

1 **Title: Dopamine reveals adaptive learning of actions representation**

2

3 **Authors:** Maxime Come¹, Aylin Gulmez¹, Loussineh Keshishian¹, Joachim Jehl¹, Elise Bousseyrol¹,
4 Steve Didienne¹, Eleonore Vicq¹, Tinaïg Le Borgne¹, Alexandre Mourot¹, Philippe Faure^{1*}

5

6 **Affiliations:**

7 1. Brain Plasticity Laboratory, CNRS UMR 8249, ESPCI Paris, PSL Research University, Paris, France.

8 *Corresponding author: phfaure@gmail.com

9

10 **Abstract:**

11 Efficient decision-making requires two key processes: learning values from actions and identifying a set
12 of relevant actions to learn from in a given context. While dopamine (DA) is a well-known substrate for
13 signaling reward prediction errors (RPEs) from selected actions to adjust behavior, the process of
14 establishing and switching between action representations is still poorly understood. To address this gap,
15 we used fiber photometry and computational modelling in a three-armed bandit task where mice learned
16 to seek rewards delivered through three successive rule sets, displaying distinct strategies in each rule.
17 We show that DA dynamically reflected RPEs computed from different task features, revealing context-
18 specific internal representations. Our findings demonstrate that mice not only learned and updated action
19 values but also action representations, adapting the features from which they learn across rules for flexible
20 adjustment of their decision strategy.

21 **Introduction**

22 Toddlers solving puzzles can successfully associate either shapes or colors depending on the game they
23 are playing (**Fig 1A**), highlighting the importance of context in learning value from environmental
24 features, and thereby developing an internal model of a task structure. Efficient decision making indeed
25 requires both to learn from the consequences of actions (reinforcement learning) and to identify features
26 and dimensions (i.e., a state space) that define a set of relevant actions from which to learn about
27 (representation learning) (1–4). A cornerstone of understanding the mechanisms governing reinforcement
28 learning and decision making is the interplay between prediction errors and state representation. Failure
29 in such representation learning can lead to superstitions or false beliefs that interfere with efficient learning
30 and decision making (5). Despite its fundamental importance for adaptive behavior, the role of
31 representation learning in decision-making has been experimentally overlooked, limiting our
32 understanding of how state representations are formed through experience (4). This issue becomes
33 increasingly important as researchers shift their focus from experiments with a simple task structure to
34 more elaborated tasks (6–10) that more closely resemble natural decision-making, with multiple (and
35 possibly overlapping or competing) features that animals may use as state representations, as well as
36 potentially abrupt changes over time in the state representations being used.

37 The identification of the neural substrate of this representation can be an indication that this representation
38 is actually being used by the animal. While multiple brain areas contribute to the encoding of such features
39 (11–14), it is still difficult to know, in a given context, which one of these features are recognized and
40 effectively used by a subject to build a relevant internal model of the world, e.g., to predict values, compute
41 errors, and guide goal-directed actions. We hypothesize that dopamine (DA) could be an excellent
42 indicator of the representations used to navigate an environment. DA is a very well-established substrate
43 to signal value and compute reward prediction error (RPE) (15–26), integrating outcome-related
44 dimensions in a common currency (27–29), and driving reinforcement learning and decision making (21,
45 27, 28, 30–33). Consequently, DA-mediated RPE should necessarily depend on the most relevant
46 features for obtaining rewards and driving strategy, thereby providing insights into the subject's current
47 state representation. To demonstrate this, we propose a novel experimental approach designed to follow
48 the learning and shifts in task representations. We used behavioral assays, fiber photometry recording
49 and computational modeling to explore how dopamine-mediated RPE signatures are related to specific
50 features or action in different rules of a spatial bandit task (7, 8, 34, 35) and how these features vary
51 across rules. Our results show that mice not only learned value from actions, but also adapted their set
52 of relevant actions from which to learn, efficiently adjusting their reward-seeking strategies.

53

54 **Each reward context is associated with a specific reward-seeking strategy**

55 Using different versions of a spatial bandit task adapted for mice (7, 8, 34, 35), we aimed to obtain rule-
56 specific and feature-dependent strategies (**Fig 1A-B**). In this task, animals learned to navigate between
57 three marked locations in an open field, each associated with an intracranial self-stimulation (ICSS) of the
58 medial forebrain bundle (MFB). Mice could not receive two consecutive ICSS at the same location; and
59 therefore, had to alternate between rewarding locations, resulting in a sequence of movements and binary
60 choices (i.e., trials) (**Fig 1B, top**). Despite the apparent simplicity of this self-generated, goal-oriented
61 behavior, mice can use different features of the environment to guide their actions and obtain rewards
62 (**Fig 1B, bottom**). Mice were initially trained in a deterministic context (*Det*) where all locations
63 consistently delivered ICSS, developing typical ballistic speed profiles (**Fig 1C**) and increasing trial
64 numbers, with similar learning curves observed in both males and females (**Fig S1A**). Subsequently, mice
65 were switched to complex and probabilistic reward delivery rules, requiring them to adapt their strategies
66 (**Fig 1D, Fig S1B-C**). In the complex context (*Cplx*), reward delivery was determined by the variability
67 compared to decision patterns identified in the previous nine choices (**Fig S2A**) (8), while the probabilistic
68 context (*Proba*) offered different reward probabilities at each location (100%, 50%, 25%)(35). These
69 varying conditions resulted in distinct trajectory patterns (**Fig 1D**), success rates (**Fig 1E**), and decision-
70 making strategies. In *Det*, animals tended to adopt circular trajectories with minimal U-turns (~20%). In
71 contrast, the *Cplx* rule resulted in random trajectory patterns characterized by high sequence complexity
72 (**Fig 1E, Fig S2B**). In *Proba*, mice exhibited a bias toward locations with higher probability of reward
73 delivery, resulting in a high percentage of U-turns and a preference for p100 and p50 (**Fig 1F**). We also
74 ensured that those differences in decision strategy were not due to motivation or vigor to perform the
75 three versions of the task (**Fig S3**). Overall, while the basic design of the task remained constant, each
76 rule is associated with a specific reward structure promoting different action-outcome causalities. The
77 evolution of decision dynamics across rules demonstrates that mice can extract such contingencies to
78 dynamically adjust and improve their reward-seeking strategies, allowing for the longitudinal study of both
79 choice behavior adaptations and their neural correlates.

80

81 **Dopamine dynamics reveal expectations built upon rule-specific features**

82 We next examined DA release dynamics during the task, across the three rules, using the fluorescent
83 sensor GRAB_{DA2M} expressed in the lateral shell of the nucleus accumbens (NAc) in a new cohort of wild-
84 type male mice (**Fig 2A, Fig S4A**). Positive transients in DA release occurred upon receiving expected
85 rewards, whereas negative events were observed when expected rewards were omitted (**Fig 2B-C, Fig**
86 **S4B**), indicative of a negative RPE (for simplicity, these events, whether positive or negative, are referred
87 to as transients). Similar responses were observed while recording Ventral Tegmental Area (VTA) DA
88 neurons activity with GCaMP in DAT-iCre mice, ensuring consistency in the interpretation of DA dynamics

89 between release and firing processes (**Fig S4C-D**). Analysis of the amplitude distribution of DA transients
90 (positive and negative) across the different rules showed greater variability compared to unexpected
91 random stimulation in a rest cage, suggesting an active mechanism related to reward expectation
92 modulating the DA response, rather than being a mere response to the ICSS (**Fig 2D**). Additional
93 experiments with unexpected rewards delivered either during the task but off-target (i.e. when the animal
94 was in-between rewarded locations, **Fig 2E**) or in a rest cage (**Fig S4E-F**) demonstrated a larger transient
95 compared to expected rewards during the task, yet only after conditioning (**Supp 4G-H**), further supporting
96 the role of expectation in modulating DA release. We also controlled for a potential impact of sensor
97 fatigue and found no effect on DA signal when stimulations were given in the rest cage with varying
98 durations in-between stimulation (matching those observed in the task, typically from 2s to 7s) (**Fig S5A-**
99 **B**). Altogether, these findings, consistent with positive and negative RPE patterns, illustrate that DA
100 dynamics during the task are not solely driven by MFB stimulation but are significantly influenced by the
101 mice's learned expectations and internal task representations.

102 We next wondered which task features those expectations were built upon. To do this, we applied
103 generalized linear models (GLMs) to analyze fluctuations in DA peaks and dips amplitudes across trials,
104 running separate regression analyses for each individual mouse at the end of each rule (last two sessions)
105 (**Fig 2F**). The predictors included current and previous trial outcomes (reward or omission), the specific
106 target where outcomes occurred (locations pA, pB, and pC; or p100, p50 and p25 in Proba), and the
107 direction taken (Forward movement or U-turn) (**Fig 2F**). In the *Det* setting, where all trials were rewarded,
108 we observed that the key predictor for differentiating trials was direction but not target (**Fig 2G**). In the
109 *Cplx* setting, trial outcome accounted for the biggest part of DA variation (positive for rewards, negative
110 for omissions, **Fig 2H**), with an additional positive effect of previous outcome (having received an omission
111 at trial n-1 increases DA signal at trial n), regardless of targets or directions. In *Proba*, this effect of
112 previous outcome disappeared, and the target probability significantly influenced DA variations (**Fig 2I**).
113 Overall, the GLM analysis revealed that the primary drivers of DA fluctuations varied depending on the
114 task setting, with direction, trial outcome, and target probability each playing distinct roles. Direct
115 examinations of DA transients, categorized by direction, previous outcome or target, confirmed and
116 complemented these results. In *Det*, DA release depends on direction (**Fig 2J**, **Fig S5C**) but not on the
117 target (**Fig S5D**). In *Cplx*, omission on previous trial led to greater rewards-induced peaks and shallower
118 omissions-induced dips (**Fig 2K**, **Fig S5E**), while neither the target nor the direction showed significant
119 effects (**Fig S5F-G**). At the end of the *Proba* setting, the DA signals were negatively influenced by target
120 probability, with higher probabilities resulting in lesser positive DA release for rewards and more
121 pronounced DA decrease for omissions (**Fig 2L**, **Fig S5H**). Finally, no effect of direction was observed on
122 DA transients (**Fig S5I**), and regarding outcome at previous trial, we observed a small effect only for

123 rewarded trials (**Fig S5J**). Altogether, these results reveal specific patterns in the modulation of phasic
124 DA peaks or dips across task settings. Notably, DA fluctuations were not consistently associated with the
125 same features across rules. In *Cplx*, the current and previous outcomes explained most of the DA
126 variations. However, the dependency on directions in the *Det* and targets in *Proba* underscores the distinct
127 nature of DA computation in response to each of the three rules. This reinforces the idea of differences in
128 task representation.

129

130 **DA signal encodes state-specific RPEs**

131 The observed DA fluctuations suggest a link with reward prediction errors (RPEs), which we explored
132 through computational modeling. At each trial, we modeled DA as the sum of obtained reward (0 or 1)
133 and RPE, adjusting RPEs trial-by-trial using the Rescorla-Wagner model (**Fig 3A**, **Fig S6A**). From
134 previous behavioral and fiber photometry results, we posited and tested three states or configurations of
135 value representations: a simple model (M1) treating all trials equally, a model based on action (M2) with
136 distinct values for forward and U-turn actions, and a model based on state (M3) with specific values for
137 each target. We then used the mice's actual choices to compute model-dependent theoretical RPEs
138 (RPE_{Mi}) and used these to fit DA variations for each mouse (**Fig 3A**, **Fig S6A**). GLM analysis indicated
139 that for each rule, only one model significantly explained DA variation, while the others two have no effect.
140 Specifically, only M2 is significant in *Det* (**Fig 3B**), only M1 in *Cplx* (**Fig 3C**), and only M3 in *Proba* (**Fig**
141 **3D**). To confirm this analysis, we show that in the *Det* setting only M2 was able to capture the U-
142 turn/Forward effect observed in the fiber photometry data (**Fig 3E**, **Fig S6B**), and this across all learning
143 rates tested (α, see Methods). In *Cplx*, M1 was the only model that correctly captured DA variations based
144 on the previous outcome (**Fig 3G**, **Fig S6C**). Finally, in the *Proba* context, only M3, where mice learned
145 distinct values for each target based on their probabilities, reproduced the data (**Fig 3G**, **Fig S6D**). To
146 further validate these results, we performed an extra *Proba* session, where p100 was changed into
147 another p50. We observed that DA variations were still in line with the previous probability set, and that
148 unexpected omissions at this new p50 target (with V_{exp} still ~1) triggered even greater DA dips (**Fig 3H**).
149 These findings demonstrate that mice not only learned action-value associations through DA-mediated
150 RPE (contingency learning), but also adapted their set of relevant actions by changing their state
151 representation from one rule to the next (representation learning).

152

153 **DA dynamics adaptively reflects reward structure to foster strategy adaptation.**

154 We next investigated how such evolution in state representation occurred within and across each rule,
155 analyzing DA release at different phases and applying mice choice sequences to our three RL models to
156 compute RPEs. Successive GLMs revealed evolving dominance of specific models across contexts and

157 sessions (**Fig 4A, top**). In the Det sessions, DA variations correlated with M2 (Fwd vs Uturn) RPEs
158 towards the end, transitioning to M1 (any trial) dominance throughout the Cplx sessions, and then
159 progressively to M3 (p100 vs p50 vs p25) across the Proba sessions (**Fig 4A, top**). Changing the learning
160 rate of the RL algorithm affected some statistics, without altering these patterns of evolution (**Fig S7A**).
161 Changes in the success rates associated with each action paralleled changes in representations (**Fig 4A,**
162 **bottom**), especially at transitions from one rule to another, while mice face strong discrepancies between
163 their current internal model of the world and environmental feedbacks, requiring them to update their
164 representation to solve a new rule. This result suggests an adaptation to changes in reward structure.
165 Transitioning to Cplx, the success rates of all possible actions (Fwd vs Uturn, or pA vs pB vs pC) are
166 deprecated (**Fig 4A, bottom**), and the reward structure does not depend on specific actions but rather on
167 the variability in the successive execution of these actions. The increase in the average success rate is
168 actually achieved by an increase in all option-specific success rates in parallel, making a simple trial-
169 based representation (M1) suitable to behave with this rule. When exposed to the Proba rule, mice again
170 detect a change in the reward structure, with greater differences in success rates between locations (**Fig**
171 **4A, bottom**), making a target-based model (M3) very efficient to represent the task, drive choice and
172 improve performance.

173 To validate this interpretation, we returned to behavior to examine whether we could directly correlate
174 concurrent evolution of decision strategy and DA dynamics. Specifically, we estimated Δ DA, the
175 difference between DA transients associated with some options, e.g. DA(rewlpA) vs DA(rewlpB),
176 reasoning that this Δ DA might vary with choice and performance — and thus with policy (i.e., the
177 preference for one option among others). In *Det*, optimizing reward seeking involved reducing U-turns
178 and sequence complexity, with no direct DA-behavior correlation (**Fig S7B-D**). Upon transitioning to the
179 Cplx rule, mice initially faced a high rate of omissions, across all available action features, due to
180 persistence of repetitive circular choice patterns, resulting in a low success rate (**Fig S7E**). Over time,
181 they improved their success by increasing both U-turns and sequence complexity, generating more
182 variability (**Fig S7E**). However, the gap in DA signals regarding previous outcome did not evolve across
183 Cplx, nor did it correlate with any decision parameter (**Fig 4B**), showing persistent differences based on
184 reward history only (**Fig S8A-B**). Moreover, although locally performing a Uturn led to higher chance of
185 success (**Fig S8C**), mice did not seem to use that contingency as a heuristic: first, omissions did not
186 locally trigger more Utturns (**Fig S8D**), and second, mice did not increase success by performing Utturns
187 in chains, but rather by progressively learning to spread them among trials to increase variability (**Fig**
188 **S8E-F**). Altogether, the results indicate that the adaptation of decision strategy in the Cplx rule was neither
189 accompanied by concurrent adaptation of the DA signal nor was it a local reaction to omissions that
190 generated negative RPEs. Upon transition to *Proba*, mice again encountered a high rate of omissions,

191 but the distribution of those omissions was very different between possible actions, especially regarding
192 targets (**Fig 4A, bottom**). Across *Proba* sessions, mice progressively increased success, U-turns, and
193 exploitation of high-probability targets (**FigS7F**), correlating with emerging DA differences between targets
194 (**Fig 4C**). These concurrent adaptations, in choice preferences and in DA release, highlight independent
195 evolution of expected values for each rewarded location. This hypothesis was confirmed by correlation
196 analyses, demonstrating that greater divergence in DA responses to p100, p50, and p25 (higher absolute
197 Δ DA) correlated with greater success rate, U-turns (not shown), and exploitation of high-probability
198 targets, across both individuals and sessions (**Fig 4C**).

199

200 **Discussion**

201 By recording NAc DA release in a spatial three-armed bandit task with different rules of reward delivery,
202 we show how DA dynamics reflected Reward Prediction Error (RPE) computations based on different
203 task features. DA release not only conveyed value and RPE upon reward delivery or omission, but also
204 adapted based on task contingencies, thus revealing mice internal model and representation. As the
205 causal relationship between actions and outcomes varied across the different task rules, we hereby
206 demonstrate that mice learned and updated values from actions (contingency learning), and changed
207 their set of relevant states or actions from which to learn about across rules (representation learning).
208 First, our results confirm and extend a consistent pattern observed across the dopamine literature,
209 wherein phasic DA carries information regarding both the obtained value and the RPE upon delivery or
210 omission of an expected reward (6, 15–24). More specifically, DA showed peaks in response to ICSS,
211 regardless of whether the reward was expected or not. It remains unclear whether this response stems
212 from direct stimulation of MFB DA fibers, resulting in DA release in the NAc, or whether it reflects a
213 subjective value mediated by circuits beyond the DA system alone (36, 37). Nevertheless, the amplitude
214 of those peaks was modulated by task contingencies and expectations. We observed positive DA
215 transients of greater amplitude upon unexpected rewards, and negative transients following unexpected
216 omissions, a common observation in similar reward conditioning paradigms, interpreted as positive and
217 negative RPEs (6, 7, 24, 38). Using a task structured around sequential trials and choices enabled online
218 observation of such RPE computations (both positive and negative), a phenomenon yet rarely reported
219 (6, 24, 29, 39, 40), especially in the context of uncued and self-paced goal-directed decisions. These
220 findings highlight the importance of real-time trial-based RPE measurement in detecting longitudinal
221 changes in internal representation.

222 Second, mice demonstrated flexibility by switching representations and selecting relevant features to
223 efficiently associate actions with outcomes and solve various task rules, thereby improving performance.
224 These changes occurred during transitions between rules, when mice faced unexpected decrease in

225 reward reward rates, suggesting that negative prediction errors and inhibition of downstream circuits by
226 DA dips may facilitate exploration of new action representations. Under the complex rule, despite all
227 models would have yielded similar outcomes due to the nature of the algorithm, mice opted for a specific
228 representation that treat all trials equally, regardless of choice. The latter indicates a value-independent
229 decision strategy, possibly together with a meta-regulation of policy parameters (for example an adaptive
230 temperature β parameter) that promote random exploration (8, 41, 42). Upon transitioning to probabilistic
231 setting, mice required several sessions to adjust their value representation, linking expected values to
232 spatial preferences in a classical value-based decision-making process.
233 Learning rates also influenced DA variations and choice preferences. Although we used a constant rate
234 for simplicity, learning rates might vary across contexts and individuals. Selective attention (1, 43) has
235 been proposed as an adaptive mechanism by which individuals can identify and assign credit to task-
236 relevant features from which to learn about (1, 43) possibly adjusting learning rates independently for
237 each feature to widen the range of decision strategy adaptations. Lastly, while multiple brain areas appear
238 to encode specific environmental features (11–14), the DA signal recorded here appeared to resolve only
239 those features that are important for action-outcome association and used for action selection. As a result,
240 DA dynamics could be leveraged to infer how representations are formed and how mice can flexibly adapt
241 them to solve new rules.

242 **References**

- 243 1. Y. Niv, Learning task-state representations. *Nat Neurosci* 22, 1544–1553 (2019).
- 244 2. P. Dayan, Y. Niv, Reinforcement learning: The Good, The Bad and The Ugly. *Current opinion in*
245 *neurobiology* 18, 185–196 (2008).
- 246 3. R. S. Sutton, A. G. Barto, *Reinforcement Learning* (MIT Press, 1998)MIT Press.
- 247 4. H. Nakahara, O. Hikosaka, Learning to represent reward structure: A key to adapting to complex
248 environments. *Neuroscience Research*, 1–7 (2012).
- 249 5. B. F. Skinner, "Superstition" in the pigeon. *J. Exp. Psychol.* 38, 168–172 (1948).
- 250 6. T. A. Krausz, A. E. Comrie, A. E. Kahn, L. M. Frank, N. D. Daw, J. D. Berke, Dual credit assignment
251 processes underlie dopamine signals in a complex spatial environment. *Neuron*, doi:
252 10.1016/j.neuron.2023.07.017 (2023).
- 253 7. E. Bousseyrol, S. Didienne, S. Takillah, C. Prevost-Solié, M. Come, T. A. Yahia, S. Mondoloni, E.
254 Vicq, L. Tricoire, A. Mourot, J. Naudé, P. Faure, Dopaminergic and prefrontal dynamics co-determine
255 mouse decisions in a spatial gambling task. *Cell Rep.* 42, 112523 (2023).
- 256 8. M. Belkaid, E. Bousseyrol, R. D. Cuttoli, M. Dongelmans, E. K. Duranté, T. A. Yahia, S. Didienne, B.
257 Hanesse, M. Come, A. Mourot, J. Naudé, O. Sigaud, P. Faure, Mice adaptively generate choice
258 variability in a deterministic task. *Communications Biology* 3, 1–9 (2020).
- 259 9. C. C. Beron, S. Q. Neufeld, S. W. Linderman, B. L. Sabatini, Mice exhibit stochastic and efficient
260 action switching during probabilistic decision making. *Proc National Acad Sci* 119, e2113961119 (2022).
- 261 10. D. G. R. Tervo, M. Proskurin, M. Manakov, M. Kabra, A. Vollmer, K. Branson, A. Y. Karpova,
262 Behavioral variability through stochastic choice and its gating by anterior cingulate cortex. *Cell* 159, 21–
263 32 (2014).
- 264 11. A. Banerjee, G. Parente, J. Teutsch, C. Lewis, F. F. Voigt, F. Helmchen, Value-guided remapping of
265 sensory cortex by lateral orbitofrontal cortex. *Nature* 585, 245–250 (2020).
- 266 12. D. J. Barraclough, M. L. Conroy, D. Lee, Prefrontal cortex and decision making in a mixed-strategy
267 game. *Nature Neuroscience* 7, 404–410 (2004).
- 268 13. S. Han, F. Helmchen, Behavior-relevant top-down cross-modal predictions in mouse neocortex. *Nat.*
269 *Neurosci.* 27, 298–308 (2024).
- 270 14. J. Poort, A. G. Khan, M. Pachitariu, A. Nemri, I. Orsolic, J. Krupic, M. Bauza, M. Sahani, G. B.
271 Keller, T. D. Mrsic-Flogel, S. B. Hofer, Learning Enhances Sensory and Multiple Non-sensory
272 Representations in Primary Visual Cortex. *Neuron* 86, 1478–1490 (2015).
- 273 15. P. R. Montague, P. Dayan, T. J. Sejnowski, A framework for mesencephalic dopamine systems
274 based on predictive Hebbian learning. *The Journal of neuroscience : the official journal of the Society for*
275 *Neuroscience* 16, 1936–1947 (1996).
- 276 16. W. Schultz, P. Dayan, P. R. Montague, A Neural Substrate of Prediction and Reward. *Science* 275,
277 1593–1599 (1997).
- 278 17. N. Eshel, J. Tian, M. Bukwicz, N. Uchida, Dopamine neurons share common response function for
279 reward prediction error. *Nature Neuroscience* 19, 479–486 (2016).
- 280 18. H. M. Bayer, P. W. Glimcher, Midbrain dopamine neurons encode a quantitative reward prediction
281 error signal. *Neuron* 47, 129–141 (2005).
- 282 19. P. N. Tobler, C. D. Fiorillo, W. Schultz, Adaptive coding of reward value by dopamine neurons.
283 *Science (New York, N.Y.)* 307, 1642–1645 (2005).

284 20. W. Schultz, Getting formal with dopamine and reward. *Neuron* 36, 241–263 (2002).

285 21. E. E. Steinberg, R. Keiflin, J. R. Boivin, I. B. Witten, K. Deisseroth, P. H. Janak, A causal link
286 between prediction errors, dopamine neurons and learning. *Nature Neuroscience*, 1–10 (2013).

287 22. M. R. Roesch, D. J. Calu, G. Schoenbaum, Dopamine neurons encode the better option in rats
288 deciding between differently delayed or sized rewards. *Nature Neuroscience* 10, 1615–1624 (2007).

289 23. M. G. Kutlu, J. E. Zachry, P. R. Melugin, J. Tat, S. Cajigas, A. U. Isikta, D. D. Patel, C. A. Siciliano,
290 G. Schoenbaum, M. J. Sharpe, E. S. Calipari, Dopamine signaling in the nucleus accumbens core
291 mediates latent inhibition. *Nat. Neurosci.* 25, 1071–1081 (2021).

292 24. A. Mohebi, J. R. Pettibone, A. A. Hamid, J.-M. T. Wong, L. T. Vinson, T. Patriarchi, L. Tian, R. T.
293 Kennedy, J. D. Berke, Dissociable dopamine dynamics for learning and motivation. *Nature* 570, 65–70
294 (2019).

