

1 **Consistent long-distance foraging flights across years and seasons at colony level in a
2 Neotropical bat**

3
4 *Calderón-Capote María C.^{1,2,6} <https://orcid.org/0000-0002-7646-3082>
5 Mariëlle L. van Toor³ <https://orcid.org/0000-0002-2254-5779>
6 M. Teague O'Mara^{1,4,5,6} <https://orcid.org/0000-0002-6951-1648>
7 Travis D. Bayer⁵ <https://orcid.org/0009-0005-5652-9821>
8 Margaret C. Crofoot^{1,2,6,7} <https://orcid.org/0000-0002-0056-7950>
9 *Dina K.N. Dechmann^{1,2,6,7} <https://orcid.org/0000-0003-0043-8267>

10
11
12 ¹Max Planck Institute of Animal Behavior, Am Obstberg 1, 78315 Radolfzell, Germany
13 ²Department of Biology, University of Konstanz, Universitätsstraße 10, 78464 Konstanz, Germany
14 ³ Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, 391 82
15 Kalmar, Sweden

16 ⁴Bat Conservation International, Austin TX USA
17 ⁵ Department of Biological Sciences, Southeastern Louisiana University, Hammond LA USA
18 ⁶Smithsonian Tropical Research Institute, Gamboa, Panama
19 ⁷Cluster for the Advanced Study of Collective Behavior, University of Konstanz, Universitätsstraße
20 10, 78464 Konstanz, Germany

21
22 *Corresponding author: mccalderonc@gmail.com, ddechmann@ab.mpg.de
23

24 **Abstract**

25 All foraging animals face a trade-off: how much time should they invest in exploitation of known
26 resources versus exploration to discover new resources? For group-living central place foragers,
27 balancing these competing goals poses particular challenges. The availability of social information
28 may discourage individuals from investing in risky, expensive but possibly rewarding exploration.
29 We GPS-tracked groups of greater spear-nosed bats (*Phyllostomus hastatus*) from three colonies
30 on Isla Colón in Panamá. In the dry season, when these omnivores forage on the nectar of
31 ephemeral balsa flowers (*Ochroma pyramidalis*), bats consistently travelled long distances to
32 remote, colony-specific foraging areas, bypassing flowering trees closer to their roosts. They
33 continued to use these same areas in the wet season, when feeding on a diverse, presumably
34 ubiquitously distributed diet, but also visited other, similarly distant foraging areas. Foraging areas
35 were shared within, but not always between colonies. Our longitudinal dataset suggests that bats

36 from each colony invest in long-distance commutes to socially learned shared foraging areas,
37 bypassing other available food patches. Rather than investing in exploration to find nearby
38 resources or engaging in a win-stay lost-shift foraging strategy, these bats follow colony specific
39 behaviours consistent with the existence of culturally transmitted preferences for specific feeding
40 grounds.

41 **Key words:** colony, exploitation, foraging fidelity and long-distance foraging

42 **Introduction**

43 Foraging is vital and direct determinant of organismal fitness. Foraging animals have to maintain
44 a delicate balance between exploitation and exploration [1–5]. They must weigh the decision to
45 exploit known resources against the potential benefits of seeking out new ones [2,6]. This balance
46 hinges on three main factors: environmental conditions (i.e., quality and quantity of available
47 resources), individual traits (prior information, cognitive abilities) and social interactions. Social
48 central place foragers often forage in the presence of others and can learn from them. For
49 example, social information can deter risky exploration while encouraging exploitation [1,7,8].
50 Understanding how animals navigate this trade-off is essential for uncovering group dynamics
51 and the development of potential social traditions.

52 Greater spear-nosed bats (*Phyllostomus hastatus*) are omnivores described to forage within
53 <10km of their roost in Trinidad [9,10]. In the dry season, they forage socially on the nectar of
54 ephemeral balsa trees. GPS tracking in Panamá revealed *P. hastatus* flying individually >25 km
55 to their foraging areas when blooming balsa were particularly scarce [11]. This intraspecific
56 variation offers the opportunity to investigate how social foraging may be mediated by the
57 resource landscape and how this results in a trade-off between exploration and exploitation. We
58 tracked foraging *P. hastatus* over six-years in three colonies during the dry and wet season in Isla
59 Colón, Panamá. Based on the literature we predicted that 1) bats should forage on balsa together
60 and within 10 km during regular dry seasons. We anticipated increased exploration (increased
61 tortuous movements) during the wet season, when bats switch to more evenly distributed insects
62 and fruit. We expected bats to forage alone and closer to the roost in the wet season. 2) We
63 predicted colonies would use separate foraging areas at least during the dry season to avoid
64 competition for flowering balsa trees. 3) Finally, we expected switching foraging areas between
65 seasons, reflecting shifts in resource availability and preferences. We instead found a pattern of
66 long-distance travel to largely consistent foraging areas, and developed a set of movement

67 simulations to test whether the spatial distribution of foraging sites we observed diverged from
68 the expectations. The results of this study will help understand how group living animals adjust
69 their foraging decisions to the resource availability and knowledge the of local landscape.

70 **Methods**

71 **Tracking *Phyllostomus hastatus* movements**

72 We captured 216 individuals (134 females, 82 males) at three different colonies on Isla Colón,
73 Bocas del Toro, Panamá, during the dry (February-March) in 2016 and 2022, and wet season
74 (December, August) in 2021 and 2023. Colony 1, located at the centre of the island, and Colony
75 2, located 5 km away at the northernmost tip of the island, are each home to ~500 bats. Colony
76 3, located 1.2 km south of Colony 1, has a population of ~150 bats (Figure 1).

