

1 **Title: Integrative analysis of patient-derived tumoroids and ex vivo organoid**
2 **modeling of ARID1A loss in bladder cancer reveals therapeutic molecular targets**

3
4 **Authors:** Mathijs P. Scholtes^{1#}, Maryam Akbarzadeh^{1,2,3#}, J. Alberto Nakauma-González^{1##},
5 Alexandros Galaras^{4,5##}, Ameneh Bazrafshan^{2##}, Bram Torenvliet², Leila Beikmohammadi^{2,3},
6 Valeria Lozovanu², Shahla Romal², Panagiotis Moulos^{4,5}, Tsung Wai Kan^{1,6}, Mahesh Algoe⁶, Martin
7 E. van Royen⁶, Andrea Sachetti⁶, Thierry P.P. van den Bosch⁶, Bert Eussen⁷, Annelies de Klein⁷,
8 Geert J.L.H. van Leenders⁶, Joost L. Boormans¹, Pantelis Hatzis⁴, Robert-Jan Palstra^{1,2,6}, Tahlita
9 C.M. Zuiverloon^{1*}, Tokameh Mahmoudi^{1,2,6*}

10 **Affiliations:**

11 ¹Department of Urology, Erasmus MC Cancer Institute, University Medical Center Rotterdam,
12 Rotterdam, the Netherlands

13 ²Department of Biochemistry, Erasmus MC, University Medical Center Rotterdam, Rotterdam,
14 the Netherlands

15 ³Stem Cell and Regenerative Medicine Center of Excellence, Tehran University of Medical
16 Sciences, Tehran, Iran

17 ⁴Institute for Fundamental Biomedical Research (IFBR), Biomedical Sciences Research
18 Center "Alexander Fleming"

19 ⁵Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece

20 ⁶Department of Pathology, Erasmus MC Cancer Institute, University Medical Center Rotterdam,
21 Rotterdam, the Netherlands.

22 ⁷Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam,
23 the Netherlands

24 #equal author contribution

25 ##equal author contribution

26 *To whom correspondence should be addressed: t.mahmoudi@erasmusmc.nl and

27 t.zuiverloon@erasmusmc.nl

28

29 **ABSTRACT**

30 Somatic mutations in *ARID1A* (AT-rich interactive domain-containing protein 1A) are present in
31 approximately 25% of bladder cancers (BC) and are associated with poor prognosis. With a view
32 to discover effective treatment options for ARID1A-deficient BC patients, we set out to identify
33 targetable effectors dysregulated consequent to ARID1A deficiency. Integrative analyses of
34 ARID1A depletion in normal organoids and data mining in publicly available datasets revealed
35 upregulation of DNA repair and cell cycle-associated genes consequent to loss of ARID1A and
36 identified *CHEK1* (Checkpoint kinase 1) and chromosomal passenger complex member *BIRC5*
37 (Baculoviral IAP Repeat Containing 5) as therapeutically drug-able candidate molecular effectors.
38 *Ex vivo* treatment of patient-derived BC tumoroids with clinically advanced small molecule
39 inhibitors targeting *CHEK1* or *BIRC5* was associated with increased DNA damage signalling and
40 apoptosis, and selectively induced cell death in tumoroids lacking ARID1A protein expression.
41 Thus, integrating public datasets with patient-derived organoid modelling and ex-vivo drug
42 testing can uncover key molecular effectors and mechanisms of oncogenic transformation,
43 potentially leading to novel therapeutic strategies. Our data point to ARID1A protein expression
44 as a suitable candidate biomarker for the selection of BC patients responsive to therapies
45 targeting BIRC5 and CHEK1.

46

47 **Keywords:** *ARID1A*, bladder cancer, BC tumoroids, normal bladder organoids, targeted therapy

48

49 **INTRODUCTION**

50 Bladder cancer (BC) represents a significant global health burden, ranking as the 12th most prevalent
51 malignancy worldwide and accounting for approximately 200,000 annual deaths[1]. Non-muscle invasive
52 BC (NMIBC) patients have a favourable prognosis and receive local treatment. Management of muscle-
53 invasive BC (MIBC), however, remains challenging due to its propensity for metastasis[2]. Standard-of-
54 care in non-metastatic MIBC patients is cisplatin-based pre-operative chemotherapy and a radical
55 cystectomy (RC)[2]. Despite the toxic side effects of pre-operative chemotherapy, half of MIBC patients
56 will progress to metastatic urothelial cancer (mUC), which is characterized by a 5-year survival rate of
57 approximately 5% [2, 3]. Poor mUC survival outcome highlights the clinical need for additional treatment
58 options.

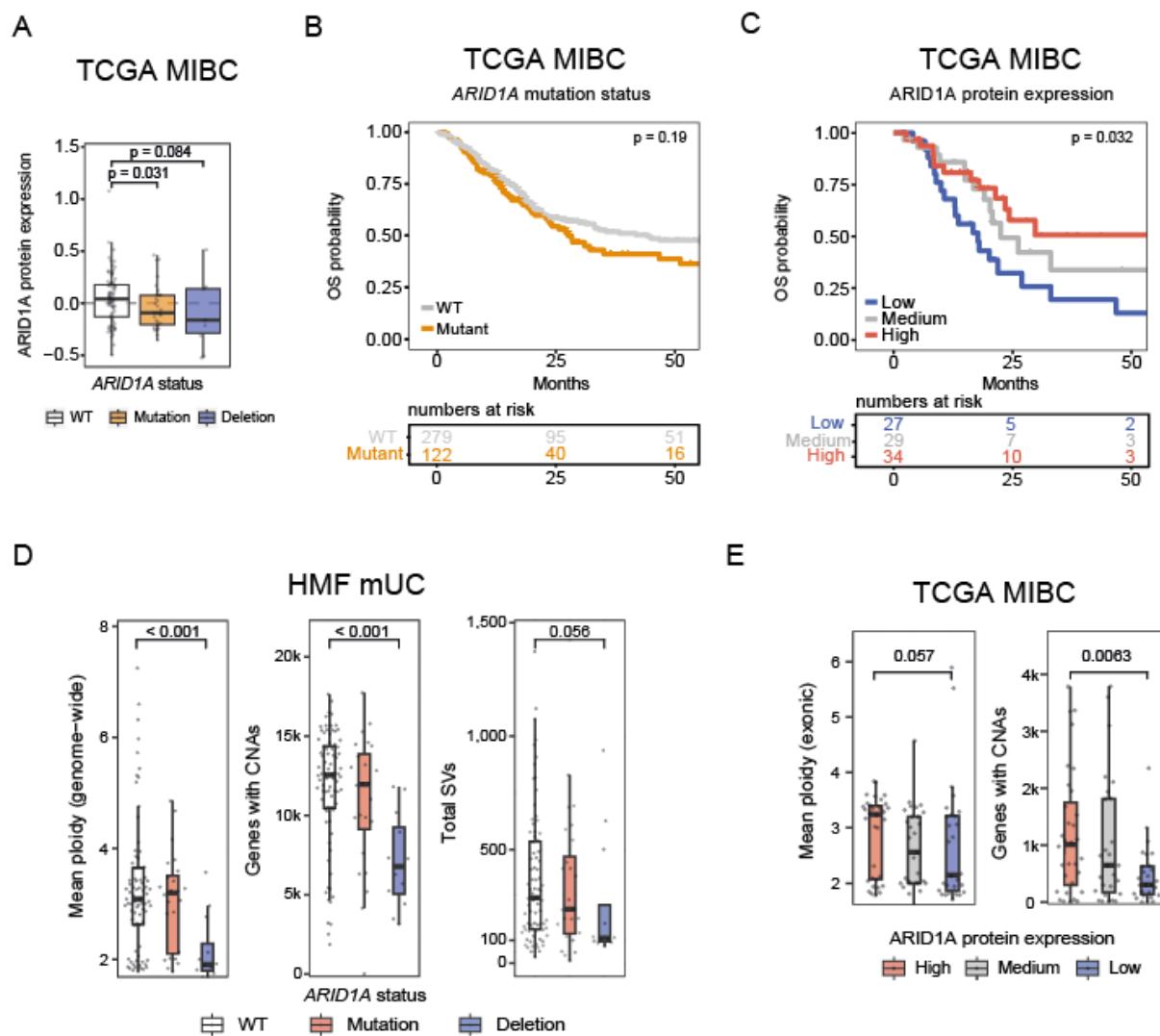
59 BC represents an example of how chromatin misregulation leads to cancer[4]. More than 80% of patients
60 with BC harbour cancer-associated mutations in chromatin remodelling genes[4]. One of the most
61 frequently mutated chromatin remodellers in MIBC and mUC is the AT-rich interactive domain-containing
62 protein 1A (*ARID1A*), the defining component of the BAF ATP-dependent SWI/SNF nucleosome
63 remodelling complex[4, 5]. Somatic mutations in *ARID1A* are present in approximately 20-30% of cases
64 of MIBC and mUC, and predominantly include nonsense, point, and insertion or deletion frameshift
65 mutations[4, 6, 7]. These mutations typically result in truncated proteins or reduced protein expression[8].
66 *ARID1A* is classified as a tumor suppressor because its genetic deletion impairs DNA double-strand break
67 repair, disrupts telomere cohesion, and results in the upregulation of oncogenes[9-12]. The role of *ARID1A*
68 as a global chromatin conformation regulator underlies the diverse effects observed when this gene is
69 disrupted. Cellular processes impaired by loss of *ARID1A* serve as therapeutic targets for *ARID1A*-deficient
70 BC[8, 11, 12]. Pharmacological inhibition of such targets could enable therapies which both exploit tumor-
71 specific gene alterations and reduce overall toxicity.

72 Although many novel targets are pre-clinically identified for BC, few therapies are implemented in clinical
73 practice. A major bottleneck is the lack of patient-representative preclinical models for candidate drug
74 discovery and validation of clinically effective treatments[13, 14]. Recently, patient-derived tumoroids
75 (malignant) and organoids (non-malignant) have been shown to be robust *ex vivo* platforms that
76 recapitulate many attributes of human tissues, including 3-dimensional structure, multilineage
77 differentiation, histological features, functional characteristics, and patient-treatment responses[15-20].
78 Additionally, their capacity for genetic manipulation makes tumoroids and organoids an ideal platform for
79 pre-clinical BC research[18-21].

80 In this study, we explored novel pre-clinical treatment options for *ARID1A*-deficient BC. Our analysis of
81 publicly available sequencing data from MIBC and mUC revealed that genetic aberrations in *ARID1A* are
82 associated with reduced gene expression and poor patient prognosis. Next, we established and
83 characterized a patient-derived BC tumoroid and normal urothelial organoid biobank and utilized this
84 platform to identify dysregulated cellular processes and therapeutic candidate genes consequent to
85 *ARID1A* deficiency. Finally, we investigated *BIRC5* and *CHEK1* as potential pharmacological targets to
86 selectively eliminate ARID1A-deficient BC tumoroids.

87

88 **RESULTS**


89 ***ARID1A* mutations correlate with reduced *ARID1A* gene expression and poor outcome in MIBC patients**

90 *ARID1A* is the defining component of the BAF ATP-dependent SWI/SNF nucleosome remodelling complex.
91 In some types of cancer, e.g. ovarian cancer, both deletions and heterozygous truncating mutations result
92 in BAF-complex destabilization and loss of ARID1A protein expression[22]. When evaluating the TCGA
93 MIBC dataset[4], we demonstrated lower ARID1A protein levels in *ARID1A* mutated tumors ($P = 0.03$, two-
94 sided Wilcoxon-rank sum test), and in tumors harboring *ARID1A* deletions ($P = 0.08$, two-sided Wilcoxon-
95 rank sum test) (Figure 1A). In addition, positive correlations were detected between ARID1A protein
96 expression, mRNA expression, and copy number status (Supplemental Figure 1A-D).

97 We did not observe overall survival (OS) differences when patients were stratified based on *ARID1A*
98 somatic mutation status ($p = 0.19$, log-rank test) (Figure 1B). However, OS was associated with ARID1A
99 expression at the protein level. Patient stratification into three groups based on ARID1A protein
100 expression (low, medium, high), revealed the shortest OS in patients with low ARID1A protein expression
101 (17.7 months), followed by patients with intermediate expression (22.5 months), while the longest OS
102 was observed in patients with high ARID1A-expressing tumors (59.3 months) ($p < 0.05$, log-rank test)
103 (Figure 1C), suggesting that attenuated ARID1A protein expression may represent the most clinically
104 relevant indicator of *ARID1A* deficiency. ARID1A protein expression status was associated with worse
105 outcome regardless of treatment, tumor stage, age, or gender (Supplemental Figure 1E). These analyses,
106 highlight the clinical need to develop alternative treatment options for *ARID1A*-deficient patients, who
107 have a poor outcome with current standard of care treatment.

108 Given *ARID1A*'s association with DNA-repair, we explored whether *ARID1A* mutation status associated
109 with tumor mutational burden. First, we investigated whole-genome DNA sequencing data of an mUC
110 cohort from the Hartwig Medical Foundation (HMF). In this HMF dataset, the number of single-nucleotide

111 variants ($P=0.44$, two-sided Wilcoxon-rank sum test), indels ($P=0.73$, two-sided Wilcoxon-rank sum test),
112 or multi-nucleotide variants ($P=0.67$, two-sided Wilcoxon-rank sum test) per megabase did not differ with
113 respect to *ARID1A* mutation status (Supplemental Figure 1F). Strikingly, when evaluating gross
114 chromosomal aberrations, we found *ARID1A* deletions to be associated with lower overall ploidy
115 ($P<0.001$, two-sided Wilcoxon-rank sum test), fewer genes affected by copy-number alterations ($P<0.001$,
116 two-sided Wilcoxon-rank sum test), and fewer structural variants ($P=0.056$, two-sided Wilcoxon-rank sum
117 test), when compared to *ARID1A* wild type status (Figure 1D). Although whole-genome sequencing data
118 from the HMF cohort offers higher resolution to detect aneuploidy at the gene level than microarrays[23],
119 we observed a similar trend in the TCGA cohort. In the TCGA dataset, patient tumors with low ARID1A
120 protein expression had lower overall ploidy ($P=0.057$, two-sided Wilcoxon-rank sum test), and fewer
121 genes affected by copy-number alterations ($P=0.0063$, two-sided Wilcoxon-rank sum test), compared to
122 tumors with ARID1A expression (Figure 1E). Although counterintuitive, these results align with a previous
123 study which demonstrated that *ARID1A* inactivation impairs genome maintenance to such extent that
124 *ARID1A*-deficient cancer cells are vulnerable to DNA double-strand breaks during mitosis, resulting in
125 selective elimination of clones that accumulate too much DNA-damage while dividing [24]. However, the
126 molecular mechanisms underlying the observed prognostic and mutational differences associated with
127 *ARID1A* status in BC have yet to be elucidated with functional studies.

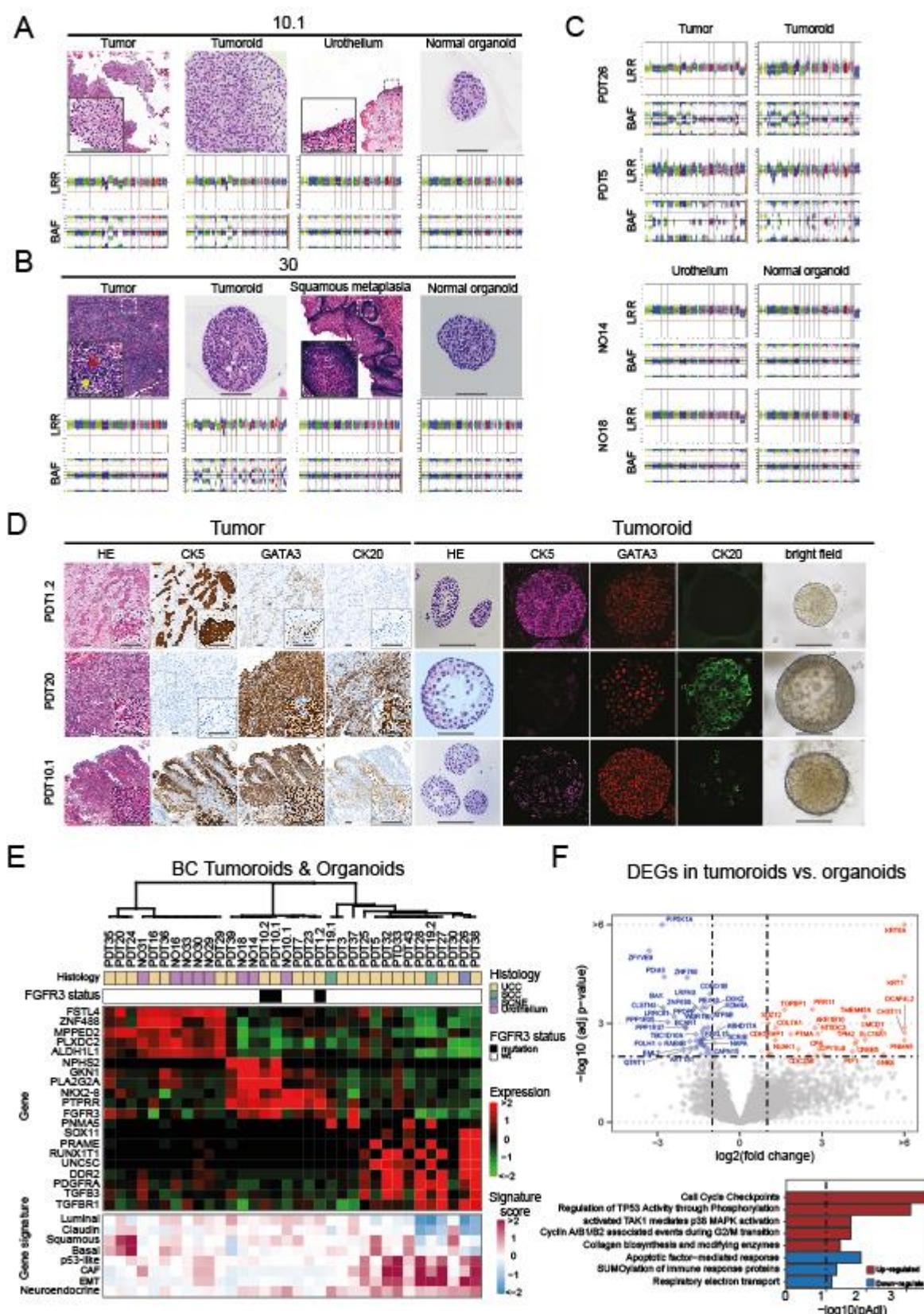
128

129 **Figure 1. Genetic ARID1A aberrations are associated with loss of gene-expression and poor prognosis in**
 130 **MIBC. A)** Box plots showing ARID1A protein expression levels quantified by reverse phase protein array
 131 (RPPA) in ARID1A wild type, mutated and deleted tumors*. A two-sided Wilcoxon-rank sum test was
 132 applied. Box plots show the median, inter-quartile range (IQR: Q1–Q3) and whiskers (1.5xIQR from Q3 to
 133 the largest value within this range or 1.5xIQR from Q1 to the lowest value within this range). WT = ARID1A
 134 wild type, Mutation = coding mutations (excluding synonymous) and small insertions/deletions, Deletion
 135 = ARID1A deleted. **B)** Overall survival curves of n = 401 MIBC patients treated with radical cystectomy*.
 136 Patients were stratified by ARID1A mutation status. WT = ARID1A wild type, Mutant includes protein-
 137 coding mutations, small insertions/deletions, and ARID1A deletions. The log-rank test was applied to
 138 survival curves. **C)** Overall survival curves of n = 90 MIBC patients (one patient excluded with no survival
 139 record) treated with radical cystectomy*. Patients were stratified by tertiles of ARID1A protein expression
 140 levels (low, medium, high) as determined by RPPA and samples with protein-coding mutations were
 141 excluded. The log-rank test was applied to survival curves. **D)** Boxplots depicting mean ploidy, number of
 142 genes affected by copy-number aberrations (CNAs) and number of structural variants (SV) in metastatic
 143 urothelial cancer samples**. WT = ARID1A wild type, Mutation = protein coding mutations (excluding

144 synonymous) and small insertions/deletions, Deletion = *ARID1A* deleted. Two-sided Wilcoxon-rank sum
145 test was applied. **E)** Boxplots graphs depicting mean ploidy and number of genes affected by copy-number
146 aberrations (CNAs) in MIBC patients stratified by *ARID1A* protein expression*. Two-sided Wilcoxon-rank
147 sum test was applied. WT = *ARID1A* wild type, Mutation = protein-coding mutations (excluding
148 synonymous) and small insertions/deletions, Deletion = *ARID1A* deleted. *TCGA **HMF.

