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ABSTRACT 
Variants in the gene encoding the postsynaptic scaffolding protein SHANK2 are associated with 

several neurodevelopmental disorders, including autism spectrum disorder. Here, we used in vitro 

multielectrode arrays and pharmacological manipulations to characterize how functional 

connectivity and network-level firing properties were altered in cultures of human iPSC-derived 

SHANK2 neurons. Using two isogenic pairs of SHANK2 cell lines, we showed that the SHANK2 

hyperconnectivity phenotype was recapitulated at the network level. SHANK2 networks displayed 

significantly increased frequency and reduced duration of network burst events relative to 

controls. SHANK2 network activity was hypersynchronous, with increased functional correlation 

strength between recording channels. Analysis of intra-network burst firing dynamics revealed 

that spikes within SHANK2 network bursts were organized into high-frequency trains, producing 

a distinctive network burst shape. Calcium-dependent events called reverberating super bursts 

(RSBs) were observed in control networks but rarely occurred in SHANK2 networks. SHANK2 

network hypersynchrony and numbers of strong correlations were fully rescued by the group 1 

mGluR agonist DHPG, that also restored detection of RSBs and significantly improved network 

burst frequency and duration metrics. Our results demonstrate that SHANK2 variants produce a 

functional hyperconnectivity phenotype that deviates from the developmental trajectory of 

isogenic control networks. Furthermore, the hypersynchronous phenotype was rescued by 

pharmacologically regulating glutamatergic neurotransmission. 
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INTRODUCTION 
Autism spectrum disorder (ASD) is associated with protein coding and regulatory variants 

of genes that are important for proper synaptic function (Trost et al., 2022, Satterstrom et al., 

2020, Wamsley et al., 2024). SHANK2 is a high-confidence ASD risk gene with heterozygous 

loss-of-function variants being associated with ASD in humans (Berkel et al., 2010, Berkel et al., 

2012, Leblond et al., 2012). The SH3 and multiple ankyrin repeat domains (SHANK) gene family 

(Monteiro and Feng, 2017, Leblond et al., 2014) encodes multidomain scaffold proteins that 

primarily function at the postsynaptic density (PSD) of excitatory synapses and are regulated by 

zinc (Daini et al., 2021, Vyas et al., 2021, Ha et al., 2018, Eltokhi et al., 2021). SHANK scaffolds 

anchor neurotransmitter receptors including NMDARs and AMPARs into complexes together with 

PSD95 and POSH (Yao et al., 2022, Shi et al., 2017). SHANKs also interact with HOMER proteins 

to couple group 1 metabotropic glutamate receptors (mGluR) in a signalling complex (Tu et al., 

1999, Hayashi et al., 2009, Scheefhals et al., 2019). mGluR signalling leads to increased 

translation of synaptic proteins (Santini and Klann, 2014) that modulates synaptic plasticity 

(Waung and Huber, 2009) influencing the development of neural circuitry. Dysregulation of this 

process can lead to the formation of hyperconnected or hypoconnected neurons in 

neuropsychiatric disorders (Citri and Malenka, 2008). Altered synaptic plasticity is observed in 

Shank2 mice (Schmeisser et al., 2012, Won et al., 2012, Vyas et al., 2021) although distinct 

phenotypes observed in homozygous mice are dependent on the SHANK2 variant tested (Eltokhi 

et al., 2018, Lee et al., 2024).   

One way to model heterozygous SHANK2 variants is to isolate human induced pluripotent 

stem cells (iPSC) from ASD subjects and differentiate them into cortical neurons. We previously 

showed that iPSC-derived neurons harboring ASD subject-specific variants in SHANK2 are 

hyperconnected, having increased dendrite length and complexity and making more synaptic 

connections with other cells in culture (Zaslavsky et al., 2019). In addition, SHANK2 neurons had 

increased excitatory synaptic function including increases in spontaneous excitatory postsynaptic 
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potentials (sEPSC) frequency and amplitude in intracellular recordings. Chronic treatment of 

SHANK2 neurons with the mGluR agonist (S)-3,5-Dihydroxyphenylglycine (DHPG) prevented the 

increased dendrite length phenotype in neurons carrying a heterozygous nonsense variant 

(SHANK2 R841X). DHPG was also used to demonstrate that Shank proteins are required for 

mGluR5 internalization and signalling in mouse neurons (Scheefhals et al., 2019, Verpelli et al., 

2011). Further evidence supporting a role for dysregulated mGluR signaling in SHANK2 ASD is 

that mGluR5 protein was reduced in cultured iPSC-derived SHANK2 subject neurons and in the 

striatum of P7 Shank2(+/-) and Shank2 (-/-) mice (Lutz et al., 2021). In addition, this reduced 

abundance of mGluR5 was accompanied by dysregulation of the extracellular signal-regulated 

kinase 1/2 (ERK1/2) signaling pathway, which is known to function downstream of mGluR5 

activation. 

In vitro multielectrode array (MEA) circuitry studies on iPSC-derived neurons often 

complement single neuron patch-clamp results (Deneault et al., 2019, Mok et al., 2022, Frega et 

al., 2019, Pradeepan et al., 2024). They allow longitudinal recordings of connectivity, and track 

the establishment of functional network burst events or emergence of more complex patterns of 

network burst activity that reverberate (Lau and Bi, 2005, Volman et al., 2007). Such reverberating 

super bursts (RSBs) have been found in typical and neurodevelopmental disorder networks in 

vitro (Pradeepan et al., 2024, Doorn et al., 2024). While our previous findings show that SHANK2 

neurons are hyperconnected at the single neuron level, it is unknown how this increased synaptic 

connectivity and glutamatergic signaling impact network activity dynamics. DHPG treatment for 

24 hours was shown to enhance spike frequency of mouse neuronal networks in MEAs (Liu et 

al., 2020). However, the impact of DHPG treatment on the functional activity of SHANK2 neurons 

remains entirely unexplored.  

To address these questions, we utilized in vitro MEAs to extend the functional 

characterization of iPSC-derived SHANK2 neurons to their network-level firing activity and 
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collective firing dynamics. MEA recordings on isogenic pairs of iPSC-derived homozygous (-/-) 

SHANK2 knockout (KO) and heterozygous (+/-) SHANK2 R841X networks in vitro were analyzed 

for their patterns of activity from week 4 to week 8 of development. These SHANK2 networks 

were hyperactive and hypersynchronous compared to controls, displaying network bursts that 

were significantly more frequent and shorter in duration. Calcium-dependent RSBs were detected 

in the isogenic control networks but were almost undetectable in SHANK2 networks. Finally, 

chronic treatment of SHANK2 networks with DHPG rescued network synchrony, and significantly 

improved the network burst frequency and duration, as well as partially restoring the proportion 

of RSBs. Overall, the hypersynchronous SHANK2 network phenotype deviated from the 

developmental trajectory of isogenic controls, and was rescued by pharmacologically regulating 

glutamatergic neurotransmission. 