295 25. J. W. de Jong, Y. Liang, J. P. H. Verharen, K. M. Fraser, S. Lammel, State and rate-of-change
296 encoding in parallel mesoaccumbal dopamine pathways. *Nat. Neurosci.* 27, 309–318 (2024).

297 26. S. J. Gershman, J. A. Assad, S. R. Datta, S. W. Linderman, B. L. Sabatini, N. Uchida, L. Wilbrecht,
298 Explaining dopamine through prediction errors and beyond. *Nat. Neurosci.*, 1–11 (2024).

299 27. A. Lak, W. R. Stauffer, W. Schultz, Dopamine prediction error responses integrate subjective value
300 from different reward dimensions. *Proceedings of the National Academy of Sciences of the United
301 States of America* 111, 2343–2348 (2014).

302 28. C. D. Fiorillo, P. N. Tobler, W. Schultz, Discrete coding of reward probability and uncertainty by
303 dopamine neurons. *Science (New York, N.Y.)* 299, 1898–1902 (2003).

304 29. A. A. Hamid, J. R. Pettibone, O. S. Mabrouk, V. L. Hetrick, R. Schmidt, C. M. V. Weele, R. T.
305 Kennedy, B. J. Aragona, J. D. Berke, Mesolimbic dopamine signals the value of work. *Nature
306 Neuroscience*, doi: 10.1038/nn.4173 (2015).

307 30. E. S. Bromberg-Martin, M. Matsumoto, O. Hikosaka, Dopamine in motivational control: rewarding,
308 aversive, and alerting. *Neuron* 68, 815–834 (2010).

309 31. E. S. Bromberg-Martin, O. Hikosaka, Midbrain dopamine neurons signal preference for advance
310 information about upcoming rewards. *Neuron* 63, 119–126 (2009).

311 32. L. T. Coddington, J. T. Dudman, The timing of action determines reward prediction signals in
312 identified midbrain dopamine neurons. *Nat Neurosci* 21, 1563–1573 (2018).

313 33. J. D. Berke, What does dopamine mean? *Nat Neurosci* 21, 787–793 (2018).

314 34. M. Dongelmans, R. D. Cuttoli, C. Nguyen, M. Come, E. K. Duranté, D. Lemoine, R. Brito, T. A.
315 Yahia, S. Mondoloni, S. Didienne, E. Bousseyrol, B. Hannesse, L. M. Reynolds, N. Torquet, D. Dalkara,
316 F. Marti, A. Mourot, J. Naudé, P. Faure, Chronic nicotine increases midbrain dopamine neuron activity
317 and biases individual strategies towards reduced exploration in mice. *Nat Commun* 12, 6945 (2021).

318 35. J. Naudé, S. Tolu, M. Dongelmans, N. Torquet, S. Valverde, G. Rodriguez, S. Pons, U. Maskos, A.
319 Mourot, F. Marti, P. Faure, Nicotinic receptors in the ventral tegmental area promote uncertainty-
320 seeking. *Nature Neuroscience* 19, 471–478 (2016).

321 36. I. Trujillo-Pisanty, K. Conover, P. Solis, D. Palacios, P. Shizgal, Dopamine neurons do not constitute
322 an obligatory stage in the final common path for the evaluation and pursuit of brain stimulation reward.
323 *PLoS ONE* 15, e0226722 (2020).

324 37. S. J. Millard, I. B. Hoang, S. Sherwood, M. Taira, V. Reyes, Z. Greer, S. L. O'Connor, K. M.
325 Wassum, M. H. James, D. J. Barker, M. J. Sharpe, Cognitive representations of intracranial self-

326 stimulation of midbrain dopamine neurons depend on stimulation frequency. *Nat. Neurosci.* 27, 1253–
327 1259 (2024).

328 38. M. Blanco-Pozo, T. Akam, M. E. Walton, Dopamine-independent effect of rewards on choices
329 through hidden-state inference. *Nat. Neurosci.*, 1–12 (2024).

330 39. L. T. Coddington, S. E. Lindo, J. T. Dudman, Mesolimbic dopamine adapts the rate of learning from
331 action. *Nature*, 1–9 (2023).

332 40. M. G. Kutlu, J. E. Zachry, P. R. Melugin, S. A. Cajigas, M. F. Chevee, S. J. Kelly, B. Kutlu, L. Tian,
333 C. A. Siciliano, E. S. Calipari, Dopamine release in the nucleus accumbens core signals perceived
334 saliency. *Curr. Biol.* 31, 4748–4761.e8 (2021).

335 41. M. Dubois, J. Habicht, J. Michely, R. Moran, R. J. Dolan, T. U. Hauser, Human complex exploration
336 strategies are enriched by noradrenaline-modulated heuristics. *eLife* 10 (2021).

337 42. R. C. Wilson, A. Geana, J. M. White, E. A. Ludvig, J. D. Cohen, Humans use directed and random
338 exploration to solve the explore-exploit dilemma. *Journal of experimental psychology. General* 143,
339 2074–2081 (2014).

340 43. S. J. Gershman, K. A. Norman, Y. Niv, Discovering latent causes in reinforcement learning. *Curr.*
341 *Opin. Behav. Sci.* 5, 43–50 (2015).

342

343 **Acknowledgements:**

344 This work was supported by the Centre National de la Recherche Scientifique CNRS UMR 8246 and
345 8249, INSERM U1130. We are grateful to the animal facilities (IBPS) and Otilia de Oliveira and Emilie
346 Tubeuf at ESPCI animal facilities. We also thank Jérémie Naudé and Clément Solié for their comments
347 on the manuscript.

348

349 **Fundings:**

350 The Foundation for Medical Research (FRM, Equipe FRM DEQ2013326488 to P.F), the French National
351 Cancer Institute Grant TABAC-16-01, TABAC-19-020 and SPA-21-002 (to P.F.). French state funds
352 managed by the ANR (ANR-19-CE16-0028 Bavar to PF). Fourth-year PhD fellowship from the Foundation
353 for Medical Research (FDT201904008060 to MC).

354

355 **Authors contributions:**

356 Conceptualization: MC, PF
357 Injection and implantation surgeries: MC
358 Behavioral experiments: MC, AG, LK
359 Fiber photometry recordings: MC, AG
360 Intracardiac perfusions and immunohistochemistry: MC, AG, EV, TLB
361 Data analysis: MC, PF
362 Modelling: MC, PF
363 Setups development: MC, JJ, AM, EB, SD, PF
364 Funding acquisition: PF
365 Writing - original draft: MC, PF
366 Writing - review and editing: MC, TLB, AM, PF

367

368 **Competing interests:**

369 Authors declare that they have no competing interests

370

371 **Data and materials availability:** All the data that support the findings of this study can be found in the
372 Source Data file provided with the paper. If necessary, the raw data from the online behavioral experiment
373 (i.e the trajectories) are available from the corresponding author. All codes used to run the analysis are
374 available from the authors upon request.

375 **Supplementary Materials**

376 Materials and Methods

377 Figs. S1 to S8

378 Tables of detailed statistics for Figs. 1-4 and Supp S1-S8

379 References

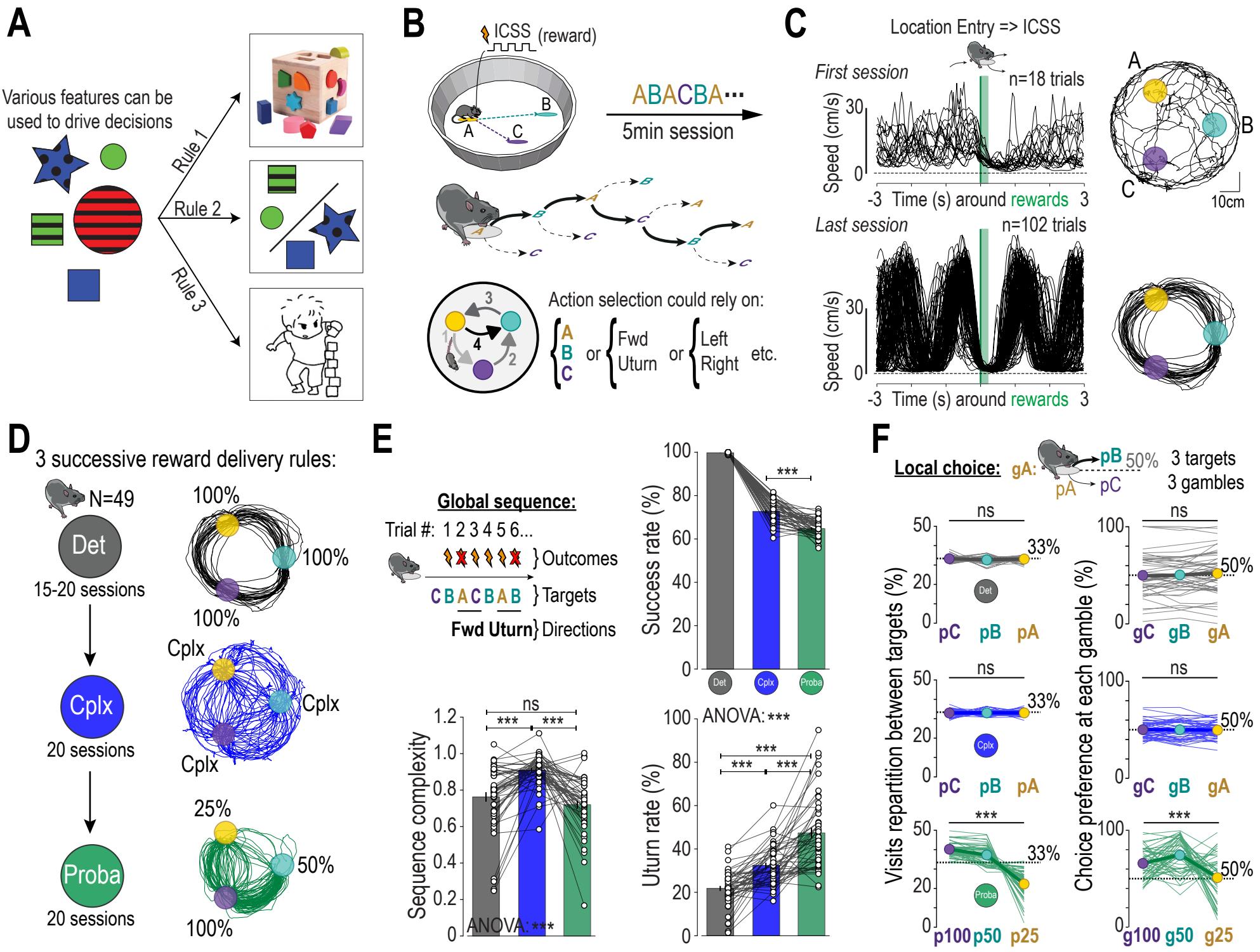
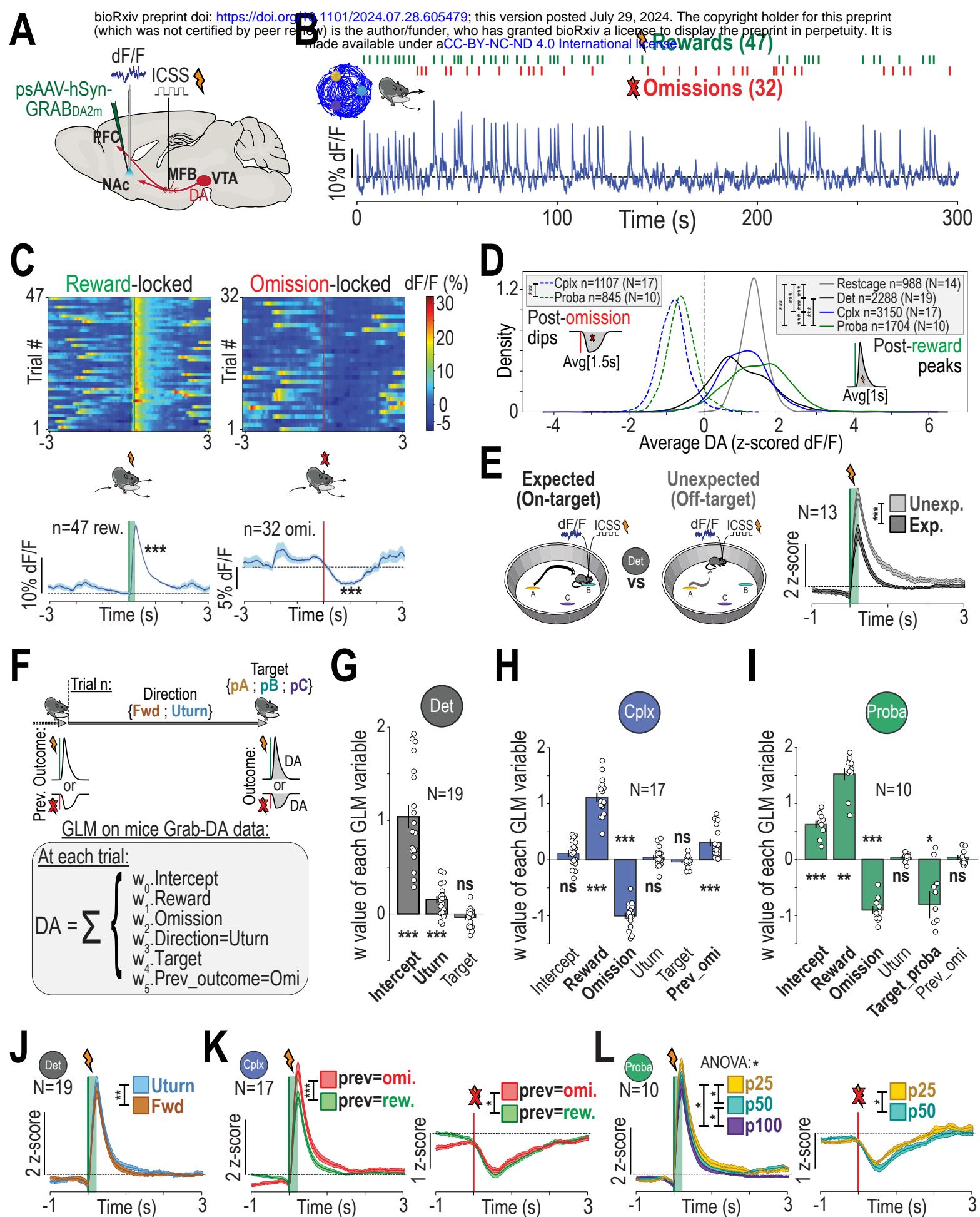
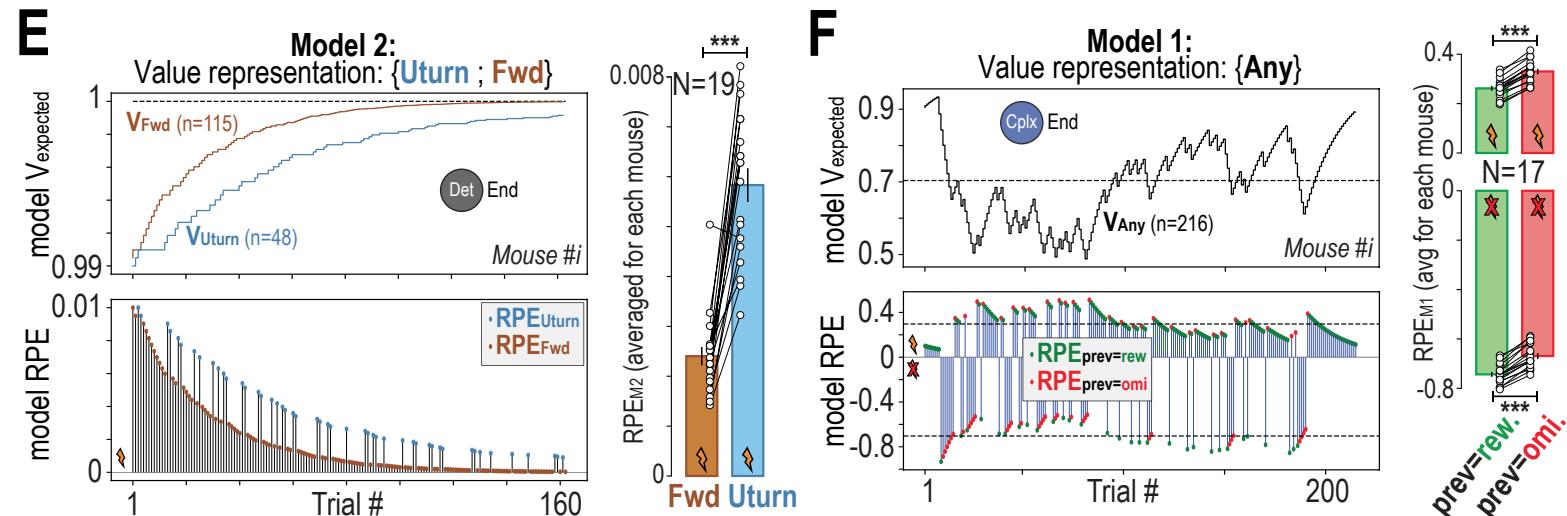
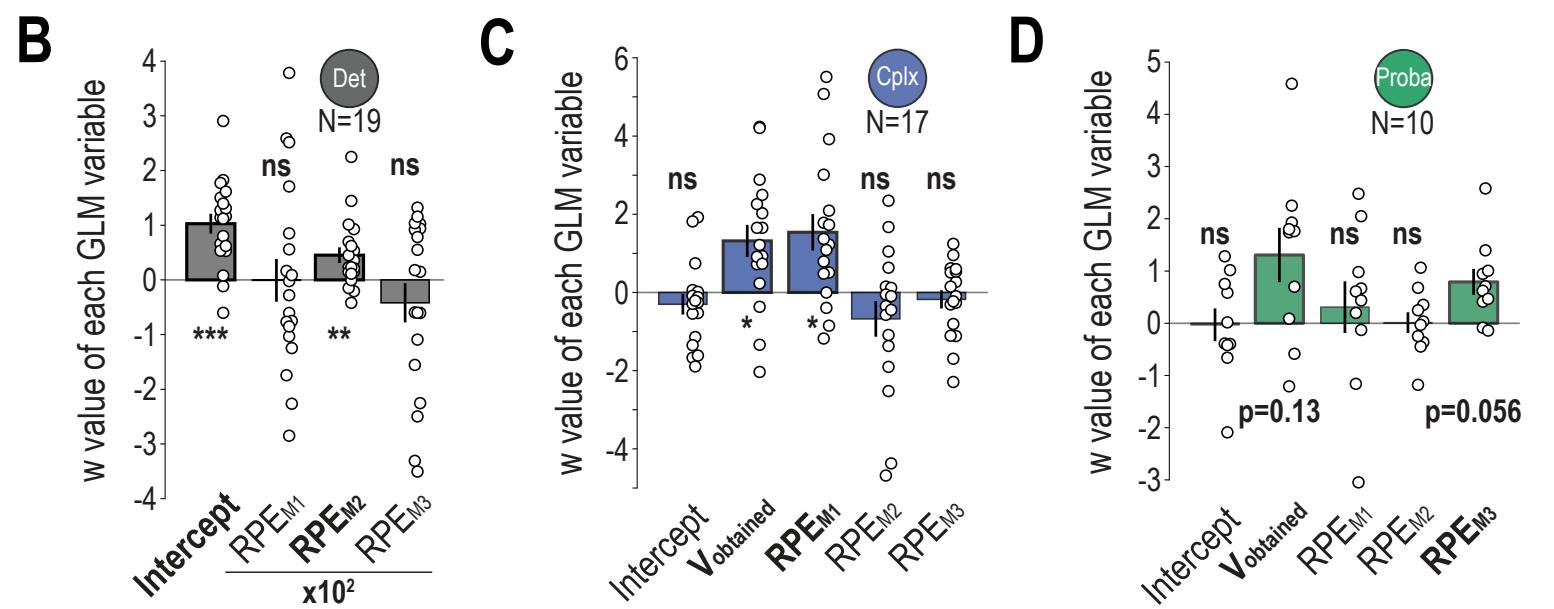
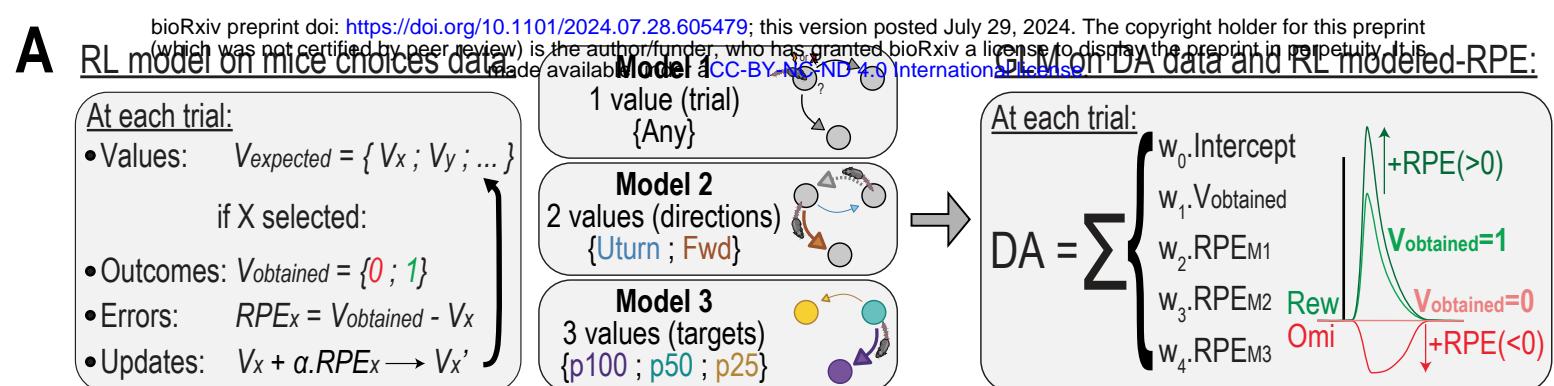
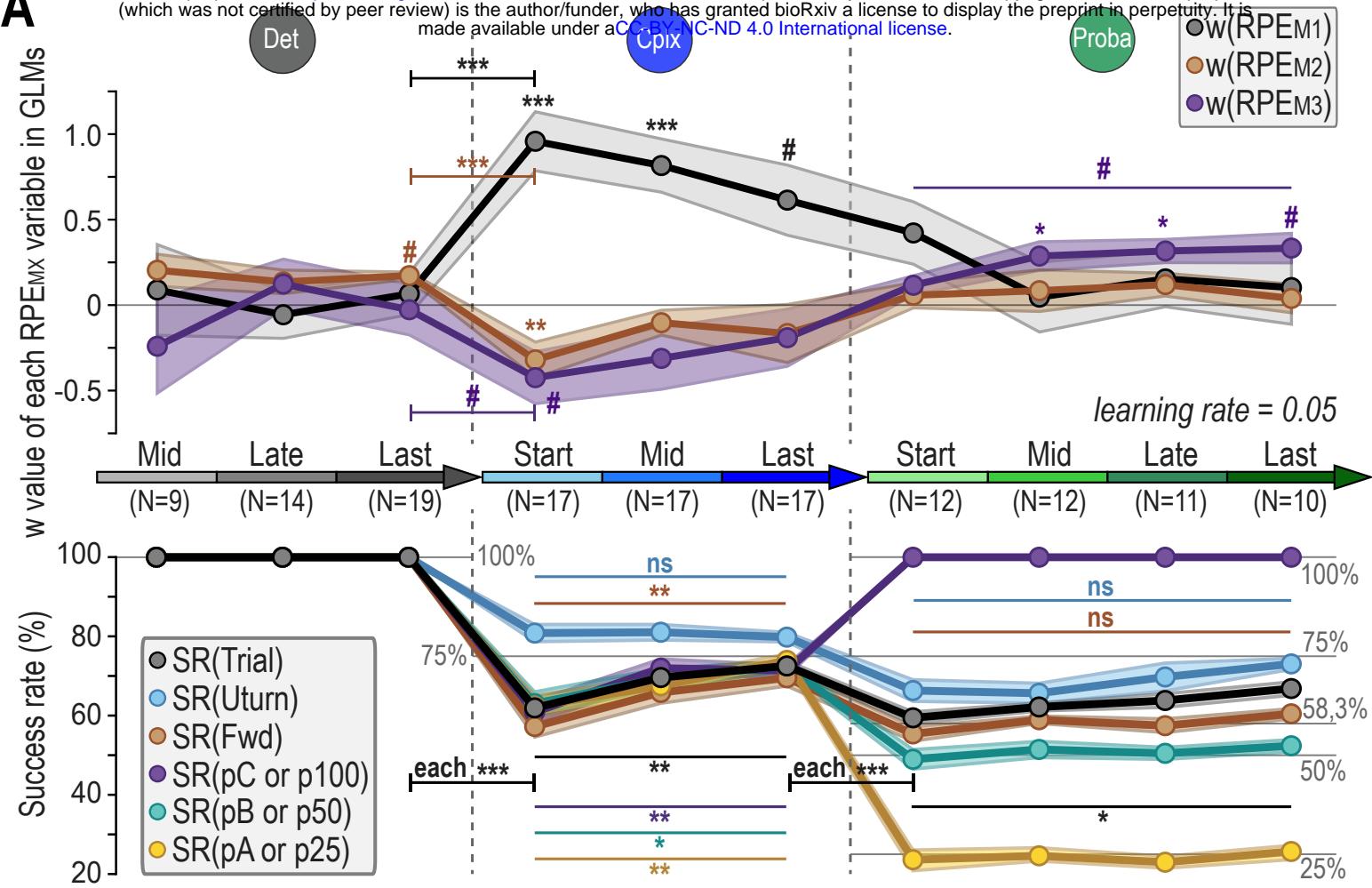