149

150 **Biobank of patient-derived BC tumoroid and normal urothelial organoid models that phenotypically**
151 **and genetically resemble the tissue of origin.**


152 To investigate the impact of *ARID1A* status on BC in a clinically relevant BC model system, we generated
153 *ex vivo* cultures from BC and macroscopic normal urothelium acquired from BC patients undergoing
154 transurethral resection of bladder tumor (TURBT) or radical cystectomy (Supplemental Figure 2A-C).
155 Patient-derived tumoroid (PDT) and normal organoid (NO) lines were initiated from a variety of BC
156 patients, ranging from low-grade non-invasive NMIBC to high-grade MIBC (Supplemental Figure 2B,D,
157 Supplemental Table 1). Approximately 80% of initiated cultures could be expanded and were successfully
158 cryopreserved (Supplemental Figure 2E-F).

159 Genome-wide copy-number aberrations (CNA), and hotspot mutation analysis (SNaPshot[25-27]) of the
160 telomerase reverse transcriptase (*TERT*) promoter region and protein-coding regions of
161 Phosphatidylinositol-4,5-Bisphosphate 3-Kinase Catalytic Subunit Alpha (*PIK3CA*) and Fibroblast Growth
162 Factor Receptor 3 (*FGFR3*) confirmed that BC tumoroids and non-malignant bladder organoids genetically
163 resembled their corresponding parental tissues *ex vivo* (Figure 2A-C, Supplemental Figure 3A-B).
164 Additionally, *ex vivo* cultures resembled patient tumor and normal tissue urothelial differentiation marker
165 expression and morphological growth patterns (Figure 2D & Supplemental Figure 3C-D).

166 Unsupervised hierarchical clustering of 3' mRNA-seq data of BC tumoroid and normal bladder organoid
167 cultures (n = 34) identified three expression subtypes, highlighted by the five most differentially expressed
168 genes (Figure 2E, Supplemental Figure 4A-B). Cluster one contained tumoroids and normal organoids

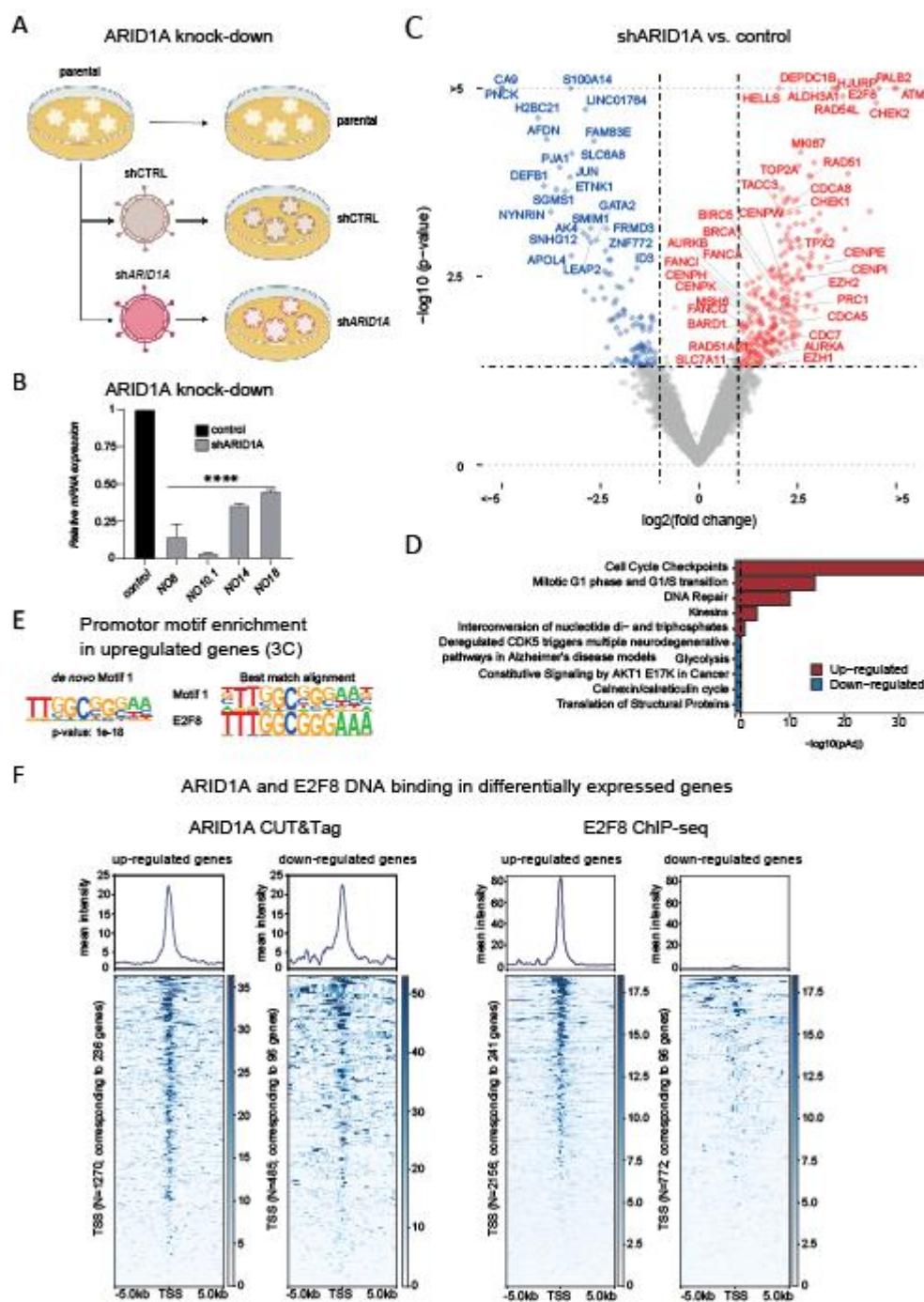
169 showing a basal/squamous gene expression signature, whereas cluster two seemed enriched for
170 tumoroids and organoids with a luminal expression signature and presence of activating *FGFR3* mutations.
171 The third cluster exclusively consisted of tumoroids and was characterized by low expression of luminal
172 genes and an epithelial-to-mesenchymal transition (EMT)-associated expression signature.

173

175 **Figure 2. Genetic and phenotypic characterization of a BC tumoroid and normal urothelial organoid**
176 **biobank. A)** Top: H&E stainings of patient #10 tissues and corresponding PDTs and NOs (scale bar =
177 50 μ m). Bottom: Scatterplots illustrating genome wide copy number alterations depicted by Log R ratios
178 (LRR) and B-allele frequency (BAF) from #10 tumor (first left), tumoroids (second left), normal urothelium
179 (second right), and normal organoids (first right) **B)** Top: H&E stainings patient #30 tissues and
180 corresponding PDTs and NOs. Red arrow indicates tumor cells, yellow arrow indicates tumor infiltrating
181 lymphocytes (scale bar = 50 μ m) Botom: Scatterplots illustrating genome wide copy number alterations
182 from patient #30 tumor (first left), tumoroids (second left), squamous metaplasia (second right), and
183 normal organoids (first right). Note that copy-number alterations (CNAs) are masked in this
184 lymphoepithelioma-like tumor due to high lymphocyte infiltration, but become apparent as CNA
185 resolution increases in the tumoroids. **C)** Scatterplots illustrating genome wide copy number alterations
186 depicted by Log R ratios (LRR) and B-allele frequency (BAF) from patient tumor and corresponding
187 tumoroids (top) or urothelium and corresponding normal organoids (bottom). **D)** Histological evaluation
188 of primary tumors and corresponding tumoroids. Expression of urothelial differentiation markers was
189 investigated by IHC (tumors) and IF (tumoroids) as indicated. Representative examples of basal (PDT1.2;
190 CK+, CK20-), luminal (PDT20; CK5-, CK20+) and mixed basal/luminal (PDT10.1 CK5+, CK2-+) tumor types
191 are shown. (scale bar = 50 μ m). **E)** Unsupervised clustering of transcriptomic profiles from patient-derived
192 tumoroids (PDTs) and normal organoids (NOs) identified three clusters (Euclidean distance, Ward
193 method), which are displayed in the dendrogram. Differential gene expression analysis was applied for
194 each group and expression of the top five genes with the highest log2 fold change and adjusted $p < 0.001$
195 were shown in the heatmap, together with FGFR3, TGFB3, TGFBR1, PDGFRA and DDR2. Additionally,
196 histological subtypes, FGFR3 mutation status and gene expression signatures of patient-derived tumoroid
197 and normal organoid lines are displayed. Histology represents urothelial cell carcinoma (UCC), small cell
198 neuroendocrine-like (SCNE), squamous cell carcinoma (SCC) and normal urothelium. Tumors with somatic
199 mutations in FGFR3 identified by SNaPshot mutation analysis are indicated in black. Gene signature scores
200 represent the average expression of genes associated with each signature. **F)** Volcano plot of differentially
201 expressed genes obtained from RNA sequencing analysis of tumoroid compared to bladder organoids.
202 Genes that were differentially regulated in tumoroids with adjusted $p < 0.01$ and absolute log2 fold
203 change > 1 are labeled in red (upregulated) and blue (downregulated), (top). Bar diagrams specify the
204 pathways of differentially expressed genes (adjusted $p < 0.05$, absolute log2 fold change > 0.5) according
205 to the hypergeometric distribution calculated with ReactomePA (adjusted $p < 0.05$, bottom). P values
206 were adjusted with the Benjamini-Hochberg method.

207
208 Differential gene-expression analysis of BC tumoroids and normal organoid cultures identified pathways
209 that reflect several hallmarks of cancer and are known to be dysregulated in BC[28]; these include
210 upregulation of pathways involved in MAPK activation, cyclin-associated events during G2/M transition
211 and cell cycle checkpoints (sustaining proliferative signaling), P53 regulation (evading growth

212 suppressors), and collagen modifying enzymes (activating invasion and metastasis), as well as
213 downregulation of pathways promoting apoptosis (resisting cell death) and respiratory electron transfer
214 (deregulating cellular energetics) (Figure 2F). From the present analysis we conclude that patient-derived
215 BC tumoroids and normal urothelial organoids faithfully represent the tissue of origin.


216

217 **Loss of *ARID1A* in normal bladder organoids induces upregulation of DNA repair and cell cycle-
218 associated genes**

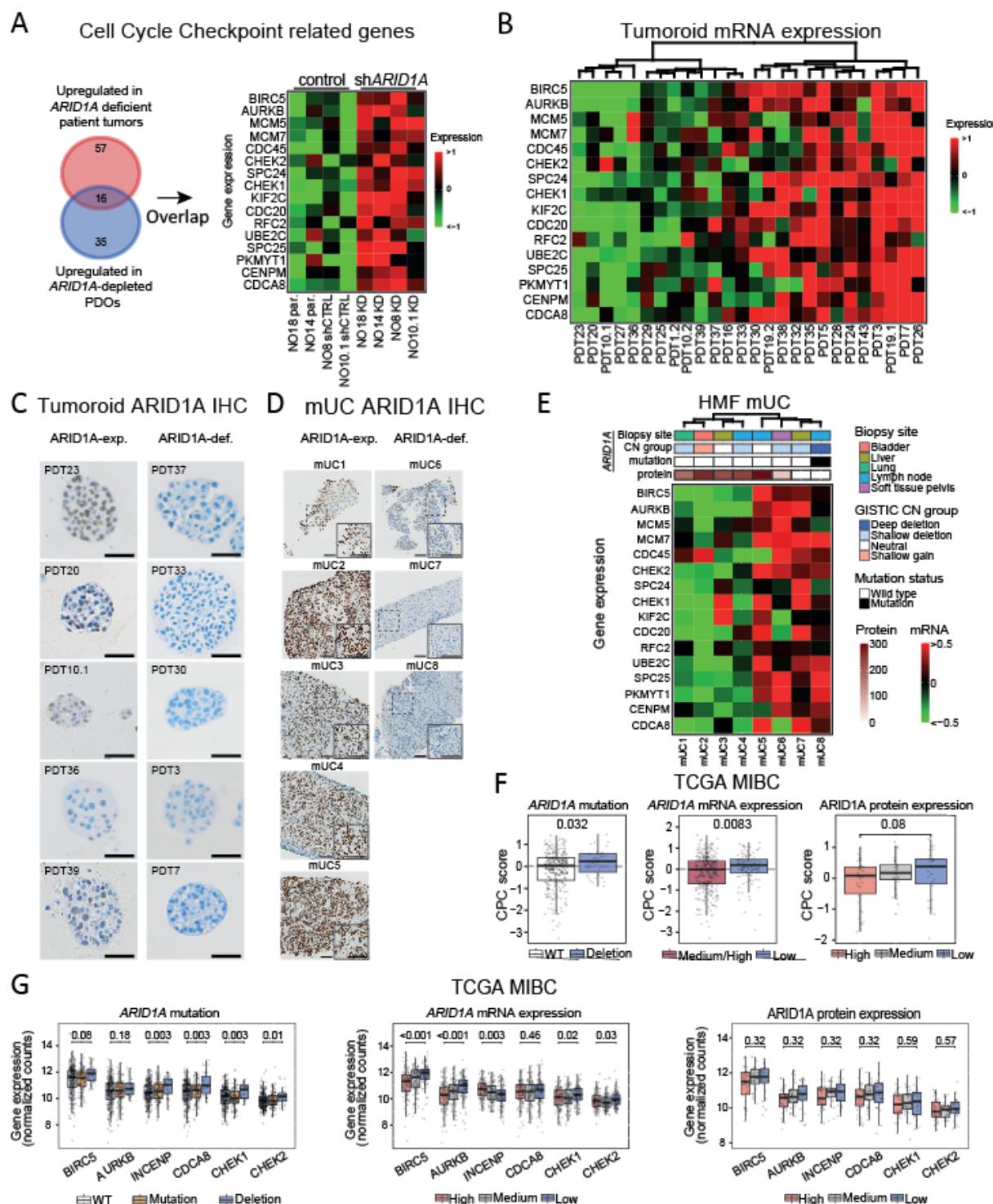
219 Given the need for novel treatment strategies for patients with loss of ARID1A protein expression, we
220 applied our PDO model to identify potential therapeutic targets that could be exploited in *ARID1A*-
221 deficient BC. Since ARID1A loss has been shown to induce oncogene expression in murine urothelium[29],
222 we investigated which genes are upregulated in response to ARID1A loss in human urothelial cells. Loss
223 of ARID1A expression was modeled by applying short hairpin RNA (shRNA) – mediated ARID1A knock-
224 down in four normal organoid lines (Figure 3A). Efficient *ARID1A* knock-down was confirmed by RT-qPCR
225 (Figure 3B). Thereafter, 3' mRNA-seq and differential gene-expression analysis identified 353 dysregulated
226 transcripts in ARID1A depleted (N=4) compared to matched parental (N=2), or shCTRL (N=2) control
227 organoids (Figure 3C). A total of 247 genes were significantly upregulated, while 106 genes were
228 significantly downregulated. To explore targetable therapeutic approaches, we concentrated on the
229 upregulated genes, as these present opportunities for inhibition with potential drug treatments. Pathway
230 enrichment analysis pointed to significant upregulation of DNA damage repair (DDR) genes such as *ATM*,
231 *RAD51*, *PALB2*, *BRCA1*, *BARD1*, *FANCA*, *FANCI*, and *FANCG*, and genes involved in cell cycle checkpoint and
232 G1 to G1/S phase transition including *CHEK1*, *CHEK2*, *PRC1*, *BIRC5*, *CDCA8* and *AURKB* (Figure 3C-D). Next,
233 we performed a motif enrichment analysis to identify transcription factors underlying the observed
234 transcriptomic changes associated with ARID1A loss. Homer motif analysis predicted only one de novo
235 motif enriched in the transcription start sites (TSS) of upregulated genes with confidence. This motif is

236 similar to early region 2 factor (E2F) family member binding sites, with the E2F8 binding motif showing
237 the highest resemblance (Figure 3E, Supplemental Figure 5A). The E2F transcription factor family consists
238 of transcriptional activators (E2F1-3) and repressors (E2F4-8) that orchestrate gene-expression in cell
239 cycle regulation and DNA stress response [30-34]. Interestingly, the consensus binding site for the
240 transcriptional repressor E2F8 was found enriched in TSSs of 32 dysregulated genes, of which 25 were
241 upregulated in the ARID1A depleted organoids, pointing to reduction of E2F8 controlled repression upon
242 ARID1A loss (Supplemental Figure 5B). Cross-referencing to publicly available ARID1A CUT&Tag[29] and
243 E2F8 ChIP-seq data[35] demonstrated enrichment of ARID1A and E2F8 binding at the TSSs of genes
244 upregulated by ARID1A knock-down, suggesting a direct link between loss of ARID1A expression and de-
245 repression of E2F8-regulated genes (Figure 3F).

246

247
248 **Figure 3. Loss of ARID1A expression in normal bladder organoids induces upregulation of DNA-repair**
249 **pathways and cell cycle-associated genes** **A)** Schematic representation of the experimental procedure
250 for ARID1A knock-down in urothelial organoids. Following transduction with a lentiviral vector
251 expressing a scrambled shRNA or shRNA targeting *ARID1A* (sh*ARID1A*), organoids were selected with
252 puromycin for 5 days to obtain bladder organoid lines depleted of ARID1A. Four *ARID1A* knock-down
253 (sh*ARID1A*) and corresponding control (sh*CTRL*; NO8 & NO10.1) or untransduced parental (NO14 &
254 NO18) organoid lines were established according to the schematic. **(B)** Levels of *ARID1A* mRNA
255 expression were evaluated by reverse transcription polymerase chain reaction (RT-PCR) in control

256 (shCTRL; NO8 & NO10.1) or untransduced parental (NO14 & NO18), and the transduced (shARID1A)
257 bladder organoid lines. Expression of *ARID1A* was calculated according to the $2\Delta Ct$ method comparing
258 knock-down vs matched controls, using the housekeeping gene Cyclophilin A as reference. One-way
259 ANOVA comparing knock-down vs. control. *** $P < 0.0005$ **C)** Volcano plot of differentially expressed
260 genes obtained from RNA sequencing analysis of control versus ARID1A depleted bladder organoids as
261 indicated. The expression levels of 353 genes were differentially regulated by ARID1A depletion (up- and
262 down-regulated genes are depicted in red and blue, respectively). The name of selected genes is
263 highlighted. P-values were not adjusted for multiple testing. **D)** Bar graph depicting pathways of the
264 differentially expressed genes according to the hypergeometric distribution calculated with ReactomePA
265 (adjusted $p < 0.05$). **E)** Left: Logo depicting the top *de novo* binding motif (Motif 1), enriched in the
266 promoters of genes upregulated upon ARID1A knock-down (upregulated genes from panel 3C), based on
267 Homer analysis. Right: Logos for predicted Motif 1 and its best match, as determined by sequence
268 alignment (E2F8). **F)** Left: histograms depicting mean ARID1A or E2F8 binding intensities around
269 transcription start sites (TSS) of up- and down-regulated genes as indicated (dysregulated genes from
270 panel 3C). ARID1A CUT&Tag data from murine urothelial organoids was repurposed from Jana et al.[29].
271 Only genes with murine orthologues (236 out of 247 upregulated genes) are shown. E2F8 ChIP-seq data
272 from K562 (myeloid progenitor was repurposed from the ENCODE project[35]).


