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Abstract

Multimodal analysis of single-cell samples from healthy and diseased tissues at various stages provides
a comprehensive view that identifies disease-specific cells, their molecular features and aids in patient
stratification. Here, we present MultiMIL, a novel weakly-supervised multimodal model designed to
construct multimodal single-cell references and prioritize phenotype-specific cells via patient classifi-
cation. MultiMIL effectively integrates single-cell modalities, even when they only partially overlap,
providing robust representations for downstream analyses such as phenotypic prediction and cell
prioritization. Using a multiple-instance learning approach, MultiMIL aggregates cell-level measure-
ments into sample-level representations and identifies disease-specific cell states through attention-

based scoring. We demonstrate that MultiMIL accurately identifies disease-specific cell states in
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blood and lung samples, identifying novel disease-associated genes and achieving superior patient
classification accuracy compared to existing methods. We anticipate MultiMIL will become an
essential tool for querying single-cell multiomic atlases, enhancing our understanding of disease

mechanisms and informing targeted treatments.

Introduction

Advances in single-cell technologies have enabled multiomic profiling of thousands of patient sam-
ples, providing a holistic view of disease heterogeneity on multiple scales—from individual cells to
cell types and patients [1]. These large-scale datasets can facilitate both disease diagnostics and
therapeutics [2]|. In diagnostics, these multimodal datasets allow for the precise identification of cel-
lular changes that are unique to specific diseases. Researchers can identify biomarkers and cellular
behaviors indicative of disease states by analyzing individual cells and their interactions. This level
of granularity not only improves the accuracy of diagnostics but also helps in the early detection of
diseases, which is crucial for effective treatment. In therapeutics, understanding disease-specific cell
states can lead to more targeted and personalized treatment strategies. By identifying the cellular
mechanisms and pathways disrupted in disease, researchers can develop therapies targeting these

areas, minimizing side effects and improving treatment efficacy.

A significant challenge remains in linking cell-level signals to patient-level phenotypes in an inter-
pretable manner, allowing researchers to understand the underlying cellular processes and mecha-
nisms driving disease phenotypes. Several computational approaches have been developed to predict
disease phenotypes at the cellular level [3-7] and at the patient level [8-10]. Concurrently, other
approaches prioritize cells exhibiting differential transcriptomic signals [11, 12] or differential compo-
sitional signals compared to a reference phenotype (e.g., healthy vs. diseased) [13]. However, these
approaches are limited as they model single-cell data based solely on transcriptomics and cannot
handle multimodal datasets |3, 6]. Although they provide predictions at the patient level, they fail
to effectively link these predictions to the cellular processes driving the disease phenotype [8]. Such
approaches also struggle to systematically model technical effects across samples, which is necessary
to accurately predict phenotypes and prioritize disease cells free from spurious variations. A recent
paper introduced MrVI [14], a model that can deal with batch effects, but it relies heavily on the
accuracy of the counterfactual generative modeling with VAEs and does not make use of patient

annotations.
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To overcome these limitations, we introduce MultiMIL, a multimodal multi-instance learning ap-
proach for phenotypic prediction and differential cell prioritization in single-cell multiomics. Multi-
MIL employs a multiomic data integration strategy using a product-of-expert [15] generative model,
providing a comprehensive multimodal representation of cells. These representations are fed into
downstream prediction and prioritization modules. The model leverages advances in weakly super-
vised learning, particularly multiple-instance learning (MIL), to learn patient conditions from single
cells by prioritizing phenotype-specific cells through an attention mechanism. The MIL approach
allows the model to capture different phenotypic behaviors, from molecular differences to compo-
sitional changes upon disease compared to reference phenotypes. MultiMIL can also use latent

representations from atlases or foundation models, enhancing its flexibility and utility.

We showcase applications for MultiMIL, enabling efficient multimodal data integration across various
datasets, which is necessary to learn robust representations. Using these representations, including
pre-trained ones, we demonstrate phenotypic prediction for unseen patients and prioritization of
disease-specific cell states by analyzing human peripheral blood mononuclear cells and the Human
Lung Cell Atlas. We further demonstrate how the disease states identified with MultiMIL can help

discover novel genes associated with the disease.

Learning multimodal cell and patient representations to prioritize phenotype-specific

cells

MultiMIL is a deep-learning-based model that allows the integration of multimodal single-cell data
and the prediction of sample-level phenotypes from these single-cell measurements. MultiMIL’s
model consists of two submodules: a variational autoencoder that learns a low-dimensional latent
representation of singe-cell data and a classification head that learns to predict sample-level phe-
notypes from the low-dimensional latent representations (Fig. la,b). We draw inspiration from
the multiple-instance learning (MIL) approach [16, 17|, where we model donors as bags and cells
as instances belonging to a bag. The classification labels are only known on the bag level but not
on the instance level, and we are interested in identifying instances associated with the bag label

(Suppl. Fig. 1).

The autoencoder module is implemented as encoder-decoder pairs, where each pair corresponds to
a modality present in the data (Fig. 1a). The encoders output the parameters of the corresponding
unimodal marginal distribution, and the joint distribution in the latent space is modeled using the
Product of Experts (PoE) [15, 18]. The PoE distribution preserves unique and shared information

from the unimodal marginal distributions [18]. The PoE approach also allows MultiMIL to integrate
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Figure 1: MultiMIL enables multimodal integration, query mapping and interpretable
phenotype prediction. (a) The MultiMIL model accepts paired or partially overlapping single-cell
multimodal data across samples with varying phenotypes and consists of pairs of encoders and de-
coders, where each pair corresponds to a modality. Each encoder outputs a unimodal representation
for each cell, and the joint cell representation is calculated from the unimodal representations. The
joint latent representations are then fed into the decoders to reconstruct the input data. Cells from
the same sample are combined with the MIL attention pooling layer, where cell weights are learned
with the attention mechanism, and the sample representations are calculated as a weighted sum of
cell representations. The sample representations are then finally fed into the classifier network that
learns to predict conditions. (b) The key use cases for MultiMIL are the integration of paired and
partially overlapping data into reference atlases (top), mapping of query samples onto the reference
and prediction of conditions for the new data (middle), and identification of disease-associated cell
states with the learned attention weights as well as the construction of disease-informed patient
representations (bottom).
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paired as well as partially overlapping data (i.e., where the measurements are missing for one or
more modalities in part of the data). Additionally, categorical and continuous sample covariates,
e.g., batch, can be incorporated into the model to obtain the latent representation disentangled from

the specified covariates (see Methods).

The classification head consists of a MIL aggregator with an attention mechanism and a feed-forward
classifier network. The MIL module aggregates the cell-level embeddings into a bag embedding
employing attention pooling. During training, the model learns attention weights «; for each cell 7 in
a bag and then aggregates cell embeddings z; into a bag representation zp,g as weighted sum ) . o 2;.

The pooled representation zp,g is then fed into a feed-forward network that predicts condition labels.

Ultimately, we are interested in mapping new patients onto the atlases with multiple conditions and
predicting the conditions for these patients. To this end, MultiMIL utilizes the scArches transfer-
learning approach for query-to-reference mapping [19]. When mapping a new batch of data, we only
fine-tune a small portion of the model parameters specific to this batch, allowing for faster and more

efficient training compared to de novo integration.

MultiMIL provides several ways to interpret the learned attention weights (Fig. 1b). Firstly, the
higher the weight of a particular cell, the more important the cell was for the prediction. Learning a
score for each cell allows us to identify and analyze cell states associated with a particular condition
by selecting cells with high attention scores. Additionally, we can obtain sample representations
from the model by taking a weighted average of the cells within a sample. These representations
of donors in a low-dimensional space are learned from the single-cell measurements and reflect the

disease progression better than mean embeddings.

The model is trained on mini-batches, optimizing for the accurate reconstruction, Kullback-Leibler
(KL) divergence with monotonic annealing |20, 21| and prediction accuracy. We additionally em-
ploy the maximum mean discrepancy loss (MMD) [22, 23] to correct strong batch effects and to
make sure that unimodal representations have similar distributions, which is necessary for successful
multimodal query-to-reference mapping (see Methods). Due to mini-batching and the deep-learning
nature of the model, MultiMIL is fast to train: the integration module takes ca. 10 minutes for a
quarter of a million cells and the full model takes ca. 15 minutes for the same number of cells (Table

6).