 

MATERIALS AND METHODS 
iPSC culturing and maintenance 
IPS cells were cultured on Matrigel (Corning) or Geltrex (Gibco) coated plates with 1.5-2 ml of 

mTeSR1 media (STEMCELL Technologies), media were changed daily except the day after 

passing. IPS cells were passed once a week with ReLeSR (STEMCELL technologies) into 1:3-

1:10 dilution depending on the density of the culture. Accutase (InnovativeCellTechnologies) 

was used for single-cell dissociation while cells cultured in MTeSR1 media supplemented with 

10 μM Rho-associated Kinase(ROCK) inhibitor. Mycoplasma test was performed routinely. 

Ngn2 neuronal differentiation 
Ngn2 induced cortical neurons were differentiated as previously described (Zhang et al., 2013, 

Mok et al., 2022). Briefly, On day 0 IPS cells were dissociated into single cells with accutase, 

300,000 - 750,000 cells in 2 ml of mTeSR1 Supplemented with 10 μM ROCK inhibitor were 

seed into each well of Matrigel-coated 6 well plates. On Day 1 and day 2 cells were cultured 

with CM1 media [DMEM -F12(Giboco), 1 x N2 (Gibco), 1 x pen/strep(Gibco), 1 x NEAA(Gibco), 
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1 μg/ml laminin (sigma)] supplemented with BDNF (Peprotech) and 10 ng/mL GDNF 

(Peprotech) and 2 μg/mL doxycycline hyclate (Sigma) with the exception that day 1 cells were 

still cultured in 10 μM Rock inhibitor and on day 2, Rock inhibitor was withdrawn and cell 

selection was started with (2–5 μg/mL) puromycin(Sigma). From day 3 to day 8, cells were 

cultured in CM2 media [Neurobasal media (Gibco), 1 x B27(Gibco), 1 x Glutamax (Gibco), 1 x 

pen/strep, 1 μg/ml laminin 10 ng/ml BDNF, 10 ng/ml GDNF] supplemented with 2 μg/mL 

doxycycline hyclate, where on day 3 the cells were still under puromycin selection and from day 

4 to day 8, the selection was withdrawn. From day 6-8, 10 μM Ara-C (Sigma) was added to CM2 

media. On day 8, post-Ngn2 induced neurons were dissociated with accutase and filtered 

through a 70m filter reseeded on plates for future assays. FUW-TetO-Ngn2-P2A-EGFP-T2A-

puromycin and FUW-rtTA plasmids for excitatory cortical neuron differentiations were kindly 

gifted by T. Sudhof (Zhang et al., 2013). 

MEA plating and recording 
Day 8 post-Ngn2 induced neurons were plated on MEA plate as previously described (Mok et 

al., 2022). Briefly, 12 well MEA plates with 64 electrodes (Axion Biosystems) were coated with 

filter sterilized 0.1% PEI solution in borate buffer pH 8.4 at room temperature for 1 hour, 

followed by 4 times wash with water and dried overnight. 100,000 of Day 8 Ngn2 neurons in 

100μl of droplets were seeded on each well in CM2 Brainphys media [Brainphys (STEMCELL 

Technologies), 1 x Glutamax, 1 x pen/strep 10 ng/ml BDNF, 10 ng/ml GDNF] supplemented 

with 400 μg/ml laminin and 10 μM ROCK inhibitor. Cells adhered to the well with hydration for 2 

hours and each well was topped up with 1 ml of CM2 brainphys media supplemented with 

40μg/ml laminin. Next day 20,000 P1 mouse astrocytes were added to each well. Media was 

changed twice a week exactly 24 hours before recording. 

For MEA recordings, each plate was allowed to incubate for 5 minutes on a Axion Maestro 

device heated to 37°C under 5% CO2. Spontaneous activity was then recorded at a sampling 
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frequency of 12.5 kHz for 5 minutes using AxIS v2.0 software (Axion Biosystems), with the 

analog settings set to “Field Potentials” recording mode (1200X gain, 1 – 2000 Hz bandwidth, 

median referencing). The analog settings were then changed to “Neural: Spikes” mode (1200X 

gain, 200 – 5000 Hz bandwidth, median referencing) and an additional 5 minutes of 

spontaneous activity was recorded. Field potential recordings were used exclusively for 

correlated spectral entropy synchrony analysis (see associated methods section). Neural spikes 

recordings were further bandpass filtered at 0.2 – 3 kHz and spikes were detected using a 

threshold crossing method with the threshold set at 6x the standard deviation of the noise of 

recording electrodes. These data were used as the starting point for all other network analyses 

performed. 

Network burst detection and offline analysis 
Network burst detection and offline analysis of MEA recordings was performed using Neural 

Metric Tool v2.5.7 software (Axion Biosystems). Electrodes were considered active if spikes 

were detected at a rate of at least 5 spikes per minute. Single-channel bursts were detected 

using the poisson surprise algorithm with the minimum surprise parameter set to 3. Network 

burst detection settings were tailored for each individual well to avoid spurious network burst 

calls and can be found listed in Supplemental Table 1. Supplemental neural metrics and 

network burst lists were exported for each recording and further analyses were completed in 

RStudio, Python, and MATLAB.  

Correlated spectral entropy synchrony analysis 
Correlated spectral entropy based network synchrony analysis was performed as described 

(Kapucu et al., 2016). Field potential recordings were first filtered with a 60 Hz notch to remove 

powerline noise, then a 7 HZ high pass filter to remove low-frequency fluctuations. The filtered 

voltage signal for each electrode was then split into 0.5 second windows, with 50% overlap 

between consecutive windows. The frequency power spectrum of each segment, 𝑃(𝑓), was 
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calculated using the pwelch function in MATLAB R2022a and was normalized by the total power 

of each segment: 

𝑃!"#$ =	
𝑃(𝑓)
∑𝑃(𝑓)

 

 The spectral entropy of each signal segment (Si) was then calculated as 

𝑆% =	
∑𝑃!"#$(𝑓)	log ,

1
𝑃!"#$(𝑓)

.

log𝑁
 

Where ∑𝑃!"#$(𝑓) is the sum of the normalized power spectrum for a signal segment containing 

𝑁 samples (e.g. for our recordings,  𝑁 = 12500 for a 1 second segment of an extracellular 

voltage signal recorded at a sampling frequency of 12.5 kHz).  

The cross-correlation of the spectral entropy of two signals, 𝑆& and 𝑆', at lag 𝑙 = 0 

 was then estimated using the crosscor function in MATLAB R2022a. This cross-correlation 

values is reported as the CorSE synchrony score for each electrode pair.  

Average network burst alignment 
For each recording, intra-network burst spike times were binned in 10 ms time intervals. Binned 

network bursts were then zero-padded and aligned in a window ranging from t = -3 seconds to t 

= 3 seconds, with the bin containing the greatest number of spikes centered at t = 0 

(representing the “burst peak”). The average network burst for each recording was then 

estimated by calculating the average number of spikes per bin across all aligned network bursts 

from that recording. A final “average network burst heatmap” for each cell line were then 

generated by plotting the number of spikes per bin in the averaged network burst from each 

recording. 
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Formulation of the AceDimer Machine Learning Algorithm 
The AceDimer algorithm core function is to evaluate feature contributions in neuroinformatic 

datasets. This involves generating feature subsets and assessing their impact on classification 

accuracy. The process can be summarized as follows: 

1. Feature Subset Generation: AceDimer generates all possible subsets of features for a dataset 

with N features. Each subset Si is a combination of features where i is a subset of (1, 2, ..., N). 

