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Abstract: 10 

Efficient decision-making requires two key processes: learning values from actions and identifying a set 11 

of relevant actions to learn from in a given context. While dopamine (DA) is a well-known substrate for 12 

signaling reward prediction errors (RPEs) from selected actions to adjust behavior, the process of 13 

establishing and switching between action representations is still poorly understood. To address this gap, 14 

we used fiber photometry and computational modelling in a three-armed bandit task where mice learned 15 

to seek rewards delivered through three successive rule sets, displaying distinct strategies in each rule. 16 

We show that DA dynamically reflected RPEs computed from different task features, revealing context-17 

specific internal representations. Our findings demonstrate that mice not only learned and updated action 18 

values but also action representations, adapting the features from which they learn across rules for flexible 19 

adjustment of their decision strategy.  20 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 29, 2024. ; https://doi.org/10.1101/2024.07.28.605479doi: bioRxiv preprint 

mailto:phfaure@gmail.com
https://doi.org/10.1101/2024.07.28.605479
http://creativecommons.org/licenses/by-nc-nd/4.0/


Introduction 21 

Toddlers solving puzzles can successfully associate either shapes or colors depending on the game they 22 

are playing (Fig 1A), highlighting the importance of context in learning value from environmental 23 

featuress, and thereby developing an internal model of a task structure. Efficient decision making indeed 24 

requires both to learn from the consequences of actions (reinforcement learning) and to identify features 25 

and dimensions (i.e., a state space) that define a set of relevant actions from which to learn about 26 

(representation learning) (1–4). A cornerstone of understanding the mechanisms governing reinforcement 27 

learning and decision making is the interplay between prediction errors and state representation. Failure 28 

in such representation learning can lead to superstitions or false beliefs that interfere with efficient learning 29 

and decision making (5). Despite its fundamental importance for adaptive behavior, the role of 30 

representation learning in decision-making has been experimentally overlooked, limiting our 31 

understanding of how state representations are formed through experience (4). This issue becomes 32 

increasingly important as researchers shift their focus from experiments with a simple task structure to 33 

more elaborated tasks (6–10) that more closely resemble natural decision-making, with multiple (and 34 

possibly overlapping or competing) features that animals may use as state representations, as well as 35 

potentially abrupt changes over time in the state representations being used. 36 

The identification of the neural substrate of this representation can be an indication that this representation 37 

is actually being used by the animal. While multiple brain areas contribute to the encoding of such features 38 

(11–14), it is still difficult to know, in a given context, which one of these features are recognized and 39 

effectively used by a subject to build a relevant internal model of the world, e.g., to predict values, compute 40 

errors, and guide goal-directed actions. We hypothesize that dopamine (DA) could be an excellent 41 

indicator of the representations used to navigate an environment. DA is a very well-established substrate 42 

to signal value and compute reward prediction error (RPE) (15–26), integrating outcome-related 43 

dimensions in a common currency (27–29), and driving reinforcement learning and decision making (21, 44 

27, 28, 30–33). Consequently, DA-mediated RPE should necessarily depend on the most relevant 45 

features for obtaining rewards and driving strategy, thereby providing insights into the subject’s current 46 

state representation. To demonstrate this, we propose a novel experimental approach designed to follow 47 

the learning and shifts in task representations. We used behavioral assays, fiber photometry recording 48 

and computational modeling to explore how dopamine-mediated RPE signatures are related to specific 49 

features or action in different rules of a spatial bandit task (7, 8, 34, 35) and how these features vary 50 

across rules. Our results show that mice not only learned value from actions, but also adapted their set 51 

of relevant actions from which to learn, efficiently adjusting their reward-seeking strategies. 52 

 53 

Each reward context is associated with a specific reward-seeking strategy 54 
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Using different versions of a spatial bandit task adapted for mice (7, 8, 34, 35), we aimed to obtain rule-55 

specific and feature-dependent strategies (Fig 1A-B). In this task, animals learned to navigate between 56 

three marked locations in an open field, each associated with an intracranial self-stimulation (ICSS) of the 57 

medial forebrain bundle (MFB). Mice could not receive two consecutive ICSS at the same location; and 58 

therefore, had to alternate between rewarding locations, resulting in a sequence of movements and binary 59 

choices (i.e., trials) (Fig 1B, top). Despite the apparent simplicity of this self-generated, goal-oriented 60 

behavior, mice can use different features of the environment to guide their actions and obtain rewards 61 

(Fig 1B, bottom). Mice were initially trained in a deterministic context (Det) where all locations 62 

consistently delivered ICSS, developing typical ballistic speed profiles (Fig 1C) and increasing trial 63 

numbers, with similar learning curves observed in both males and females (Fig S1A). Subsequently, mice 64 

were switched to complex and probabilistic reward delivery rules, requiring them to adapt their strategies 65 

(Fig 1D, Fig S1B-C). In the complex context (Cplx), reward delivery was determined by the variability 66 

compared to decision patterns identified in the previous nine choices (Fig S2A) (8), while the probabilistic 67 

context (Proba) offered different reward probabilities at each location (100%, 50%, 25%)(35). These 68 

varying conditions resulted in distinct trajectory patterns (Fig 1D), success rates (Fig 1E), and decision-69 

making strategies. In Det, animals tended to adopt circular trajectories with minimal U-turns (~20%). In 70 

contrast, the Cplx rule resulted in random trajectory patterns characterized by high sequence complexity 71 

(Fig 1E, Fig S2B). In Proba, mice exhibited a bias toward locations with higher probability of reward 72 

delivery, resulting in a high percentage of U-turns and a preference for p100 and p50 (Fig 1F). We also 73 

ensured that those differences in decision strategy were not due to motivation or vigor to perform the 74 

three versions of the task (Fig S3). Overall, while the basic design of the task remained constant, each 75 

rule is associated with a specific reward structure promoting different action-outcome causalities. The 76 

evolution of decision dynamics across rules demonstrates that mice can extract such contingencies to 77 

dynamically adjust and improve their reward-seeking strategies, allowing for the longitudinal study of both 78 

choice behavior adaptations and their neural correlates. 79 

 80 

Dopamine dynamics reveal expectations built upon rule-specific features 81 

We next examined DA release dynamics during the task, across the three rules, using the fluorescent 82 

sensor GRABDA2M expressed in the lateral shell of the nucleus accumbens (NAc) in a new cohort of wild-83 

type male mice (Fig 2A, Fig S4A). Positive transients in DA release occurred upon receiving expected 84 

rewards, whereas negative events were observed when expected rewards were omitted (Fig 2B-C, Fig 85 

S4B), indicative of a negative RPE (for simplicity, these events, whether positive or negative, are referred 86 

to as transients). Similar responses were observed while recording Ventral Tegmental Area (VTA) DA 87 

neurons activity with GCaMP in DAT-iCre mice, ensuring consistency in the interpretation of DA dynamics 88 
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between release and firing processes (Fig S4C-D). Analysis of the amplitude distribution of DA transients 89 

(positive and negative) across the different rules showed greater variability compared to unexpected 90 

random stimulation in a rest cage, suggesting an active mechanism related to reward expectation 91 

modulating the DA response, rather than being a mere response to the ICSS (Fig 2D). Additional 92 

experiments with unexpected rewards delivered either during the task but off-target (i.e. when the animal 93 

was in-between rewarded locations, Fig 2E) or in a rest cage (Fig S4E-F) demonstrated a larger transient 94 

compared to expected rewards during the task, yet only after conditioning (Supp 4G-H), further supporting 95 

the role of expectation in modulating DA release. We also controlled for a potential impact of sensor 96 

fatigue and found no effect on DA signal when stimulations were given in the rest cage with varying 97 

durations in-between stimulation (matching those observed in the task, typically from 2s to 7s) (Fig S5A-98 

B). Altogether, these findings, consistent with positive and negative RPE patterns, illustrate that DA 99 

dynamics during the task are not solely driven by MFB stimulation but are significantly influenced by the 100 

mice's learned expectations and internal task representations. 101 

We next wondered which task features those expectations were built upon. To do this, we applied 102 

generalized linear models (GLMs) to analyze fluctuations in DA peaks and dips amplitudes across trials, 103 

running separate regression analyses for each individual mouse at the end of each rule (last two sessions) 104 

(Fig 2F). The predictors included current and previous trial outcomes (reward or omission), the specific 105 

target where outcomes occurred (locations pA, pB, and pC; or p100, p50 and p25 in Proba), and the 106 

direction taken (Forward movement or U-turn) (Fig 2F). In the Det setting, where all trials were rewarded, 107 

we observed that the key predictor for differentiating trials was direction but not target (Fig 2G). In the 108 

Cplx setting, trial outcome accounted for the biggest part of DA variation (positive for rewards, negative 109 

for omissions, Fig 2H), with an additional positive effect of previous outcome (having received an omission 110 

at trial n-1 increases DA signal at trial n), regardless of targets or directions. In Proba, this effect of 111 

previous outcome disappeared, and the target probability significantly influenced DA variations (Fig 2I).  112 

Overall, the GLM analysis revealed that the primary drivers of DA fluctuations varied depending on the 113 

task setting, with direction, trial outcome, and target probability each playing distinct roles. Direct 114 

examinations of DA transients, categorized by direction, previous outcome or target, confirmed and 115 

complemented these results. In Det, DA release depends on direction (Fig 2J, Fig S5C) but not on the 116 

target (Fig S5D). In Cplx, omission on previous trial led to greater rewards-induced peaks and shallower 117 

omissions-induced dips (Fig 2K, Fig S5E), while neither the target nor the direction showed significant 118 

effects (Fig S5F-G). At the end of the Proba setting, the DA signals were negatively influenced by target 119 

probability, with higher probabilities resulting in lesser positive DA release for rewards and more 120 

pronounced DA decrease for omissions (Fig 2L, Fig S5H). Finally, no effect of direction was observed on 121 

DA transients (Fig S5I), and regarding outcome at previous trial, we observed a small effect only for 122 
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rewarded trials (Fig S5J). Altogether, these results reveal specific patterns in the modulation of phasic 123 