Users can train the autoencoder module and the classifier head sequentially, separately, or in an

end-to-end manner, depending on whether there is a need to integrate the data from scratch or if
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Figure 2: MultiMIL integrates paired and partially overlapping modalities and allows
unimodal as well as multimodal query-to-reference mapping. (a) Design for the paired
integration, trimodal reference building and query mapping. The paired integration benchmark
was run on 10x multiome and CITE-seq datasets. The trimodal reference consists of 10x multiome
(RNA-ATAC) and CITE-seq (RNA-ADT) data, and the query consists of multiome, CITE-seq
and unimodal scATAC-seq and scRNA-seq data. (b) A bar plot of overall integration scores for the
two CITE-seq (RNA-ADT) and two multiome (RNA-ATAC) datasets comparing MultiMIL, totalVI,
Seurat’s WNN, MOFA + and multiVI. (c) A table with integration metrics with all the benchmarked
methods, showing individual metric scores, averaged bio-conservation and batch-correction scores,
and overall scores.(d) UMAPs of the reference latent space obtained from the two top-performing
models (MultiMIL on the left and paired GLUE, averaged representation on the right), colored
by cell type and modality. NK cells appear to be integrated better by MultiMIL, explaining the
difference in the overall scores. (e) UMAPs of different queries mapped onto the trimodal reference
with MultiMIL.

there is already an existing atlas at hand. We will discuss both use cases later. This adaptability
makes MultiMIL suitable for a wide range of applications and allows it to integrate seamlessly into
existing analytical workflows. We envision MultiMIL as a multi-task tool for multimodal integration,
query mapping of new samples, disease prediction for the query donors and identification of disease-

associated states.
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96 MultiMIL enables multimodal reference building and query-to-reference mapping

o7 Technologies for paired sequencing enable the joint analysis of two modalities, but this also presents
9s a unique challenge. We need to model both modalities in a way that preserves shared as well as
o unique information [24, 25]. This work tackles this problem by learning a joint low-dimensional
wo representation for each cell. Due to the modeling of the joint state with the product-of-expert
101 approach, MultiMIL is capable of integrating not only fully paired data but also partially overlapping
102 measurements, for instance, a paired RNA-ATAC dataset and a paired RNA-ADT dataset (Fig. 2a).
103 MultiMIL’s unique feature is the query mapping of unimodal and multimodal data, which allows the
104  mapping of any combination of modalities onto existing references. In this section, we first compare
105 MultiMIL with the existing methods for paired integration and then demonstrate the trimodal

106 reference building and mapping functionalities.

107 We benchmarked MultiMIL’s performance on paired integration against three state-of-the-art meth-
s ods on two CITE-seq datasets (NeurIPS 2021 CITE-seq [26], Hao et al. [27]) and two paired
100 RNA-ATAC datasets (NeurIPS 2021 multiome [26], 10x public multiome [28]). Hao et al. dataset
1o comprises PBMCs from eight donors enrolled in an HIV vaccine trial. NeurIPS datasets have bone
11 marrow mononuclear cells from 10 healthy donors, and the second multiome dataset contains PBMCs
12 from one healthy donor and does not have any batch effect. We compared MultiMIL to MOFA+
us |29, Seurat v4 WNN [30] on all four datasets, totalVI [31] on CITE-seq datasets and multiVI [32]

114 on the multiome datasets.

us To quantitatively evaluate the results, we calculated a subset of the scIB metrics [33] suitable for
ue multimodal integration (see Methods). The metrics address both the conservation of biological signal
17 and batch effect removal. Overall, MultiMIL achieved the highest total score on both paired RNA-
us  ATAC datasets while scoring first and second on the CITE-seq datasets (Fig. 2a). TotalVI and
1o Seurat WNN obtained high scores on all datasets, while the score for MultiVI was dataset-dependent
120 (Suppl. Fig. 2). MOFA+ failed to remove batch effects present in the original data, resulting in a

121 low batch correction score (Suppl. Fig. 2, Suppl. Fig. 3).

122 To demonstrate MultiMIL’s ability to perform mosaic integration [24], we integrated Sites 1 and 2
123 from the NeurIPS 2021 CITE and Neurips 2021 multiome datasets [26]. We compared MultiMIL
124 with GLUE [25], MultiMAP |34] and scMoMaT [35] on this task. We calculated the scIB score on the
15 latent space after performing minimal cell type harmonization between the datasets. We included
126 two Adjusted Silhouette Width (ASW) scores for batch correction: Batch ASW and Modality ASW.

127 This dual-level evaluation of batch and modality mixing allows us to measure the removal of tech-
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nical biases at a finer scale of individual batches and a coarser scale of modalities simultaneously,
aligning with the approach outlined in [36]. For the methods that output one representation per
cell per modality, we calculated the metrics once on the original output and once on the averaged

representations (denoted "avrg." in Fig. 2d).

MultiMIL scored first, and GLUE (paired model, avrg.) scored second on this task. UMAPs of the
learned representations are relatively similar for these two methods (Fig. 2c). MultiMIL obtained a
slightly higher Modality ASW score than GLUE, which is caused, for instance, by better integrated
Natural Killer (NK) cells across modalities (Fig. 2c¢,d). scMoMaT scored fourth based on scIB
metrics even though the modalities were not well-mixed (Fig. 2d, Suppl. Fig. 4a). scMoMaT
obtained a high Batch ASW score despite not integrating the two modalities. At the same time, we
observed that Modality ASW is the lowest for scMoMaT, which aligns with the visual inspection of
the UMAPs. Overall, we noted that the models that do take into account the information about
which cells are paired (MultiMIL, GLUE paired) performed better than the methods that do not

(Fig. 2d, Suppl. Fig. 4).

When MultiMIL’s reference model is trained on multimodal data, our model enables unimodal and
multimodal query mapping, where unimodal query modalities can be any of the individual modalities
from the multimodal reference. After we build the atlas described above, we map unimodal (i.e.,
scRNA-seq, snRNA-seq and scATAC-seq) and multimodal (CITE-seq and multiome) queries onto
the reference. We calculated scIB metrics using reference and query as two batches to assess the
mapping quality. MultiMIL successfully mapped all the queries, obtaining very similar scIB scores
for all of them (Fig. 2e, Suppl. Fig. 5¢). Multimodal queries obtained the highest Batch ASW
scores, possibly indicating that the batch correction works best for the data modalities present in
the reference. We also trained a random forest classifier to transfer the cell types from the reference
to the queries and calculated the prediction accuracy. Label transfer worked best for CITE-seq and

scRNA data while mapping scATAC-seq seems to be most challenging (Suppl. Fig. 5c, d).

Seurat Bridge integration [37] also allows the mapping of scATAC-seq data onto the scRNA-seq
reference, so we included it in this experiment. Because the reference in this case is a sScRNA-seq-
only reference (i.e., not multimodal), we could not directly compare the reference building with
the other methods for trimodal reference building. Additionally, Bridge allows visualization of
the reference and query on a joint UMAP and label transfer but does not explicitly provide low-
dimensional embeddings in the joint reference-query space. Hence, we did not calculate scIB metrics

for Seurat Bridge, but we included UMAPs of the reference and the mapped scATAC-seq query in
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the supplementary figures for visual inspection (Suppl. Fig. 5a, b).

To assess the robustness of our model, we performed several experiments benchmarking the model’s
sensitivity towards the number of shared features, the strength of the integration parameter, the size
of the reference and the type of the MMD loss (Methods and Suppl. Fig. 6). When the number
of shared genes is more than 1,000, MultiMIL can successfully build the reference, but the quality
of query mapping increases with the number of shared features. We also observed that the quality

of the query mapping slightly increases with bigger references.
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Figure 3: MultiMIL accurately predicts disease stages from a multimodal PBMC dataset.
(a) Case study design. PBMCs were sequenced with CITE-seq (paired RNA and ADT), integrated
with MultiMIL’s integration module, subset to healthy, mild and severe COVID-19 samples, and
used as input to train MultiMIL’s classifier network. (b) A bar plot showing average accuracies
and standard deviations (i.e., the length of an error bar equals two standard deviations) of the five
cross-validation runs on the disease-prediction task. MultiMIL was trained in the classification and
regression settings. Cell type mean embeddings and frequency vectors were input to the random
forest (RF), feed-forward neural network (NN) and multiclass logistic regression (MR) models. Mean
embeddings and cell embeddings were input to the RF and NN models. (c) UMAPs of the integrated
latent space colored by cell type (left), cell attention scores (middle) and condition (right). The
myeloid compartment (i.e., CD14, CD16 monocytes and dendritic cells) and plasmablasts have high
attention scores. (d) UMAPs of the myeloid compartment showing the healthy, mild and severe
COVID-19 cells with the top 10% of attention scores for each condition. (e) A bar plot showing
the top five cell types with the biggest compositional change from healthy to severe COVID-19,
including plasmablasts.
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MultiMIL accurately predicts disease states and identifies cell states driving the disease

progression

In the previous sections, we described how the integration module of MultiMIL performs multimodal
integration and query-to-reference mapping. Next, we simultaneously model the multimodal single-
cell embeddings and sample-level covariates, such as e.g. disease. To validate our approach of
predicting sample-level disease labels from single-cell data, we utilize a CITE-seq peripheral blood
mononuclear cell (PBMC) dataset [38]. This large-scale dataset consists of 130 healthy and diseased
samples and provides metadata on the progression of COVID-19 stages. First, we integrate scRNA-
seq and ADT measurements from all the data points with MultiMIL to obtain a low-dimensional
data representation. Then, we subset the data to healthy, mild and severe COVID-19 samples (see
Methods) and train the MultiMIL’s classifier module to assess the predictive performance on this

multiclass classification task and evaluate the interpretability of cell attention scores (Fig. 3a).

