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Abstract

Multimodal analysis of single-cell samples from healthy and diseased tissues at various stages provides

a comprehensive view that identifies disease-specific cells, their molecular features and aids in patient

stratification. Here, we present MultiMIL, a novel weakly-supervised multimodal model designed to

construct multimodal single-cell references and prioritize phenotype-specific cells via patient classifi-

cation. MultiMIL effectively integrates single-cell modalities, even when they only partially overlap,

providing robust representations for downstream analyses such as phenotypic prediction and cell

prioritization. Using a multiple-instance learning approach, MultiMIL aggregates cell-level measure-

ments into sample-level representations and identifies disease-specific cell states through attention-

based scoring. We demonstrate that MultiMIL accurately identifies disease-specific cell states in
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blood and lung samples, identifying novel disease-associated genes and achieving superior patient

classification accuracy compared to existing methods. We anticipate MultiMIL will become an

essential tool for querying single-cell multiomic atlases, enhancing our understanding of disease

mechanisms and informing targeted treatments.

1

Introduction2

Advances in single-cell technologies have enabled multiomic profiling of thousands of patient sam-3

ples, providing a holistic view of disease heterogeneity on multiple scales—from individual cells to4

cell types and patients [1]. These large-scale datasets can facilitate both disease diagnostics and5

therapeutics [2]. In diagnostics, these multimodal datasets allow for the precise identification of cel-6

lular changes that are unique to specific diseases. Researchers can identify biomarkers and cellular7

behaviors indicative of disease states by analyzing individual cells and their interactions. This level8

of granularity not only improves the accuracy of diagnostics but also helps in the early detection of9

diseases, which is crucial for effective treatment. In therapeutics, understanding disease-specific cell10

states can lead to more targeted and personalized treatment strategies. By identifying the cellular11

mechanisms and pathways disrupted in disease, researchers can develop therapies targeting these12

areas, minimizing side effects and improving treatment efficacy.13

A significant challenge remains in linking cell-level signals to patient-level phenotypes in an inter-14

pretable manner, allowing researchers to understand the underlying cellular processes and mecha-15

nisms driving disease phenotypes. Several computational approaches have been developed to predict16

disease phenotypes at the cellular level [3–7] and at the patient level [8–10]. Concurrently, other17

approaches prioritize cells exhibiting differential transcriptomic signals [11, 12] or differential compo-18

sitional signals compared to a reference phenotype (e.g., healthy vs. diseased) [13]. However, these19

approaches are limited as they model single-cell data based solely on transcriptomics and cannot20

handle multimodal datasets [3, 6]. Although they provide predictions at the patient level, they fail21

to effectively link these predictions to the cellular processes driving the disease phenotype [8]. Such22

approaches also struggle to systematically model technical effects across samples, which is necessary23

to accurately predict phenotypes and prioritize disease cells free from spurious variations. A recent24

paper introduced MrVI [14], a model that can deal with batch effects, but it relies heavily on the25

accuracy of the counterfactual generative modeling with VAEs and does not make use of patient26

annotations.27
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To overcome these limitations, we introduce MultiMIL, a multimodal multi-instance learning ap-28

proach for phenotypic prediction and differential cell prioritization in single-cell multiomics. Multi-29

MIL employs a multiomic data integration strategy using a product-of-expert [15] generative model,30

providing a comprehensive multimodal representation of cells. These representations are fed into31

downstream prediction and prioritization modules. The model leverages advances in weakly super-32

vised learning, particularly multiple-instance learning (MIL), to learn patient conditions from single33

cells by prioritizing phenotype-specific cells through an attention mechanism. The MIL approach34

allows the model to capture different phenotypic behaviors, from molecular differences to compo-35

sitional changes upon disease compared to reference phenotypes. MultiMIL can also use latent36

representations from atlases or foundation models, enhancing its flexibility and utility.37

We showcase applications for MultiMIL, enabling efficient multimodal data integration across various38

datasets, which is necessary to learn robust representations. Using these representations, including39

pre-trained ones, we demonstrate phenotypic prediction for unseen patients and prioritization of40

disease-specific cell states by analyzing human peripheral blood mononuclear cells and the Human41

Lung Cell Atlas. We further demonstrate how the disease states identified with MultiMIL can help42

discover novel genes associated with the disease.43

Learning multimodal cell and patient representations to prioritize phenotype-specific44

cells45

MultiMIL is a deep-learning-based model that allows the integration of multimodal single-cell data46

and the prediction of sample-level phenotypes from these single-cell measurements. MultiMIL’s47

model consists of two submodules: a variational autoencoder that learns a low-dimensional latent48

representation of singe-cell data and a classification head that learns to predict sample-level phe-49

notypes from the low-dimensional latent representations (Fig. 1a,b). We draw inspiration from50

the multiple-instance learning (MIL) approach [16, 17], where we model donors as bags and cells51

as instances belonging to a bag. The classification labels are only known on the bag level but not52

on the instance level, and we are interested in identifying instances associated with the bag label53

(Suppl. Fig. 1).54

The autoencoder module is implemented as encoder-decoder pairs, where each pair corresponds to55

a modality present in the data (Fig. 1a). The encoders output the parameters of the corresponding56

unimodal marginal distribution, and the joint distribution in the latent space is modeled using the57

Product of Experts (PoE) [15, 18]. The PoE distribution preserves unique and shared information58

from the unimodal marginal distributions [18]. The PoE approach also allows MultiMIL to integrate59
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Figure 1: MultiMIL enables multimodal integration, query mapping and interpretable
phenotype prediction. (a) The MultiMIL model accepts paired or partially overlapping single-cell
multimodal data across samples with varying phenotypes and consists of pairs of encoders and de-
coders, where each pair corresponds to a modality. Each encoder outputs a unimodal representation
for each cell, and the joint cell representation is calculated from the unimodal representations. The
joint latent representations are then fed into the decoders to reconstruct the input data. Cells from
the same sample are combined with the MIL attention pooling layer, where cell weights are learned
with the attention mechanism, and the sample representations are calculated as a weighted sum of
cell representations. The sample representations are then finally fed into the classifier network that
learns to predict conditions. (b) The key use cases for MultiMIL are the integration of paired and
partially overlapping data into reference atlases (top), mapping of query samples onto the reference
and prediction of conditions for the new data (middle), and identification of disease-associated cell
states with the learned attention weights as well as the construction of disease-informed patient
representations (bottom).
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paired as well as partially overlapping data (i.e., where the measurements are missing for one or60

more modalities in part of the data). Additionally, categorical and continuous sample covariates,61

e.g., batch, can be incorporated into the model to obtain the latent representation disentangled from62

the specified covariates (see Methods).63

The classification head consists of a MIL aggregator with an attention mechanism and a feed-forward64

classifier network. The MIL module aggregates the cell-level embeddings into a bag embedding65

employing attention pooling. During training, the model learns attention weights αi for each cell i in66

a bag and then aggregates cell embeddings zi into a bag representation zbag as weighted sum
∑

i αizi.67

The pooled representation zbag is then fed into a feed-forward network that predicts condition labels.68

Ultimately, we are interested in mapping new patients onto the atlases with multiple conditions and69

predicting the conditions for these patients. To this end, MultiMIL utilizes the scArches transfer-70

learning approach for query-to-reference mapping [19]. When mapping a new batch of data, we only71

fine-tune a small portion of the model parameters specific to this batch, allowing for faster and more72

efficient training compared to de novo integration.73

MultiMIL provides several ways to interpret the learned attention weights (Fig. 1b). Firstly, the74

higher the weight of a particular cell, the more important the cell was for the prediction. Learning a75

score for each cell allows us to identify and analyze cell states associated with a particular condition76

by selecting cells with high attention scores. Additionally, we can obtain sample representations77

from the model by taking a weighted average of the cells within a sample. These representations78

of donors in a low-dimensional space are learned from the single-cell measurements and reflect the79

disease progression better than mean embeddings.80

The model is trained on mini-batches, optimizing for the accurate reconstruction, Kullback-Leibler81

(KL) divergence with monotonic annealing [20, 21] and prediction accuracy. We additionally em-82

ploy the maximum mean discrepancy loss (MMD) [22, 23] to correct strong batch effects and to83

make sure that unimodal representations have similar distributions, which is necessary for successful84

multimodal query-to-reference mapping (see Methods). Due to mini-batching and the deep-learning85

nature of the model, MultiMIL is fast to train: the integration module takes ca. 10 minutes for a86

quarter of a million cells and the full model takes ca. 15 minutes for the same number of cells (Table87

6).88

Users can train the autoencoder module and the classifier head sequentially, separately, or in an89

end-to-end manner, depending on whether there is a need to integrate the data from scratch or if90