DA peaks or dips across task settings. Notably, DA fluctuations were not consistently associated with the 124 

same features across rules. In Cplx, the current and previous outcomes explained most of the DA 125 

variations. However, the dependency on directions in the Det and targets in Proba underscores the distinct 126 

nature of DA computation in response to each of the three rules. This reinforces the idea of differences in 127 

task representation. 128 

 129 

DA signal encodes state-specific RPEs 130 

The observed DA fluctuations suggest a link with reward prediction errors (RPEs), which we explored 131 

through computational modeling. At each trial, we modeled DA as the sum of obtained reward (0 or 1) 132 

and RPE, adjusting RPEs trial-by-trial using the Rescorla-Wagner model (Fig 3A, Fig S6A). From 133 

previous behavioral and fiber photometry results, we posited and tested three states or configurations of 134 

value representations: a simple model (M1) treating all trials equally, a model based on action (M2) with 135 

distinct values for forward and U-turn actions, and a model based on state (M3) with specific values for 136 

each target. We then used the mice’s actual choices to compute model-dependent theoretical RPEs 137 

(RPEMi) and used these to fit DA variations for each mouse (Fig 3A, Fig S6A). GLM analysis indicated 138 

that for each rule, only one model significantly explained DA variation, while the others two have no effect. 139 

Specifically, only M2 is significant in Det (Fig 3B), only M1 in Cplx (Fig 3C), and only M3 in Proba (Fig 140 

3D). To confirm this analysis, we show that in the Det setting only M2 was able to capture the U-141 

turn/Forward effect observed in the fiber photometry data (Fig 3E, Fig S6B), and this across all learning 142 

rates tested (α, see Methods). In Cplx, M1 was the only model that correctly captured DA variations based 143 

on the previous outcome (Fig 3G, Fig S6C). Finally, in the Proba context, only M3, where mice learned 144 

distinct values for each target based on their probabilities, reproduced the data (Fig 3G, Fig S6D). To 145 

further validate these results, we performed an extra Proba session, where p100 was changed into 146 

another p50. We observed that DA variations were still in line with the previous probability set, and that 147 

unexpected omissions at this new p50 target (with Vexp still ~1) triggered even greater DA dips (Fig 3H). 148 

These findings demonstrate that mice not only learned action-value associations through DA-mediated 149 

RPE (contingency learning), but also adapted their set of relevant actions by changing their state 150 

representation from one rule to the next (representation learning). 151 

 152 

DA dynamics adaptively reflects reward structure to foster strategy adaptation. 153 

We next investigated how such evolution in state representation occurred within and across each rule, 154 

analyzing DA release at different phases and applying mice choice sequences to our three RL models to 155 

compute RPEs. Successive GLMs revealed evolving dominance of specific models across contexts and 156 
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sessions (Fig 4A, top). In the Det sessions, DA variations correlated with M2 (Fwd vs Uturn) RPEs 157 

towards the end, transitioning to M1 (any trial) dominance throughout the Cplx sessions, and then 158 

progressively to M3 (p100 vs p50 vs p25) across the Proba sessions (Fig 4A, top). Changing the learning 159 

rate of the RL algorithm affected some statistics, without altering these patterns of evolution (Fig S7A). 160 

Changes in the success rates associated with each action paralleled changes in representations (Fig 4A, 161 

bottom), especially at transitions from one rule to another, while mice face strong discrepancies between 162 

their current internal model of the world and environmental feedbacks, requiring them to update their 163 

representation to solve a new rule. This result suggests an adaptation to changes in reward structure. 164 

Transitioning to Cplx, the success rates of all possible actions (Fwd vs Uturn, or pA vs pB vs pC) are 165 

deprecated (Fig 4A, bottom), and the reward structure does not depend on specific actions but rather on 166 

the variability in the successive execution of these actions. The increase in the average success rate is 167 

actually achieved by an increase in all option-specific success rates in parallel, making a simple trial-168 

based representation (M1) suitable to behave with this rule. When exposed to the Proba rule, mice again 169 

detect a change in the reward structure, with greater differences in success rates between locations (Fig 170 

4A, bottom), making a target-based model (M3) very efficient to represent the task, drive choice and 171 

improve performance. 172 

To validate this interpretation, we returned to behavior to examine whether we could directly correlate 173 

concurrent evolution of decision strategy and DA dynamics. Specifically, we estimated ∆DA, the 174 

difference between DA transients associated with some options, e.g. DA(rewIpA) vs DA(rewIpB), 175 

reasoning that this ∆DA might vary with choice and performance — and thus with policy (i.e., the 176 

preference for one option among others). In Det, optimizing reward seeking involved reducing U-turns 177 

and sequence complexity, with no direct DA-behavior correlation (Fig S7B-D). Upon transitioning to the 178 

Cplx rule, mice initially faced a high rate of omissions, across all available action features, due to 179 

persistence of repetitive circular choice patterns, resulting in a low success rate (Fig S7E). Over time, 180 

they improved their success by increasing both U-turns and sequence complexity, generating more 181 

variability (Fig S7E). However, the gap in DA signals regarding previous outcome did not evolve across 182 

Cplx, nor did it correlate with any decision parameter (Fig 4B), showing persistent differences based on 183 

reward history only (Fig S8A-B). Moreover, although locally performing a Uturn led to higher chance of 184 

success (Fig S8C), mice did not seem to use that contingency as a heuristic: first, omissions did not 185 

locally trigger more Uturns (Fig S8D), and second, mice did not increase success by performing Uturns 186 

in chains, but rather by progressively learning to spread them among trials to increase variability (Fig 187 

S8E-F). Altogether, the results indicate that the adaptation of decision strategy in the Cplx rule was neither 188 

accompanied by concurrent adaptation of the DA signal nor was it a local reaction to omissions that 189 

generated negative RPEs.	Upon transition to Proba, mice again encountered a high rate of omissions, 190 
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but the distribution of those omissions was very different between possible actions, especially regarding 191 

targets (Fig 4A, bottom). Across Proba sessions, mice progressively increased success, U-turns, and 192 

exploitation of high-probability targets (FigS7F), correlating with emerging DA differences between targets 193 

(Fig 4C). These concurrent adaptations, in choice preferences and in DA release, highlight independent 194 

evolution of expected values for each rewarded location. This hypothesis was confirmed by correlation 195 

analyses, demonstrating that greater divergence in DA responses to p100, p50, and p25 (higher absolute 196 

ΔDA) correlated with greater success rate, U-turns (not shown), and exploitation of high-probability 197 

targets, across both individuals and sessions (Fig 4C).  198 

 199 

Discussion 200 

By recording NAc DA release in a spatial three-armed bandit task with different rules of reward delivery, 201 

we show how DA dynamics reflected Reward Prediction Error (RPE) computations based on different 202 

task features. DA release not only conveyed value and RPE upon reward delivery or omission, but also 203 

adapted based on task contingencies, thus revealing mice internal model and representation. As the 204 

causal relationship between actions and outcomes varied across the different task rules, we hereby 205 

demonstrate that mice learned and updated values from actions (contingency learning), and changed 206 

their set of relevant states or actions from which to learn about across rules (representation learning).  207 

First, our results confirm and extend a consistent pattern observed across the dopamine literature, 208 

wherein phasic DA carries information regarding both the obtained value and the RPE upon delivery or 209 

omission of an expected reward (6, 15–24). More specifically, DA showed peaks in response to ICSS, 210 

regardless of whether the reward was expected or not. It remains unclear whether this response stems 211 

from direct stimulation of MFB DA fibers, resulting in DA release in the NAc, or whether it reflects a 212 

subjective value mediated by circuits beyond the DA system alone (36, 37). Nevertheless, the amplitude 213 

of those peaks was modulated by task contingencies and expectations. We observed positive DA 214 

transients of greater amplitude upon unexpected rewards, and negative transients following unexpected 215 

omissions, a common observation in similar reward conditioning paradigms, interpreted as positive and 216 

negative RPEs (6, 7, 24, 38). Using a task structured around sequential trials and choices enabled online 217 

observation of such RPE computations (both positive and negative), a phenomenon yet rarely reported 218 

(6, 24, 29, 39, 40), especially in the context of uncued and self-paced goal-directed decisions. These 219 

findings highlight the importance of real-time trial-based RPE measurement in detecting longitudinal 220 

changes in internal representation. 221 

Second, mice demonstrated flexibility by switching representations and selecting relevant features to 222 

efficiently associate actions with outcomes and solve various task rules, thereby improving performance. 223 

These changes occurred during transitions between rules, when mice faced unexpected decrease in 224 
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reward reward rates, suggesting that negative prediction errors and inhibition of downstream circuits by 225 

DA dips may facilitate exploration of new action representations. Under the complex rule, despite all 226 

models would have yielded similar outcomes due to the nature of the algorithm, mice opted for a specific 227 

representation that treat all trials equally, regardless of choice. The latter indicates a value-independent 228 

decision strategy, possibly together with a meta-regulation of policy parameters (for example an adaptive 229 

temperature b parameter) that promote random exploration (8, 41, 42). Upon transitioning to probabilistic 230 

setting, mice required several sessions to adjust their value representation, linking expected values to 231 

spatial preferences in a classical value-based decision-making process.  232 

Learning rates also influenced DA variations and choice preferences. Although we used a constant rate 233 

for simplicity, learning rates might vary across contexts and individuals. Selective attention (1, 43) has 234 

been proposed as an adaptive mechanism by which individuals can identify and assign credit to task-235 

relevant features from which to learn about (1, 43) possibly adjusting learning rates independently for 236 

each feature to widen the range of decision strategy adaptations. Lastly, while multiple brain areas appear 237 

to encode specific environmental features (11–14), the DA signal recorded here appeared to resolve only 238 

those features that are important for action-outcome association and used for action selection. As a result, 239 

DA dynamics could be leveraged to infer how representations are formed and how mice can flexibly adapt 240 

them to solve new rules.  241 
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Fig. 1. Mice display distinct reward seeking strategies adapted to each rule. A. From a variety of 380 

overlapping features, individuals can learn value and take decisions depending on the rule. B. Mice 381 

perform successive binary choices to collect ICSS rewards. Choice could rely on various overlapping sets 382 

of actions. C. Speed profiles and trajectories throughout conditioning. D. Three reward delivery rules were 383 

successively proposed: Deterministic (Det) where all trials were rewarded (P=100%), Complexity (Cplx), 384 

where trials are rewarded based on sequence variability, and Probabilistic (Proba), with each target 385 

associated to a given probability (P=25%, 50%, and 100%). E. Succession of trials and choices generates 386 

sequences of outcomes (rewards and omissions), targets (A, B and C) and directions (Forwards and 387 

