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13 Abstract

14

15 Swine acute diarrhea syndrome coronavirus (SADS-CoV) is a recently identified highly
16 pathogenic swine coronavirus. In vitro, SADS-CoV can infect cell lines from many different
17 species, including humans, highlighting its high zoonotic potential. Coronavirus spike
18 glycoproteins play a critical role in viral entry and are involved in determining viral host range and
19 cellular tropism. Here, we used experimental evolution to investigate how the SADS-CoV spike
20 protein adapts to human cells and to identify potential variants with increased infectivity. We
21 evolved a recombinant vesicular stomatitis virus expressing the SADS-CoV spike (rVSV-SADS)
22 in three human cell lines. After ten passages, increased viral replication was observed, and spike
23 mutations were identified by sequencing. Mutations were functionally characterized in terms of
24  viral fitness, spike processing and fusogenicity. Our results thus identify potential human-adaptive
25 mutations in the SADS-CoV spike that may further enhance its zoonotic potential.

26

27 Importance

28

29  Coronavirus transmission from animals represents a serious threat to humans. Pigs are of
30 particular concern because of their proximity to humans and the several coronaviruses they
31 harbor. In particular, the swine acute diarrhea syndrome coronavirus (SADS-CoV) is a recently
32 identified highly pathogenic porcine coronavirus that has a very broad tropism in vitro, highlighting
33 its high zoonotic risk. The coronavirus spike protein is a strong determinant of species tropism,
34 and spike mutations may facilitate cross-species transmission. Here, to identify potential variants
35 with increased ability to enter human cells, we used an experimental evolution approach to study
36 how the SADS-CoV spike adapts to different human cell lines. These mutations, should they occur
37 in nature, could potentially increase the zoonotic potential of SADS-CoV.

38

39

40

41 Introduction

42

43 Coronaviruses can infect humans, other mammals and birds, causing respiratory and
44  gastrointestinal disease (1). To date, seven human coronaviruses have been identified. Four of
45  them (NL63, 229E, OC43, and HKU1) cause cold-like symptoms and three (SARS-CoV, SARS-
46 CoV-2, and MERS-CoV) cause more severe respiratory diseases (2). Current data suggest that
47 these viruses were transmitted relatively recently to humans from different mammals, including
48 bats, rodents, and other intermediate animals such as civets or camels (3, 4). The transmission
49 of novel coronaviruses from animals to humans therefore represents a significant threat to human
50 health and highlights the importance of identifying and characterizing coronaviruses at risk of
51 zoonosis (5, 6).
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52

53  Swine acute diarrhea syndrome coronavirus (SADS-CoV) is porcine alphacoronavirus first
54  identified in 2016 in Guangdong, China. SADS-CoV infection is associated with acute diarrhea,
55 vomiting and mortality rates of up to 90% in piglets less than five days old, making it a significant
56  threat to the pork industry (7-9). Several studies have demonstrated that the virus has a broad
57  species tropism in vitro, with the ability to infect cell lines derived from a wide range of animals,
58 including bats, rodents, pigs, chickens, non-human primates and humans (10-12). SADS-CoV
59  can also infect other species in vivo, such as neonatal mice and chicken embryos (13—15), further
60 highlighting its potential for cross-species transmission.

61

62  The coronavirus spike (S) glycoprotein is the primary mediator of target cell attachment and entry
63 and is involved in determining viral host range and cellular tropism (16). The mature spike is
64  composed of two subunits: S1, which binds the host receptor, and S2, which allows the fusion of
65  viral and cellular membranes. Both subunits are generated by post-translational cleavage of the
66  spike precursor SO at the S1/S2 junction, which contains a multibasic furin cleavage site (FCS) in
67  some coronaviruses (17), including SADS-CoV. The S1 subunit contains the two most variable
68  regions of the spike protein: the N-terminal domain (NTD), which is often responsible for the
69 recognition of cell surface carbohydrates, and the C-terminal domain (CTD), which usually binds
70 to the proteinaceous receptor. In contrast, the S2 subunit contains the more conserved domains
71 of the fusion machinery, including the fusion peptide (FP), and the heptad repeats 1 and 2 (HR1/2)
72 (18-20)