5

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 29, 2024. ; https://doi.org/10.1101/2024.07.29.605625doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.29.605625
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 2: MultiMIL integrates paired and partially overlapping modalities and allows
unimodal as well as multimodal query-to-reference mapping. (a) Design for the paired
integration, trimodal reference building and query mapping. The paired integration benchmark
was run on 10x multiome and CITE-seq datasets. The trimodal reference consists of 10x multiome
(RNA-ATAC) and CITE-seq (RNA-ADT) data, and the query consists of multiome, CITE-seq
and unimodal scATAC-seq and scRNA-seq data. (b) A bar plot of overall integration scores for the
two CITE-seq (RNA-ADT) and two multiome (RNA-ATAC) datasets comparing MultiMIL, totalVI,
Seurat’s WNN, MOFA+ and multiVI. (c) A table with integration metrics with all the benchmarked
methods, showing individual metric scores, averaged bio-conservation and batch-correction scores,
and overall scores.(d) UMAPs of the reference latent space obtained from the two top-performing
models (MultiMIL on the left and paired GLUE, averaged representation on the right), colored
by cell type and modality. NK cells appear to be integrated better by MultiMIL, explaining the
difference in the overall scores. (e) UMAPs of different queries mapped onto the trimodal reference
with MultiMIL.

there is already an existing atlas at hand. We will discuss both use cases later. This adaptability91

makes MultiMIL suitable for a wide range of applications and allows it to integrate seamlessly into92

existing analytical workflows. We envision MultiMIL as a multi-task tool for multimodal integration,93

query mapping of new samples, disease prediction for the query donors and identification of disease-94

associated states.95
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MultiMIL enables multimodal reference building and query-to-reference mapping96

Technologies for paired sequencing enable the joint analysis of two modalities, but this also presents97

a unique challenge. We need to model both modalities in a way that preserves shared as well as98

unique information [24, 25]. This work tackles this problem by learning a joint low-dimensional99

representation for each cell. Due to the modeling of the joint state with the product-of-expert100

approach, MultiMIL is capable of integrating not only fully paired data but also partially overlapping101

measurements, for instance, a paired RNA-ATAC dataset and a paired RNA-ADT dataset (Fig. 2a).102

MultiMIL’s unique feature is the query mapping of unimodal and multimodal data, which allows the103

mapping of any combination of modalities onto existing references. In this section, we first compare104

MultiMIL with the existing methods for paired integration and then demonstrate the trimodal105

reference building and mapping functionalities.106

We benchmarked MultiMIL’s performance on paired integration against three state-of-the-art meth-107

ods on two CITE-seq datasets (NeurIPS 2021 CITE-seq [26], Hao et al. [27]) and two paired108

RNA-ATAC datasets (NeurIPS 2021 multiome [26], 10x public multiome [28]). Hao et al. dataset109

comprises PBMCs from eight donors enrolled in an HIV vaccine trial. NeurIPS datasets have bone110

marrow mononuclear cells from 10 healthy donors, and the second multiome dataset contains PBMCs111

from one healthy donor and does not have any batch effect. We compared MultiMIL to MOFA+112

[29], Seurat v4 WNN [30] on all four datasets, totalVI [31] on CITE-seq datasets and multiVI [32]113

on the multiome datasets.114

To quantitatively evaluate the results, we calculated a subset of the scIB metrics [33] suitable for115

multimodal integration (see Methods). The metrics address both the conservation of biological signal116

and batch effect removal. Overall, MultiMIL achieved the highest total score on both paired RNA-117

ATAC datasets while scoring first and second on the CITE-seq datasets (Fig. 2a). TotalVI and118

Seurat WNN obtained high scores on all datasets, while the score for MultiVI was dataset-dependent119

(Suppl. Fig. 2). MOFA+ failed to remove batch effects present in the original data, resulting in a120

low batch correction score (Suppl. Fig. 2, Suppl. Fig. 3).121

To demonstrate MultiMIL’s ability to perform mosaic integration [24], we integrated Sites 1 and 2122

from the NeurIPS 2021 CITE and Neurips 2021 multiome datasets [26]. We compared MultiMIL123

with GLUE [25], MultiMAP [34] and scMoMaT [35] on this task. We calculated the scIB score on the124

latent space after performing minimal cell type harmonization between the datasets. We included125

two Adjusted Silhouette Width (ASW) scores for batch correction: Batch ASW and Modality ASW.126

This dual-level evaluation of batch and modality mixing allows us to measure the removal of tech-127
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nical biases at a finer scale of individual batches and a coarser scale of modalities simultaneously,128

aligning with the approach outlined in [36]. For the methods that output one representation per129

cell per modality, we calculated the metrics once on the original output and once on the averaged130

representations (denoted "avrg." in Fig. 2d).131

MultiMIL scored first, and GLUE (paired model, avrg.) scored second on this task. UMAPs of the132

learned representations are relatively similar for these two methods (Fig. 2c). MultiMIL obtained a133

slightly higher Modality ASW score than GLUE, which is caused, for instance, by better integrated134

Natural Killer (NK) cells across modalities (Fig. 2c,d). scMoMaT scored fourth based on scIB135

metrics even though the modalities were not well-mixed (Fig. 2d, Suppl. Fig. 4a). scMoMaT136

obtained a high Batch ASW score despite not integrating the two modalities. At the same time, we137

observed that Modality ASW is the lowest for scMoMaT, which aligns with the visual inspection of138

the UMAPs. Overall, we noted that the models that do take into account the information about139

which cells are paired (MultiMIL, GLUE paired) performed better than the methods that do not140

(Fig. 2d, Suppl. Fig. 4).141

When MultiMIL’s reference model is trained on multimodal data, our model enables unimodal and142

multimodal query mapping, where unimodal query modalities can be any of the individual modalities143

from the multimodal reference. After we build the atlas described above, we map unimodal (i.e.,144

scRNA-seq, snRNA-seq and scATAC-seq) and multimodal (CITE-seq and multiome) queries onto145

the reference. We calculated scIB metrics using reference and query as two batches to assess the146

mapping quality. MultiMIL successfully mapped all the queries, obtaining very similar scIB scores147

for all of them (Fig. 2e, Suppl. Fig. 5c). Multimodal queries obtained the highest Batch ASW148

scores, possibly indicating that the batch correction works best for the data modalities present in149

the reference. We also trained a random forest classifier to transfer the cell types from the reference150

to the queries and calculated the prediction accuracy. Label transfer worked best for CITE-seq and151

scRNA data while mapping scATAC-seq seems to be most challenging (Suppl. Fig. 5c, d).152

Seurat Bridge integration [37] also allows the mapping of scATAC-seq data onto the scRNA-seq153

reference, so we included it in this experiment. Because the reference in this case is a scRNA-seq-154

only reference (i.e., not multimodal), we could not directly compare the reference building with155

the other methods for trimodal reference building. Additionally, Bridge allows visualization of156

the reference and query on a joint UMAP and label transfer but does not explicitly provide low-157

dimensional embeddings in the joint reference-query space. Hence, we did not calculate scIB metrics158

for Seurat Bridge, but we included UMAPs of the reference and the mapped scATAC-seq query in159
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the supplementary figures for visual inspection (Suppl. Fig. 5a, b).160

To assess the robustness of our model, we performed several experiments benchmarking the model’s161

sensitivity towards the number of shared features, the strength of the integration parameter, the size162

of the reference and the type of the MMD loss (Methods and Suppl. Fig. 6). When the number163

of shared genes is more than 1,000, MultiMIL can successfully build the reference, but the quality164

of query mapping increases with the number of shared features. We also observed that the quality165

of the query mapping slightly increases with bigger references.166
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Figure 3: MultiMIL accurately predicts disease stages from a multimodal PBMC dataset.
(a) Case study design. PBMCs were sequenced with CITE-seq (paired RNA and ADT), integrated
with MultiMIL’s integration module, subset to healthy, mild and severe COVID-19 samples, and
used as input to train MultiMIL’s classifier network. (b) A bar plot showing average accuracies
and standard deviations (i.e., the length of an error bar equals two standard deviations) of the five
cross-validation runs on the disease-prediction task. MultiMIL was trained in the classification and
regression settings. Cell type mean embeddings and frequency vectors were input to the random
forest (RF), feed-forward neural network (NN) and multiclass logistic regression (MR) models. Mean
embeddings and cell embeddings were input to the RF and NN models. (c) UMAPs of the integrated
latent space colored by cell type (left), cell attention scores (middle) and condition (right). The
myeloid compartment (i.e., CD14, CD16 monocytes and dendritic cells) and plasmablasts have high
attention scores. (d) UMAPs of the myeloid compartment showing the healthy, mild and severe
COVID-19 cells with the top 10% of attention scores for each condition. (e) A bar plot showing
the top five cell types with the biggest compositional change from healthy to severe COVID-19,
including plasmablasts.
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MultiMIL accurately predicts disease states and identifies cell states driving the disease167

progression168

In the previous sections, we described how the integration module of MultiMIL performs multimodal169

integration and query-to-reference mapping. Next, we simultaneously model the multimodal single-170

cell embeddings and sample-level covariates, such as e.g. disease. To validate our approach of171

predicting sample-level disease labels from single-cell data, we utilize a CITE-seq peripheral blood172

mononuclear cell (PBMC) dataset [38]. This large-scale dataset consists of 130 healthy and diseased173

samples and provides metadata on the progression of COVID-19 stages. First, we integrate scRNA-174

seq and ADT measurements from all the data points with MultiMIL to obtain a low-dimensional175

data representation. Then, we subset the data to healthy, mild and severe COVID-19 samples (see176