77 We caught bats using a ring trap placed over the roosting cavities. We determined sex,
78 reproductive status and age, measured forearm length (± 0.01 mm), mass (± 0.5 g), and marked
79 them with subcutaneous PIT tags (ID 100 Transponder, Trovan[®]). We tracked only adults with
80 different biologgers and programming schedules (Table S1). Tags were wrapped in shrink tube
81 that we glued (Osto-bond, Montreal Ostomy) to the back of the bats [11]. Biologgers weighed 6.53
82 ± 0.49 g and represented 5.36 ± 4.82 % of bat mass. Females were in early pregnancy in March
83 2022, but did not lose substantial weight (pre-tagging mass ($n = 20$): 109.15 ± 15.46 g; post-
84 tagging = 105.6 ± 12.77 g). Tag recovery varied across colonies and years (Table S2). Tags
85 collected data from 18h–06 h local time.

86

87 **Movement analysis**

88 GPS outliers and points with speeds >15 m/s (unlikely for this species) were removed from the
89 data. We down-sampled GPS data to two- (or in March 2022 three-) minute intervals to correct
90 for different sampling rates (Table S1). We used only complete individual tracking nights to
91 calculate distances, bearings and activity (Table S2). From tracks which missed out- or inbound
92 commutes, we only calculated mean distances, directions and in the shared foraging
93 distance/angle analysis (simulations below).

94 *Behavioural classification*

95 We fitted a three-state hidden Markov model (HMM) for each bat night using the momentuHMM
96 package to identify behaviours [12]. To implement the HMM we first regularised the tracks by

97 inserting "NA" for missing observations to obtain a complete series of two- or three-minute
98 intervals, using the setNA function from the adehabitatLT package [13]. A previous study found
99 social resting between foraging as an important behaviour [11]. However, after down-sampling
100 the data resolution did not accurately allow to distinguish between the categories used there
101 (slow/fast foraging and resting). Thus, we fitted a two-state model with "foraging" (short
102 movements with low persistence of direction including potential resting) and "commuting" (fast
103 and directed movement) as categories even though three-state models had lower delta AICs. The
104 model was fitted using step lengths (assuming states could be described using a mixture of
105 Gamma distributions), and turning angles, with wrapped Cauchy distributions. Behavioural
106 categories were also corroborated by visual inspection after the classification.

107 *Foraging parameters*

108 We calculated the straightness index for each outbound commuting flight. Tortuous commutes
109 would indicate exploratory behaviour. Straightness was calculated by extracting the Euclidean
110 distance between the first and last point of commutes and dividing that distance by the sum of the
111 step lengths of the track (mean \pm st dev, 1 = straight movements, 0 = tortuous movements, Table
112 S3).

113 We extracted foraging events from each night and calculated the proportion of time bats spent
114 foraging on or off Isla Colón. We tested the differences in foraging off and on Isla Colón with a
115 binomial generalised linear model (GLM). First, we tested differences in foraging by season, using
116 group/period and location of foraging as fixed effects. Subsequently, we tested sex differences in
117 foraging on and off Isla Colón using group/period and sex as fixed effects. Significance threshold
118 was $p \leq 0.05$.

119 *Simulations and bearings*

120 We simulated alternative tracks reflecting the movement and behavioural dynamics of the tracked
121 bats, to estimate how these observed foraging patterns deviated from a null model given the
122 landscape availability. We derived a three-state HMM from the initial HMM. This model included
123 the states "foraging", "outbound commutes" and "inbound commutes". Commuting states were
124 parameterized as biased correlated random walks (CRW) including angle to the colony as
125 covariate for the mean turning angle. We restricted transitions between the two commuting states.
126 Finally, we included the sine and cosine of time of day scaled from 0 to 1, and the square root of
127 distance to the nearest coastline as covariates on the transition probability matrix. For the latter

128 covariate we allowed the response to vary by including an interaction term indicating whether bats
129 were above land, or not so that transitions from outbound commute to foraging became virtually
130 impossible for non-land locations. We regularised data to a sampling interval of 120 s using a
131 continuous-time CRW model (crawl) as implemented in the momentuHMM package [12], and fit
132 separate models for seasons to account for possible differences in behaviour. Using the colony
133 locations as starting points, we simulated alternative tracks using wet and dry season models (3
134 x observed tracks). We did not simulate wet season tracks for colony 3 as no observations were
135 available. The length of the simulated tracks was chosen from a uniform distribution reflecting the
136 interquartile range of the length of observed trajectories.