73

74 Viral glycoproteins frequently evolve to increase human infectivity. For example, the A82V
75  mutation in the Ebola virus glycoprotein increases viral entry into human cells and was associated
76 with the large 2013-2016 West African epidemic (21). In coronaviruses, amino acid substitutions
77 in the spike protein have also been associated with increased human infectivity. For example,
78 several SARS-CoV-2 variants with heavily mutated spikes have successively spread across
79  globally (22). Some of these mutations were associated with increased replication (23), enhanced
80 receptor affinity (24), differential spike cleavage (25, 26), use of alternative entry pathways (27),
81 or escape from antibody-mediated neutralization (28, 29). Therefore, studying how coronavirus
82 spikes adapt to human cells may allow the identification of variants with increased human
83  transmissibility, which may be useful for viral surveillance and preventing potential spillover
84 infections.

85

86 Due to its high risk of cross-species transmission, SADS-CoV is currently classified as a biosafety
87  level (BSL) 3 virus, which complicates its laboratory use. Nevertheless, recombinant replication-
88  competent vesicular stomatitis viruses (rVSV) represent a safe and relevant surrogate system for
89  the study of the entry process of highly pathogenic viruses (30, 31). In these chimeric viruses, the
90 VSV glycoprotein is replaced with a foreign receptor-binding protein, which allows to investigate
91 its function, evolution, or antigenicity. This system offers several advantages, including BSL-2
92 level containment, ease of production, and high yield. In experimental evolution approaches, this
93  also allows to avoid using the original virus for long-term passaging experiments, as this may
94  result in the emergence of gain-of-function mutations. Previous studies have used this system to
95  study coronavirus spike function (31, 32) and adaptation (28, 33, 34).

96

97 Here, to study how the SADS-CoV spike adapts to human cells, we generated a recombinant
98 replication-competent vesicular stomatitis virus expressing the SADS-CoV spike (rVSV-SADS)
99 and serially passaged it in three human cell lines. Adaptive mutations were identified and
100 functionally characterized in terms of spike processing, incorporation, cell-cell fusogenicity, and
101 effect on viral fitness. Our results led to the identification of several mutations in the SADS-CoV
102  spike that may increase entry into human cells.
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103

104 Results

105

106  Adaptation of a rVSV-SADS to human cell lines
107

108  To study the adaptation of the SADS-CoV spike to human cell lines, we first obtained a GFP-
109  expressing rVSV modified to express the SADS-CoV spike (rVSV-SADS) instead of the VSV
110  envelope glycoprotein. To achieve sufficient viral titers, the rVSV-SADS had to be first passaged
111 twice into Huh-7 liver cells, known to be susceptible to SADS-CoV infection (10, 11). This initial
112 stock was called P0. We then challenged 48 different human cell lines from the NCI-60 panel with
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Figure 1. Adaptation of the rVSV-SADS to human cell lines. A. Schematic of the
experimental evolution. rVSV expressing the SADS-CoV spike was passaged 10 times in Huh-
7, OVCAR-8 and H23 cells. Three independent evolution lines (R1-R3) were performed.
Evolved viral populations were characterized and sequenced at passage 10. B. Titration of
supernatants along passages. Titers were measured after each passage as foci-forming units
(FFU) per mL. The H23 R3 and OVCAR-8 R2 and R3 lineages went extinct before passage 5.
C. Representative images of infection with the original virus (WT) and evolved lineages
(passage 10) in their respective cell lines. Huh-7: 48 hpi, OVCAR-8 and H23: 72 hpi. Scale bar:
875 um. D. Spread rate of WT and P10 rVSV-SADS-CoV in their respective cell lines, quantified
as the GFP signal at the final time point divided by initial titer. E. Final titers of WT and P10
r'VSV-SADS-CoV in their respective cell lines. The dotted line indicates the limit of detection.
In D and E, each dot represents a technical replicate (n = 3), and an unpaired two-tailed t-test
was performed comparing all evolved lineages to the WT. * P < 0.05; ** P < 0.01; *** P < 0.001;
% P < 0.0001.