Methods) and train the MultiMIL’s classifier module to assess the predictive performance on this177

multiclass classification task and evaluate the interpretability of cell attention scores (Fig. 3a).178

For MultiMIL, the prediction task can be formulated as either a classification task or a regression179

task, as we need to model the progression from healthy to mild to severe stages. We compare our180

model to several baseline models, and MultiMIL outperformed all the baselines in a 5-fold cross-181

validation experiment (Fig. 3b), achieving an accuracy of 75% for the regression model and 72%182

for the classification model.183

The baseline prediction models include a random forest, feed-forward neural net and multiclass184

regression. Approaches utilizing single-cell data for phenotypic prediction often rely on (pseudo-185

)bulk data [7, 39], so we included a range of pseudo-bulk baselines in our comparison. Since MIL186

models generally fall between models that make predictions on the instance (i.e., single-cell) level187

and models that make predictions on the bag (i.e., bulk) level, we also include cell-level baselines188

(Fig. 3b, Methods). The mean embedding of a sample is the mean of cell embeddings belonging189

to this sample, and cell type mean embeddings are calculated as the mean of cell embeddings per190

cell type and concatenated per sample. Frequency vectors are calculated as relative frequencies191

of cell types present in each sample. For cell embeddings, the input to the models was the cell192

embeddings from the integrated space, and the prediction was made for each cell. We note that cell193

type mean embeddings and frequency vectors are supervised since the cell type labels are required,194

while MultiMIL, mean embeddings and cell embeddings are not.195

To ensure that MultiMIL prediction performance is consistent independently of the learned latent196

embedding, we also trained a totalVI [31] model in the same setting. We observed that the quality197

of the embeddings is comparable between the two models (Fig. 3c, Suppl. Fig. 8b,c) and that the198
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MultiMIL also outperforms other baselines when trained on totalVI embeddings (Suppl. Fig. 8a).199

We also tested MultiMIL on a binary classification task, predicting healthy vs. COVID-19, and in200

a more challenging multiclass task, predicting healthy and all five stages of COVID-19. In all the201

experiments, our model outperformed other baselines or performed on par with supervised cell type202

mean-embedding baselines (Suppl. Fig. 8a).203

When analyzing diseased samples, we are interested in identifying cell states affected by the disease.204

By utilizing the cell-attention module, our model learns a weight for each cell, where higher weights205

directly correspond to cell states associated with the condition. For visualizations and further206

analysis, we selected the classification formulation of the model since it provided more robust results207

discussed later (Suppl. Fig. 9a). We also only take into account cells with the 10% highest scores208

per condition, as these cells are most strongly associated with the disease. We observe in Fig. 3c209

that cell types with the highest attention scores are monocytes, dendritic cells (DCs), plasmablasts,210

and platelets. We first examine the myeloid compartment (Fig. 3d) and notice a trajectory of211

highlighted CD14 monocytes from healthy and mild to severe, indicating a mean shift in expression212

levels between different stages. Similarly, we find distinct populations of highlighted healthy and213

mild CD16 monocytes, confirming that the signal learned with MultiMIL aligns with previous studies214

reporting strong changes in monocytes with the progression of COVID-19 [40, 41].215

Since the whole plasmablast cluster had a high attention score, we hypothesized that it might be216

related to compositional differences. Hence, we next investigated which cell types had the biggest217

compositional changes between conditions. We found that plasmablast and platelet populations218

were in the top five (Fig. 3e), so MultiMIL identified compositional changes in these two cell types219

as indicative of disease progression, also reported in [42]. We additionally ran Milo [13] on the220

same embeddings and found that cell populations identified by MultiMIL, e.g., CD16 monocytes221

and platelets, were among the cell types with the highest log-fold-change in composition identified222

by Milo (Suppl. Fig. 8d). We note that Milo allows comparisons between two conditions, while223

MultiMIL identifies condition-specific cell states for multiple classes simultaneously. To examine how224

dependent the cell attention scores are on the input embedding, we compared cell types with the225

highest attention scores obtained from MultiMIL embeddings and totalVI embeddings and found226

that the same cell types were identified (Suppl. Fig. 8e).227

Finally, we looked at the robustness of cell attention scores. We observed that the scores are mostly228

consistent across cross-validation runs (Suppl. Fig. 9a). The classification formulation yields more229

stable results than the regression formulation in terms of which cell types belonged to the group of230
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cells with the top 10% attention scores. We therefore suggest that users default to the classification231

model when analyzing the attention scores. We also note that the cells with the highest attention232

score were consistently CD14 and CD16 monocytes (Suppl. Fig. 9b). We observed this in most233

cross-validation runs of the classification model with different seeds using MultiMIL embedding or234

runs using the totalVI embedding. Additionally, we show that by aggregating cells with the highest235

attention scores, we obtain sample representations most indicative of the disease stages, compared to236

averaging all cell embeddings or taking a weighted (by attention score) average of the cell embeddings237

(Suppl. Fig. 9c,d, Methods).238

We tested the end-to-end training of the model to assess the feasibility of simultaneous learning of239

the latent representations and the cell attention weights. However, we observed that since there is240

no clear ground truth on how well the disease and healthy samples should be integrated, it may be241

challenging to assess if the model over- or under-integrates (Suppl. Fig. 7a). We noticed that the242

accuracy of the prediction on the validation set increases with higher classification coefficients in243

the loss function up to a certain point but then declines due to overfitting (Suppl. Fig. 7b). We244

therefore recommend that the users train the model in the two-step setting, i.e., first the integration245

module, then the prediction module. It is also possible to use existing atlases to skip the first step,246

which will be discussed next.247

MultiMIL identifies a subpopulation of IPF-associated macrophages in human lung248

Single-cell atlases provide integrated and cell-type-harmonized representations of different systems249

or organs of interest. These atlases can comprise hundreds of donors, which in turn is crucial250

to understanding the disease variability and potential therapeutical targets [2]. We demonstrate251

how MultiMIL can be utilized with existing single-cell atlases. Since MultiMIL’s integration and252

prediction modules can be trained separately, we can train the prediction module directly on the253

atlas embeddings. The Human lung cell atlas (HLCA) [43] consists of healthy and diseased donors254

integrated into a common latent space. We investigated idiopathic pulmonary fibrosis (IPF) and255

compared diseased and healthy samples. To this end, we selected the healthy and IPF individuals256

from the atlas and trained MultiMIL’s prediction module in a 5-fold CV setting (Fig. 4a). MultiMIL257

outperformed other baselines on the prediction task (Fig. 4b). We note that other models also258

achieved high accuracy (>80%). If users are only interested in the binary classification task and259

not the interpretability aspects, then mean-embedding baselines provide a satisfactory performance260