273

274 **Upregulation of chromosomal passenger complex members and cell cycle checkpoint kinases in**
275 ***ARID1A*-deficient BC**

276 Cell cycle checkpoint-associated genes were the most significantly upregulated gene set in ARID1A-
277 depleted bladder organoids compared to controls (Figure 3D). The same pattern was observed when
278 comparing tumoroids to bladder organoids (Figure 2F), hereby prompting us to focus on cell cycle
279 checkpoint genes. Ensuring clinical relevance, we cross-referenced upregulated genes identified by
280 ARID1A knock-down to genes upregulated in BC patients with *ARID1A* mutated/deleted or low *ARID1A*
281 expressing tumors. First, we investigated which cell cycle checkpoint genes were significantly upregulated
282 in *ARID1A*-deficient MIBC samples from the TCGA cohort. We identified a total of 73 cell cycle checkpoint-
283 associated genes to be significantly upregulated in MIBC tumors with *ARID1A* deletions (1) and low mRNA
284 expression (72) (Supplemental table 2). Comparing this list to the cell cycle checkpoint-genes upregulated
285 in ARID1A-depleted organoids resulted in 16 overlapping candidate genes (Figure 4A). Unsupervised
286 hierarchical clustering using these genes yielded a clear separation between sh*ARID1A* and control

287 organoids (Figure 4A). Additionally, direct binding of ARID1A and E2F8 was observed at the transcription
288 start sites of the majority of these genes (Supplemental Figure 6). To confirm association of ARID1A status
289 with cell-cycle checkpoint candidate expression, we performed unsupervised hierarchical clustering of the
290 16 cell-cycle-checkpoint candidate genes on RNA-sequencing data from our patient-derived tumoroids.
291 BC tumoroids separated into two major clusters, suggesting separation by ARID1A status in a manner
292 similar to that observed for ARID1A-depleted organoids (Figure 4B). We randomly selected five BC PDTs
293 from each of the two major clusters and examined ARID1A protein expression using IHC (Figure 4C). IHC
294 identified five BC tumoroid lines with ARID1A expression and five lines without, with eight lines matching
295 the ARID1A status suggested by unsupervised clustering. We then explored whether our 16 cell-cycle-
296 checkpoint candidate genes were also upregulated in *ARID1A*-deficient mUC samples, and whether we
297 could identify *ARID1A*-deficient BC patients by assessing ARID1A protein expression by IHC. For this
298 purpose, we selected samples from the HMF mUC cohort[7, 36] with formalin-fixed paraffin-embedded
299 (FFPE) blocks available for further analysis (N=8). We performed IHC for ARID1A, and summarized *ARID1A*
300 mutation status, ARID1A protein expression and cell-cycle-checkpoint candidate gene mRNA expression
301 into a single heatmap (Figure 4D-E). Unsupervised hierarchical clustering separated the samples into two
302 clearly distinct clusters, one with cell-cycle-checkpoint candidate gene upregulation, and one without. The
303 cluster with upregulation of the 16 cell-cycle-checkpoint candidate genes was enriched for patients with
304 low ARID1A protein expression (Q-score <100, 3 out of 4), *ARID1A* deep deletions (1 out of 4), or *ARID1A*
305 mutations (1 out of 4). Thus, *ARID1A*-deficiency is associated with upregulation of the 16 cell-cycle-
306 checkpoint candidate genes in bladder organoids, BC tumoroids, as well as MIBC and mUC patient tumors.
307 Three of the identified candidate genes, *BIRC5*, *CDCA8*, and *AURKB*, form, together with *INCENP*, the
308 chromosomal passenger complex (CPC). The CPC has been described as a master regulator of mitosis,
309 functioning in chromosome–microtubule attachment, activation of the spindle assembly checkpoint, and
310 cytokinesis[37]. The combined mRNA expression of these CPC members was found to be higher in *ARID1A*-

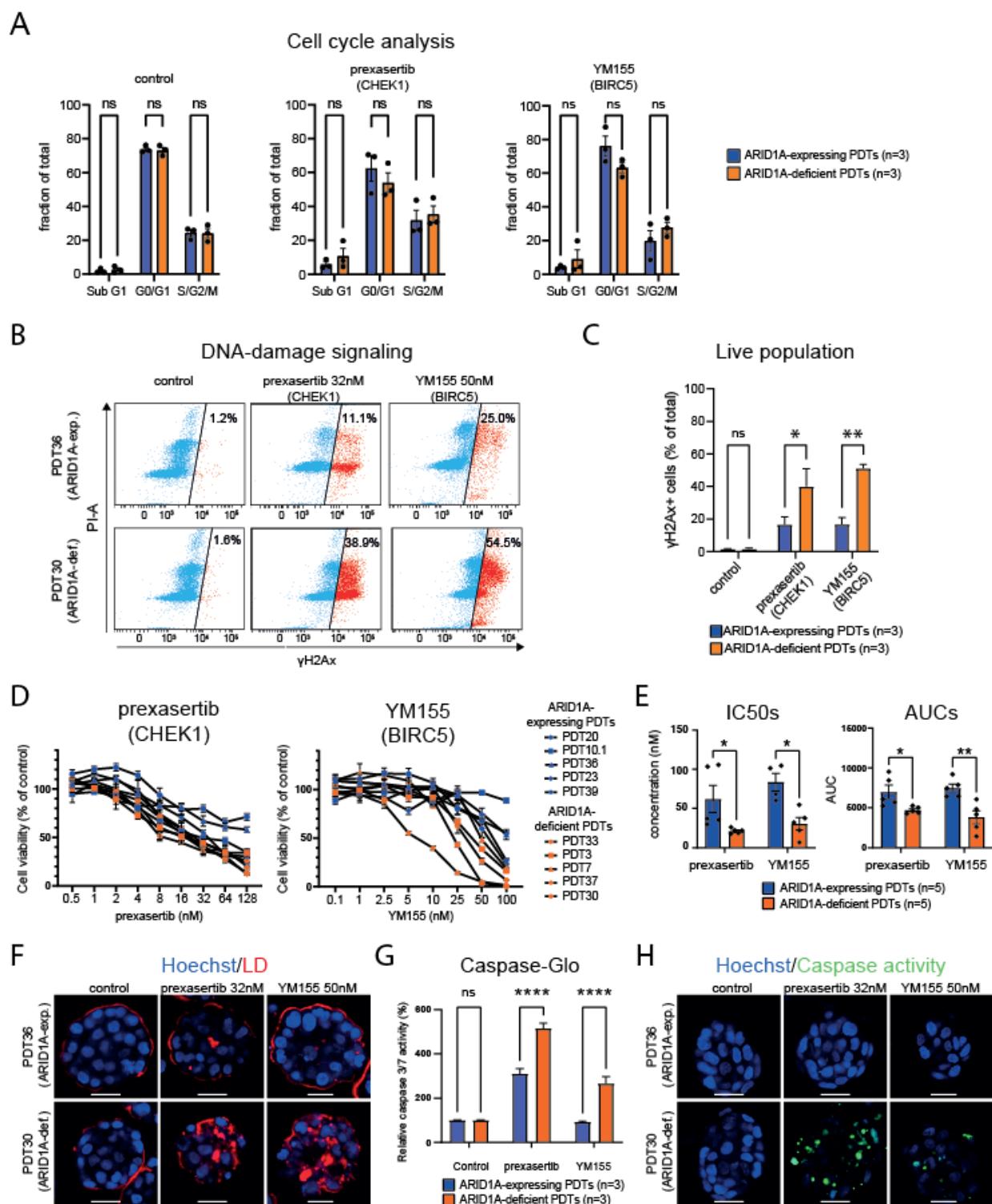
311 deleted and low *ARID1A*-mRNA expressing MIBC tumors, and in patient tumors with low *ARID1A* protein
312 expression (Figure 4F). Candidate genes *CHEK1* and *CHEK2* are two functionally—but not structurally—
313 related serine/threonine kinases that are activated in response to DNA damage during mitosis. Upon
314 activation, *CHEK1* and *CHEK2* delay cell cycle progression and facilitate DNA repair until damage has been
315 restored, making *CHEK1* and *CHEK2* interesting candidate genes for further investigation[38]. In addition
316 to CPC members, also *CHEK1* and *CHEK2* were significantly upregulated in *ARID1A*-deleted or low *ARID1A*-
317 mRNA expressing MIBC tumors (Figure 4G). From this analysis, we conclude that *ARID1A*-deficient BC is
318 associated with the upregulation of CPC members (BIRC5, AURKB, INCENP, and CDCA8) as well as
319 checkpoint kinases (*CHEK1* and *CHEK2*).

320
 321
 322
 323
 324
 325
 326

Figure 4. Chromosomal passenger complex members and cell cycle checkpoints are upregulated in ARID1A-deficient tumors

A) Venn-diagram comparing cell cycle checkpoint genes significantly upregulated in MIBC patient tumors with *ARID1A* deletions or low mRNA* (top) to genes significantly upregulated upon *ARID1A* depletion in normal urothelial organoids (bottom). Overlapping genes were subsequently used for unsupervised hierarchical clustering (Euclidean distance, Ward method) of *ARID1A* knock-down (KD), parental (par.) or control (shCTRL) organoid lines. **B**) Heatmap depicting unsupervised

327 hierarchical clustering of BC patient-derived tumoroids (PDTs) by normalized expression of N = 16 cell
328 cycle checkpoint genes associated with *ARID1A* deficiency. **C**) Representative images of ARID1A
329 immunohistochemistry in PDTs and matched patient tumors. (scale bar = 50 μ m). **D**) Representative
330 examples of ARID1A-stained metastatic lesions. (scale bar = 100 μ m). **E**) Unsupervised hierarchical
331 clustering (Euclidean distance, Ward method) of N = 8 metastatic BC samples summarizing biopsy sites**,
332 *ARID1A* copy-number status**, *ARID1A* mutations status**, ARID1A protein expression investigated by
333 IHC (Q-score), and = 16 cell cycle checkpoint genes associated with loss of *ARID1A*. Data was repurposed
334 from TCGA (*) or HMF (**) datasets. **F**) Boxplots comparing chromosomal passenger complex (CPC) score
335 integrating *BIRC5*, *AURKB*, *CDCA8*, and *INCENP* mRNA expression in MIBC patient tumors with *ARID1A* wild
336 type vs. deleted tumors* (left), medium/high vs. low *ARID1A* mRNA expression* (middle), and high vs.
337 medium vs. low ARID1A protein expression* (right). Two-sided Wilcoxon-rank sum test was applied to
338 compare differences between the groups. **G**) Boxplots comparing mRNA expression of *BIRC5*, *AURKB*,
339 *INCENP*, *CDCA8*, *CHEK1* and *CHEK2* in MIBC patient tumors stratified by *ARID1A* mutation status* (top),
340 mRNA expression levels* (middle) or protein expression levels* (bottom). Two-sided Wilcoxon-rank sum
341 test was applied and p-values were corrected with the Benjamini–Hochberg method. Box plots show the
342 median, inter-quartile range (IQR: Q1–Q3) and whiskers (1.5xIQR from Q3 to the largest value within this
343 range or 1.5xIQR from Q1 to the lowest value within this range). *HMF, ** TCGA.


344

345

346 **Pharmacological *BIRC5* and *CHEK1* inhibition is associated with increased DNA damage signaling in**
347 **ARID1A-deficient BC.**

348 Next, we investigated the effects of pharmacological inhibition of upregulated candidate genes on cell
349 cycle distribution and DNA-damage signaling in context of ARID1A-deficient BC. Clinically advanced
350 inhibitor drugs are available for *BIRC5* (Baculoviral IAP Repeat Containing 5) and *CHEK1* (Checkpoint Kinase
351 1). *BIRC5* transcription is inhibited by YM155 (sepantronium bromide), leading to decreased expression of
352 the *BIRC5*-encoded protein survivin[39-42]. *CHEK1* kinase activity is inhibited by prexasertib, a drug which
353 was recently given FDA fast-track designation for treatment of ovarian and endometrial cancer
354 patients[43]. To gain mechanistic insight into cell cycle distribution and DNA-damage signaling, we used a
355 flow cytometry approach to explore cell cycle distribution and the presence of DNA-damage, both top
356 enriched pathways revealed by our ARID1A-depletion experiments (Supplemental Figure 7A). Cell cycle
357 distribution was similar between ARID1A-expressing (N=3) and ARID1A-deficient (N=3) tumoroids, and
358 treatment with prexasertib (*CHEK1*) or YM155 (*BIRC5*) did not induce significant changes between the two

359 groups (Figure 5A, Supplemental Figure 7B). DNA-damage signaling (γ H2Ax) was similar between
360 untreated ARID1A-expressing (N=3) and ARID1A-deficient (N=3) BC tumoroids; however, preasertib or
361 YM155 treatment significantly increased DNA-damage signaling in ARID1A-deficient as compared to
362 ARID1A-expressing tumoroids (Figure 5B-C, Supplemental Figure 7B-C).

363
364
365
366
367
368
369

Figure 5. Pharmacological BIRC5 or CHEK1 inhibition selectively targets ARID1A-deficient BC **A)** Bar graphs summarizing cell cycle distribution of ARID1A-expressing (PDT20, PDT36, PDT39) and ARID1A-deficient (PDT3, PDT30, and PDT37) tumoroids at baseline (untreated control, left), and after treatment with 32nM prexasertib (middle) or 50nM YM155 (right). Data are represented as mean \pm SEM. **B)** Flow cytometry of ARID1A-expressing (PDT36) and ARID1A-deficient (PDT30) tumoroids treated with 32nM prexasertib or 50nM YM155 for four days. Gated on the single, live population followed by analysis of

370 propidium iodide (cell cycle) and phosphorylated H2Ax (yH2Ax) to identify the yH2Ax+ fraction (red). **C**)
371 Bar graphs depicting percentage of yH2Ax cells in ARID1A-expressing tumoroids (PDT20, PDT36, PDT39)
372 and ARID1A-deficient tumoroids (PDT3, PDT30, PDT37), treated with 32nM prexasertib or 50nM YM155
373 for two days. (mean \pm SEM, two-way ANOVA, *p<0.05, **p<0.005). **D**) Dose-response curves for ARID1A-
374 expressing (blue) and ARID1A-deficient (orange) PDTs treated with *CHEK1*-inhibitor prexasertib (left), and
375 BIRC5-inhibitor YM155 (right). Cell viability was measured through CellTiter-Glo 3D. (technical triplicates
376 of two independent experiments; mean \pm SEM). **E**) Left: IC50 values estimated from non-linear fit of dose-
377 response depicted in D. YM155 IC50 concentration could not be determined for PDT10.1 due to the line's
378 high resistance. Right: Area under the curve (AUC) of dose-response depicted in D. two-way ANOVA,
379 *p<0.05, ** p<0.005. **F**) Fluorescence staining of ARID1A-expressing (PDT36) and ARID1A-deficient
380 (PDT30) PDTs, treated with 32nM prexasertib or 50nM YM155 for two days. Tumoroids were stained with
381 fixable life/dead staining (LD), nuclei were counter stained with Hoechst. (Scale bar = 25 μ m). **G**) Bar graph
382 depicting relative caspase 3/7 activity measured by Caspase-Glo in ARID1A-expressing (PDT20, PDT36,
383 PDT39) and ARID1A-deficient (PDT3, PDT30, PDT37) PDTs following treatment with 32nM prexasertib or
384 50nM YM155 for two days. (triplicates of two independent experiments; mean \pm SEM), two-way ANOVA,
385 ***p<0.0005, ****p<0.00005.) **H**) Fluorescence staining of caspase activity reporter on ARID1A-
386 expressing (PDT36) and ARID1A-deficient (PDT30) PDTs treated with 32nM prexasertib or 50nM YM155
387 for two days, nuclei were counter stained with Hoechst. (Scale bar = 25 μ m).

388

389 **Selective susceptibility of ARID1A-deficient BC tumoroids to pharmacological inhibition of *BIRC5* or**
390 ***CHEK1***

391 To investigate if CHEK1 and BIRC5 inhibition can selectively kill ARID1A-deficient cancer cells, we treated
392 ARID1A-expressing (N=5) and ARID1A-deficient (N=5) bladder cancer (BC) tumoroids with a concentration
393 range of inhibitors targeting BIRC5 and CHEK1, followed by cell viability and apoptosis assessments. Both
394 YM155 and prexasertib treatment resulted in patient-specific *ex vivo* drug responses as quantified by
395 CellTiter-Glo 3D (Figure 5D). For both drugs, ARID1A-deficient BC tumoroids (N=5) showed significantly
396 lower IC50 values and area under the curve (AUC) compared to ARID1A-expressing (N=5) BC tumoroids
397 (Figure 5E). Furthermore, ARID1A-deficient BC tumoroids (N=1) treated with YM155 or prexasertib
398 exhibited more cell death than ARID1A-expressing tumoroids (N=1) (Figure 5F, Supplemental Figure 8).
399 Additionally, ARID1A-deficient BC tumoroids displayed significantly increased apoptosis following
400 treatment with prexasertib and YM155, compared to ARID1A-expressing BC tumoroids as was determined
401 by a Caspase-Glo 3/7 assay (n=3 for each group, Figure 5G) and visualized by a caspase 3/7 activity reporter

402 (n=1 for each group, Figure 5H, Supplemental Figure 9). These findings indicate that ARID1A-deficient BC
403 tumoroids are selectively eliminated by YM155 or prexasertib treatment.

404 To conclude, our ex vivo experiments and patient tumor analyses demonstrate that ARID1A deficiency is
405 associated with the upregulation of E2F8 target genes, including cell cycle-associated genes *BIRC5* and
406 *CHEK1*. In turn, pharmacological inhibition of *BIRC5* and *CHEK1* via clinically advanced small molecules
407 selectively eliminates *ARID1A*-deficient BC. Our data suggest a promising therapeutic strategy for
408 targeting molecular effectors upregulated due to *ARID1A* deficiency, thereby enhancing the selectivity in
409 eliminating *ARID1A*-deficient BC.

410 **Discussion**

411 Somatic *ARID1A* mutations are detected in approximately 6% of all human cancers [44], with increased
412 frequencies in bladder cancer (~30%)[4], ovarian clear-cell carcinomas (~45%)[22], endometrial
413 carcinomas (~30%) [22], and gastric cancer (~15%)[45]. Novel treatments exploiting specific molecular
414 changes introduced by *ARID1A* deficiency could benefit many cancer patients. Pharmacological strategies
415 that exploit *ARID1A* deficiency include PRIMA-1 treatment to inhibit glutathione synthesis[46],
416 homoharringtonine (HHT) treatment to inhibit protein synthesis [9], and GSK126 treatment to inhibit
417 Enhancer of zeste homolog 2 (*EZH2*), the catalytic subunit of the polycomb repressive complex 2 (PRC2),
418 which is known to functionally antagonize mammalian SWI/SNF complexes [47, 48].

