the two SHANK2 networks were also
qualitatively similar to one another, and appeared to differ from those of isogenic control networks
in a consistent manner (Figure 4C, bottom). While the initial decay in SHANKZ2 network firing rate
following the burst peak appears to follow a similar trajectory to that of controls, this initial rapid

decline in firing rate quickly transitions to a slower and more linear rate of decay. After this phase
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of extended high frequency firing, the rate of decay changes again, and the network-wide firing

rate rapidly declines until burst termination.

We hypothesized that the characteristic SHANK2 network burst shape could reflect a
model where the prolonged high frequency firing in the initial phase of decay rapidly depletes
neurons of available resources, leading to the subsequent crash in network-wide spiking activity
and termination of the network burst (Huang et al., 2017). In contrast, the rapid exponential-like
decline in control network firing rates seen immediately after the burst peak may provide individual
cells within the network with sufficient time to replenish resources and initiate additional rounds

of individual bursts to prolong the overall network burst event.

One prediction of this model, where individual control neurons have a better opportunity
to replenish synaptic resources and burst again within the same extended network burst, is that
they should have a greater number of bursts per single-channel recording than neurons in
SHANK2Z networks. Consistent with this, we found that SHANK2 KO and SHANK2 R841X network
bursts contained an average of 1.0 bursts per channel, while control and R841X-C networks
contained a modest but significantly greater average of 1.6 (Figure 4D-E). Additionally, plotting
the distribution of single-channel burst initiation times within network burst events revealed a
greater density of bursts starting at later timepoints in control networks (Figure 4F-G). To quantify
this, we classified single-channel bursts into two groups: “early bursts” (single-channel bursts
which initiate within 500 ms of network burst onset) and “late bursts” (single-channel bursts which
initiate greater than 500 ms after network burst onset). Both SHANK2 KO and SHANK2 R841X
lines were found to have significantly fewer late bursts within network burst events than their
respective isogenic controls (Figure 4H-I). Finally, we compared the distribution of interspike
intervals (I1SIs) within network bursts for SHANK2 and control networks and found that SHANK2
distributions were significantly more skewed towards shorter I1SI values, indicative of higher intra-

burst firing rate (P < 0.0001 for CTRL vs SHANK2 KO distribution, P < 0.0001 for R841X-C vs
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SHANK2 R841X distributions; One tailed, two-sample Kolmogorov-Smirnov test. Supplemental

Figure 3).

Together, these results suggest that the majority of SHANK2 network burst events
primarily consist of a single, strong bursting event which persists for most of the network burst
duration and encompasses the majority of network burst spikes. In contrast, control network
bursts are less tightly structured and contain a greater diversity of single-channel bursts
interspersed with low-frequency spiking.

Machine learning classification of SHANK2 networks based on MEA metrics

Machine learning-based methods, such as linear classifiers, can be used as an unbiased
approach to identify phenotypes in electrophysiological data (Hornauer et al., 2024). These
methods are especially valuable when more than one electrophysiological feature carries
information about the phenotype, and to be effective must be able to accurately distinguish
between the SHANKZ2 networks and the isogenic controls. By ranking the contributions of
individual features, it should be possible to determine whether our supervised network analyses
conducted with optimized network burst detection algorithms identify the most important features
embedded in the activity metrics that can be read out from the automated MEA data analysis

software provided by Axion systems.