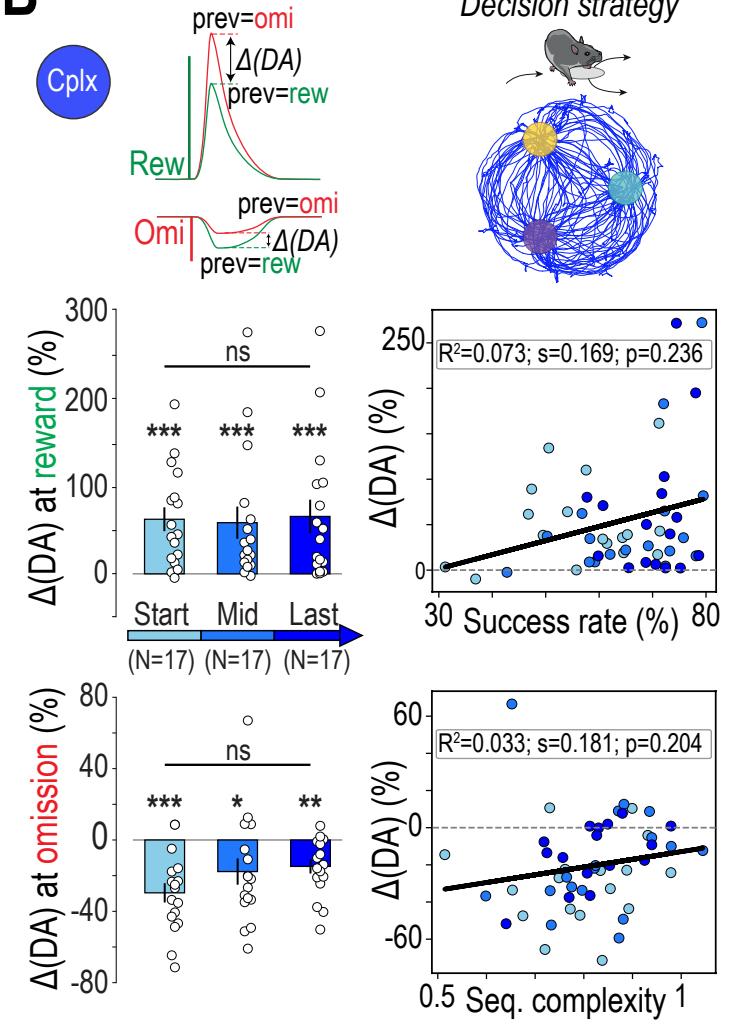
Figure 1

380 **Fig. 1. Mice display distinct reward seeking strategies adapted to each rule.** **A.** From a variety of
381 overlapping features, individuals can learn value and take decisions depending on the rule. **B.** Mice
382 perform successive binary choices to collect ICSS rewards. Choice could rely on various overlapping sets
383 of actions. **C.** Speed profiles and trajectories throughout conditioning. **D.** Three reward delivery rules were
384 successively proposed: Deterministic (*Det*) where all trials were rewarded (P=100%), Complexity (*Cplx*),
385 where trials are rewarded based on sequence variability, and Probabilistic (*Proba*), with each target
386 associated to a given probability (P=25%, 50%, and 100%). **E.** Succession of trials and choices generates
387 sequences of outcomes (rewards and omissions), targets (A, B and C) and directions (Forwards and
388 Utturns). Comparison of success rate, sequence complexity and Utturn rate reveals distinct reward seeking
389 strategies across contexts. **F.** Locally, a mouse on one location (ex: p_A) has the choice between the two
390 others (ex: p_B vs p_C), and therefore performs a gamble computed as $g_A = P(p_B|p_A)$. $g > 50\%$ corresponds
391 to clockwise rotation for *Det* and *Cplx*, and to preference for highest probability of reward for *Proba*.
392 Proportion of target visits and choice preference at each gamble show a bias for circular foraging in *Det*,
393 exploitation in *Proba*, and randomness in *Cplx*. Data are shown as individual points, and mean \pm sem.
394 N=49 mice (23 males and 26 females).


Figure 2

395 **Fig. 2: NAc DA release dynamics reveal expectations built upon rule-specific features. A.**
396 Schematic of the experimental design to record DA release during the task with chronic fiber photometry.
397 **B.** Representative signal from one 5-min session. **C.** For the same example session, signal is time-locked
398 on location entry (t0) and averaged. Rewards induce peaks and omissions induce dips of DA release. **D.**
399 Density distribution of averaged DA variations for rewards and omissions for the last two sessions of Det,
400 Cplx or Proba, and for random stimulations in the rest cage (performed on last day of Det). **E.** After
401 conditioning, mice were randomly and unexpectedly stimulated during the task outside of the rewarded
402 zones (off-target), triggering DA peaks of greater amplitude. **F.** Each trial is defined by predictors (outcome
403 received, previous outcome received, trajectory chosen to reach target, and target chosen) to fit DA
404 amplitude using GLMs. **G-H-I.** GLM results at the end of Det, Cplx and Proba. Features explaining DA
405 variations vary across contexts. **J-K-L.** Direct analysis of DA transients locked on those significant
406 features (Uturn vs Fwd in Det ; reward vs omission at previous trial in Cplx ; p25 vs p50 vs p100 in Proba).
407 Data are shown as individual points, and/or mean \pm sem. n is the number of trials, N the number of mice
408 in each condition.



409 **Fig. 3: DA signal embeds an RPE component, modelled from distinct value representations**
410 **specific to each rule. A.** Mice choice sequences were taken to train Reinforcement Learning (RL)
411 algorithms, testing three possible action representations to update values and compute corresponding
412 RPEs. Model 1 (M1) treats all trials equally with fluctuating $\{ V_{\text{Any}} \}$. M2 updates a set of two distinct values
413 $\{ V_{\text{Fwd}} ; V_{\text{Uturn}} \}$. A spatial model (M3) computes three independent values for each target $\{ V_{pA} ; V_{pB} ; V_{pC} \}$.
414 We then trained another GLM assuming $DA = V_{\text{obtained}} + RPE$, with trial RPEs generated from M1, M2
415 and M3. **B-C-D.** GLM results in Det, Cplx and Proba. Models reproducing RPEs that explained DA
416 variations vary across contexts. **E-F-G.** Evolution of expected value and RPE for M1, M2 or M3 in example
417 sessions (left) and on average (right). **E.** In M2-Det, convergence toward 1 is slower for Uturns, leading
418 to higher RPE_{Uturn} and reproducing DA data. **F.** In M1-Cplx, V_{Any} is always updated and fluctuates around
419 mean success rate. Plotting corresponding RPEs regarding current and previous outcomes mimic DA
420 data. **G.** In M3-Proba, value of each target converges and then fluctuates around its probability, and
421 corresponding RPEs reproduce DA data. **H.** At the end of Proba, probability of the p100 location was
422 changed to 50%. Omissions at target p100=>50 triggered deeper DA dips, while GLM shows DA still
423 varies with the old probability set. Data are shown as individual points, and/or mean \pm sem. n is the number
424 of trials, N the number of mice in each condition.

A

B

C

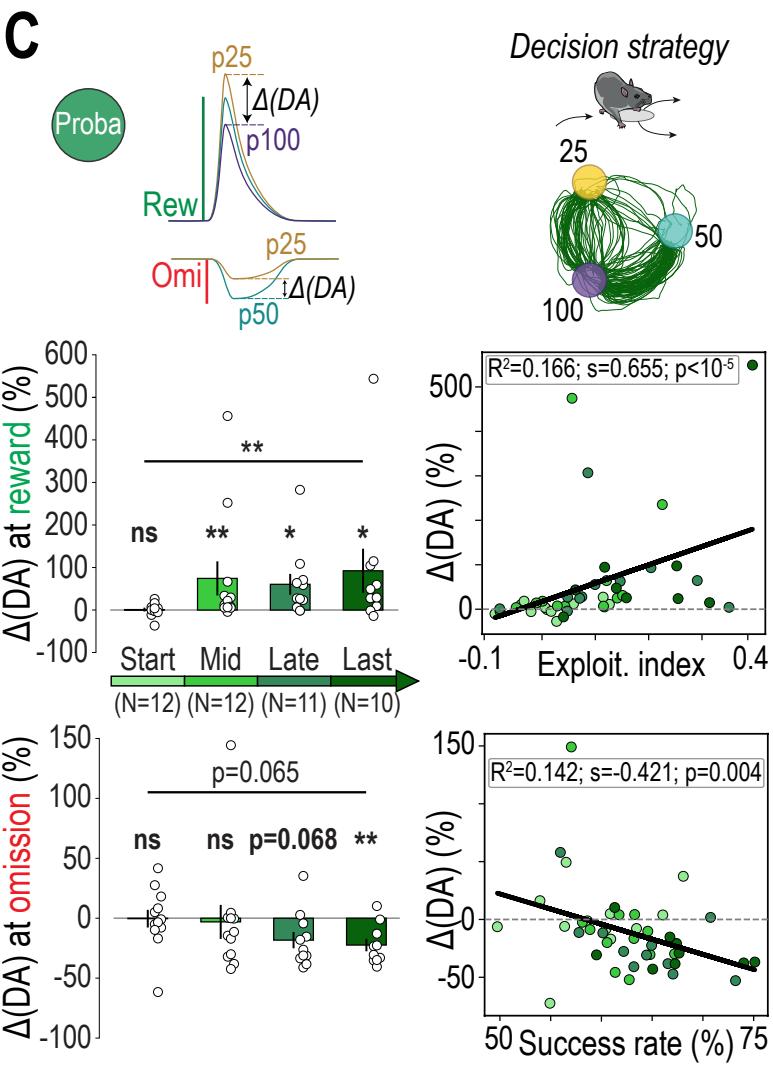


Figure 4

425 **Fig. 4: DA reflects switches in task representations, fostering strategy adaptation to improve**
426 **performance. A.** Top: The approach of RL modelling and GLM fitting DA data with computed RPEs used
427 in Fig 3 was extended at different phases across each rule. To mimic mice learning, we took the final
428 values of models at phase n to feed the initial values of models at phase n+1. Plots show evolution of
429 RPE_{M1} (black), RPE_{M2} (brown) and RPE_{M3} (purple) weights over time. Bottom: Parallel general or action-
430 related success rates. Rule transitions represent high degrees of discrepancy. **B.** ΔDA is computed for
431 each session of each mouse as the relative difference $\Delta = (\text{prev_omi} - \text{prev_rew}) / \text{prev_rew}$, for both
432 rewards and omissions, showing significant effect of previous outcome for all phases in *Cplx*, but with
433 neither ΔDA adaptation across sessions, nor correlation with any decision parameter across sessions and
434 individuals. **C.** Same as B, but computing ΔDA as difference between high and low probability targets in
435 *Proba*. ΔDA adapts throughout the *Proba* sessions, with strong correlations with decision parameters.
436 (Data are shown as individual points, and/or mean \pm sem. In B, C linear regressions, each data point is
437 one animal at one phase. In A, due to multiple corrections (x10) generating dilutions in p-values, # symbol
438 has been added to highlight p<0.12 after correction. N is always the number of mice in each context.

1
2
3
4

Supplementary Materials

5 **Materials and Methods**

6

7 **Animals:** Experiments were performed on adult C57Bl/6Rj wild-type mice (Janvier Labs, France). Both
8 male and female mice, weighing 20-30 g and 8 weeks old at the time of surgery, were used for behavioral
9 experiments. Only male mice were used in the GRAB_{DA} fiber photometry cohorts. For cre-dependent
10 GCaMP experiments, DATiCre male mice were used. All mice were kept in an animal facility where
11 temperature (20 ± 2°C) and humidity were automatically monitored and a circadian 12/12h light-dark
12 cycle was maintained. All experiments were performed in accordance with the recommendations for
13 animal experiments issued by the European Commission directives 219/1990, 220/1990, and 2010/63,
14 and approved by Sorbonne University and ESPCI.

15

16 **AAV production:** AAVs for GRAB_{DA2m} (pXR1-AAV-hSyn-GRAB-DA4.4) were produced as previously
17 described (1) (using the cotransfection method from plasmids generously provided by Dr. Yulong Lee (2,
18 3) and purified by iodixanol gradient ultracentrifugation(4)). AAV vector stocks were tittered by quantitative
19 PCR (qPCR) (5) using SYBR Green (Thermo Fischer Scientific). AAV vectors for GCaMP6f (AAV1-EF1a-
20 DIO-GCaMP6f-P2A-nls-dTomato) and GCaMP7c (pGP-AAV1-syn-FLEX-jGCaMP7c variant 1513-
21 WPRE) were directly ordered from Addgene.

22

23 **Intracranial self-stimulation (ICSS) electrode implantation:** Male and female WT mice were
24 anaesthetized with a gas mixture of oxygen (1 L/min) and 1-3% of isoflurane (Piramal Healthcare, UK)
25 and then placed into a stereotaxic frame (Kopf Instruments, CA, USA). After the administration of a local
26 anesthetic (Eurocain, 0.1 mL at 0.67 mg/kg), a median incision revealed the skull, which was drilled at the
27 level of the median forebrain bundle (MFB). For ICSS, a bipolar stimulating electrode (PlasticOne 2
28 channels, stainless steel, 10 mm) was then implanted unilaterally (left or right, randomized) in the brain
29 using the following stereotaxic coordinates (from bregma according to Paxinos atlas): AP -1.4 mm, ML
30 ±1.2 mm, DV -4.8 mm from the brain). Dental cement (SuperBond, Sun Medical) was used to fix the
31 implant to the skull. An analgesic solution of buprenorphine at 0.015 mg/L (0.1 mL/10 g) was delivered
32 prior to awakening from the surgery and, if necessary, the following recovering days. After stitching, mice
33 were placed back in their home-cage and had a minimum of 5 days to recover from surgery. The efficacy
34 of electrical stimulation was verified through the rate of conditioning during the deterministic setting (see
35 Intracranial Self Stimulation (ICSS) bandit task). Out of the 54 mice implanted (27 for each sex), 49 were
36 included in the results (23 males and 26 females).

38 **Virus injections and fiber photometry recordings:** 3 cohorts of WT male mice (total of 24) were
39 anaesthetized (Oxygen 1 L/min, Isoflurane 1–3%) and implanted with an ICSS electrode as described
40 above. They were then injected unilaterally (randomized left/right side and ipsi/contralateral side regarding
41 the ICSS electrode) in the NAc lateral shell (1 μ L, coordinates from bregma: AP +1.45mm; ML \pm 1.55mm;
42 DV –4.05mm from the skull) with an adeno-associated virus (2, 3) to express GRAB_{DA2m}. An optical fiber
43 (200 μ m core, NA = 0.39, Thor Labs) coupled to a metallic ferule (1.25 mm) was implanted 100 μ m above
44 the injection site in target region and cemented to the skull with blackened cement. 5 DATiCre male mice
45 followed the same procedures for GCaMP experiments in the VTA (1 μ L, coordinates from bregma: AP -
46 3.10mm; ML \pm 0.50mm; DV –4.20mm from the brain), 3 of them with GCaMP7c and 2 with GCaMP6f.
47 Viral expression typically took 10-15 days to achieve a satisfying signal and lasted for up to 3 months.
48 However, some mice exhibited a shorter duration of expression and were therefore excluded for the
49 analysis of later sessions. Although the mice performed the task on a daily basis, fluorescent recordings
50 were made only every 2 or 3 days to prevent sensor bleaching. Low power (100-200 mA) LEDs (465 nm
51 and 405 nm, Doric Lenses) coupled to a patch cord (500 μ m core, NA = 0.5, Prizmatix) were used for
52 optical stimulation of the sensors in lock-in mode (572.205 Hz for the 465 nm LED, 208.616 Hz for the
53 405 nm LED) and collection of 520 nm fluorescence. 405 nm was used as the isobestic wavelength. The
54 optical stimulation patch cord was plugged onto the ferrule during all experimental sessions, even those
55 without recordings, to habituate animals and control for latent experimental effects. After the daily session,
56 a short recording of the autofluorescence signal $F(auto)$, coming from the patchcord only, was
57 performed with same LED intensities, no animal plugged and room in the dark. Raw 520 nm fluorescence
58 was demodulated by the software (Doric Lenses) to extract 465 nm and 405 nm signals. The 405 nm
59 signal was visually checked to account for instability artefacts coming from head movements or patch
60 cord unplugging during the session, and if needed correct the associated 465 nm signal accordingly,
61 otherwise it was not used for signal treatment. 465 nm signal F_i follows several treatment steps according
62 to this formula:

$$63 \quad \frac{dF_i}{F_0} = \frac{F_i - F(auto) - F_i(fit)}{F_i(fit)} - 1$$

64 First F_i is subtracted with the constant value of autofluorescence $F(auto)$ measured with patch cord only,
65 improving drastically the signal-to-noise ratio. Then, largest transients induced by ICSS were excluded to
66 perform a smoothing on the subsequent truncated signal. We then computed a mono-exponential fit
67 $F_i(fit)$ on this smoothed signal, which was also subtracted to F_i at each time point i to account for
68 exponential decay. The result is then divided by the same $F_i(fit)$ at each time point i to normalize the
69 signal around 1, and subtracted by the constant 1 to normalize to 0 and obtain positive or negative

70 transients as dF_i/F_0 over an entire session (5 or 10min). In order to aggregate signals coming from different
71 sessions for each mouse, and then pool mice for the analysis, we also applied a z-scoring on dF_i/F_0 over
72 each entire session.

73

74 **Intracranial self-stimulation (ICSS) bandit task** The ICSS bandit task (6–9), took place in a circular
75 open-field with a diameter of 68 cm. Three explicit square-shaped marks (2×2 cm) were taped in the
76 open field, forming an equilateral triangle (side = 35 cm). Entry in the circular zones (diameter = 6 cm)
77 around each mark was associated with the delivery of a rewarding ICSS stimulation. A LabVIEW (National
78 Instruments) application precisely tracked and recorded the animal's position with a camera (20 frames/s).
79 When a mouse was detected in one of the circular rewarding zones, a TTL signal was sent to the electrical
80 stimulator, which generated a 200 ms train of 5 ms biphasic square waves pulsed at 100 Hz (20 pulses
81 per train). Two consecutive rewards could not be delivered on the same target, which motivated mice to
82 alternate between targets and therefore generate sequences of binary choices. ICSS intensity was
83 adjusted, within a range of 15–200 μ A, during early conditioning sessions, so that mice would achieve
84 between 50 and 120 visits per session (5 min duration) for two successive sessions. ICSS intensity was
85 then kept constant for all the experiments, even when reward delivery rules changed. Mice with insufficient
86 scores were excluded. Different reward delivery rules were used, and all animals went through all three
87 protocols successively. The first is a deterministic (Det) setting, with 10 to 15 daily sessions of 5 min. All
88 zones were associated with an ICSS delivery ($P = 100\%$). The second, described previously in (6), is a
89 complex (Cplx) setting where a grammatical complexity algorithm (10) analyses online the choice
90 sequence that the mouse is producing, calculates the complexity of two potential sequences of length 10
91 (9 past targets + next target among the 2 available) and gives a reward only if the complexity of the
92 sequence increases. Repeating patterns of low complexity will therefore lead to series of omissions, while
93 increasing variability will increase success rate. Mice did daily sessions during 15–20 days. The third
94 setting is probabilistic (Proba): each target is associated with a probability to obtain an ICSS stimulation
95 among three ($P = 25\%$, $P = 50\%$, $P = 100\%$), as described previously (7–9). The probabilities at each
96 location were pseudo-randomly assigned per mouse, and 15–20 sessions were performed. 2 cohorts of
97 both male and female mice followed deterministic, complexity and probability settings successively, with
98 no fluorescent sensor expression. Three cohorts of male mice expressing GRAB_{DA} and implanted with an
99 optical fiber implantation followed different settings: *i*) the first cohort performed only Det and Cplx, and
100 recordings started only at the end of Det, *ii*) the second and third cohorts performed Det, Cplx and Proba,
101 with recordings starting at the beginning of Det, and performed also some control experiments (especially,
102 unexpected rest cage and off-target ICSS). Consequently, there is variation in animal numbers among
103 conditions in the figures. Finally, one cohort of DATiCre male mice was tested in Det and Cplx only.

104
105 **Behavioral measures:** For all those groups, the following measures were analyzed with custom codes
106 in Python (using mostly Numpy and Pandas libraries, on PyCharm CE) and compared throughout the
107 different rules: *i*) number of visits, *ii*) success rate, *iii*) time-to-goal, *iv*) choice repartition (proportion of
108 visits at each location), *v*) percentage of U-turn (target n = target n+2) and *vi*) sequence complexity
109 (applying the same complexity algorithm calculation but offline and for all choices during a session).
110 Furthermore, the ICSS bandit task can be seen as a Markovian decision process: every transition can be
111 considered as a binary choice between two options, since a zone cannot be reinforced twice in a row.
112 The sequence of choices per session results from the succession of three specific binary choices, or
113 gambles. For deterministic and complexity, $G_c = P(A|C)$ would be the total number of visits in target A
114 divided by the total number of visits in targets A and B, when the animal is in target C. Similarly, $G_a =$
115 $P(B|A)$ and $G_b = P(C|B)$. A gamble above 50% indicates that the animal has a preference for moving
116 clockwise (or below 50% for moving counter-clockwise). In probabilistic, direction of conditional
117 probabilities does not follow spatial repartition of locations, but rather preference for the high value option:
118 $G_{25} = 100\%$ vs 50%, $G_{100} = 50\%$ vs 25% and $G_{50} = 100\%$ vs 25%. Applying this principle at each choice,
119 those 3 gambles can be aggregated into single values to give circularity index (going in circle, no matter
120 clockwise or counter-clockwise), exploitation index (always preferring the highest value option) or
121 repetition index (always making the same choice at given gamble, no matter the direction or exploitation).
122
123 **Fiber photometry analysis:** All treatments and analyses were performed in Python using custom codes
124 (mostly Numpy and Pandas libraries). After cleaning and processing each session signal to obtain dF/F
125 values and z-scored dF/F values, events of interest were extracted to align the signal in [-3s:3s] time
126 window in dataframes, t_0 being the exact time of location entry (triggering reward delivery or omission),
127 with 1kHz sampling. Session-wise averages of given conditions for each mouse were then extracted, and
128 averaged again over multiple mice for statistical analyses. In some conditions, especially when events of
129 interest were rare (some scenarios of rewards or omissions chains in complexity, or some scenarios of
130 locations transition in probabilistic), two or more sessions from one animal were pooled as if they were
131 one (for instance, the last two sessions in a given context) to have enough trials for each animal in this
132 condition. For the same reason, the third cohort of GRAB_{DA} mice followed 10 min long sessions (instead
133 of 5 min) in Cplx and Proba settings, with no particular effect on the overall quality of the signal, nor the
134 duration of GRAB_{DA} expression (up to 3 months). For GRAB_{DA}, rewards-elicited positive transients
135 typically peaked around 250 ms after location entry (duration of ICSS being 200 ms) and decayed during
136 a bit less than 1s: we therefore extracted maximum and mean of the signal in a 1 s window post location
137 entry. Omissions-elicited negative transients were longer, reaching their minimum around 800 ms after

138 location entry and taking roughly 700-800 ms to go back to baseline: we therefore extracted minimum and
139 mean of the signal in 1.5 s window post location entry. For GCaMP, kinetics depended on the sensor
140 used: peaks reached maximum value around 250-300 ms post location entry for GCaMP6f and 350-400
141 ms for GCaMP7c, while dips reached minimum value around the same time (900-1050 ms post location
142 entry) for both sensors. However, return to baseline after reward-induced peaks was much shorter for
143 GCaMP6f (500-600 ms post location entry) than for GCaMP7c (2-3 s). For some correlation analyses
144 (using SciKit Learn Python library), especially the ones regarding z-scored peaks or dips amplitude
145 regarding outcome chain history, all trials of all mice were pooled together in a given condition.