137 *Contrasting foraging distance and bearing between colonies and seasons*

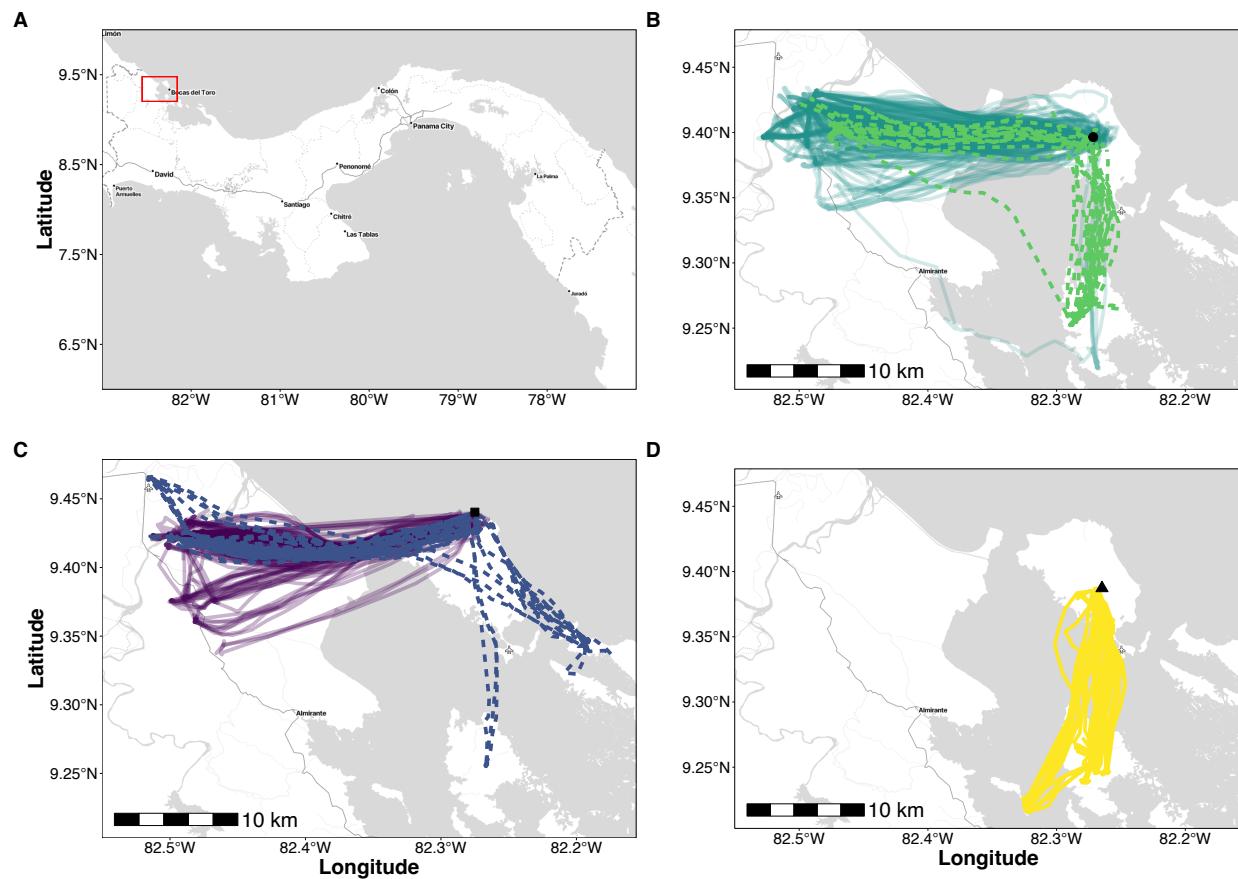
138 We determined foraging locations from simulated and observed tracks to compare observed and
139 expected foraging locations. We retained only the first foraging location of each foraging bout with
140 a duration > 0 s. We determined the proportion of foraging locations on and off Isla Colón for
141 simulated and observed foraging locations (Figure S2). For each foraging location, we calculated
142 the angle and distance to the colony and compared how means and variance differed between
143 simulation and observation using a multivariate model. This was restricted to foraging locations
144 off Isla Colón as they represented the majority of foraging.

145 We fitted a linear model of angles and distances to estimate the agreement between colonies and
146 seasons for observed foraging locations (equations in Table S4), and between simulations and
147 observed data. We included multiple observations of individuals as a random effect. We fit the
148 model separately for each colony in the wet and dry seasons for observed and simulated data,
149 and included weakly regularising priors.

150 We further computed contrasts to facilitate the evaluation of hypotheses. Contrasts - the
151 distribution of differences between the distributions of parameters estimated by the model - were
152 calculated to determine the difference of the population mean, effective standard deviation, and
153 individual-level variability between wet and dry season for each colony. Contrasts were calculated
154 as wet/dry season for angle and distance parameters. We calculated contrasts per colony and
155 season to assess the agreement between observed and simulated foraging locations. We derived
156 a spatial representation of the model estimates to test if similar angle and distance imply shared
157 foraging space between colonies. We estimated the percentage of overlap between colonies

158 during the dry season using the contours of the 2D-densities, clipped to land only. Models were
159 implemented in STAN via CmdStan (version 2.34.1) and CmdStanR (version 0.8.1.9000).