Uturns). Comparison of success rate, sequence complexity and Uturn rate reveals distinct reward seeking 388 

strategies across contexts. F. Locally, a mouse on one location (ex: pA) has the choice between the two 389 

others (ex: pB vs pC), and therefore performs a gamble computed as gA = P(pB|pA). g>50% corresponds 390 

to clockwise rotation for Det and Cplx, and to preference for highest probability of reward for Proba. 391 

Proportion of target visits and choice preference at each gamble show a bias for circular foraging in Det, 392 

exploitation in Proba, and randomness in Cplx. Data are shown as individual points, and mean ±sem. 393 

N=49 mice (23 males and 26 females).  394 
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Figure 2
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Fig. 2: NAc DA release dynamics reveal expectations built upon rule-specific features. A. 395 

Schematic of the experimental design to record DA release during the task with chronic fiber photometry. 396 

B. Representative signal from one 5-min session. C. For the same example session, signal is time-locked 397 

on location entry (t0) and averaged. Rewards induce peaks and omissions induce dips of DA release. D. 398 

Density distribution of averaged DA variations for rewards and omissions for the last two sessions of Det, 399 

Cplx or Proba, and for random stimulations in the rest cage (performed on last day of Det). E. After 400 

conditioning, mice were randomly and unexpectedly stimulated during the task outside of the rewarded 401 

zones (off-target), triggering DA peaks of greater amplitude. F. Each trial is defined by predictors (outcome 402 

received, previous outcome received, trajectory chosen to reach target, and target chosen) to fit DA 403 

amplitude using GLMs. G-H-I. GLM results at the end of Det, Cplx and Proba. Features explaining DA 404 

variations vary across contexts. J-K-L. Direct analysis of DA transients locked on those significant 405 

features (Uturn vs Fwd in Det ; reward vs omission at previous trial in Cplx ; p25 vs p50 vs p100 in Proba). 406 

Data are shown as individual points, and/or mean ±sem. n is the number of trials, N the number of mice 407 

in each condition.  408 
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Figure 3
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Fig. 3: DA signal embeds an RPE component, modelled from distinct value representations 409 

specific to each rule. A. Mice choice sequences were taken to train Reinforcement Learning (RL) 410 

algorithms, testing three possible action representations to update values and compute corresponding 411 

RPEs. Model 1 (M1) treats all trials equally with fluctuating { VAny }. M2 updates a set of two distinct values 412 

{ VFwd ; VUturn }. A spatial model (M3) computes three independent values for each target { VpA ; VpB ; VpC 413 

}. We then trained another GLM assuming DA = Vobtained + RPE, with trial RPEs generated from M1, M2 414 

and M3. B-C-D. GLM results in Det, Cplx and Proba. Models reproducing RPEs that explained DA 415 

variations vary across contexts. E-F-G. Evolution of expected value and RPE for M1, M2 or M3 in example 416 

sessions (left) and on average (right). E. In M2-Det, convergence toward 1 is slower for Uturns, leading 417 

to higher RPEUturn and reproducing DA data. F. In M1-Cplx, VAny is always updated and fluctuates around 418 

mean success rate. Plotting corresponding RPEs regarding current and previous outcomes mimic DA 419 

data. G. In M3-Proba, value of each target converges and then fluctuates around its probability, and 420 

corresponding RPEs reproduce DA data. H. At the end of Proba, probability of the p100 location was 421 

changed to 50%. Omissions at target p100=>50 triggered deeper DA dips, while GLM shows DA still 422 

varies with the old probability set. Data are shown as individual points, and/or mean ±sem. n is the number 423 

of trials, N the number of mice in each condition.  424 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 29, 2024. ; https://doi.org/10.1101/2024.07.28.605479doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.28.605479
http://creativecommons.org/licenses/by-nc-nd/4.0/


C
Proba

Δ(
DA

) (
%

)

Exploit. index-0.1 0.4
0

500 R2=0.166; s=0.655; p<10-5

Δ(
DA

) (
%

)

-50

150

Success rate (%)50 75

R2=0.142; s=-0.421; p=0.004

0

Start Mid Late
(N=12) (N=12) (N=11)

Last
(N=10)

ns ns p=0.068 **

0

150

100

Δ(
DA

) a
t o

mi
ss

ion
 (%

)

-50

-100

50

p=0.065

ns ** * *

0

500
400

Δ(
DA

) a
t r

ew
ar

d (
%

)

200

-100

300

100

600

**

Δ(DA)Omi
p25

p50

Δ(DA)

Rew

p25

p100

Decision strategy

25

50

100

B
Cplx

Start Mid Last
(N=17) (N=17) (N=17)

*** *** ***

0

100

200

Δ(
DA

) a
t r

ew
ar

d (
%

)

ns
300

*** * **
0

80

40

Δ(
DA

) a
t o

mi
ss

ion
 (%

)

-40

-80

ns

Rew

prev=omi

prev=rew
Δ(DA)

Omi Δ(DA)
prev=omi

prev=rew

Δ(
DA

) (
%

)

Success rate (%)30 80
0

250 R2=0.073; s=0.169; p=0.236

Δ(
DA

) (
%

)

-60

60

Seq. complexity0.5 1

0

R2=0.033; s=0.181; p=0.204

Decision strategy

A

Figure 4

w(RPEM1)
w(RPEM2)
w(RPEM3)

0

-0.5

0.5

1.0

learning rate = 0.05

#

***

***

#

#******

#

**

#

#**

w 
va

lue
 of

 ea
ch

 R
PE

MX
 va

ria
ble

 in
 G

LM
s

Mid Late
(N=9) (N=14)

Last
(N=19)

Start Mid Last
(N=17) (N=17) (N=17)

Start Mid Late
(N=12) (N=12) (N=11)

Last
(N=10)

Cplx ProbaDet

SR(Trial)
SR(Uturn)

SR(pC or p100)
SR(Fwd)

SR(pB or p50)
SR(pA or p25)

Su
cc

es
s r

ate
 (%

)

20

60

100

40

80

100% 100%

25%

50%

58,3%

75%75%

**

ns
** ns

ns

***
*
**

***each ***each

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 29, 2024. ; https://doi.org/10.1101/2024.07.28.605479doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.28.605479
http://creativecommons.org/licenses/by-nc-nd/4.0/


Fig. 4: DA reflects switches in task representations, fostering strategy adaptation to improve 425 

performance. A. Top: The approach of RL modelling and GLM fitting DA data with computed RPEs used 426 

in Fig 3 was extended at different phases across each rule. To mimic mice learning, we took the final 427 

values of models at phase n to feed the initial values of models at phase n+1. Plots show evolution of 428 

RPEM1 (black), RPEM2 (brown) and RPEM3 (purple) weights over time. Bottom: Parallel general or action-429 

related success rates. Rule transitions represent high degrees of discrepancy. B. ΔDA is computed for 430 

each session of each mouse as the relative difference Δ = (prev_omi—prev_rew) / prev_rew, for both 431 

rewards and omissions, showing significant effect of previous outcome for all phases in Cplx, but with 432 

neither ΔDA adaptation across sessions, nor correlation with any decision parameter across sessions and 433 

individuals. C. Same as B, but computing ΔDA as difference between high and low probability targets in 434 

Proba. ΔDA adapts throughout the Proba sessions, with strong correlations with decision parameters. 435 

(Data are shown as individual points, and/or mean ± sem. In B, C linear regressions, each data point is 436 

one animal at one phase. In A, due to multiple corrections (x10) generating dilutions in p-values, # symbol 437 

has been added to highlight p<0.12 after correction. N is always the number of mice in each context. 438 
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Materials and Methods 5 
 6 
Animals: Experiments were performed on adult C57Bl/6Rj wild-type mice (Janvier Labs, France). Both 7 

male and female mice, weighing 20-30 g and 8 weeks old at the time of surgery, were used for behavioral 8 

experiments. Only male mice were used in the GRABDA fiber photometry cohorts. For cre-dependent 9 

GCaMP experiments, DATiCre male mice were used. All mice were kept in an animal facility where 10 

temperature (20 ± 2°C) and humidity were automatically monitored and a circadian 12/12h light–dark 11 

cycle was maintained. All experiments were performed in accordance with the recommendations for 12 

animal experiments issued by the European Commission directives 219/1990, 220/1990, and 2010/63, 13 

and approved by Sorbonne University and ESPCI. 14 

 15 

AAV production: AAVs for GRABDA2m (pXR1-AAV-hSyn-GRAB-DA4.4) were produced as previously 16 

described (1) (using the cotransfection method from plasmids generously provided by Dr. Yulong Lee (2, 17 

3) and purified by iodixanol gradient ultracentrifugation(4)). AAV vector stocks were tittered by quantitative 18 

PCR (qPCR) (5) using SYBR Green (Thermo Fischer Scientific). AAV vectors for GCaMP6f (AAV1-EF1a-19 

DIO-GCaMP6f-P2A-nls-dTomato) and GCaMP7c (pGP-AAV1-syn-FLEX-jGCaMP7c variant 1513-20 

WPRE) were directly ordered from Addgene. 21 

 22 

Intracranial self-stimulation (ICSS) electrode implantation: Male and female WT mice were 23 

anaesthetized with a gas mixture of oxygen (1 L/min) and 1-3% of isoflurane (Piramal Healthcare, UK) 24 

and then placed into a stereotaxic frame (Kopf Instruments, CA, USA). After the administration of a local 25 

anesthetic (Lurocain, 0.1 mL at 0.67 mg/kg), a median incision revealed the skull, which was drilled at the 26 

level of the median forebrain bundle (MFB). For ICSS, a bipolar stimulating electrode (PlasticOne 2 27 

channels, stainless steel, 10 mm) was then implanted unilaterally (left or right, randomized) in the brain 28 

using the following stereotaxic coordinates (from bregma according to Paxinos atlas): AP −1.4 mm, ML 29 

±1.2 mm, DV −4.8 mm from the brain). Dental cement (SuperBond, Sun Medical) was used to fix the 30 

implant to the skull. An analgesic solution of buprenorphine at 0.015 mg/L (0.1 mL/10 g) was delivered 31 

prior to awakening from the surgery and, if necessary, the following recovering days. After stitching, mice 32 

were placed back in their home-cage and had a minimum of 5 days to recover from surgery. The efficacy 33 

of electrical stimulation was verified through the rate of conditioning during the deterministic setting (see 34 