We used the AceDimer machine learning classifier tool (see methods) which employs
principles similar to Permutation Feature Importance (Altmann et al., 2010, Kaneko, 2022) and
SHAP values (Lundberg and Lee, 2017). We provided it with a training set of raw Axion system
metrics related to burst duration, synchrony, and network burst frequency and used this as a tool
to identify the SHANKZ2 and control networks in an independent dataset. The AceDimer method
reached high performance levels with 85-90% accuracy at separating SHANK2 R841X from the
R841X-C isogenic controls, as well as at separating SHANK2 KO networks and CTRL (Figure

5A, chance performance was 50%). To obtain an estimate of which features each classifier used
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to discriminate between the SHANKZ2 and control networks, we ranked the features that both
classifiers considered most informative (Figure 5B) by their contributions as percentages (Fig 5C).
The top 6 feature contributions for the SHANK2 R841X comparison related to network burst
duration, synchrony (Area under Cross Correlation), and network burst frequency. This analysis
provides additional support for our findings of network burst differences between SHANK2 and
controls, and suggests that classifiers may be a useful tool to distinguish between different
network functional phenotypes.
Calcium-dependent reverberating super bursts in control and SHANK2 networks

RSBs are network events consisting of a long initial high amplitude burst followed by high
frequency smaller amplitude minibursts. Such events are found in control networks and they are
particularly frequent in Rett syndrome networks with mutations of the MECP2 gene (Pradeepan
etal., 2024). Here we explore whether RSBs also occur in SHANK?Z cultures. RSBs were detected
in CTRL and R841X-C cultures beginning at week 4 and week 5 of development, respectively,
and persisted until the end of our recording time course at week 8. RSBs were very rarely detected
in SHANK2 R841X wells at week 7 and week 8 (n=1 and n=2, respectively), but were never

detected in SHANK2 KO networks (Figure 6A-C).

We previously showed that RSBs occurring in networks of MECP2 null neurons were
abolished by treatment with the membrane-permeable Ca?* chelator ethylene glycol tetraacetic
acid acetoxymethyl ester (EGTA-AM) (Pradeepan et al., 2024). A different study performed on
organoids demonstrated GABAergic dependence of nested oscillations, a phenomenon similar to
RSBs, using bicuculline (Trujillo et al., 2019). Accordingly, we next treated SHANK2 R841X and
control R841X-C networks with either 10 uM bicuculline or 25 yM EGTA-AM to investigate what
effect this had on the presence of RSBs. Bicuculine treatment did not abolish RSBs in
reverberating R84 1X-C networks (Supplemental Figure 4A-B). However, bicuculline treatment did

significantly increase the frequency of RSBs in R841X-C cultures and significantly decreased their
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duration (Supplemental Figure 4C). These bicuculine side effects were seen previously in treated
control and MECP2 null networks (Pradeepan et al., 2024) and may be due to off target effects
on potassium channels (Khawaled et al., 1999). In contrast, treatment with EGTA-AM completely
abolished RSBs in reverberating R841X-C networks (Figure 6D-E) corroborating the previous
results that RSBs are indeed dependent on intracellular Ca?* (Pradeepan et al., 2024).
Chronic mGIuR stimulation with DHPG rescues hypersynchronous SHANK2 networks
We previously showed that chronic treatment of SHANK2 R841X neurons with 10 uM of
the group 1 mGIuR agonist DHPG was able to rescue the observed increased dendrite length
phenotype (Zaslavsky et al., 2019). We next asked if chronic DHPG treatment could similarly
rescue or improve any aspects of the SHANK2 electrophysiological network phenotype. We
treated SHANK2 R841X and isogenic R841X-C networks by adding 10 uM DHPG with every
culture media change from week 1 — week 8 and recorded spontaneous network activity. Chronic
DHPG treatment did not significantly impair network formation as robust spiking activity and
network burst formation was observed up to week 8 of development in DHPG-treated networks
(Figure 7A, Supplemental Figure 5A). In addition, DHPG treatment had no impact on MFR in

either SHANKZ2 R841X or control R841X-C lines (Supplemental Figure 5B).

SHANKZ2 R841X networks treated with DHPG exhibited a significant reduction in network
burst frequency, and a significant increase in network burst duration when compared to untreated
SHANK2 R841X networks at all time points investigated (Figure 7B-C). Network burst durations
in SHANK2 networks also became more variable with DHPG treatment, particularly at early time
points (Figure 7D). This response was specific to SHANKZ2 networks, as DHPG treatment had no
impact on network burst frequency, duration, or duration variability in control R841X-C networks
at all time points investigated (Figure 7B-D). Interestingly, DHPG treatment also appeared to
increase the proportion of SHANK2 R841X wells displaying patterns of RSB activity (Figure 7E).