   - Si = (f1, f2, ..., fm), where m ≤ N 

2. Classification Accuracy Calculation: The classification accuracy A(Si) is calculated using the 

chosen classifier for each feature subset Si. 

   - A(Si) = Accuracy of Classifier with Features Si 

3. Feature Contribution Analysis: The contribution of each feature is assessed by comparing the 

accuracy of models with and without the feature. For a given feature fj, its contribution C(fj) is 

determined by the change in accuracy when fj is included in the subset. 

   - C(fj) = A(Si ∪ (fj)) - A(Si \ (fj)) 

4. Overall Feature Importance: The overall importance of each feature is calculated by taking the 

sum of its contributions across all subsets where it appears and then dividing this sum by the 

standard deviation of the feature's contributions across these subsets. This method offers a 

normalized measure of a feature's importance, accounting for the variability of its contributions. 

The formula for the overall importance of a feature fj is as follows: 

OI(fj) = (Sum of C(fj) for all i where fj is in Si) / Standard Deviation of C(fj) 

Where: 

• "Sum of C(fj) for all i where fj is in Si" represents the total contribution of the feature fj 

across all subsets that include it. 
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• "Standard Deviation of C(fj)" refers to the standard deviation of the contributions of the 

feature fj across these subsets. 

This updated method in AceDimer offers a more detailed and balanced analysis of each feature's 

significance, considering its contribution and its consistency across different combinations. 

These steps and calculations form the basis of the AceDimer algorithm, allowing for a 

comprehensive analysis of feature contributions and their interdependencies in neuroinformatic 

data. 

Pharmacological treatments 
All MEA plates were recorded twice per week, using the same recording practices and filter 

settings described in the MEA Plating and Recording section. During each recording, all wells 

were monitored for the appearance of RSBs through simple visual inspection of live raster plots 

generated by on-line spike and network burst detection in AxIS v2.0 software. Pharmacological 

treatments began after RSBs were detected in cultures. Before testing of pharmacological 

compounds, cell culture media was changed with fresh CM2 media and plates were allowed to 

incubate for 1 hour to allow neuronal activity to stabilize. A baseline recording of spontaneous 

neural activity was then taken for 10 minutes at 37 °C. Immediately following baseline recording, 

one pharmacological agent (0.1% DMSO, or 10 µM bicuculline) was added to each well, and an 

additional 10 minutes of spontaneous activity was recorded in the presence of drug compound. 

Washout of pharmacological agents was then achieved by changing culture media with fresh 

CM2 a total of 3 times, and plates were then allowed to incubate for another hour to allow 

activity to stabilize. A new 10-minute baseline recording was then taken, and the process was 

repeated until all pharmacological agents had been tested. 25 µM EGTA-AM was always added 

as the final drug compound in the rounds of testing as it was observed that normal baseline 

spontaneous activity did not return after drug washout. 
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Statistical analysis 
Statistical tests were performed in RStudio v2023.06.0 running R v4.3.1. Normality assumptions 

were formally tested using a Kolmogorov-Smirnov normality test. Comparisons between 

isogenic pairs were conducted by Mann-Whitney test with Benjamini-Hochberg correction for 

multiple testing (*p < 0.05, **p < 0.01, ***p < 0.001).  

Data visualization 
Representative raster plots were generated in Python using the eventplot function from the 

Matplotlib library (v3.7.1). Representative voltage races were plotted in MATLAB R2022A using 

functions provided by Axion Biosystems. Circular connectivity plots were generated in Python 

using the circular_layout and plot_connectivity_circle functions from the MNE tools library 

(v1.4.2). CorSE heatmaps were generated in Python using the heatmap function from the 

seaborn library (v0.12.2). CorSE network maps were generated in RStudio using the 

graph_from_data_frame function from the igraph package (v1.4.3). All other plots were 

generated in Rstudio using the ggplot function from the ggplot2 package (v3.4.2). Margin 

distributions were added to 2D scatterplots using the ggMarginal function from the ggExtra 

package (v.0.10.0).  
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RESULTS 

iPSC-derived SHANK2 neurons assemble into functional networks in vitro 
We previously reported that ASD-associated variants in SHANK2 result in 

hyperconnectivity of single neurons. To examine how population-level network activity is impacted 

by SHANK2 variants, we used in vitro MEAs to record spontaneous firing activity from SHANK2 

neurons. We used two pairs of isogenic SHANK2 and control lines that were previously described 

(Zaslavsky et al., 2019) (Figure 1A). The first isogenic pair consists of an ASD subject-derived 

line which harbours a single base pair non-sense variant (SHANK2 R841X) and an isogenic 

correction line (R841X-C), which was generated by using CRISPR-Cas9n gene editing to correct 

the point mutation back to the wild-type allele. The second pair consists of a control line 

reprogrammed from an unaffected control individual (CTRL) and an isogenic, homozygous 

knockout line (SHANK2 KO).  

Excitatory neurons were generated from each line by forced overexpression of the pro-

neurogenic transcription factor Neurogenin2 (Ngn2) and were subsequently co-cultured with 

primary mouse astrocytes on 12-well multielectrode array plates (Axion Biosystems) containing 

64 extracellular electrodes per well. Five minutes of spontaneous network activity was recorded 

twice a week, starting from 16 days after Ngn2 induction (DIV16) until DIV60. All four lines 

developed robust spontaneous firing activity, with the weighted mean firing rate (wMFR) of all 

lines increasing from week 2 – week 8 of recording (Figure 1B-C). Additionally, we observed 

network bursts by week 3 in all lines, with the average number of detected network bursts 

increasing from week 3 – week 8 (Figure 1D). Network bursts are a stereotyped pattern of 

spontaneous activity where bursts of high-frequency spiking activity are detected across multiple 

spatial locations in the network simultaneously, and their appearance is indicative of the 

establishment of network circuitry and functional network activity. These results indicate that 

neurons derived from all four iPSC lines produce robust spontaneous spiking activity and self-

organize into functional networks. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 30, 2024. ; https://doi.org/10.1101/2024.07.30.605451doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.30.605451
http://creativecommons.org/licenses/by-nc-nd/4.0/


 13 

Optimization of network burst detection 
Our detection of network burst events in the MEA recordings was initially handled by 

automated network burst detection algorithms. Importantly, the choice of detection algorithm and 

its associated parameters must be optimized to ensure that network burst identification is 

accurate. Indeed, suboptimal detection has been shown to significantly influence the results of 

downstream network activity analyses and phenotyping metrics (Mossink et al., 2022). Thus, to 

ensure the reliability of our network metrics, we ran automated network burst detection using fixed 

interspike interval (ISI) threshold, adaptive ISI threshold, and envelope detection algorithms (see 

methods for a detailed description of each detection algorithm). We then manually inspected the 

resultant network burst calls for every recording to evaluate the accuracy of each algorithm. We 

found that no single set of algorithm and parameter settings was appropriate for accurate network 

burst detection in all cultures across all time points, and this bulk approach to detection led to 

erroneous network burst calls in a significant number of recordings (Supplemental Figure 1). We 

found that ISI threshold algorithms tended to underestimate network burst frequency and 

overestimate network burst duration in many of our recordings grouping many distinct network 

bursts together as a single event. Accordingly, we instead chose to tailor network burst detection 

parameters for each culture individually. The detection algorithm and parameter settings used for 

each recording are listed in Supplemental Table 1. 