Intracranial Self Stimulation (ICSS) bandit task). Out of the 54 mice implanted (27 for each sex), 49 were 35 

included in the results (23 males and 26 females). 36 

 37 
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Virus injections and fiber photometry recordings: 3 cohorts of WT male mice (total of 24) were 38 

anaesthetized (Oxygen 1 L/min, Isoflurane 1–3%) and implanted with an ICSS electrode as described 39 

above. They were then injected unilaterally (randomized left/right side and ipsi/contralateral side regarding 40 

the ICSS electrode) in the NAc lateral shell (1 µL, coordinates from bregma: AP +1.45mm; ML ±1.55mm; 41 

DV −4.05mm from the skull) with an adeno-associated virus (2, 3)  to express GRABDA2m. An optical fiber 42 

(200 µm core, NA = 0.39, Thor Labs) coupled to a metallic ferule (1.25 mm) was implanted 100 µm above 43 

the injection site in target region and cemented to the skull with blackened cement. 5 DATiCre male mice 44 

followed the same procedures for GCaMP experiments in the VTA (1 µL, coordinates from bregma: AP -45 

3.10mm; ML ±0.50mm; DV −4.20mm from the brain), 3 of them with GCaMP7c and 2 with GCaMP6f. 46 

Viral expression typically took 10-15 days to achieve a satisfying signal and lasted for up to 3 months. 47 

However, some mice exhibited a shorter duration of expression and were therefore excluded for the 48 

analysis of later sessions. Although the mice performed the task on a daily basis, fluorescent recordings 49 

were made only every 2 or 3 days to prevent sensor bleaching. Low power (100-200 mA) LEDs (465 nm 50 

and 405 nm, Doric Lenses) coupled to a patch cord (500 µm core, NA = 0.5, Prizmatix) were used for 51 

optical stimulation of the sensors in lock-in mode (572.205 Hz for the 465 nm LED, 208.616 Hz for the 52 

405 nm LED) and collection of 520 nm fluorescence. 405 nm was used as the isobestic wavelength. The 53 

optical stimulation patch cord was plugged onto the ferrule during all experimental sessions, even those 54 

without recordings, to habituate animals and control for latent experimental effects. After the daily session, 55 

a short recording of the autofluorescence signal , coming from the patchcord only, was 56 

performed with same LED intensities, no animal plugged and room in the dark. Raw 520 nm fluorescence 57 

was demodulated by the software (Doric Lenses) to extract 465 nm and 405 nm signals. The 405 nm 58 

signal was visually checked to account for instability artefacts coming from head movements or patch 59 

cord unplugging during the session, and if needed correct the associated 465 nm signal accordingly, 60 

otherwise it was not used for signal treatment. 465 nm signal  follows several treatment steps according 61 

to this formula: 62 

 63 

First Fi is subtracted with the constant value of autofluorescence F(auto) measured with patch cord only, 64 

improving drastically the signal-to-noise ratio. Then, largest transients induced by ICSS were excluded to 65 

perform a smoothing on the subsequent truncated signal. We then computed a mono-exponential fit 66 

 on this smoothed signal, which was also subtracted to Fi at each time point  to account for 67 

exponential decay. The result is then divided by the same  at each time point  to normalize the 68 

signal around 1, and subtracted by the constant 1 to normalize to 0 and obtain positive or negative 69 

F(auto)

Fi

dFi

F0
=

Fi − F(auto)  −  Fi(f it)
Fi(f it)

  −  1

Fi(f it) i

Fi(f it) i
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transients as dFi/F0 over an entire session (5 or 10min). In order to aggregate signals coming from different 70 

sessions for each mouse, and then pool mice for the analysis, we also applied a z-scoring on dFi/F0 over 71 

each entire session. 72 

 73 

Intracranial self-stimulation (ICSS) bandit taskThe ICSS bandit task (6–9), took place in a circular 74 

open-field with a diameter of 68 cm. Three explicit square-shaped marks (2 × 2 cm) were taped in the 75 

open field, forming an equilateral triangle (side = 35 cm). Entry in the circular zones (diameter = 6 cm) 76 

around each mark was associated with the delivery of a rewarding ICSS stimulation. A LabVIEW (National 77 

Instruments) application precisely tracked and recorded the animal’s position with a camera (20 frames/s). 78 

When a mouse was detected in one of the circular rewarding zones, a TTL signal was sent to the electrical 79 

stimulator, which generated a 200 ms train of 5 ms biphasic square waves pulsed at 100 Hz (20 pulses 80 

per train). Two consecutive rewards could not be delivered on the same target, which motivated mice to 81 

alternate between targets and therefore generate sequences of binary choices. ICSS intensity was 82 

adjusted, within a range of 15-200 µA, during early conditioning sessions, so that mice would achieve 83 

between 50 and 120 visits per session (5 min duration) for two successive sessions. ICSS intensity was 84 

then kept constant for all the experiments, even when reward delivery rules changed. Mice with insufficient 85 

scores were excluded. Different reward delivery rules were used, and all animals went through all three 86 

protocols successively. The first is a deterministic (Det) setting, with 10 to 15 daily sessions of 5 min. All 87 

zones were associated with an ICSS delivery (P = 100%). The second, described previously in (6), is a 88 

complex (Cplx) setting where a grammatical complexity algorithm (10) analyses online the choice 89 

sequence that the mouse is producing, calculates the complexity of two potential sequences of length 10 90 

(9 past targets + next target among the 2 available) and gives a reward only if the complexity of the 91 

sequence increases. Repeating patterns of low complexity will therefore lead to series of omissions, while 92 

increasing variability will increase success rate. Mice did daily sessions during 15-20 days. The third 93 

setting is probabilistic (Proba): each target is associated with a probability to obtain an ICSS stimulation 94 

among three (P = 25%, P = 50%, P = 100%), as described previously (7–9). The probabilities at each 95 

location were pseudo-randomly assigned per mouse, and 15-20 sessions were performed. 2 cohorts of 96 

both male and female mice followed deterministic, complexity and probability settings successively, with 97 

no fluorescent sensor expression. Three cohorts of male mice expressing GRABDA and implanted with an 98 

optical fiber implantation followed different settings: i) the first cohort performed only Det and Cplx, and 99 

recordings started only at the end of Det, ii) the second and third cohorts performed Det, Cplx and Proba, 100 

with recordings starting at the beginning of Det, and performed also some control experiments (especially, 101 

unexpected rest cage and off-target ICSS). Consequently, there is variation in animal numbers among 102 

conditions in the figures. Finally, one cohort of DATiCre male mice was tested in Det and Cplx only. 103 
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 104 

Behavioral measures: For all those groups, the following measures were analyzed with custom codes 105 

in Python (using mostly Numpy and Pandas libraries, on PyCharm CE) and compared throughout the 106 

different rules: i) number of visits, ii) success rate, iii) time-to-goal, iv) choice repartition (proportion of 107 

visits at each location), v) percentage of U-turn (target n = target n+2) and vi) sequence complexity 108 

(applying the same complexity algorithm calculation but offline and for all choices during a session). 109 

Furthermore, the ICSS bandit task can be seen as a Markovian decision process: every transition can be 110 

considered as a binary choice between two options, since a zone cannot be reinforced twice in a row. 111 

The sequence of choices per session results from the succession of three specific binary choices, or 112 

gambles. For deterministic and complexity, GC = P(A|C) would be the total number of visits in target A 113 

divided by the total number of visits in targets A and B, when the animal is in target C. Similarly, GA = 114 

P(B|A) and GB = P(C|B). A gamble above 50% indicates that the animal has a preference for moving 115 

clockwise (or below 50% for moving counter-clockwise). In probabilistic, direction of conditional 116 

probabilities does not follow spatial repartition of locations, but rather preference for the high value option: 117 

G25 = 100% vs 50%, G100 = 50% vs 25% and G50 = 100% vs 25%. Applying this principle at each choice, 118 

those 3 gambles can be aggregated into single values to give circularity index (going in circle, no matter 119 

clockwise or counter-clockwise), exploitation index (always preferring the highest value option) or 120 

repetition index (always making the same choice at given gamble, no matter the direction or exploitation). 121 

 122 

Fiber photometry analysis: All treatments and analyses were performed in Python using custom codes 123 

(mostly Numpy and Pandas libraries). After cleaning and processing each session signal to obtain dF/F 124 

values and z-scored dF/F values, events of interest were extracted to align the signal in [-3s:3s] time 125 

window in dataframes, t0 being the exact time of location entry (triggering reward delivery or omission), 126 

with 1kHz sampling. Session-wise averages of given conditions for each mouse were then extracted, and 127 

averaged again over multiple mice for statistical analyses. In some conditions, especially when events of 128 

interest were rare (some scenarios of rewards or omissions chains in complexity, or some scenarios of 129 

locations transition in probabilistic), two or more sessions from one animal were pooled as if they were 130 

one (for instance, the last two sessions in a given context) to have enough trials for each animal in this 131 

condition. For the same reason, the third cohort of GRABDA mice followed 10 min long sessions (instead 132 

of 5 min) in Cplx and Proba settings, with no particular effect on the overall quality of the signal, nor the 133 

duration of GRABDA expression (up to 3 months). For GRABDA, rewards-elicited positive transients 134 

typically peaked around 250 ms after location entry (duration of ICSS being 200 ms) and decayed during 135 

a bit less than 1s: we therefore extracted maximum and mean of the signal in a 1 s window post location 136 

entry. Omissions-elicited negative transients were longer, reaching their minimum around 800 ms after 137 
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location entry and taking roughly 700-800 ms to go back to baseline: we therefore extracted minimum and 138 

mean of the signal in 1.5 s window post location entry. For GCaMP, kinetics depended on the sensor 139 

used: peaks reached maximum value around 250-300 ms post location entry for GCaMP6f and 350-400 140 

ms for GCaMP7c, while dips reached minimum value around the same time (900-1050 ms post location 141 

entry) for both sensors. However, return to baseline after reward-induced peaks was much shorter for 142 

GCaMP6f (500-600 ms post location entry) than for GCaMP7c (2-3 s). For some correlation analyses 143 

(using SciKit Learn Python library), especially the ones regarding z-scored peaks or dips amplitude 144 

regarding outcome chain history, all trials of all mice were pooled together in a given condition. 145 

 146 

Generalised Linear Model (GLM) approach: GLM was performed in Python using custom codes 147 

(StatsModels or SciKit Learn library). To disentangle multiple factors that could explain DA signal, due to 148 

high degree of behavioral and task-related variables correlated to each other from one trial to the next, 149 

we designed a generalized linear model where a variable  is explained by a linear combination of 150 

multiples variables , each of them weighted by a parameter , plus a residual (or intercept) . 151 
 152 