419

420 In this study, we utilize bladder organoids to pioneer the first human ARID1A-depleted urothelium model,
421 which RNA-sequencing analysis demonstrated to recapitulate *ARID1A*-mutated human BC; we then used
422 this model system to identify novel therapeutic targets for *ARID1A*-deficient BC patients.
423 Patient-derived organoids and tumoroids have demonstrated their invaluable utility as models for
424 studying tumor biology[17, 49]. They faithfully mirror the *in vivo* characteristics of their native tissues,
425 and, when combined with modern experimental techniques, offer experimental versatility and a robust
426 platform for investigating the molecular underpinnings of bladder cancer[19, 20, 50-52]. Moreover, PDTs
427 have been shown to predict patient treatment response, as shown for colorectal, ovarian, and pancreatic
428 cancer[15, 53-55]. Genetic transformation of human organoids has provided significant mechanistic
429 understanding of oncogenic loci identified through extensive genome sequencing investigations of human
430 malignancies[12, 56-58]. Using this ARID1A-depleted urothelium organoid model we identified significant
431 upregulation of DNA repair genes, genes involved in cell-cycle-checkpoint and G1 to G1/S phase transition.
432 Interestingly, the consensus binding site for the transcription repressor E2F8 was significantly enriched in

433 the TSSs of the up-, but not in down-regulated genes. This indicates that upregulation of a subset of genes
434 upon ARID1A depletion is (partly) mediated through modulation of E2F8 binding and suggests a model in
435 which ARID1A facilitates binding of E2F8 to its consensus sites to allow transcriptional repression of its
436 target genes (Supplemental Figure 10). This is supported by data from previous studies reporting direct
437 binding of E2F factors by ARID1A[59], ARID1A-dependent repression of E2F-responsive genes[60-62], and
438 E2F8 binding at ARID1A target genes[9, 33, 64]. Many E2F target genes exhibit an oscillatory expression
439 pattern throughout the cell cycle, characterized by low expression during the M/G1 phase, an increase in
440 expression during the G1/S transition, and a decrease during the G2/M phase[63, 64]. E2F target gene
441 expression is orchestrated by transcriptional activators (E2F1-3) and repressors (E2F4-8) competing for
442 similar binding motifs [30-34]. E2F8 target gene repression has been reported critical to induce S-phase
443 arrest in response to DNA damage, allowing DNA repair and maintenance of genetic stability [64, 65]. De-
444 repression of E2F8 targets consequent to *ARID1A*-deficiency could thus lead to an inability to induce s-
445 phase arrest, causing the elimination of tumor cells with replication stress. In turn, the elimination of
446 tumor cells accumulating DNA-damage during cell division aligns with the low number of structural
447 variants and copy number aberrations we observed for *ARID1A* deficient patient tumors (Figure 1,
448 Supplemental Figure 1), and susceptibility of *ARID1A*-deficient tumoroids towards cell cycle checkpoint
449 inhibition (Figure 5).

450 Similar to the ARID1A-depleted urothelium organoid model, patient-derived tumoroids lacking ARID1A
451 expression and *ARID1A*-deficient MIBC patient tumors also exhibited increased expression of cell cycle
452 checkpoint and DNA repair genes. Prior studies in various malignancies, including BC, have associated
453 *ARID1A* deficiency with impaired DNA double-strand break repair [29, 66, 67] and cell cycle defects [24,
454 68, 69]. We showed that cell cycle checkpoint inhibition with prexasertib (targeting CHEK1 kinase activity),
455 and YM155 (targeting *BIRC5* transcription) activated apoptotic pathways and cell death in ARID1A-
456 deficient, but not ARID1A-expressing tumoroids. Similar observations have been made recently in a study

457 by Lo et al., identifying *BIRC5* as a therapeutic target in *ARID1A*-deficient gastric cancer tumoroids[12].
458 Both prexasertib and YM155 are currently under clinical investigation. Prexasertib monotherapy
459 demonstrated a mild toxicity profile and durable responses in patients with platinum-relapsed ovarian
460 cancer[70], which, like BC, is characterized by frequent somatic *ARID1A* mutations. Notably, prexasertib
461 was granted FDA fast-track designation for treatment of ovarian cancer patients[43]. Meanwhile, YM155
462 is investigated in a phase II study enrolling B cell lymphoma patients (NCT05263583). Prior phase I/II
463 studies already concluded that YM155 is well tolerated; however, it lacked clinical efficacy in unselected
464 prostate cancer and B cell non-hodgkin lymphoma patients (29-30). Our *ex vivo* response data, however,
465 suggests that YM155 and prexasertib may be more efficacious in patients with *ARID1A*-deficient tumors.
466 Our demonstration that it is feasible to stratify patients by *ARID1A* IHC, along with favourable toxicity
467 profiles of YM155 and prexasertib, raises the prospect of rapid translation into clinical trials.

468
469 In conclusion, our study of *ARID1A*-depleted human bladder organoids and *ARID1A*-deficient BC
470 tumoroids enabled the identification of cellular processes disrupted in the context of *ARID1A* deficiency,
471 highlighting the power of this patient-representative platform in disease modelling. Our analyses provide
472 mechanistic insights into secondary dependencies of *ARID1A*-deficient BC, and our *ex vivo* validation of
473 top therapeutic candidates employing clinically advanced pharmacological inhibitors holds potential for
474 rapid translation into the clinic. Similar strategies employing oncogene-engineered organoids could be
475 extended to encompass a wider range of cancer-associated genes and various types of tumors, potentially
476 yielding valuable clinically relevant insights into oncogenic transformation and, in the end, therapeutic
477 strategies.

478

479

480 **METHODS**

481

482 **Organoid/tumoroid culture**

483 Human bladder tissue was obtained from the Erasmus MC Bladder Cancer Center, Rotterdam,
484 the Netherlands, the Amphia Ziekenhuis, Breda, the Netherlands, and the HagaZiekenhuis, The
485 Hague, the Netherlands. Bladder organoids and BC tumoroids from biopsies obtained through
486 TURBT or cystectomy were isolated and cultured using methods developed by Mullenders et al.
487 [20] with modifications. Briefly, bladder tissues were washed with Advanced DMEM/F12 (Gibco)
488 supplemented with 10mM HEPES (Gibco), 1% GlutaMax (Gibco) and 100 µg/ml primocin
489 (InvivoGen), henceforth Ad+++. Tissue was minced and incubated at 37°C with collagenase
490 2.5mg/ml in EBSS (Gibco) for 60-90 minutes and isolated cells were passed through 70µM
491 strainer (Falcon), washed with Ad+++ and seeded in 50 µl drops of BME (R&D system) containing
492 10000-15000 cells in 24 well suspension plates (Greiner). Tumoroids and organoids were cultured
493 in a culture medium containing Ad+++ supplemented with 1 x B-27 (Gibco), 1.25 mM N-
494 acetylcysteine (Sigma), 10 mM nicotinamide, 20µM TGFβ receptor inhibitor A83-01, 100ng/ml
495 recombinant human FGF10 (Peprotech), 25 ng/ml recombinant human FGF7 (Peprotech), 12.5
496 ng/ml recombinant human FGF2 (Peprotech), 10µM Y27632 Rho Kinase (ROCK) Inhibitor (Sigma)
497 and conditioned media for recombinant Rspordin (2.5% v/v), and Wnt3A (2.5% v/v), henceforth
498 bladder organoid medium (BOM). Cultures were passaged at a 1:3 to 1:6 ratio every 7-14 days.
499 For passaging, BME was first digested with 500µg/ml dispase (Gibco, 17105041) for 1 h at 37°C.
500 Cultures were collected in 15mL tubes, Ad+++ was added to 10mL total volume, and organoids
501 were pelleted by centrifugation at 200 x g. Supernatent was discarded, and tumoroids/organoids

502 were dissociated to single cells using cell dissociation solution-non enzymatic (Sigma, C5914) and
503 mechanical dissociation with a P200 pipette. Dissociated single cells were washed once with
504 10mL Ad++, centrifugated at 200 x g, and resuspended in a mixture of culture medium and BME
505 in a 1:2 ratio, and dispersed in new drops. Drops were solidified in the incubator at 37°C for 45
506 minutes, followed by addition of pre-warmed BOM. Medium was changed every three to four
507 days.

508

509 **Production of shRNA lentiviral vectors**

510 Lentiviral constructs containing the desired shRNA sequences (shControl - SHC002 and shARID1A
511 - TRCN0000059089; targeting sequence: GCCTGATCTATCTGGTTCAAT) were amplified from
512 bacterial glycerol stocks obtained in house from the Erasmus Center for Biomics and part of the
513 MISSION® shRNA library. 5.0 x 10⁶ HEK293T cells were plated in a 10 cm dish and transfected
514 with 12.5 µg of plasmids mix. 4.5µg of pCMVΔR8.9 (envelope) [71], 2 µg of pCMV-VSV-G
515 (packaging) [71] and 6 µg of shRNA vector were mixed in 500 µL serum-free DMEM and combined
516 with 500 µL DMEM containing 125 µL of 10 mM polyethyleneimine (PEI, Sigma). The resulting 1
517 mL mixture was added to HEK293T cells after 15 min incubation at room temperature. The
518 transfection medium was removed after 12 hours and replaced with a fresh RPMI medium. Virus-
519 containing medium was harvested and replaced with fresh medium at 48, and 72 hours post-
520 transfection. After each harvest, the collected medium was filtered through a cellulose acetate
521 membrane (0.45 µm pore), concentrated by ultra-centrifugation and used directly for shRNA
522 transductions.

523

524 **Organoid transduction**

525 Organoids were dissociated to single cell applying the same methods as for passaging. Per
526 condition, 500.000 single cells and 1mL concentrated virus were gently mixed and dispersed into
527 two wells of a 24-well plate. Plates were then centrifuged at 600 x g for 1 hour at 32 °C
528 (spinoculation). The organoid/lentivirus was gently mixed using a P1000 pipette, to detach any
529 adherend cells. Plates were incubated for 5 hours at 37°C, after which single cells were collected
530 in falcon tubes, washed with 10mL ad+++ and centrifuged at 250g for 10 min at 4 °C. Supernatant
531 was removed and transduced cells were seeded in pre-warmed suspension plates. Selection
532 started three days after transduction, using 2 µg/ml puromycin (Invivogen, ant-pr). Puromycin
533 was removed after four days and organoids were cultured for 7-10 days until recovery. Knock-
534 down confirmation was performed with RT-qPCR.

535 **RNA extraction, cDNA synthesis and Real Time-quantitative PCR (RT-qPCR)**

536 Bladder organoids and tumoroids were harvested with dispase, washed once with 10mL Ad+++
537 and centrifuged for 200 x g for 5 minutes. Then, 1 mL of cold TRIzol (TRI Reagent®, Sigma-Aldrich,
538 T9424) was added to the organoid pellet and the pellet was thoroughly mixed by intermittent
539 vortexing for 1 minute. Samples placed on ice for 10 minutes, prior to storing at -80 C until further
540 processing. RNA was isolated using standard phenol-chloroform RNA extraction. Briefly, frozen
541 samples were equilibrated to room temperature for 15 minutes. Then, 200 µl Phe-
542 nol:Chloroform:Isoamyl Alcohol 25:24:1 (Sigma-Aldrich, P3803) was added and the samples were
543 thoroughly vortexed and incubated at RT for 2 minutes. Samples were subsequently centrifuged
544 at 12000 x g for 15 min at 4 °C. The aqueous phase was transferred to a fresh Eppendorf tube,

545 500 μ l isopropanol (Biosolve Chimie, 220703) was added and samples were incubated for 15 min
546 at RT. Samples were centrifuged (12000 x g, 4 °C, 10 minutes), supernatant was removed and
547 pellets were washed twice with 1 ml 75% ethanol (Honeywell, 32221), centrifuging at 7500 x g
548 for 5 min at 4 °C. As much supernatant was removed as possible, and RNA pellets were air-dried
549 for 20 min at RT. The RNA was dissolved in 20-40 μ l nuclease-free water (Promega, P119E),
550 quantified using NanoDrop® Spectrophotometer ND-1000 (Isogen Life Science) and stored at -80
551 °C until further usage.

552 cDNA was synthesized from 500-1000 ng RNA using SuperScript™ II Reverse Transcriptase (200
553 U/ μ l, Invitrogen, 100004925) according to manufacturers protocol. cDNA samples were diluted
554 to a final concentration of 2.5 ng/ μ l using nuclease-free water and stored at -20 °C until further
555 usage.

556 RT-qPCR was performed using GoTaq® qPCR Master Mix (Promega, A6002), according to
557 manufacturer's protocols, using CFX96™ Real-Time PCR Detection System (Bio-Rad Laboratories,
558 Singapore). PCR experiments included an initial denaturation at 95 °C for 5 min, 40 amplification
559 cycles starting at 95 °C for 10 sec, followed by 60 °C for 30 sec. Melting curves were assessed by
560 complete annealing and gradual increase in temperature from 65 °C to 95 °C. The data were
561 analyzed using 2- $\Delta\Delta Ct$ methods [41], expressed as relative gene expression and normalized to
562 the reference gene Cyclophilin A. Negative controls were used in each reaction plate. The
563 following forward and reverse primers used for RT-qPCR were synthesized by Integrated DNA
564 Technologies: Cyclophilin A (forward: TCATCTGCACTGCCAAGACTG; reverse:

565 CATGCCTTCTTCACTTGCC), *ARID1A* (forward: GTCTCAGCAGTCCCAGCAAA; reverse: GATA-
566 GATCAGGCAAGCTGGAGG).

567

568 **Organoid RNA-seq**

569 Total RNA was isolated and quantified as described above. Quality was assessed on a Bioanalyzer
570 (Agilent Technologies) using the Agilent RNA 6000 Nano Kit reagents. Library preparation was
571 performed using the 3' mRNA-seq Library Prep Kit for Ion Torrent (QuantSeq-LEXOGEN, Vienna,
572 Austria). The libraries were quantified and pooled together at a final concentration of 100 pM.
573 The libraries were templated and enriched on an Ion Proton One Touch system and templating
574 was performed using Ion PI Hi-Q OT2 200 Kit (ThermoFisher). The sequencing was performed
575 using Ion PI Hi-Q Sequencing 200 Kit on Ion proton PI V2 chips (ThermoFisher). Fastq files were
576 mapped to the Genome Reference Consortium Human Build 37 (GRCh37), using a two-step
577 alignment process. Firstly, reads were mapped with hisat2 [72], using default parameters. Next,
578 the unmapped reads were mapped with bowtie2 [73] using the --local and --very-sensitive
579 parameters. Counting of the reads on the 3' UTRs was performed with metaseqR2 [74].

580 Differential expression analysis between the tumoroids and organoids was performed with
581 metaseqR2 using the DESEQ2[75] algorithm with default settings and exonFilters = NULL.
582 Expression was corrected for samples derived from the same donor. Pathway enrichment
583 analysis was performed with ReactomePA v1.44.0 [76] using differentially expressed genes with
584 adjusted p < 0.05 and log2 fold change > 0.5. Significantly enriched pathways were defined as
585 having adjusted p < 0.05 and only the top 5 up- and down- regulated pathways were displayed in

586 the figures. For unsupervised hierarchical clustering, transcript counts were normalized with
587 DESeq2 applying variance stabilizing transformation on protein-coding transcripts. The
588 normalized counts were subsequently median-centered and the Euclidean distance calculated to
589 perform hierarchical clustering with the Ward method. Gene expression signature scores were
590 calculated as the average median-centered expression of genes associated with each signature
591 [7]. Accordingly, for the ARID1A KD comparisons, we employed the PANDORA algorithm within
592 the metaseqR2 package by integrating the DESEQ, DESEQ2, edgeR, limma, NBPSeq, and NOISeq
593 algorithms. Differentially expressed genes were identified based on a meta p-value threshold of
594 < 0.05 and a log2 fold change > 1.

595

596 **The Cancer Genome Atlas (TCGA) bladder cancer cohort**

597 The TCGA data for the bladder cancer cohort is publicly available at
598 <https://portal.gdc.cancer.gov/>. Somatic mutations detected by Mutect of 412 tumors, GISTIC
599 copy number changes at gene level of 410 tumors, ARID1A protein expression quantified by
600 reverse phase protein array of 127 patients and RNA-seq (HTSeq counts; Affymetrix SNP6 arrays)
601 data available for 410 tumors were analyzed. *ARID1A* was considered deleted when gistic score
602 was <-0.4. Transcript counts were normalized with DESeq2 v.1.32.0 applying variance stabilizing
603 transformation on protein-coding transcripts. Samples were stratified in tertiles according to the
604 ARID1A protein expression into n=42 low, n=43 medium and n=42 high expressed groups. For
605 downstream analysis, samples with protein-coding mutations were excluded, resulting in n=28
606 low, n=29 medium and n=34 high ARID1A expressed groups. RNA counts were used for

607 differential gene expression analysis between *ARID1A* deleted samples vs the rest, low *ARID1A*
608 protein-expressed samples vs the rest and low *ARID1A* mRNA-expressed group vs the rest.
609 Differentially expressed genes had adjusted $p < 0.05$ and absolute log2 fold change > 1 .
610 Multivariate cox regression analysis was applied using the survival R package[77].

611

612 **HMF metastatic urothelial cancer cohort**

613 WGS and RNA-seq data from metastatic urothelial carcinomas are available through the
614 Hartwig Medical Foundation at [https://www.hartwigmedicalfoundation.nl/en/data/data-](https://www.hartwigmedicalfoundation.nl/en/data/data-access-request/)
615 access-request/, under request number DR-314. Samples that were previously analyzed by
616 Nakauma-Gonzalez et al.[7] were retrieved from DR-314 and re-analyzed with the same
617 bioinformatics pipeline using the human reference genome hg19. *ARID1A* was considered
618 deleted when gistic score was <-0.9 . RNA counts were normalized with DESeq2 v.1.32.0
619 applying variance stabilizing transformation on protein-coding transcripts.

620 **Histology & Histochemistry**

621 Patient tissue was processed using standard procedures. For tumoroid and organoid processing,
622 tumoroids/organoids were fixed within BME-drops using 4% paraformaldehyde + 0.2%
623 glutaraldehyde (in-house produced) at room temperature for two hours. Fixed BME-drops were
624 then pre-embedded in 4% agarose prior to paraffin embedding. H&E staining were done
625 automatically in the HE600 (Ventana). Alcian Blue staining was done automatically according to
626 the manufactures instructions on the Ventana special stains (#860-002, Ventana).

627 **Immunohistochemistry**

628 Protein expression of UCC differentiation markers and ARID1A was investigated by automated
629 IHC using the Ventana Benchmark ULTRA (Ventana Medical Systems Inc.). Sequential 4 μ m thick
630 (FFPE) sections were stained for markers indicated below (Table 1) using Optiview detection (OV)
631 (#760-700, Ventana) or Ultraview detection (UV) (#760-500, Ventana). In brief, following
632 deparaffinization and heat-induced antigen retrieval with CC1 (#950-500, Ventana), the tissue
633 samples were incubated with antibody of interest for the indicated time (Table 1). Incubation
634 was followed OV, UV detection and hematoxylin II counter stained for 8 minutes followed by a
635 blue coloring reagent for 8 minutes according to the manufactures instructions (Ventana).

636 Table 1. Immunohistochemistry information

Antibody	Dilution	Species	Company	Catalog and Clone	Pretreatment in minutes	Ab incubation time at 37°C
GATA3	1,63 μ g/ml	Mouse	Cell Marque	L50823	CC1 32' OV	48 minutes
KRT5	0,21 μ g/ml	Rabbit	Cell Marque	SP27	CC1 64' UV	32 minutes
ARID1A	1/1000	Rabbit	Abcam	EPR13501	CC1 32' OV	32 minutes
KRT20	0,16 μ g/ml	Rabbit	Ventana	SP33	CC1 32' OV	24 minutes
Synaptophysin	0,06 μ g/ml	Rabbit	Ventana	SP11	CC1 32'OV	24 minutes

637

638 **SNaPshot mutation analysis**

639 DNA was isolated using with the QIAamp DNA Mini-Kit (Qiagen) according to the manufacturer's
640 protocol. Presence of hotspot mutations in the *TERT* promoter sequence chr5:1,295,228C>T,
641 chr5:1,295,248G>A and chr5:1,295,250C>T [GRCh37/hg19]), *FGFR3* (R248Q/E, S249C, G372C,
642 Y375C, A393E, K652E/M) and *PIK3CA* (E542K, E545G/K and H1047R) were assessed on tumor,
643 tumoroid, normal adjacent urothelium and organoid DNA by SNaPshot mutation analysis with
644 the same methods as previously described [25-27]).

645 **Copy-number aberration analysis in tumoroid/organoid samples**

646 Copy number aberration analysis was performed using single-nucleotide polymorphism (SNP)
647 microarrays (Infinium Global Screening Array (GSA) V3, Illumina) on tumor, tumoroid, normal
648 adjacent urothelium and organoid DNA using standard protocols. SNP data (log-R ratio, B-allele
649 frequency) were visualized to identify potential CNVs via Biodiscovery Nexus CN7.5.
650 (Biodiscovery) and the GenomeStudio genotyping module (Illumina).