160


161 **Results**

162 **Mainland foraging and long-distance commutes in both dry and wet seasons**

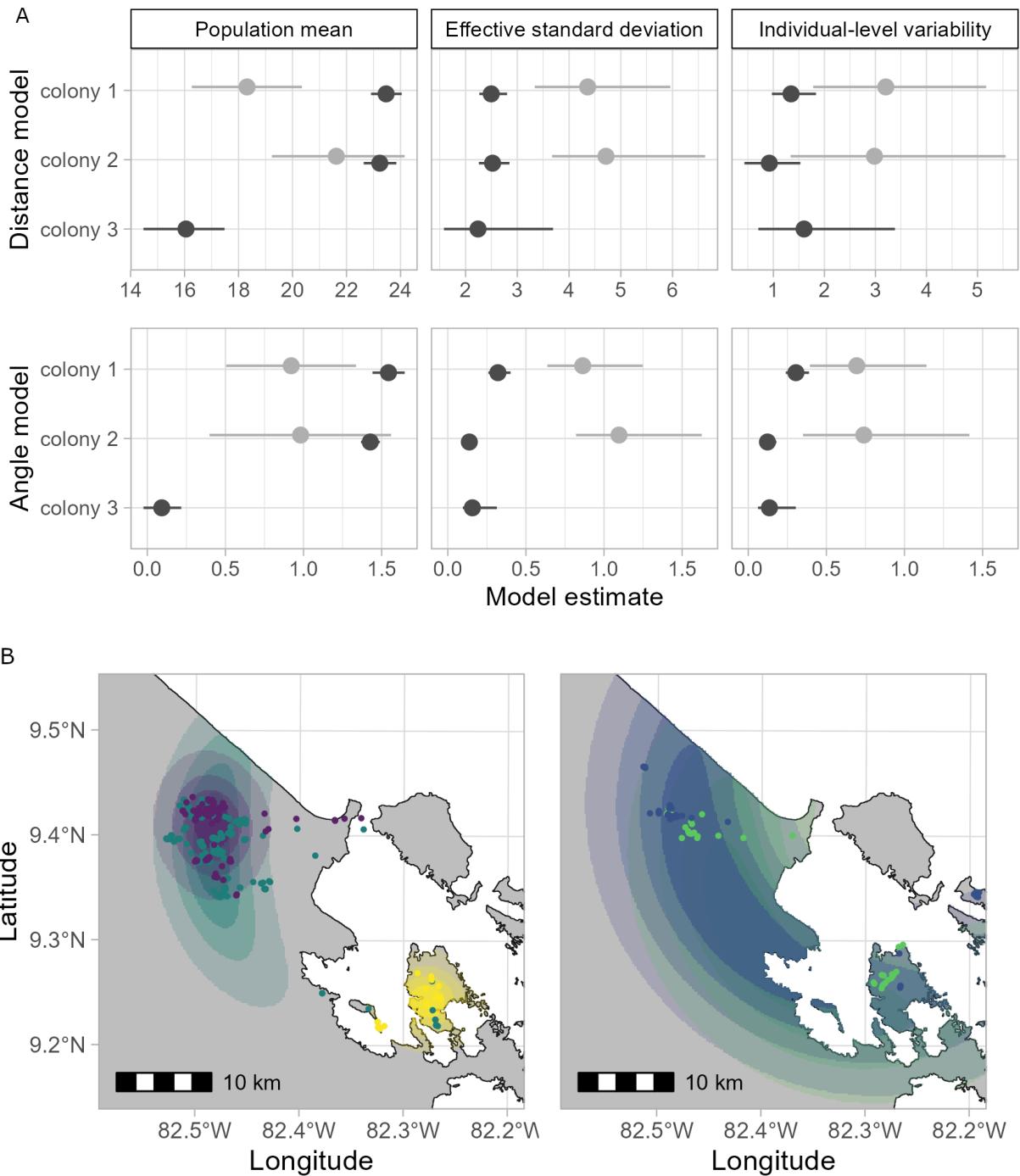
163 All bats with at least one completely tracked night ($n = 59$, colony 1: 29 (dry) - 6 (wet), colony 2:
164 12 (dry) - 9 (wet), colony 3: 3 (dry)) predominantly used distant foraging locations, crossing to the
165 mainland or other islands. However, 44 bats also foraged on Isla Colón during both seasons,
166 comprising > 30% of their total foraging (Figure S1A, GLM, $p = 0.01$). Females and males spent
167 similar time foraging on and off Isla Colón (Figure S1B, p (on-island) = 0.09, p (off-island) = 0.32).
168 Overall bats from each colony maintained long, straight commutes across seasons (Figure 1,
169 Table S3).

170 Bats foraged further from the colony during the dry seasons, (Figure 2A: top left panel), with the
171 shortest distance estimated for colony 3 and larger distances for colonies 1 and 2. Mean wet
172 season distance was shorter in colony 1, whereas the model was inconclusive for colony 2 (see
173 Table 1 for details).

174 Distances and angles from the roosting caves varied more in the wet season compared to the dry
175 season (Figure 2). Effective standard deviation as well as the deviation of individual means from
176 the population mean were higher during the wet season for both distance and angle (Figure 2A:
177 centre and right panels), albeit this varied between colonies and model parameters. Differences
178 were more pronounced for the effective standard deviation than for individual-level variability, with
179 95% credibility intervals showing a small level of overlap for all but the angle model in colony 2
180 (Figure 2A: lower right panel).

181
182 **Figure 1. Consistent, colony-specific long-distance foraging flights across years and**
183 **seasons.** A) Map of Panama, inset: study area. B) colony 1 (wet and dry seasons 2016-2023).
184 C) colony 2 in March 2022 (dry) and August 2023 (wet). D) colony 3 in March 2022 (dry). Roosts:
185 circle = colony 1; square = colony 2; triangle = colony 3. Dotted lines: wet season, solid lines: dry
186 season.

187
188
189
190
191
192
193
194
195


196 **Table 1.** Model estimates for population means of distance and angle (estimate and 95%
197 credibility intervals (qi)) from colonies for observed foraging locations. km = kilometres; rad =
198 radians.

colonies	season	mean distance [95% Qi (km)]	mean angle (rad) [95% Qi (rad)]	mean angle (degrees) [95% Qi (degrees)]
colony 1	dry	23.47 [22.91 - 24.04]	1.54 [1.44 - 1.65]	268.23 [260.85 - 274.92]
colony 1	wet	18.31 [16.27 - 20.35]	0.92 [0.5 - 1.34]	232.7 [143.24 - 311.96]
colony 2	dry	23.23 [22.64 - 23.85]	1.43 [1.37 - 1.49]	261.93 [253.05 - 267.63]
colony 2	wet	21.62 [19.23 - 24.15]	0.98 [0.4 - 1.56]	236.15 [22.92 - 356.16]
colony 3	dry	16.05 [14.48 - 17.48]	0.09 [-0.02 - 0.22]	185.16 [-1.15 - 234.16]

199
200 **Partial shared foraging distances, directions and space use across seasons and colonies**
201 Individuals within the same colony, and sometimes between colonies shared foraging distances
202 and directions. Foraging areas of colony 1 and 2 were at similar mean angles during both
203 seasons, but colony 3, tracked only during the dry season, foraged at a much more southerly site
204 (Figure 2B, Table 1).