The model aims at fitting variations of  by determining the weights  and their significance. Dependent 153 

variable  was post location entry 1s average for reward-induced peaks or 1.5s average for omission-154 

induced dips. Multiple  variables have been used, namely: i) reward or omission at previous and current 155 

location, ii) Forward or U-turn at previous trial, iii) current target visited (spatially A, B or C, or in Proba 156 

p100, p50 or p25), and iv) time since last stimulation (in Restcage stimulation condition). A single GLM was 157 

applied for each mouse in a given condition, then  parameters resulting from all those GLMs were 158 

averaged among mice, and the average was statistically compared to 0. Significance, either with positive 159 

or negative weight, indicates that this variable explains part of DA variations. 160 

 161 

Reinforcement Learning (RL) models: We used Reinforcement Learning (RL) to compute Reward 162 

Prediction Errors (RPEs) from actual mice choice sequences and see how they match DA data. Before 163 

each trial, the agent contains a set of expected values for each possible action. As one of these actions 164 

is selected, it leads to either a reward (Vobtained  = 1) or an omission (Vobtained  = 0), then RPE is calculated 165 

as Vobtained - Vexpected, and a new expected value of this action is fed back into the agent’s set for next trials. 166 

From both behavioural and photometry results, we hypothesised and tested three possible value 167 

representations in the bandit task. First, we proposed a simple, one-order representation “going to any 168 

target” or “performing any trial” to get a reward. In this case, all trials are similar, regardless of target or 169 

trajectory choices, and we simply compute and update Vexpected = { VAny } at each trial. Second, a 170 

representation of internal directionality with a set of two actions and Vexpected  = { VFwd ; VUturn }. In this case, 171 

Y

Xi wi w0
Y =  w0 +  w1 . X1 +   w2 . X2 + …

Y wi

Y

Xi

wi
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RPEs are specific and computed separately for each of the two actions. Third, a spatial representation 172 

“going to target X” with a set of three actions and Vexpected  = { VpA ; VpB ; VpC }. Again, RPEs are computed 173 

for each target independently. Modelling the RPE values resulting from each of those three 174 

representations allowed us to compare them and determine which simulation better replicates DA data in 175 

each context. Initial Vexpected were set consistently with behavior in the task. For Det End, they were all set 176 

to 0.99. For both Cplx End and Proba End, they were set as mean success rate computed from the two 177 

previous sessions. For example, for a given mouse, initial VUturn to initiate the RL model with choice 178 

sequence from sessions 9-10 is the proportion of rewarded Uturn trials from sessions 7-8. Exception is 179 

for Vp100 in Proba End where it was also set to 0.99. We arbitrarily tested several learning rates α = {0.001; 180 

0.01; 0.05; 0.2; 0.4}. Results were consistent with experimental data for α = {0.01; 0.05; 0.2; 0.4}. Smaller 181 

α (0.001) led to convergence that was too slow considering mice number of trials provided to models, 182 

while larger α made convergence in Det too quick. In Fig 3 and Fig S6, α is set to 0.05. We next assumed 183 

that in our recordings, DA = Vobtained + RPE, and tested which representation accounted most in the error 184 

component using GLMs on top of our RL-computed RPEs (taking as input variables Vobtained = {1; 0} for 185 

rewards or omissions, and theoretical RPEs computed from Model 1, 2 and 3). Similarly, models were 186 

applied for each mouse in a given context, then  parameters were averaged among mice for each 187 

context, and the average was statistically compared to 0. Significant weight indicates that this variable 188 

explains part of DA variations. Finally, we extended this compilation of RL-computed RPE values and 189 

GLM to fit RPE weights to DA data across sessions and contexts (Fig 4 and Fig S7). In this case, we 190 

started RL models with mice choice sequences in Det Start with all Vexpected equal to zero (naive agents), 191 

computed corresponding RPEs and updated corresponding Vexpected. Consistent with mice progressively 192 

learning and updating values across sessions and contexts, the final Vexpected of a given time-point became 193 

the initial Vexpected of the next time point. For instance, from Det Start to Det Mid (all Vexpected becoming 194 

closer to 1, but not at the same speed). Or from Cplx End to Proba Start (Vexpected of each target therefore 195 

starting to diverge). To allow for longitudinal comparisons, we next scaled (z-score) our data (both 196 

experimental DA and RL models-computed RPEs) on each time point, applied GLMs on each time point, 197 

and then compared the weights i) across sessions in a given context and at each transition between 198 

contexts, and ii) each of them regarding its difference with 0.  199 

 200 

Figures and Statistics: Raw figures were plotted using Python custom codes (mostly MatPlotLib library). 201 

Graphics, typography and layout were formatted with Adobe Illustrator. All statistical analyses were 202 

computed using Python with Scipy library and custom programs. Results were most frequently plotted as 203 

individual data points and mean ± sem. The total number of observations in each group and the statistics 204 

used are indicated in figure legends and detailed statistics tables: unless specified, data points indicate 205 

wi
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the number of mice (N) on which the statistics were performed, and in some cases, they represent number 206 

of trials (n) either for one example session from one animal, or from all sessions of all animals in a given 207 

condition. Classical comparisons between means were performed using parametric tests (Student’s t-208 

test, or ANOVA for comparing more than two groups, when parameters followed a normal distribution 209 

(Shapiro test P > 0.05)), and non-parametric tests when the distribution was skewed (here, Wilcoxon or 210 

Mann-Whitney U for one/two samples and whether comparison is paired or not, or Kruskall-Wallis for 211 

more than two groups). More complex comparisons with several factors were performed using two-way 212 

or mixed ANOVA regardless of normal distribution for simplicity, with no major impact on results 213 

interpretation (see Fig S1, sex X session effects). Multiple comparisons were corrected using a 214 

sequentially rejective multiple test procedure (Holm). Linear regressions were assessed either with 215 

Pearson (parametric) or Spearman (non-parametric) tests. Probability distributions were compared using 216 

the Kolmogorov–Smirnov (KS) test. All statistical tests were two-sided. p > 0.05 was considered not to be 217 

statistically significant. In some cases, p > but close to 0.05 were indicated in the figure (see Tables of 218 

detailed statistics for more information). 219 

 220 

Fluorescence immunohistochemistry: After completing the successive rules of the task, mice from the 221 

GRABDA cohorts were euthanatized by IP injection of euthasol (0.1mL per 30g at 150mg/kg), immediately 222 

followed by paraformaldehyde (PFA) intra-cardiac perfusion, and brains were rapidly removed and post-223 

fixed in 4% PFA for 2 to 4 days. Serial 60µm sections were cut with a vibratome (Leica). 224 

Immunohistochemistry was performed as follows: free-floating VTA and NAc brain sections were 225 

incubated for 1h at 4°C in a blocking solution of phosphate-buffered saline (PBS) containing 3% bovine 226 

serum albumin (BSA, Sigma A4503) and 0.2% Triton X-100, and then incubated overnight at 4 °C with i) 227 

a mouse anti-tyrosine hydroxylase primary antibody (TH, Sigma, T1299) at 1:500 dilution and ii) a chicken 228 

anti-eYFP primary antibody (Life technologies Molecular Probes, A- 6455) at 1:1000 dilution, both in PBS 229 

containing 1.5% BSA and 0.2% Triton X-100. The following day, sections were rinsed with PBS and then 230 

incubated for 3 h at 22–25 °C with i) Cy3-conjugated anti-mouse secondary antibody (Jackson 231 

ImmunoResearch, 715-165-150) at 1:500 dilution and ii) a goat anti-chicken AlexaFluor 488 secondary 232 

antibody (711-225-152, Jackson ImmunoResearch) at 1:1000 dilution, both in a solution of 1.5% BSA and 233 

0.2% Triton X-100 in PBS. After three rinses in PBS, slices were wet-mounted using Prolong Gold Antifade 234 

Reagent with DAPI (Invitrogen, P36930). Microscopy was carried out with a fluorescent microscope Leica 235 

DMR, and images captured in gray level using MetaView software (Universal Imaging Corporation) and 236 

colored post-acquisition with ImageJ. Labeling for YFP in the NAc (along with satisfying signal during the 237 

task) allowed to confirm GRABDA expression, and fiber implantation in the NAc lateral shell was also 238 

visually checked. Similar procedures were used to check for GCaMP7c and GCaMP6f expression in VTA 239 
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DA neurons. For GCaMP7c we used the same anti-TH and anti-eYFP antibodies as previously described. 240 

For GCaMP6f we used a sheep anti-TH primary antibody (AB-1542, Milipore) at 1:500 dilution coupled 241 

with a donkey anti-sheep secondary antibody (713-165-147, Jackson ImmunoResearch) at 1:500 dilution 242 

to highlight DA neurons, and simply used the virus-associated tdTomato to validate expression in the VTA 243 

and optic fiber implantation site. For MFB slices, 100 µm sections were performed and slices were directly 244 

visualized with visible light to check for ICSS electrode implantations. 245 
 246 
Statistics and Reproducibility: All experiments were replicated with success (several successive 247 

cohorts of mice)..   248 
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Fig. S1: Evolution of decision behaviour across sessions, with no major sex effects. 249 

A. Decision parameters throughout Det sessions for males and females. Comparison of (left) the 250 

number of trials per session, (middle-left) the Uturn rate, (middle-right) the sequence complexity, and 251 

(right) the circularity index between sessions 1&2, sessions 4&5 and the last 2 sessions in male and 252 

female mice. In addition, we also compared the final states (Last2) between males and females. A fully 253 

circular mouse would have 0% Uturn, low seq. cplx and 0.5 circul. idx. B. Same as in A) for Cplx 254 

sessions. A mouse keeping circular strategy would have low success, 0% Uturn, low seq. cplx and 0.5 255 

circul. idx. A random mouse would have 75% success, 50% Uturn, seq cplx = 1 and circul. idx = 0. C. 256 

Same as in A) for Proba sessions. An exploitative mouse would have 75% success, 100% Uturn, low 257 

seq. cplx and 0.5 exploit. idx. A random mouse would have 58.3% success, 50% Uturn, seq cplx = 1 and 258 

exploit. idx = 0. (Data are shown as individual points, and mean ±sem. N = 23 male and 26 female mice.)259 
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Supplementary figure 2
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Fig. S2: Additional information on the Cplx rule and mice sequence patterns. 260 