651

652 **Immunofluorescence**

653 Bladder cancer tumoroids/organoids were cultured and stained in chamber slides (ThermoFisher,
654 154526PK) prior to fixation with 4% paraformaldehyde for 20 minutes at room temperature.
655 Organoids were washed three times with PBS followed by a 30 minute treatment with 0,1M
656 glycine and 30 minute permeabilization with 0.5% Triton X-100 (Sigma) in PBS, both at room
657 temperature. Organoids were blocked with 0.3% Triton-X-100 (Fluka, 93426), 1% DMSO
658 (Honeywell Riedel-de Haën, 34869), and 0.5% goat serum (Vector Laboratories, S 1000), in PBS
659 at room temperature for 2 hours. Following blocking, organoids were incubated overnight with
660 primary antibodies: KRT5 (Bio Legend; 905901), KRT20 (Dako; M7019), GATA3 (Cell Signaling
661 Technology, D13C9). After three washes in PBS, organoids were stained with appropriate Alexa
662 Fluor dye-conjugated secondary antibodies (Invitrogen), 1:1000 for 1 hour at room temperature.
663 Chambers were removed from the slides and slides were mounted with DAPI (Southern Biotech,
664 0100-20) and a cover slide. Immunofluorescence images were acquired using a confocal
665 microscope (Leica, Stellaris). Brightness and contrast was adjusted in Image J.

666

667 ***Ex vivo* drug response**

668 Bladder tumoroids were cultured for 7-10 days in BME prior to harvesting and dissociation to
669 single cells as previously described. Per condition, 10.000 cells were seeded in 100 μ L bladder
670 organoid medium containing 15% BME. YM-155 (PBS, Selleckchem, S1130) and prexasertib
671 (DMSO, Selleckchem, LY2606368) were added when mature organoids formed after two-three
672 days, and drug treatment was performed in triplicate. Tumoroids were treated with
673 concentrations as indicated, and treatment lasted four days (96h) prior to viability assessment,
674 whereas a two day (48h) treatment was used for other read-outs. Concentrations used for single-
675 dose treatment (prexasertib 32nM and YM155 50nM) were based on average IC50 values of
676 ARID1A-expressing and ARID1A-deficient tumoroid lines. Following treatment, cell viability was
677 assessed by by cellTiter-Glo 3D (Promega, G9681) and Caspase 3/7 activity by Caspase-Glo
678 (#G8093, Promega). Plates were read on a SpectraMax i3 plate reader. Viability data was
679 normalized using organoid wells treated with vehicle control (0.02% DMSO, 1.2% PBS). Presented
680 data are triplicates from two independent experiments.

681 For fluorescence analysis of caspase 3/7 activity, treated organoids were harvested with dispase,
682 and washed 2 times with Ad+++ to completely remove BME. Organoids were processed in a 96
683 well flat, clear-bottom microscopy plate (Revvity, 6005225). Organoids where incubated with
684 caspase 3/7 activity dye (CellEvent™ Caspase-3/7 Detection Reagents, 1:1000 in BOM) for 30
685 minutes at 37°C, followed by fixation with 4% paraformaldehyde at room temperature for 30
686 minutes. Organoids were washed once with 200 μ L PBS, followed by staining with 2 μ g/mL

687 Hoechst33342 (Molecular Probes) in 200 μ L PBS at 4°C for 12 hours. Plate was imaged with the
688 Opera Phenix Plus High-Content Screening System (Revvity, Waltham, MA, USA). Pre-scanning
689 using 10x bright field images was performed to identify fields of view containing organoids. Fields
690 of view containing organoids were then imaged at 40X magnification for confocal and 20x for
691 bright field, covering the center of each well. 25 Fields of view were imaged per condition.
692 Image analysis was performed with the Harmony software (Revvity). Hoechst was imaged
693 excitation 405nm, emission 435-480nm, caspase reporter activity with excitation 488nm,
694 emission 500-550nm. Briefly, organoids containing at least three nuclei were automatically
695 segmented and mean caspase reporter intensity per organoids was calculated for all conditions.
696 Measurements were obtained for at least 49 organoids per condition and statistical analysis was
697 performed using a mixed-effect analysis due to different samples sizes. For image display, raw
698 images were exported and brightness and contrast was adjusted in imageJ.

699 For fluorescent Live/Dead staining, treated tumoroids were harvested using dispase and washed
700 once with 500 μ L PBS. Tumoroids were stained with fixable live/dead staining
701 (Invitrogen™L34975) 1:500 in PBS for 15 minutes PBS, following reconstitution according to
702 manufacturer's protocol (Invitrogen, L34994). Tumoroids were quenched with 1mL PBS + 5% FCS
703 and fixated with 4% paraformaldehyde at room temperature for 30 minutes. Organoids were
704 washed once with 500 μ L PBS, followed by staining with 2 μ g/mL Hoechst33342 (Molecular
705 Probes) in 200 μ L PBS at 4°C for 12 hours. Tumoroids were transferred to a 96 well flat, clear-
706 bottom microscopy plate (Revity, 6005225), and the plate was imaged with the Opera Phenix
707 Plus High-Content Screening System (Revity). Pre-scanning using 10x bright field images was
708 performed to identify fields of view containing organoids. Fields of view containing organoids

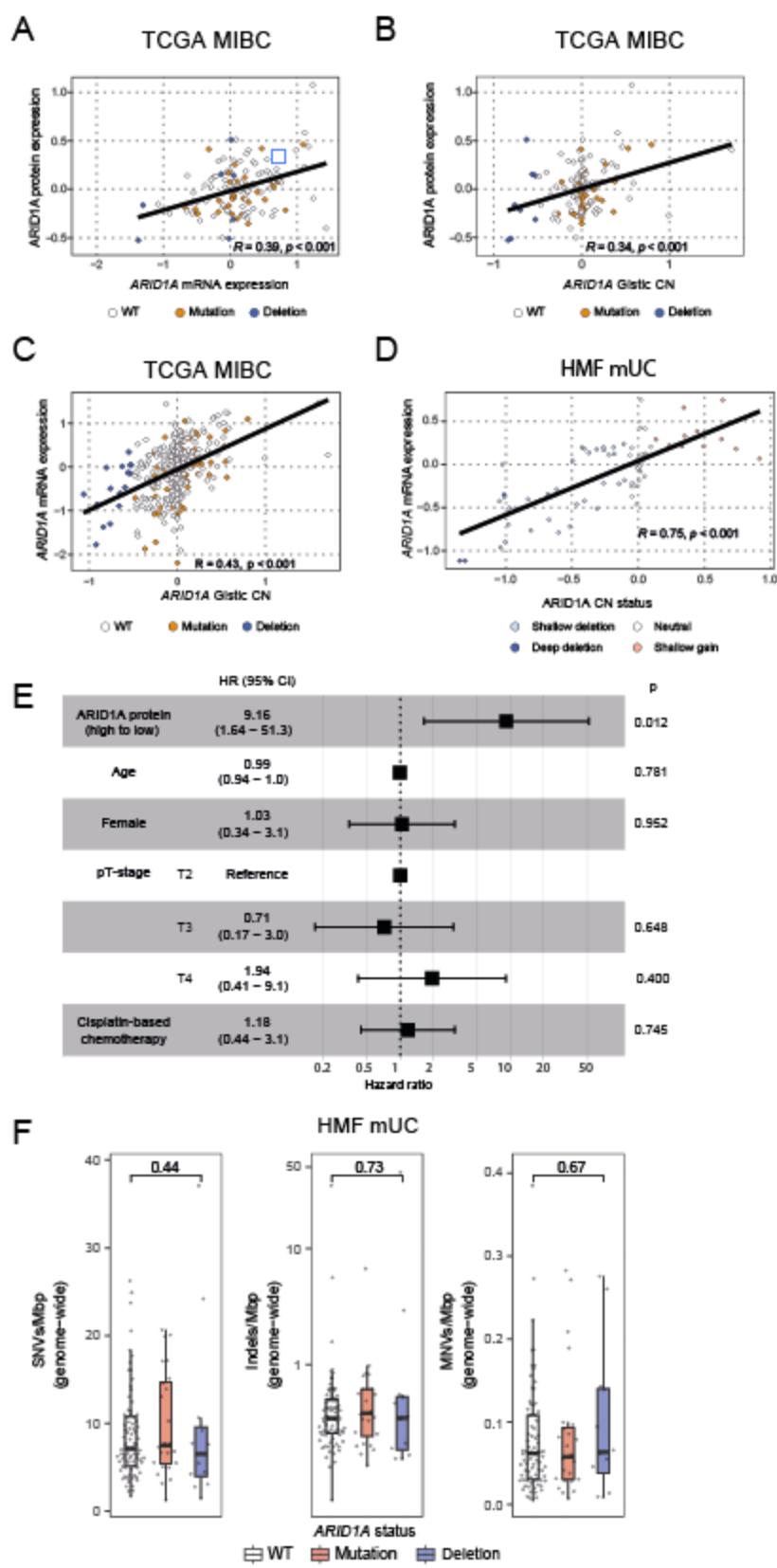
709 were then imaged at 40X magnification for confocal and 20x for bright field, covering the center
710 of each well. 25 Fields of view were images per condition. Hoechst was imaged excitation 405nm,
711 emission 435-480nm, fixable live/dead staining with excitation 488nm, emission 500-550nm.
712 Image analysis was performed with the Harmony software (Revvity). Software was set to
713 measure mean signal intensity of live/dead dye in the inner 60% of the tumoroids, excluding the
714 outer rim in order to limit detection of non-specific staining on the outside of the organoids. For
715 image display, raw images were exported and brightness and contrast was adjusted in imageJ
716 unless stated otherwise.

717 **Flowcytometry**

718 For flow cytometry, tumoroids were treated with 32 nM prexasertib, 50 nM YM-155, or vehicle
719 control for 48 hours. Tumoroids were harvested with dispase, and dissociated with non-
720 enzymatic dissociation solution. Single cells were washed twice and stained with fixable live/dead
721 staining (Invitrogen™L34975) 1:1000 in PBS for 15 minutes, followed by one wash with PBS + 5%
722 FCS, and fixation in 100% methanol for 20 minutes. Samples were stored at 4°C for up to a week
723 or stained fresh. Antibody staining was performed on ice for 3 hours with mouse anti- γ H2AX
724 (4ug/mL) CAT# in permeabilization and blocking buffer, followed by two washes in
725 permeabilization and blocking buffer. Subsequent secondary staining was done with anti-mouse
726 Alexa 647 (4ug/mL CAT#) for 90 minutes on ice, followed by two washes with permeabilization
727 and blocking buffer. Cells were subsequently stained with 50 μ g/mL propidium iodide (PI) (Sigma)
728 and 0.2 mg/mL RNase A (10109142001, Sigma-Aldrich) for 30 minutes at room temperature.
729 Stained cells were then FACS-analyzed using a 655 LP and a 695/40 BP filter. Events were gated
730 for single, and live cells based on PI intensity and live/dead staining. Tumoroid-specific gates were

731 set to determine the fraction of γ H2AX positive cells and cell cycle distribution. Prexasertib and
732 YM155 treatment distorted cell cycle distribution in such extend that a clear distinction between
733 phases S and G2/M was not possible, requiring the merging of S, G2 and M in further analyses.
734 One-way ANOVA was used to compare γ H2AX positive fractions and cell cycle distribution
735 between ARID1A-expressing and ARID1A-deficient tumoroids.

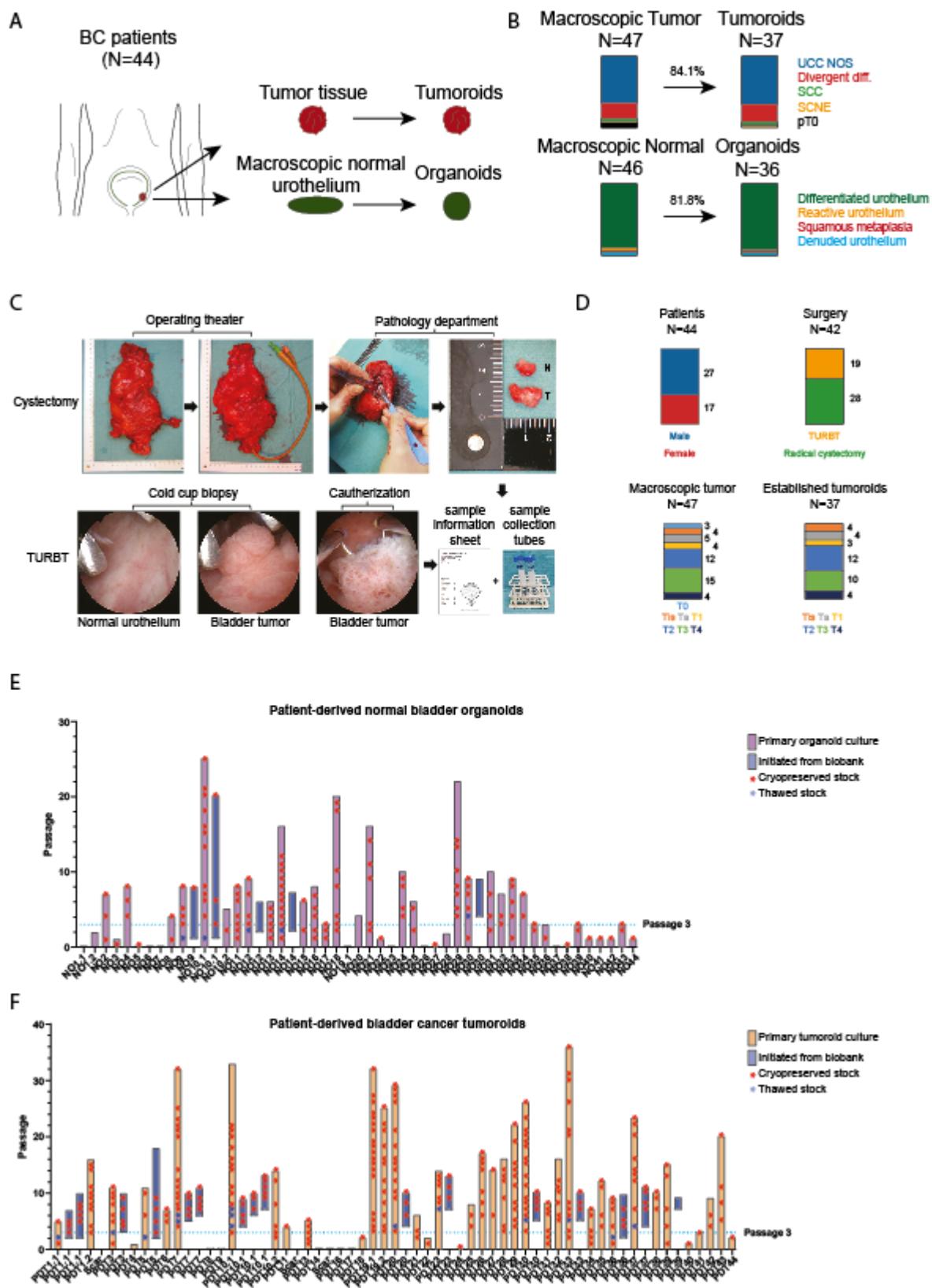
736


737 **Statistical Analysis**

738 All data from lab experiments are presented as mean \pm standard error of the mean (SEM) and
739 are the result of two independent experiments performed in triplicate, unless stated otherwise.
740 Statistical significance was calculated as indicated in figure legends. GraphPad Prism for Windows
741 (version 9.0.0, GraphPad Software, La Jolla, CA, USA) was used for statistical analysis of wet lab
742 experiments. For genomics and transcriptomics data analyses, the Wilcoxon-rank sum test was
743 used for comparison of 2 groups with continuous variables. The log-rank tests were used for
744 comparing overall survival displayed as Kaplan–Meier survival curves. Differential expression
745 analysis of transcripts was performed using the Wald test with DESeq2 v1.32.0 [75]. A gene list
746 of differentially expressed genes was supplied to ReactomePA v1.44.0 [76] to identify enriched
747 pathways with p values estimated by hypergeometric distribution. p values were adjusted for
748 multiple testing using the Benjamini–Hochberg method and are indicated as adjusted p values.
749 Genomics and transcriptomics data analyses were performed using the platform R v4.3.2 [78].

750 **Data Availability**

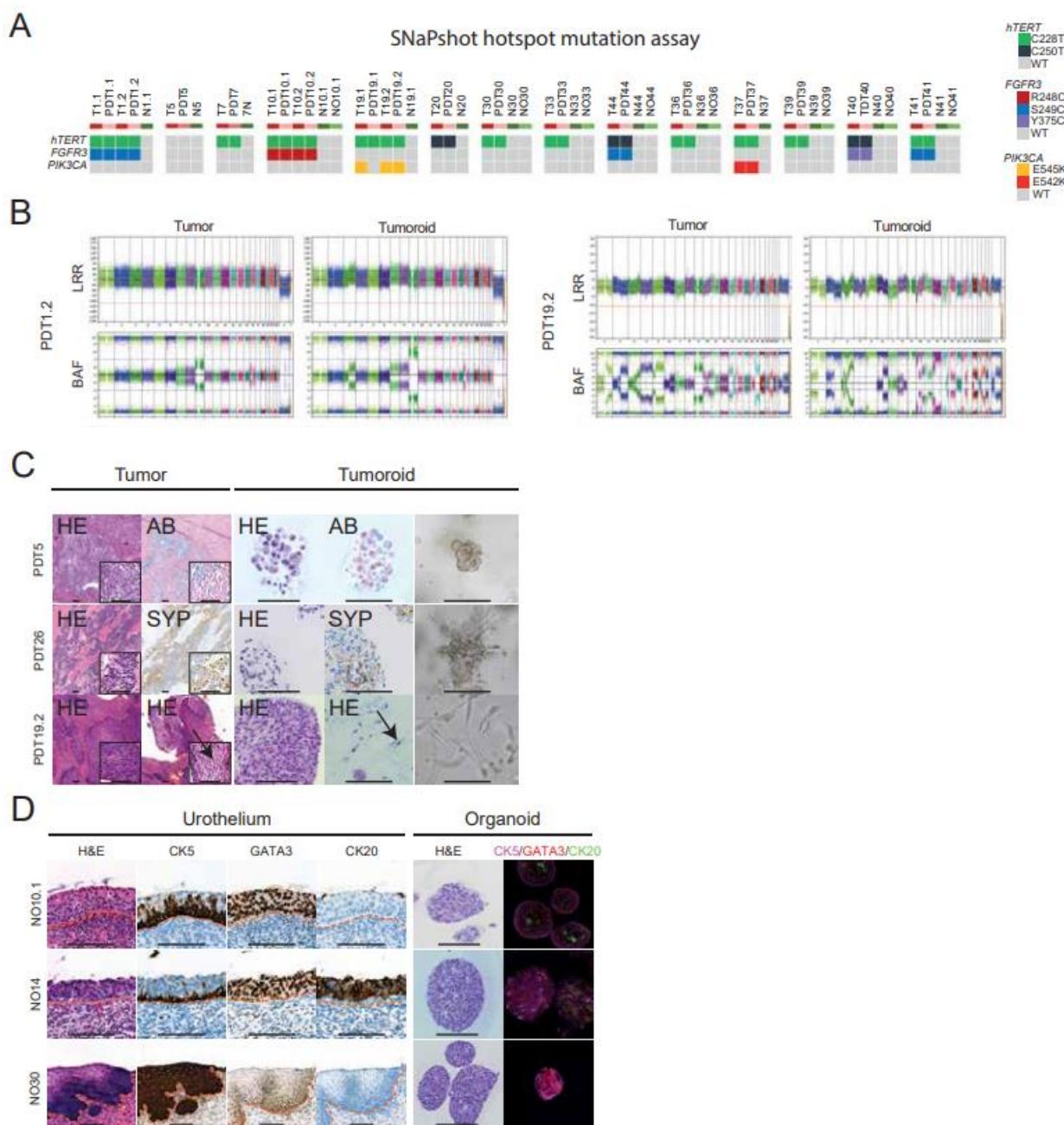
751 All data needed to evaluate the conclusions in the paper are present in the paper and/or the
752 Supplementary Materials. All RNA-seq data generated in this study have been deposited to the
753 Gene Expression Omnibus (GEO) database with accession code X. WGS and RNA-seq data from
754 metastatic bladder cancers were requested via the Hartwig Medical Foundation at
755 <https://www.hartwigmedicalfoundation.nl/en/data/data-access-request/>, and approved under
756 request number DR-314. The TCGA data for the bladder cancer cohort is publicly available at
757 <https://portal.gdc.cancer.gov/>. Source data are provided with this paper. Additional data related
758 to this paper may be requested from the authors.