(Fig. 4b).261

We examine the learned cell attention scores to analyze which cell states the model learns to associate262
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Figure 4: MultiMIL identifies IPF-associated cell states in human lung macrophages (a)
Case study design. Pre-trained embeddings from the HLCA [43] were subset to healthy and IPF
samples and used to train MultiMIL’s classification module on the binary classification task. (b)
A bar plot showing average accuracies and standard deviations of the five cross-validation runs on
the prediction task. (c) UMAPs of the original latent space from the HLCA colored by cell type
(top), condition (bottom left), profibrotic score calculated in macrophages (bottom middle) and
cell attention score (bottom right). A subpopulation of macrophages has a high attention score, so
we investigate these cells further. (d) Violin plots showing the profibrotic score in high-attention
macrophages and all macrophages from IPF donors (p-value<0.001, two-sided t-test). (e) A Venn
diagram with the genes in the profibrotic signature, the number of genes that are upregulated in
the high-attention macrophages compared with all macrophages from IPF donors, and the number
of genes in the intersection of the two sets. (f) GO enrichment analysis of the upregulated genes in
the high-attention macrophages. (f) UMAPs of the macrophages with the expression of SLAMF7,
CCL22 and TNFSF14.
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with the disease. We notice that a subset of macrophages has the highest scores (Fig. 4c), so we263

first show that MultiMIL identifies a subpopulation of SPP1hi IPF-specific macrophages [5, 44]. We264

hypothesize that this subpopulation corresponds to profibrotic macrophage populations reported in265

previous studies [45, 46]. To confirm, we calculate the profibrotic score based on the profibrotic266

signature introduced in [45] (Fig. 4c). We select macrophages from IPF donors and show that the267

cells with the highest attention score (top 10%) have a significantly higher profibrotic score than268

all IPF macrophages (Fig. 4d). MultiMIL also identifies a KRT17+ subpopulation of basal cells269

(Suppl. Fig. 10b) that previously have been reported to be associated with IPF [5, 47].270

Cells with high attention can also be used for novel gene signature discovery or to expand the existing271

signatures. We demonstrate how to identify the gene signature of the IPF-associated macrophage272

subpopulation using only the attention scores and not relying on previous knowledge. We ran edgeR273

[12] to find differentially expressed genes between IPF macrophages with the top 10% highest weight274

and all IPF macrophages and identified 16 significantly upregulated genes. Comparing these 16275

genes with the genes from the profibrotic signature, we find the overlap of 9 (out of 15) genes (Fig.276

4e).277

The genes identified solely from MultiMIL’s high attention group include SLAMF7, which has been278

previously reported to regulate the immune response in lung macrophages during polymicrobial279

sepsis and COVID-19 [48, 49]. Elevated levels of CCL22 have also been found in patients with IPF280

[50, 51]. TNFSF14 promotes fibrosis in the cardiac muscle and atria [52], lung [53] and kidney [54].281

Interestingly, TNFSF14 has been reported to regulate fibrosis in both structural and immune cells282

[53] (Fig. 4g).283

IPF is characterized by the excessive accumulation of the extracellular matrix (ECM) and the dis-284

rupted balance between ECM production and degradation, where matrix metalloproteinase (MMP)285

and the tissue inhibitor of metalloproteinase (TIMP) systems play an important role also in macrophages286

[55]. We found that TIMP3, MMP7 and MMP9 were reported as part of the profibrotic signature287

and identified in our DE test. Several other genes that we found, namely, CCND1, CRABP2,288

SPON2, SPINK1, CKB and MMP2, all have been linked to the ECM remodeling [56–61]. We ad-289

ditionally performed Gene Ontology (GO) enrichment analysis [62, 63] on the 16 genes upregulated290

in the high-attention group and found that the majority of the significantly enriched terms were291

associated with the ECM (Fig. 4f).292

293
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Discussion294

MultiMIL is a deep-learning-based model for integrating multimodal single-cell data and identifying295

disease-associated states. It combines cVAE, attention pooling, and multiple-instance learning to296

provide a comprehensive pipeline for building and analyzing single-cell atlases. Our model integrates297

paired and partially overlapping single-cell data and uniquely allows for the reference mapping of298

unimodal and multimodal query samples. We demonstrated that the MIL approach to sample-level299

classification from single-cell measurements outperforms classical baselines while offering additional300

interpretability that other models lack. Specifically, MultiMIL can identify transcriptomic and301

compositional changes driving the disease by analyzing the learned attention scores.302

The field of spatial multiomics is rapidly developing [64], and we expect future multimodal models to303

include spatial data types. Foundation models offer a promising avenue for such endeavors, as some304

already incorporate multimodal integration as a downstream application [65]. Due to its modular305

architecture, MultiMIL could be enhanced to work in the spatial domain, enabling the integration306

of spatial information with other modalities.307

Several other MIL models [66, 67] have shown promising results when applied to whole slide images,308

and initial works in the single-cell field have utilized them in imaging or genomics applications309

[16, 68]. This work demonstrates the potential applications and advantages of the MIL approach310

in single-cell multiomics. Future research should benchmark different MIL-based models to identify311

the most effective strategies for various single-cell applications.312

As a deep-learning method, MultiMIL is subject to variability in downstream results due to the313

stochastic nature of the training process. Additionally, the complexity of the model introduces314

numerous hyperparameters, necessitating extensive optimization experiments.315

We note that new metrics tailored specifically for multimodal integration are required to better assess316

the quality of the integrated latent space [69]. While some papers on multimodal integration use317

scIB metrics [70, 71], others provide overviews of metrics explicitly introduced for the multimodal318

case [72]. Developing and standardizing such metrics will be crucial for future research.319

The field of single-cell multiomics is expected to grow rapidly, especially with the ongoing efforts of320

the Human Cell Atlas (HCA) project [73]. As more large-scale atlases are released, MultiMIL can be321

readily applied to these datasets to identify cell states potentially relevant to various diseases. This322

will be particularly impactful in complex diseases such as Alzheimer’s, where large cohort datasets323
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are already available [74, 75]. MultiMIL’s ability to integrate and analyze these expansive datasets324

will facilitate the discovery of novel disease-associated cell states and mechanisms.325

Additionally, MultiMIL can be utilized for perturbation studies to understand how cells respond to326

various treatments or environmental changes. This application is crucial for identifying potential327

therapeutic targets and understanding drug response mechanisms [76]. By analyzing perturbation328

data, MultiMIL can reveal how different cell states shift in response to specific interventions, provid-329

ing insights that can guide the development of patient-tailored drugs. This approach not only helps330

in identifying effective treatments but also in customizing therapies to individual patients based on331

their unique cellular responses, thereby enhancing the precision and efficacy of medical interventions332

[77].333

MultiMIL offers an innovative approach to linking single-cell-level and sample-level data, identifying334

biologically meaningful disease-associated cell states. By accommodating multimodal or unimodal335

data, raw data, or existing atlases, the model provides computational biologists with a versatile tool336

for various applications.337
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370

Methods371

MultiMIL372

MultiMIL is a generative model based on conditional variational autoencoders (cVAEs) [78] with an373

additional multiple instance learning (MIL) module on the latent space. The architecture consists374

of three main parts: encoders, decoders and the MIL module. Multimodal single-cell data (together375

with the batch covariate) is first fed into the encoders, which output parameters of unimodal marginal376

distributions. Then, a product-of-expert layer calculates the joint distribution parameters from the377

marginal distributions’ parameters. In the latent space, we sample from the joint distribution and378

then feed the latent embeddings to the decoders (concatenated with batch covariates) and the MIL379

classifier module. Decoders learn the parameters of the distributions assumed for the input data,380

and the MIL classifier learns to predict classification labels for a "bag" of cells. In the following, we381

explain the input to the model in more detail and how each component is trained.382

MultiMIL training383

We assume there are several single-cell multimodal datasets, each consisting of multiple patients384

with disease labels available for all patients. Here, we will describe the end-to-end training of the385

VAE and the MIL modules and discuss the differences between integration-only and prediction-386

only training later. Single-cell datasets are usually confounded by the technical batch effect, but387

to simplify the notation, we will treat each dataset as one technical batch. In this section, we will388

refer to the experimental batches in an experiment or a dataset as "technical batches" or "batch389

covariates". In contrast, the computational batches, i.e., mini-batches on which machine-learning390

models are trained, are referred to as "batches" or "training batches".391

We denote single-cell datasets as {D1, . . . , Dk} with corresponding batch covariate labels {c1, . . . , ck}392

and assume that the datasets consist of patients {p1, . . . , pd} with corresponding disease labels393

{l1, . . . , ld}. We also assume that the datasets are multimodal and have m modalities in total.394

We will now focus on a single mini-batch and describe one forward pass of the model. Each training395

batch consists of single-cell data {X1, . . . , Xm}, the technical batch label {c}, and the patient disease396

label {l}. For simplicity, we assume that only cells from one patient are present in each training397

batch. Hence, the batch input data matrices {X1, . . . , Xm} correspond to multimodal data from398

one patient from m modalities, where some matrices may be all zeros if measurements for the399
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corresponding modality are missing. The number of rows in each matrix Xi equals n, which is the400

number of cells in the mini-batch, and the number of columns equals the number of features in the401

original input data of modality i. Note that since the data is paired, the rows in different matrices402

within one batch always correspond to the same cells.403

The data matrices are first fed into the modality-specific encoders e1, . . . , em. Each encoder layer404

consists of a linear layer with dropout, layer normalization and a non-linearity, which can be405

chosen by the user (with leaky ReLU as default). The output of the encoders are the parame-406

ters of p(z|x1), . . . , p(z|xm), respectively, which are assumed to be normal. Hence, the output is407