146
147 **Generalised Linear Model (GLM) approach:** GLM was performed in Python using custom codes
148 (StatsModels or SciKit Learn library). To disentangle multiple factors that could explain DA signal, due to
149 high degree of behavioral and task-related variables correlated to each other from one trial to the next,
150 we designed a generalized linear model where a variable Y is explained by a linear combination of
151 multiples variables X_i , each of them weighted by a parameter w_i , plus a residual (or intercept) w_0 .

$$Y = w_0 + w_1 \cdot X_1 + w_2 \cdot X_2 + \dots$$

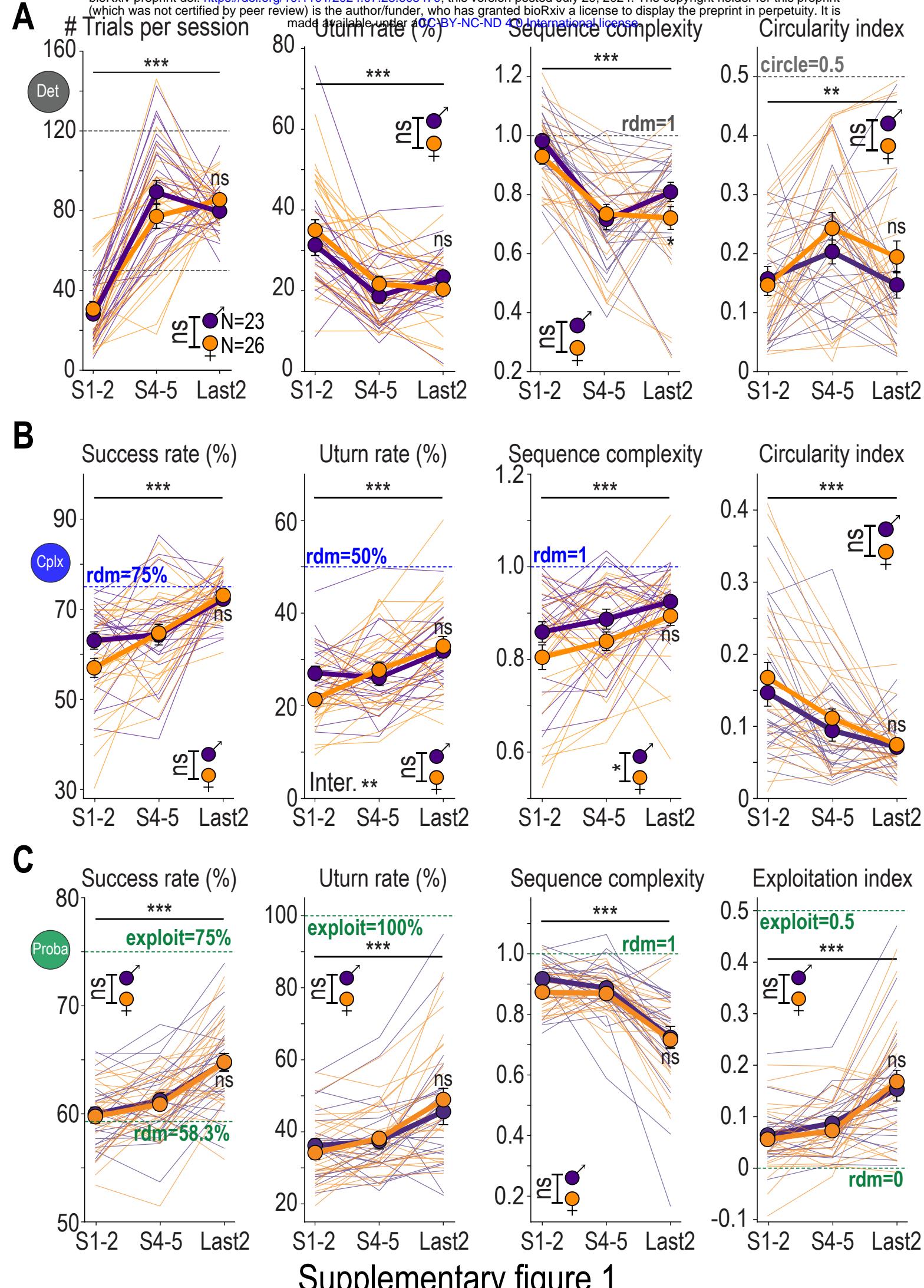
152 The model aims at fitting variations of Y by determining the weights w_i and their significance. Dependent
153 variable Y was post location entry 1s average for reward-induced peaks or 1.5s average for omission-
154 induced dips. Multiple X_i variables have been used, namely: *i*) reward or omission at previous and current
155 location, *ii*) Forward or U-turn at previous trial, *iii*) current target visited (spatially A, B or C, or in Proba
156 p_{100} , p_{50} or p_{25}), and *iv*) time since last stimulation (in Restcage stimulation condition). A single GLM was
157 applied for each mouse in a given condition, then w_i parameters resulting from all those GLMs were
158 averaged among mice, and the average was statistically compared to 0. Significance, either with positive
159 or negative weight, indicates that this variable explains part of DA variations.

160
161
162 **Reinforcement Learning (RL) models:** We used Reinforcement Learning (RL) to compute Reward
163 Prediction Errors (RPEs) from actual mice choice sequences and see how they match DA data. Before
164 each trial, the agent contains a set of expected values for each possible action. As one of these actions
165 is selected, it leads to either a reward ($V_{\text{obtained}} = 1$) or an omission ($V_{\text{obtained}} = 0$), then RPE is calculated
166 as $V_{\text{obtained}} - V_{\text{expected}}$, and a new expected value of this action is fed back into the agent's set for next trials.
167 From both behavioural and photometry results, we hypothesised and tested three possible value
168 representations in the bandit task. First, we proposed a simple, one-order representation "going to any
169 target" or "performing any trial" to get a reward. In this case, all trials are similar, regardless of target or
170 trajectory choices, and we simply compute and update $V_{\text{expected}} = \{ V_{\text{Any}} \}$ at each trial. Second, a
171 representation of internal directionality with a set of two actions and $V_{\text{expected}} = \{ V_{\text{Fwd}} ; V_{\text{Uturn}} \}$. In this case,

172 RPEs are specific and computed separately for each of the two actions. Third, a spatial representation
173 “going to target X” with a set of three actions and $V_{\text{expected}} = \{V_{pA}; V_{pB}; V_{pC}\}$. Again, RPEs are computed
174 for each target independently. Modelling the RPE values resulting from each of those three
175 representations allowed us to compare them and determine which simulation better replicates DA data in
176 each context. Initial V_{expected} were set consistently with behavior in the task. For Det End, they were all set
177 to 0.99. For both Cplx End and Proba End, they were set as mean success rate computed from the two
178 previous sessions. For example, for a given mouse, initial V_{Uturn} to initiate the RL model with choice
179 sequence from sessions 9-10 is the proportion of rewarded Uturn trials from sessions 7-8. Exception is
180 for V_{p100} in Proba End where it was also set to 0.99. We arbitrarily tested several learning rates $\alpha = \{0.001;$
181 $0.01; 0.05; 0.2; 0.4\}$. Results were consistent with experimental data for $\alpha = \{0.01; 0.05; 0.2; 0.4\}$. Smaller
182 α (0.001) led to convergence that was too slow considering mice number of trials provided to models,
183 while larger α made convergence in Det too quick. In Fig 3 and Fig S6, α is set to 0.05. We next assumed
184 that in our recordings, $DA = V_{\text{obtained}} + RPE$, and tested which representation accounted most in the error
185 component using GLMs on top of our RL-computed RPEs (taking as input variables $V_{\text{obtained}} = \{1; 0\}$ for
186 rewards or omissions, and theoretical RPEs computed from Model 1, 2 and 3). Similarly, models were
187 applied for each mouse in a given context, then w_i parameters were averaged among mice for each
188 context, and the average was statistically compared to 0. Significant weight indicates that this variable
189 explains part of DA variations. Finally, we extended this compilation of RL-computed RPE values and
190 GLM to fit RPE weights to DA data across sessions and contexts (Fig 4 and Fig S7). In this case, we
191 started RL models with mice choice sequences in Det Start with all V_{expected} equal to zero (naive agents),
192 computed corresponding RPEs and updated corresponding V_{expected} . Consistent with mice progressively
193 learning and updating values across sessions and contexts, the final V_{expected} of a given time-point became
194 the initial V_{expected} of the next time point. For instance, from Det Start to Det Mid (all V_{expected} becoming
195 closer to 1, but not at the same speed). Or from Cplx End to Proba Start (V_{expected} of each target therefore
196 starting to diverge). To allow for longitudinal comparisons, we next scaled (z-score) our data (both
197 experimental DA and RL models-computed RPEs) on each time point, applied GLMs on each time point,
198 and then compared the weights *i*) across sessions in a given context and at each transition between
199 contexts, and *ii*) each of them regarding its difference with 0.

200
201 **Figures and Statistics:** Raw figures were plotted using Python custom codes (mostly Matplotlib library).
202 Graphics, typography and layout were formatted with Adobe Illustrator. All statistical analyses were
203 computed using Python with Scipy library and custom programs. Results were most frequently plotted as
204 individual data points and mean \pm sem. The total number of observations in each group and the statistics
205 used are indicated in figure legends and detailed statistics tables: unless specified, data points indicate

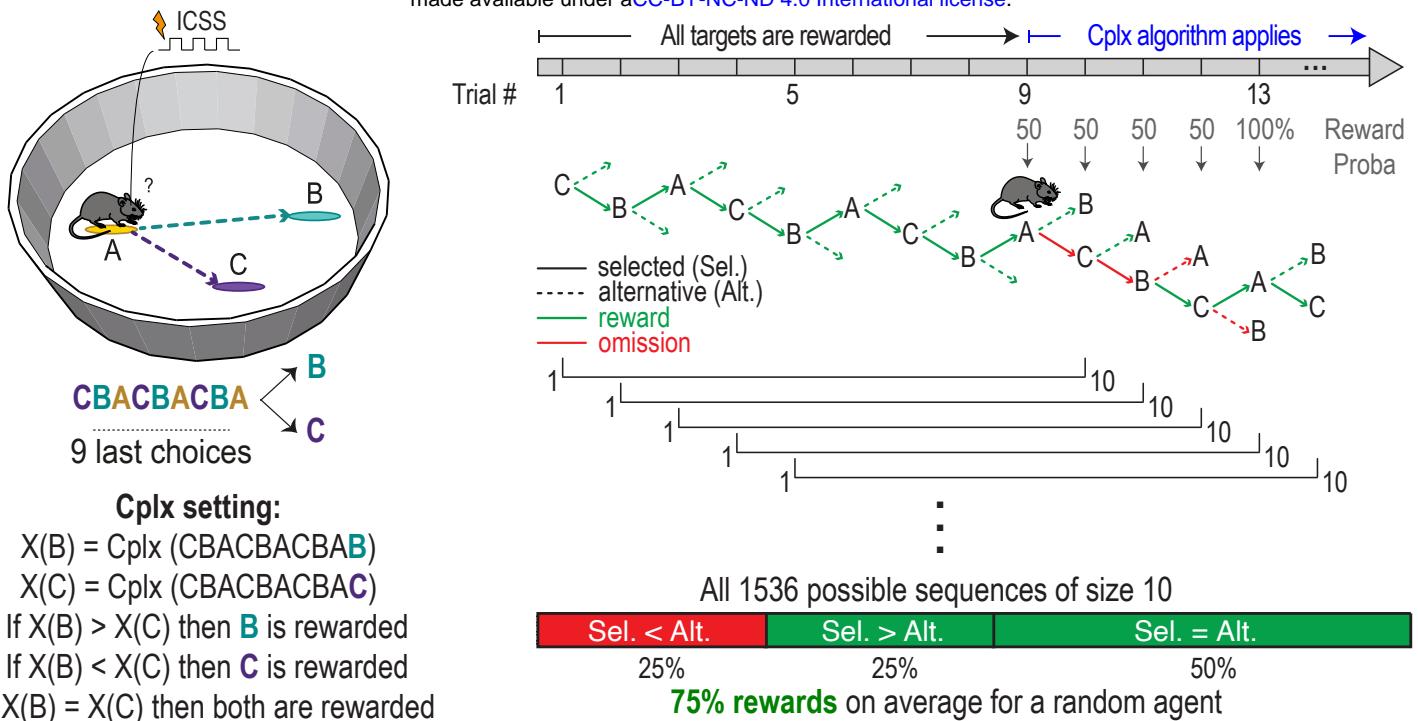
206 the number of mice (N) on which the statistics were performed, and in some cases, they represent number
207 of trials (n) either for one example session from one animal, or from all sessions of all animals in a given
208 condition. Classical comparisons between means were performed using parametric tests (Student's t-
209 test, or ANOVA for comparing more than two groups, when parameters followed a normal distribution
210 (Shapiro test $P > 0.05$)), and non-parametric tests when the distribution was skewed (here, Wilcoxon or
211 Mann-Whitney U for one/two samples and whether comparison is paired or not, or Kruskall-Wallis for
212 more than two groups). More complex comparisons with several factors were performed using two-way
213 or mixed ANOVA regardless of normal distribution for simplicity, with no major impact on results
214 interpretation (see Fig S1, sex X session effects). Multiple comparisons were corrected using a
215 sequentially rejective multiple test procedure (Holm). Linear regressions were assessed either with
216 Pearson (parametric) or Spearman (non-parametric) tests. Probability distributions were compared using
217 the Kolmogorov-Smirnov (KS) test. All statistical tests were two-sided. $p > 0.05$ was considered not to be
218 statistically significant. In some cases, $p >$ but close to 0.05 were indicated in the figure (see Tables of
219 detailed statistics for more information).

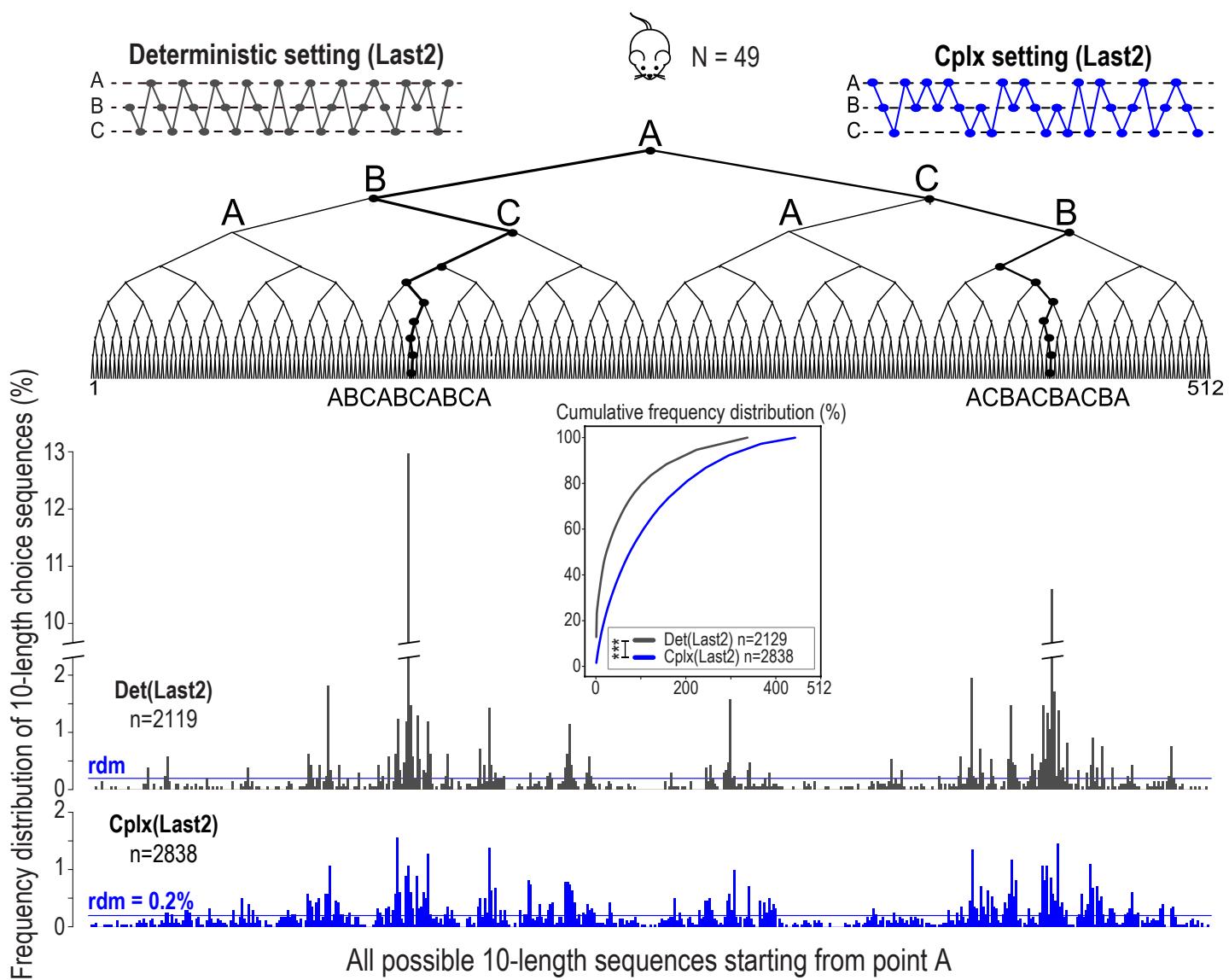

220

221 **Fluorescence immunohistochemistry:** After completing the successive rules of the task, mice from the
222 GRAB_{DA} cohorts were euthanatized by IP injection of euthasol (0.1mL per 30g at 150mg/kg), immediately
223 followed by paraformaldehyde (PFA) intra-cardiac perfusion, and brains were rapidly removed and post-
224 fixed in 4% PFA for 2 to 4 days. Serial 60 μ m sections were cut with a vibratome (Leica).
225 Immunohistochemistry was performed as follows: free-floating VTA and NAc brain sections were
226 incubated for 1h at 4°C in a blocking solution of phosphate-buffered saline (PBS) containing 3% bovine
227 serum albumin (BSA, Sigma A4503) and 0.2% Triton X-100, and then incubated overnight at 4 °C with *i*)
228 a mouse anti-tyrosine hydroxylase primary antibody (TH, Sigma, T1299) at 1:500 dilution and *ii*) a chicken
229 anti-eYFP primary antibody (Life technologies Molecular Probes, A- 6455) at 1:1000 dilution, both in PBS
230 containing 1.5% BSA and 0.2% Triton X-100. The following day, sections were rinsed with PBS and then
231 incubated for 3 h at 22–25 °C with *i*) Cy3-conjugated anti-mouse secondary antibody (Jackson
232 ImmunoResearch, 715-165-150) at 1:500 dilution and *ii*) a goat anti-chicken AlexaFluor 488 secondary
233 antibody (711-225-152, Jackson ImmunoResearch) at 1:1000 dilution, both in a solution of 1.5% BSA and
234 0.2% Triton X-100 in PBS. After three rinses in PBS, slices were wet-mounted using Prolong Gold Antifade
235 Reagent with DAPI (Invitrogen, P36930). Microscopy was carried out with a fluorescent microscope Leica
236 DMR, and images captured in gray level using MetaView software (Universal Imaging Corporation) and
237 colored post-acquisition with ImageJ. Labeling for YFP in the NAc (along with satisfying signal during the
238 task) allowed to confirm GRAB_{DA} expression, and fiber implantation in the NAc lateral shell was also
239 visually checked. Similar procedures were used to check for GCaMP7c and GCaMP6f expression in VTA

240 DA neurons. For GCaMP7c we used the same anti-TH and anti-eYFP antibodies as previously described.
241 For GCaMP6f we used a sheep anti-TH primary antibody (AB-1542, Milipore) at 1:500 dilution coupled
242 with a donkey anti-sheep secondary antibody (713-165-147, Jackson ImmunoResearch) at 1:500 dilution
243 to highlight DA neurons, and simply used the virus-associated tdTomato to validate expression in the VTA
244 and optic fiber implantation site. For MFB slices, 100 μ m sections were performed and slices were directly
245 visualized with visible light to check for ICSS electrode implantations.

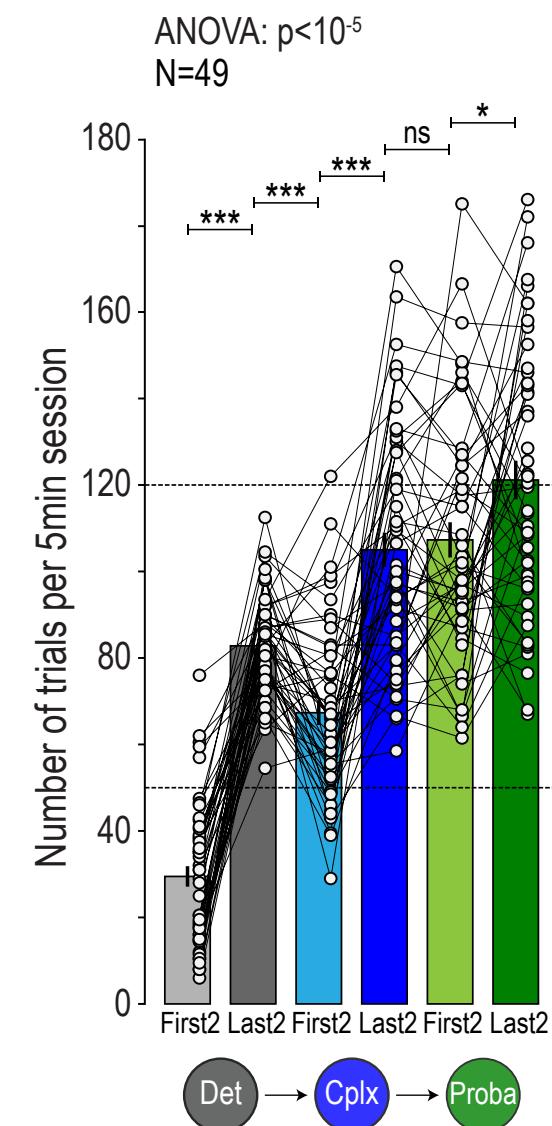
246

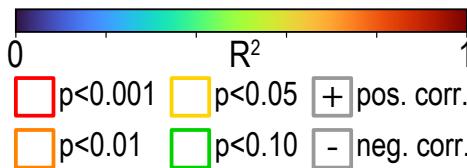

247 **Statistics and Reproducibility:** All experiments were replicated with success (several successive
248 cohorts of mice)..


249 **Fig. S1: Evolution of decision behaviour across sessions, with no major sex effects.**

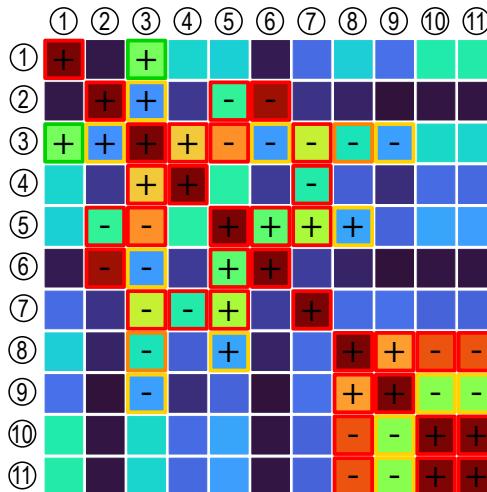
250 **A. Decision parameters throughout Det sessions for males and females.** Comparison of (**left**) the
251 number of trials per session, (**middle-left**) the Uturn rate, (**middle-right**) the sequence complexity, and
252 (**right**) the circularity index between sessions 1&2, sessions 4&5 and the last 2 sessions in male and
253 female mice. In addition, we also compared the final states (Last2) between males and females. A fully
254 circular mouse would have 0% Uturn, low seq. cplx and 0.5 circul. idx. **B. Same as in A) for Cplx**
255 **sessions.** A mouse keeping circular strategy would have low success, 0% Uturn, low seq. cplx and 0.5
256 circul. idx. A random mouse would have 75% success, 50% Uturn, seq cplx = 1 and circul. idx = 0. **C.**
257 **Same as in A) for Proba sessions.** An exploitative mouse would have 75% success, 100% Uturn, low
258 seq. cplx and 0.5 exploit. idx. A random mouse would have 58.3% success, 50% Uturn, seq cplx = 1 and
259 exploit. idx = 0. (Data are shown as individual points, and mean \pm sem. N = 23 male and 26 female mice.)

A

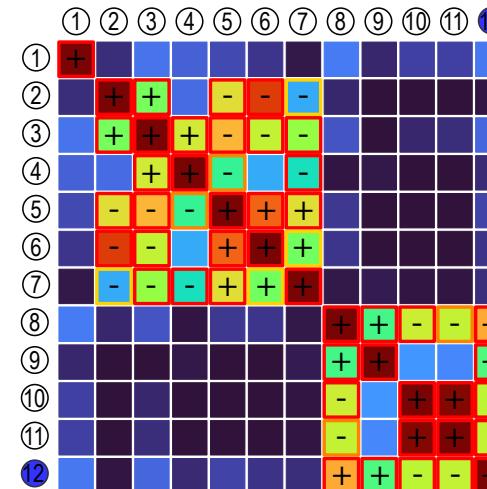

B

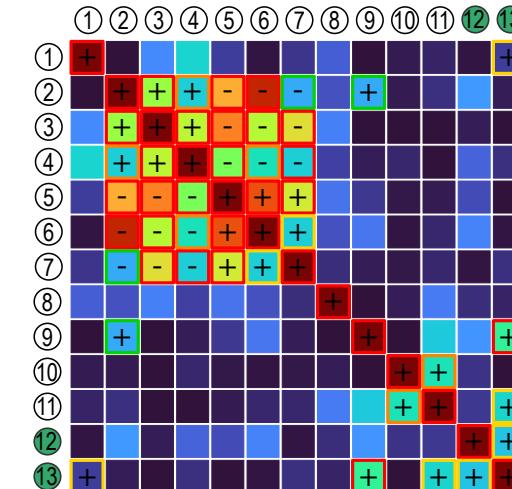

Supplementary figure 2

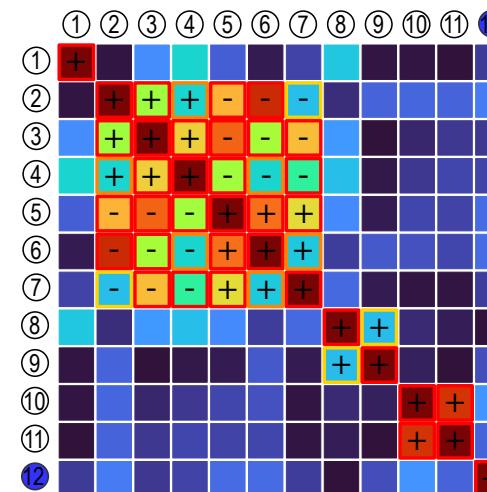
260 **Fig. S2: Additional information on the Cplx rule and mice sequence patterns.**

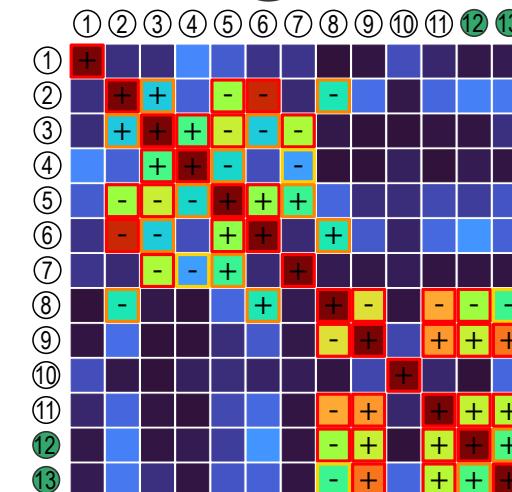

261 **A. Detailed schematic representation of the Cplx rule.** The first 9 trials of each session provide
262 deterministic rewards ($P=100\%$) to launch the Cplx algorithm, which then determines at each trial, in a
263 sliding window, which target will lead to a reward by comparing the Lempel-Ziv grammatical complexity
264 of the two potential sequences: 9 past choices + first remaining target VS. 9 past choices + second
265 remaining target. The mouse will be rewarded only if it chooses the target that increases complexity. If
266 both sequences have the same complexity, both targets will be rewarded (**see Methods**). Taking all
267 possible sequences of size 10 starting from one location, 75% of them are rewarded on the 10th trial.
268 Therefore, a random agent exploring homogeneously this sequences tree will converge to 75% success
269 rate. **B. Distribution of mice choice sequences of length 10 at the end of Det and Cplx.** Two
270 distribution peaks (paths in the decision tree) appear in Det, corresponding to circling behavior (clockwise
271 and counterclockwise), representing together roughly 25% of all produced sequences (among 512
272 possibilities). In Cplx, these peaks strongly reduce in size, in favor of more distributed visits of all possible
273 sequences. **(Insert)** Cumulative distribution comparison between Det and Cplx (Last2 sessions for each
274 rule). (In B, n is the total number of sequences of length 10, computed from sessions-wise mice
275 successive choices, from $N=49$ mice both males and females).