113 the PO virus. GFP signal was detected in multiple cell lines (Supplementary Table 1), and we
114  selected to top-12 lines to attempt serial passages of the virus. This was successful only for
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115  OVCAR-8 (ovary) and H23 (lung) cells. Some NCI-60 cell lines (e.g. SW-620) were initially
116 susceptible to the PO virus but did not support viral spread at sufficient levels to allow serial
117 passaging, suggesting efficient viral entry but poor egress. We thus selected Huh-7, OVCAR-8
118 and H23 cells for experimentally evolving rVSV-SADS. A total of 10 passages were performed in
119  triplicate (R1-R3; Figure 1A). The viral population went extinct in two H23 and one OVCAR-8
120  replicates (Figure 1B). Viral titers increased along passages in all the other evolution lines
121 (Spearman correlation: P < 0.005 in all cases), reaching up to 10° FFU/mL in OVCAR-8 and 108
122 FFU/mL in Huh-7 and H23 (Figure 1B).

123

124 To assess whether evolved lineages replicated better than the wild-type (WT) virus in human
125 cells, each cell line was infected with the WT rVSV-SADS and the final passage (P10) of their
126 respective evolved lineages with an approximately equal input, and two quantities were
127 measured: the area occupied by GFP-positive cells divided by the initial titer as an indicator of
128  viral spread in the cell cultures (spread rate), and the final titer (yield). The evolved viruses spread
129  faster than the WT virus in the three cell lines, as shown by an >10-fold increase in the number
130  of infected cells at endpoint in all cases (Figure 1C-D). Similarly, endpoint titers were between
131 90-fold and 15,000-fold higher than those reached by the WT (Figure 1E). These results suggest
132  adaptation of the rVSV-SADS to the three human cell lines. As this could be due to mutations
133 within the spike or elsewhere in the VSV genome, we sought to determine whether spike
134 mutations emerged and were responsible for the observed adaptation of the rVSV-SADS to
135 human cells.

136

137 Identification of SADS-CoV spike mutations

138

139 To identify specific mutations within the SADS-CoV spike, we sequenced the spike gene of the
140  six evolved viral populations at passage 10. Eight non-synonymous amino acid substitutions were
141 identified in different functional domains of the spike (Figure 2A and Supplementary Table 2).
142 One mutation was observed in the S1 CTD, and all the other changes occurred in S2, including
143 inside or close to the HR1, the HR2, and the FP (Figure 2A). Moreover, two mutations in the S2
144 C-terminal domain led to the appearance of a premature stop codon, truncating 11 (Q1120*) or 1
145  (G1130*) amino acids from the spike cytoplasmic tail. Two of the eight mutations were present in
146 alllineages (S1037G and T11071). Sequencing the Huh-7-passaged founder (P0) and the original
147 viral stock (WT) allowed us to determine that these two mutations were fixed during the two initial
148 passages performed in Huh-7 cells to obtain PO. Nonetheless, additional mutations were
149  observed in various P10 lineages, and some occurred in several lineages, indicating parallel
150  evolution. For example, the V754M and G1130* mutations were observed in the two H23
151 lineages, and Q1120* emerged in OVCAR-8 R1 and Huh-7 R3.

152

153 Effect of the SADS-CoV spike mutations on viral fitness

154

155 To test the effect of all S mutations on the rVSV-SADS fitness, we used site-directed mutagenesis
156 to generate rVSV-SADS variants carrying each point mutation individually. We infected the three
157 cell lines with the WT and mutant viruses and measured viral spread (Figure 2B, 2C) and
158 endpoint titers (Figure 2D). Some mutations increased these fithess indicators in the three cell
159 lines used. For example, the V754M and S1037G variants spread >4-fold faster than the WT virus
160  in all cell lines (Figure 2C). These two mutants, as well as the T11071 and G1130* variants also
161 reached higher titers than the WT in all cell lines (Figure 2D). In contrast, some mutations had a
162  cell type-dependent effect. For example, the A750G mutant, which appeared in H23, only
163 replicated to higher titers than the WT (5-fold) in this cell line, suggesting that it may be a cell-type
164  specific adaptation of the SADS-CoV spike (Figure 2D). Similarly, the L706Q mutation, which
165  appeared in OVCAR-8, only showed enhanced viral spread in this cell line (4.9-fold; Figure 2C)
166 and replicated to higher titers in OVCAR-8 and Huh-7 (9.2- and 12.6-fold, respectively), but not
167  in H23 (Figure 2D). The Q1120* mutant did not spread faster in any of the cell lines but reached
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Figure 2. Effect of spike mutations on viral fithess components. A. Spike mutations in
each viral lineage at passage 10. Mutations were identified by Sanger sequencing. Spike
functional domains are shown as colored boxes. Each amino acid change is indicated below.
* indicates the apparition of a premature stop codon. B. Representative images of infection with
WT and mutant rVSV-SADS in each cell line. Huh-7: 48 hpi, H23 and OVCAR-8: 120 hpi.
Scales bars: 800 um. C. Spread rate of WT and mutant rVSV-SADS in each cell line, quantified
as the GFP signal at the final time point divided by initial titer. D. Final titers of WT and mutant
rVSV-SADS in each cell line. The dotted line indicates the limit of detection. In C and D, the
bar represents the mean + SEM and each dot represents a technical replicate (n = 1-3). An
unpaired two-tailed t-test was performed comparing all mutants to the WT. * P < 0.05; ** P <
0.01; *** P < 0.001; **** P < 0.0001.