(µ1, σ1), . . . , (µm, σm), where µ1, σ1, . . . , µm, σm ∈ Rn×h and h is the number of latent dimensions408

and each parameter is learned independently for each latent dimension.409

We employ the product-of-expert (PoE) [15, 18] technique to determine the parameters of the joint410

distribution p(z|x1, . . . , xm) from p(z|x1), . . . , p(z|xm) for cell j and latent dimension p:411

µj,p = (µ0σ
−1
0 +

m∑
i=1

Miµ
j,p
i (σj,p

i )−1)(σ−1
0 +

m∑
i=1

Mi(σ
j,p
i )−1)−1,

σj,p = (σ−1
0 +

m∑
i=1

Mi(σ
j,p
i )−1)−1,

(1)

where µ0 and σ0 are the parameters of the prior N (µ0, σ0), which in our case is standard normal, so412

µ0 = 0 and σ0 = 1, and Mi is 1 if modality i is present in this particular batch and 0 otherwise. We413

obtained the closed form above because we assumed all the distributions to be normal [18]. In the414

next step, we sample the joint representation zjoint ∼ p(z|x1, . . . , xm) independently for each latent415

dimension using the reparametrization trick [79].416

During the decoding step, the dataset (i.e., the technical batch) information c is concatenated to417

zjoint, and then the concatenated matrix is fed into each of the modality-specific decoders d1, . . . , dm.418

The dataset information c is represented as a learnable embedding in a low-dimensional space. The419

decoders mirror the encoders’ architecture and consist of blocks of a linear layer with dropout, layer420

normalization and non-linearity.421

The latent representation zjoint is also fed into the MIL module. The first step here is to aggregate422

the representations of all cells zjoint ∈ Rn×h from the batch (i.e., bag) into a zbag ∈ Rh. This bag423

representation corresponds to a pooled representation of a bag of cells. There are several ways to424

obtain this pooled representation, e.g., applying max or sum operators, but we follow [17] and apply425

attention aggregation:426
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zpbag =
∑
i∈bag

aizi,pjoint, (2)

where the joint representation of cell i along latent dimension p is denoted as zi,pjoint ∈ R. Attention427

weights ai ∈ R are learned with the gated attention mechanism [17, 80]:428

ai =
exp

[
wT (tanh(V zijoint)⊙ sigm(Uzijoint))

]
∑

j∈bag exp
[
wT (tanh(V zjjoint)⊙ sigm(Uzjjoint))

] , (3)

where w ∈ Rq, V ∈ Rq×h and U ∈ Rq×h are learnable weights and q is a hyperparameter known as429

attention dimension.430

After the aggregation, zbag is fed into a classifier network, once again consisting of blocks of a linear431

layer with dropout, layer normalization and non-linearity. The number of neurons in the last layer432

equals the number of classes. The classification network predicts the distribution of disease labels433

for a given bag (i.e., patient). We have now described all of the modules in the model and will434

discuss the training loss.435

MultiMIL can be trained end-to-end, meaning that reconstruction and classification tasks are opti-436

mized simultaneously; in this case, we adjust the VAE framework to account for the new classification437

module. As in standard VAE models, we calculate the reconstruction loss and the Kullback-Leibler438

(KL) loss with monotonic annealing [20, 21]. For a discussion on VAEs for single-cell data mod-439

eling, see [81]. The reconstruction loss is calculated separately for each modality, depending on440

which distribution is assumed for the input data of this modality (e.g., normal, negative binomial441

or zero-inflated negative binomial). To obtain the final reconstruction loss, the modality-specific442

reconstruction losses are summed up:443

Lrecon =
m∑
i=1

λiLi
recon, (4)

where the weights λi are all set to 1 by default, but a weighted sum can be calculated instead. The444

uneven weighting might be beneficial if the range of loss values differs for different distributions445

(e.g., if one modality is assumed to follow a Gaussian and another modality – negative binomial446

distribution). This weighting then ensures that the reconstruction loss for each modality has a447

similar effect on the overall loss. KL loss is calculated between the assumed prior on the latent space448

(i.e., standard normal) and the learned joint distribution.449

21

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 29, 2024. ; https://doi.org/10.1101/2024.07.29.605625doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.29.605625
http://creativecommons.org/licenses/by-nc-nd/4.0/


Next, we briefly discuss the maximum mean discrepancy (MMD) loss [22, 23]. We employ MMD450

loss for two purposes: to ensure that the batches are well integrated, i.e., that joint distributions451

are similar between batches, and that the unimodal representations follow similar distributions. We452

are interested in the latter if we want to map unimodal queries onto the multimodal reference. In453

general, MMD loss measures the distance between two distributions P and Q [22]:454

MMD(P,Q) = Ea,a′∼P [K(a, a′)] + Eb,b′∼Q[K(b, b′)]− 2Ea∼P,b∼Q[K(a, b)], (5)

where a, a′ and b, b′ are samples drawn from the distributions P and Q, respectively, and K is a455

kernel function. In the implementation, we use multi-scale radial basis kernels [23] defined as456

K(a, b, γ) =
1

s

s∑
i=1

K̃(a, b, γi), (6)

where K̃(a, b, γi) = exp(−γi||a− b||22) is a Gaussian kernel and s, γ = (γ1, . . . , γs) are hyperparame-457

ters.458

In our case, the MMD loss is calculated either as the sum over all pairs of batch distributions or459

as the sum over all pairs of unimodal distributions we want to align. In the first case, MMD loss460

is calculated between pairs of joint representations z1joint, . . . , z
k
joint coming from different batches461

c1, . . . , ck as462

Llatent
MMD =

k∑
i=1,j>i

K(zijoint, z
j
joint, γ). (7)

In the second case, we calculate the loss between unimodal marginal representations zi ∼ p(z|xi)463

and zj ∼ p(z|xj) for all i, j ∈ {1, . . . ,m}, i ̸= j as464

Lmarginal
MMD =

m∑
i=1,j>i

K(zi, zj , γ). (8)

The final MMD loss is calculated as465

LMMD = λlatent
MMDLlatent

MMD + λmarginal
MMD Lmarginal

MMD , (9)

where λlatent
MMD and λmarginal

MMD are hyperparameters.466
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The classification loss is calculated as the cross-entropy loss between one-hot encoded true disease467

labels and the predicted values of the final layer in the classification network. If the user is interested468

in modeling the disease classes as a progression, the last layer of the classifier network can be changed469

to a regression head. In this case, the classification loss is calculated as mean squared error loss. For470

simplicity, we refer to the regression loss as the classification loss.471

The MultiMIL final loss function consists of the VAE loss (which in turn consists of the KL loss and472

the reconstruction loss), the MMD loss and the classification loss:473

L = Lrecon + λKLLKL + λMMDLMMD + λclassLclass, (10)

where λKL, λMMD and λclass are hyperparameters.474

MultiMIL inference475

During test time, we aim to predict the disease class for new patients. For simplicity, we again476

assume that only cells from one patient are present in the training batch. If needed, we first employ477

scArches [19] to map new data onto the reference to obtain the latent embeddings. Then, the model478

needs one forward pass through the MIL module described above. The module aggregates the cell479

representations into a bag representation, which is then classified using the classification network.480

Integration-only training481

In the above, we described how to train MultiMIL for simultaneous multimodal integration and482

patient classification, but the model can also be trained on the integration task alone. The model483

architecture of the VAE network remains the same in this case, but the MIL module is removed. The484

model is trained by optimizing the same loss function but without the classification loss. Additionally,485

cells for each training batch are sampled randomly without considering the patient information. The486

output of the model is then the joint representation for each cell. These learned latent embeddings487

can be later used to train the MIL module separately.488

Prediction-only training489

If the user is interested only in the prediction task and already obtained a low-dimensional integrated490

representation of the data, MultiMIL can be trained in prediction-only mode. In this case, the491

embeddings are directly fed into the classifier network and only the classifier is trained.492