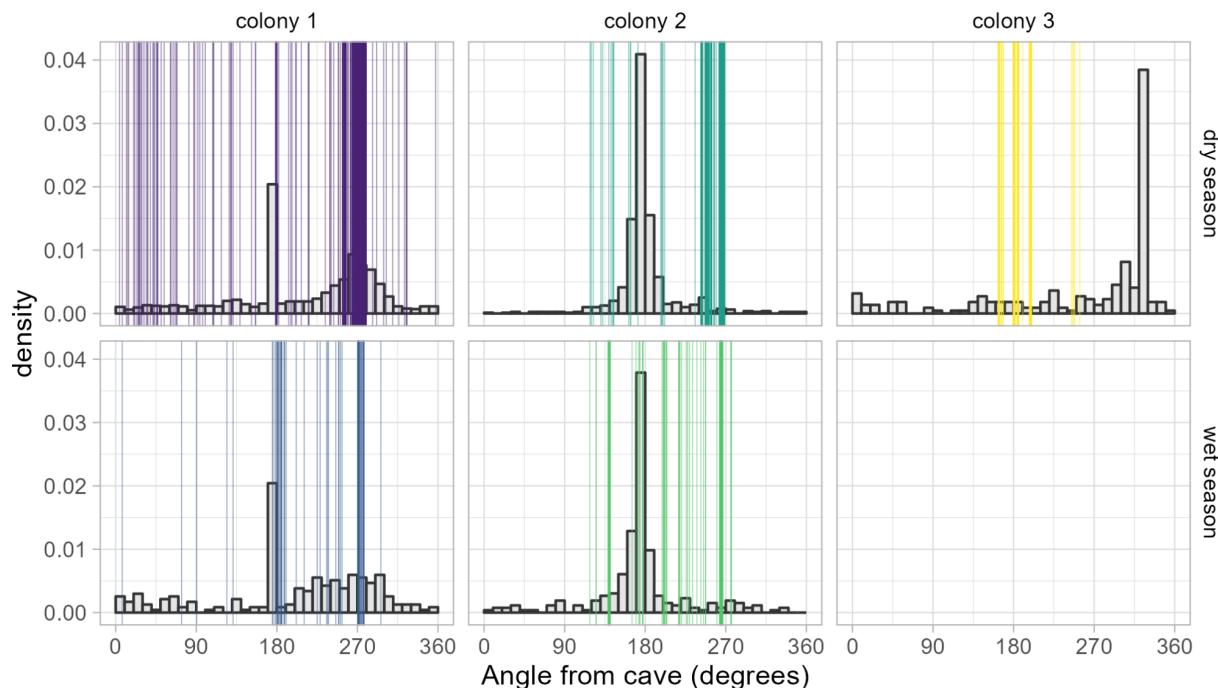
205 The mean estimates suggested that foraging areas of colony 1 and 2 overlapped substantially
206 but colony 3 did not: 49.58% of the area covered by colony 2 overlaps with that of colony 1, and
207 inversely 99.17% of the area covered by colony 1 was shared with colony 2. This was indicated
208 by contours of the probability density functions (PDFs) from distance and angle models.

209
210
211
212
213
214
215

216

217

218


219 **Figure 2. A)** Mean and 95% credibility interval for model estimates on population means.
220 Population mean, effective standard deviation, and individual-level variability for distance (upper
221 row) and angle (lower row) to foraging locations. Wet season: light grey, dry season: dark grey.
222 **B)** Spatial representation of model estimates of foraging locations beyond Isla Colón. Shown are
223 the scaled product of the distance and angle probability density functions, clipped to the 95%

224 contour and coastline. Colony 1: green, colony 2: blue, colony 3: yellow, intensity of colour: relative
225 density of the PDF product.

226 **Assessing observed vs expected space use**

227 Finally, to test our data against our predictions, we compared parameter estimates for observed
228 and simulated foraging locations. The covariates and constraints on the transition probability
229 matrix meant that the model was able to replicate the overall behaviour of the observed
230 trajectories, excluding simulated foraging that fell on the ocean. While mean distance to foraging
231 locations was similar between observations and simulations for colony 1 during the dry season
232 (mean [95% qi]: 21.90 [20.15 - 23.59] km), simulated foraging locations were further from the
233 colony for colonies 2 (mean [95% qi]: 29.07 [26.76 - 31.42] km) and 3 (mean [95% qi]: 37.05
234 [30.83 - 43.08] km) than observed locations, respectively. Simulated wet season foraging
235 distances were longer for colony 1 (mean [95% qi]: 21.67 [18.4 - 24.72] km), but shorter than
236 colony 2 (mean [95% qi]: 16.78 [13.2 - 20.42] km) than observed (Figure S3).

237

238

239 **Figure 3. Observed and simulated angles of commute endpoints for each colony.**
240 Histogram: expected angle distribution based on simulations. Vertical lines: endpoints of
241 outbound commutes observed in the tracking data.