168 higher titers than the WT in Huh-7 and H23 cells (Figure 2B-D). Finally, surprisingly, the V362M
169 mutation was neutral or deleterious in all cell lines.

170

171 Effect of mutations on SADS-CoV spike fusogenicity and processing

172

173 To gain mechanistic insights into how most of these mutations increase rVSV-SADS fitness in
174 human cells, we first measured the fusogenicity of all mutant spikes using a GFP
175 complementation assay (Figure 3A). Most spikes induced cell-cell fusion at levels comparable to
176  the WT, except the V362M and L706Q mutations, which reduced syncytia formation by 2.6-fold
177 and 2.3-fold, respectively (one-way ANOVA: P < 0.001 in both cases). Interestingly, the V362M
178 mutation had a detrimental effect in all cell lines, whereas the L706Q was beneficial in OVCAR-8
179 and Huh-7, suggesting that there is no direct link between SADS spike cell-cell fusogenicity and
180 infectivity in human cells (Figure 2B-D). Finally, using Western blot, we quantified the effect of
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Figure 3. Effect of mutations on SADS-CoV spike fusogenicity and processing. A. Cell-
cell fusogenicity of the spike mutants. Top left: schematic of the cell-cell fusion assay. Briefly,
HEK293T GFP-Split cells were mixed and transfected with SADS-CoV spike and GFP-positive
syncytia were quantified. Bottom left: data show as the log+o of the GFP confluence divided by
cell confluence ratio, normalized to the SADS WT spike (mean + SEM, n = 3 independent
experiments). A one-way ANOVA with Dunnett’s correction for multiple tests was performed.
»* P < 0.001; *** P < 0.0001. Right panel: representative images of spike-mediated cell-cell
fusion at 14 h post-transfection. Scale bar: 400 um. B. Spike Western blot of WT and mutant
rVSV-SADS particles. The spike was detected with an anti-His-Tag Antibody and VSV-M was
used as a loading control. The C-terminally truncated Q1120* and G1130* mutant spikes could
not be detected because they do not express the C-terminal His-Tag. Spike incorporation was
calculated as the proportion of total spike (S0+S2) over VSV-M protein. Spike cleavage was
calculated as the proportion of S2 over total spike (S0+S2).

181 the mutations on spike processing and incorporation into rVSV-SADS (Figure 3B). Incorporation
182  and cleavage of the Q1120* and G1130* mutants could not be measured due to the premature
183  stop codon. The V362M and, to a lower extent, the A750G and S1037G mutations decreased
184  cleavage compared to the WT spike, showing a 6.5-, 1.8-, and 1.6-fold decrease in the
185  S2/(S2+S0) ratio, respectively. Given the known link between SADS-CoV spike cleavage and
186  cell-cell fusion (35), the lower spike processing of the V362M mutant likely explains its reduced
187 cell-cell fusogenicity. Finally, we observed that all mutant spikes, except the A750G, were better
188  incorporated into rVSV-SADS, as indicated by 1.7 to 4.2-fold increase in the (S0+S2)/VSV-M
189 ratio, which may be an additional factor explaining the increased fitness of the mutants in human
190 cells.