However, while persistent exposure to 10 uM DHPG in the culture media was able to improve
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these aspects of the SHANKZ2 network phenotype, it did not fully restore these metrics to the level

of untreated control networks.

Next, we turned our attention to intra-network burst firing dynamics. We again plotted the
average network burst shape for each recording and found that SHANK2 R841X networks
appeared to have a variable response to DHPG treatment. While a subset of wells retained the
characteristic SHANK2 network burst shape with a slower decline in firing rates after the burst
peak, the remaining networks displayed network burst shapes that more closely resembled
controls with firing rates that decayed exponentially following the burst peak (Figure 8A-C).
Examining the distribution of single-channel burst start times within network burst events,
SHANK2 R841X networks treated with DHPG now displayed a prominent second peak of burst
start times initiating 1 — 2 seconds after network burst onset, similar to the R841X-C controls
(Figure 8D). This was quantified as a significant 18.5 fold increase in the percentage of single-
channel bursts occurring more than 500 ms after network burst onset (i.e. “late bursts”), from a
mean of 2% in untreated SHANK2 R841X networks to a mean of 37% in DHPG treated networks
(Figure 8E). Moreover, we found a significant 1.5-fold increase in the number of bursts per
bursting channel (untreated mean = 1.0, treated mean = 1.5; Figure 7F). DHPG treatment was
also found to reduce the number of network burst spikes occurring within single-channel bursts

(Figure 8G) and increased the average within-burst ISI (Figure 8H).

Finally, we assessed if DHPG treatment could rescue the increased synchrony displayed
by SHANK2 networks. Representative rasters and CorSE output are shown in Figure 9A-B.
CorSE analysis of network synchronization revealed a significant shift in the distribution of
synchrony scores in DHPG-treated SHANK2 R841X networks. Notably, the prominent secondary
peak centered around CorSE values of approximately 0.6 seen in untreated SHANK2 R841X
networks was noticeably flattened by DHPG treatment (Figure 9C-D). While DHPG-treated

SHANKZ2 R841X networks were found to have a slight increase in the number of correlations with
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CorSE scores in the range of 0.8 — 1.0 (Figure 9D), the overall distribution of correlation strengths
in treated networks was significantly shifted towards lower synchrony values (P < 0.0001, one
tailed, two-sample Kolmogorov-Smirnov test). This shift could further be quantified as a significant
1.9-fold reduction in the average mean CorSE synchrony score in DHPG-treated SHANK2 R841X
networks (Figure 9E). Importantly, DHPG-treated SHANKZ2 R841X networks were restored to the
level of the isogenic controls as they showed no significant difference from the mean synchrony
scores of R841X-C cultures. Additionally, DHPG treatment resulted in a significant 3.3-fold
reduction in the number of strong correlations (CorSE score > 0.5) in SHANK2 R841X networks
(Figure 9F). Again, DHPG-treated SHANK2 R841X networks were equivalent to the isogenic
controls, with no significant difference detected in the number of strong correlations from R841X-
C cultures. Taken together, these results show that chronic group 1 mGIuR agonism with 10 uM
DHPG was successful in rescuing the hypersynchronous phenotype displayed by SHANK2