242

243 The simulations were not informed about the distribution of available resources. Thus, mean angle
244 to the colony differed between observation and simulation, and the variance around the mean
245 was greater for simulations (Figure 3). The models confirmed that the effective standard deviation
246 was much greater than observed during the dry season for colony 1 (mean [95% qj]: 0.89 [0.82 -
247 0.97] rad), 2 (mean [95% qj]: 0.69 [0.64 - 0.74] rad), and 3 (mean [95% qj]: 1.17 [0.94 - 1.47] rad)
248 (Figure S3). This difference was less pronounced during the wet season when there was greater
249 spread around observed foraging locations, with effective standard deviation for simulated
250 locations estimated as (mean [95% qj]: 0.82 [0.65 - 1.05] rad) for colony 1 and (mean [95% qj]:
251 1.39 [1.19 - 1.64] rad) for colony 2 (Figure S3).

252

253 **Discussion**

254 The unique opportunity to follow foraging behaviour of the same bat species from the same island
255 over more than six years revealed consistent colony-level behaviours across years and seasons.
256 Bats consistently used distant foraging sites 15-25 km from the roost, much further than the <10
257 km previously reported [9,10]. Using distant foraging sites repeatedly can provide benefits, but
258 the degree and profitability of this behaviour depend on the spatiotemporal predictability, quality,
259 and depletable of a given resource [14–16]. The consistent colony-level of foraging areas across
260 years, within seasons, and, with additional foraging areas, between seasons, suggests this
261 behaviour could be due to familiarity [15,17]. Familiarity and the decision to exploit known foraging
262 locations can confer long-term energetic benefits if these locations have higher productivity in
263 temporally unpredictable environments [18]. Consistent foraging patterns help individuals to learn
264 the location of food [19,20], move efficiently through the environment [16,21,22], or reduce conflict
265 with neighbours [23].

266 Different individuals from different years but from the same colony (colony 1 and 2) used
267 consistent foraging locations. *Phyllostomus hastatus* is highly social and capable of learning from
268 others. It is, thus, possible that this consistency in foraging sites arises through the social
269 transmission of information about the location of profitable resources [24,25], information use at
270 the central place [26,27], or by following others to find unpredictable resources. In Trinidad, this
271 species forms long-term groups of unrelated females that cooperate on multiple levels, including
272 pup-guarding [28] and recruiting each other to feeding trees during the dry season [29]. Based on
273 the social system described from Trinidad, we expected females to show more similar foraging
274 patterns than males [9], but we observed no difference between the sexes. The observed long-
275 term foraging fidelity suggests colony-level foraging preferences learned through socially
276 transmitted information from others at the level of colony instead of female group.

277 We tracked colony 1 during the early and late dry season and expected increased exploration,
278 i.e., increased path tortuosity or a win-stay, lose-shift foraging strategy [30]. With the ongoing
279 season the switching rate to new foraging areas should match the temporal scale of resource
280 variability (i.e., reduced balsa flower production). Instead, overall site fidelity and path straightness
281 were maintained (Figure 1, Table S3). This does not match a change in foraging strategy linked
282 to locally changing resources and an exploitation instead of exploration strategy. Only one
283 individual exploited a completely different area and another exhibited exploratory behaviour
284 (Figure S4A).

285
286 This mismatch with expectations continued when comparing seasons. Although foraging
287 distances were shorter in the wet season when they feed on a more diverse and less ephemeral
288 diet, bats still mostly foraged off Isla Colón. We had also expected less shared foraging space in
289 the wet season. Although some individuals switched foraging areas they were still in a shared
290 direction, perhaps in a mix of win-stay, lose-shift foraging in learned preferred foraging areas
291 (Figure S4B). This is confirmed by the bats continuing to show little exploration, but directed and
292 straight commuting flights. Our results indicate that during part of the year, *P. hastatus* may switch
293 between a set of socially learned foraging areas, rarely individually exploring the landscape for
294 food.

295 The long foraging distances in 2016 were thought to be due to unusually late balsa flowering [11].
296 Thus, the continued long foraging distances over the years, when balsa as well as more
297 ubiquitously distributed wet season resources should have been available on the island were
298 particularly surprising (Figure 1, 3). The use of shared foraging areas is likely a choice rather than
299 a fixed behaviour. Bats spent up to 60-100 minutes a night commuting, time and effort they could
300 have spent feeding or exploring closer to the roost, avoiding the risk of crossing open water. Why
301 they continue to invest time and energy to travel to these distant foraging areas remains
302 unresolved, but is likely based on some learned traditions as they are clearly able to visit and use
303 closer resources (Figure S2).

304 Individuals from the same colonies consistently used shared foraging distances and directions.
305 This differed somewhat between colonies. We had expected this due to competition for limited
306 balsa flowers during the dry season [11]. It is interesting that colony 2 used similar foraging areas
307 to colony 1, even though colony 3 is geographically closer. One possibility is dispersal of
308 knowledgeable individuals between colonies transferred information that spread through the
309 colony. Additionally, shared foraging areas could indicate particularly high balsa tree availability,

310 enough to sustain at least two colonies of 500 bats each [31]. At peak flower production, a balsa
311 tree can feed 3-7 bats over one night [11]. Thus 72 -166 trees would be needed to satisfy the
312 energetic demands of one of these colonies. Ground truthing indicated high balsa availability in
313 these areas, and future studies should incorporate measures of flower availability. Overall, the
314 continued use of a similar area even in the wet season when feeding on insects and fruit,
315 reinforces the idea that the use of foraging areas is acquired through memory and possibly
316 conformity, rather than density-dependent or between colony competition, as observed in other
317 frugivorous bats, such as *Rousettus aegyptiacus* [20].