For MultiMIL, the prediction task can be formulated as either a classification task or a regression
task, as we need to model the progression from healthy to mild to severe stages. We compare our
model to several baseline models, and MultiMIL outperformed all the baselines in a 5-fold cross-
validation experiment (Fig. 3b), achieving an accuracy of 75% for the regression model and 72%

for the classification model.

The baseline prediction models include a random forest, feed-forward neural net and multiclass
regression. Approaches utilizing single-cell data for phenotypic prediction often rely on (pseudo-
)bulk data [7, 39], so we included a range of pseudo-bulk baselines in our comparison. Since MIL
models generally fall between models that make predictions on the instance (i.e., single-cell) level
and models that make predictions on the bag (i.e., bulk) level, we also include cell-level baselines
(Fig. 3b, Methods). The mean embedding of a sample is the mean of cell embeddings belonging
to this sample, and cell type mean embeddings are calculated as the mean of cell embeddings per
cell type and concatenated per sample. Frequency vectors are calculated as relative frequencies
of cell types present in each sample. For cell embeddings, the input to the models was the cell
embeddings from the integrated space, and the prediction was made for each cell. We note that cell
type mean embeddings and frequency vectors are supervised since the cell type labels are required,

while MultiMIL, mean embeddings and cell embeddings are not.

To ensure that MultiMIL prediction performance is consistent independently of the learned latent
embedding, we also trained a totalVI [31] model in the same setting. We observed that the quality

of the embeddings is comparable between the two models (Fig. 3c, Suppl. Fig. 8b,c) and that the
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MultiMIL also outperforms other baselines when trained on totalVI embeddings (Suppl. Fig. 8a).
We also tested MultiMIL on a binary classification task, predicting healthy vs. COVID-19, and in
a more challenging multiclass task, predicting healthy and all five stages of COVID-19. In all the
experiments, our model outperformed other baselines or performed on par with supervised cell type

mean-embedding baselines (Suppl. Fig. 8a).

When analyzing diseased samples, we are interested in identifying cell states affected by the disease.
By utilizing the cell-attention module, our model learns a weight for each cell, where higher weights
directly correspond to cell states associated with the condition. For visualizations and further
analysis, we selected the classification formulation of the model since it provided more robust results
discussed later (Suppl. Fig. 9a). We also only take into account cells with the 10% highest scores
per condition, as these cells are most strongly associated with the disease. We observe in Fig. 3c
that cell types with the highest attention scores are monocytes, dendritic cells (DCs), plasmablasts,
and platelets. We first examine the myeloid compartment (Fig. 3d) and notice a trajectory of
highlighted CD14 monocytes from healthy and mild to severe, indicating a mean shift in expression
levels between different stages. Similarly, we find distinct populations of highlighted healthy and
mild CD16 monocytes, confirming that the signal learned with MultiMIL aligns with previous studies

reporting strong changes in monocytes with the progression of COVID-19 [40, 41].

Since the whole plasmablast cluster had a high attention score, we hypothesized that it might be
related to compositional differences. Hence, we next investigated which cell types had the biggest
compositional changes between conditions. We found that plasmablast and platelet populations
were in the top five (Fig. 3e), so MultiMIL identified compositional changes in these two cell types
as indicative of disease progression, also reported in [42]. We additionally ran Milo [13] on the
same embeddings and found that cell populations identified by MultiMIL, e.g., CD16 monocytes
and platelets, were among the cell types with the highest log-fold-change in composition identified
by Milo (Suppl. Fig. 8d). We note that Milo allows comparisons between two conditions, while
MultiMIL identifies condition-specific cell states for multiple classes simultaneously. To examine how
dependent the cell attention scores are on the input embedding, we compared cell types with the
highest attention scores obtained from MultiMIL embeddings and totalVI embeddings and found

that the same cell types were identified (Suppl. Fig. 8e).

Finally, we looked at the robustness of cell attention scores. We observed that the scores are mostly
consistent across cross-validation runs (Suppl. Fig. 9a). The classification formulation yields more

stable results than the regression formulation in terms of which cell types belonged to the group of
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cells with the top 10% attention scores. We therefore suggest that users default to the classification
model when analyzing the attention scores. We also note that the cells with the highest attention
score were consistently CD14 and CD16 monocytes (Suppl. Fig. 9b). We observed this in most
cross-validation runs of the classification model with different seeds using MultiMIL embedding or
runs using the totalVI embedding. Additionally, we show that by aggregating cells with the highest
attention scores, we obtain sample representations most indicative of the disease stages, compared to
averaging all cell embeddings or taking a weighted (by attention score) average of the cell embeddings

(Suppl. Fig. 9c¢,d, Methods).

We tested the end-to-end training of the model to assess the feasibility of simultaneous learning of
the latent representations and the cell attention weights. However, we observed that since there is
no clear ground truth on how well the disease and healthy samples should be integrated, it may be
challenging to assess if the model over- or under-integrates (Suppl. Fig. 7a). We noticed that the
accuracy of the prediction on the validation set increases with higher classification coefficients in
the loss function up to a certain point but then declines due to overfitting (Suppl. Fig. 7b). We
therefore recommend that the users train the model in the two-step setting, i.e., first the integration
module, then the prediction module. It is also possible to use existing atlases to skip the first step,

which will be discussed next.
MultiMIL identifies a subpopulation of IPF-associated macrophages in human lung

Single-cell atlases provide integrated and cell-type-harmonized representations of different systems
or organs of interest. These atlases can comprise hundreds of donors, which in turn is crucial
to understanding the disease variability and potential therapeutical targets [2]. We demonstrate
how MultiMIL can be utilized with existing single-cell atlases. Since MultiMIL’s integration and
prediction modules can be trained separately, we can train the prediction module directly on the
atlas embeddings. The Human lung cell atlas (HLCA) [43] consists of healthy and diseased donors
integrated into a common latent space. We investigated idiopathic pulmonary fibrosis (IPF) and
compared diseased and healthy samples. To this end, we selected the healthy and IPF individuals
from the atlas and trained MultiMIL’s prediction module in a 5-fold CV setting (Fig. 4a). MultiMIL
outperformed other baselines on the prediction task (Fig. 4b). We note that other models also
achieved high accuracy (>80%). If users are only interested in the binary classification task and
not the interpretability aspects, then mean-embedding baselines provide a satisfactory performance

(Fig. 4b).

We examine the learned cell attention scores to analyze which cell states the model learns to associate
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Figure 4: MultiMIL identifies IPF-associated cell states in human lung macrophages (a)
Case study design. Pre-trained embeddings from the HLCA [43] were subset to healthy and IPF
samples and used to train MultiMIL’s classification module on the binary classification task. (b)
A bar plot showing average accuracies and standard deviations of the five cross-validation runs on
the prediction task. (c) UMAPs of the original latent space from the HLCA colored by cell type
(top), condition (bottom left), profibrotic score calculated in macrophages (bottom middle) and
cell attention score (bottom right). A subpopulation of macrophages has a high attention score, so
we investigate these cells further. (d) Violin plots showing the profibrotic score in high-attention
macrophages and all macrophages from IPF donors (p-value<0.001, two-sided t-test). (e) A Venn
diagram with the genes in the profibrotic signature, the number of genes that are upregulated in
the high-attention macrophages compared with all macrophages from IPF donors, and the number
of genes in the intersection of the two sets. (f) GO enrichment analysis of the upregulated genes in
the high-attention macrophages. (f) UMAPs of the macrophages with the expression of SLAMFE7,
CCL22 and TNFSF14.
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with the disease. We notice that a subset of macrophages has the highest scores (Fig. 4c), so we
first show that MultiMIL identifies a subpopulation of SPP1" IPF-specific macrophages [5, 44]. We
hypothesize that this subpopulation corresponds to profibrotic macrophage populations reported in
previous studies [45, 46]. To confirm, we calculate the profibrotic score based on the profibrotic
signature introduced in [45] (Fig. 4c). We select macrophages from IPF donors and show that the
cells with the highest attention score (top 10%) have a significantly higher profibrotic score than
all IPF macrophages (Fig. 4d). MultiMIL also identifies a KRT17t subpopulation of basal cells

(Suppl. Fig. 10b) that previously have been reported to be associated with IPF [5, 47].