A**B****Correlation matrix:**

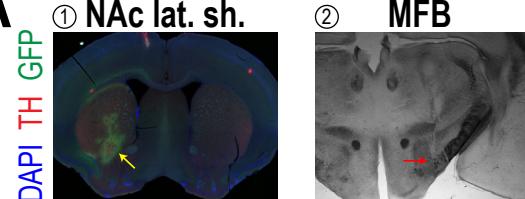
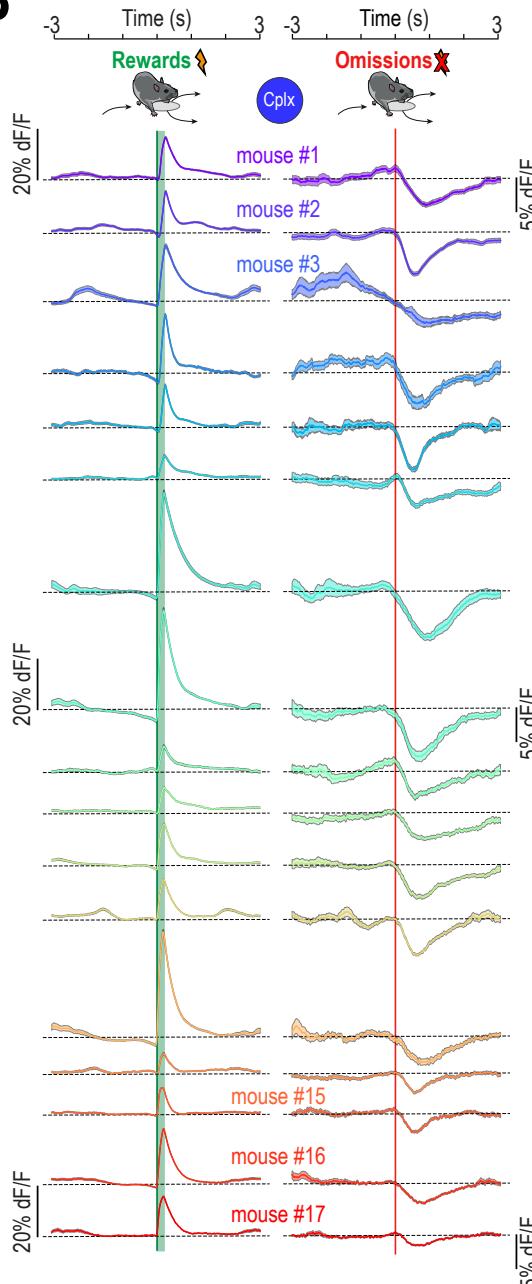
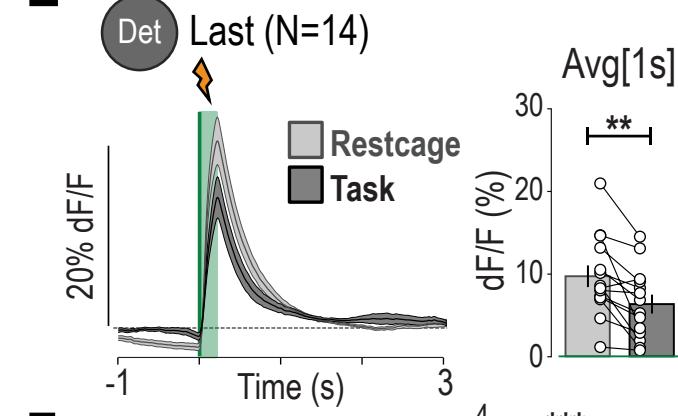
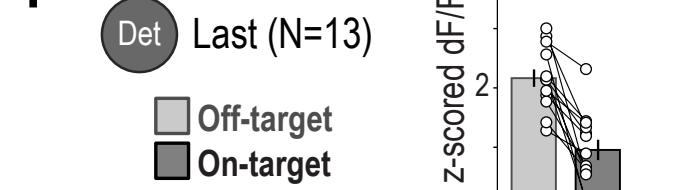
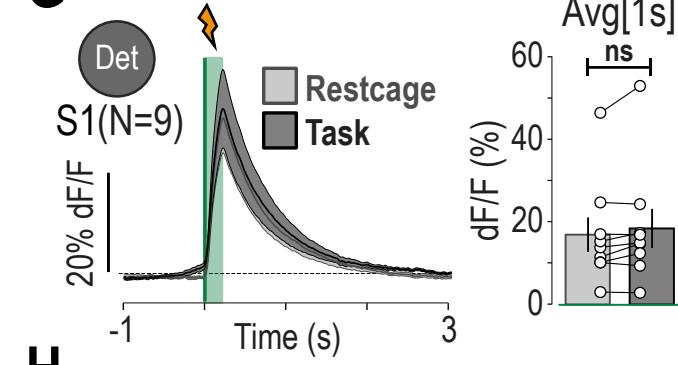
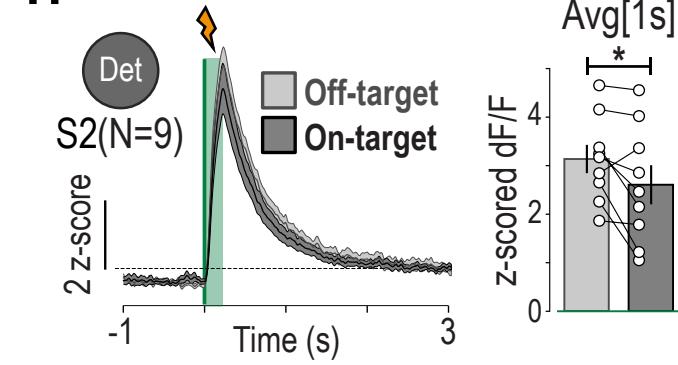

Vigor param.		Choice param.	
① I(stim)	⑧ Seq. cplx	② #Trials	⑨ %Uturn
② #Trials	⑩ Cicul. idx	③ Distance	⑪ Repet. idx
③ Distance	⑫ %Success	④ Max_speed	⑬ Exploit. idx
④ Max_speed	⑤ T(max_speed)	⑤ T(max_speed)	⑥ T(trial)
⑤ T(max_speed)	⑥ T(trial)	⑦ T(dwell)	⑦ T(dwell)
⑥ T(trial)	⑧ Seq. cplx	⑨ %Uturn	⑩ Cicul. idx
⑦ T(dwell)	⑩ Cicul. idx	⑪ Repet. idx	⑫ %Success
	⑫ %Success	⑬ Exploit. idx	⑭ N = 49


Det Last2


Cplx First2

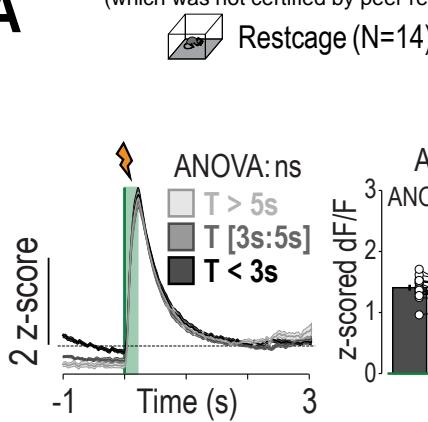

Proba First2

Cplx Last2

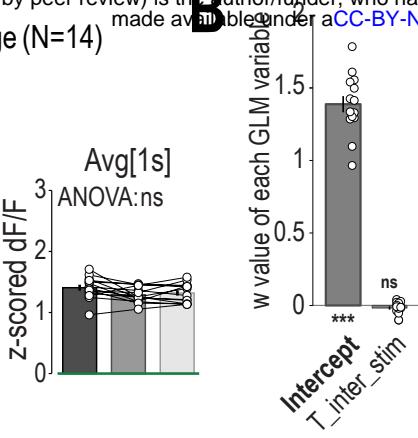






Proba Last2

Supplementary figure 3

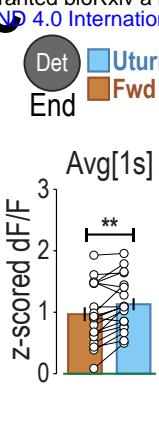
276 **Fig. S3: Motivation throughout the task and decoupling between vigor and choice parameters.**

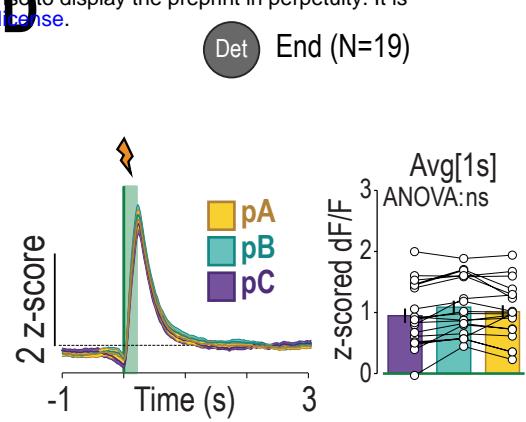

277 **A. Evolution of motivation across contexts and sessions.** Comparison of number of trials across
278 contexts and sessions (mean of 2 sessions each time). **B. Correlation matrices between various vigor**
279 **and choice parameters across mice in different contexts.** Parameters are computed for each mouse
280 as the mean of 2 sessions (either First2 or Last2, for a given context). Each box represents the linear
281 correlation between two parameters (Pearson for parametric, Spearman for non-parametric, each dot
282 being a mouse). The filling color of each box represents the R value. The frame color of each box
283 represents the p-value (after Bonferroni correction). The warmer the color, the more those two parameters
284 are significantly correlated. **(Left)** Last2 sessions of Det (11 parameters, x66 Bonferroni correction).
285 **(Middle)** First2 and Last2 sessions of Cplx (12 parameters, x78 Bonferroni correction). **(Right)** First2 and
286 Last2 sessions of Proba (13 parameters, x91 Bonferroni correction). (In A, data are shown as individual
287 points, and mean \pm sem. In B, only R and corrected p-values are shown with color code. Individual data
288 are available upon request. N is always the number of mice.)

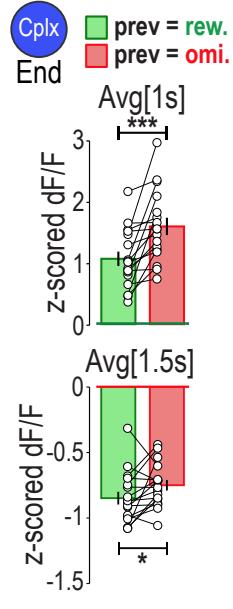
A**② MFB****B****C****E****F****G****H****Supplementary figure 4**

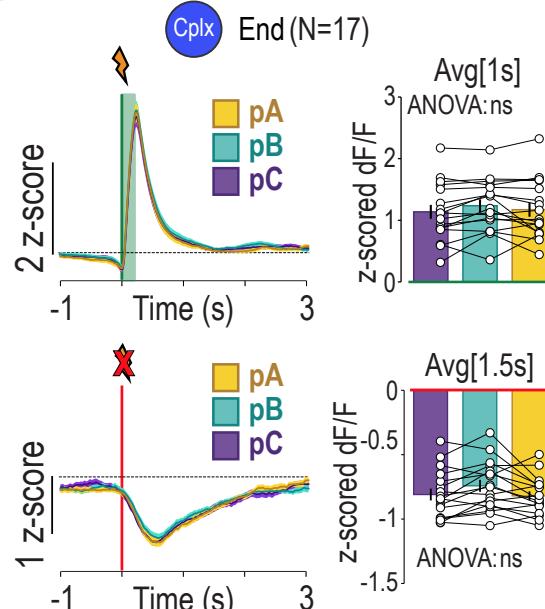

289 **Fig. S4: DA fiber photometry signals in various configurations.**

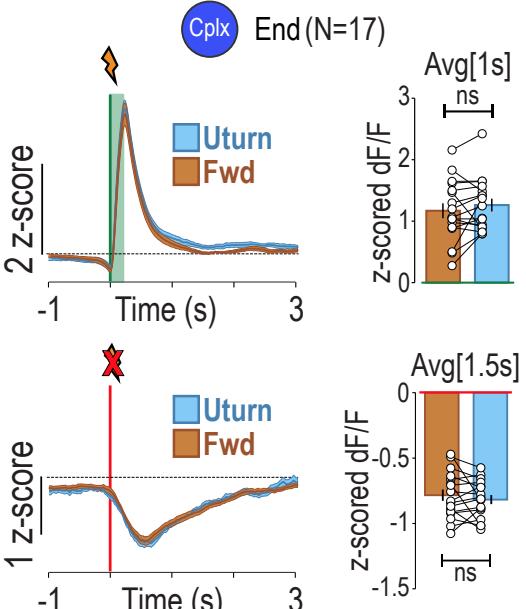
290 **A. NAc and MFB slices immunohistochemistry.** Post-hoc verification of optic fiber implant and Grab_{DA}
291 virus expression in the NAc lateral shell (left), and stimulation electrode implant in the MFB (right). **B.**
292 **Individual mice NAc DA release for rewards and omissions in Cplx.** Each line and colour is an
293 individual mouse, averaged for all trials during last Cplx session, in [-3s:3s] time window locked on location
294 entry. Every single mouse included in the results displayed reward-induced peaks and omission-induced
295 dips of DA release significantly different from zero (dashed black lines). **C-D. DA cell activity using**
296 **GCaMP fiber photometry.** DATiCre mice were injected with an AAV to express either GCaMP6f or
297 GCaMP7c in VTA DA neurons, implanted with an optic fiber in the VTA, and stimulation electrode in the
298 MFB, to assess DA neuron activity in the task. **C. GCaMP6f.** Using similar experimental procedures and
299 signal analyses in the Cplx context, calcium dynamics of VTA DA neurons show similar reward-induced
300 peaks and omission-induced dips than NAc lateral shell DA release, in this case with faster kinetics for
301 peaks, and smaller signal amplitudes (worse signal-to-noise ratio) for both peaks and dips. **D. GCaMP7c.**
302 Same as B for GCaMP7c, with slower kinetics for peaks, and greater signal amplitudes (better signal-to-
303 noise ratio) for both peaks and dips. **E. DA response to expected (Task) vs unexpected (Restcage)**
304 **rewards in Det Last session.** Comparison between Task and Restcage ICSS (same session, same
305 current intensity). **F. DA response to expected (On-target) vs unexpected (Off-target) rewards in Det**
306 **Last session.** Individual data corresponding to Fig2.E. Comparison between On-target and Off-target
307 ICSS (same session, same current intensity). **G. DA response to Task vs Restcage rewards in Det**
308 **first (S1) session.** Same as D but during first session (S1) of conditioning in Det. **H. DA response to**
309 **On-target vs Off-target rewards in Det second (S2) session.** Same as E but during second session
310 (S2) of conditioning in Det. (In B, C, D, curves are shown as mean \pm sem for a single session, n is the
311 number of reward or omission trials in this session. In E, G, H, curves are shown as mean \pm sem for
312 session-wise average of several mice, N is the number of mice in each condition. In E, F, G, H, Bar plots
313 are shown as mean \pm sem, in addition to individual data points.)

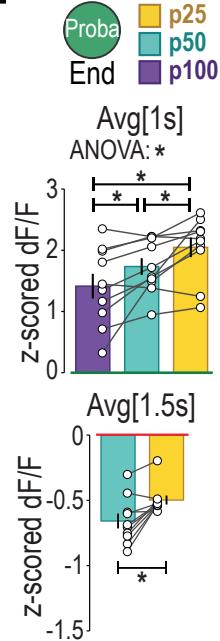

A

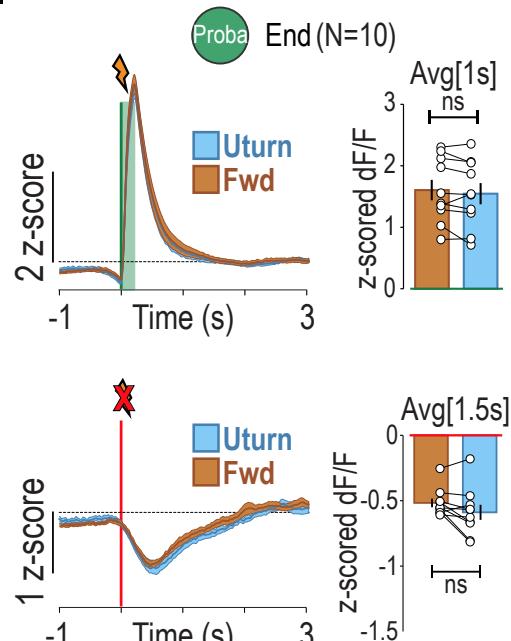

B

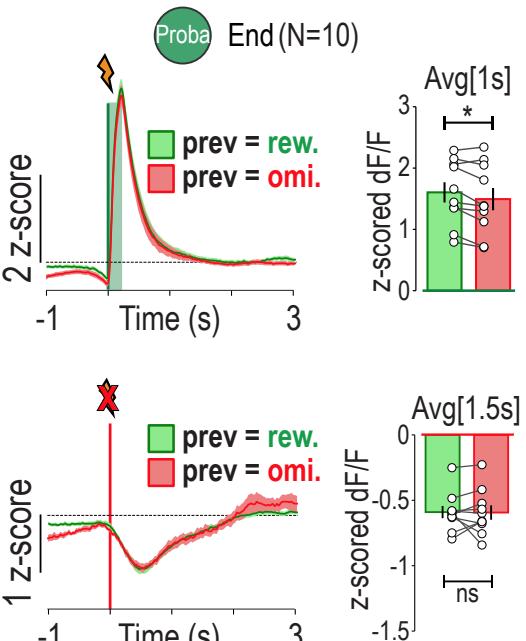

C


D


E


F


G


H

I

J

Supplementary figure 5

314 **Fig. S5: Additional analyses of NAc DA release regarding task behavioural features.**

315 **A. GLM in Restcage the same day as Last Det.** Weight value of each variable compared to zero. **B.**

316 **Inter-stimulation interval effect on DA transients in Restcage the same day as Last Det.** Comparison

317 between short (<3s), mid ([3s:5s]) and long (>5s) intervals. **C. Trajectory effect on DA transients in Det**

318 **End.** Individual data corresponding to Fig2.J. Comparison between Fwd and Uturn. **D. Target effect on**

319 **DA transients in Det End.** Comparison between pA, pB and pC. **E. Previous outcome effect on DA**

320 **transients in Cplx End.** Individual data corresponding to Fig2.K. **(Top)** Reward peak comparison

321 between previous reward and previous omission. **(Bottom)** Omission dip comparison between previous

322 reward and previous omission. **F. Target effect on DA transients in Cplx End. (Top)** Reward peak

323 comparison between pA, pB and pC. **(Bottom)** Omission dip comparison between pA, pB and pC. **G.**

324 **Trajectory effect on DA transients in Cplx End. (Top)** Reward peak comparison between Uturn and

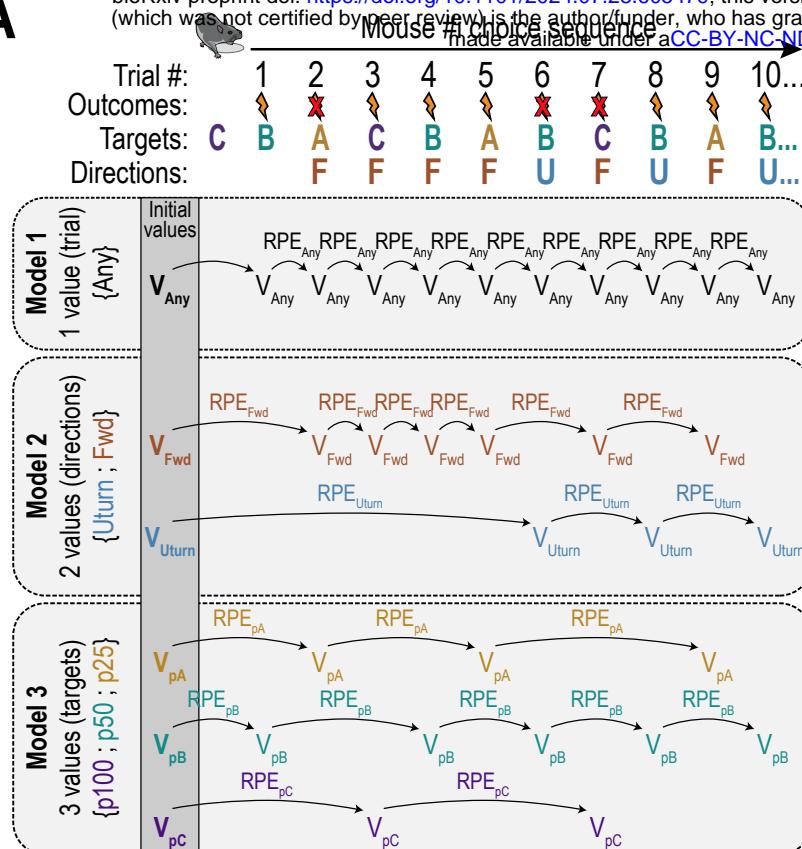
325 Fwd. **(Bottom)** Omission dip comparison between Uturn and Fwd. **H. Target effect on DA transients in**

326 **Proba End.** Individual data corresponding to Fig2.L. **(Top)** Reward peak comparison between p100, p50

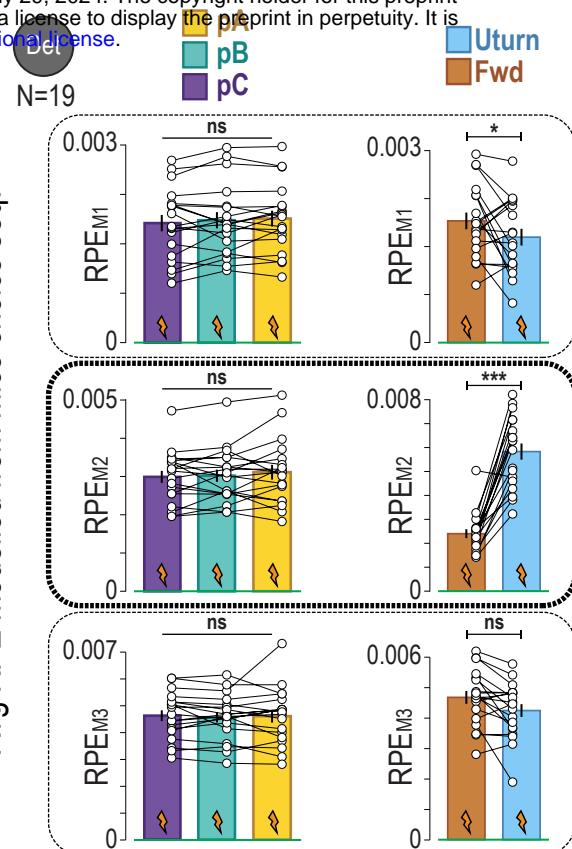
327 and p25. **(Bottom)** Omission dip comparison between p50 and p25. **I. Trajectory effect on DA**

328 **transients in Proba End. (Top)** Reward peak comparison between Uturn and Fwd. **(Bottom)** Omission