318 Additional, non-exclusive aspects may play a role in the use of shared foraging areas. Bats
319 tracked during 2016 did not share flowering trees, but rested together between foraging bouts,
320 potentially to exchange information or increase vigilance against predators [11]. Resolution of
321 tracking data after 2016 was lower to increase the duration of data collection. This made it
322 impossible to test for social resting but we confirmed that bats returned to the same foraging
323 patches within the shared general foraging area night after night.

324 Our results indicate strong colony foraging preferences that are independent of seasonality and
325 group composition. However, these results represent only a partial picture of the wide range of
326 behavioural strategies that *P. hastatus* might have. Two main limitations remain unresolved: our
327 inability to track bats for long-term periods and our lack of detailed knowledge of *P. hastatus* diet
328 and resource availability for a species that moves tens of kilometres. Our research usually
329 assumes that animal behaviour is always completely adaptive, but our results suggest that
330 animals can choose foraging behaviours that do not follow the predictions of ideal foraging and
331 optimising returns for reasons we have yet to understand.

332

333 **Ethics**

334 This study was conducted under the permit of Ministerio del Ambiente, Panama (SE/A-96-15,
335 SE/A-96-18, SE/A-38-2020), and the Animal Care and Use Committee at the Smithsonian
336 Tropical Research Institute (2014-0701-2017, 2017-0815-2020-A2, 2020-0212-2023), and
337 adhered to the ASAB/ABS Guidelines for the Use of Animals in Research.

338

339 **Data and Code availability**

340 All data and code are available at www.movebank.org and
341 https://github.com/mccalderonc/P_hastatus_Conistentlong-distance_foragingflights

342

343 **Declaration of AI use**

344 We have not used AI-assisted technologies in creating this article.

345

346 **Authors' contributions**

347 MCCC, MTO, MCC, DKND: conceive the manuscript. MCCC, MTO, TDB, MCC, DKND: collected
348 biologging data. MCCC, MvT: did the analyses. MCCC, MvT, MTO, MCC, DKND: wrote the
349 manuscript.

350

351 **Conflict of interest declaration**

352 The authors declare no competing interests.

353

354 **Funding**

355 This work was supported, in part, by the US National Science Foundation (Award Number
356 2217920 to MTO), the Smithsonian Tropical Research Institute, and the Alexander von Humboldt
357 Foundation endowed by the Federal Ministry of Education and Research awarded to M.C.C.

358

359 **Acknowledgements**

360 We thank the Smithsonian Tropical Research Institute (STRI) especially Plinio Gondola and
361 Urania Gonzales. We are also grateful to the local people who allowed us to work on their
362 properties. Special thanks to the STRI bat lab for their support. Cynthia Peña, Edward Hurme,
363 Frederic Touzalin, Graciela Aguilar, Jann Sarapak, James Lee, Lucia Torrez, Luisa Gomez,
364 Michael Spiedel, Nina Hwang, Ricardo Cossio, Richard Emlet, Tadhg Lonergan and especially
365 Leslye Barria helped during data collection.

366

367 **References**

- 368 1. Hills TT, Todd PM, Lazer D, Redish AD, Couzin ID. 2015 Exploration versus exploitation in
369 space, mind, and society. *Trends Cog. Sci.* **19**, 46–54. (doi:10.1016/j.tics.2014.10.004)
- 370 2. Kembro JM, Lihoreau M, Garriga J, Raposo EP, Bartumeus F. 2019 Bumblebees learn
371 foraging routes through exploitation–exploration cycles. *J. R. Soc. Interface.* **16**, 20190103.
372 (doi:10.1098/rsif.2019.0103)
- 373 3. Bartumeus F, Campos D, Ryu WS, Lloret-Cabot R, Méndez V, Catalan J. 2016 Foraging
374 success under uncertainty: search tradeoffs and optimal space use. *Ecol. Letters* **19**, 1299–
375 1313. (doi:10.1111/ele.12660)
- 376 4. Bartumeus F, Raposo EP, Viswanathan GM, Da Luz MGE. 2014 Stochastic optimal
377 foraging: tuning intensive and extensive dynamics in random searches. *PLoS ONE* **9**,
378 e106373. (doi:10.1371/journal.pone.0106373)
- 379 5. Monk CT, Barbier M, Romanczuk P, Watson JR, Alós J, Nakayama S, Rubenstein DI, Levin
380 SA, Arlinghaus R. 2018 How ecology shapes exploitation: a framework to predict the
381 behavioural response of human and animal foragers along exploration–exploitation trade-
382 offs. *Ecol. Letters* **21**, 779–793. (doi:10.1111/ele.12949)
- 383 6. Olsson O, Brown JS, Helf KL. 2008 A guide to central place effects in foraging. *Theor. Pop.
384 Biol.* **74**, 22–33. (doi:10.1016/j.tpb.2008.04.005)
- 385 7. Garg K, Kello CT, Smaldino PE. In press. Individual exploration and selective social
386 learning: balancing exploration–exploitation trade-offs in collective foraging.
- 387 8. Rieucau G, Giraldeau L-A. 2011 Exploring the costs and benefits of social information use:
388 an appraisal of current experimental evidence. *Phil. Trans. R. Soc. B* **366**, 949–957.
389 (doi:10.1098/rstb.2010.0325)
- 390 9. McCracken GF, Bradbury, JW. 1981 Social Organization and Kinship in the Polygynous Bat
391 *Phyllostomus hastatus*. *BES* **8**, 11–34.
- 392 10. Williams TC, Williams JM. 1970 Radio tracking of homing and feeding flights of a
393 neotropical bat, *Phyllostomus hastatus*. *Anim. Behav.* **18**, 302–309. (doi:10.1016/S0003-
394 3472(70)80042-2)
- 395 11. O'Mara MT, Dechmann DKN. 2023 Greater spear-nosed bats commute long distances
396 alone, rest together, but forage apart. *Anim. Behav.* **204**, 37–48.
397 (doi:10.1016/j.anbehav.2023.08.001)
- 398 12. McClintock BT, Michelot T. 2018 momentuHMM: R package for generalized hidden Markov
399 models of animal movement. *MEE* **9**, 1518–1530. (doi:10.1111/2041-210X.12995)
- 400 13. Calenge, C. 2006 The package adehabitat for the R software: a tool for the analysis of
401 space and habitat use by animals. *Ecol. Modelling*, 516–519.
- 402 14. Switzer PV. 1993 Site fidelity in predictable and unpredictable habitats. *Evol. Ecol.* **7**, 533–
403 555. (doi:10.1007/BF01237820)