Integration metrics493

To assess the quality of the integration, we used several metrics from the scIB package [33]. Note494

that scIB metrics were designed for unimodal integration, and not all of them can be easily applied495
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in the multimodal case; hence, we chose the metrics that only require the integrated embedding496

space as input (and not, e.g., the original unintegrated space). In the following, we briefly discuss497

two metrics for batch removal and four for biological variance conservation. As in scIB, the final498

score was calculated as 0.4*batch correction + 0.6*biological conservation. For more details on the499

metrics and the implementation, see [33].500

Batch correction501

Graph connectivity measures how well cells from each cell type are connected in a k-nearest neighbor502

graph. If the connectivity is high, then the batch effect was removed sufficiently. Average silhouette503

width (ASW) compares average distances within a cluster with distances to other clusters. The504

resulting score reflects how compact the clustering is. For ASW batch, we expect the batch clusters505

to be well-mixed together for a high batch correction score.506

Biological variance conservation507

Adjusted Rand Index (ARI) and Normalized Mutual Information (NMI) evaluate how well the clus-508

tering is aligned with the ground truth labels, i.e., cell type annotations. ASW label is a modification509

of ASW batch, where we expect the cell type clusters to be compact and separate from other cell510

type clusters for a high biological conservation score. Isolated label ASW assesses how well rare cell511

types are distinguishable from the rest of the data.512

Benchmarks513

Paired integration514

515

We benchmarked five methods for paired integration (MultiMIL, totalVI [31], multiVI [32], MOFA+516

[29] and Seurat v4 [30]) on two CITE-seq datasets (NeurIPS 2021 CITE-seq [26], Hao et al. [27])517

and two multiome datasets (NeurIPS 2021 multiome [26], 10x multiome [28]). All methods perform518

multimodal integration of paired data but employ different approaches. MOFA+ is a linear factor519

model that decomposes the input data into two low-rank matrices, one representing latent factors520

(i.e., cell embeddings) and the other representing factor effects. WNN is a graph-based method that521

outputs a nearest-neighbor graph learned from both modalities. totalVI/multiVI are deep-learning522

VAE-based methods that model and then fit protein-/chromatin-specific distributions. The output523

of both models is a latent representation in low-dimensional space. We performed hyperparameter524

optimization for MultiMIL and then set MultiMIL’s default parameters for the integration task525

based on the best-performing values across all datasets. Other methods were run with their default526
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parameters. We report scIB metrics for all methods. Note that for Seurat v4, we obtained the527

supervised PCA (sPCA) [82] embeddings from the gene expression and the weighted-nearest neighbor528

graph to calculate the embedding-based metrics. To find the optimal hyperparameters for MultiMIL,529

we ran a random grid search for the following parameters and values (with a maximum number of530

iterations of 100):531

Hyperparameter Description Default Range
Batch size size of the training mini-batch 256 {128, 256, 512}
Learning rate learning rate parameter 1e-3 {1e− 6, 1e− 5, 1e− 4, 1e− 3}
KL coefficient weight of KL loss in the overall loss 1e-5 {1e− 5, 1e− 4, 1e− 3, 1e− 2, 1e− 1}
Latent dimension dimensionality of the latent space 16 {8, 16, 32}
Conditional dimension dimensionality of the covariate embedding space 16 {8, 16, 32}
Number of layers number of hidden layers in encoders and decoders 1 {0, 1, 2}
Activation function non-linearity in the network LeakyReLU {LeakyReLU, Tanh}

Table 1 | Hyperparameter grid search for MultiMIL’s paired integration.

Mosaic (trimodal) integration532

We benchmarked MultiMIL against GLUE [25], multiMAP [34] and scMoMat [35] on the mosaic533

integration task. We subset the NeurIPS CITE-seq and multiome data to Site1 and Site2 and534

integrated the two datasets. We ran GLUE using paired and unpaired models. GLUE offers two535

different models to train, one that considers the pairedness of the data points and one that does not536

(see Methods); we included both models in our benchmark. MultiMIL and scMoMaT output one537

embedding per cell, while the rest of the methods output an embedding per cell per modality. To538

be able to fairly compare the methods, we additionally computed a "joint" representation for each539

cell as the average of the modality representations for both of the GLUE models and MultiMAP540

(denoted "avrg.").541

Trimodal query-to-reference mapping542

Seurat v5 and MultiMIL allow query-to-reference mapping onto the atlases. For Seurat’s bridge543

integration, we first build an RNA-seq-only reference atlas from scRNA-seq measurements from the544

CITE-seq dataset and snRNA-seq measurements from the multiome dataset using data from Site545

1 and Site 2. Then we used one donor (donor 7) from Site 3 as a CITE-seq bridge to map ADT546

data from Site 4 (donor 9) on top of the RNA-seq reference and the same donor from Site 3 as a547

multiome bridge to map scATAC-seq data from Site 4 (donor 9) onto the same reference.548

For MultiMIL, we mapped unimodal queries, namely scRNA-seq, snRNA-seq and scATAC-seq, and549

multimodal queries, namely CITE-seq and multiome, on top of the built CITE-multiome reference.550

We ran a hyperparameter search for MultiMIL for the following parameters and values:551

MMD loss type refers to how we calculate the MMD loss: ’latent’ means that Llatent
MMD = 1 and552
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Hyperparameter Description Default Range
KL coefficient weight of KL loss in the overall loss 1e-2 {1e− 5, 1e− 4, 1e− 3, 1e− 2, 1e− 1}
Integration coefficient weight of integration MMD loss in the overall loss 4000 {1000, 2000, 3000, 4000, 5000, 6000}
MMD loss type of the MMD loss ’marginal’ {’latent’, ’marginal’}

Table 2 | Hyperparameter search for MultiMIL’s trimodal integration and query-to-reference mapping.

Lmarginal
MMD = 0; ’marginal’ means that Llatent

MMD = 0 and Lmarginal
MMD = 1.553

Other hyperparameters were set to their defaults from Table 1. To choose the default parameters,554

we calculated the scIB metrics on the reference and the mapped queries (with the batch covariate555

indicating whether the cell came from the reference or the query) to assess the mapping quality.556

To assess the accuracy of cell-type transfer, we trained random forest classifiers for each of the query557

types with sklearn.ensemble.RandomForestClassifier(class_weight="balanced_subsample").558

Classification prediction559

We compared MultiMIL’s predictive ability to several baselines: random forest, multiclass logistic560

regression, and feed-forward neural networks. We trained each model on the following data input561

types: mean embeddings, cell type mean embeddings, cell type frequency vectors and cell embed-562

dings. We note that some baselines, namely cell type mean embeddings and cell type frequency563

vectors, require cell type information, while MultiMIL and the rest of the baselines are entirely564

unsupervised.565

The benchmark was performed on two datasets [38, 43]. HLCA is a unimodal dataset and Stephen-566

son et al. is a CITE-seq dataset. We created 5-fold cross-validation splits based on patient in-567

formation, i.e., so that cells in each train/validation split come from different patients. We used568

sklearn.model_selection.KFold() to create the splits and569

sklearn.metrics.classification_report() to report the classification accuracy.570

We performed a random grid search (with a maximum number of iterations of 100) to find optimal571

hyperparameters for MultiMIL for each of the datasets and experiments. Table 3 provides the tested572

parameters.

Hyperparameter Description Default Range
Learning rate learning rate parameter depends on the setup {1e− 5, 1e− 4, 1e− 3}
Classification coefficient weight of the classification loss in the overall loss 1.0 {0.1, 1, 10, 100}
Attention dimension dimensionality of the attention dimension 16 {8, 16, 32}
Scoring function how the attention per cell is calculated gated attention {gated attention, attention}
Number of classifier layers number of hidden layers in the feed-forward classification network 2 {1, 2, 3}

Table 3 | Hyperparameter search for MultiMIL’s prediction.
573

Following the notation from the Results section, attention weights [83] were calculated as574
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ai =
exp

[
wT (tanh(V zijoint))

]
∑

k∈ bag exp
[
wT (tanh(V zkjoint))

] , (11)

and gated attention weights [84] as575

ai =
exp

[
wT (tanh(V zijoint)⊙ sigm(Uzijoint))

]
∑

k∈ bag exp
[
wT (tanh(V zkjoint)⊙ sigm(Uzkjoint))

] , (12)

The batch size was set to 256, the patient batch size to 128 (meaning that in each training mini-batch576

of size 256, there were two sub-batches of size 128 consisting of cells belonging to one patient each),577

and the latent and the condition dimensions to 16. Encoders and decoders had one hidden layer578

each. The default parameters were chosen based on the prediction accuracy of the validation set579

averaged across five splits.580

Next, we discuss the baseline models and the input data in more detail. We performed a hyperpa-581

rameter grid search for NN-based models and reported the best-performing configuration. Patient582

disease labels were used as class labels throughout this benchmark apart from the "Cell embedding"583

input type, where all the cells from a diseased donor were assumed to have the disease class.584

Baseline models585

• Multiclass logistic regression is an extension to the logistic regression method that allows the586

prediction of multiple classes. We calculate the probability of belonging to a particular class587

with a softmax function and calculate the loss as the entropy between predicted probabilities588

and the true class. We optimize the loss function with gradient descent.589

• Random forest was implemented using590

sklearn.ensemble.RandomForestClassifier() with the default parameters.591

• Neural network was implemented as a 2-layer feed-forward network with one hidden layer of592