SHANK2 neurons collectively fire frequent network bursts with short durations 
To begin characterizing population-level differences in network firing dynamics, we first 

requantified the mean firing rate (MFR) in recordings of SHANK2 and isogenic control networks 

from week 4 (DIV29 – DIV35) to week 8 (DIV57 – DIV63) of development. We found that SHANK2 

networks were significantly more active than their respective isogenic controls, with the SHANK2 

R841X and SHANK2 KO lines both exhibiting a 1.8-fold and 2-fold increase in MFR at week 7, 

respectively (Figure 2A). The wMFR was also increased in SHANK2 networks, indicating that the 

increased firing rate was not caused by an increase in the number of active recording sites in 
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SHANK2 cultures (Figure 2B). In addition to an increase in baseline firing rate, SHANK2 networks 

displayed a significant increase in the frequency of network burst events across all time points 

examined (Figure 2C). Average network burst frequency was increased 4.1-fold in SHANK2 

R841X cultures when compared to isogenic R841X-C networks at week 7 of recording. This was 

accompanied by a concurrent 2.6-fold increase in the frequency of single-channel bursts (Figure 

2D). An increased frequency of network bursting was also observed in SHANK2 KO cultures (1.4-

fold increase at week 7) (Figure 2C). A trend of increased single-channel burst frequency was 

also observed in SHANK2 KO cultures, reaching statistical significance at week 4 and week 5 of 

development (Figure 2D). 

Network bursts occurring in SHANK2 cultures were considerably shorter in duration than 

those of control networks. Again, this difference was more pronounced in the ASD subject-derived 

SHANK2 R841X networks, which showed a 3.9-fold reduction in average network burst duration 

compared to a 1.3-fold reduction in SHANK2 KO networks (Figure 2E). In addition, the durations 

of network bursts within a given recording period were considerably less variable in SHANK2 

cultures than in controls. This resulted in a striking 9-fold reduction in the standard deviation of 

network burst durations in SHANK2 R841X networks at week 7 of development, while a 4.3-fold 

reduction was observed for SHANK2 KO cultures (Figure 2F). Together, these results indicate 

that SHANK2 networks fire network bursts that are shorter, more regular in duration, and more 

frequent than controls. 

SHANK2 networks exhibit hypersynchronous firing activity 
We next sought to characterize differences in network synchronization in SHANK2 and 

control cultures by conducting a pairwise analysis of neural synchrony between all 64 recording 

channels in each network recording. To evaluate pairwise correlation strengths in our networks, 

we chose to employ the correlated spectral entropy (CorSE) method (Kapucu et al., 2016). In 

contrast to event-based synchrony measures which evaluate spike train synchrony by looking for 
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correlations in the timing of binary spike events detected at different recording channels, the 

CorSE method takes the continuous voltage signal from each recording channel as inputs and 

evaluates synchrony by looking for correlated temporal changes in the contents of the signal’s 

frequency spectrum distribution (Figure 3A). A significant benefit to this approach is that it does 

not rely on spike detection prior to analysis and is thus not affected by sub-optimal spike detection, 

which could arise from high signal noise, low-amplitude spikes, or experimenter choice of 

detection algorithm. In addition, since the CorSE method is performed on continuous filtered 

voltage signals, low-frequency information contained in local field potentials (LFPs) generated by 

subthreshold and population-level activity is retained in the analysis and contributes to synchrony 

calculations (Kapucu et al., 2016).  

Accordingly, we also conducted network recordings with analog filter settings set to “field 

potential mode” (1 – 2000 Hz bandwidth, see Methods) to capture these low-frequency signal 

contributions and used these data for our functional connectivity analysis. Representative raster 

plots and corresponding adjacency matrices showing pairwise CorSE synchrony scores are 

shown in Figure 3B and Supplemental Figure 2A. Network graphs showing all pairwise 

connections with a synchrony score > 0.5 are also shown. These same data are also presented 

as circular connectivity graphs in Figure 3C to better visualize connections at the expense of 

retaining spatial information about the network structure.  

To gain a broad understanding of how connectivity may be altered in established SHANK2 

networks, we pooled CorSE synchrony scores from mature SHANK2 and control networks at 

weeks 7 and 8 of development and compared their distributions. We found that the distribution of 

correlation strengths from both SHANK2 R841X and SHANK2 KO networks showed a significant 

shift towards higher synchrony values in comparison to their isogenic controls (P < 0.0001, single 

tailed, two-sample Kolmogorov-Smirnov test, Figure 3D-E and Supplemental Figure 2B-C). 

Notably, while the distributions for all lines were approximately bell shaped with a primary peak 
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centered around CorSE values close to zero, the SHANK2 R841X distribution contained a 

prominent secondary peak centered around CorSE synchrony value of approximately 0.6, which 

was markedly absent from the other distributions (Figure 3D). While the SHANK2 KO distribution 

also lacked this notable secondary peak at higher synchrony values, it contained greater density 

in its right tail than either control distribution (Supplemental Figure 2B).  

To further quantify differences in pairwise correlation strengths between cell lines, we 

calculated the mean CorSE synchrony score for each network recording and compared the mean 

CorSE values from SHANK2 and control cultures. As expected, mean synchrony scores were 

increased 3.1-fold in SHANK2 R841X networks (Figure 3F) and 1.7-fold in SHANK2 KO networks 

(Supplemental Figure 2D-E). Given the shift towards high CorSE synchrony values in SHANK2 

networks, we next asked how strong correlations develop in SHANK2 cultures. As done 

previously (Kapucu et al., 2016), we defined strong correlations as any connection with a 

synchronization score greater than 0.5 and then quantified the number of strong correlations 

present in each network recording. 

Concurrent with the increase in mean CorSE values, we found a significant 4.9-fold 

increase in the mean number of strong correlations in SHANK2 R841X networks (Figure 3G) and 

a 2.2-fold increase in the number of strong correlations in SHANK2 KO cultures (Supplemental 

Figure 2F). Taken together, these results show that SHANK2 networks are hypersynchronous.  

Altered intra-network burst shapes and firing dynamics in SHANK2 networks 
Given the shorter and more regular duration of network bursts in SHANK2 cultures, we 

next asked how intra-network burst firing activity might be structured differently in SHANK2 

networks. A technique of network burst alignment and comparison of network burst shapes was 

used to characterize the effects of cadherin-13 knockdown on network activity in cultures of iPSC-

derived neurons (Mossink et al., 2022). Moreover, such characteristic network burst shapes can 

be used to discriminate between healthy and disease state dopaminergic and motor neurons in 
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an iPSC model of Parkinson’s disease (Ronchi et al., 2021). We noted that while our control 

network bursts generally appeared to consist of a mixture of rapid burst firing and tonic, low-

frequency spiking, SHANK2 network bursts appeared to consist primarily of high-frequency short 

burst firing (see Figure 1B). To better visualize these network burst shapes, we binned intra-

network burst spikes from each recording into 50 ms time intervals and then calculated the 

average number of spikes per bin across all network bursts for each recording. Within each 

recording, detected network bursts were aligned so that the bin containing the greatest number 

of spikes (i.e. the network burst “peak”) was centered at time t = 0 before averaging. Intra-network 

burst spiking intensity was then visualized by plotting this aligned, average network burst from 

each recording together to produce an average network burst heatmap for each line (Figure 4A).  