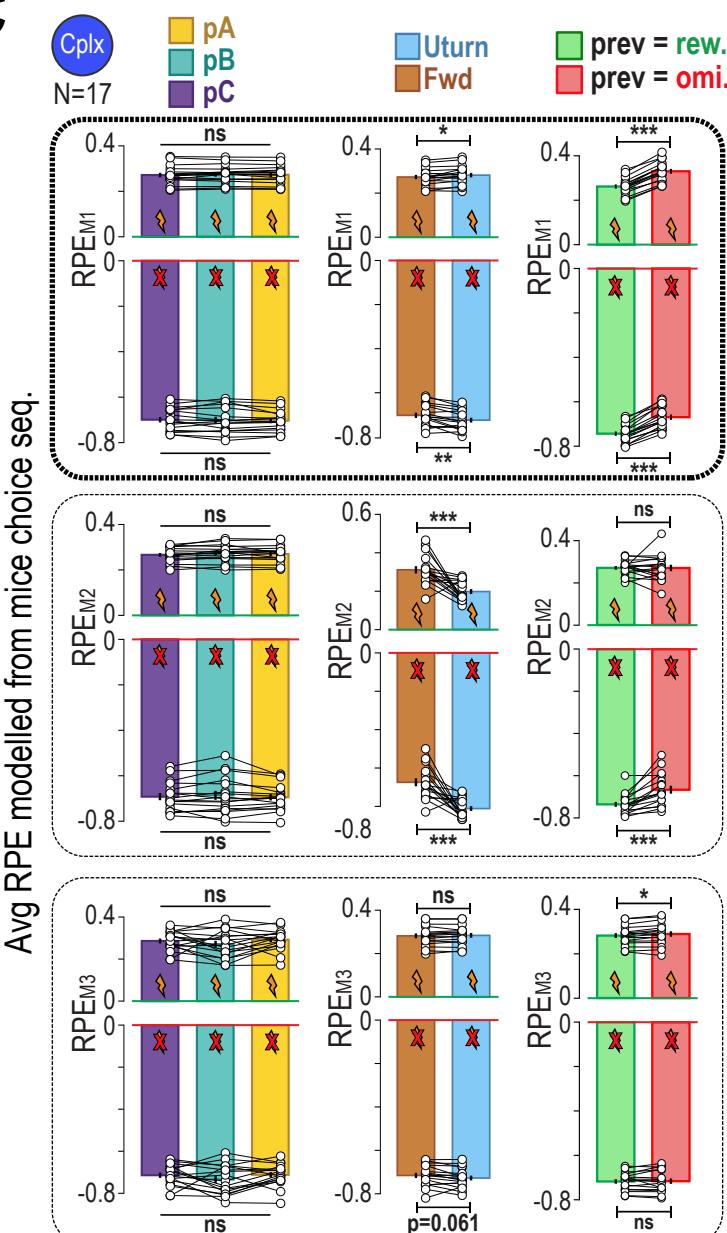
329 dip comparison between Uturn and Fwd. **I. Previous outcome effect on DA transients in Proba End.**

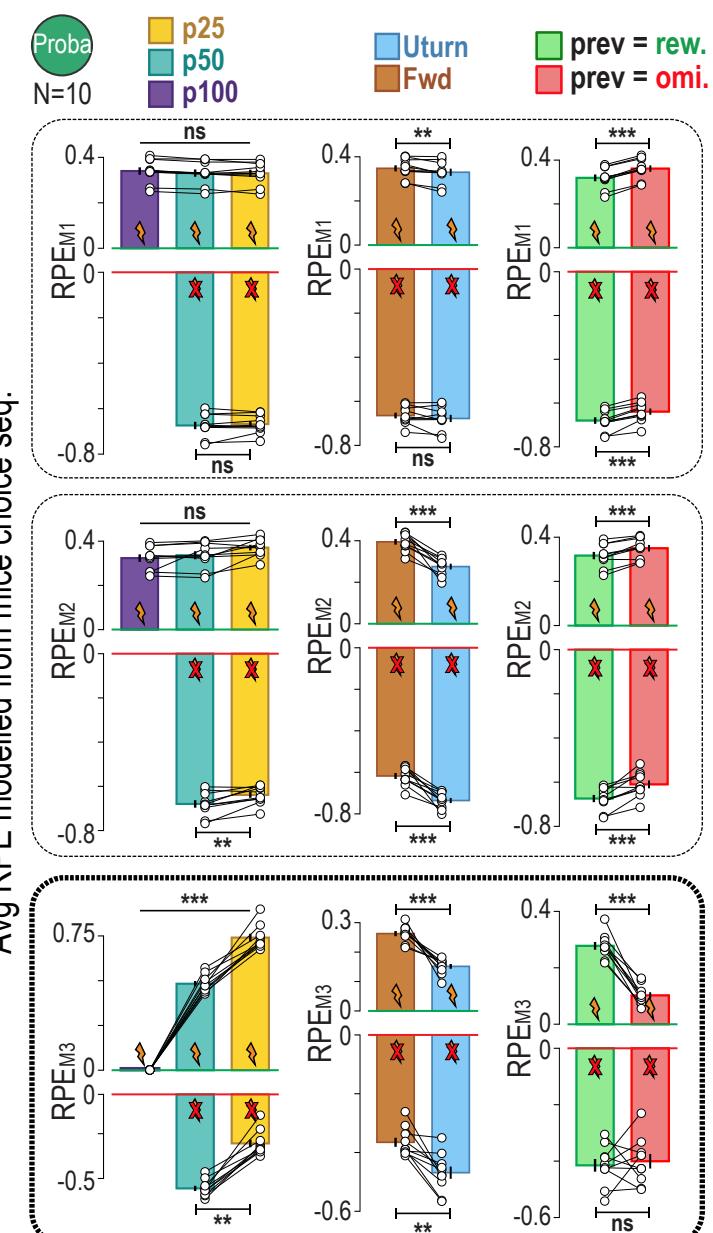

330 **(Top)** Reward peak comparison between previous reward and previous omission. **(Bottom)** Omission dip

331 comparison between previous reward and previous omission. (In A, B, C, D, E, F, G, H, I, J Bar plots are

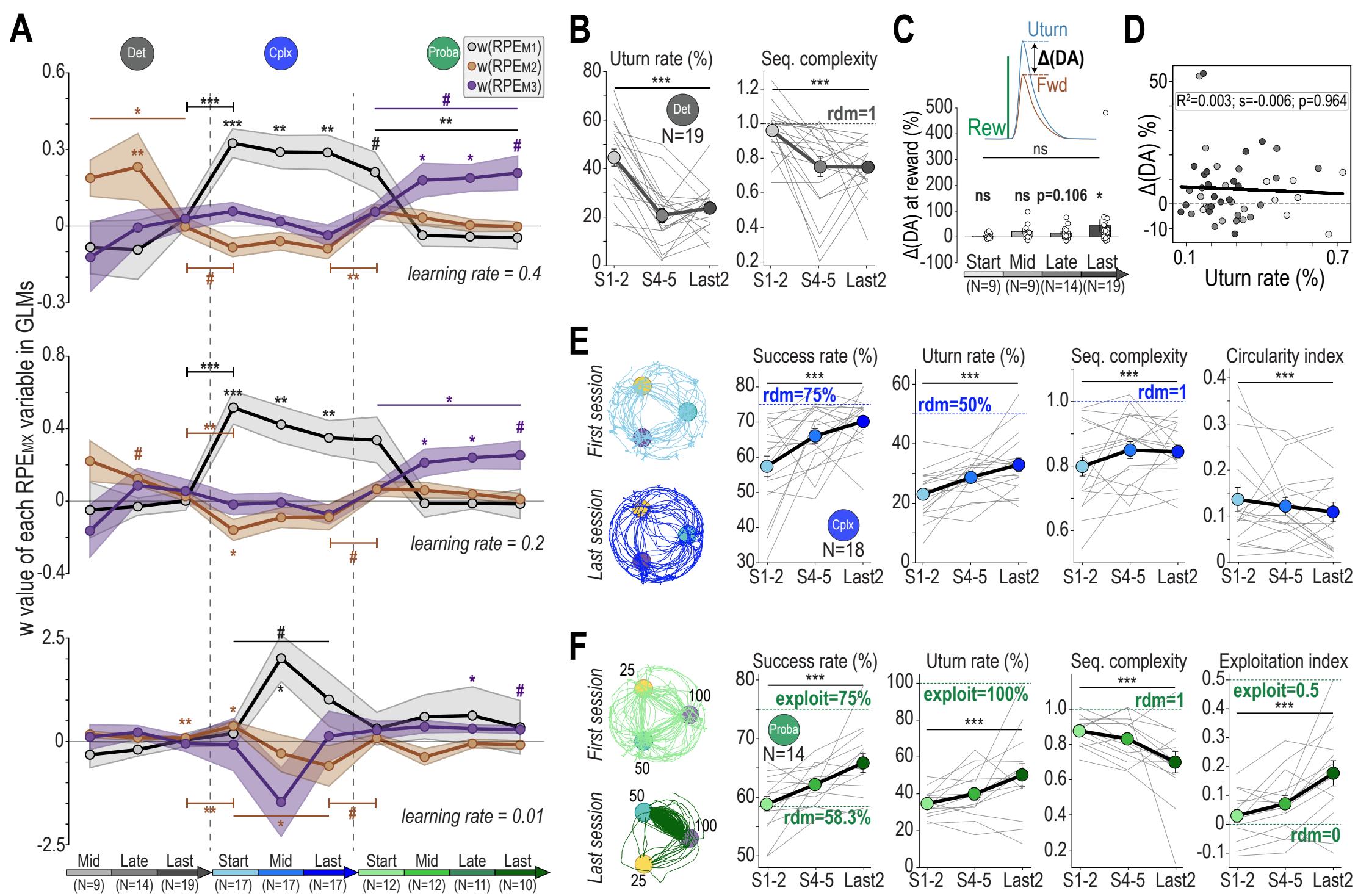

332 shown as mean \pm sem, in addition to individual data points. In A, D, F, G, I, J, signal curves are shown as

333 mean \pm sem. N is always the number of mice in each context.)


A


B

C


D

Supplementary figure 6

334 **Fig. S6: Additional information on the three RL models, comparison of computed RPEs in various**
335 **behavioural scenarios, and results in Proba Change context.**

336 **A. Detailed schematic of RL modelling for each of the three models.** From actual mice choice
337 sequences we applied RL models and computed corresponding RPEs. The first model consists in single
338 value representation “going to any target” or “performing any trial” to get a reward, where we simply
339 compute $V_{\text{expected}} = \{ V_{\text{Any}} \}$ and RPE_{Any} at each trial. The second model consists in two value
340 representations depending on chosen trajectory $V_{\text{expected}} = \{ V_{\text{Fwd}} ; V_{\text{Uturn}} \}$. In this case, $\text{RPE}_{\text{Uturn}}$ and
341 RPE_{Fwd} are specific and computed separately for each of those two actions. The third model consists in
342 three value representations depending on chosen target $V_{\text{expected}} = \{ V_{\text{pA}} ; V_{\text{pB}} ; V_{\text{pC}} \}$. Again, RPE_{pA} , RPE_{pB}
343 and RPE_{pC} are computed for each target independently. **B-C-D. For each model, computed RPEs were**
344 **averaged over mice sessions in the same scenarios used to characterise DA responses (regarding**
345 **target, trajectory, and previous outcome).** The model that qualitatively reproduces best DA responses
346 in all scenarios in given context is supposed to be the best value representation that mice are using in
347 this context. **B. End Det context. Top:** Average M1-computed RPE comparison between targets, and
348 trajectories. **Center:** Same for M2 (same as Fig3.E). **Bottom:** Same for M3. **C. End Cplx context. Top:**
349 Average M1-computed RPE comparison between targets, trajectories and previous outcome (same as
350 Fig3.F). **Center:** Same for M2. **Bottom:** Same for M3. **D. End Proba context. Top:** Average M1-
351 computed RPE comparison between targets, trajectories and previous outcome. **Center:** Same for M2.
352 **Bottom:** Same for M3 (same as Fig3.G). (In B, C, D Bar plots are shown as mean \pm sem, in addition to
353 individual data points. In G, signal curves are shown as mean \pm sem. N is always the number of mice in
354 each context.)

Supplementary figure 7

355 **Fig. S7: Evolution of Model weights, DA transients and strategy parameters across rules and**
356 **sessions.**

357 **A. RL modelling and GLM fitting DA data with computed RPEs across sessions and contexts.**

358 Same as Fig4A with varying learning rates. **Top:** For learning rate $\alpha=0.4$, evolution of RPE_{M1} (black),
359 RPE_{M2} (brown) and RPE_{M3} (purple) weights over time and multiple comparisons of each time point with
360 zero. **Middle:** Same for learning rate $\alpha=0.2$. **Bottom:** Same for learning rate $\alpha=0.01$.

361 **B. Evolution of choice parameters across Det sessions.** Comparison of **(left)** Uturn rate and **(right)** sequence

362 complexity between sessions 1&2, sessions 4&5 and last 2 sessions in Grab-DA mice. **C. Comparison**
363 **of Δ DA(directions) across Det sessions.** **Top:** Δ DA is computed for each mouse as the relative

364 difference $\Delta = (\text{Uturn} - \text{Fwd}) / \text{Fwd}$. **Bottom:** Comparison of Δ DA between Start, Mid, Late and Last

365 sessions, and multiple comparisons of each time-point with zero. **D. Linear regressions between**
366 **Δ DA(directions) and Uturn in Det.** **Top:** Reward Δ DA regarding Uturn rate of each mouse at each time

367 point (light grey Start => dark grey Last). **E. Evolution of choice parameters across Cplx sessions.**

368 **Left:** Example trajectories of first (cyan) and last (blue) Cplx sessions. Comparison of **(middle-left)**

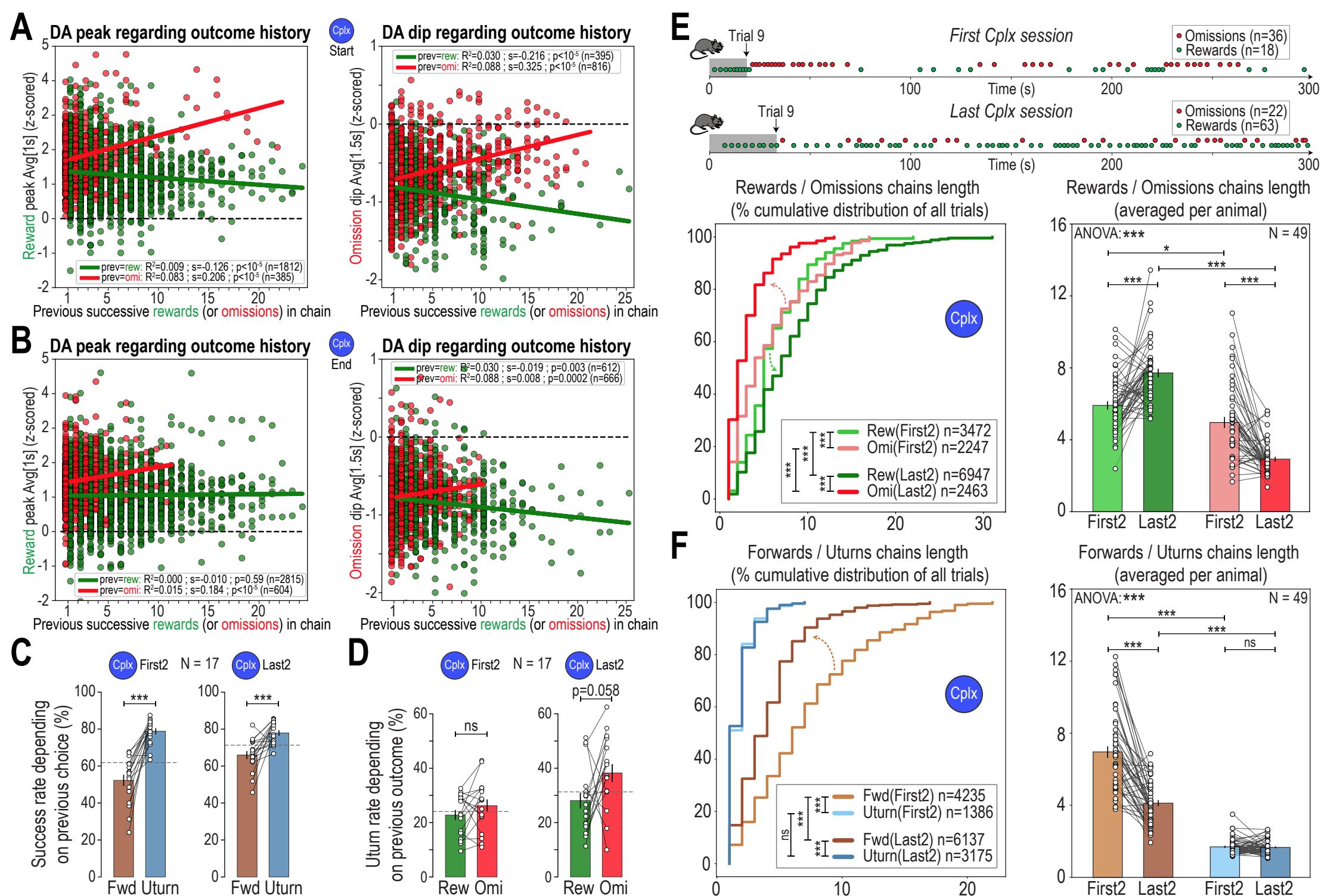
369 Success rate, **(middle)** Uturn rate, **(middle-right)** sequence complexity and **(right)** circularity index

370 between sessions 1&2, sessions 4&5 and last 2 sessions in Grab-DA mice. **F. Evolution of choice**

371 **parameters across Proba sessions.** **Left:** Example trajectories of first (light green) and last (dark green)

372 Proba sessions. Comparison of **(middle-left)** Success rate, **(middle)** Uturn rate, **(middle-right)** sequence

373 complexity and **(right)** exploitation index between sessions 1&2, sessions 4&5 and last 2 sessions in


374 Grab-DA mice. (In B, C, E, F, data are shown as mean \pm sem, in addition to individual data points. In D,

375 each data point is one animal at one time point. signal curves are shown as mean \pm sem. In A, data are

376 shown as mean \pm sem for clarity. Individual data points are available upon requests. Due to multiple

377 corrections generating dilutions in p-values, # symbol has been used in the figure to highlight $p < 0.12$ after

378 correction. N is always the number of mice in each context.)

Supplementary figure 8

379 **Fig. S8: Additional analyses of DA transients and choice behavior in Cplx.**

380 **A. Linear regressions of DA transients depending on the number of successive previous rewards**
381 **or omissions in chains in Cplx Start. Left:** Reward-induced DA peak amplitudes regarding length of
382 successive previous rewards chains (green) or omissions chains (red). **Right:** Same for omission-induced
383 DA dip amplitudes regarding length of successive previous rewards chains (green) or omissions chains
384 (red). **B. Same for Cplx End. Left:** Reward-induced DA peak amplitudes regarding length of successive
385 previous rewards chains (green) or omissions chains (red). **Right:** Same for omission-induced DA dips
386 amplitude regarding length of successive previous rewards chains (green) or omissions chains (red). **C.**
387 **Success rate depending on previous Uturn/Fwd choice in Cplx. Left:** First 2 sessions. **Right:** Last 2
388 sessions. **D. Uturn rate depending on previous outcome in Cplx. Left:** First 2 sessions. **Right:** Last 2
389 sessions. **E. Analysis of chains of successive rewards and omissions in Cplx. Top:** In early Cplx,
390 mice tend to keep repeating circular patterns and therefore get long series of omissions. In late Cplx,
391 omissions are regularly distributed, generating smaller chains, as expected from a random agent.
392 **Bottom-left:** Cumulative distribution of reward and omission chain lengths during first 2 and last 2 Cplx
393 sessions. **Bottom-right:** Average chain lengths per mouse. **E. Same for chains of successive forwards**
394 **and Uturns. Left:** Cumulative distribution of forward and Uturn chains length during first 2 and last 2 Cplx
395 sessions. **Right:** Average chains length per mouse. For regressions in A, B, each dot is a trial of one
396 mouse. In C, D, E, F, Bar plots are shown as mean \pm sem, in addition to individual data points. In E, F,
397 cumulative distribution are computed for all trials of all mice together. n is always the number of trials, and
398 N the number of mice, in each context.)

399 **Tables of detailed statistics for figures 1-4 and supp 1-8:**

Figure 1

Panel	Comparison	Test type	p-values	Corrections
E (top, right)	%Success across tasks, all mice (N=49), Cplx vs Proba	Student paired t-test	p<10⁻⁵	
E (bottom, left)	Seq cplx across tasks, all mice (N=49), Det vs Cplx vs Proba	one-way ANOVA	p<10⁻⁵	
	Post-hoc, Det vs Cplx	Wilcoxon (paired)	p<10⁻⁵	Holm (x3) : p<10⁻⁵
	Post-hoc, Cplx vs Proba	Wilcoxon (paired)	p<10⁻⁵	Holm (x3) : p<10⁻⁵
	Post-hoc, Det vs Proba	Wilcoxon (paired)	p=0.2121	Holm (x3) : p=0.2121
E (bottom, right)	%Uturns across tasks, all mice (N=49), Det vs Cplx vs Proba	one-way ANOVA	p<10⁻⁵	
	Post-hoc, Det vs Cplx	Wilcoxon (paired)	p<10⁻⁵	Holm (x3) : p<10⁻⁵
	Post-hoc, Cplx vs Proba	Wilcoxon (paired)	p<10⁻⁵	Holm (x3) : p<10⁻⁵
	Post-hoc, Det vs Proba	Wilcoxon (paired)	p<10⁻⁵	Holm (x3) : p<10⁻⁵
F (top, left)	%Visits in Det, all mice (N=49), pA vs pB vs pC (N=3)	one-way ANOVA (target effect)	Target effect: p=0.1796	
F (top, right)	Gamble %Pref in Det, all mice (N=49), gA vs gB vs gC (N=3)	one-way ANOVA (gamble effect)	Gamble effect: p=0.9029	
F (middle, left)	%Visits in Cplx, all mice (N=49), pA vs pB vs pC (N=3)	one-way ANOVA (target effect)	Target effect: p=0.9786	
F (middle, right)	Gamble %Pref in Cplx, all mice (N=49), gA vs gB vs gC (N=3)	one-way ANOVA (gamble effect)	Gamble effect: p=0.9516	
F (bottom, left)	%Visits in Proba, all mice (N=49), p100 vs p50 vs p25 (N=3)	one-way ANOVA (target effect)	Target effect: p<10⁻⁵	
F (bottom, right)	Gamble %Pref in Proba, all mice (N=49), g100 vs g50 vs g25 (N=3)	one-way ANOVA (gamble effect)	Gamble effect: p<10⁻⁵	

Figure 2

Panel	Comparison	Test type	p-values	Corrections
C (bottom, left)	Post-reward 1s-avg dF/F (n=47 trials) for one single session, vs 0	one sample Student t-test	p<10⁻⁵	
C (bottom, right)	Post-omission 1.5s-avg dF/F (n=32 trials) for one single session, vs 0	one sample Student t-test	p<10⁻⁵	
D	Post-reward 1s-avg dF/F for all mice End sessions : Restcage (n=988) vs Det (n=2288) vs Cplx (n=3150 trials) vs Proba (n=1704)	Kolmogorov-Smirnov (distribution)	Restcage vs Det : p<10⁻⁵ Restcage vs Cplx : p<10⁻⁵ Restcage vs Proba : p<10⁻⁵ Det vs Cplx : p<10⁻⁵ Det vs Proba : p<10⁻⁵ Cplx vs Proba : p<10⁻⁵	Holm (x6) : all p<10⁻⁵
	bioRxiv preprint doi: https://doi.org/10.1101/2024.07.28.605479 ; this version posted July 29, 2024. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a aCC-BY-NC-ND 4.0 International license .			
	Kolmogorov-Smirnov (distribution) End sessions, Cplx (n=1107 trials) vs Proba (n=845)			
E (right)	Post-ICSS avg per mouse (N=13), Expected (on-target) vs Unexpected (off-target)	Student paired t-test	p<10⁻⁵	
G	Det End GLM : Intercept weight vs 0 (N=19)	one sample Student t-test	p<10⁻⁵	Holm (x3) : p<10⁻⁵
	Det End GLM : Uturn weight vs 0 (N=19)	one sample Student t-test	p=0.0007	Holm (x3) : p=0.0013
	Det End GLM : Target weight vs 0 (N=19)	one sample Student t-test	p=0.1171	Holm (x3) : p=0.1171
H	Cplx End GLM : Intercept weight vs 0 (N=17)	one sample Student t-test	p=0.0672	Holm (x6) : p=0.2016
	Cplx End GLM : Reward weight vs 0 (N=17)	one sample Student t-test	p<10⁻⁵	Holm (x6) : p<10⁻⁵
	Cplx End GLM : Omission weight vs 0 (N=17)	one sample Student t-test	p<10⁻⁵	Holm (x6) : p<10⁻⁵
	Cplx End GLM : Uturn weight vs 0 (N=17)	one sample Student t-test	p=0.3264	Holm (x6) : p=0.3264
	Cplx End GLM : Target weight vs 0 (N=17)	one sample Student t-test	p=0.0875	Holm (x6) : p=0.2016
	Cplx End GLM : Previous omission weight vs 0 (N=17)	one sample Wilcoxon	p=0.00002	Holm (x6) : p=0.0002
I	Proba End GLM : Intercept weight vs 0 (N=10)	one sample Student t-test	p=0.00001	Holm (x6) : p=0.00005
	Proba End GLM : Reward weight vs 0 (N=10)	one sample Wilcoxon	p=0.0020	Holm (x6) : p=0.0078
	Proba End GLM : Omission weight vs 0 (N=10)	one sample Student t-test	p<10⁻⁵	Holm (x6) : p<10⁻⁵
	Proba End GLM : Uturn weight vs 0 (N=10)	one sample Student t-test	p=0.1615	Holm (x6) : p=0.3229
	Proba End GLM : Target_proba weight vs 0 (N=10)	one sample Student t-test	p=0.0090	Holm (x6) : p=0.0269
	Proba End GLM : Previous omission weight vs 0 (N=10)	one sample Student t-test	p=0.4280	Holm (x6) : p=0.4280
J (right)	Det End post-reward dF/F avg per mouse (N=19) : Uturn vs Forward	Student paired t-test	p=0.0012	
K (left)	Cplx End post-reward dF/F avg per mouse (N=17) : previous=rew vs previous=omi	Student paired t-test	p=0.0003	
K (right)	Cplx End post-omission dF/F avg per mouse (N=17) : previous=rew vs previous=omi	Student paired t-test	p=0.0357	
L (left)	Proba End post-reward dF/F avg per mouse (N=10) : p100 vs p50 vs p25	one-way ANOVA (target effect)	p=0.0364	
	Post-hoc, p100 vs p50	Student paired t-test	p=0.0171	Holm (x3) : p=0.0282
	Post-hoc, p50 vs p25	Student paired t-test	p=0.0141	Holm (x3) : p=0.0282
	Post-hoc, p100 vs p25	Student paired t-test	p=0.0079	Holm (x3) : p=0.0237
L (right)	Proba End post-omission dF/F avg per mouse (N=10) : p50 vs p25	Student paired t-test	p=0.0173	