R841X networks.
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DISCUSSION

In this study, we provided a thorough phenotypic characterization of SHANK2 neuronal
network activity in vitro. We found that SHANK2 networks were hyperactive with increased MFR
over controls. Moreover, SHANK2 networks were hypersynchronous with increased mean CorSE
synchrony scores and an increased number of strong pairwise correlations between recording
channels. At the network activity level, these traits manifested as an increased frequency of
network bursts, which were shorter and more regular in duration than controls. Examination of
intra-network burst firing dynamics revealed a characteristic SHANKZ2 network burst shape which
was consistent across SHANK2 R841X and SHANK2 KO cultures. This network burst shape was
characterized by a significantly slower decline in network-wide firing rates after the burst peak,
followed by a rapid termination of network activity. We found that this characteristic network burst
shape, at least in part, reflected a decreased ability of SHANK2 networks to drive additional
rounds of single-channel burst firing following the initiating burst of activity. Consistent with this,
Ca®" dependent RSBs rarely occurred in SHANK2 networks but were present in controls. Finally,
we showed that treatment of SHANK2 R841X networks with DHPG was able to fully rescue the
hypersynchronous SHANKZ2 network phenotype.

Intra-network burst dynamics and network burst shape

Our finding that SHANK?2 and control neurons had characteristic network burst shapes is
intriguing, as this appears to be robust to substantial within-genotype differences in the gross
firing patterns displayed between lines when examined at larger timescales. Indeed, the network
burst shapes displayed by individual cell lines was remarkably consistent across multiple neuronal
differentiations and platings, and were observed to be robust to significant changes in the overall
amplitude of intra-network burst firing rates. Characterization of intra-network burst dynamics
could thus prove to be a useful approach for disease phenotyping studies, where batch effects
and plate-to-plate variability in firing metrics are a known challenge for the field (Mossink et al.,

2021).
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We hypothesized that the characteristic network burst shapes produced by SHANK2
networks could reflect a model consistent with synaptic fatigue, where the intense firing within
SHANK2 network events rapidly depletes the energy or synaptic resources in single neurons
required to sustain the prolonged elevated firing rate across an excitatory-only network. This leads
to a sudden and rapid decrease in firing rate immediately preceding network burst termination as
synaptic resources are depleted. The fact that DHPG rescued many aspects of the
hyperconnected phenotype suggests that SHANKZ2 variants affect the synaptic machinery that
allows fast electrochemical transmission during network bursts. Moreover, our finding that DHPG
treatment concurrently restores wild-type-like network burst dynamics in a subset of SHANK2
networks provides some supporting evidence that these characteristic bursting dynamics are
influenced by coupling strength within the network.

It should be noted that differences in the intrinsic properties of single neurons could also
influence the network burst shapes (e.g., spike frequency adaptation) observed in our
excitatory-only networks. Future studies using in silico network models could be used to dissect
the contributions of intrinsic and synaptic properties to network bursting behaviour, and to test
the predictions we have made here.

Network reverberating super bursts

Our finding that RSB frequency is decreased in SHANK2 networks demonstrates the
potential utility of RSB quantification in disease phenotyping assays. The presence of RSBs in
network recordings was also found to segregate by genotype in MECP2 null Rett syndrome
models (Pradeepan et al., 2024). Interestingly, RSBs were found more frequently in MECP2 null
networks than controls, while they were rarely detected in SHANK2 networks. The emergence of
RSBs in networks prone to generating them appears to follow a non-random trajectory during
network development, with RSBs increasing in frequency over development. Therefore, bursting
patterns dominated by RSBs might thus reflect a particular stage of network development. Based