Moreover, by plotting the average number of spikes per bin across each heatmap, we were able 

to obtain a characteristic network burst shape for each cell line, which provides insight into how 

intra-network burst firing rates change as a function of time (Figure 4B). 

Interestingly, despite notable differences in the average network burst frequency, duration, 

and total spike content observed between the two control lines, their average network burst 

shapes were remarkably similar (Figure 4C, top), suggesting similar intra-network burst firing 

dynamics. Qualitatively, control network bursts appeared to consist of two distinct phases – a 

sharp increase in firing rate from network burst initiation to network burst peak, followed by a 

smooth exponential-like decay of the network-wide firing rate until network burst termination. 

Moreover, we observed that the network burst shapes of the two SHANK2 networks were also 

qualitatively similar to one another, and appeared to differ from those of isogenic control networks 

in a consistent manner (Figure 4C, bottom). While the initial decay in SHANK2 network firing rate 

following the burst peak appears to follow a similar trajectory to that of controls, this initial rapid 

decline in firing rate quickly transitions to a slower and more linear rate of decay. After this phase 
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of extended high frequency firing, the rate of decay changes again, and the network-wide firing 

rate rapidly declines until burst termination.  

We hypothesized that the characteristic SHANK2 network burst shape could reflect a 

model where the prolonged high frequency firing in the initial phase of decay rapidly depletes 

neurons of available resources, leading to the subsequent crash in network-wide spiking activity 

and termination of the network burst (Huang et al., 2017). In contrast, the rapid exponential-like 

decline in control network firing rates seen immediately after the burst peak may provide individual 

cells within the network with sufficient time to replenish resources and initiate additional rounds 

of individual bursts to prolong the overall network burst event.  

One prediction of this model, where individual control neurons have a better opportunity 

to replenish synaptic resources and burst again within the same extended network burst, is that 

they should have a greater number of bursts per single-channel recording than neurons in 

SHANK2 networks. Consistent with this, we found that SHANK2 KO and SHANK2 R841X network 

bursts contained an average of 1.0 bursts per channel, while control and R841X-C networks 

contained a modest but significantly greater average of 1.6 (Figure 4D-E). Additionally, plotting 

the distribution of single-channel burst initiation times within network burst events revealed a 

greater density of bursts starting at later timepoints in control networks (Figure 4F-G). To quantify 

this, we classified single-channel bursts into two groups: “early bursts” (single-channel bursts 

which initiate within 500 ms of network burst onset) and “late bursts” (single-channel bursts which 

initiate greater than 500 ms after network burst onset). Both SHANK2 KO and SHANK2 R841X 

lines were found to have significantly fewer late bursts within network burst events than their 

respective isogenic controls (Figure 4H-I). Finally, we compared the distribution of interspike 

intervals (ISIs) within network bursts for SHANK2 and control networks and found that SHANK2 

distributions were significantly more skewed towards shorter ISI values, indicative of higher intra-

burst firing rate (P < 0.0001 for CTRL vs SHANK2 KO distribution, P < 0.0001 for R841X-C vs 
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SHANK2 R841X distributions; One tailed, two-sample Kolmogorov-Smirnov test. Supplemental 

Figure 3).  

Together, these results suggest that the majority of SHANK2 network burst events 

primarily consist of a single, strong bursting event which persists for most of the network burst 

duration and encompasses the majority of network burst spikes. In contrast, control network 

bursts are less tightly structured and contain a greater diversity of single-channel bursts 

interspersed with low-frequency spiking. 

Machine learning classification of SHANK2 networks based on MEA metrics 
Machine learning-based methods, such as linear classifiers, can be used as an unbiased 

approach to identify phenotypes in electrophysiological data (Hornauer et al., 2024). These 

methods are especially valuable when more than one electrophysiological feature carries 

information about the phenotype, and to be effective must be able to accurately distinguish 

between the SHANK2 networks and the isogenic controls. By ranking the contributions of 

individual features, it should be possible to determine whether our supervised network analyses 

conducted with optimized network burst detection algorithms identify the most important features 

embedded in the activity metrics that can be read out from the automated MEA data analysis 

software provided by Axion systems.  

We used the AceDimer machine learning classifier tool (see methods) which employs 

principles similar to Permutation Feature Importance (Altmann et al., 2010, Kaneko, 2022) and 

SHAP values (Lundberg and Lee, 2017). We provided it with a training set of raw Axion system 

metrics related to burst duration, synchrony, and network burst frequency and used this as a tool 

to identify the SHANK2 and control networks in an independent dataset. The AceDimer method 

reached high performance levels with 85-90% accuracy at separating SHANK2 R841X from the 

R841X-C isogenic controls, as well as at separating SHANK2 KO networks and CTRL (Figure 

5A, chance performance was 50%). To obtain an estimate of which features each classifier used 
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to discriminate between the SHANK2 and control networks, we ranked the features that both 

classifiers considered most informative (Figure 5B) by their contributions as percentages (Fig 5C). 

The top 6 feature contributions for the SHANK2 R841X comparison related to network burst 

duration, synchrony (Area under Cross Correlation), and network burst frequency. This analysis 

provides additional support for our findings of network burst differences between SHANK2 and 

controls, and suggests that classifiers may be a useful tool to distinguish between different 

network functional phenotypes.  

Calcium-dependent reverberating super bursts in control and SHANK2 networks  
RSBs are network events consisting of a long initial high amplitude burst followed by high 

frequency smaller amplitude minibursts. Such events are found in control networks and they are 

particularly frequent in Rett syndrome networks with mutations of the MECP2 gene (Pradeepan 

et al., 2024). Here we explore whether RSBs also occur in SHANK2 cultures. RSBs were detected 

in CTRL and R841X-C cultures beginning at week 4 and week 5 of development, respectively, 

and persisted until the end of our recording time course at week 8. RSBs were very rarely detected 

in SHANK2 R841X wells at week 7 and week 8 (n=1 and n=2, respectively), but were never 

detected in SHANK2 KO networks (Figure 6A-C).  

We previously showed that RSBs occurring in networks of MECP2 null neurons were 

abolished by treatment with the membrane-permeable Ca2+ chelator ethylene glycol tetraacetic 

acid acetoxymethyl ester (EGTA-AM) (Pradeepan et al., 2024). A different study performed on 

organoids demonstrated GABAergic dependence of nested oscillations, a phenomenon similar to 

RSBs, using bicuculline (Trujillo et al., 2019). Accordingly, we next treated SHANK2 R841X and 

control R841X-C networks with either 10 µM bicuculline or 25 µM EGTA-AM to investigate what 

effect this had on the presence of RSBs. Bicuculine treatment did not abolish RSBs in 

reverberating R841X-C networks (Supplemental Figure 4A-B). However, bicuculline treatment did 

significantly increase the frequency of RSBs in R841X-C cultures and significantly decreased their 
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duration (Supplemental Figure 4C). These bicuculine side effects were seen previously in treated 

control and MECP2 null networks (Pradeepan et al., 2024) and may be due to off target effects 

on potassium channels (Khawaled et al., 1999). In contrast, treatment with EGTA-AM completely 

abolished RSBs in reverberating R841X-C networks (Figure 6D-E) corroborating the previous 

results that RSBs are indeed dependent on intracellular Ca2+ (Pradeepan et al., 2024).  