A. Detailed schematic representation of the Cplx rule. The first 9 trials of each session provide 261 

deterministic rewards (P=100%) to launch the Cplx algorithm, which then determines at each trial, in a 262 

sliding window, which target will lead to a reward by comparing the Lempel-Ziv grammatical complexity 263 

of the two potential sequences: 9 past choices + first remaining target VS. 9 past choices + second 264 

remaining target. The mouse will be rewarded only if it chooses the target that increases complexity. If 265 

both sequences have the same complexity, both targets will be rewarded (see Methods). Taking all 266 

possible sequences of size 10 starting from one location, 75% of them are rewarded on the 10th trial. 267 

Therefore, a random agent exploring homogeneously this sequences tree will converge to 75% success 268 

rate. B. Distribution of mice choice sequences of length 10 at the end of Det and Cplx. Two 269 

distribution peaks (paths in the decision tree) appear in Det, corresponding to circling behavior (clockwise 270 

and counterclockwise), representing together roughly 25% of all produced sequences (among 512 271 

possibilities). In Cplx, these peaks strongly reduce in size, in favor of more distributed visits of all possible 272 

sequences. (Insert) Cumulative distribution comparison between Det and Cplx (Last2 sessions for each 273 

rule). (In B, n is the total number of sequences of length 10, computed from sessions-wise mice 274 

successive choices, from N=49 mice both males and females).275 
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Supplementary figure 3

Proba

+ -+ - -
+ -+ -+ -

- - - + + +
- - + +

- - + +

+

+
+

+
+

-+ + -

+

+

+
+

+ + +

+

-

+

+

-

-

+
+

+
+

+ +

-
-

- -
-

-

Last2

1
2
3
4
5
6
7
8
9

10
11

1 2 3 4 5 6 7 8 9 10 11 12

12

13

13

Proba

+ -+ - -
+ -+ -+ -

- - - + + +
- - + + +
- - - + + +

+

+
+

+ +
+ +

-+ + -

+

+

-

-

+

+

+
+

+ + +

+

+

+

+ +

First2

1
2
3
4
5
6
7
8
9

10
11

1 2 3 4 5 6 7 8 9 10 11 12

12

13

13

First2Cplx

1
2
3
4
5
6
7
8
9

10
11

1 2 3 4 5 6 7 8 9 10 11 12

12

+ -
+

+ - -
+ -+ -+ -

- - - + + +
- - + + +
- - - + + +

+-+ + -

+-+ + -
++ +
-+- +
-+- +

-+ + -

Last2Cplx

1
2
3
4
5
6
7
8
9

10
11

1 2 3 4 5 6 7 8 9 10 11 12

12

+ -
+

+ - -
+ -+ -+ -

- - - + + +
- - + + +
- - - + + +

+

+ +
+ +

+ +
+ +

-+ + -

+

+

-

-

B

Last2Det

1
2
3
4
5
6
7
8
9

10
11

1 2 3 4 5 6 7 8 9 10 11
+ +

- -++
+ + + - -+ - - -

+ + -
- - + + + +
- - + +

- - + +
- + + - -+
- + - -+

+- - +
+- - +

Correlation matrix:
I(stim)
#Trials
Distance
Max_speed
T(max_speed)
T(trial)
T(dwell)

Seq. cplx
%Uturn
Cicul. idx
Repet. idx
%Success
Exploit. idx

R20 1
p<0.001 p<0.05

p<0.10
pos. corr.
neg. corr.

Vigor param. Choice param.
1
2
3
4
5
6
7

8
9

10
11
12
13

+
-p<0.01

N = 49

A

Det Cplx Proba

160

80

120

40

0 First2 Last2 First2 Last2 First2 Last2

ANOVA: p<10-5

***

N=49

Nu
mb

er
 of

 tr
ial

s p
er

 5m
in 

se
ss

ion

180

*** ***
ns *

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 29, 2024. ; https://doi.org/10.1101/2024.07.28.605479doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.28.605479
http://creativecommons.org/licenses/by-nc-nd/4.0/


Fig. S3: Motivation throughout the task and decoupling between vigor and choice parameters. 276 

A. Evolution of motivation across contexts and sessions. Comparison of number of trials across 277 

contexts and sessions (mean of 2 sessions each time). B. Correlation matrices between various vigor 278 

and choice parameters across mice in different contexts. Parameters are computed for each mouse 279 

as the mean of 2 sessions (either First2 or Last2, for a given context). Each box represents the linear 280 

correlation between two parameters (Pearson for parametric, Spearman for non-parametric, each dot 281 

being a mouse). The filling color of each box represents the R2 value. The frame color of each box 282 

represents the p-value (after Bonferroni correction). The warmer the color, the more those two parameters 283 

are significantly correlated. (Left) Last2 sessions of Det (11 parameters, x66 Bonferonni correction). 284 

(Middle) First2 and Last2 sessions of Cplx (12 parameters, x78 Bonferonni correction). (Right) First2 and 285 

Last2 sessions of Proba (13 parameters, x91 Bonferonni correction). (In A, data are shown as individual 286 

points, and mean ±sem. In B, only R2 and corrected p-values are shown with color code. Individual data 287 

are available upon request. N is always the number of mice.)288 
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Fig. S4: DA fiber photometry signals in various configurations. 289 

A. NAc and MFB slices immunohistochemistry. Post-hoc verification of optic fiber implant and GrabDA 290 

virus expression in the NAc lateral shell (left), and stimulation electrode implant in the MFB (right). B. 291 

Individual mice NAc DA release for rewards and omissions in Cplx. Each line and colour is an 292 

individual mouse, averaged for all trials during last Cplx session, in [-3s:3s] time window locked on location 293 

entry. Every single mouse included in the results displayed reward-induced peaks and omission-induced 294 

dips of DA release significantly different from zero (dashed black lines). C-D. DA cell activity using 295 

GCaMP fiber photometry. DATiCre mice were injected with an AAV to express either GCaMP6f or 296 

GCaMP7c in VTA DA neurons, implanted with an optic fiber in the VTA, and stimulation electrode in the 297 

MFB, to assess DA neuron activity in the task. C. GCaMP6f. Using similar experimental procedures and 298 

signal analyses in the Cplx context, calcium dynamics of VTA DA neurons show similar reward-induced 299 

peaks and omission-induced dips than NAc lateral shell DA release, in this case with faster kinetics for 300 

peaks, and smaller signal amplitudes (worse signal-to-noise ratio) for both peaks and dips. D. GCaMP7c. 301 

Same as B for GCaMP7c, with slower kinetics for peaks, and greater signal amplitudes (better signal-to-302 

noise ratio) for both peaks and dips. E. DA response to expected (Task) vs unexpected (Restcage) 303 

rewards in Det Last session. Comparison between Task and Restcage ICSS (same session, same 304 

current intensity). F. DA response to expected (On-target) vs unexpected (Off-target) rewards in Det 305 

Last session. Individual data corresponding to Fig2.E. Comparison between On-target and Off-target 306 

ICSS (same session, same current intensity). G. DA response to Task vs Restcage rewards in Det 307 

first (S1) session. Same as D but during first session (S1) of conditioning in Det. H. DA response to 308 

On-target vs Off-target rewards in Det second (S2) session. Same as E but during second session 309 

(S2) of conditioning in Det. (In B, C, D, curves are shown as mean ±sem for a single session, n is the 310 

number of reward or omission trials in this session. In E, G, H, curves are shown as mean ±sem for 311 

session-wise average of several mice, N is the number of mice in each condition. In E, F, G, H, Bar plots 312 

are shown as mean ±sem, in addition to individual data points.)313 
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Supplementary figure 5
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Fig. S5: Additional analyses of NAc DA release regarding task behavioural features. 314 

A. GLM in Restcage the same day as Last Det. Weight value of each variable compared to zero. B. 315 

Inter-stimulation interval effect on DA transients in Restcage the same day as Last Det. Comparison 316 

between short (<3s), mid ([3s:5s]) and long (>5s) intervals. C. Trajectory effect on DA transients in Det 317 

End. Individual data corresponding to Fig2.J. Comparison between Fwd and Uturn. D. Target effect on 318 

DA transients in Det End. Comparison between pA, pB and pC. E. Previous outcome effect on DA 319 

transients in Cplx End. Individual data corresponding to Fig2.K. (Top) Reward peak comparison 320 

between previous reward and previous omission. (Bottom) Omission dip comparison between previous 321 

reward and previous omission. F. Target effect on DA transients in Cplx End. (Top) Reward peak 322 

comparison between pA, pB and pC. (Bottom) Omission dip comparison between pA, pB and pC. G. 323 

Trajectory effect on DA transients in Cplx End. (Top) Reward peak comparison between Uturn and 324 

Fwd. (Bottom) Omission dip comparison between Uturn and Fwd. H. Target effect on DA transients in 325 

Proba End. Individual data corresponding to Fig2.L. (Top) Reward peak comparison between p100, p50 326 

and p25. (Bottom) Omission dip comparison between p50 and p25. I. Trajectory effect on DA 327 

transients in Proba End. (Top) Reward peak comparison between Uturn and Fwd. (Bottom) Omission 328 

dip comparison between Uturn and Fwd. I. Previous outcome effect on DA transients in Proba End. 329 

(Top) Reward peak comparison between previous reward and previous omission. (Bottom) Omission dip 330 

comparison between previous reward and previous omission. (In A, B, C, D, E, F, G, H, I, J Bar plots are 331 

shown as mean ±sem, in addition to individual data points. In A, D, F, G, I, J, signal curves are shown as 332 

mean ±sem. N is always the number of mice in each context.)333 
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Supplementary figure 6
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Fig. S6: Additional information on the three RL models, comparison of computed RPEs in various 334 

behavioural scenarios, and results in Proba Change context. 335 

A. Detailed schematic of RL modelling for each of the three models. From actual mice choice 336 

sequences we applied RL models and computed corresponding RPEs. The first model consists in single 337 

value representation “going to any target” or “performing any trial” to get a reward, where we simply 338 

compute Vexpected = { VAny } and RPEAny at each trial. The second model consists in two value 339 

representations depending on chosen trajectory Vexpected  = { VFwd ; VUturn }. In this case, RPEUturn and 340 

RPEFwd are specific and computed separately for each of those two actions. The third model consists in 341 

three value representations depending on chosen target Vexpected  = { VpA ; VpB ; VpC }. Again, RPEpA, RPEpB 342 

and RPEpC are computed for each target independently. B-C-D. For each model, computed RPEs were 343 

averaged over mice sessions in the same scenarios used to characterise DA responses (regarding 344 

target, trajectory, and previous outcome). The model that qualitatively reproduces best DA responses 345 

in all scenarios in given context is supposed to be the best value representation that mice are using in 346 

this context. B. End Det context. Top: Average M1-computed RPE comparison between targets, and 347 

trajectories. Center: Same for M2 (same as Fig3.E). Bottom: Same for M3. C. End Cplx context. Top: 348 