759 Supplemental material version: 240526

760

761 **Supplemental Figure 1.** Pearson correlation between A) ARID1A protein expression levels and *ARID1A*

762 mRNA expression, **B)** *ARID1A* protein expression and *ARID1A* gistic copy number levels, and between **C)**
763 *ARID1A* mRNA expression and *ARID1A* gistic copy number levels in MIBC tumor samples*. **D)** Pearson
764 correlation between *ARID1A* mRNA expression and *ARID1A* copy number status in mUC samples**. **E)**
765 Overview of hazard ratios (HR) calculated for *ARID1A* protein expression and clinical features for MIBC
766 patients*. Continuous variables were dichotomized based on the median and high vs. low is presented.
767 Boxes indicate HR and horizontal lines show 95% confidence intervals (CI). **F)** Boxplots depicting the
768 number of single-nucleotide variants (SNVs), insertions and deletions (indels), and multi-nucleotide
769 variants (MNVs) per mega base pairs (MBp) in metastatic BC patients stratified on *ARID1A* mutation
770 status. Two-sided Wilcoxon-rank sum test was applied to compare differences between samples with
771 *ARID1A* WT and *ARID1A* deletions. For all graphs: WT = *ARID1A* wild type, Mutation = protein-coding
772 mutation (excluding synonymous) and small insertions/deletions, Deletion = *ARID1A* deleted. *TCGA
773 **HMF.



775 **Supplemental Figure 2. A)** Diagram depicting the generation of patient-derived bladder tumoroids and
776 normal organoids from primary tissues. Tumoroids are generated from tumor tissue, while organoids
777 are generated from macroscopic normal urothelium. **B)** Top: Bar charts comparing the stratification of
778 tumor samples with derived organoid lines based on histological subtype observed in the tumor samples
779 UCC NOS = urothelial carcinoma not otherwise specified, Divergent diff. = divergent differentiation, SCC
780 = squamous cell carcinoma, SCNE = small cell neuroendocrine. Bottom: Bar charts comparing
781 stratification of macroscopic normal urothelium and derived organoid lines based on histological
782 evaluation of macroscopic normal urothelium. **C)** Schematic depiction of sample acquisition. Bladders
783 are instilled with cold preservation fluid immediately following radical cystectomy. Instillation occurs
784 through an indwelling catheter, which is then plugged to prevent leakage during transport to the gross
785 room. Bladders are kept inside an endobag and on ice to maintain sterility and preserve cell viability
786 during transport. At the gross room, bladders are ventrally incised and normal (N) and tumor (T) samples
787 are excised on a sterile field using disposable lancets and tweezers to prevent contamination. For
788 transurethral resection of bladder tumor (TURBT), macroscopic normal urothelial tissue is sampled by
789 cold cup biopsy prior to resection. Bladder tumor samples are thereafter acquired by cold cup biopsy or
790 cauterization when biopsies were not possible due to limited visibility. Acquired samples are stored in
791 collection tubes containing cold preservation fluid and are then transported to the laboratory facilities,
792 along with a sample information sheet containing pseudomized baseline clinical information and study
793 identification. **D)** Bar charts depicting patient characteristics and comparing stratification of all acquired
794 macroscopic tumor tissue with that of all patient-derived tumoroid lines. N=39 patients underwent 42
795 surgical procedures. Top left: biological sex, top right: type of resection, bottom left: pathological tumor
796 stage of all acquired samples, bottom right: pathological tumor stage corresponding to successfully
797 initiated cultures. The composition of included patients and organoid lines is characteristic for a tertiary
798 referral center and tumoroids were established from BC patients with various tumor stages without
799 bias. **E)** Bar graph summarizing the established normal organoid biobank. Each bar represents one
800 organoid line (purple bars) or derivative initiated from cryopreserved stocks (blue bars). Cryopreserved
801 stocks are indicated by red asterisks, while thawed stocks are indicated by blue asterisks. **F)** Bar graph
802 the established BC tumoroid biobank. Each bar represents one tumoroid line (yellow bars) or derivative
803 initiated from cryopreserved stocks (blue bars). Cryopreserved stocks are indicated by red asterisks,
804 while thawed stocks are indicated by blue asterisks.

805

806

807

808

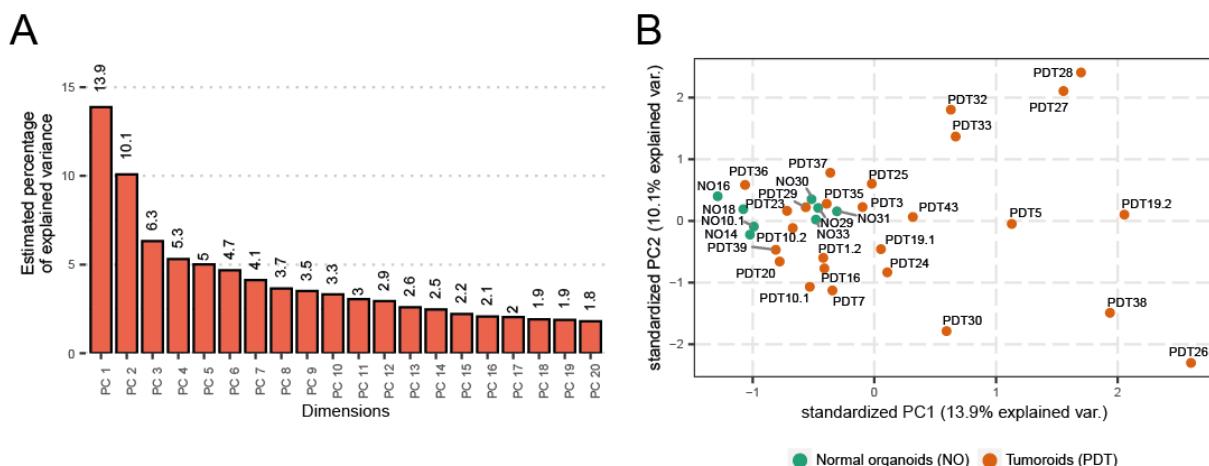
809 **Supplemental Figure 3. A)** SNaPshot mutation analysis of patient tumor (T) and normal (N) samples and

810 matched patient-derived tumoroid (PDT) and normal organoid (NO) cultures on recurrent somatic hotspot

811 mutations in telomerase reverse transcriptase (hTERT), fibroblast growth factor receptor 3 (FGFR3), and

812 Phosphatidylinositol-4,5-Bisphosphate 3-Kinase Catalytic Subunit Alpha (PIK3CA) genes, WT = wild type.

813 **B)** Scatterplots illustrating genome wide copy number alterations depicted by Log R ratios (LRR) and B-


814 allele frequency (BAF) from PDT1.2 and PDT19.2 tumor tissue and corresponding tumoroids. Note

815 increased resolution of copy number alterations in tumoroid samples **C)** Comparative histological and

816 immunohistochemical images of variant histology in bladder tumor tissue and corresponding tumoroid
817 lines. Shown are representative examples of choroid differentiation, as well as small cell neuroendocrine
818 and squamous cell carcinoma variant histology. Choroid differentiation (PDT5) shows signs of mucus
819 production indicated by alcian blue (AB) positivity. Small cell neuro-endocrine bladder cancer (PDT26)
820 stained positive for synaptophysin (SYP). Squamous cell carcinoma (PDT19.2) was identified by “tadpole”
821 cells (black arrow) and keratinization. Two columns on the left demonstrate histological and
822 (immune)histochemical images of bladder tumor tissue while the three columns on the right indicate
823 patient-derived tumoroid lines. Scale bar = 50 μ m. **D)** Histological evaluation of macroscopic normal
824 bladder tissue and corresponding organoids. Two representative examples of normal urothelium (NO10.1
825 & NO14), in addition to one squamous metaplasia sample (NO31) are shown. Organoids and originating
826 tissue were compared by H&E staining, while expression of urothelial differentiation markers was
827 investigated by IHC (original tissue) and IF (organoids) as indicated. (scale bar = 50 μ m).

828

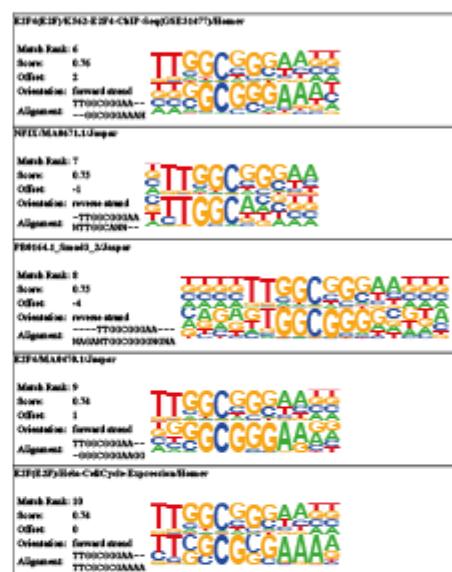
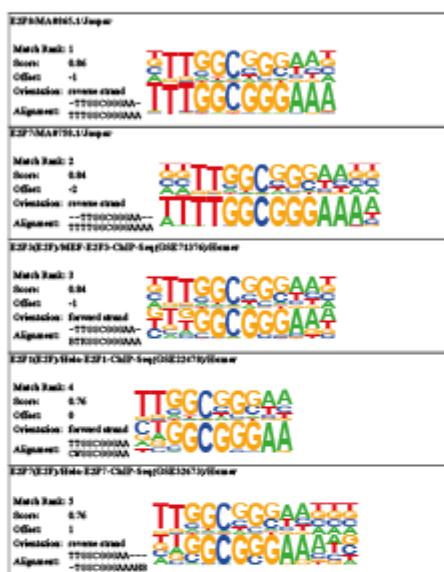
829

830

831 **Supplemental Figure 4. A)** Bar graph depicting estimated variance in gene-expression by the top 20
832 principal components. **B)** Distribution of tumoroids and normal bladder organoids within the first two
833 principal components (PCA1-2).

834

835



A

Homer *de novo* Motif Enrichment

p-value:	1e-18
log p-value:	-6.184e+01
Information Content per bp:	1.592
Number of Target Sequences with motif:	55.0
Percentage of Target Sequences with motif:	23.50%
Number of Background Sequences with motif:	2543.8
Percentage of Background Sequences with motif:	5.81%
Average Position of motif in Targets:	4088.8 +/- 151.1bp
Average Position of motif in Background:	3484.4 +/- 198.2bp
Strand Bias (log2 ratio + to - strand density):	0.8
Multiplicity (# of sites on seq that occur together):	1.16

Information for 1-TTGGCGGGAA (Motif 1)

TTGGCGGGAA
Reverse Opposite:
TTCCCGGCCAA

B

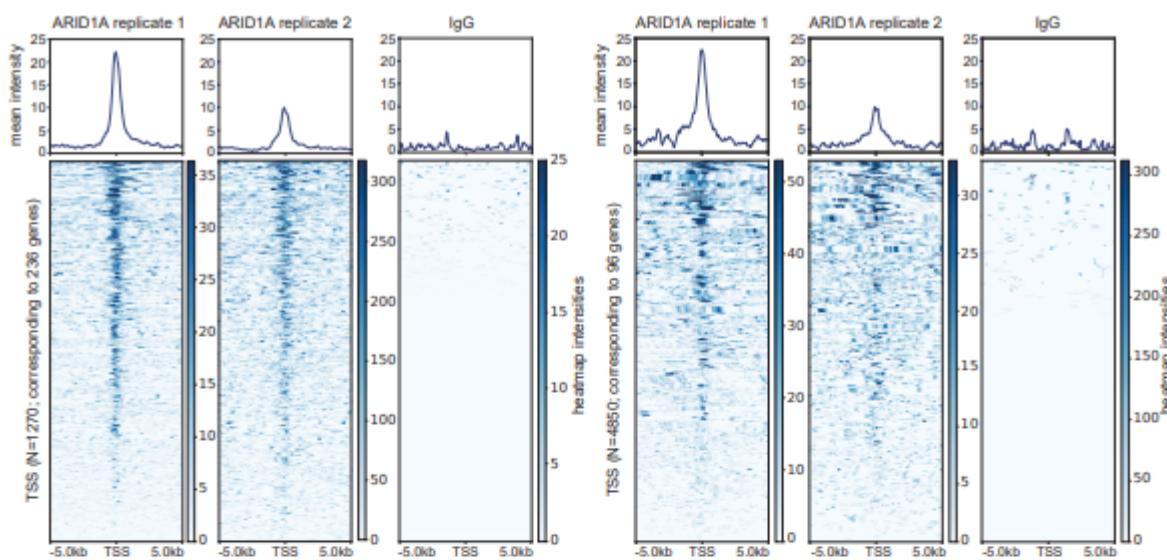
E2F8 consensus sequence instances

GeneID	PromoterID	Offset	Sequence	Refseq	Ensembl	up/down-regulated in shARID1A
3833	NM_002263	-296	TTGGGTGAGAAA	ENSG00000237649	KIFC1	up-regulated
4174	NM_006739	24	TTTCCCGCGAAA	ENSG0000010297	MCM5	up-regulated
8318	NM_003504	69	TTTGGCGGGAGT	ENSG00000093009	CDC45	up-regulated
4605	NM_002466	53	TTTGGCGGGAGA	ENSG00000101057	MYBL2	up-regulated
1869	NM_005225	-1	TTTGGCGCGTAA	ENSG00000104142	E2F1	up-regulated
2145	NM_001991	-106	TTTGGCGGGCAA	ENSG00000108799	EZH1	up-regulated
81620	NM_030928	-16	TTTGGCGGGAAA	ENSG00000167513	CDT1	up-regulated
5888	NM_002875	36	TTTGGCGGGGAAT	ENSG00000051180	RAD51	up-regulated
9824	NM_014783	-418	GTTCACCACCAAG	ENSG00000198826	ARHGAP11A	up-regulated
91750	NM_001024674	-373	TTAGGGCGCGAAA	ENSG00000205659	LIN52	up-regulated
221150	NM_145061	24	CTGGCGGGCGCAA	ENSG00000165480	SKA3	up-regulated
9700	NM_012291	-18	TCTGGCGGGCGAA	ENSG00000135476	ESPL1	up-regulated
1111	NM_001274	-400	TTTGGCGGGAAA	ENSG00000149554	CHEK1	up-regulated
374393	NM_198947	-4	CTAGGGCGGGAAA	ENSG00000189057	FAM111B	up-regulated
79733	NM_024680	-180	TTCCCGCGCGAAA	ENSG00000129173	E2F8	up-regulated
3070	NM_018063	24	TTTCCCGCGAAA	ENSG00000119969	HELLS	up-regulated
79075	NM_024094	88	TTGCCCGCGCAAG	ENSG00000136982	DSCC1	up-regulated
2146	NM_004456	-355	TTTCCCGCGCAAG	ENSG00000104642	EZH2	up-regulated
231	NM_001628	-205	TTTCCCACCGAGA	ENSG00000085662	AKR1B1	up-regulated
7980	NM_006528	89	CTTGGCGGGGGAA	ENSG00000105825	TFPI2	up-regulated
64946	NM_022904	-435	TTCTCCGGCGCAA	ENSG00000153044	CENPH	up-regulated
4085	NM_002358	43	CTTGGCGGGGGAA	ENSG00000164109	MAD2L1	up-regulated
11073	NM_007027	-59	TTTGGCGGGAAA	ENSG00000163781	TOPBP1	up-regulated
4175	NM_005915	-56	TTTGGCGGGAAA	ENSG00000076003	MCM5	up-regulated
2956	NM_000179	77	TTTCCCGCGCAAG	ENSG00000116062	MSH6	up-regulated
7923	NM_014234	-182	TTTGGGGGGGAAT	ENSG00000204228	HSD17B8	down-regulated
8996	NM_003946	-107	TTAGGTGGGGAA	ENSG00000140939	NOL3	down-regulated
735301	NM_003142	-371	TTTGTGGGGAAA	ENSG00000255198	SNHG9	down-regulated
54997	NM_017899	-294	TTTCCCTCTCTAA	ENSG00000088992	TEEC	down-regulated
55118	NM_018058	-320	CTCTGGGGGGAAA	ENSG00000095713	CRTAC1	down-regulated
259230	NM_147156	-396	CTTGGGTGGAAA	ENSG00000198964	SGMB1	down-regulated
10395	NM_006094	-473	GTTCGGCGCAAG	ENSG00000164741	DLC1	down-regulated

836

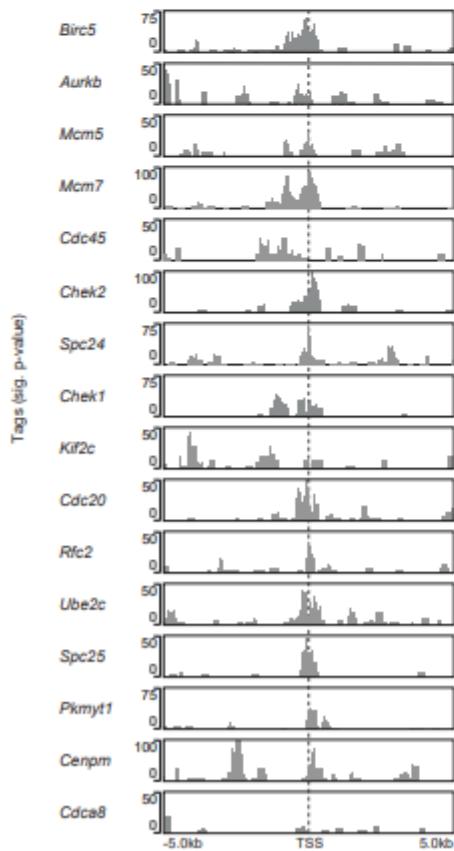
837 Supplemental Figure 5. A) *De novo* binding motif (Motif 1) and matched known binding sequences as

838 predicted by Homer. **B)** E2F8 consensus sequence instances in dysregulated genes upon ARID1A knock-
839 down in bladder organoids.

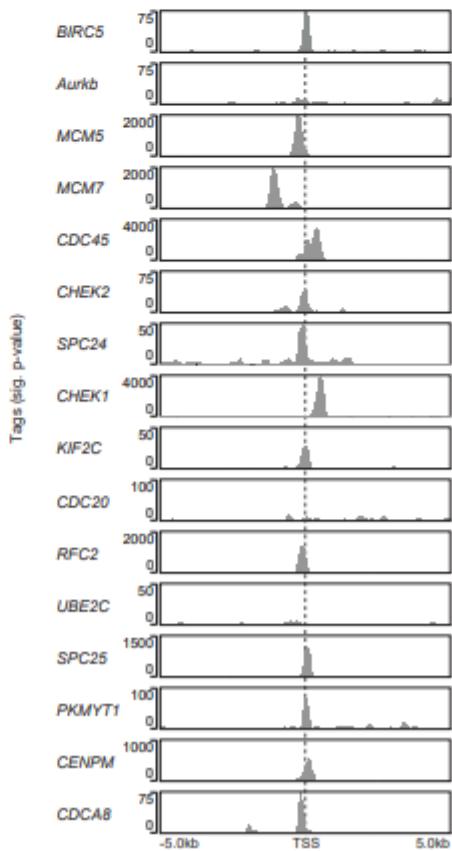

840

A

Murine bladder organoid ARID1A CUT&Tag (Jana et al.)