Figure 3

Panel	Comparison	Test type	p-values	Corrections
B	Det End GLM on models RPE avg per mouse (N=19) : Intercept weight vs 0	one sample Student t-test	p=0.00002	Holm (x4) : p=0.0002
	Det End GLM on models RPE avg per mouse (N=19) : RPE(M1) weight vs 0	one sample Student t-test	p=0.9842	Holm (x4) : p=1
	Det End GLM on models RPE avg per mouse (N=19) : RPE(M2) weight vs 0	one sample Wilcoxon	p=0.0024	Holm (x4) : p=0.0072
	Det End GLM on models RPE avg per mouse (N=19) : RPE(M3) weight vs 0	one sample Wilcoxon	p=0.5153	Holm (x4) : p=1
C	Cplx End GLM on models RPE avg per mouse (N=17) : Intercept weight vs 0	one sample Student t-test	p=0.2690	Holm (x5) : p=0.5380
	Cplx End GLM on models RPE avg per mouse (N=17) : V(obtained) weight vs 0	one sample Student t-test	p=0.0053	Holm (x5) : p=0.0221
	Cplx End GLM on models RPE avg per mouse (N=17) : RPE(M1) weight vs 0	one sample Student t-test	p=0.0044	Holm (x5) : p=0.0221
	Cplx End GLM on models RPE avg per mouse (N=17) : RPE(M2) weight vs 0	one sample Student t-test	p=0.1591	Holm (x5) : p=0.4773
D	Cplx End GLM on models RPE avg per mouse (N=17) : RPE(M3) weight vs 0	one sample Student t-test	p=0.4564	Holm (x5) : p=0.5380
	Proba End GLM on models RPE avg per mouse (N=10) : Intercept weight vs 0	one sample Student t-test	p=0.9262	Holm (x5) : p=1
	Proba End GLM on models RPE avg per mouse (N=10) : V(obtained) weight vs 0	one sample Student t-test	p=0.0334	Holm (x5) : p=0.1337
	Proba End GLM on models RPE avg per mouse (N=10) : RPE(M1) weight vs 0	one sample Student t-test	p=0.5484	Holm (x5) : p=1
E	Proba End GLM on models RPE avg per mouse (N=10) : RPE(M2) weight vs 0	one sample Student t-test	p=0.9562	Holm (x5) : p=1
	Proba End GLM on models RPE avg per mouse (N=10) : RPE(M3) weight vs 0	one sample Student t-test	p=0.0111	Holm (x5) : p=0.0556
	Det End RPE(M2) avg per mouse (N=19) : Uturn vs Forward	Wilcoxon (paired)	p=0.00002	
	Cplx End post-reward RPE(M1) avg per mouse (N=17) : previous=reward vs omission	Student paired t-test	p<10⁻⁵	
F (right, top)	Cplx End post-omission RPE(M1) avg per mouse (N=17) : previous=reward vs omission	Student paired t-test	p<10⁻⁵	
	Proba End post-reward RPE(M3) avg per mouse (N=10) : p100 vs p50 vs p25	Kruskall-Wallis	p<10⁻⁵	
G (right, bottom)	Proba End post-omission RPE(M3) avg per mouse (N=10) : p50 vs p25	Wilcoxon (paired) t-test	p=0.0019	
	Proba Change post-omission dF/F avg per mouse (N=6) : p100=>50 vs p50 vs p25	Kruskall-Wallis	p=0.0013	
H (left, bottom)	Post-hoc, p100=>50 vs p50	Wilcoxon	p=0.0313	Holm (x3) : p=0.0625
	Post-hoc, p50 vs p25	Student paired t-test	p=0.0060	Holm (x3) : p=0.0181
	Post-hoc, p100=>50 vs p25	Wilcoxon	p=0.0313	Holm (x3) : p=0.0625
	Proba Change GLM : Intercept weight vs 0 (N=6)	one sample Student t-test	p=0.0021	p=0.0082
H (right)	Proba Change GLM : Reward weight vs 0 (N=6)	one sample Student t-test	p=0.0008	p=0.0048
	Proba Change GLM : Omission weight vs 0 (N=6)	one sample Student t-test	p=0.0006	p=0.0043
	Proba Change GLM : Uturn weight vs 0 (N=6)	Wilcoxon	p=0.5625	p=0.5625
	Proba Change GLM : Target_proba_old weight vs 0 (N=6)	one sample Student t-test	p=0.0011	p=0.0056
	Proba Change GLM : Target_proba_new weight vs 0 (N=6)	one sample Student t-test	p=0.1334	p=0.2668
H (right)	Proba End GLM : Previous omission weight vs 0 (N=6)	one sample Student t-test	p=0.0589	p=0.1768

Figure 4

Panel	Comparison	Test type	p-values	Corrections
A (top)	GLM RPE(M1) weight across Det	one-way ANOVA	p=0.7950	
	GLM RPE(M1) weight : End Det vs Start Cplx	Student unpaired t-test	p=0.00006	
	GLM RPE(M1) weight across Cplx	one-way ANOVA	p=0.2407	
	GLM RPE(M1) weight : End Cplx vs Start Proba	Student unpaired t-test	p=0.5875	
	GLM RPE(M1) weight across Proba	Kruskall-Wallis	p=0.8552	
	GLM RPE(M1) weight vs 0 : Det Mid	one sample Student t-test	p=0.6810	Holm (x10) : p=1
	GLM RPE(M1) weight vs 0 : Det Late	one sample Student t-test	p=0.8201	Holm (x10) : p=1
	GLM RPE(M1) weight vs 0 : Det Last	one sample Student t-test	p=0.4648	Holm (x10) : p=1
	GLM RPE(M1) weight vs 0 : Cplx Start	one sample Student t-test	p=0.00002	Holm (x10) : p=0.0002
	GLM RPE(M1) weight vs 0 : Cplx Mid	one sample Student t-test	p=0.00006	Holm (x10) : p=0.0006
	GLM RPE(M1) weight vs 0 : Cplx Last	one sample Student t-test	p=0.0094	Holm (x10) : p=0.0754
	GLM RPE(M1) weight vs 0 : Proba Start	one sample Student t-test	p=0.0325	Holm (x10) : p=0.2275
	GLM RPE(M1) weight vs 0 : Proba Mid	one sample Wilcoxon	p=0.1010	Holm (x10) : p=0.6592
	GLM RPE(M1) weight vs 0 : Proba Late	one sample Student t-test	p=0.3017	Holm (x10) : p=1
	GLM RPE(M1) weight vs 0 : Proba Last	one sample Student t-test	p=0.5886	Holm (x10) : p=1
A (middle)	GLM RPE(M2) weight across Det	one-way ANOVA	p=0.5767	
	GLM RPE(M2) weight : End Det vs Start Cplx	Mann-Whitney U test (unpaired)	p=0.00001	
	GLM RPE(M2) weight across Cplx	Kruskall-Wallis	p=0.3804	
	GLM RPE(M2) weight : End Cplx vs Start Proba	Student unpaired t-test	p=0.3013	
	GLM RPE(M2) weight across Proba	one-way ANOVA	p=0.9336	
	GLM RPE(M2) weight vs 0 : Det Mid	one sample Student t-test	p=0.1612	Holm (x10) : p=1
	GLM RPE(M2) weight vs 0 : Det Late	one sample Student t-test	p=0.2922	Holm (x10) : p=1
	GLM RPE(M2) weight vs 0 : Det Last	one sample Student t-test	p=0.0130	Holm (x10) : p=0.1168
	GLM RPE(M2) weight vs 0 : Cplx Start	one sample Wilcoxon	p=0.0002	Holm (x10) : p=0.0021
	GLM RPE(M2) weight vs 0 : Cplx Mid	one sample Student t-test	p=0.0398	Holm (x10) : p=0.3187
	GLM RPE(M2) weight vs 0 : Cplx Last	one sample Student t-test	p=0.2023	Holm (x10) : p=1
	GLM RPE(M2) weight vs 0 : Proba Start	one sample Student t-test	p=0.9793	Holm (x10) : p=1
	GLM RPE(M2) weight vs 0 : Proba Mid	one sample Student t-test	p=0.8436	Holm (x10) : p=1
	GLM RPE(M2) weight vs 0 : Proba Late	one sample Student t-test	p=0.3895	Holm (x10) : p=1
	GLM RPE(M2) weight vs 0 : Proba Last	one sample Student t-test	p=0.8098	Holm (x10) : p=1
A (bottom)	GLM RPE(M3) weight across Det	one-way ANOVA	p=0.4364	
	GLM RPE(M3) weight : End Det vs Start Cplx	Student unpaired t-test	p=0.0695	
	GLM RPE(M3) weight across Cplx	Kruskall-Wallis	p=0.1509	
	GLM RPE(M3) weight : End Cplx vs Start Proba	Mann-Whitney U test (unpaired)	p=0.2406	
	GLM RPE(M3) weight across Proba	Kruskall-Wallis	p=0.1157	
	GLM RPE(M3) weight vs 0 : Det Mid	one sample Student t-test	p=0.3224	Holm (x10) : p=1
	GLM RPE(M3) weight vs 0 : Det Late	one sample Student t-test	p=0.6185	Holm (x10) : p=1
	GLM RPE(M3) weight vs 0 : Det Last	one sample Student t-test	p=0.6133	Holm (x10) : p=1
	GLM RPE(M3) weight vs 0 : Cplx Start	one sample Student t-test	p=0.0068	Holm (x10) : p=0.0541
	GLM RPE(M3) weight vs 0 : Cplx Mid	one sample Wilcoxon	p=0.0202	Holm (x10) : p=0.1210
	GLM RPE(M3) weight vs 0 : Cplx Last	one sample Wilcoxon	p=0.2247	Holm (x10) : p=1
	GLM RPE(M3) weight vs 0 : Proba Start	one sample Wilcoxon	p=0.2334	Holm (x10) : p=1
	GLM RPE(M3) weight vs 0 : Proba Mid	one sample Wilcoxon	p=0.0049	Holm (x10) : p=0.0472
	GLM RPE(M3) weight vs 0 : Proba Late	one sample Student t-test	p=0.0047	Holm (x10) : p=0.0472
	GLM RPE(M3) weight vs 0 : Proba Last	one sample Student t-test	p=0.0140	Holm (x10) : p=0.0979
B (top)	Success rate Trial Det_End vs Cplx_Start	Student unpaired t-test	p<10⁻⁵	
	Success rate Trial Cplx_Start vs Mid_End	one way ANOVA	p=0.0019	
	Success rate Trial Cplx_End vs Proba_Start	Student unpaired t-test	p<10⁻⁵	
	Success rate Trial Proba_Start vs Mid_Late	one way ANOVA	p=0.0104	
	Success rate Utturn Det_End vs Cplx_Start	Mann-Whitney U test (unpaired)	p<10⁻⁵	
	Success rate Utturn Cplx_Start vs Mid_End	Kruskall-Wallis	p=0.6140	
	Success rate Utturn Cplx_End vs Proba_Start	Student unpaired t-test	p=0.00003	
	Success rate Utturn Proba_Start vs Mid_Late	Kruskall-Wallis	p=0.1553	
	Success rate Fwd Det_End vs Cplx_Start	Student unpaired t-test	p<10⁻⁵	
	Success rate Fwd Cplx_Start vs Mid_End	Kruskall-Wallis	p=0.0027	
	Success rate Fwd Cplx_End vs Proba_Start	Mann-Whitney U test (unpaired)	p=0.0004	
	Success rate Fwd Proba_Start vs Mid_Late	Kruskall-Wallis	p=0.1553	
	Success rate pC Det_End vs Cplx_Start	Mann-Whitney U test (unpaired)	p<10⁻⁵	
	Success rate pC-p100 Cplx_Start vs Mid_End	Kruskall-Wallis	p=0.0070	
	Success rate pC-p100 Cplx_End vs Proba_Start	Student unpaired t-test	p<10⁻⁵	
B (middle)	Success rate pB Det_End vs Cplx_Start	Student unpaired t-test	p<10⁻⁵	
	Success rate pB-p50 Cplx_Start vs Mid_End	one way ANOVA	p=0.0185	
	Success rate pB-p50 Cplx_End vs Proba_Start	Student unpaired t-test	p<10⁻⁵	
	Success rate pA Det_End vs Cplx_Start	Student unpaired t-test	p<10⁻⁵	
	Success rate pA-p25 Cplx_Start vs Mid_End	one way ANOVA	p=0.0029	
	Success rate pA-p25 Cplx_End vs Proba_Start	Student unpaired t-test	p<10⁻⁵	
	Success rate pA-p25 Cplx_Start vs Mid_End	one way ANOVA	p=0.0029	
	Success rate pA-p25 Cplx_End vs Proba_Start	Student unpaired t-test	p<10⁻⁵	
	Success rate pA-p25 Cplx_Start vs Mid_End	one way ANOVA	p=0.0029	
	Success rate pA-p25 Cplx_End vs Proba_Start	Student unpaired t-test	p<10⁻⁵	
	Success rate pA-p25 Cplx_Start vs Mid_End	one way ANOVA	p=0.0029	
	Success rate pA-p25 Cplx_End vs Proba_Start	Student unpaired t-test	p<10⁻⁵	
	Success rate pA-p25 Cplx_Start vs Mid_End	one way ANOVA	p=0.0029	
	Success rate pA-p25 Cplx_End vs Proba_Start	Student unpaired t-test	p<10⁻⁵	
	Success rate pA-p25 Cplx_Start vs Mid_End	one way ANOVA	p=0.0029	
C (top)	Cplx post-reward dDA across sessions : Start (N=17) vs Mid (N=17) vs Last (N=17)	Kruskall-Wallis	p=0.9577	
	Cplx dDA : Start vs 0	one sample Student t-test	p=0.0003	Holm (x3) : p=0.0003
	Cplx dDA : Mid vs 0	one sample Wilcoxon	p=0.00005	Holm (x3) : p=0.0001
	Cplx dDA : Last vs 0	one sample Wilcoxon	p=0.00002	Holm (x3) : p=0.00006
	Cplx post-omission dDA across sessions : Start (N=17) vs Mid (N=17) vs Last (N=17)	one way ANOVA	p=0.1659	
	Cplx dDA : Start vs 0	one sample Student t-test	p=0.00005	Holm (x3) : p=0.0002
	Cplx dDA : Mid vs 0	one sample Student t-test	p=0.0286	Holm (x3) : p=0.0286
	Cplx dDA : Last vs 0	one sample Student t-test	p=0.0018	Holm (x3) : p=0.0036
	Cplx across sessions : linear regression post-reward DA with success rate	Spearman correlation	p=0.2359 ; R2 = 0.073	
	Cplx across sessions : linear regression post-omission DA with sequence complexity	Pearson correlation	p=0.2037 ; R2 = 0.033	
	Proba post-reward dDA across sessions : Start (N=12) vs Mid (N=12) vs Last (N=10)	Kruskall-Wallis	p=0.0092	
	Proba dDA : Start vs 0	one sample Student t-test	p=0.8041	Holm (x4) : p=0.8041
	Proba dDA : Mid vs 0	one sample Wilcoxon	p=0.0001	Holm (x4) : p=0.0039
	Proba dDA : Late vs 0	one sample Wilcoxon	p=0.0049	Holm (x4) : p=0.0146
	Proba dDA : Last vs 0	one sample Wilcoxon	p=0.0137	Holm (x4) : p=0.0125
C (middle)	Proba post-omission dDA across sessions : Start (N=12) vs Mid (N=12) vs Last (N=11)	Kruskall-Wallis	p=0.0651	
	Proba dDA : Start vs 0	one sample Student t-test	p=0.9590	Holm (x4) : p=0.9590
	Proba dDA : Mid vs 0	one sample Wilcoxon	p=0.1294	Holm (x4) : p=0.2588
	Proba dDA : Late vs 0	one sample Student t-test	p=0.0225	Holm (x4) : p=0.0676
	Proba dDA : Last vs 0	one sample Student t-test	p=0.0020	Holm (x4) : p=0.0078
	Proba across sessions : exploitation index post-reward dDA with exploitation index	Spearman correlation	p<10⁻⁵ ; R2 = 0.1660	
	Proba across sessions : linear regression post-omission dDA with #Success	Spearman correlation	p=0.0040 ; R2 = 0.1423	
	Proba post-reward dDA across sessions : Start (N=12) vs Mid (N=12) vs Last (N=10)	Kruskall-Wallis	p=0.0651	
	Proba dDA : Start vs 0	one sample Student t-test	p=0.9590	Holm (x4) : p=0.9590
	Proba dDA : Mid vs 0	one sample Wilcoxon	p=0.1294	Holm (x4) : p=0.2588
	Proba dDA : Late vs 0	one sample Student t-test	p=0.0225	Holm (x4) : p=0.0676
	Proba dDA : Last vs 0	one sample Student t-test	p=0.0020	Holm (x4) : p=0.0078
	Proba across sessions : linear regression post-omission dDA with #Success	Spearman correlation	p=0.0040 ; R2 = 0.1423	
	Proba post-reward dDA across sessions : Start (N=12) vs Mid (N=12) vs Last (N=10)	Kruskall-Wallis	p=0.0651	

bioRxiv preprint doi: <https://doi.org/10.1101/2024.07.29.554791>; this version posted July 29, 2024. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Panel	Comparison	Test type	p-values	Corrections
A (left)	#Trials, male (N=23) vs female (N=26), S1-2 vs S4-5 vs Last2 (N=3 repeated measures)	mixed ANOVA (sex X session effect, with repeated measures on sessions)	Sex effect: p=0.7131 Session effect: p<10⁻⁵ Interaction effect: p=0.0561	
	#Trials in Det Last2, male (N=23) vs female (N=26)	Student unpaired t-test	p=0.3647	
A (center-left)	%Uturn in Det, male (N=23) vs female (N=26), S1-2 vs S4-5 vs Last2 (N=3 repeated measures)	mixed ANOVA (sex X session effect, with repeated measures on sessions)	Sex effect: p=0.5300 Session effect: p<10⁻⁵ Interaction effect: p=0.1597	
	%Uturn in Det Last2, male (N=23) vs female (N=26)	Student unpaired t-test	p=0.3469	
A (center-right)	Sequence cplx in Det, male (N=23) vs female (N=26), S1-2 vs S4-5 vs Last2 (N=3 repeated measures)	mixed ANOVA (sex X session effect, with repeated measures on sessions)	Sex effect: p=0.1672 Session effect: p<10⁻⁵ Interaction effect: p=0.1952	
	Sequence cplx in Det Last2, male (N=23) vs female (N=26)	Mann-Whitney U-test	p=0.0346	
A (right)	Circularity index in Det, male (N=23) vs female (N=26), S1-2 vs S4-5 vs Last2 (N=3 repeated measures)	mixed ANOVA (sex X session effect, with repeated measures on sessions)	Sex effect: p=0.2553 Session effect: p=0.0022 Interaction effect: p=0.3185	
	Circularity index in Det Last2, male (N=23) vs female (N=26)	Mann-Whitney U-test	p=0.2255	
B (left)	%Success in Cplx, male (N=23) vs female (N=26), S1-2 vs S4-5 vs Last2 (N=3 repeated measures)	mixed ANOVA (sex X session effect, with repeated measures on sessions)	Sex effect: p=0.3353 Session effect: p<10⁻⁵ Interaction effect: p=0.0717	
	%Success in Cplx Last2, male (N=23) vs female (N=26)	Student unpaired t-test	p=0.5886	
B (center-left)	%Uturn in Cplx, male (N=23) vs female (N=26), S1-2 vs S4-5 vs Last2 (N=3 repeated measures)	mixed ANOVA (sex X session effect, with repeated measures on sessions)	Sex effect: p=0.5934 Session effect: p<10⁻⁵ Interaction effect: p=0.0087	
	%Uturn in Cplx Last2, male (N=23) vs female (N=26)	Student unpaired t-test	p=0.6816	
B (center-right)	Sequence cplx in Cplx, male (N=23) vs female (N=26), S1-2 vs S4-5 vs Last2 (N=3 repeated measures)	mixed ANOVA (sex X session effect, with repeated measures on sessions)	Sex effect: p=0.0462 Session effect: p=0.0001 Interaction effect: p=0.7944	
	Sequence cplx in Cplx Last2, male (N=23) vs female (N=26)	Mann-Whitney U-test	p=0.2662	
B (right)	Circularity index in Cplx, male (N=23) vs female (N=26), S1-2 vs S4-5 vs Last2 (N=3 repeated measures)	mixed ANOVA (sex X session effect, with repeated measures on sessions)	Sex effect: p=0.3757 Session effect: p= p<10⁻⁵ Interaction effect: p=0.7407	
	Circularity index in Cplx Last2, male (N=23) vs female (N=26)	Mann-Whitney U-test	p=0.6961	
C (left)	%Success in Proba, male (N=23) vs female (N=26), S1-2 vs S4-5 vs Last2 (N=3 repeated measures)	mixed ANOVA (sex X session effect, with repeated measures on sessions)	Sex effect: p=0.8112 Session effect: p<10⁻⁵ Interaction effect: p=0.9326	
	%Success in Proba Last2, male (N=23) vs female (N=26)	Student unpaired t-test	p=0.4590	
C (center-left)	%Uturn in Proba, male (N=23) vs female (N=26), S1-2 vs S4-5 vs Last2 (N=3 repeated measures)	mixed ANOVA (sex X session effect, with repeated measures on sessions)	Sex effect: p=0.8129 Session effect: p<10⁻⁵ Interaction effect: p=0.2954	
	%Uturn in Proba Last2, male (N=23) vs female (N=26)	Mann-Whitney U-test	p=0.4770	
C (center-right)	Sequence cplx in Proba, male (N=23) vs female (N=26), S1-2 vs S4-5 vs Last2 (N=3 repeated measures)	mixed ANOVA (sex X session effect, with repeated measures on sessions)	Sex effect: p=0.2919 Session effect: p<10⁻⁵ Interaction effect: p=0.6391	
	Sequence cplx in Proba Last2, male (N=23) vs female (N=26)	Mann-Whitney U-test	p=0.3312	
C (right)	Circularity index in Proba, male (N=23) vs female (N=26), S1-2 vs S4-5 vs Last2 (N=3 repeated measures)	mixed ANOVA (sex X session effect, with repeated measures on sessions)	Sex effect: p=0.8792 Session effect: p= p<10⁻⁵ Interaction effect: p=0.4908	
	Circularity index in Proba Last2, male (N=23) vs female (N=26)	Student unpaired t-test	p=0.6511	

bioRxiv preprint doi: <https://doi.org/10.1101/28305479>; this version posted July 29, 2024. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Supp 2

Panel	Comparison	Test type	p-values	Corrections
B	Frequency distribution of 10-length chains for all mice End sessions, Det (n=2129 seq) vs Cplx (n=2838)	Kolmogorov-Smirnov (distribution)	$p < 10^{-5}$	

Supp 3

Panel	Comparison	Test type	p-values	Corrections
A	#Trials across time point (N=49 mice, all paired)	one-way ANOVA (time point effect)	p<10⁻⁵	
	Post-hoc, #Trials Det: First2 vs Last2 (N=49)	Wilcoxon (paired)	p<10⁻⁵	Holm (x5) : p<10⁻⁵
	Post-hoc, #Trials: Det Last2 vs Cplx First2 (N=49)	Student paired t-test	p<10⁻⁵	Holm (x5) : p<10⁻⁵
	Post-hoc, #Trials Cplx: First2 vs Last2 (N=49)	Student paired t-test	p<10⁻⁵	Holm (x5) : p<10⁻⁵
	Post-hoc, #Trials: Cplx Last2 vs Proba First2 (N=49)	Student paired t-test	p=0.5305	Holm (x5) : p=0.5305
	Post-hoc, #Trials Proba: First2 vs Last2 (N=49)	Student paired t-test	p=0.0105	Holm (x5) : p=0.0210
B (left)	Correlation between behavioural parameters in Det Last2 (N=49)	Pearson if normal, Spearman if not	See colour code in figure	Bonferroni (x66), see figure
B (center)	Correlation between behavioural parameters in Cplx First2 and Last2 (N=49)	Pearson if normal, Spearman if not	See colour code in figure	Bonferroni (x78), see figure
B (right)	Correlation between behavioural parameters in Proba First2 and Last2 (N=49)	Pearson if normal, Spearman if not	See colour code in figure	Bonferroni (x91), see figure