Average M1-computed RPE comparison between targets, trajectories and previous outcome (same as 349 

Fig3.F). Center: Same for M2. Bottom: Same for M3. D. End Proba context. Top: Average M1-350 

computed RPE comparison between targets, trajectories and previous outcome. Center: Same for M2. 351 

Bottom: Same for M3 (same as Fig3.G). (In B, C, D Bar plots are shown as mean ±sem, in addition to 352 

individual data points. In G, signal curves are shown as mean ±sem. N is always the number of mice in 353 

each context.)354 
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Supplementary figure 7
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Fig. S7: Evolution of Model weights, DA transients and strategy parameters across rules and 355 

sessions. 356 

A. RL modelling and GLM fitting DA data with computed RPEs across sessions and contexts. 357 

Same as Fig4A with varying learning rates. Top: For learning rate α=0.4, evolution of RPEM1 (black), 358 

RPEM2 (brown) and RPEM3 (purple) weights over time and multiple comparisons of each time point with 359 

zero. Middle: Same for learning rate α=0.2. Bottom: Same for learning rate α=0.01. B. Evolution of 360 

choice parameters across Det sessions. Comparison of (left) Uturn rate and (right) sequence 361 

complexity between sessions 1&2, sessions 4&5 and last 2 sessions in Grab-DA mice. C. Comparison 362 

of ΔDA(directions) across Det sessions. Top: ΔDA is computed for each mouse as the relative 363 

difference Δ = (Uturn—Fwd) / Fwd. Bottom: Comparison of ΔDA between Start, Mid, Late and Last 364 

sessions, and multiple comparisons of each time-point with zero. D. Linear regressions between 365 

ΔDA(directions) and Uturn in Det. Top: Reward ΔDA regarding Uturn rate of each mouse at each time 366 

point (light grey Start => dark grey Last). E. Evolution of choice parameters across Cplx sessions. 367 

Left: Example trajectories of first (cyan) and last (blue) Cplx sessions. Comparison of (middle-left) 368 

Success rate, (middle) Uturn rate, (middle-right) sequence complexity and (right) circularity index 369 

between sessions 1&2, sessions 4&5 and last 2 sessions in Grab-DA mice. F. Evolution of choice 370 

parameters across Proba sessions. Left: Example trajectories of first (light green) and last (dark green) 371 

Proba sessions. Comparison of (middle-left) Success rate, (middle) Uturn rate, (middle-right) sequence 372 

complexity and (right) exploitation index between sessions 1&2, sessions 4&5 and last 2 sessions in 373 

Grab-DA mice. (In B, C, E, F, data are shown as mean ±sem, in addition to individual data points. In D, 374 

each data point is one animal at one time point. signal curves are shown as mean ±sem. In A, data are 375 

shown as mean ±sem for clarity. Individual data points are available upon requests. Due to multiple 376 

corrections generating dilutions in p-values, # symbol has been used in the figure to highlight p<0.12 after 377 

correction. N is always the number of mice in each context.)378 
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Supplementary figure 8
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Fig. S8: Additional analyses of DA transients and choice behavior in Cplx. 379 

A. Linear regressions of DA transients depending on the number of successive previous rewards 380 

or omissions in chains in Cplx Start. Left: Reward-induced DA peak amplitudes regarding length of 381 

successive previous rewards chains (green) or omissions chains (red). Right: Same for omission-induced 382 

DA dip amplitudes regarding length of successive previous rewards chains (green) or omissions chains 383 

(red). B. Same for Cplx End. Left: Reward-induced DA peak amplitudes regarding length of successive 384 

previous rewards chains (green) or omissions chains (red). Right: Same for omission-induced DA dips 385 

amplitude regarding length of successive previous rewards chains (green) or omissions chains (red). C. 386 

Success rate depending on previous Uturn/Fwd choice in Cplx. Left: First 2 sessions. Right: Last 2 387 

sessions. D. Uturn rate depending on previous outcome in Cplx. Left: First 2 sessions. Right: Last 2 388 

sessions. E. Analysis of chains of successive rewards and omissions in Cplx. Top: In early Cplx, 389 

mice tend to keep repeating circular patterns and therefore get long series of omissions. In late Cplx, 390 

omissions are regularly distributed, generating smaller chains, as expected from a random agent. 391 

Bottom-left: Cumulative distribution of reward and omission chain lengths during first 2 and last 2 Cplx 392 

sessions. Bottom-right: Average chain lengths per mouse. E. Same for chains of successive forwards 393 

and Uturns. Left: Cumulative distribution of forward and Uturn chains length during first 2 and last 2 Cplx 394 

sessions. Right: Average chains length per mouse. For regressions in A, B, each dot is a trial of one 395 

mouse. In C, D, E, F, Bar plots are shown as mean ±sem, in addition to individual data points. In E, F, 396 

cumulative distribution are computed for all trials of all mice together. n is always the number of trials, and 397 

N the number of mice, in each context.)  398 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 29, 2024. ; https://doi.org/10.1101/2024.07.28.605479doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.28.605479
http://creativecommons.org/licenses/by-nc-nd/4.0/


Tables of detailed statistics for figures 1-4 and supp 1-8:  399 
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Figure 1

Panel Comparison Test type p-values Corrections

E (top, right) %Success across tasks, all mice (N=49), 
Cplx vs Proba

Student paired t-test p<10-5

E (bottom, left) Seq cplx across tasks, all mice (N=49), Det 
vs Cplx vs Proba

one-way ANOVA p<10-5

Post-hoc, Det vs Cplx Wilcoxon (paired) p<10-5 Holm (x3) : p<10-5

Post-hoc, Cplx vs Proba Wilcoxon (paired) p<10-5 Holm (x3) : p<10-5

Post-hoc, Det vs Proba Wilcoxon (paired) p=0.2121 Holm (x3) : p=0.2121

E (bottom, right) %Uturns across tasks, all mice (N=49), Det 
vs Cplx vs Proba

one-way ANOVA p<10-5

Post-hoc, Det vs Cplx Wilcoxon (paired) p<10-5 Holm (x3) : p<10-5

Post-hoc, Cplx vs Proba Wilcoxon (paired) p<10-5 Holm (x3) : p<10-5

Post-hoc, Det vs Proba Wilcoxon (paired) p<10-5 Holm (x3) : p<10-5

F (top, left) %Visits in Det, all mice (N=49), pA vs pB 
vs pC (N=3)

one-way ANOVA (target effect) Target effect: p=0.1796

F (top, right) Gamble %Pref in Det, all mice (N=49), gA 
vs gB vs gC (N=3)

one-way ANOVA (gamble effect) Gamble effect: p=0.9029

F (middle, left) %Visits in Cplx, all mice (N=49), pA vs pB 
vs pC (N=3)

one-way ANOVA (target effect) Target effect: p=0.9786

F (middle, right) Gamble %Pref in Cplx, all mice (N=49), gA 
vs gB vs gC (N=3)

one-way ANOVA (gamble effect) Gamble effect: p=0.9516

F (bottom, left) %Visits in Proba, all mice (N=49), p100 vs 
p50 vs p25 (N=3)

one-way ANOVA (target effect) Target effect: p<10-5

F (bottom, right) Gamble %Pref in Proba, all mice (N=49), 
g100 vs g50 vs g25 (N=3)

one-way ANOVA (gamble effect) Gamble effect: p<10-5
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Figure 2

Panel Comparison Test type p-values Corrections

C (bottom, left) Post-reward 1s-avg dF/F (n=47 trials) for 
one single session, vs 0

one sample Student t-test p<10-5

C (bottom, right) Post-omission 1.5s-avg dF/F (n=32 trials) 
for one single session, vs 0

one sample Student t-test p<10-5

D Post-reward 1s-avg dF/F for all mice End 
sessions : Restcage (n=988) vs Det 
(n=2288) vs Cplx (n=3150 trials) vs Proba 
(n=1704)

Kolmogorov-Smirnov 
(distribution)

Restcage vs Det : p<10-5 

Restcage vs Cplx : p<10-5 

Restcage vs Proba : p<10-5 

Det vs Cplx : p<10-5 

Det vs Proba : p<10-5 

Cplx vs Proba : p<10-5

Holm (x6) : all p<10-5

Post-omission 1.5s-avg dF/F for all mice 
End sessions, Cplx (n=1107 trials) vs 
Proba (n=845)

Kolmogorov-Smirnov 
(distribution)

p<10-5

E (right) Post-ICSS avg per mouse (N=13), 
Expected (on-target) vs Unexpected (off-
target)

Student paired t-test p<10-5

G Det End GLM : Intercept weight vs 0 
(N=19)

one sample Student t-test p<10-5 Holm (x3) : p<10-5

Det End GLM : Uturn weight vs 0 (N=19) one sample Student t-test p=0.0007 Holm (x3) : p=0.0013

Det End GLM : Target weight vs 0 (N=19) one sample Student t-test p=0.1171 Holm (x3) : p=0.1171

H Cplx End GLM : Intercept weight vs 0 
(N=17)

one sample Student t-test p=0.0672 Holm (x6) : p=0.2016

Cplx End GLM : Reward weight vs 0 
(N=17)

one sample Student t-test p<10-5 Holm (x6) : p<10-5

Cplx End GLM : Omission weight vs 0 
(N=17)

one sample Student t-test p<10-5 Holm (x6) : p<10-5

Cplx End GLM : Uturn weight vs 0 (N=17) one sample Student t-test p=0.3264 Holm (x6) : p=0.3264

Cplx End GLM : Target weight vs 0 (N=17) one sample Student t-test p=0.0875 Holm (x6) : p=0.2016

Cplx End GLM : Previous omission weight 
vs 0 (N=17)

one sample Wilcoxon p=0.00002 Holm (x6) : p=0.0002

I Proba End GLM : Intercept weight vs 0 
(N=10)

one sample Student t-test p=0.00001 Holm (x6) : p=0.00005

Proba End GLM : Reward weight vs 0 
(N=10)

one sample Wilcoxon p=0.0020 Holm (x6) : p=0.0078

Proba End GLM : Omission weight vs 0 
(N=10)

one sample Student t-test p<10-5 Holm (x6) : p<10-5

Proba End GLM : Uturn weight vs 0 (N=10) one sample Student t-test p=0.1615 Holm (x6) : p=0.3229