64 neurons, batch normalization and ReLU activation. The second linear layer outputs class593

probabilities. We trained the neural network baselines with Adam optimizer [85] for 200 epochs594

for sample-level inputs and 30 epochs for cell-level input. Hyperparameter search was run for595

batch size and learning rate shown in Table 4.596

Input data types597

• Mean embedding representations were calculated from the latent embeddings with598
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Hyperparameter Description Range
Learning rate learning rate parameter {1e− 5, 1e− 4, 1e− 3}
Batch size for sample-level inputs size of the training mini-batch {8, 16, 32, 64}
Batch size for cell-level input size of the training mini-batch {128, 256, 512, 1024}

Table 4 | Hyperparameter search NN baseline.

decoupler.get_pseudobulk() specifying the sample parameter and keeping all the cells.599

• Cell type-aware mean embedding representations were calculated from the latent embeddings600

with decoupler.get_pseudobulk() specifying the sample and group (i.e., cell type) parame-601

ters and keeping all the cells. To obtain one representation per sample, we concatenated cell602

type-specific vectors into one vector.603

• Frequency vectors were calculated from cell type proportions for each sample.604

• Cell embeddings were directly passed to the baselines after integration with MultiMIL, totalVI605

or published atlases.606

Robustness of the integration module607

To assess the robustness of the integration, we ran several experiments on the trimodal dataset. We608

tested several parameters: integration coefficient (i.e., MMD coefficient λMMD), number of shared609

features between datasets from different technologies, selection of integration covariates, reference/-610

query ratio and different ways of calculating the MMD loss. Unless the parameter was tested in the611

experiment, the default parameters used throughout this benchmark were taken from Table 1, and612

the rest is shown in Table 5.613

Hyperparameter Description Default Range
Integration coefficient weight of the MMD loss in the overall loss 1e4 {1e-3, 1e-2, 1e-1, 1, 10, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7}
Number of shared features number of shared features between scRNA and snRNA 4000 {100, 500, 1000, 2000, 3000, 4000}
Integration covariate covariate used for the calculation of MMD modality {none, modality, donor}
Batch covariate covariate(s) used as batch covariate(s) modality & donor {modality, donor, modality & donor}
Reference/query split which sites were used as reference and which as query Sites 1-3/Site 4 {Sites 1-3/Site 4, Sites 1-2/Sites 3-4, Site 1/Sites 2-4}
MMD type how MMD loss was calculated marginal {marginal, latent}

Table 5 | Parameters tested in the robustness benchmark.

Identification of DA cell states with Milo.614

We ran the default Milo [13] analysis on the PBMC dataset using the embeddings learned with615

MultiMIL. We ran three pairwise analyses comparing mild COVID-19 and healthy, severe COVID-616

19 and healthy, and severe and mild COVID-19. We show the neighborhoods with spatial false617

discovery rate (FDR) corrected levels of less than 0.01.618

Robustness of attention scores.619

28

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 29, 2024. ; https://doi.org/10.1101/2024.07.29.605625doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.29.605625
http://creativecommons.org/licenses/by-nc-nd/4.0/


To assess the robustness of attention scores, we ran several experiments on the PBMC dataset.620

First, we ran a 5-fold CV on the same folds, using the same model parameters but changing the621

random seed using MultiMIL embeddings. Then we also trained the classifier module using totalVI622

embeddings. To assess the stability of training and attention scores, we looked at the cells with the623

top 10% attention scores and investigated which cell types they belong to.624

We also investigated how well we can predict sample labels with a kNN classifier. We set up a625

leave-one-out cross-validation experiment using several different aggregation strategies. Sample rep-626

resentations were calculated as a mean of cell embeddings belonging to the sample, mean embedding627

of cells with top 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% highest attention score and a628

weighted average of cell embeddings where the weights were the attention weights.629

Calculation of the profibrotic signature630

To calculate the profibrotic score for macrophages in HLCA, we used the signature from [45]:631

SPP1, LIPA, LPL, FDX1, SPARC, MATK, GPC4, PALLD, MMP7, MMP9, CHIT1, CSTK,632

CHI3L1, CSF1, FCMR, TIMP3, COL22A1, SIGLEC15, CCL2. The score was calculated with633

scanpy.tl.score_genes(). We performed a two-sided t-test to check for the significance of the score634

in all IPF macrophages vs. IPF macrophages with the high attention score using scipy.stats.ttest_ind().635

We used edgeR-QLF [12] to identify the genes differentially expressed in IPF macrophages with the636

high attention compared to all IPF macrophages and reported genes with a log-fold change greater637

than 1.5 and FDR-corrected p-value less than 0.01 as up-regulated (see Supplementary Table 1).638

Gene Ontology analysis639

We used GOATOOLS [86] to run the GO term analysis on the genes that were identified as signif-640

icantly upregulated in the IPF macrophages with MultiMIL. We followed the tutorial and ran all641

the functions with their default parameters. We reported the terms with the corrected p-value less642

than 0.1 as significant.643

Datasets644

All datasets can be downloaded via https://github.com/theislab/multimil_reproducibility.645

NeurIPS 2021646

The CITE-seq (paired scRNA-seq and ADT) dataset contains 90,261 cells from four sites and 12647

batches. The multiome (paired snRNA-seq and scATAC-seq) has 69249 cells from four sites and648

13 batches. Both datasets were annotated by the authors and assigned in 30 and 22 cell types,649
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respectively. ’Samplename’ was used as the batch covariate.650

10x multiome651

The data contains 10,000 healthy cells from a multiome experiment. The data does not contain any652

batches, and the cells are assigned to 11 cell types.653

Hao et al.654

The CITE-seq data contains 149,926 cells split into two batches. We used the second-level cell type655

annotations provided by the authors to calculate the scIB metrics. All 228 proteins present in the656

ADT assay were used in the analyses.657

Stephenson et al.658

The PBMC dataset contains 647,366 cells from 130 donors, collected at three sites. The ADT panel659

has 192 proteins. All data points were used for the integration. For the prediction experiment with660

all COVID-19 stages, we removed non-COVID and non-healthy samples. For the binary experiment,661

i.e., COVID-19 vs healthy, we subset the data in a balanced way, ensuring that the number of samples662

from each condition is the same (23).663

Sikkema et al.664

Human Lung Cell Atlas (HLCA) consists of the core (584,444 cells, 107 donors) and the extension665

datasets (1,797,714 cells, 380 donors). The core samples are all healthy, while the extension has666

healthy and diseased samples. In our experiments, we subset the data to healthy and IPF samples667

in a balanced way, i.e. the number of donors is the same (67) in both groups.668

Data preprocessing669

For all of the paired experiments, we subset the gene expression datasets to the top 4000 highly670

variable genes, taking the batch covariate into account with671

sc.pp.highly_variable_genes(n_top_genes=4000) specifying a batch covariate for datasets with672

batch effects. If the methods required normalized counts as input, we followed standard scanpy work-673

flow and applied sc.pp.normalize_total(target_sum=1e4) and sc.pp.log1p() to the raw counts.674

ADT counts were central-log-ratio normalized. We selected the top 40000 highly variable peaks for675

ATAC data with episcanpy [87]. To normalize ATAC measurements, we used log-normalization676

following the episcanpy and muon tutorials. In the trimodal experiments, we performed the same677

preprocessing, but subsetting to 20,000 highly variable peaks.678

To integrate the PBMC dataset for the prediction experiments, the top 2,000 highly variable genes679
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were selected with sc.experimental.pp.highly_variable_genes() using ’Site’ as the batch covari-680

ate. We preprocessed the ADT data similarly to the above and also removed the isotype controls681

from the protein matrix.682

Running time683

We provide training times for the integration module in Table 6, classification module and end-to-end684

training of models with default architectures. The training was performed on the same GPU server685

with the following characteristics: Intel(R) Xeon(R) Platinum 8280L CPU with 28 cores, 2.70GHz,686

Tesla V100-SXM3-32GB GPU. We report the average run time and standard deviation across three687

runs. We used the PBMC CITE-seq dataset [42], subsetted to healthy, mild and severe COVID-19688

in a balanced way, resulting in 256,051 cells. All models were trained for 50 epochs. For the training689

of the classification module only and the end-to-end training, we modeled the prediction task as690

either a three-class classification problem or as a regression problem.691

average runtime (s) standard deviation (s)
integration module 622 2
classification module, classification 356 9
classification module, regression 357 5
end-to-end, classification 937 45
end-to-end, regression 834 89