N = 236 genes upregulated in shARID1A PDOs

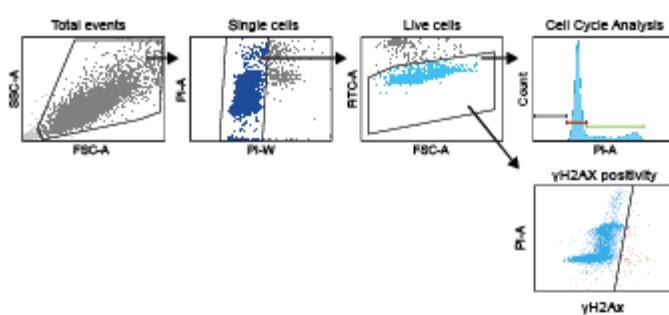
N = 96 genes downregulated in shARID1A PDOs



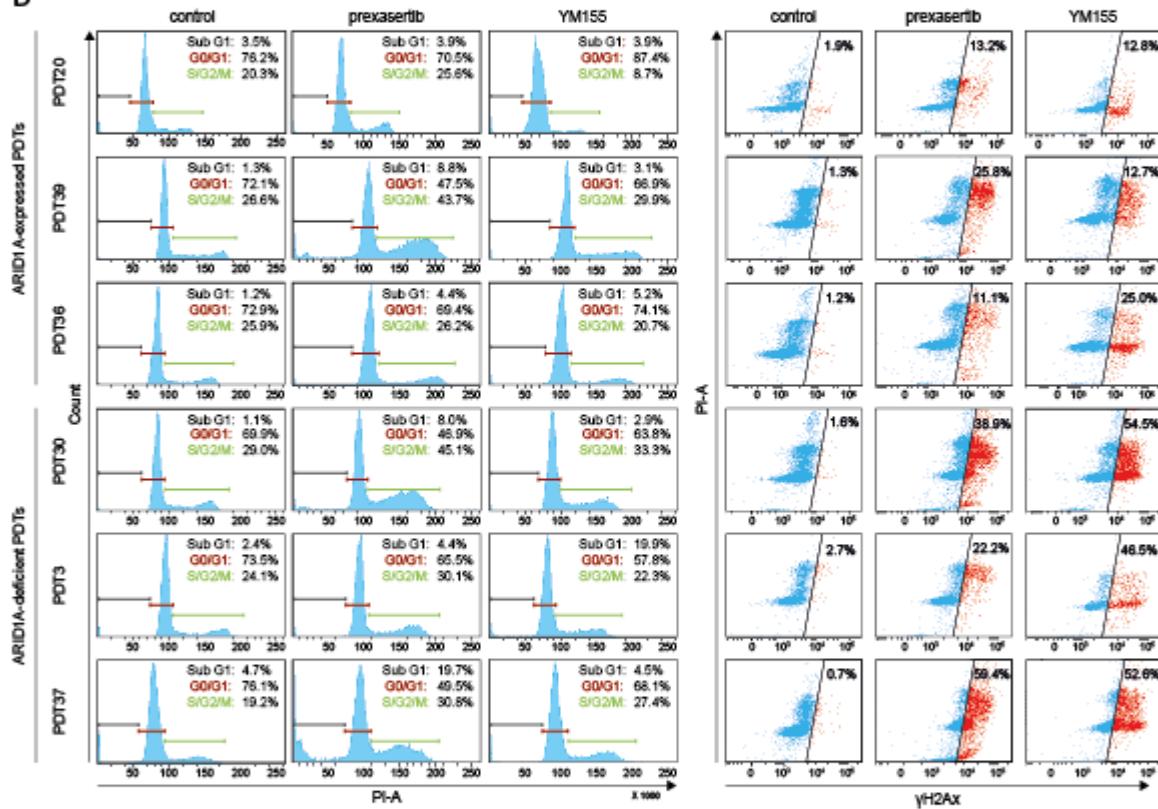
B

ARID1A binding

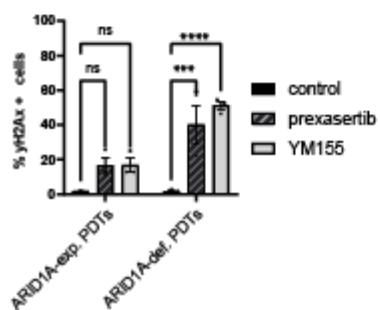
E2F8 binding


841

842 **Supplemental Figure 6. A)** Histograms (top) and heatmaps (bottom) depicting mean ARID1A binding
843 intensities around 1270 transcription start sites (TSS) corresponding to N = 236 genes upregulated (left)

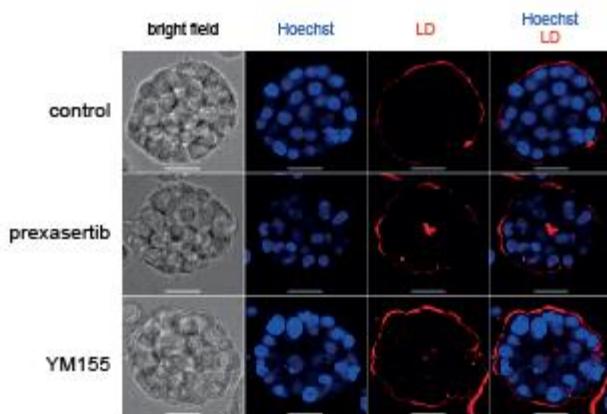

844 or N=96 downregulated (right) upon ARID1A knock-down in normal organoids. N= 10 genes did not have
845 a murine orthologue and were excluded from analysis. CUT&Tag analysis was performed in murine
846 urothelial organoid cells with ARID1A-directed antibodies, using IgG as control as indicated. Data was
847 repurposed from Jana et al. **B)** Left: ARID1A occupancy at transcription start sites of 16 candidate genes
848 in murine urothelial organoids. Data was repurposed from Jana et al. (29). Right: E2F8 occupancy at
849 transcription start sites of 16 candidate genes in K562 myeloid progenitor cells. Data was repurposed from
850 the ENCODE project (35).

851

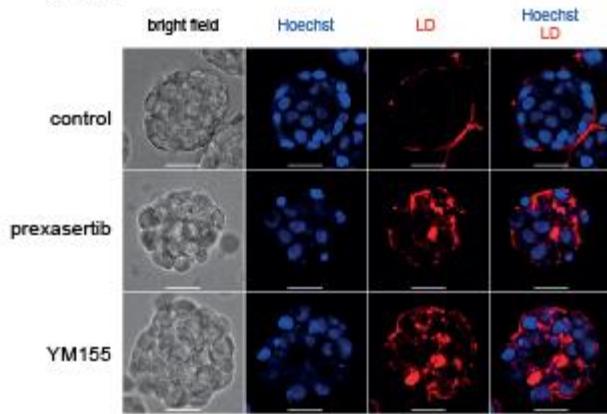

A

B

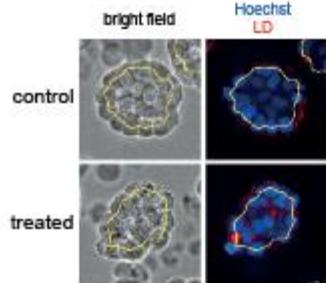
C

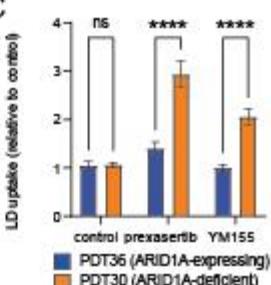

852

853 **Supplemental Figure 7. A)** Sequential gating strategy to identify single cells: initial gating on FSC-A vs
854 SSCA to define the region of interest by excluding very small particles and multicellular aggregates, on


855 the left, followed by single cells gating in PI-A vs PI-W, cell cycle analysis using a mono-dimensional PI-A
856 histogram in a linear scale, and gating strategy to define the percentage of γ H2AX+ cells in the live
857 fraction. **B)** Flow cytometry on ARID1A-expressing tumoroids (PDT20, PDT36, PDT39) and ARID1A-
858 deficient tumoroids (PDT3, PDT30, and PDT37) treated with 32nM prexasertib or 50nM YM155 for two
859 days. Gating on single live cells was followed by cell cycle analysis (left) and measurement of the fraction
860 of cells with phosphorylated H2Ax (γ H2Ax) (right). **C)** Bar graph depicting γ H2Ax+ fraction of ARID1A-
861 expressing (PDT20, PDT36, PDT39) and ARID1A-deficient (PDT3, PDT30, and PDT37) tumoroids treated
862 with 32nM prexasertib or 50nM YM155 compared to untreated control. Gating on single live cells was
863 followed by measurement of γ H2Ax+ positive fraction, as shown in B. Drug treated ARID1A-expressing
864 and ARID1A-deficient tumoroids are compared to the respective untreated controls, however, source
865 data corresponds to that presented in Figure 5C. Data are represented as mean \pm SEM.

A

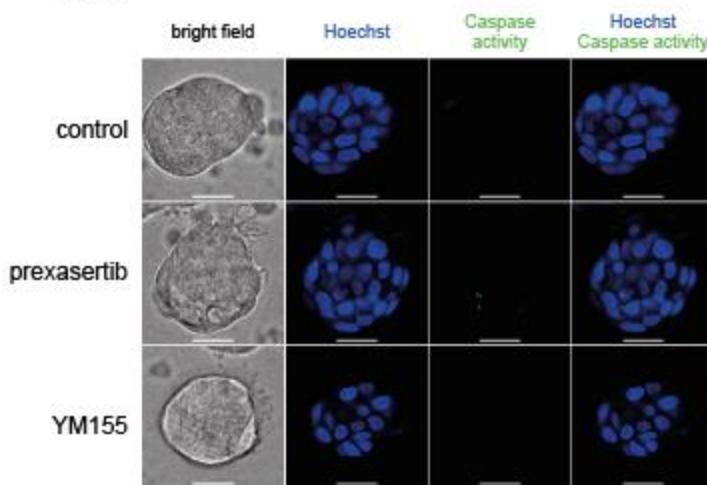

PDT36


PDT30

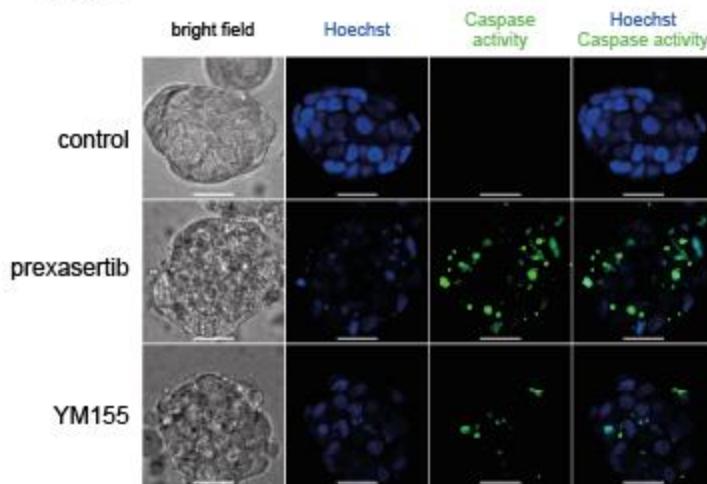
B

C

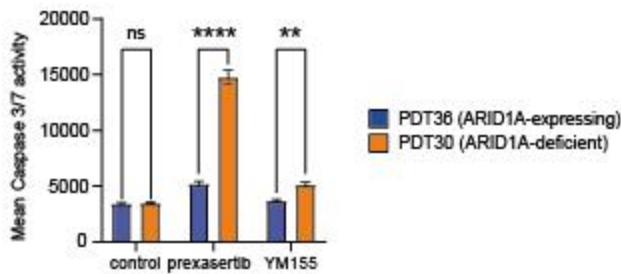
866


867 **Supplemental Figure 8. A)** Representative brightfield and fluorescence staining showing fixable Live/Dead
868 (LD) cell staining (red) in *ARID1A*-expressing (PDT36) and *ARID1A*-deficient (PDT30) bladder tumoroids
869 treated for 48 hours with 32nM prexasertib or 50nM YM155, compared to untreated controls. Hoechst
870 (blue) was used as a counter staining. Raw images were exported from Harmony software and brightness
871 and contrast was adjusted in imageJ **B)** Representative images depicting automated tumoroid
872 segmentation (yellow line) by the Harmony software to select the inner 60% of tumoroid surface area in
873 order to quantify tumoroid uptake of fixable live/dead staining. Processed Images were exported from
874 Harmony software and contain gamma correction as implemented by Harmony software. Segmentation

875 line was manually accentuated in illustrator **C**) Bar graph depicting mean uptake of fixable LD staining per
876 tumoroid. LD uptake was measured in the inner 60% of tumoroid surface area. At least 100 tumoroids
877 were measured per condition and no gamma correction was applied prior to measurement. Data are
878 presented as mean +-SEM. **P<0.005, ****P<0.00005.

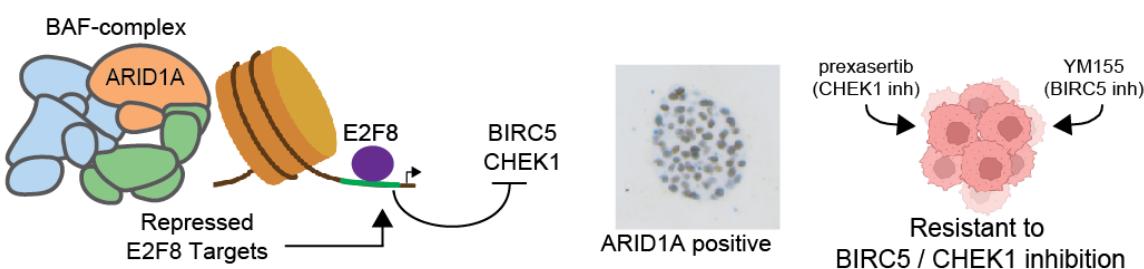

879

A


PDT36

PDT30

B


880

881 **Supplemental Figure 9. A)** Representative bright field and fluorescence staining showing caspase 3/7
882 activity (green) in *ARID1A*-expressing (PDT36) and *ARID1A*-deficient (PDT30) bladder tumoroids treated
883 for 48 hours with 32nM prexasertib or 50nM YM155, compared to untreated controls. Hoechst (blue) was
884 used as a counter staining. **B)** Bar graph depicting mean staining intensity (Caspase 3/7 activity) per


885 tumoroid. At least 49 tumoroids were measured per condition and data are presented as mean +-SEM.
886 **P<0.005, ****P<0.00005.

887

Presence of ARID1A

ARID1A deficiency

888

889 **Supplemental Figure 10. Theoretical model for the interaction of E2F8 and ARID1A and regulation of**
890 **CHEK1 and BIRC5 expression in ARID1A-expressing and ARID1A-deficient cells. Top:** ARID1A and the BAF
891 complex reposition the nucleosome, exposing E2F8 binding motifs. Upon binding, E2F8 represses its target
892 genes, including CHEK1 and BIRC5. As a result, CHEK1 and BIRC5 expression is generally repressed, making
893 ARID1A-expressing cells relatively resistant to BIRC5 and CHEK1 inhibition. **Bottom:** Loss of ARID1A
894 expression disrupts the BAF complex's ability to reposition nucleosomes, hindering E2F8 binding and
895 leading to de-repression of BIRC5 and CHEK1. In turn, upregulated expression of BIRC5 and CHEK1 can
896 be therapeutically targeted by small molecule inhibitors, thereby selectively eliminating *ARID1A*-deficient
897 BC cells.

898

899

900 REFERENCES

901

902 1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F: **Global Cancer**
903 **Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in**
904 **185 Countries.** *CA: A Cancer Journal for Clinicians* 2021, **71**:209-249.

905 2. Alfred Witjes J, Max Bruins H, Carrión A, Cathomas R, Compérat E, Efstathiou JA, Fietkau R, Gakis
906 G, Lorch A, Martini A, et al: **European Association of Urology Guidelines on Muscle-invasive and**
907 **Metastatic Bladder Cancer: Summary of the 2023 Guidelines.** *European Urology* 2024, **85**:17-31.

908 3. Powles T, Bellmunt J, Comperat E, De Santis M, Huddart R, Loriot Y, Necchi A, Valderrama BP,
909 Ravaud A, Shariat SF, et al: **Bladder cancer: ESMO Clinical Practice Guideline for diagnosis,**
910 **treatment and follow-up**^{☆}. *Annals of Oncology* 2022, **33**:244-258.

911 4. Robertson AG, Kim J, Al-Ahmadie H, Bellmunt J, Guo G, Cherniack AD, Hinoue T, Laird PW, Hoadley
912 KA, Akbani R, et al: **Comprehensive Molecular Characterization of Muscle-Invasive Bladder**
913 **Cancer.** *Cell* 2017, **171**:540-556.e525.

914 5. Taber A, Christensen E, Lamy P, Nordentoft I, Prip F, Linskrog SV, Birkenkamp-Demtröder K,
915 Okholm TLH, Knudsen M, Pedersen JS, et al: **Molecular correlates of cisplatin-based**
916 **chemotherapy response in muscle invasive bladder cancer by integrated multi-omics analysis.**
917 *Nat Commun* 2020, **11**:4858.

918 6. Damrauer JS, Beckabir W, Klomp J, Zhou M, Plimack ER, Galsky MD, Grivas P, Hahn NM, O'Donnell
919 PH, Iyer G, et al: **Collaborative study from the Bladder Cancer Advocacy Network for the genomic**
920 **analysis of metastatic urothelial cancer.** *Nature Communications* 2022, **13**:6658.

921 7. Nakama-González JA, Rijnders M, van Riet J, van der Heijden MS, Voortman J, Cuppen E, Mehra
922 N, van Wilpe S, Oosting SF, Rijstenberg LL, et al: **Comprehensive Molecular Characterization**
923 **Reveals Genomic and Transcriptomic Subtypes of Metastatic Urothelial Carcinoma.** *European*
924 *Urology* 2022, **81**:331-336.

925 8. Conde M, Frew IJ: **Therapeutic significance of ARID1A mutation in bladder cancer.** *Neoplasia*
926 2022, **31**:100814.

927 9. Jana S, Brahma S, Arora S, Wladyka CL, Hoang P, Blinka S, Hough R, Horn JL, Liu Y, Wang LJ, et al:
928 **Transcriptional-translational conflict is a barrier to cellular transformation and cancer**
929 **progression.** *Cancer Cell* 2023, **41**:853-870.e813.

930 10. Zhao B, Lin J, Rong L, Wu S, Deng Z, Fatkhutdinov N, Zundell J, Fukumoto T, Liu Q, Kossenkov A, et
931 al: **ARID1A promotes genomic stability through protecting telomere cohesion.** *Nature*
932 *Communications* 2019, **10**:4067.

933 11. Shen J, Peng Y, Wei L, Zhang W, Yang L, Lan L, Kapoor P, Ju Z, Mo Q, Shih Ie M, et al: **ARID1A**
934 **Deficiency Impairs the DNA Damage Checkpoint and Sensitizes Cells to PARP Inhibitors.** *Cancer*
935 *Discov* 2015, **5**:752-767.

936 12. Lo YH, Kolahi KS, Du Y, Chang CY, Krokhotin A, Nair A, Sobba WD, Karlsson K, Jones SJ, Longacre
937 TA, et al: **A CRISPR/Cas9-Engineered ARID1A-Deficient Human Gastric Cancer Organoid Model**
938 **Reveals Essential and Nonessential Modes of Oncogenic Transformation.** *Cancer Discov* 2021,
939 **11**:1562-1581.

940 13. Katt ME, Placone AL, Wong AD, Xu ZS, Searson PC: **In Vitro Tumor Models: Advantages,**
941 **Disadvantages, Variables, and Selecting the Right Platform.** *Front Bioeng Biotechnol* 2016, **4**:12.