Cells with high attention can also be used for novel gene signature discovery or to expand the existing
signatures. We demonstrate how to identify the gene signature of the IPF-associated macrophage
subpopulation using only the attention scores and not relying on previous knowledge. We ran edgeR
[12] to find differentially expressed genes between IPF macrophages with the top 10% highest weight
and all IPF macrophages and identified 16 significantly upregulated genes. Comparing these 16
genes with the genes from the profibrotic signature, we find the overlap of 9 (out of 15) genes (Fig.
de).

The genes identified solely from MultiMIL’s high attention group include SLAMF'7, which has been
previously reported to regulate the immune response in lung macrophages during polymicrobial
sepsis and COVID-19 [48, 49]. Elevated levels of CCL22 have also been found in patients with IPF
[50, 51]. TNFSF14 promotes fibrosis in the cardiac muscle and atria [52], lung [53| and kidney [54].
Interestingly, TNFSF'1/ has been reported to regulate fibrosis in both structural and immune cells
[53] (Fig. 4g).

IPF is characterized by the excessive accumulation of the extracellular matrix (ECM) and the dis-

rupted balance between ECM production and degradation, where matrix metalloproteinase (MMP)

and the tissue inhibitor of metalloproteinase (TIMP) systems play an important role also in macrophages

[55]. We found that TIMPS3, MMP7 and MMP9 were reported as part of the profibrotic signature
and identified in our DE test. Several other genes that we found, namely, CCND1, CRABP2,
SPON2, SPINK1, CKB and MMP2, all have been linked to the ECM remodeling [56-61]. We ad-
ditionally performed Gene Ontology (GO) enrichment analysis [62, 63] on the 16 genes upregulated
in the high-attention group and found that the majority of the significantly enriched terms were

associated with the ECM (Fig. 4f).
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Discussion

MultiMIL is a deep-learning-based model for integrating multimodal single-cell data and identifying
disease-associated states. It combines cVAE, attention pooling, and multiple-instance learning to
provide a comprehensive pipeline for building and analyzing single-cell atlases. Our model integrates
paired and partially overlapping single-cell data and uniquely allows for the reference mapping of
unimodal and multimodal query samples. We demonstrated that the MIL approach to sample-level
classification from single-cell measurements outperforms classical baselines while offering additional
interpretability that other models lack. Specifically, MultiMIL can identify transcriptomic and

compositional changes driving the disease by analyzing the learned attention scores.

The field of spatial multiomics is rapidly developing [64], and we expect future multimodal models to
include spatial data types. Foundation models offer a promising avenue for such endeavors, as some
already incorporate multimodal integration as a downstream application [65]. Due to its modular
architecture, MultiMIL could be enhanced to work in the spatial domain, enabling the integration

of spatial information with other modalities.

Several other MIL models [66, 67] have shown promising results when applied to whole slide images,
and initial works in the single-cell field have utilized them in imaging or genomics applications
[16, 68]. This work demonstrates the potential applications and advantages of the MIL approach
in single-cell multiomics. Future research should benchmark different MIL-based models to identify

the most effective strategies for various single-cell applications.

As a deep-learning method, MultiMIL is subject to variability in downstream results due to the
stochastic nature of the training process. Additionally, the complexity of the model introduces

numerous hyperparameters, necessitating extensive optimization experiments.

We note that new metrics tailored specifically for multimodal integration are required to better assess
the quality of the integrated latent space [69]. While some papers on multimodal integration use
scIB metrics |70, 71], others provide overviews of metrics explicitly introduced for the multimodal

case |72]. Developing and standardizing such metrics will be crucial for future research.

The field of single-cell multiomics is expected to grow rapidly, especially with the ongoing efforts of
the Human Cell Atlas (HCA) project |73]. As more large-scale atlases are released, MultiMIL can be
readily applied to these datasets to identify cell states potentially relevant to various diseases. This

will be particularly impactful in complex diseases such as Alzheimer’s, where large cohort datasets
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are already available [74, 75]. MultiMIL’s ability to integrate and analyze these expansive datasets

will facilitate the discovery of novel disease-associated cell states and mechanisms.

Additionally, MultiMIL can be utilized for perturbation studies to understand how cells respond to
various treatments or environmental changes. This application is crucial for identifying potential
therapeutic targets and understanding drug response mechanisms [76]. By analyzing perturbation
data, MultiMIL can reveal how different cell states shift in response to specific interventions, provid-
ing insights that can guide the development of patient-tailored drugs. This approach not only helps
in identifying effective treatments but also in customizing therapies to individual patients based on
their unique cellular responses, thereby enhancing the precision and efficacy of medical interventions

[77].

MultiMIL offers an innovative approach to linking single-cell-level and sample-level data, identifying
biologically meaningful disease-associated cell states. By accommodating multimodal or unimodal
data, raw data, or existing atlases, the model provides computational biologists with a versatile tool

for various applications.

Code availability

The package is available at http://github.com/theislab/multimil. The code to reproduce the

results and figures is available at http://github.com/theislab/multimil_reproducibility.

Data availability

All datasets analyzed in this manuscript are public and can be downloaded through http://github.

com/theislab/multimil_reproducibility.
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Methods

MultiMIL

MultiMIL is a generative model based on conditional variational autoencoders (cVAEs) 78] with an
additional multiple instance learning (MIL) module on the latent space. The architecture consists
of three main parts: encoders, decoders and the MIL module. Multimodal single-cell data (together
with the batch covariate) is first fed into the encoders, which output parameters of unimodal marginal
distributions. Then, a product-of-expert layer calculates the joint distribution parameters from the
marginal distributions’ parameters. In the latent space, we sample from the joint distribution and
then feed the latent embeddings to the decoders (concatenated with batch covariates) and the MIL
classifier module. Decoders learn the parameters of the distributions assumed for the input data,
and the MIL classifier learns to predict classification labels for a "bag" of cells. In the following, we

explain the input to the model in more detail and how each component is trained.

MultiMIL training

We assume there are several single-cell multimodal datasets, each consisting of multiple patients
with disease labels available for all patients. Here, we will describe the end-to-end training of the
VAE and the MIL modules and discuss the differences between integration-only and prediction-
only training later. Single-cell datasets are usually confounded by the technical batch effect, but
to simplify the notation, we will treat each dataset as one technical batch. In this section, we will
refer to the experimental batches in an experiment or a dataset as "technical batches" or "batch
covariates". In contrast, the computational batches, i.e., mini-batches on which machine-learning

models are trained, are referred to as "batches" or "training batches".

We denote single-cell datasets as { D1, ..., Dy} with corresponding batch covariate labels {c1, ..., c;}
and assume that the datasets consist of patients {pi,...,ps} with corresponding disease labels
{l1,...,15}. We also assume that the datasets are multimodal and have m modalities in total.

We will now focus on a single mini-batch and describe one forward pass of the model. Each training
batch consists of single-cell data { X1, ..., X, }, the technical batch label {c}, and the patient disease
label {l}. For simplicity, we assume that only cells from one patient are present in each training
batch. Hence, the batch input data matrices {Xi,...,X,,} correspond to multimodal data from

one patient from m modalities, where some matrices may be all zeros if measurements for the
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corresponding modality are missing. The number of rows in each matrix X; equals n, which is the
number of cells in the mini-batch, and the number of columns equals the number of features in the
original input data of modality i. Note that since the data is paired, the rows in different matrices

within one batch always correspond to the same cells.

The data matrices are first fed into the modality-specific encoders e, ...,e,,. Each encoder layer
consists of a linear layer with dropout, layer normalization and a non-linearity, which can be
chosen by the user (with leaky ReLU as default). The output of the encoders are the parame-
ters of p(z|x1),...,p(z|zm), respectively, which are assumed to be normal. Hence, the output is
(u1,01)5 -+, (ftm, Om), Where p1,01, ..., fim, om € R™" and h is the number of latent dimensions

and each parameter is learned independently for each latent dimension.

We employ the product-of-expert (PoE) [15, 18] technique to determine the parameters of the joint

distribution p(z|x1,...,2y) from p(z|z1),...,p(2|xs) for cell j and latent dimension p:
P = (g0 + Y Mgl (o) o + Y Mol )

m
o/ = (og '+ Mi(o]")") 7,
=1

where o and o¢ are the parameters of the prior N(uo, 09), which in our case is standard normal, so
wo =0 and o9 = 1, and M; is 1 if modality ¢ is present in this particular batch and 0 otherwise. We
obtained the closed form above because we assumed all the distributions to be normal [18]|. In the
next step, we sample the joint representation zjoint ~ p(z|21, ..., %) independently for each latent

dimension using the reparametrization trick [79].