191

192 Discussion

193

194 Here, we experimentally evolved the SADS-CoV spike to investigate its adaptation to human cells
195  and to identify potential variants with increased human infectivity. To this end, we serially
196 passaged a SADS-CoV spike-expressing rVSV in human cell lines. After 10 passages, all the
197  evolved lineages exhibited enhanced viral replication compared to the WT virus. Moreover, eight
198  spike mutations were identified in these evolved lineages, most of which increased rVSV-SADS
199  spread and yield, either in all cell lines or in a cell type-specific manner. We did not determine
200  whether these mutations were truly human-adaptive or whether they may generally increase viral
201 fitness in any cell line susceptible to SADS-CoV entry, regardless of its species of origin. To
202  answer this question, we tried to infect the porcine ST and PK-15 cell lines, but rVSV-SADS did
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203  notreplicate in these cells (data not shown). Therefore, further work is needed to conclude on the
204 human specificity of the adaptive mutations we detected.

205

206 To understand the mechanistic basis of the increased fithess associated with SADS spike
207 variants, we measured their processing and cell-cell fusogenicity. Interestingly, two mutations,
208  V362M and L706G, significantly reduced SADS-CoV spike-mediated syncytia formation. In
209 fitness assays, the V362M variant was neutral or deleterious in all cell lines, whereas the L706Q
210  was beneficial in OVCAR-8 cells. Therefore, no direct link between SADS-CoV spike-mediated
211 cell-cell fusion and viral fithess can be established. Many viruses, including SADS-CoV, induce
212 cell-cell fusion during viral infection. Although it has been suggested that syncytia formation may
213 facilitate viral replication, dissemination, pathogenesis or immune evasion (36), the link between
214 cell-cell fusion and viral fitness is generally poorly understood. It has been shown that SADS-CoV
215  spike cleavage at the FCS is necessary for efficient syncytia formation (35), in agreement with
216 our data showing that the V362M mutation decreases both spike processing and cell-cell fusion.
217 However, this mutation is located within the putative SADS-CoV spike receptor-binding domain
218 (RBD), away from the FCS, and how it decreases spike cleavage remains unclear. Finally, the
219 L706Q mutation decreased syncytia formation without altering spike processing, suggesting that
220 factors other than spike cleavage are strong determinants of the SADS-CoV spike cell-cell
221 fusogenicity.

222

223  Some of the mutations fixed during the experimental evolution clearly increased viral fitness but
224 had no effect on spike cleavage or cell-cell fusion. These mutations may still represent
225  adaptations to entry into human cells but may alter a process we have not looked at. For instance,
226  animportant aspect of viral entry that we could not study here is receptor binding. Indeed, to date,
227  the SADS-CoV receptor remains unknown. It has been shown that SADS-CoV does not use other
228 known coronavirus receptors (9), and although genome-wide CRISPR screens allowed the
229 identification of host factors involved in SADS-CoV replication, they were unable to identify its
230 receptor (37, 38). Interestingly, the A362M mutation is located with the S1 CTD, which usually
231 serves as the coronavirus RBD for proteinaceous receptors. Once the receptor is identified, it will
232 be interested to test whether this mutation has an impact on receptor affinity. Similarly, we have
233 not looked at the effect of the identified mutations on the binding to other attachment factors (e.g.
234 cell surface sugars) or processing by proteases (e.g. TMPRSS13) (19, 39). Moreover, although
235 all mutations appeared together with others, we tested them all individually. Previous work on
236 SARS-CoV-2, for example, has nonetheless shown that epistasis can strongly impact the effect
237 of a spike mutation on receptor affinity or antibody escape (40, 41). Whether epistasis between
238  the identified SADS-CoV spike mutations may alter their effect on viral fitness or spike processing
239  and incorporation deserves further investigation.

240

241 Interestingly, most identified mutations occurred in the S2 subunit of the spike, especially near
242 HR1 (A750G, and V754M) and HR2 (S1037G and T11071). As none of these mutations impacted
243 significantly cell-cell fusion and spike processing, how they increase viral fithess remains unclear.
244 In the context of SARS-CoV-2, several S2 mutations have been fixed in the successive variants
245  of concern (42), suggesting that they provide a fitness advantage to the virus. For SARS-CoV-2
246 and other coronaviruses, it has been shown that such S2 mutations can alter receptor affinity,
247  fusogenicity, entry pathways or antibody sensitivity, through poorly understood mechanisms (43,
248  44). Future work is needed to understand how the SADS-CoV spike S2 mutations we have
249 identified impact viral entry.