Supp 4

Panel	Comparison	Test type	p-values	Corrections
E	Det Last, Post-ICSS avg per mouse (N=14), Expected (task) vs Unexpected (restcage) (individual data from Fig2.E.)	Student paired t-test	p=0.0019	
F	Det Last, Post-ICSS avg per mouse (N=13), Expected (on-target) vs Unexpected (off-target) (individual data from Fig2.F.)	Student paired t-test	p<10⁻⁵	
G	Det S1, Post-ICSS avg per mouse (N=9), task vs restcage	Wilcoxon (paired)	p=0.1641	
H	Det S2, Post-ICSS avg per mouse (N=9), on-target vs off-target	Student paired t-test	p=0.0430	

Supp 5

Panel	Comparison	Test type	p-values	Corrections
A	Restcage stimulation dF/F avg per mouse (N=14) : short (<3s) vs mid vs long (>5s)	one-way ANOVA	p=0.1508	
B	Restcage stimulation GLM : Intercept weight vs 0 (N=14)	one sample Student t-test	p<10⁻⁵	Holm (x2) : p<10⁻⁵
	Restcage stimulation GLM : T_inter_stim weight vs 0 (N=14)	one sample Student t-test	p=0.1526	Holm (x2) : p=0.1526
C	Det End post-reward dF/F avg per mouse (N=19) : Uturn vs Forward (individual data from Fig3.C.)	Student paired t-test	p=0.0012	
D	Det End post-reward dF/F avg per mouse (N=19) : pA vs pB vs pC	one-way ANOVA	p=0.6686	
E (top)	Cplx End post-reward dF/F avg per mouse (N=17) : Reward prev=rew vs prev=omi (individual data from Fig3.E.)	Student paired t-test	p=0.0003	
E (bottom)	Cplx End post-reward dF/F avg per mouse (N=17) : Omission prev=rew vs prev=omi (individual data from Fig3.E.)	Student paired t-test	p=0.0357	
F (top)	Cplx End post-reward dF/F avg per mouse (N=17) : Reward p100 vs p50 vs p25	one-way ANOVA	p=0.8132	
F (bottom)	Cplx End post-reward dF/F avg per mouse (N=17) : Omission pA vs pB vs pC	one-way ANOVA	p=0.3823	
G (top)	Cplx End post-reward dF/F avg per mouse (N=17) : Reward Uturn vs Fwd	Student paired t-test	p=0.1901	
G (bottom)	Cplx End post-reward dF/F avg per mouse (N=17) : Omission Uturn vs Fwd	Student paired t-test	p=0.3378	
H (top)	Proba End post-reward dF/F avg per mouse (N=10) : p100 vs p50 vs p25 (individual data from Fig3.G.)	one-way ANOVA	p=0.0364	
	Post-hoc, p100 vs p50	Student paired t-test	p=0.0171	Holm (x3) : p=0.0282
	Post-hoc, p50 vs p25	Student paired t-test	p=0.0141	Holm (x3) : p=0.0282
	Post-hoc, p100 vs p25	Student paired t-test	p=0.0079	Holm (x3) : p=0.0237
H (bottom)	Proba End post-omission dF/F avg per mouse (N=10) : p50 vs p25 (individual data from Fig3.G.)	Student paired t-test	p=0.0173	
I (top)	Proba End post-reward dF/F avg per mouse (N=10) : Reward prev=rew vs prev=omi	Student paired t-test	p=0.0161	
I (bottom)	Proba End post-reward dF/F avg per mouse (N=10) : Omission prev=rew vs prev=omi	Student paired t-test	p=0.9324	
J (top)	Proba End post-reward dF/F avg per mouse (N=10) : Reward Uturn vs Fwd	Student paired t-test	p=0.1628	
J (bottom)	Proba End post-reward dF/F avg per mouse (N=10) : Omission Uturn vs Fwd	Student paired t-test	p=0.0840	

Panel	Comparison	Test type	p-values	Corrections
B (top-left)	Det End RPE(M1) avg per mouse (N=19) : pA vs pB vs pC	one-way ANOVA	p=0.9222	
B (top-right) bioRxiv preprint doi: https://doi.org/10.1101/28605479 ; this version posted July 29, 2024. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.	Det End RPE(M1) avg per mouse (N=19) : Uturn vs Fwd	Wilcoxon	p=0.0204	
B (center-left)	Det End RPE(M2) avg per mouse (N=19) : pA vs pB vs pC	one-way ANOVA	p=0.8711	
B (center-right)	Det End RPE(M2) avg per mouse (N=19) : Uturn vs Fwd (Same as Fig 4.C.)	Wilcoxon	p=0.00002	
B (bottom-left)	Det End RPE(M3) avg per mouse (N=19) : pA vs pB vs pC	one-way ANOVA	p=0.9801	
B (bottom-right)	Det End RPE(M3) avg per mouse (N=19) : Uturn vs Fwd	Student paired t-test	p=0.4844	
C (top-left)	Cplx End RPE(M1) avg per mouse (N=17) : pA vs pB vs pC	Rew: one-way ANOVA Omi: one-way ANOVA	Rew: p=0.9843 Omi: p=0.9697	
C (top-middle)	Cplx End RPE(M1) avg per mouse (N=17) : Uturn vs Fwd	Rew: Student paired t-test Omi: Student paired t-test	Rew: p=0.0223 Omi: p=0.0018	
C (top-right)	Cplx End RPE(M1) avg per mouse (N=17) : prev=rew vs prev=omi (Same as Fig 4.F.)	Rew: Student paired t-test Omi: Student paired t-test	Rew: p<10e-5 Omi: p<10e-5	
C (center-left)	Cplx End RPE(M2) avg per mouse (N=17) : pA vs pB vs pC	Rew: one-way ANOVA Omi: one-way ANOVA	Rew: p=0.9125 Omi: p=0.9327	
C (center-middle)	Cplx End RPE(M2) avg per mouse (N=17) : Uturn vs Fwd	Rew: Student paired t-test Omi: Student paired t-test	Rew: p=0.0004 Omi: p=0.0002	
C (center-right)	Cplx End RPE(M2) avg per mouse (N=17) : prev=rew vs prev=omi	Rew: Student paired t-test Omi: Student paired t-test	Rew: p=0.9737 Omi: p=0.00002	
C (bottom-left)	Cplx End RPE(M3) avg per mouse (N=17) : pA vs pB vs pC	Rew: one-way ANOVA Omi: one-way ANOVA	Rew: p=0.5187 Omi: p=0.4841	
C (bottom-middle)	Cplx End RPE(M3) avg per mouse (N=17) : Uturn vs Fwd	Rew: Student paired t-test Omi: Student paired t-test	Rew: p=0.2845 Omi: p=0.0612	
C (bottom-right)	Cplx End RPE(M3) avg per mouse (N=17) : prev=rew vs prev=omi	Rew: Student paired t-test Omi: Student paired t-test	Rew: p=0.0211 Omi: p=0.7743	
D (top-left)	Proba End RPE(M1) avg per mouse (N=10) : p100 vs p50 vs p25 for rewards, p50 vs p25 for omissions	Rew: one-way ANOVA Omi: Student paired t-test	Rew: p=0.8881 Omi: p=0.3362	
D (top-middle)	Proba End RPE(M1) avg per mouse (N=10) : Uturn vs Fwd	Rew: Student paired t-test Omi: Student paired t-test	Rew: p=0.0085 Omi: p=0.1934	
D (top-right)	Proba End RPE(M1) avg per mouse (N=10) : prev=rew vs prev=omi	Rew: Student paired t-test Omi: Student paired t-test	Rew: p<10e-5 Omi: p=0.00005	
D (center-left)	Proba End RPE(M2) avg per mouse (N=10) : p100 vs p50 vs p25 for rewards, p50 vs p25 for omissions	Rew: one-way ANOVA Omi: Student paired t-test	Rew: p=0.1195 Omi: p=0.0042	
D (center-middle)	Proba End RPE(M2) avg per mouse (N=10) : Uturn vs Fwd	Rew: Student paired t-test Omi: Student paired t-test	Rew: p=0.00005 Omi: p=0.00006	
D (center-right)	Proba End RPE(M2) avg per mouse (N=10) : prev=rew vs prev=omi	Rew: Student paired t-test Omi: Student paired t-test	Rew: p=0.0004 Omi: p=0.0005	
D (bottom-left)	Proba End RPE(M3) avg per mouse (N=10) : p100 vs p50 vs p25 for rewards, p50 vs p25 for omissions (Same as Fig 4.I.)	Rew: Kruskall-Wallis Omi: Student paired t-test	Rew: p<10e-5 Omi: p=0.0020	
D (bottom-middle)	Proba End RPE(M3) avg per mouse (N=10) : Uturn vs Fwd	Rew: Student paired t-test Omi: Wilcoxon	Rew: p=0.00006 Omi: p=0.0020	
D (bottom-right)	Proba End RPE(M3) avg per mouse (N=10) : prev=rew vs prev=omi	Rew: Student paired t-test Omi: Student paired t-test	Rew: p<10e-5 Omi: p=0.6590	

Panel	Comparison	Test type	p-values	Corrections
A (top)	GLM RPE(M1) weight across Det	Kruskall-Wallis	p=0.6029	
	GLM RPE(M1) weight : End Det vs Start Cplx	Student unpaired t-test	p=0.0001	
	GLM RPE(M1) weight across Cplx	one-way ANOVA	p=0.9001	
	GLM RPE(M1) weight : End Cplx vs Start Proba	Student unpaired t-test	p=0.4669	
	GLM RPE(M1) weight across Proba	one-way ANOVA	p=0.0031	
	GLM RPE(M1) weight vs 0 : Det Mid	one sample Student t-test	p=0.4476	Holm (x10) : p=1
	GLM RPE(M1) weight vs 0 : Det Late	one sample Student t-test	p=0.6257	Holm (x10) : p=1
	GLM RPE(M1) weight vs 0 : Det Last	one sample Student t-test	p=0.4849	Holm (x10) : p=1
	GLM RPE(M1) weight vs 0 : Cplx Start	one sample Student t-test	p=0.00003	Holm (x10) : p=0.0003
	GLM RPE(M1) weight vs 0 : Cplx Mid	one sample Student t-test	p=0.0004	Holm (x10) : p=0.0034
	GLM RPE(M1) weight vs 0 : Cplx Last	one sample Student t-test	p=0.0006	Holm (x10) : p=0.0047
	GLM RPE(M1) weight vs 0 : Proba Start	one sample Student t-test	p=0.0211	Holm (x10) : p=0.1476
	GLM RPE(M1) weight vs 0 : Proba Mid	one sample Wilcoxon	p=0.4277	Holm (x10) : p=1
	GLM RPE(M1) weight vs 0 : Proba Late	one sample Student t-test	p=0.3216	Holm (x10) : p=1
	GLM RPE(M1) weight vs 0 : Proba Last	one sample Student t-test	p=0.3218	Holm (x10) : p=1
A (bottom)	GLM RPE(M2) weight across Det	Kruskall-Wallis	p=0.0117	
	GLM RPE(M2) weight : End Det vs Start Cplx	Mann-Whitney U test (unpaired)	p=0.1061	
	GLM RPE(M2) weight across Cplx	Kruskall-Wallis	p=0.6152	
	GLM RPE(M2) weight : End Cplx vs Start Proba	Mann-Whitney U test (unpaired)	p=0.0096	
	GLM RPE(M2) weight across Proba	one-way ANOVA	p=0.3649	
	GLM RPE(M2) weight vs 0 : Det Mid	one sample Student t-test	p=0.0295	Holm (x10) : p=0.2356
	GLM RPE(M2) weight vs 0 : Det Late	one sample Student t-test	p=0.0006	Holm (x10) : p=0.0061
	GLM RPE(M2) weight vs 0 : Det Last	one sample Student t-test	p=0.9577	Holm (x10) : p=1
	GLM RPE(M2) weight vs 0 : Cplx Start	one sample Wilcoxon	p=0.0174	Holm (x10) : p=0.1569
	GLM RPE(M2) weight vs 0 : Cplx Mid	one sample Wilcoxon	p=0.1324	Holm (x10) : p=0.6619
	GLM RPE(M2) weight vs 0 : Cplx Last	one sample Wilcoxon	p=0.0569	Holm (x10) : p=0.3982
	GLM RPE(M2) weight vs 0 : Proba Start	one sample Student t-test	p=0.0681	Holm (x10) : p=0.4085
	GLM RPE(M2) weight vs 0 : Proba Mid	one sample Student t-test	p=0.2847	Holm (x10) : p=1
	GLM RPE(M2) weight vs 0 : Proba Late	one sample Student t-test	p=0.8733	Holm (x10) : p=1
	GLM RPE(M2) weight vs 0 : Proba Last	one sample Student t-test	p=0.9266	Holm (x10) : p=1
A (bottom)	GLM RPE(M3) weight across Det	one-way ANOVA	p=0.3810	
	GLM RPE(M3) weight : End Det vs Start Cplx	Student unpaired t-test	p=0.6093	
	GLM RPE(M3) weight across Cplx	Kruskall-Wallis	p=0.4623	
	GLM RPE(M3) weight : End Cplx vs Start Proba	Mann-Whitney U test (unpaired)	p=0.25883	
	GLM RPE(M3) weight across Proba	Kruskall-Wallis	p=0.0761	
	GLM RPE(M3) weight vs 0 : Det Mid	one sample Student t-test	p=0.3899	Holm (x10) : p=1
	GLM RPE(M3) weight vs 0 : Det Late	one sample Student t-test	p=0.9362	Holm (x10) : p=1
	GLM RPE(M3) weight vs 0 : Det Last	one sample Student t-test	p=0.5057	Holm (x10) : p=1
	GLM RPE(M3) weight vs 0 : Cplx Start	one sample Student t-test	p=0.1089	Holm (x10) : p=0.7621
	GLM RPE(M3) weight vs 0 : Cplx Mid	one sample Wilcoxon	p=0.4529	Holm (x10) : p=1
	GLM RPE(M3) weight vs 0 : Cplx Last	one sample Wilcoxon	p=0.9632	Holm (x10) : p=1
	GLM RPE(M3) weight vs 0 : Proba Start	one sample Wilcoxon	p=0.1099	Holm (x10) : p=0.7621
	GLM RPE(M3) weight vs 0 : Proba Mid	one sample Wilcoxon	p=0.0015	Holm (x10) : p=0.0146
	GLM RPE(M3) weight vs 0 : Proba Late	one sample Student t-test	p=0.0050	Holm (x10) : p=0.0449
	GLM RPE(M3) weight vs 0 : Proba Last	one sample Student t-test	p=0.0124	Holm (x10) : p=0.0988
B (left)	Det %UtURNS (N=19) : S1-2 vs S4-5 vs Last2	one-way ANOVA	p<10⁻⁵	
B (right)	Det seq. cplx (N=19) : S1-2 vs S4-5 vs Last2	one-way ANOVA	p<10⁻⁵	
C	Det dDA across sessions : Start (N=9) vs Mid (N=9) vs Late (N=14) vs Last (N=19)	Kruskall-Wallis	p=0.3857	
	Det dDA : Start vs 0	one sample Student t-test	p=0.3472	Holm (x4) : p=0.3472
	Det dDA : Mid vs 0	one sample Student t-test	p=0.0990	Holm (x4) : p=0.1980
	Det dDA : Late vs 0	one sample Student t-test	p=0.0353	Holm (x4) : p=0.1058
	Det dDA : Last vs 0	one sample Wilcoxon	p=0.0033	Holm (x4) : p=0.0134
D	Det across sessions : linear regression post-reward DA with turn rate	Spearman correlation	p=0.9643 ; R2 = 0.0025	
E (center-left)	Cplx %Success (N=18) : S1-2 vs S4-5 vs Last2	one-way ANOVA	p<10⁻⁵	
E (center)	Cplx %UtURNS (N=18) : S1-2 vs S4-5 vs Last2	one-way ANOVA	p<10⁻⁵	
E (center-right)	Cplx seq. cplx (N=18) : S1-2 vs S4-5 vs Last2	one-way ANOVA	p<10⁻⁵	
E (right)	Cplx circularity index (N=18) : S1-2 vs S4-5 vs Last2	one-way ANOVA	p<10⁻⁵	
F (center-left)	Proba %Success (N=14) : S1-2 vs S4-5 vs Last2	one-way ANOVA	p<10⁻⁵	
F (center)	Proba %UtURNS (N=14) : S1-2 vs S4-5 vs Last2	one-way ANOVA	p<10⁻⁵	
F (center-right)	Proba seq. cplx (N=14) : S1-2 vs S4-5 vs Last2	one-way ANOVA	p<10⁻⁵	
F (right)	Proba exploitation index (N=14) : S1-2 vs S4-5 vs Last2	one-way ANOVA	p<10⁻⁵	

bioRxiv preprint doi: <https://doi.org/10.1101/2024.07.28.605479>; this version posted July 29, 2024. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Panel	Comparison	Test type	p-values	Corrections
A (left)	Cplx Start: linear regression between DA reward peak and length of reward chains (n=1812)	Spearman correlation	p<10⁻⁵ ; R² = 0.009	
	Cplx Start: linear regression between DA reward peak and length of omission chains (n=385)	Spearman correlation	p=0.00005 ; R² = 0.083	
A (right)	Cplx Start: linear regression between DA omission dip and length of reward chains	Spearman correlation	p=0.00002 ; R² = 0.030	
	Cplx Start: linear regression between DA omission dip and length of omission chains (n=816)	Spearman correlation	p<10⁻⁵ ; R² = 0.088	
B (left)	Cplx End: linear regression between DA reward peak and length of reward chains (n=2815)	Spearman correlation	p=0.5887 ; R² = 0.001	
	Cplx End: linear regression between DA reward peak and length of omission chains (n=604)	Spearman correlation	p=0.00001 ; R² = 0.015	
B (right)	Cplx End: linear regression between DA omission dip and length of reward chains (n=612)	Spearman correlation	p=0.0002 ; R² = 0.019	
	Cplx End: linear regression between DA omission dip and length of omission chains (n=666)	Spearman correlation	p=0.0028 ; R² = 0.008	
C (left)	Cplx Start: Success rate depending on previous choice : forward vs uturn (N=17)	Student paired t-test	p<10⁻⁵	
C (right)	Cplx End: Success rate depending on previous choice : forward vs uturn (N=17)	Student paired t-test	p=0.0005	
D (left)	Cplx Start: Utturn rate depending on previous outcome : reward vs omission (N=17)	Student paired t-test	p=0.1443	
D (right)	Cplx End: Utturn rate depending on previous outcome : reward vs omission (N=17)	Student paired t-test	p=0.0577	
E (bottom, left)	Outcome chains length for all trials Cplx sessions : Rew_First2 (n=3472) vs Omi_First2 (n=2247) vs Rew_Last2 (n=6947) vs Omi_Last2 (n=2463) (N=49)	Kolmogorov-Smirnov (distribution)	First2: Rew vs Omi: p<10⁻⁵ Last2: Rew vs Omi: p<10⁻⁵ Rew: First2 vs Last2: p<10⁻⁵ Omi: First2 vs Last2: p<10⁻⁵	Holm (x4) : all p<10⁻⁵
E (bottom, right)	Outcome chains length for all mice Cplx sessions : Rew_First2 vs Omi_First2 vs Rew_Last2 vs Omi_Last2 (N=49)	one way ANOVA	p<10⁻⁵	
	Post-hoc Rew_First2 vs Omi_First2:	Wilcoxon test	p=0.0230	Holm (x4) : p=0.0230
	Post-hoc Rew_Last2 vs Omi_Last2:	Wilcoxon test	p<10⁻⁵	Holm (x4) : p<10⁻⁵
	Post-hoc Rew_First2 vs Rew_Last2:	Wilcoxon test	p<10⁻⁵	Holm (x4) : p<10⁻⁵
	Post-hoc Omi_First2 vs Omi_Last2:	Wilcoxon test	p<10⁻⁵	Holm (x4) : p<10⁻⁵
F (left)	Uturn chains length for all trials Cplx sessions : Fwd_First2 (n=4235) vs Uturn_First2 (n=1386) vs Fwd_Last2 (n=6137) vs Uturn_Last2 (n=3175) (N=49)	Kolmogorov-Smirnov (distribution)	First2: Fwd vs Uturn: p<10⁻⁵ Last2: Fwd vs Uturn: p<10⁻⁵ Fwd: First2 vs Last2: p<10⁻⁵ Uturn: First2 vs Last2: p=0.9501	Holm (x4) : p<10⁻⁵ Holm (x4) : p<10⁻⁵ Holm (x4) : p<10⁻⁵ Holm (x4) : p=0.9501
F (right)	Uturn chains length for all mice Cplx sessions : Fwd_First2 vs Uturn_First2 vs Fwd_Last2 vs Uturn_Last2 (N=49)	one way ANOVA	p<10⁻⁵	
	Post-hoc Fwd_First2 vs Uturn_First2:	Wilcoxon test	p<10⁻⁵	Holm (x4) : p<10⁻⁵
	Post-hoc Fwd_Last2 vs Uturn_Last2:	Wilcoxon test	p<10⁻⁵	Holm (x4) : p<10⁻⁵
	Post-hoc Fwd_First2 vs Fwd_Last2:	Wilcoxon test	p<10⁻⁵	Holm (x4) : p<10⁻⁵
	Post-hoc Uturn_First2 vs Uturn_Last2:	Wilcoxon test	p=0.6860	Holm (x4) : p=0.6860

bioRxiv preprint doi: <https://doi.org/10.1101/2024.07.28.605479>; this version posted July 29, 2024. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

400 **References Supplementary Materials**

401 1. H. Khabou, M. Garita-Hernandez, A. Chaffiol, S. Reichman, C. Jaillard, E. Brazhnikova, S. Bertin, V.
402 Forster, M. Desrosiers, C. Winckler, O. Goureau, S. Picaud, J. Duebel, J.-A. Sahel, D. Dalkara,
403 Noninvasive gene delivery to foveal cones for vision restoration. *JCI insight* **3**, D358 (2018).

404 2. F. Sun, J. Zeng, M. Jing, J. Zhou, J. Feng, S. F. Owen, Y. Luo, F. Li, H. Wang, T. Yamaguchi, Z.
405 Yong, Y. Gao, W. Peng, L. Wang, S. Zhang, J. Du, D. Lin, M. Xu, A. C. Kreitzer, G. Cui, Y. Li, A
406 Genetically Encoded Fluorescent Sensor Enables Rapid and Specific Detection of Dopamine in Flies,
407 Fish, and Mice. *Cell* **174**, 481-496.e19 (2018).

408 3. F. Sun, J. Zhou, B. Dai, T. Qian, J. Zeng, X. Li, Y. Zhuo, Y. Zhang, Y. Wang, C. Qian, K. Tan, J.
409 Feng, H. Dong, D. Lin, G. Cui, Y. Li, Next-generation GRAB sensors for monitoring dopaminergic
410 activity in vivo. *Nat. methods* **17**, 1156–1166 (2020).

411 4. V. W. Choi, A. Asokan, R. A. Haberman, R. J. Samulski, Production of recombinant adeno-associated
412 viral vectors. *Current protocols in human genetics Chapter 12*, Unit 12.9-12.9.21 (2007).

413 5. C. Aurnhammer, M. Haase, N. Muether, M. Hausl, C. Rauschhuber, I. Huber, H. Nitschko, U. Busch,
414 A. Sing, A. Ehrhardt, A. Baiker, Universal real-time PCR for the detection and quantification of adeno-
415 associated virus serotype 2-derived inverted terminal repeat sequences. *Human gene therapy methods*
416 **23**, 18–28 (2012).

417 6. M. Belkaid, E. Bousseyrol, R. D. Cuttoli, M. Dongelmans, E. K. Duranté, T. A. Yahia, S. Didienne, B.
418 Hanesse, M. Come, A. Mourot, J. Naudé, O. Sigaud, P. Faure, Mice adaptively generate choice
419 variability in a deterministic task. *Communications Biology* **3**, 1–9 (2020).

420 7. J. Naudé, S. Tolu, M. Dongelmans, N. Torquet, S. Valverde, G. Rodriguez, S. Pons, U. Maskos, A.
421 Mourot, F. Marti, P. Faure, Nicotinic receptors in the ventral tegmental area promote uncertainty-
422 seeking. *Nature Neuroscience* **19**, 471–478 (2016).

423 8. E. Bousseyrol, S. Didienne, S. Takillah, C. Prevost-Solié, M. Come, T. A. Yahia, S. Mondoloni, E.
424 Vicq, L. Tricoire, A. Mourot, J. Naudé, P. Faure, Dopaminergic and prefrontal dynamics co-determine
425 mouse decisions in a spatial gambling task. *Cell Rep.* **42**, 112523 (2023).

426 9. M. Dongelmans, R. D. Cuttoli, C. Nguyen, M. Come, E. K. Duranté, D. Lemoine, R. Brito, T. A. Yahia,
427 S. Mondoloni, S. Didienne, E. Bousseyrol, B. Hanesse, L. M. Reynolds, N. Torquet, D. Dalkara, F.
428 Marti, A. Mourot, J. Naudé, P. Faure, Chronic nicotine increases midbrain dopamine neuron activity and
429 biases individual strategies towards reduced exploration in mice. *Nat Commun* **12**, 6945 (2021).

430 10. A. Lempel, J. Ziv, On the Complexity of Finite Sequences. *IEEE Trans. Information Theory* **22**, 75–
431 81 (1976).