Chronic mGluR stimulation with DHPG rescues hypersynchronous SHANK2 networks 
We previously showed that chronic treatment of SHANK2 R841X neurons with 10 µM of 

the group 1 mGluR agonist DHPG was able to rescue the observed increased dendrite length 

phenotype (Zaslavsky et al., 2019). We next asked if chronic DHPG treatment could similarly 

rescue or improve any aspects of the SHANK2 electrophysiological network phenotype. We 

treated SHANK2 R841X and isogenic R841X-C networks by adding 10 µM DHPG with every 

culture media change from week 1 – week 8 and recorded spontaneous network activity. Chronic 

DHPG treatment did not significantly impair network formation as robust spiking activity and 

network burst formation was observed up to week 8 of development in DHPG-treated networks 

(Figure 7A, Supplemental Figure 5A). In addition, DHPG treatment had no impact on MFR in 

either SHANK2 R841X or control R841X-C lines (Supplemental Figure 5B). 

SHANK2 R841X networks treated with DHPG exhibited a significant reduction in network 

burst frequency, and a significant increase in network burst duration when compared to untreated 

SHANK2 R841X networks at all time points investigated (Figure 7B-C). Network burst durations 

in SHANK2 networks also became more variable with DHPG treatment, particularly at early time 

points (Figure 7D). This response was specific to SHANK2 networks, as DHPG treatment had no 

impact on network burst frequency, duration, or duration variability in control R841X-C networks 

at all time points investigated (Figure 7B-D). Interestingly, DHPG treatment also appeared to 

increase the proportion of SHANK2 R841X wells displaying patterns of RSB activity (Figure 7E). 

However, while persistent exposure to 10 µM DHPG in the culture media was able to improve 
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these aspects of the SHANK2 network phenotype, it did not fully restore these metrics to the level 

of untreated control networks. 

Next, we turned our attention to intra-network burst firing dynamics. We again plotted the 

average network burst shape for each recording and found that SHANK2 R841X networks 

appeared to have a variable response to DHPG treatment. While a subset of wells retained the 

characteristic SHANK2 network burst shape with a slower decline in firing rates after the burst 

peak, the remaining networks displayed network burst shapes that more closely resembled 

controls with firing rates that decayed exponentially following the burst peak (Figure 8A-C). 

Examining the distribution of single-channel burst start times within network burst events, 

SHANK2 R841X networks treated with DHPG now displayed a prominent second peak of burst 

start times initiating 1 – 2 seconds after network burst onset, similar to the R841X-C controls 

(Figure 8D). This was quantified as a significant 18.5 fold increase in the percentage of single-

channel bursts occurring more than 500 ms after network burst onset (i.e. “late bursts”), from a 

mean of 2% in untreated SHANK2 R841X networks to a mean of 37% in DHPG treated networks 

(Figure 8E). Moreover, we found a significant 1.5-fold increase in the number of bursts per 

bursting channel (untreated mean = 1.0, treated mean = 1.5; Figure 7F). DHPG treatment was 

also found to reduce the number of network burst spikes occurring within single-channel bursts 

(Figure 8G) and increased the average within-burst ISI (Figure 8H).  

Finally, we assessed if DHPG treatment could rescue the increased synchrony displayed 

by SHANK2 networks. Representative rasters and CorSE output are shown in Figure 9A-B. 

CorSE analysis of network synchronization revealed a significant shift in the distribution of 

synchrony scores in DHPG-treated SHANK2 R841X networks. Notably, the prominent secondary 

peak centered around CorSE values of approximately 0.6 seen in untreated SHANK2 R841X 

networks was noticeably flattened by DHPG treatment (Figure 9C-D). While DHPG-treated 

SHANK2 R841X networks were found to have a slight increase in the number of correlations with 
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CorSE scores in the range of 0.8 – 1.0 (Figure 9D), the overall distribution of correlation strengths 

in treated networks was significantly shifted towards lower synchrony values (P < 0.0001, one 

tailed, two-sample Kolmogorov-Smirnov test). This shift could further be quantified as a significant 

1.9-fold reduction in the average mean CorSE synchrony score in DHPG-treated SHANK2 R841X 

networks (Figure 9E). Importantly, DHPG-treated SHANK2 R841X networks were restored to the 

level of the isogenic controls as they showed no significant difference from the mean synchrony 

scores of R841X-C cultures. Additionally, DHPG treatment resulted in a significant 3.3-fold 

reduction in the number of strong correlations (CorSE score > 0.5) in SHANK2 R841X networks 

(Figure 9F). Again, DHPG-treated SHANK2 R841X networks were equivalent to the isogenic 

controls, with no significant difference detected in the number of strong correlations from R841X-

C cultures. Taken together, these results show that chronic group 1 mGluR agonism with 10 µM 

DHPG was successful in rescuing the hypersynchronous phenotype displayed by SHANK2 

R841X networks. 
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DISCUSSION 
In this study, we provided a thorough phenotypic characterization of SHANK2 neuronal 

network activity in vitro. We found that SHANK2 networks were hyperactive with increased MFR 

over controls. Moreover, SHANK2 networks were hypersynchronous with increased mean CorSE 

synchrony scores and an increased number of strong pairwise correlations between recording 

channels. At the network activity level, these traits manifested as an increased frequency of 

network bursts, which were shorter and more regular in duration than controls. Examination of 

intra-network burst firing dynamics revealed a characteristic SHANK2 network burst shape which 

was consistent across SHANK2 R841X and SHANK2 KO cultures. This network burst shape was 

characterized by a significantly slower decline in network-wide firing rates after the burst peak, 

followed by a rapid termination of network activity. We found that this characteristic network burst 

shape, at least in part, reflected a decreased ability of SHANK2 networks to drive additional 

rounds of single-channel burst firing following the initiating burst of activity. Consistent with this, 

Ca2+ dependent RSBs rarely occurred in SHANK2 networks but were present in controls. Finally, 

we showed that treatment of SHANK2 R841X networks with DHPG was able to fully rescue the 

hypersynchronous SHANK2 network phenotype. 