250

251 We used a recombinant VSV to study the evolution of the SADS-CoV spike. Although this is a
252 practical and reliable system to study viral entry, some differences between VSV and SADS-CoV
253 may have impacted the evolution of the spike. Therefore, we cannot exclude that some of the
254 identified mutations may represent adaptations to the rVSV system rather than true human
255  adaptations. One notable difference difference between VSV and SADS-CoV is their budding site.
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256 VSV buds at the plasma membrane whereas coronavirus budding occurs in the endoplasmic
257 reticulum (ER)-Golgi compartment, where an ER-retention motif in the cytoplasmic tail of the spike
258  facilitates its accumulation (45). The cytoplasmic tail truncations (Q1120* and G1130*) we
259 observed may therefore disrupt the spike retention motif, altering the spike cellular localization
260  and redirecting it to the plasma membrane to favor its incorporation into budding VSV particles
261 (46). Interestingly, a rVSV-SADS was recently engineered and, similarly to our observations, an
262 11-amino-acid truncation of the spike cytoplasmic tail was fixed after six passages in Huh7.5.1
263  cells and enhanced rVSV-SADS replication (47). Future work, using for example recombinant
264  SADS-CoV (37), will help determining whether the spike mutations we identified are adaptations
265 to human cells or to the rVSV system used.

266

267 In conclusion, we have used experimental evolution to identify potential human-adaptive
268 mutations in the SADS-CoV spike that may enhance viral entry into human cells. Further work
269 aimed at understanding how SADS-CoV can adapt to different host species will be crucial to
270 monitor SADS-CoV evolution in nature and prevent potential cross-species transmission events.
271

272

273 Methods

274

275  Cell lines

276  The NCI-60 panel (dtp.cancer.gov/discovery development/nci-60) was purchased from the
277 National Cancer Institute. Twelve cell lines showing poor growth, lack of susceptibility to VSV or
278 poor adherence were excluded. Information about the remaining 48 cell lines is provided in
279  Supplementary Table 1. OVCAR-8, H23, and other NCI-60 cells were cultured in RPMI
280  supplemented with 10% FBS, 1% non-essential amino acids, penicillin (10 U/mL), streptomycin
281 (10 pg/mL) and amphotericin B (250 ng/mL). Huh-7 cells were kindly provided by Ralf
282 Bartenschlager (Heidelberg University Hospital). BHK-21 were obtained from the ATCC (ATCC,
283 CCL-10). BHK-G43 cells, which can induce the VSV-G protein expression after mifepristone
284  treatment (48), were kindly provided by Gr. Gert Zimmer. HEK-293T-GFP1-10 and HEK-293T-
285 GFP-11 were both kindly provided by Olivier Schwartz (Institut Pasteur, France) and maintained
286 in the presence of 1 ug/mL puromycin. Huh-7, BHK-21, BHK-G43, and HEK-293T cells were
287  cultured in Dulbecco’s Modified Eagle’s Medium supplemented with 10% FBS, 1% non-essential
288  amino acids, penicillin (10 U/mL), streptomycin (10 pg/mL) and amphotericin B (250 ng/mL). All
289  cells were maintained at 5% CO2 and 37°C in a humidified incubator and were routinely screened
290  for the presence of mycoplasma by PCR.

291

292 Recombinant viruses

293  TherVSV bearing the SADS-CoV spike was generated using a previously described system (49).
294 Briefly, the codon-optimised SADS-S (GenBank AVM80475.1) was ordered as a synthetic gene
295  (GenScript) and cloned into a plasmid encoding the Indiana serotype VSV antigenome replacing
296 the VSV glycoprotein gene. The plasmid was previously modified to encode eGFP from an
297  additional transcription unit between the G and L genes (pVSV-eGFP-AG). BHK-G43 cells were
298  seeded at a density of 10° cells/mL in DMEM with 10% FBS and without antibiotics in 12-well
299 plates (1 mL/well). On the day of transfection, the viral genome pVSV-eGFP-AG-SADS-S (25
300  fmol) was co-transfected with helper plasmids encoding VSV-P (25 fmol), VSV-N (75 fmol) and
301 VSV-L (25 fmol) proteins and a codon-optimised T7 polymerase plasmid (50 fmol). Lipofectamine
302 3000 (Invitrogen) was used for transfection. Cells were incubated with the transfection mix at
303 37°C for 3 hours. Then, 1 mL of DMEM 10% FBS supplemented with 10 nM mifepristone was
304  added to each well and the cells were incubated at 33°C for 36 h, followed by 36-48 h at 37°C.
305  The supernatant collected from GFP-positive cells was purified by centrifugation at 2000 g for 10
306 min and used to infect VSV-G-induced BHK-G43 (seeded the day before at 10° cells/mL in DMEM
307 10% FBS in 12-well plates) for 1 h at 37°C, in order to increase viral titers. The supernatant was

8


https://doi.org/10.1101/2024.07.29.605615
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.07.29.605615; this version posted August 2, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC 4.0 International license.