404 15. Irons DB. 1998 Foraging area fidelity of individual seabirds in relation to tidal cycles and
405 flock feeding. *Ecology* **79**, 647–655. (doi:10.1890/0012-
406 9658(1998)079[0647:FAFOIS]2.0.CO;2)

407 16. Arthur B, Hindell M, Bester M, Trathan P, Jonsen I, Staniland I, Oosthuizen WC, Wege M,
408 Lea M-A. 2015 Return customers: foraging Site fidelity and the effect of environmental
409 variability in wide-ranging antarctic fur seals. *PLoS ONE* **10**, e0120888.
410 (doi:10.1371/journal.pone.0120888)

411 17. Piper WH. 2011 Making habitat selection more “familiar”: a review. *BES* **65**, 1329–1351.
412 (doi:10.1007/s00265-011-1195-1)

413 18. Bradshaw CJA, Hindell MA, Sumner MD, Michael KJ. 2004 Loyalty pays: potential life
414 history consequences of fidelity to marine foraging regions by southern elephant seals.
415 *Anim. Behav.* **68**, 1349–1360. (doi:10.1016/j.anbehav.2003.12.013)

416 19. Hamer KC, Phillips RA, Hill JK, Wanless S, Wood AG. 2001 Contrasting foraging strategies
417 of gannets *Morus bassanus* at two North Atlantic colonies: foraging trip duration and
418 foraging area fidelity. *Mar. Ecol. Prog. Ser.* **224**, 283–290.

419 20. Lourie E, Schiffner I, Toledo S, Nathan R. 2021 Memory and conformity, but not
420 competition, explain spatial partitioning between two neighboring fruit bat colonies. *Front.
421 Ecol. Evol.* **9**, 732514. (doi:10.3389/fevo.2021.732514)

422 21. Merkle JA, Fortin D, Morales JM. 2014 A memory-based foraging tactic reveals an adaptive
423 mechanism for restricted space use. *Ecol. Letters* **17**, 924–931. (doi:10.1111/ele.12294)

424 22. Knox TC, Baylis AMM, Arnould JPY. 2018 Foraging site fidelity in male Australian fur seals.
425 *Mar. Biol.* **165**, 108. (doi:10.1007/s00227-018-3368-1)

426 23. Temeles, Ethan J. 1994 The role of neighbours in territorial systems: where are the ‘dear
427 enemies’? *Anim. Behav.* **47**, 339-350 (doi:10.1006/anbe.1994.1047).

428 24. Goldshtein A *et al.* 2020 Reinforcement learning enables resource partitioning in foraging
429 bats. *Curr. Biol.* **30**, 4096-4102.e6. (doi:10.1016/j.cub.2020.07.079)

430 25. Sargeant BL, Mann J. 2009 Developmental evidence for foraging traditions in wild
431 bottlenose dolphins. *Anim. Behav.* **78**, 715–721. (doi:10.1016/j.anbehav.2009.05.037)

432 26. Ward P, Zahavi A. 1973 The importance of certain assemblages of birds as ‘information-
433 centers’ for food-finding. *Ibis* **115**, 517–534. (doi:10.1111/j.1474-919X.1973.tb01990.x)

434 27. Ramakers JJC, Dechmann DKN, Page RA, O’Mara MT. 2016 Frugivorous bats prefer
435 information from novel social partners. *Anim. Behav.* **116**, 83–87.
436 (doi:10.1016/j.anbehav.2016.03.021)

437 28. Bohn KM, Moss CF, Wilkinson GS. 2009 Pup guarding by greater spear-nosed bats. *BES*
438 **63**, 1693–1703. (doi:10.1007/s00265-009-0776-8)

439 29. Wilkinson GS, Wenrick Boughman J. 1998 Social calls coordinate foraging in greater spear-
440 nosed bats. *Anim. Behav.* **55**, 337–350. (doi:10.1006/anbe.1997.0557)

441 30. Wakefield ED, Cleasby IR, Bearhop S, Bodey TW, Davies RD, Miller PI, Newton J, Votier
442 SC, Hamer KC. 2015 Long-term individual foraging site fidelity—why some gannets don't
443 change their spots. *Ecology* **96**, 3058–3074. (doi:10.1890/14-1300.1)

444 31. Pereira JM *et al.* 2022 Foraging costs drive within-colony spatial segregation in shearwaters
445 from two contrasting environments in the North Atlantic Ocean. *Oecologia* **199**, 13–26.
446 (doi:10.1007/s00442-022-05109-8)

447