Intra-network burst dynamics and network burst shape 
Our finding that SHANK2 and control neurons had characteristic network burst shapes is 

intriguing, as this appears to be robust to substantial within-genotype differences in the gross 

firing patterns displayed between lines when examined at larger timescales. Indeed, the network 

burst shapes displayed by individual cell lines was remarkably consistent across multiple neuronal 

differentiations and platings, and were observed to be robust to significant changes in the overall 

amplitude of intra-network burst firing rates. Characterization of intra-network burst dynamics 

could thus prove to be a useful approach for disease phenotyping studies, where batch effects 

and plate-to-plate variability in firing metrics are a known challenge for the field (Mossink et al., 

2021).  
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We hypothesized that the characteristic network burst shapes produced by SHANK2 

networks could reflect a model consistent with synaptic fatigue, where the intense firing within 

SHANK2 network events rapidly depletes the energy or synaptic resources in single neurons 

required to sustain the prolonged elevated firing rate across an excitatory-only network. This leads 

to a sudden and rapid decrease in firing rate immediately preceding network burst termination as 

synaptic resources are depleted. The fact that DHPG rescued many aspects of the 

hyperconnected phenotype suggests that SHANK2 variants affect the synaptic machinery that 

allows fast electrochemical transmission during network bursts. Moreover, our finding that DHPG 

treatment concurrently restores wild-type-like network burst dynamics in a subset of SHANK2 

networks provides some supporting evidence that these characteristic bursting dynamics are 

influenced by coupling strength within the network. 

It should be noted that differences in the intrinsic properties of single neurons could also 

influence the network burst shapes (e.g., spike frequency adaptation) observed in our 

excitatory-only networks. Future studies using in silico network models could be used to dissect 

the contributions of intrinsic and synaptic properties to network bursting behaviour, and to test 

the predictions we have made here. 

Network reverberating super bursts 
Our finding that RSB frequency is decreased in SHANK2 networks demonstrates the 

potential utility of RSB quantification in disease phenotyping assays. The presence of RSBs in 

network recordings was also found to segregate by genotype in MECP2 null Rett syndrome 

models (Pradeepan et al., 2024). Interestingly, RSBs were found more frequently in MECP2 null 

networks than controls, while they were rarely detected in SHANK2 networks. The emergence of 

RSBs in networks prone to generating them appears to follow a non-random trajectory during 

network development, with RSBs increasing in frequency over development. Therefore, bursting 

patterns dominated by RSBs might thus reflect a particular stage of network development. Based 

on all this, RSBs could be useful indicators of the network developmental trajectory. 
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In studies of primary mouse neurons, this reverberation stage has been noted to be 

transitory in nature, with patterns of long super bursts transitioning to more rapid, short duration 

burst firing later in network development (Wagenaar et al., 2006). One possibility is that the ability 

of excitatory-only networks to generate RSBs may be tied to network connectivity levels, which 

change as networks mature or as a function of gene variants. At the early stages of network 

development, networks are marked by nascent synapses, unable to produce successive rounds 

of RSBs. As networks develop, synaptic strength increases, promoting noisy asynchronous 

neurotransmitter release following an initial burst of activity, which emerges as RSBs. RSBs, with 

their sustained activation of postsynaptic receptors, may be critical in synaptic plasticity of the 

network. Over time, as the strength of synapses increases, the initiation burst becomes more 

rapid and strong, depleting neurons of available neurotransmitter resources to a degree where 

additional rounds of rapid burst firing cannot be supported without a sufficiently long refractory 

period. Therefore, if RSBs are taken as a reflection of underlying connectivity strengths within a 

network rather than a pathological state, the discordant findings between our previously reported 

MECP2 null networks and SHANK2 networks are less conflicting. In MECP2 null networks, which 

are hypoconnected, networks may persist longer in a firing regime dominated by RSBs. On the 

other hand, SHANK2 networks, which are hyperconnected and hypersynchronous, might bypass 

the RSB stage or transit through it at a rate which makes it difficult to detect on a biweekly 

recording schedule. In support of this, in our present study, the cell line which was most prone to 

generating RSBs (R841X-C) also had the lowest mean CorSE synchrony scores of the four lines 

we investigated, indicating lower levels of functional connectivity within these networks. Moreover, 

the lower levels of functional connectivity seen in SHANK2 R841X networks treated with DHPG 

also coincided with an increase in the presence of RSBs observed in these networks. 

DHPG rescues hypersynchronous SHANK2 networks 
DHPG treatment was most effective in rescuing differences in SHANK2 network 

synchrony. Activation of mGluRs is associated with the induction of long-term depression and 
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homeostatic synaptic scaling. Rescues of hyperconnectivity in SHANK2 networks by DHPG could 

be reflecting an ability of the drug to successfully restore appropriate synaptic connectivity levels 

within the network. In support of this, we found that mean CorSE synchrony scores and the 

number of strong correlations were fully rescued by DHPG treatment, indicating a return to control 

levels of coupling strength. However, our finding that some activity metrics such as MFR were 

unaffected by DHPG treatment, while others such as network burst frequency and network burst 

duration saw partial rescue, would suggest that additional factors beyond average coupling 

strength contribute to the SHANK2 network phenotype. Future experiments using in silico network 

models (Doorn et al., 2023) could prove useful in delineating the identities of these additional 

contributing factors. 
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Figure 1. iPSC-derived SHANK2 neurons assemble into functional networks in vitro. (A) 

Overview of isogenic iPSC lines and workflow to generate excitatory cortical neurons used in 

this study. (B) Representative extracellular voltage signals and raster plots of isogenic SHANK2 

and control neuron networks taken from recordings at week 7 of development. (C) Weighted 

mean firing rate and (D) the number of detected network bursts were observed to increase over 

time for all lines. 
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Figure 2. Increased network burst frequency and reduced network burst duration in 

SHANK2 networks. (A) SHANK2 KO (top) and SHANK2 R841X (bottom) networks exhibit 

increased mean firing rate (MFR) when compared to their isogenic controls. (B) Normalizing 

MFR by the number of active recording channels does not change discrepancy in the wMFR 

observed in SHANK2 networks. (C) Quantification of network burst frequency, (D) burst 

frequency, (E) network burst duration, and (F) the standard deviation of network burst durations 

in SHANK2 and isogenic control networks. Shaded error bands on lineplots indicate mean ± 

SEM. Crossbars on dotplots indicate the mean, marginal density plots show distribution of 

datapoints (n = 54 for R841X-C, n = 47 for R841X, n = 60 for CTRL, n = 73 for KO. Network 

recordings were taken from 6 independent differentiations for each cell line). *P < 0.05, **P< 

0.01, ***P < 0.005; Mann-Whitney U test with Benjamini-Hochberg correction for multiple 

testing. 
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Figure 3. Increased synchrony of SHANK2 R841X networks as measured by correlated 

spectral entropy. (A) Approach for calculation of synchrony pairwise correlations based on 

correlated changes in the spectral entropy of raw voltage signals. This method does not require 

spike detection. (B) Representative CorSE output for SHANK2 R841X and R841X-C networks. 