308  harvested at 36 h post-inoculation (hpi), cleared by centrifugation at 2000 g for 10 min and
309  aliquoted. To obtain viruses without VSV-G, BHK-21 cells were infected with the supernatant from
310 previous amplification in BHK-G43. Following 1 h at 37°C, the inoculum was removed, the cells
311 were washed five times with PBS, and incubated in complete DMEM supplemented with 25%
312 anti-VSV-G neutralizing monoclonal antibody obtained in-house from a mouse hybridoma cell

313 line. The supernatant was collected at 36 hpi, cleared by centrifugation at 2000 g for 10 min,
314  aliquoted, and stored at -80°C.
315

316 rVSV-SADS experimental evolution

317  The SADS-CoV S-expressing recombinant VSV was serially passaged in triplicate in Huh-7, H23
318 and OVCAR-8 cell lines until 10 passages were completed. For each passage, 6-well confluent
319  plates were infected with 200 pL of virus at a multiplicity of infection (MOI) of < 0.01 FFU/cells
320 and incubated for 1 h at 37°C and 5% COz, with agitation every 15 min. Then, 2 mL of complete
321 DMEM with 2% FBS was added to each well. After 3-5 days at 37°C and 5% CO: (3 days in Huh-
322 7,5 days in H23 and OVCAR-8), the supernatants were collected, clarified by centrifugation at
323 2000 g for 10 min, aliquoted and stored at -80°C. The harvested supernatants were then used to
324 infect new 6-well plates with confluent monolayers, thus initiating the subsequent passage.
325 Supernatants were titrated between each passage, as detailed below.

326

327 Virus titration

328 Supernatants were serially diluted and 100 yL were used to infect 24-well confluent Huh-7 plates
329  for 1 h at 37°C. 500 pL of DMEM with 2% FBS and 2% agar was then added to each well. The
330 plates were incubated for 18-24 h at 37°C and 5% CO.. The plates were imaged in the Incucyte
331 SX5 Live-Cell Analysis System (Sartorius) in order to manually count the GFP-positive foci. Viral
332 titers were expressed as FFU/mL.

333

334  Sanger sequencing

335  Viral RNA was extracted using the NZY Viral RNA Isolation kit (NZYtech, MB40701) following the
336 manufacturer’s instructions. The extracted RNA was reverse transcribed (RT) using SuperScript
337 IV (Invitrogen) with a VSV backbone-specific primer (5-CTCGAACAACTAATATCCTGTC-3).
338  The cDNA was purified using the DNA Clean & Concentrator-5 kit (Zymo Research) and used for
339  the spike gene amplification with Phusion Hot Start Il High-Fidelity PCR Master Mix
340  (ThermoFisher) using VSV backbone-specific primers (5-CTCGAACAACTAATATCCTGTC-3',
341 5-GTTCTTACTATCCCACATCGAG-3’). The PCR product was then sent to Sanger sequencing
342 using the VSV-specific primers previously mentioned and spike-specific primers listed in
343  Supplementary Table 3.

344

345  Site-directed mutagenesis

346  SADS-CoV spike mutations were inserted into the SADS glycoprotein encoding plasmid template
347 (pcDNA3.1-SADS-S-HisTag) by site-directed mutagenesis using the QuickChange Il XL Site-
348  Directed Mutagenesis Kit (Agilent, 200522) according to the manufacturer’s instructions. Each
349 reaction was made with 30 ng of template, dNTPs (25 nM each), 250 ng of each primer pair and
350 2.5 U/uL of PfuUltra HF DNA polymerase. The primers used are listed in Supplementary Table
351 4. SDM products were digested at 37°C for 1h with FastDigest Dpnl (Thermo Scientific) and
352 transformed into NZY5a competent cells (NZYTech). The presence of the desired mutation in
353  specific clones was confirmed by Sanger-sequencing. Plasmids with the desired spike mutations
354  were then used for PCR using Phusion Hot Start || High-Fidelity PCR Master Mix (ThermoFisher).
355 A pair of primers was used to amplify each spike (5'-
356 CGATCTGTTTACGCGTCACTATGAAGCTGTTCACCGTG-3; 5'-
357 AGCAGGATTTGAGTTAATCGTTAATGGTGATGGTGATGG-3’). The PCR product was purified
358  using the DNA Clean & Concentrator-5 kit (Zymo Research) and cloned with HiFi (NEBuilder) into
359  the pVSV-eGFP-AG plasmid previously described, using a pair of primers to open the backbone
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360 (5'-CGATTAACTCAAATCCTGC-3; 5-AGTGACGCGTAAACAGATC-3’). A whole plasmid
361 sequencing was done to confirm the presence of the desired mutation.