on all this, RSBs could be useful indicators of the network developmental trajectory.
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In studies of primary mouse neurons, this reverberation stage has been noted to be
transitory in nature, with patterns of long super bursts transitioning to more rapid, short duration
burst firing later in network development (Wagenaar et al., 2006). One possibility is that the ability
of excitatory-only networks to generate RSBs may be tied to network connectivity levels, which
change as networks mature or as a function of gene variants. At the early stages of network
development, networks are marked by nascent synapses, unable to produce successive rounds
of RSBs. As networks develop, synaptic strength increases, promoting noisy asynchronous
neurotransmitter release following an initial burst of activity, which emerges as RSBs. RSBs, with
their sustained activation of postsynaptic receptors, may be critical in synaptic plasticity of the
network. Over time, as the strength of synapses increases, the initiation burst becomes more
rapid and strong, depleting neurons of available neurotransmitter resources to a degree where
additional rounds of rapid burst firing cannot be supported without a sufficiently long refractory
period. Therefore, if RSBs are taken as a reflection of underlying connectivity strengths within a
network rather than a pathological state, the discordant findings between our previously reported
MECP2 null networks and SHANKZ2 networks are less conflicting. In MECP2 null networks, which
are hypoconnected, networks may persist longer in a firing regime dominated by RSBs. On the
other hand, SHANK2 networks, which are hyperconnected and hypersynchronous, might bypass
the RSB stage or transit through it at a rate which makes it difficult to detect on a biweekly
recording schedule. In support of this, in our present study, the cell line which was most prone to
generating RSBs (R841X-C) also had the lowest mean CorSE synchrony scores of the four lines
we investigated, indicating lower levels of functional connectivity within these networks. Moreover,
the lower levels of functional connectivity seen in SHANK2 R841X networks treated with DHPG
also coincided with an increase in the presence of RSBs observed in these networks.

DHPG rescues hypersynchronous SHANK2 networks
DHPG treatment was most effective in rescuing differences in SHANK2 network

synchrony. Activation of mGIuRs is associated with the induction of long-term depression and
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homeostatic synaptic scaling. Rescues of hyperconnectivity in SHANKZ2 networks by DHPG could
be reflecting an ability of the drug to successfully restore appropriate synaptic connectivity levels
within the network. In support of this, we found that mean CorSE synchrony scores and the
number of strong correlations were fully rescued by DHPG treatment, indicating a return to control
levels of coupling strength. However, our finding that some activity metrics such as MFR were
unaffected by DHPG treatment, while others such as network burst frequency and network burst
duration saw partial rescue, would suggest that additional factors beyond average coupling
strength contribute to the SHANK2 network phenotype. Future experiments using in silico network
models (Doorn et al., 2023) could prove useful in delineating the identities of these additional

contributing factors.
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Figure 1. iPSC-derived SHANK2 neurons assemble into functional networks in vitro. (A)
Overview of isogenic iPSC lines and workflow to generate excitatory cortical neurons used in
this study. (B) Representative extracellular voltage signals and raster plots of isogenic SHANK2
and control neuron networks taken from recordings at week 7 of development. (C) Weighted
mean firing rate and (D) the number of detected network bursts were observed to increase over

time for all lines.
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Figure 2. Increased network burst frequency and reduced network burst duration in
SHANK2 networks. (A) SHANK2 KO (top) and SHANK2 R841X (bottom) networks exhibit
increased mean firing rate (MFR) when compared to their isogenic controls. (B) Normalizing
MFR by the number of active recording channels does not change discrepancy in the wMFR
observed in SHANK2 networks. (C) Quantification of network burst frequency, (D) burst
frequency, (E) network burst duration, and (F) the standard deviation of network burst durations
in SHANKZ2 and isogenic control networks. Shaded error bands on lineplots indicate mean +
SEM. Crossbars on dotplots indicate the mean, marginal density plots show distribution of
datapoints (n = 54 for R841X-C, n = 47 for R841X, n = 60 for CTRL, n = 73 for KO. Network
recordings were taken from 6 independent differentiations for each cell line). *P < 0.05, **P<
0.01, ***P < 0.005; Mann-Whitney U test with Benjamini-Hochberg correction for multiple