During the decoding step, the dataset (i.e., the technical batch) information ¢ is concatenated to
Zjoint, and then the concatenated matrix is fed into each of the modality-specific decoders dy, ..., dp,.
The dataset information c is represented as a learnable embedding in a low-dimensional space. The
decoders mirror the encoders’ architecture and consist of blocks of a linear layer with dropout, layer

normalization and non-linearity.

The latent representation zjoint is also fed into the MIL module. The first step here is to aggregate
the representations of all cells zjoint € R™*" from the batch (i.e., bag) into a Zbag € R". This bag
representation corresponds to a pooled representation of a bag of cells. There are several ways to
obtain this pooled representation, e.g., applying maz or sum operators, but we follow [17] and apply

attention aggregation:

20


https://doi.org/10.1101/2024.07.29.605625
http://creativecommons.org/licenses/by-nc-nd/4.0/

427

428

429

430

431

432

433

434

435

436

437

439

440

441

442

443

444

445

446

447

448

449

bioRxiv preprint doi: https://doi.org/10.1101/2024.07.29.605625; this version posted July 29, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

made available under aCC-BY-NC-ND 4.0 International license.

p § i,0P
Zbag - a Zjoint’ (2)
i€bag

where the joint representation of cell ¢ along latent dimension p is denoted as ZJZ (fi’nt € R. Attention

weights a’ € R are learned with the gated attention mechanism [17, 80]:

exp [wT(taDh(VZJ?oint) © Sigm(UZjioint))}

ai = X X ) (3)
> jebag €XP [wT(tanh(sz]Omt) ® sigm(Uzj]Omt))]

where w € R%,V € R?*" and U € R?" are learnable weights and ¢ is a hyperparameter known as

attention dimension.

After the aggregation, 2y, is fed into a classifier network, once again consisting of blocks of a linear
layer with dropout, layer normalization and non-linearity. The number of neurons in the last layer
equals the number of classes. The classification network predicts the distribution of disease labels
for a given bag (i.e., patient). We have now described all of the modules in the model and will

discuss the training loss.

MultiMIL can be trained end-to-end, meaning that reconstruction and classification tasks are opti-
mized simultaneously; in this case, we adjust the VAE framework to account for the new classification
module. As in standard VAE models, we calculate the reconstruction loss and the Kullback-Leibler
(KL) loss with monotonic annealing [20, 21]. For a discussion on VAEs for single-cell data mod-
eling, see [81]. The reconstruction loss is calculated separately for each modality, depending on
which distribution is assumed for the input data of this modality (e.g., normal, negative binomial
or zero-inflated negative binomial). To obtain the final reconstruction loss, the modality-specific

reconstruction losses are summed up:

Erecon = in: )\iﬁiecona (4)
=1

where the weights \; are all set to 1 by default, but a weighted sum can be calculated instead. The
uneven weighting might be beneficial if the range of loss values differs for different distributions
(e.g., if one modality is assumed to follow a Gaussian and another modality — negative binomial
distribution). This weighting then ensures that the reconstruction loss for each modality has a
similar effect on the overall loss. KL loss is calculated between the assumed prior on the latent space

(i.e., standard normal) and the learned joint distribution.
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Next, we briefly discuss the maximum mean discrepancy (MMD) loss [22, 23]. We employ MMD
loss for two purposes: to ensure that the batches are well integrated, i.e., that joint distributions
are similar between batches, and that the unimodal representations follow similar distributions. We
are interested in the latter if we want to map unimodal queries onto the multimodal reference. In

general, MMD loss measures the distance between two distributions P and @ [22]:

MMD(P7 Q) = ]Ea,a’NP[K(a? a/)] + Eb,b’NQ[K(ba b/)] - 2ECL~P,bNQ [K(av b)}v (5)

where a,a’ and b,b’ are samples drawn from the distributions P and @, respectively, and K is a

kernel function. In the implementation, we use multi-scale radial basis kernels [23] defined as

K(a,b,7) = ZKab,% (6)

where K (a,b,~;) = exp(—vi||a — b||3) is a Gaussian kernel and s,y = (71,...,7s) are hyperparame-

ters.

In our case, the MMD loss is calculated either as the sum over all pairs of batch distributions or
as the sum over all pairs of unimodal distributions we want to align. In the first case, MMD loss

is calculated between pairs of joint representations z coming from different batches

1 k
joints * - Zjoint

Cl,...,CL as

latent _ 2 :
MMD - K _]Olnt’ Jo]nt”}/) (7)
i=1,7>1

In the second case, we calculate the loss between unimodal marginal representations z; ~ p(z|z;)

and z; ~ p(z|z;) for all i,5 € {1,...,m}, i # j as

m
marginal
L™ = > K(z,2,7). (8)
i=1,j>1

The final MMD loss is calculated as

__ylatent platent marginal »marginal
Lyvp = Avp£MMD + Avivip £vvd 9)

latent marginal
where A\{[Nip and Ay are hyperparameters.
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The classification loss is calculated as the cross-entropy loss between one-hot encoded true disease
labels and the predicted values of the final layer in the classification network. If the user is interested
in modeling the disease classes as a progression, the last layer of the classifier network can be changed
to a regression head. In this case, the classification loss is calculated as mean squared error loss. For

simplicity, we refer to the regression loss as the classification loss.

The MultiMIL final loss function consists of the VAE loss (which in turn consists of the KL loss and

the reconstruction loss), the MMD loss and the classification loss:

L= 'Crecon + )\KLEKL + )\MMD*CMMD + >\ClaSS'CClaSSa (10)

where Akr, AMmvp and Agpass are hyperparameters.

MultiMIL inference

During test time, we aim to predict the disease class for new patients. For simplicity, we again
assume that only cells from one patient are present in the training batch. If needed, we first employ
scArches [19] to map new data onto the reference to obtain the latent embeddings. Then, the model
needs one forward pass through the MIL module described above. The module aggregates the cell

representations into a bag representation, which is then classified using the classification network.

Integration-only training

In the above, we described how to train MultiMIL for simultaneous multimodal integration and
patient classification, but the model can also be trained on the integration task alone. The model
architecture of the VAE network remains the same in this case, but the MIL module is removed. The
model is trained by optimizing the same loss function but without the classification loss. Additionally,
cells for each training batch are sampled randomly without considering the patient information. The
output of the model is then the joint representation for each cell. These learned latent embeddings

can be later used to train the MIL module separately.

Prediction-only training
If the user is interested only in the prediction task and already obtained a low-dimensional integrated
representation of the data, MultiMIL can be trained in prediction-only mode. In this case, the

embeddings are directly fed into the classifier network and only the classifier is trained.

Integration metrics
To assess the quality of the integration, we used several metrics from the scIB package [33]. Note

that scIB metrics were designed for unimodal integration, and not all of them can be easily applied
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in the multimodal case; hence, we chose the metrics that only require the integrated embedding
space as input (and not, e.g., the original unintegrated space). In the following, we briefly discuss
two metrics for batch removal and four for biological variance conservation. As in scIB, the final
score was calculated as 0.4*batch correction + 0.6*biological conservation. For more details on the

metrics and the implementation, see [33].

Batch correction

Graph connectivity measures how well cells from each cell type are connected in a k-nearest neighbor
graph. If the connectivity is high, then the batch effect was removed sufficiently. Average silhouette
width (ASW) compares average distances within a cluster with distances to other clusters. The
resulting score reflects how compact the clustering is. For ASW batch, we expect the batch clusters

to be well-mixed together for a high batch correction score.

Biological variance conservation

Adjusted Rand Index (ARI) and Normalized Mutual Information (NMI) evaluate how well the clus-
tering is aligned with the ground truth labels, i.e., cell type annotations. ASW label is a modification
of ASW batch, where we expect the cell type clusters to be compact and separate from other cell
type clusters for a high biological conservation score. Isolated label ASW assesses how well rare cell

types are distinguishable from the rest of the data.