942 14. Hidalgo M, Amant F, Biankin AV, Budinská E, Byrne AT, Caldas C, Clarke RB, de Jong S, Jonkers J,
943 Mælandsmo GM, et al: **Patient-derived xenograft models: an emerging platform for**
944 **translational cancer research.** *Cancer Discov* 2014, **4**:998-1013.

945 15. Wensink GE, Elias SG, Mullenders J, Koopman M, Boj SF, Kranenburg OW, Roodhart JML: **Patient-**
946 **derived organoids as a predictive biomarker for treatment response in cancer patients.** *npj*
947 *Precision Oncology* 2021, **5**:30.

948 16. Gunti S, Hoke ATK, Vu KP, London NR, Jr.: **Organoid and Spheroid Tumor Models: Techniques and**
949 **Applications.** *Cancers (Basel)* 2021, **13**.

950 17. Sato T, Vries RG, Snippert HJ, van de Wetering M, Barker N, Stange DE, van Es JH, Abo A, Kujala P,
951 Peters PJ, Clevers H: **Single Lgr5 stem cells build crypt-villus structures in vitro without a**
952 **mesenchymal niche.** *Nature* 2009, **459**:262-265.

953 18. Minoli M, Cantore T, Hanhart D, Kiener M, Fedrizzi T, La Manna F, Karkampouna S, Chouvardas P,
954 Genitsch V, Rodriguez-Calero A, et al: **Bladder cancer organoids as a functional system to model**
955 **different disease stages and therapy response.** *Nat Commun* 2023, **14**:2214.

956 19. Lee SH, Hu W, Matulay JT, Silva MV, Owczarek TB, Kim K, Chua CW, Barlow LJ, Kandoth C, Williams
957 AB, et al: **Tumor Evolution and Drug Response in Patient-Derived Organoid Models of Bladder**
958 **Cancer.** *Cell* 2018, **173**:515-528.e517.

959 20. Mullenders J, de Jongh E, Brousal A, Roosen M, Blom JPA, Begthel H, Korving J, Jonges T,
960 Kranenburg O, Meijer R, Clevers HC: **Mouse and human urothelial cancer organoids: A tool for**
961 **bladder cancer research.** *Proc Natl Acad Sci U S A* 2019, **116**:4567-4574.

962 21. Mastri M, Ramakrishnan S, Shah SD, Karasik E, Gillard BM, Moser MT, Farmer BK, Azabdaftari G,
963 Chatta GS, Woloszynska A, et al: **Patient derived models of bladder cancer enrich the signal of**
964 **the tumor cell transcriptome facilitating the analysis of the tumor cell compartment.** *Am J Clin*
965 *Exp Urol* 2021, **9**:416-434.

966 22. Wiegand KC, Shah SP, Al-Agha OM, Zhao Y, Tse K, Zeng T, Senz J, McConechy MK, Anglesio MS,
967 Kaloger SE, et al: **ARID1A mutations in endometriosis-associated ovarian carcinomas.** *N Engl J*
968 *Med* 2010, **363**:1532-1543.

969 23. Minoche AE, Lundie B, Peters GB, Ohnesorg T, Pinese M, Thomas DM, Zankl A, Roscioli T,
970 Schonrock N, Kummerfeld S, et al: **ClinSV: clinical grade structural and copy number variant**
971 **detection from whole genome sequencing data.** *Genome Medicine* 2021, **13**:32.

972 24. Zhao B, Lin J, Rong L, Wu S, Deng Z, Fatkhutdinov N, Zundell J, Fukumoto T, Liu Q, Kossenkov A, et
973 al: **ARID1A promotes genomic stability through protecting telomere cohesion.** *Nat Commun*
974 2019, **10**:4067.

975 25. van Oers JM, Lurkin I, van Exsel AJ, Nijsen Y, van Rhijn BW, van der Aa MN, Zwarthoff EC: **A simple**
976 **and fast method for the simultaneous detection of nine fibroblast growth factor receptor 3**
977 **mutations in bladder cancer and voided urine.** *Clin Cancer Res* 2005, **11**:7743-7748.

978 26. Hurst CD, Zuiverloon TCM, Hafner C, Zwarthoff EC, Knowles MA: **A SNaPshot assay for the rapid**
979 **and simple detection of four common hotspot codon mutations in the PIK3CA gene.** *BMC*
980 *Research Notes* 2009, **2**:66.

981 27. Allory Y, Beukers W, Sagrera A, Flández M, Marqués M, Márquez M, van der Keur KA, Dyrskjot L,
982 Lurkin I, Vermeij M, et al: **Telomerase Reverse Transcriptase Promoter Mutations in Bladder**
983 **Cancer: High Frequency Across Stages, Detection in Urine, and Lack of Association with**
984 **Outcome.** *European Urology* 2014, **65**:360-366.

985 28. Hanahan D, Weinberg Robert A: **Hallmarks of Cancer: The Next Generation.** *Cell* 2011, **144**:646-
986 674.

987 29. Jana S, Brahma S, Arora S, Wladyka CL, Hoang P, Blinka S, Hough R, Horn JL, Liu Y, Wang L-J, et al:
988 **Transcriptional-translational conflict is a barrier to cellular transformation and cancer**
989 **progression.** *Cancer Cell* 2023, **41**:853-870.e813.

990 30. Trimarchi JM, Lees JA: **Sibling rivalry in the E2F family.** *Nature Reviews Molecular Cell Biology* 2002, **3**:11-20.

991 31. Stevens C, La Thangue NB: **The emerging role of E2F-1 in the DNA damage response and**
992 **checkpoint control.** *DNA Repair* 2004, **3**:1071-1079.

993 32. DeGregori J, Johnson DG: **Distinct and Overlapping Roles for E2F Family Members in**
994 **Transcription, Proliferation and Apoptosis.** *Curr Mol Med* 2006, **6**:739-748.

995 33. Lammens T, Li J, Leone G, De Veylder L: **Atypical E2Fs: new players in the E2F transcription factor**
996 **family.** *Trends in Cell Biology* 2009, **19**:111-118.

997 34. Morgunova E, Yin Y, Jolma A, Dave K, Schmierer B, Popov A, Eremina N, Nilsson L, Taipale J: **Structural insights into the DNA-binding specificity of E2F family transcription factors.** *Nature*
998 **Communications** 2015, **6**:10050.

999 35. Luo Y, Hitz BC, Gabdank I, Hilton JA, Kagda MS, Lam B, Myers Z, Sud P, Jou J, Lin K, et al: **New**
1000 **developments on the Encyclopedia of DNA Elements (ENCODE) data portal.** *Nucleic Acids Res*
1001 2020, **48**:D882-d889.

1002 36. Nakama-González JA, Rijnders M, Noordsij MTW, Martens JWM, van der Veldt AAM, Lolkema
1003 MPJ, Boormans JL, van de Werken HJG: **Whole-genome mapping of APOBEC mutagenesis in**
1004 **metastatic urothelial carcinoma identifies driver hotspot mutations and a novel mutational**
1005 **signature.** *Cell Genomics* 2024, **4**:100528.

1006 37. Carmena M, Wheelock M, Funabiki H, Earnshaw WC: **The chromosomal passenger complex**
1007 **(CPC): from easy rider to the godfather of mitosis.** *Nature Reviews Molecular Cell Biology* 2012,
1008 **13**:789-803.

1009 38. Bartek J, Lukas J: **Chk1 and Chk2 kinases in checkpoint control and cancer.** *Cancer Cell* 2003,
1010 **3**:421-429.

1011 39. Shimizu T, Nishio K, Sakai K, Okamoto I, Okamoto K, Takeda M, Morishita M, Nakagawa K: **Phase**
1012 **I safety and pharmacokinetic study of YM155, a potent selective survivin inhibitor, in**
1013 **combination with erlotinib in patients with EGFR TKI refractory advanced non-small cell lung**
1014 **cancer.** *Cancer Chemotherapy and Pharmacology* 2020, **86**:211-219.

1015 40. Tolcher AW, Quinn DI, Ferrari A, Ahmann F, Giaccone G, Drake T, Keating A, de Bono JS: **A phase**
1016 **II study of YM155, a novel small-molecule suppressor of survivin, in castration-resistant taxane-**
1017 **pretreated prostate cancer.** *Annals of Oncology* 2012, **23**:968-973.

1018 41. Papadopoulos KP, Lopez-Jimenez J, Smith SE, Steinberg J, Keating A, Sasse C, Jie F, Thyss A: **A**
1019 **multicenter phase II study of sepantromium bromide (YM155) plus rituximab in patients with**
1020 **relapsed aggressive B-cell Non-Hodgkin lymphoma.** *Leukemia and Lymphoma* 2016, **57**:1848-
1021 1855.

1022 42. Nakahara T, Kita A, Yamanaka K, Mori M, Amino N, Takeuchi M, Tominaga F, Hatakeyama S,
1023 Kinoyama I, Matsuhsa A, et al: **YM155, a novel small-molecule survivin suppressant, induces**
1024 **regression of established human hormone-refractory prostate tumor xenografts.** *Cancer Res*
1025 2007, **67**:8014-8021.

1026 43. **News Release Details, Acrivon Therapeutics Announces FDA Grants Fast Track Designation for**
1027 **Development of ACR-368 in Platinum-Resistant Ovarian Cancer and Endometrial Cancer.**
1028 <https://iracrivon.com/news-releases/news-release-details/acrivon-therapeutics-announces-fda-grants-fast-track-designation> 2023.

1029 44. Jiang T, Chen X, Su C, Ren S, Zhou C: **Pan-cancer analysis of ARID1A Alterations as Biomarkers for**
1030 **Immunotherapy Outcomes.** *J Cancer* 2020, **11**:776-780.

1031 45. Bass AJ, Thorsson V, Shmulevich I, Reynolds SM, Miller M, Bernard B, Hinoue T, Laird PW, Curtis
1032 C, Shen H, et al: **Comprehensive molecular characterization of gastric adenocarcinoma.** *Nature*
1033 2014, **513**:202-209.

1037 46. Ogiwara H, Takahashi K, Sasaki M, Kuroda T, Yoshida H, Watanabe R, Maruyama A, Makinoshima
1038 H, Chiwaki F, Sasaki H, et al: **Targeting the Vulnerability of Glutathione Metabolism in ARID1A-**
1039 **Deficient Cancers.** *Cancer Cell* 2019, **35**:177-190.e178.

1040 47. Bitler BG, Aird KM, Garipov A, Li H, Amatangelo M, Kossenkov AV, Schultz DC, Liu Q, Shih le M,
1041 Conejo-Garcia JR, et al: **Synthetic lethality by targeting EZH2 methyltransferase activity in**
1042 **ARID1A-mutated cancers.** *Nat Med* 2015, **21**:231-238.

1043 48. Kim KH, Kim W, Howard TP, Vazquez F, Tsherniak A, Wu JN, Wang W, Haswell JR, Walensky LD,
1044 Hahn WC, et al: **SWI/SNF-mutant cancers depend on catalytic and non-catalytic activity of EZH2.**
1045 *Nat Med* 2015, **21**:1491-1496.

1046 49. Lo YH, Karlsson K, Kuo CJ: **Applications of Organoids for Cancer Biology and Precision Medicine.**
1047 *Nat Cancer* 2020, **1**:761-773.

1048 50. Minoli M, Cantore T, Hanhart D, Kiener M, Fedrizzi T, La Manna F, Karkampouna S, Chouvardas P,
1049 Genitsch V, Rodriguez-Calero A, et al: **Bladder cancer organoids as a functional system to model**
1050 **different disease stages and therapy response.** *Nature Communications* 2023, **14**:2214.

1051 51. Garioni M, Tschan VJ, Blukacz L, Nuciforo S, Parmentier R, Roma L, Coto-Llerena M, Pueschel H,
1052 Piscuoglio S, Vlajnic T, et al: **Patient-derived organoids identify tailored therapeutic options and**
1053 **determinants of plasticity in sarcomatoid urothelial bladder cancer.** *npj Precision Oncology* 2023,
1054 **7**:112.

1055 52. Santos CP, Lapi E, Martínez de Villarreal J, Álvaro-Espínosa L, Fernández-Barral A, Barbáchano A,
1056 Domínguez O, Laughney AM, Megías D, Muñoz A, Real FX: **Urothelial organoids originating from**
1057 **Cd49f(high) mouse stem cells display Notch-dependent differentiation capacity.** *Nat Commun*
1058 2019, **10**:4407.

1059 53. de Witte CJ, Espejo Valle-Inclan J, Hami N, Löhmussaar K, Kopper O, Vreuls CPH, Jonges GN, van
1060 Diest P, Nguyen L, Clevers H, et al: **Patient-Derived Ovarian Cancer Organoids Mimic Clinical**
1061 **Response and Exhibit Heterogeneous Inter- and Intrapatient Drug Responses.** *Cell Rep* 2020,
1062 **31**:107762.

1063 54. Vlachogiannis G, Hedayat S, Vatsiou A, Jamin Y, Fernández-Mateos J, Khan K, Lampis A, Eason K,
1064 Huntingford I, Burke R, et al: **Patient-derived organoids model treatment response of metastatic**
1065 **gastrointestinal cancers.** *Science* 2018, **359**:920-926.

1066 55. Yao Y, Xu X, Yang L, Zhu J, Wan J, Shen L, Xia F, Fu G, Deng Y, Pan M, et al: **Patient-Derived**
1067 **Organoids Predict Chemoradiation Responses of Locally Advanced Rectal Cancer.** *Cell Stem Cell*
1068 2020, **26**:17-26.e16.

1069 56. Matano M, Date S, Shimokawa M, Takano A, Fujii M, Ohta Y, Watanabe T, Kanai T, Sato T:
1070 **Modeling colorectal cancer using CRISPR-Cas9-mediated engineering of human intestinal**
1071 **organoids.** *Nat Med* 2015, **21**:256-262.

1072 57. Drost J, van Jaarsveld RH, Ponsioen B, Zimberlin C, van Boxtel R, Buijs A, Sachs N, Overmeer RM,
1073 Offerhaus GJ, Begthel H, et al: **Sequential cancer mutations in cultured human intestinal stem**
1074 **cells.** *Nature* 2015, **521**:43-47.

1075 58. Nanki K, Toshimitsu K, Takano A, Fujii M, Shimokawa M, Ohta Y, Matano M, Seino T, Nishikori S,
1076 Ishikawa K, et al: **Divergent Routes toward Wnt and R-spondin Niche Independency during**
1077 **Human Gastric Carcinogenesis.** *Cell* 2018, **174**:856-869.e817.

1078 59. Nagl NG, Jr., Wang X, Patsialou A, Van Scyoc M, Moran E: **Distinct mammalian SWI/SNF chromatin**
1079 **remodeling complexes with opposing roles in cell-cycle control.** *Embo J* 2007, **26**:752-763.

1080 60. Sun X, Wang SC, Wei Y, Luo X, Jia Y, Li L, Gopal P, Zhu M, Nassour I, Chuang J-C, et al: **Arid1a Has**
1081 **Context-Dependent Oncogenic and Tumor Suppressor Functions in Liver Cancer.** *Cancer Cell*
1082 2017, **32**:574-589.e576.

1083 61. Nagl NG, Jr., Patsialou A, Haines DS, Dallas PB, Beck GR, Jr., Moran E: **The p270**
1084 **(ARID1A/SMARCF1) subunit of mammalian SWI/SNF-related complexes is essential for normal**
1085 **cell cycle arrest.** *Cancer Res* 2005, **65**:9236-9244.

1086 62. Xing T, Li L, Rao X, Zhao J, Chen Y, Ju G, Xu Y, Gao X, Dong G, Xia X, et al: **ARID1A deficiency**
1087 **promotes progression and potentiates therapeutic antitumour immunity in hepatitis B virus-**
1088 **related hepatocellular carcinoma.** *BMC Gastroenterology* 2024, **24**:11.

1089 63. Santos A, Wernersson R, Jensen LJ: **Cyclebase 3.0: a multi-organism database on cell-cycle**
1090 **regulation and phenotypes.** *Nucleic Acids Res* 2015, **43**:D1140-1144.

1091 64. Boekhout M, Yuan R, Wondergem AP, Segeren HA, van Liere EA, Awol N, Jansen I, Wolthuis RM,
1092 de Bruin A, Westendorp B: **Feedback regulation between atypical E2Fs and APC/CCdh1**
1093 **coordinates cell cycle progression.** *EMBO Rep* 2016, **17**:414-427.

1094 65. Yuan R, Vos HR, van Es RM, Chen J, Burgering BM, Westendorp B, de Bruin A: **Chk1 and 14-3-3**
1095 **proteins inhibit atypical E2Fs to prevent a permanent cell cycle arrest.** *Embo J* 2018, **37**.

1096 66. Watanabe R, Ui A, Kanno S-i, Ogiwara H, Nagase T, Kohno T, Yasui A: **SWI/SNF Factors Required**
1097 **for Cellular Resistance to DNA Damage Include ARID1A and ARID1B and Show Interdependent**
1098 **Protein Stability.** *Cancer Research* 2014, **74**:2465-2475.

1099 67. Park JH, Park EJ, Lee HS, Kim SJ, Hur SK, Imbalzano AN, Kwon J: **Mammalian SWI/SNF complexes**
1100 **facilitate DNA double-strand break repair by promoting gamma-H2AX induction.** *Embo J* 2006,
1101 **25**:3986-3997.

1102 68. Williamson CT, Miller R, Pemberton HN, Jones SE, Campbell J, Konde A, Badham N, Rafiq R, Brough
1103 R, Gulati A, et al: **ATR inhibitors as a synthetic lethal therapy for tumours deficient in ARID1A.**
1104 *Nat Commun* 2016, **7**:13837.

1105 69. Dykhuizen EC, Hargreaves DC, Miller EL, Cui K, Korshunov A, Kool M, Pfister S, Cho YJ, Zhao K,
1106 Crabtree GR: **BAF complexes facilitate decatenation of DNA by topoisomerase II α .** *Nature* 2013,
1107 **497**:624-627.

1108 70. Konstantinopoulos PA, Lee JM, Gao B, Miller R, Lee JY, Colombo N, Vergote I, Credille KM, Young
1109 SR, McNeely S, et al: **A Phase 2 study of prexasertib (LY2606368) in platinum resistant or**
1110 **refractory recurrent ovarian cancer.** *Gynecol Oncol* 2022, **167**:213-225.

1111 71. Naldini L, Blömer U, Gage FH, Trono D, Verma IM: **Efficient transfer, integration, and sustained**
1112 **long-term expression of the transgene in adult rat brains injected with a lentiviral vector.**
1113 *Proceedings of the National Academy of Sciences* 1996, **93**:11382.

1114 72. Kim D, Paggi JM, Park C, Bennett C, Salzberg SL: **Graph-based genome alignment and genotyping**
1115 **with HISAT2 and HISAT-genotype.** *Nat Biotechnol* 2019, **37**:907-915.

1116 73. Langmead B, Salzberg SL: **Fast gapped-read alignment with Bowtie 2.** *Nat Methods* 2012, **9**:357-
1117 359.

1118 74. Fanidis D, Moulou P: **Integrative, normalization-insusceptible statistical analysis of RNA-Seq**
1119 **data, with improved differential expression and unbiased downstream functional analysis.**
1120 *Briefings in Bioinformatics* 2020, **22**.

1121 75. Love MI, Huber W, Anders S: **Moderated estimation of fold change and dispersion for RNA-seq**
1122 **data with DESeq2.** *Genome Biology* 2014, **15**:550-550.

1123 76. Yu G, He QY: **ReactomePA: An R/Bioconductor package for reactome pathway analysis and**
1124 **visualization.** *Molecular BioSystems* 2016, **12**:477-479.

1125 77. Therneau T: **A Package for Survival Analysis in R.** R package version 3.6-4. <https://CRAN.R-project.org/package=survival> 2024.

1126 78. Team RC: **R Core Team (2017).** R: A language and environment for statistical computing. R
1127 Foundation for Statistical Computing, Vienna, Austria URL <http://wwwR-project.org/> 2017:R
1128 Foundation for Statistical Computing-R Foundation for Statistical Computing.

1130