Table 6

Default architectures692

The integration module consists of encoder-decoder pairs, and below we provide the specifications693

of each pair. Mu and Sigma modules output the µ and σ parameters of the unimodal distributions.694

Unless specified, the parameters have their default values from PyTorch.695

For the model that consists of the integration and the classification networks, the architecture is the696

same for the integration module, and the default architecture for the classification module is shown697

below.698

We note that we trained the model on the PBMC data with 20 latent dimensions to match the699

default number of latent dimensions in totalVI for a fair comparison.700
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Module Layer
Encoder Linear(n_input_features, 128)

LayerNorm
LeakyReLU
Dropout(0.2)
Linear(128, 16)
LayerNorm
LeakyReLU
Dropout(0.2)

Mu Linear(16, 16)
Sigma Linear(16, 16)
Decoder Linear(16 + 16*n_of_covariates, 128)

LayerNorm
LeakyReLU
Dropout(0.2)
Linear(128, n_input_features)
LayerNorm
LeakyReLU
Dropout(0.2)

Reconstruction decoder Linear(128, n_input_features) x k,
where k depends on the distribution of the input data

Table 7

Module Layer
Attention aggregator calculation of attention scores as in Eq. 3

calculation of the weighted sum as in Eq. 2
Classifier Linear(16, 128)

Dropout(0.2)
LayerNorm
LeakyReLU
Linear(128, n_classes)

Table 8

Computational resources and package versions701

Table 9 provides the version specifications of the main packages used in the benchmarks and the702

implementation of MultiMIL.703
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Package Version Used in
python 3.10 MultiMIL package
scanpy 1.9.3 pre-processing and MultiMIL package
muon 0.1.5 pre-processing
decoupler 1.4.0 sample-level baselines
torch 2.0.1 neural network baselines and MultiMIL package
sklearn 1.3.0 benchmarks
scib 1.4 benchmarks
scvi-tools 0.20.3 MultiMIL package and paired benchmarks
MOFA+ 0.6.7 paired benchmarks
Seurat WNN 4.3.0 paired benchmarks
Seurat Bridge 4.9.9.9058 trimodal benchmarks
scMoMaT 0.2.0 trimodal benchmarks
scglue 0.3.2 trimodal benchmarks
multimap 0.0.1 trimodal benchmarks
R 4.2.2 Seurat and edgeR
edgeR 3.40.0 differential expression testing
snakemake 7.30.1 pipeline to run the classification benchmarks

Table 9
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Supplementary Figure 1: Multiple instance learning. (a) In our context, bags correspond to
donors, instances to cells and the classification labels are known for bags, i.e., donors. (b) Examples
of data points in the multiple-instance-learning dataset. Our task is to classify bags into classes and
identify cells (i.e. colored instances) that are associated with a certain disease. (c) MultiMIL can
identify changes in the abundance of cell types between conditions as well as transcriptomic changes.
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Supplementary Figure 2: Paired integration of multiome datasets. (a) UMAPs of the latent
spaces of the 10x multiome dataset, integrated with MultiMIL, Seurat WNN, MOFA+ and multiVI,
colored by cell type. (b) UMAPs of the latent spaces of the NeurIPS 2021 multiome dataset,
integrated with MultiMIL, Seurat WNN, MOFA+ and multiVI, colored by cell type and sample.
(c) A table showing scIB metric scores for 10x multiome dataset. (d) A table showing scIB metric
scores for NeurIPS 2021 multiome dataset.
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Supplementary Figure 3: Paired integration of CITE-seq datasets. (a) UMAPs of the latent
spaces of the Hao el at. dataset, integrated with MultiMIL, Seurat WNN, MOFA+ and totalVI,
colored by cell type and batch. (b) UMAPs of the latent spaces of the NeurIPS 2021 CITE-seq
dataset, integrated with MultiMIL, Seurat WNN, MOFA+ and totalVI, colored by cell type and
sample. (c) A table showing scIB metric scores for Hao et al. CITE-seq dataset. (d) A table
showing scIB metric scores for NeurIPS 2021 CITE-seq dataset.
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Supplementary Figure 4: Trimodal reference building. (a) UMAPs of the latent spaces of
NeurIPS 2021 multiome and NeurIPS 2021 CITE-seq datasets, integrated with methods that output
a representation per cell, i.e., MultiMIL, scMoMaT, GLUE paired (averaged representation), GLUE
unpaired (averaged representation) and MultiMAP (averaged representation), colored by cell type,
sample and modality. (b) UMAPs of the latent spaces of NeurIPS 2021 multiome and NeurIPS 2021
CITE-seq datasets, integrated with methods that output a representation per cell per modality, i.e.,
GLUE unpaired, GLUE paired and MultiMAP, colored by cell type, sample and modality.
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Supplementary Figure 5: Trimodal query mapping. (a) UMAPs of the integrated scRNA-seq
and snRNA-seq from NeurIPS 2021 CITE-seq and NeurIPS 2021 multiome, respectively, with Seurat,
colored by sample, cell type and modality/dataset. (b) UMAPs of the mapped ATAC query onto
the RNA-seq reference with Bridge colored by reference/query and ATAC query only colored by
cell type. (c) A table with scIB scores calculated for different queries mapped with MultiMIL. (d)
Confusion matrices between true and predicted (with a random forest model) cell types for the full
query and individual queries mapped with MultiMIL.
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Supplementary Figure 6: Robustness of trimodal integration with MultiMIL. (a) A bar
plot showing the effect of batch covariates and integration covariates selection on the scIB overall
integration score and query mapping scores. (b) A bar plot showing the effect of MMD loss type
on the scIB overall integration score and query mapping scores. (c) A bar plot showing the effect of
the reference and query sizes on the scIB overall integration score and query mapping scores. (d) A
line plot showing the effect of the number of the common features in the scRNA/snRNA modality
on the scIB overall integration score and query mapping scores. (e) A line plot showing the effect
of the integration coefficient (i.e., the weight of the MMD loss) on the scIB overall integration score
and query mapping scores.
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Supplementary Figure 7: End-to-end training of MultiMIL. (a) UMAPs of the integrated latent
space showing the effect of the classification coefficient colored by cell type (top row), disease stage
(middle row) and cell attention (bottom row) for the first CV fold. (b) A line plot showing the effect
of the classification coefficient on the accuracy of the predicted disease condition on the validation
set for the first CV fold.
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Supplementary Figure 8: Prediction of COVID-19 stages on a CITE-seq PBMC data. (a)
Results of the prediction benchmark on balanced binary (healthy, COVID-19), balanced multiclass
(healthy, mild, severe COVID-19) and full data (healthy, 5 COVID-19 stages) using MultiMIL or
totalVI embeddings, comparing MultiMIL with the baselines. (b) A table showing scIB metric scores
comparing MultiMIL and totalVI latent embeddings obtained for the full dataset. (c) UMAPs of the
totalVI latent space, colores by cell type, cell attention score and disease stage. (d) Results of Milo
analysis run on MultiMIL’s embeddings, mild vs. healthy (left), severe vs. healthy (middle) and
severe vs. mild (right), each colored by DA log-fold change (red corresponds to the first condition
in the tile). (e Violin plots showing DA changes for each of the cell types in mild vs. healthy (left),
severe vs. healthy (middle) and severe vs. mild (right).
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Supplementary Figure 9: Robustness of attention scores in PBMC data. (a) UMAPs showing
cell attention scores learned in five cross-validation runs. (b) Stacked bar plots showing the distribu-
tion of cell types with top 10% highest attention scores across five cross-validation runs, comparing
runs with different seeds, different MultiMIL setups (classification or regression), and the model ran
using totalVI embeddings. (c) Line plots showing how well the kNN classifier can predict sample
labels from 3, 5, 7, 9 nearest neighbors when the sample representation was obtained by averaging
cell embeddings (MultiMIL’s) of cells with top 10%-90% highest attention scores (left); by averag-
ing top 10% (Top), all cells (Mean) and calculating a weighted sum of all cells where the weights
are attention scores (Attention) using MultiMIL’s (middle) and totalVI’s (right) cell embeddings.
(d) UMAPs of sample representations obtained by averaging cell embeddings (left), by calculating
a weighted sum of all cells where the weights are attention scores (middle) and by averaging cell
embeddings with top 10% attention scores (right), using cell embeddings from MultiMIL, colored
by condition.
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Supplementary Figure 10: IPF in HLCA (a) UMAPs of macrophages, colored by cell attention,
expression of SSP1 and profibrotic signature score. (b) UMAPs of basal cells, colored by cell
attention and expression of KRT17.
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