Benchmarks

Paired integration

We benchmarked five methods for paired integration (MultiMIL, totalVI [31], multiVI [32], MOFA+
[29] and Seurat v4 [30]) on two CITE-seq datasets (NeurIPS 2021 CITE-seq [26], Hao et al. [27])
and two multiome datasets (NeurIPS 2021 multiome [26], 10x multiome [28]). All methods perform
multimodal integration of paired data but employ different approaches. MOFA+ is a linear factor
model that decomposes the input data into two low-rank matrices, one representing latent factors
(i.e., cell embeddings) and the other representing factor effects. WNN is a graph-based method that
outputs a nearest-neighbor graph learned from both modalities. totalVI/multiVI are deep-learning
VAE-based methods that model and then fit protein-/chromatin-specific distributions. The output
of both models is a latent representation in low-dimensional space. We performed hyperparameter
optimization for MultiMIL and then set MultiMIL’s default parameters for the integration task

based on the best-performing values across all datasets. Other methods were run with their default
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parameters. We report scIB metrics for all methods. Note that for Seurat v4, we obtained the
supervised PCA (sPCA) [82] embeddings from the gene expression and the weighted-nearest neighbor
graph to calculate the embedding-based metrics. To find the optimal hyperparameters for MultiMIL,
we ran a random grid search for the following parameters and values (with a maximum number of

iterations of 100):

Hyperparameter Description Default Range
Batch size size of the training mini-batch 256 {128,256,512}
Learning rate learning rate parameter le-3 {le—6,1e —5,1e — 4,1e — 3}
KL coefficient weight of KL loss in the overall loss le-5 {le—5,le—4,1e — 3,1e — 2,1le — 1}
Latent dimension dimensionality of the latent space 16 {8, 16,32}
Conditional dimension dimensionality of the covariate embedding space 16 {8,16,32}
Number of layers number of hidden layers in encoders and decoders 1 {0,1,2}
Activation function non-linearity in the network LeakyReLU {LeakyReLU, Tanh}

Table 1 | Hyperparameter grid search for MultiMIL’s paired integration.

Mosaic (trimodal) integration

We benchmarked MultiMIL against GLUE [25], multiMAP [34] and scMoMat [35] on the mosaic
integration task. We subset the NeurIPS CITE-seq and multiome data to Sitel and Site2 and
integrated the two datasets. We ran GLUE using paired and unpaired models. GLUE offers two
different models to train, one that considers the pairedness of the data points and one that does not
(see Methods); we included both models in our benchmark. MultiMIL and scMoMaT output one
embedding per cell, while the rest of the methods output an embedding per cell per modality. To
be able to fairly compare the methods, we additionally computed a "joint" representation for each
cell as the average of the modality representations for both of the GLUE models and MultiMAP

(denoted "avrg.").

Trimodal query-to-reference mapping

Seurat v and MultiMIL allow query-to-reference mapping onto the atlases. For Seurat’s bridge
integration, we first build an RNA-seq-only reference atlas from scRNA-seq measurements from the
CITE-seq dataset and snRNA-seq measurements from the multiome dataset using data from Site
1 and Site 2. Then we used one donor (donor 7) from Site 3 as a CITE-seq bridge to map ADT
data from Site 4 (donor 9) on top of the RNA-seq reference and the same donor from Site 3 as a

multiome bridge to map scATAC-seq data from Site 4 (donor 9) onto the same reference.

For MultiMIL, we mapped unimodal queries, namely scRNA-seq, snRNA-seq and scATAC-seq, and
multimodal queries, namely CITE-seq and multiome, on top of the built CITE-multiome reference.

We ran a hyperparameter search for MultiMIL for the following parameters and values:

MMD loss type refers to how we calculate the MMD loss: ’latent’ means that Eﬁtﬁ% = 1 and
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Hyperparameter Description Default Range
KL coefficient weight of KL loss in the overall loss le-2 {le—5,le—4,1e—3,le —2,1e — 1}
Integration coeflicient  weight of integration MMD loss in the overall loss 4000 {1000, 2000, 3000, 4000, 5000, 6000}
MMD loss type of the MMD loss 'marginal’ {’latent’, ‘'marginal’}

Table 2 | Hyperparameter search for MultiMIL’s trimodal integration and query-to-reference mapping.

marginal __ . . 5 latent __ marginal
Lyivp = 0; 'marginal’ means that Ly = 0 and Ly, = 1.

Other hyperparameters were set to their defaults from Table 1. To choose the default parameters,
we calculated the scIB metrics on the reference and the mapped queries (with the batch covariate

indicating whether the cell came from the reference or the query) to assess the mapping quality.

To assess the accuracy of cell-type transfer, we trained random forest classifiers for each of the query

types with sklearn.ensemble.RandomForestClassifier(class_weight="balanced_subsample").

Classification prediction

We compared MultiMIL’s predictive ability to several baselines: random forest, multiclass logistic
regression, and feed-forward neural networks. We trained each model on the following data input
types: mean embeddings, cell type mean embeddings, cell type frequency vectors and cell embed-
dings. We note that some baselines, namely cell type mean embeddings and cell type frequency
vectors, require cell type information, while MultiMIL and the rest of the baselines are entirely

unsupervised.

The benchmark was performed on two datasets [38, 43]. HLCA is a unimodal dataset and Stephen-
son et al. is a CITE-seq dataset. We created 5-fold cross-validation splits based on patient in-
formation, i.e., so that cells in each train/validation split come from different patients. We used
sklearn.model_selection.KFold() to create the splits and

sklearn.metrics.classification_report() to report the classification accuracy.

We performed a random grid search (with a maximum number of iterations of 100) to find optimal

hyperparameters for MultiMIL for each of the datasets and experiments. Table 3 provides the tested

parameters.
Hyperparameter Description Default Range
Learning rate learning rate parameter depends on the setup {le —5,1e —4,1e — 3}
Classification coefficient weight of the classification loss in the overall loss 1.0 {0.1,1, 10,100}
Attention dimension dimensionality of the attention dimension 16 {8,16, 32}
Scoring function how the attention per cell is calculated gated attention {gated attention, attention}
Number of classifier layers number of hidden layers in the feed-forward classification network 2 {1, 2, 3}

Table 3 | Hyperparameter search for MultiMIL’s prediction.

Following the notation from the Results section, attention weights [83] were calculated as
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oint

exp [wT(tanh(szi ))}

T

a = )
Y ke bag €XP {wT(tanh(sz]i)im))}

(11)
and gated attention weights [84] as

exXp [wT (tanh(vz}'oint) © Slgm ( Uzjioint ) ):|

at = , (12)
Y ke bag €XP [wT(tanh(sz]f)int) ® sigm(Uzj’f)int))}

The batch size was set to 256, the patient batch size to 128 (meaning that in each training mini-batch
of size 256, there were two sub-batches of size 128 consisting of cells belonging to one patient each),
and the latent and the condition dimensions to 16. Encoders and decoders had one hidden layer
each. The default parameters were chosen based on the prediction accuracy of the validation set

averaged across five splits.

Next, we discuss the baseline models and the input data in more detail. We performed a hyperpa-
rameter grid search for NN-based models and reported the best-performing configuration. Patient
disease labels were used as class labels throughout this benchmark apart from the "Cell embedding"

input type, where all the cells from a diseased donor were assumed to have the disease class.
Baseline models

e Multiclass logistic regression is an extension to the logistic regression method that allows the
prediction of multiple classes. We calculate the probability of belonging to a particular class
with a softmax function and calculate the loss as the entropy between predicted probabilities

and the true class. We optimize the loss function with gradient descent.

e Random forest was implemented using

sklearn.ensemble.RandomForestClassifier () with the default parameters.

e Neural network was implemented as a 2-layer feed-forward network with one hidden layer of
64 neurons, batch normalization and ReLLU activation. The second linear layer outputs class
probabilities. We trained the neural network baselines with Adam optimizer [85] for 200 epochs
for sample-level inputs and 30 epochs for cell-level input. Hyperparameter search was run for

batch size and learning rate shown in Table 4.
Input data types

e Mean embedding representations were calculated from the latent embeddings with
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Hyperparameter Description Range
Learning rate learning rate parameter {le—5,1e — 4,1e — 3}
Batch size for sample-level inputs —size of the training mini-batch {8, 16, 32, 64}

Batch size for cell-level input size of the training mini-batch {128, 256, 512, 1024}

Table 4 | Hyperparameter search NN baseline.

decoupler.get_pseudobulk () specifying the sample parameter and keeping all the cells.

e Cell type-aware mean embedding representations were calculated from the latent embeddings
with decoupler.get_pseudobulk() specifying the sample and group (i.e., cell type) parame-
ters and keeping all the cells. To obtain one representation per sample, we concatenated cell

type-specific vectors into one vector.
e Frequency vectors were calculated from cell type proportions for each sample.

e Cell embeddings were directly passed to the baselines after integration with MultiMIL, total VI

or published atlases.

Robustness of the integration module

To assess the robustness of the integration, we ran several experiments on the trimodal dataset. We
tested several parameters: integration coefficient (i.e., MMD coefficient Ayivp), number of shared
features between datasets from different technologies, selection of integration covariates, reference/-
query ratio and different ways of calculating the MMD loss. Unless the parameter was tested in the
experiment, the default parameters used throughout this benchmark were taken from Table 1, and

the rest is shown in Table 5.