testing.
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Figure 3. Increased synchrony of SHANK2 R841X networks as measured by correlated
spectral entropy. (A) Approach for calculation of synchrony pairwise correlations based on
correlated changes in the spectral entropy of raw voltage signals. This method does not require
spike detection. (B) Representative CorSE output for SHANK2 R841X and R841X-C networks.
Each sub-panel shows a raster plot of 15 seconds activity from the 5-minute recordings and
corresponding correlation matrix showing the synchrony score for each electrode pair (bottom
left). The bottom right panel shows the 8 x8 electrode grid with an overlaid a connectivity map
for the recording. Each edge represents a connection between two electrodes with a synchrony
score > 0.5. Coloured nodes indicate electrodes involved in these connections and are shown at
their appropriate spatial location on the electrode grid. (C) Circular connectivity plots from
representative recordings showing all pairwise correlations with a strength > 0.5. Boxes around
the circumference of the circle represent electrodes and edges represent connections. Edge
colour indicates the strength of connection. Electrode grouping schematic shows how
electrodes in the 8 x 8 electrode grid are grouped in circular connectivity plots. (D) Smoothed
gaussian kernel density estimates comparing the distribution of connection strengths across all
recordings at week 7 and 8 in SHANK2 R841X and R841X-C networks. (E) Empirical
cumulative distribution functions comparing CorSE synchrony scores in R841X-C and SHANK2
R841X networks. (F) Quantification of mean synchrony scores in all recorded networks. (G)
SHANK2 networks show increased number of strong correlations than controls (n = 100 for
R841X-C, n = 80 for R841X. Network recordings were taken from 6 independent differentiations
for each cell line). *P < 0.05, **P< 0.01, ***P < 0.005; single tailed two-sample Kolmogorov-

Smirnov test for (E), Mann-Whitney U test for (F,G).
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Figure 4. Intra-network burst firing dynamics are altered in SHANK2 networks. (A)
Heatmaps showing the average number of spikes per 10 ms bin within network bursts across all
recordings for each cell line. Bins containing zero spikes are shown in grey to better distinguish
them from periods of low-frequency spiking. (B) Line plots showing the average number of

spikes per bin within network bursts for each cell line. Thin, light coloured lines show the
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average spikes per bin within each recording. The darker bolded line shows the average
number of spikes per bin taken across all recordings. (C) Comparison of average network burst
shapes (bolded lines in panel B) in control (top) and SHANK2 (bottom) networks. (D-E) Mean
number of bursts per bursting channel. (F) Smoothed gaussian kernel density estimates
showing the distribution of single-channel burst initiation times relative to the time of network
burst (NB) onset in SHANK2 KO and CTRL and (G) SHANK2 R841X and R841X-C networks.
Right-most panel shows close up of boxed regions in top and middle plots, highlighting bursts
which initiate more than 500 ms after network burst onset (i.e. late bursts). (H-l) Quantification
of the percentage of late bursts per bursting channel. All spikes and bursts occurring outside of
network burst events were omitted for calculations. Network recordings were taken from 6

independent differentiations for each cell line. ***P < 0.005; Mann-Whitney U test.
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Figure 5. Machine learning classification of SHANK2 network features. (A) Comparative
Confusion Matrices for Classification Analyses of SHANK2 R841X vs. R841X-C (top) networks
and SHANK2 KO vs. CTRL networks (bottom). Each matrix displays the predictive performance
for each class in terms of accuracy percentages. True Positive Result (TPR), False Negative
Result (FNR). (B-C) Network feature contributions to classification. Comparative Feature
Contribution Analysis between SHANK2 and control network features visualizes the normalized
feature contribution percentages for twenty key features across the two study groups.
Contributions are calculated using the AceDimer algorithm, demonstrating the influence of each
feature within the classification model. Each bar represents the feature contribution percentage

to classification accuracy, with colour intensity indicating relative importance.
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Figure 6. Detection and quantification of Ca?* sensitive reverberating super bursts in
control networks. (A) Representative raster plots from SHANKZ2 and control network
recordings showing the appearance of RSBs in control (top) but not SHANKZ2 (bottom)

networks. (B) Quantification of the proportion of reverberating, partial-reverberating, and non-
reverberating networks from week 2 — week 8 of development in SHANK2 KO and CTRL
cultures, and in (C) SHANK2 R841X and R841X-C cultures. (D) Representative raster plots for
SHANK2 R841X and control R841X-C networks before and after treatment with 25 yM EGTA-
AM. (E) Closeups of shaded regions in (D) showing network burst structure. (F) Quantification of
reverberating super burst frequency in networks before and after treatment with EGTA-AM. ***P