362

363  Cell-cell fusion assay

364  The cell-cell fusion assay was performed as previously described (50). HEK293T-GFP1-10 and
365 HEK293T-GFP11 were mixed at a 1:1 ratio and 6 x10° cells per well in a 96-well plate were
366  transfected in suspension with 100 ng of pcDNA3.1-SADS-spike plasmid (WT or mutants) or an
367  empty plasmid as a control using Lipofectamine 2000 (InVitrogen). The plates were placed in an
368 Incucyte SX5 Live-Cell Analysis System (Sartorius) at 37°C and 5% CO:2 for imaging. The
369 percentage of fusion was calculated as the ratio of the GFP area to the cell confluence area at
370 18-21 h post-transfection, as measured using the Incucyte analysis software.

371

372 Quantitation of viral spread and endpoint titers

373 Huh-7, OVCAR-8 and H23 cells were plated at 60% confluence in 12-well plates. The following
374 day, cells were inoculated with 100 pL of virus dilution at a MOI of approximately 0.004 FFU/cell.
375  Cells were incubated at 37°C with 5% CO:2 and agitated every 15 min. Following 1.5 h, 1 mL of
376 DMEM containing 2% FBS was added, and cells were incubated for 3 days (Huh-7) or 5 days
377 (OVCAR-8 and H23) at 37°C and 5% COz. The plates were imaged at 6 h intervals using the
378 Incucyte SX5 Live-Cell Analysis System (Sartorius) to determine the area occupied by GFP-
379 positive cells. The end-point supernatants were harvested, clarified by centrifugation (2000 g for
380 10 min), and stored at -80°C. Viral titers were determined as described above.

381

382  Western blotting

383 Supernatant containing recombinant viruses was centrifuged at 30,000 g for 2 h at 4°C. Viral
384 pellets were lysed in 30 puL of NP-40 lysis buffer (Invitrogen) supplemented with a complete
385 protease inhibitor (Roche) for 30 min on ice. Lysates were mixed with 4x Laemmli buffer (Bio-
386 Rad) supplemented with 10% (B-mercaptoethanol and denatured at 95°C for 5 minutes. Proteins
387  were separated by SDS-PAGE using pre-cast 4-20% Mini-PROTEAN TGX Gels (Bio-Rad) and
388  transferred onto a 0.45 ym PVDF membrane (Thermo Scientific). Membranes were blocked with
389  TBS-T (20 mM tris, 150 nM NaCl, 0.1% Tween-20, pH 7.5) supplemented with 3% bovine serum
390 albumin for 1 h at room temperature. The membranes were then incubated for 1 h at room
391 temperature with two primary antibodies: mouse anti-6X-HisTaq (dilution 1:1.000, MA1-21315,
392 Invitrogen) and mouse anti-VSV-M (dilution 1:1.000, clone 23H12, EB0011, Kerafast). Following
393  three washes with TBS-T, the primary antibodies were detected using a goat anti-mouse 1gG
394  secondary antibody conjugated to horseradish peroxidase (HRP) (dilution 1:50,000, G21040,
395 Invitrogen). The signal was revealed using PierceTM ECL Plus Western Blotting Substrate
396 (32132, Thermo Scientific), following the manufacturer’s instructions. Images were captured using
397  an ImageQuant LAS 500 (GE Healthcare) and analysed using Fiji software (v.2.14.0).

398

399  Statistics

400  All statistical analyses were conducted using GraphPad Prism v10.2.3. Details on the statistical
401 tests employed are provided in the main text and in the figure legends.

402
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