Hyperparameter Description Default Range
Integration coefficient weight of the MMD loss in the overall loss led {le-3, 1e-2, le-1, 1, 10, 1e2, 1e3, led, leb, 1e6, 1leT}
Number of shared features number of shared features between scRNA and snRNA 4000 {100, 500, 1000, 2000, 3000, 4000}
Integration covariate covariate used for the calculation of MMD modality {none, modality, donor}
Batch covariate covariate(s) used as batch covariate(s) modality & donor {modality, donor, modality & donor}
Reference/query split which sites were used as reference and which as query Sites 1-3/Site 4 {Sites 1-3/Site 4, Sites 1-2/Sites 3-4, Site 1/Sites 2-4}
MMD type how MMD loss was calculated marginal {marginal, latent}

Table 5 | Parameters tested in the robustness benchmark.

Identification of DA cell states with Milo.

We ran the default Milo [13] analysis on the PBMC dataset using the embeddings learned with
MultiMIL. We ran three pairwise analyses comparing mild COVID-19 and healthy, severe COVID-
19 and healthy, and severe and mild COVID-19. We show the neighborhoods with spatial false

discovery rate (FDR) corrected levels of less than 0.01.

Robustness of attention scores.
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To assess the robustness of attention scores, we ran several experiments on the PBMC dataset.
First, we ran a 5-fold CV on the same folds, using the same model parameters but changing the
random seed using MultiMIL embeddings. Then we also trained the classifier module using totalVI
embeddings. To assess the stability of training and attention scores, we looked at the cells with the

top 10% attention scores and investigated which cell types they belong to.

We also investigated how well we can predict sample labels with a kNN classifier. We set up a
leave-one-out cross-validation experiment using several different aggregation strategies. Sample rep-
resentations were calculated as a mean of cell embeddings belonging to the sample, mean embedding
of cells with top 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% highest attention score and a

weighted average of cell embeddings where the weights were the attention weights.

Calculation of the profibrotic signature

To calculate the profibrotic score for macrophages in HLCA, we used the signature from [45]:

SPP1, LIPA, LPL, FDX1, SPARC, MATK, GPC4, PALLD, MMP7, MMP9, CHIT1, CSTK,
CHI3L1, CSF1, FCMR, TIMP3, COL22A1, SIGLEC15, CCL2. The score was calculated with
scanpy.tl.score_genes(). We performed a two-sided t-test to check for the significance of the score

in all IPF macrophages vs. IPF macrophages with the high attention score using scipy.stats.ttest_ind().
We used edgeR-QLF [12] to identify the genes differentially expressed in IPF macrophages with the

high attention compared to all IPF macrophages and reported genes with a log-fold change greater

than 1.5 and FDR-~corrected p-value less than 0.01 as up-regulated (see Supplementary Table 1).

Gene Ontology analysis

We used GOATOOLS [86] to run the GO term analysis on the genes that were identified as signif-
icantly upregulated in the IPF macrophages with MultiMIL. We followed the tutorial and ran all
the functions with their default parameters. We reported the terms with the corrected p-value less

than 0.1 as significant.

Datasets

All datasets can be downloaded via https://github.com/theislab/multimil_reproducibility.

NeurIPS 2021
The CITE-seq (paired scRNA-seq and ADT) dataset contains 90,261 cells from four sites and 12
batches. The multiome (paired snRNA-seq and scATAC-seq) has 69249 cells from four sites and

13 batches. Both datasets were annotated by the authors and assigned in 30 and 22 cell types,
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respectively. ’Samplename’ was used as the batch covariate.

10x multiome

The data contains 10,000 healthy cells from a multiome experiment. The data does not contain any

batches, and the cells are assigned to 11 cell types.

Hao et al.

The CITE-seq data contains 149,926 cells split into two batches. We used the second-level cell type
annotations provided by the authors to calculate the scIB metrics. All 228 proteins present in the

ADT assay were used in the analyses.

Stephenson et al.

The PBMC dataset contains 647,366 cells from 130 donors, collected at three sites. The ADT panel
has 192 proteins. All data points were used for the integration. For the prediction experiment with
all COVID-19 stages, we removed non-COVID and non-healthy samples. For the binary experiment,
i.e., COVID-19 vs healthy, we subset the data in a balanced way, ensuring that the number of samples

from each condition is the same (23).

Sikkema et al.

Human Lung Cell Atlas (HLCA) consists of the core (584,444 cells, 107 donors) and the extension
datasets (1,797,714 cells, 380 donors). The core samples are all healthy, while the extension has
healthy and diseased samples. In our experiments, we subset the data to healthy and IPF samples

in a balanced way, i.e. the number of donors is the same (67) in both groups.

Data preprocessing

For all of the paired experiments, we subset the gene expression datasets to the top 4000 highly
variable genes, taking the batch covariate into account with

sc.pp.-highly_variable_genes(n_top_genes=4000) specifying a batch covariate for datasets with
batch effects. If the methods required normalized counts as input, we followed standard scanpy work-
flow and applied sc.pp.normalize_total(target_sum=1e4) and sc.pp.loglp() to the raw counts.
ADT counts were central-log-ratio normalized. We selected the top 40000 highly variable peaks for
ATAC data with episcanpy [87]. To normalize ATAC measurements, we used log-normalization
following the episcanpy and muon tutorials. In the trimodal experiments, we performed the same

preprocessing, but subsetting to 20,000 highly variable peaks.

To integrate the PBMC dataset for the prediction experiments, the top 2,000 highly variable genes
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were selected with sc.experimental.pp.highly_variable_genes() using ’Site’ as the batch covari-
ate. We preprocessed the ADT data similarly to the above and also removed the isotype controls

from the protein matrix.

Running time

We provide training times for the integration module in Table 6, classification module and end-to-end
training of models with default architectures. The training was performed on the same GPU server
with the following characteristics: Intel(R) Xeon(R) Platinum 8280L CPU with 28 cores, 2.70GHz,
Tesla V100-SXM3-32GB GPU. We report the average run time and standard deviation across three
runs. We used the PBMC CITE-seq dataset 42|, subsetted to healthy, mild and severe COVID-19
in a balanced way, resulting in 256,051 cells. All models were trained for 50 epochs. For the training
of the classification module only and the end-to-end training, we modeled the prediction task as

either a three-class classification problem or as a regression problem.

average runtime (s) standard deviation (s)

integration module 622 2

classification module, classification 356 9

classification module, regression 357 5

end-to-end, classification 937 45

end-to-end, regression 834 89
Table 6

Default architectures

The integration module consists of encoder-decoder pairs, and below we provide the specifications
of each pair. Mu and Sigma modules output the y and o parameters of the unimodal distributions.

Unless specified, the parameters have their default values from PyTorch.

For the model that consists of the integration and the classification networks, the architecture is the
same for the integration module, and the default architecture for the classification module is shown

below.

We note that we trained the model on the PBMC data with 20 latent dimensions to match the

default number of latent dimensions in totalVI for a fair comparison.
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Module Layer

Encoder Linear(n input features, 128)
LayerNorm
LeakyReLLU

Dropout(0.2)
Linear(128, 16)
LayerNorm
LeakyReLLU
Dropout(0.2)
Mu Linear(16, 16)
Sigma Linear(16, 16)
Decoder Linear(16 + 16*n_of covariates, 128)
LayerNorm
LeakyReLLU
Dropout(0.2)
Linear(128, n_input_features)
LayerNorm
LeakyReLLU
Dropout(0.2)
Reconstruction decoder Linear(128, n_input_features) x k,
where k depends on the distribution of the input data

Table 7

Module Layer
Attention aggregator calculation of attention scores as in Eq. 3
calculation of the weighted sum as in Eq. 2
Classifier Linear(16, 128)
Dropout(0.2)
LayerNorm
LeakyReLU
Linear(128, n_ classes)

Table 8

71 Computational resources and package versions

702 Table 9 provides the version specifications of the main packages used in the benchmarks and the

703 implementation of MultiMIL.
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Package Version Used in

python 3.10 MultiMIL package

scanpy 1.9.3 pre-processing and MultiMIL package

muon 0.1.5 pre-processing

decoupler 1.4.0 sample-level baselines

torch 2.0.1 neural network baselines and MultiMIL package
sklearn 1.3.0 benchmarks

scib 14 benchmarks

scvi-tools 0.20.3 MultiMIL package and paired benchmarks
MOFA+ 0.6.7 paired benchmarks

Seurat WNN  4.3.0 paired benchmarks

Seurat Bridge 4.9.9.9058 trimodal benchmarks

scMoMaT 0.2.0 trimodal benchmarks

scglue 0.3.2 trimodal benchmarks

multimap 0.0.1 trimodal benchmarks

R 4.2.2 Seurat and edgeR

edgeR 3.40.0 differential expression testing

snakemake 7.30.1 pipeline to run the classification benchmarks

Table 9
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Supplementary Figure 1: Multiple instance learning. (a) In our context, bags correspond to
donors, instances to cells and the classification labels are known for bags, i.e., donors. (b) Examples
of data points in the multiple-instance-learning dataset. Our task is to classify bags into classes and
identify cells (i.e. colored instances) that are associated with a certain disease. (c¢) MultiMIL can
identify changes in the abundance of cell types between conditions as well as transcriptomic changes.
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Supplementary Figure 2: Paired integration of multiome datasets. (a) UMAPs of the latent
spaces of the 10x multiome dataset, integrated with MultiMIL, Seurat WNN, MOFA-+ and multiVI,
colored by cell type. (b) UMAPs of the latent spaces of the NeurIPS 2021 multiome dataset,
integrated with MultiMIL, Seurat WNN, MOFA-+ and multiVI, colored by cell type and sample.
(c) A table showing scIB metric scores for 10x multiome dataset. (d) A table showing scIB metric
scores for NeurIPS 2021 multiome dataset.