< 0.005; Mann-Whitney U test.
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Figure 7. DHPG improves SHANK2 network burst frequency, duration and RSB detection.
(A) Representative raster plots and extracellular voltage traces from isogenic SHANK2 R841X
and control R841X-C cultures with and without DHPG treatment. (B) Quantification of network
burst frequency, (C) network burst duration and (D) the standard deviation of network burst
durations in SHANK2 R841X and control R841X-C networks, untreated or treated with 10 uM
DHPG. (E) Quantification of the proportion of reverberating, partial-reverberating, and non-
reverberating networks from week 2 — week 8 of development in untreated and DHPG-treated

SHANK2 R841X and R841X-C networks. Network recordings were taken from 6 independent
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differentiations for each cell line. *P < 0.05, **P< 0.01, ***P < 0.005; ns, not significant; Mann-

Whitney U test with Benjamini-Hochberg correction for multiple testing.
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Figure 8. DHPG improves intra-network burst firing dynamics in SHANK2 R841X

networks. (A) Heatmaps showing the average number of spikes per 10 ms bin within network
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bursts across all recordings for each cell line. Bins containing zero spikes are shown in grey to
better distinguish them from periods of low-frequency spiking. (B) Line plots showing the
average number of spikes per bin within network bursts for each cell line. Thin, light coloured
lines show the average spikes per bin within each recording. The darker bolded line shows the
average number of spikes per bin taken across all recordings. (C) Comparison of average
network burst shapes (bolded lines in panel B) between untreated control R841X-C and DHPG
treated SHANK2 R841X networks (top), and between untreated and DHPG treated SHANK2
R841X networks (bottom). (D) Smoothed gaussian kernel density estimates showing the
distribution of single-channel burst initiation times relative to the time of network burst (NB)
onset. Bottom-right panel shows close up of boxed regions in top and bottom left plots,
highlighting bursts which initiate more than 500 ms after network burst onset (i.e. late bursts).
(E) Quantification of the percentage of late bursts per bursting channel. (F) Mean number of
bursts per bursting channel. (G) Percentage of spikes in bursts. (H) Mean ISI of single-channel
bursts that occur within network bursts. All spikes and bursts occurring outside of network burst
events were omitted for calculations in (E-H). Network recordings were taken from 6
independent differentiations for each cell line. ***P < 0.005; ns, not significant; Mann-Whitney U

test.
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Figure 9. DHPG rescues mean CorSE synchrony score and distribution of correlation
strengths in SHANK2 R841X networks. (A) Representative CorSE output for DHPG-treated
SHANK2 R841X networks. Sub-panels show a raster plot of 15 seconds activity from the 5-
minute recordings and corresponding correlation matrix showing the synchrony score for each
electrode pair (bottom left). The bottom right panel shows the 8 x8 electrode grid with an
overlaid a connectivity map for the recording. Each edge represents a connection between two
electrodes with a synchrony score > 0.5. (B) Circular connectivity plots from representative
recordings showing all pairwise correlations with a strength > 0.5. Boxes around the
circumference of the circle represent electrodes and edges represent connections. Edge colour
indicates the strength of connection. (C) Smoothed gaussian kernel density estimates
comparing the distribution of correlation strengths across all recordings at week 7 and 8. (D)
Close up of boxed regions marked in (C), highlighting strong correlations (CorSE score > 0.5).
(E) Quantification of mean CorSE synchrony score and (F) the number of strong correlations at

week 7. *P < 0.05, **P< 0.01, ***P < 0.005; ns, not significant; Mann-Whitney U test.
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