Each sub-panel shows a raster plot of 15 seconds activity from the 5-minute recordings and 

corresponding correlation matrix showing the synchrony score for each electrode pair (bottom 

left). The bottom right panel shows the 8 x8 electrode grid with an overlaid a connectivity map 

for the recording. Each edge represents a connection between two electrodes with a synchrony 

score > 0.5. Coloured nodes indicate electrodes involved in these connections and are shown at 

their appropriate spatial location on the electrode grid. (C) Circular connectivity plots from 

representative recordings showing all pairwise correlations with a strength > 0.5. Boxes around 

the circumference of the circle represent electrodes and edges represent connections. Edge 

colour indicates the strength of connection. Electrode grouping schematic shows how 

electrodes in the 8 x 8 electrode grid are grouped in circular connectivity plots. (D) Smoothed 

gaussian kernel density estimates comparing the distribution of connection strengths across all 

recordings at week 7 and 8 in SHANK2 R841X and R841X-C networks. (E) Empirical 

cumulative distribution functions comparing CorSE synchrony scores in R841X-C and SHANK2 

R841X networks. (F) Quantification of mean synchrony scores in all recorded networks. (G) 

SHANK2 networks show increased number of strong correlations than controls (n = 100 for 

R841X-C, n = 80 for R841X. Network recordings were taken from 6 independent differentiations 

for each cell line). *P < 0.05, **P< 0.01, ***P < 0.005; single tailed two-sample Kolmogorov-

Smirnov test for (E), Mann-Whitney U test for (F,G). 
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Figure 4. Intra-network burst firing dynamics are altered in SHANK2 networks. (A) 

Heatmaps showing the average number of spikes per 10 ms bin within network bursts across all 

recordings for each cell line. Bins containing zero spikes are shown in grey to better distinguish 

them from periods of low-frequency spiking. (B) Line plots showing the average number of 

spikes per bin within network bursts for each cell line. Thin, light coloured lines show the 
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average spikes per bin within each recording. The darker bolded line shows the average 

number of spikes per bin taken across all recordings. (C) Comparison of average network burst 

shapes (bolded lines in panel B) in control (top) and SHANK2 (bottom) networks. (D-E) Mean 

number of bursts per bursting channel. (F) Smoothed gaussian kernel density estimates 

showing the distribution of single-channel burst initiation times relative to the time of network 

burst (NB) onset in SHANK2 KO and CTRL and (G) SHANK2 R841X and R841X-C networks. 

Right-most panel shows close up of boxed regions in top and middle plots, highlighting bursts 

which initiate more than 500 ms after network burst onset (i.e. late bursts). (H-I) Quantification 

of the percentage of late bursts per bursting channel. All spikes and bursts occurring outside of 

network burst events were omitted for calculations. Network recordings were taken from 6 

independent differentiations for each cell line. ***P < 0.005; Mann-Whitney U test. 
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Figure 5. Machine learning classification of SHANK2 network features. (A) Comparative 

Confusion Matrices for Classification Analyses of SHANK2 R841X vs. R841X-C (top) networks 

and SHANK2 KO vs. CTRL networks (bottom). Each matrix displays the predictive performance 

for each class in terms of accuracy percentages. True Positive Result (TPR), False Negative 

Result (FNR). (B-C) Network feature contributions to classification. Comparative Feature 

Contribution Analysis between SHANK2 and control network features visualizes the normalized 

feature contribution percentages for twenty key features across the two study groups. 

Contributions are calculated using the AceDimer algorithm, demonstrating the influence of each 

feature within the classification model. Each bar represents the feature contribution percentage 

to classification accuracy, with colour intensity indicating relative importance. 
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Figure 6. Detection and quantification of Ca2+ sensitive reverberating super bursts in 

control networks. (A) Representative raster plots from SHANK2 and control network 

recordings showing the appearance of RSBs in control (top) but not SHANK2 (bottom) 

networks. (B) Quantification of the proportion of reverberating, partial-reverberating, and non-

reverberating networks from week 2 – week 8 of development in SHANK2 KO and CTRL 

cultures, and in (C) SHANK2 R841X and R841X-C cultures. (D) Representative raster plots for 

SHANK2 R841X and control R841X-C networks before and after treatment with 25 µM EGTA-

AM. (E) Closeups of shaded regions in (D) showing network burst structure. (F) Quantification of 

reverberating super burst frequency in networks before and after treatment with EGTA-AM. ***P 

< 0.005; Mann-Whitney U test.  
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Figure 7. DHPG improves SHANK2 network burst frequency, duration and RSB detection. 

(A) Representative raster plots and extracellular voltage traces from isogenic SHANK2 R841X 

and control R841X-C cultures with and without DHPG treatment. (B) Quantification of network 

burst frequency, (C) network burst duration and (D) the standard deviation of network burst 

durations in SHANK2 R841X and control R841X-C networks, untreated or treated with 10 µM 

DHPG. (E) Quantification of the proportion of reverberating, partial-reverberating, and non-

reverberating networks from week 2 – week 8 of development in untreated and DHPG-treated 

SHANK2 R841X and R841X-C networks. Network recordings were taken from 6 independent 
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differentiations for each cell line. *P < 0.05, **P< 0.01, ***P < 0.005; ns, not significant; Mann-

Whitney U test with Benjamini-Hochberg correction for multiple testing.  
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Figure 8. DHPG improves intra-network burst firing dynamics in SHANK2 R841X 

networks. (A) Heatmaps showing the average number of spikes per 10 ms bin within network 
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bursts across all recordings for each cell line. Bins containing zero spikes are shown in grey to 

better distinguish them from periods of low-frequency spiking. (B) Line plots showing the 

average number of spikes per bin within network bursts for each cell line. Thin, light coloured 

lines show the average spikes per bin within each recording. The darker bolded line shows the 

average number of spikes per bin taken across all recordings. (C) Comparison of average 

network burst shapes (bolded lines in panel B) between untreated control R841X-C and DHPG 

treated SHANK2 R841X networks (top), and between untreated and DHPG treated SHANK2 

R841X networks (bottom). (D) Smoothed gaussian kernel density estimates showing the 

distribution of single-channel burst initiation times relative to the time of network burst (NB) 

onset. Bottom-right panel shows close up of boxed regions in top and bottom left plots, 

highlighting bursts which initiate more than 500 ms after network burst onset (i.e. late bursts). 

(E) Quantification of the percentage of late bursts per bursting channel. (F) Mean number of 

bursts per bursting channel. (G) Percentage of spikes in bursts. (H) Mean ISI of single-channel 

bursts that occur within network bursts. All spikes and bursts occurring outside of network burst 

events were omitted for calculations in (E-H). Network recordings were taken from 6 

independent differentiations for each cell line. ***P < 0.005; ns, not significant; Mann-Whitney U 

test. 
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Figure 9. DHPG rescues mean CorSE synchrony score and distribution of correlation 

strengths in SHANK2 R841X networks. (A) Representative CorSE output for DHPG-treated 

SHANK2 R841X networks. Sub-panels show a raster plot of 15 seconds activity from the 5-

minute recordings and corresponding correlation matrix showing the synchrony score for each 

electrode pair (bottom left). The bottom right panel shows the 8 x8 electrode grid with an 

overlaid a connectivity map for the recording. Each edge represents a connection between two 

electrodes with a synchrony score > 0.5. (B) Circular connectivity plots from representative 

recordings showing all pairwise correlations with a strength > 0.5. Boxes around the 

circumference of the circle represent electrodes and edges represent connections. Edge colour 

indicates the strength of connection. (C) Smoothed gaussian kernel density estimates 

comparing the distribution of correlation strengths across all recordings at week 7 and 8. (D) 

Close up of boxed regions marked in (C), highlighting strong correlations (CorSE score > 0.5). 

(E) Quantification of mean CorSE synchrony score and (F) the number of strong correlations at 

week 7. *P < 0.05, **P< 0.01, ***P < 0.005; ns, not significant; Mann-Whitney U test. 
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