42


https://doi.org/10.1101/2024.07.29.605625
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.07.29.605625; this version posted July 29, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

A MultimIL Seurat WNN MOFA+ totalVI
Cell type
pes SCOSTON A oltaating
o8 rEmeioe WCOATEM  ® W COBBrom
» 8 mamary SCOLAMaa @ Fasmabiast
» e SCOL0 Bonn  w Prateiet
scoscn sooutist Ty
. wtryin P
»CO4 Pratarsting @ HSFC w2
coa Ten e anT
wCoaTER P .ot
08 N anc Pt
Co8 uiterating
©
-
]
o]
@ Batch
T
» Batchl
® Batch2
B Seurat WNN totalVvI
Cell type
o
@
0
]
w
[=
(@]
—
o
=]
~
%]
o
5 Sample
% #sldl  es3dl
esld2 e s3d6
esld3  es3d7
®s2dl s4d1
®s2dd s4d8
®s2d5 54d9
c Bio conservation Batch correction Aggregate score
Label Isolated Batch Graph Bio Batch
Method NMI ARI ASW label ASW ASW Connectivity conservation correction Total
MultiMIL 0.84 . @ 0.55 0.89 0.95 - 0.92 0.79
™ Seurat WNN 0.84 0.71 0.57 0.56 0.88 0.98 0.67 0.93 0.77
=
@
AL ERRER SEARE R AR F AR
I totalvl 0.80 0.64 0.57 0.56 0.94 0.98 0.64 0.96 0.77
MOFA+ @ 0.60 0.58 @ @ @ 0.62 0.85 0.71
D Bic con Bio conservation Batch correction Aggregat
Label Isolated Batch Graph Bio Batc
Method NMI ARI Method NI ARI ASW label ASW ASW Connectivity conservation correc
g totaw 0.80 077 totalVl 0.80 0.77 0.56 . @ 0.93 0.67 -
et Y I
Ly e
5 MultiMIL 0.79 0.74 MultiMIL 0.79 0.74 @ 0.49 0.82 0.91 0.66 [i}
g ........................................................................................................................
& seurat WNN 0.76 0.66 Seurat WNN 0.76 0.66 0.57 0.51 0.80 0.92 0.62 1]
w
= e e R R R R R R PR PR EREEPERE FRPRPP
=
e @ @ " © ® v B = @ n o

Supplementary Figure 3: Paired integration of CITE-seq datasets. (a) UMAPs of the latent
spaces of the Hao el at. dataset, integrated with MultiMIL, Seurat WNN, MOFA-+ and totalVI,
colored by cell type and batch. (b) UMAPs of the latent spaces of the NeurIPS 2021 CITE-seq
dataset, integrated with MultiMIL, Seurat WNN, MOFA+ and totalVI, colored by cell type and
sample. (c) A table showing scIB metric scores for Hao et al. CITE-seq dataset. (d) A table
showing scIB metric scores for NeurIPS 2021 CITE-seq dataset.
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Supplementary Figure 4: Trimodal reference building. (a) UMAPs of the latent spaces of
NeurIPS 2021 multiome and NeurIPS 2021 CITE-seq datasets, integrated with methods that output
a representation per cell, i.e., MultiMIL, scMoMaT, GLUE paired (averaged representation), GLUE
unpaired (averaged representation) and MultiMAP (averaged representation), colored by cell type,
sample and modality. (b) UMAPs of the latent spaces of NeurIPS 2021 multiome and NeurIPS 2021
CITE-seq datasets, integrated with methods that output a representation per cell per modality, i.e.,
GLUE unpaired, GLUE paired and MultiMAP, colored by cell type, sample and modality.
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Supplementary Figure 5: Trimodal query mapping. (a) UMAPs of the integrated scRNA-seq
and snRNA-seq from NeurIPS 2021 CITE-seq and NeurIPS 2021 multiome, respectively, with Seurat,
colored by sample, cell type and modality/dataset. (b) UMAPs of the mapped ATAC query onto
the RNA-seq reference with Bridge colored by reference/query and ATAC query only colored by
cell type. (c) A table with scIB scores calculated for different queries mapped with MultiMIL. (d)
Confusion matrices between true and predicted (with a random forest model) cell types for the full
query and individual queries mapped with MultiMIL.
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Supplementary Figure 6: Robustness of trimodal integration with MultiMIL. (a) A bar
plot showing the effect of batch covariates and integration covariates selection on the scIB overall
integration score and query mapping scores. (b) A bar plot showing the effect of MMD loss type
on the scIB overall integration score and query mapping scores. (c) A bar plot showing the effect of
the reference and query sizes on the scIB overall integration score and query mapping scores. (d) A
line plot showing the effect of the number of the common features in the scRNA /snRNA modality
on the scIB overall integration score and query mapping scores. (e) A line plot showing the effect
of the integration coefficient (i.e., the weight of the MMD loss) on the scIB overall integration score
and query mapping scores.
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Supplementary Figure 7: End-to-end training of MultiMIL. (a) UMAPs of the integrated latent
space showing the effect of the classification coefficient colored by cell type (top row), disease stage
(middle row) and cell attention (bottom row) for the first CV fold. (b) A line plot showing the effect
of the classification coefficient on the accuracy of the predicted disease condition on the validation
set for the first CV fold.
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Supplementary Figure 8: Prediction of COVID-19 stages on a CITE-seq PBMC data. (a)
Results of the prediction benchmark on balanced binary (healthy, COVID-19), balanced multiclass
(healthy, mild, severe COVID-19) and full data (healthy, 5 COVID-19 stages) using MultiMIL or
totalVI embeddings, comparing MultiMIL with the baselines. (b) A table showing scIB metric scores
comparing MultiMIL and totalVI latent embeddings obtained for the full dataset. (c) UMAPs of the
totalVI latent space, colores by cell type, cell attention score and disease stage. (d) Results of Milo
analysis run on MultiMIL’s embeddings, mild vs. healthy (left), severe vs. healthy (middle) and
severe vs. mild (right), each colored by DA log-fold change (red corresponds to the first condition
in the tile). (e Violin plots showing DA changes for each of the cell types in mild vs. healthy (left),
severe vs. healthy (middle) and severe vs. mild (right).
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Supplementary Figure 9: Robustness of attention scores in PBMC data. (a) UMAPs showing
cell attention scores learned in five cross-validation runs. (b) Stacked bar plots showing the distribu-
tion of cell types with top 10% highest attention scores across five cross-validation runs, comparing
runs with different seeds, different MultiMIL setups (classification or regression), and the model ran
using totalVI embeddings. (c) Line plots showing how well the kNN classifier can predict sample
labels from 3,5,7,9 nearest neighbors when the sample representation was obtained by averaging
cell embeddings (MultiMIL’s) of cells with top 10%-90% highest attention scores (left); by averag-
ing top 10% (Top), all cells (Mean) and calculating a weighted sum of all cells where the weights
are attention scores (Attention) using MultiMIL’s (middle) and totalVI’s (right) cell embeddings.
(d) UMAPs of sample representations obtained by averaging cell embeddings (left), by calculating
a weighted sum of all cells where the weights are attention scores (middle) and by averaging cell
embeddings with top 10% attention scores (right), using cell embeddings from MultiMIL, colored
by condition.
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Supplementary Figure 10: IPF in HLCA (a) UMAPs of macrophages, colored by cell attention,
expression of SSP1 and profibrotic signature score. (b) UMAPs of basal cells, colored by cell
attention and expression of KRT17.

50


https://doi.org/10.1101/2024.07.29.605625
http://creativecommons.org/licenses/by-nc-nd/4.0/

	1 Abstract