Proba End GLM : Target_proba weight vs 
0 (N=10)

one sample Student t-test p=0.0090 Holm (x6) : p=0.0269

Proba End GLM : Previous omission 
weight vs 0 (N=10)

one sample Student t-test p=0.4280 Holm (x6) : p=0.4280

J (right) Det End post-reward dF/F avg per mouse 
(N=19) : Uturn vs Forward

Student paired t-test p=0.0012

K (left) Cplx End post-reward dF/F avg per mouse 
(N=17) : previous=rew vs previous=omi

Student paired t-test p=0.0003

K (right) Cplx End post-omission dF/F avg per 
mouse (N=17) : previous=rew vs 
previous=omi

Student paired t-test p=0.0357

L (left) Proba End post-reward dF/F avg per 
mouse (N=10) : p100 vs p50 vs p25

one-way ANOVA (target effect) p=0.0364

Post-hoc, p100 vs p50 Student paired t-test p=0.0171 Holm (x3) : p=0.0282

Post-hoc, p50 vs p25 Student paired t-test p=0.0141 Holm (x3) : p=0.0282

Post-hoc, p100 vs p25 Student paired t-test p=0.0079 Holm (x3) : p=0.0237

L (right) Proba End post-omission dF/F avg per 
mouse (N=10) : p50 vs p25

Student paired t-test p=0.0173
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Figure 3

Panel Comparison Test type p-values Corrections

B Det End GLM on models RPE avg per 
mouse (N=19) : Intercept weight vs 0

one sample Student t-test p=0.00002 Holm (x4) : p=0.0002

Det End GLM on models RPE avg per 
mouse (N=19) : RPE(M1) weight vs 0

one sample Student t-test p=0.9842 Holm (x4) : p=1

Det End GLM on models RPE avg per 
mouse (N=19) : RPE(M2) weight vs 0

one sample Wilcoxon p=0.0024 Holm (x4) : p=0.0072

Det End GLM on models RPE avg per 
mouse (N=19) : RPE(M3) weight vs 0

one sample Wilcoxon p=0.5153 Holm (x4) : p=1

C Cplx End GLM on models RPE avg per 
mouse (N=17) : Intercept weight vs 0

one sample Student t-test p=0.2690 Holm (x5) : p=0.5380

Cplx End GLM on models RPE avg per 
mouse (N=17) : V(obtained) weight vs 0

one sample Student t-test p=0.0053 Holm (x5) : p=0.0221

Cplx End GLM on models RPE avg per 
mouse (N=17) : RPE(M1) weight vs 0

one sample Student t-test p=0.0044 Holm (x5) : p=0.0221

Cplx End GLM on models RPE avg per 
mouse (N=17) : RPE(M2) weight vs 0

one sample Student t-test p=0.1591 Holm (x5) : p=0.4773

Cplx End GLM on models RPE avg per 
mouse (N=17) : RPE(M3) weight vs 0

one sample Student t-test p=0.4564 Holm (x5) : p=0.5380

D Proba End GLM on models RPE avg per 
mouse (N=10) : Intercept weight vs 0

one sample Student t-test p=0.9262 Holm (x5) : p=1

Proba End GLM on models RPE avg per 
mouse (N=10) : V(obtained) weight vs 0

one sample Student t-test p=0.0334 Holm (x5) : p=0.1337

Proba End GLM on models RPE avg per 
mouse (N=10) : RPE(M1) weight vs 0

one sample Student t-test p=0.5484 Holm (x5) : p=1

Proba End GLM on models RPE avg per 
mouse (N=10) : RPE(M2) weight vs 0

one sample Student t-test p=0.9562 Holm (x5) : p=1

Proba End GLM on models RPE avg per 
mouse (N=10) : RPE(M3) weight vs 0

one sample Student t-test p=0.0111 Holm (x5) : p=0.0556

E Det End RPE(M2) avg per mouse (N=19) : 
Uturn vs Forward

Wilcoxon (paired) p=0.00002

F (right, top) Cplx End post-reward RPE(M1) avg per 
mouse (N=17) : previous=reward vs 
omission

Student paired t-test p<10-5

F (right, bottom) Cplx End post-omission RPE(M1) avg per 
mouse (N=17) : previous=reward vs 
omission

Student paired t-test p<10-5

G (right, top) Proba End post-reward RPE(M3) avg per 
mouse (N=10) : p100 vs p50 vs p25

Kruskall-Wallis p<10-5

G (right, bottom) Proba End post-omission RPE(M3) avg per 
mouse (N=10) : p50 vs p25

Wilcoxon (paired) t-test p=0.0019

H (left, bottom) Proba Change post-omission dF/F avg per 
mouse (N=6) : p100=>50 vs p50 vs p25

Kruskall-Wallis p=0.0013

Post-hoc, p100=>50 vs p50 Wilcoxon p=0.0313 Holm (x3) : p=0.0625

Post-hoc, p50 vs p25 Student paired t-test p=0.0060 Holm (x3) : p=0.0181

Post-hoc, p100=>50 vs p25 Wilcoxon p=0.0313 Holm (x3) : p=0.0625

H (right) Proba Change GLM : Intercept weight vs 0 
(N=6)

one sample Student t-test p=0.0021 p=0.0082

Proba Change GLM : Reward weight vs 0 
(N=6)

one sample Student t-test p=0.0008 p=0.0048

Proba Change GLM : Omission weight vs 
0 (N=6)

one sample Student t-test p=0.0006 p=0.0043

Proba Change GLM : Uturn weight vs 0 
(N=6)

Wilcoxon p=0.5625 p=0.5625

Proba Change GLM : Target_proba_old 
weight vs 0 (N=6)

one sample Student t-test p=0.0011 p=0.0056

Proba Change GLM : Target_proba_new 
weight vs 0 (N=6)

one sample Student t-test p=0.1334 p=0.2668

Proba End GLM : Previous omission 
weight vs 0 (N=6)

one sample Student t-test p=0.0589 p=0.1768
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Figure 4

Panel Comparison Test type p-values Corrections

A (top) GLM RPE(M1) weight across Det one-way ANOVA p=0.7950

GLM RPE(M1) weight : End Det vs Start 
Cplx 

Student unpaired t-test p=0.00006

GLM RPE(M1) weight across Cplx one-way ANOVA p=0.2407

GLM RPE(M1) weight : End Cplx vs Start 
Proba 

Student unpaired t-test p=0.5875

GLM RPE(M1) weight across Proba Kruskall-Wallis p=0.8552

GLM RPE(M1) weight vs 0 : Det Mid one sample Student t-test p=0.6810 Holm (x10) : p=1

GLM RPE(M1) weight vs 0 : Det Late one sample Student t-test p=0.8201 Holm (x10) : p=1

GLM RPE(M1) weight vs 0 : Det Last one sample Student t-test p=0.4648 Holm (x10) : p=1

GLM RPE(M1) weight vs 0 : Cplx Start one sample Student t-test p=0.00002 Holm (x10) : p=0.0002

GLM RPE(M1) weight vs 0 : Cplx Mid one sample Student t-test p=0.00006 Holm (x10) : p=0.0006

GLM RPE(M1) weight vs 0 : Cplx Last one sample Student t-test p=0.0094 Holm (x10) : p=0.0754

GLM RPE(M1) weight vs 0 : Proba Start one sample Student t-test p=0.0325 Holm (x10) : p=0.2275

GLM RPE(M1) weight vs 0 : Proba Mid one sample Wilcoxon p=0.1010 Holm (x10) : p=0.6592

GLM RPE(M1) weight vs 0 : Proba Late one sample Student t-test p=0.3017 Holm (x10) : p=1

GLM RPE(M1) weight vs 0 : Proba Last one sample Student t-test p=0.5886 Holm (x10) : p=1

GLM RPE(M2) weight across Det one-way ANOVA p=0.5767

GLM RPE(M2) weight : End Det vs Start 
Cplx 

Mann-Whitney U test (unpaired) p=0.00001

GLM RPE(M2) weight across Cplx Kruskall-Wallis p=0.3804

GLM RPE(M2) weight : End Cplx vs Start 
Proba 

Student unpaired t-test p=0.3013

GLM RPE(M2) weight across Proba one-way ANOVA p=0.9336

GLM RPE(M2) weight vs 0 : Det Mid one sample Student t-test p=0.1612 Holm (x10) : p=1

GLM RPE(M2) weight vs 0 : Det Late one sample Student t-test p=0.2922 Holm (x10) : p=1

GLM RPE(M2) weight vs 0 : Det Last one sample Student t-test p=0.0130 Holm (x10) : p=0.1168

GLM RPE(M2) weight vs 0 : Cplx Start one sample Wilcoxon p=0.0002 Holm (x10) : p=0.0021

GLM RPE(M2) weight vs 0 : Cplx Mid one sample Student t-test p=0.0398 Holm (x10) : p=0.3187

GLM RPE(M2) weight vs 0 : Cplx Last one sample Student t-test p=0.2023 Holm (x10) : p=1

GLM RPE(M2) weight vs 0 : Proba Start one sample Student t-test p=0.9793 Holm (x10) : p=1

GLM RPE(M2) weight vs 0 : Proba Mid one sample Student t-test p=0.8436 Holm (x10) : p=1

GLM RPE(M2) weight vs 0 : Proba Late one sample Student t-test p=0.3895 Holm (x10) : p=1

GLM RPE(M2) weight vs 0 : Proba Last one sample Student t-test p=0.8098 Holm (x10) : p=1

GLM RPE(M3) weight across Det one-way ANOVA p=0.4364

GLM RPE(M3) weight : End Det vs Start 
Cplx 

Student unpaired t-test p=0.0695

GLM RPE(M3) weight across Cplx Kruskall-Wallis p=0.1509

GLM RPE(M3) weight : End Cplx vs Start 
Proba 

Mann-Whitney U test (unpaired) p=0.2406

GLM RPE(M3) weight across Proba Kruskall-Wallis p=0.1157

GLM RPE(M3) weight vs 0 : Det Mid one sample Student t-test p=0.3224 Holm (x10) : p=1

GLM RPE(M3) weight vs 0 : Det Late one sample Student t-test p=0.6185 Holm (x10) : p=1

GLM RPE(M3) weight vs 0 : Det Last one sample Student t-test p=0.6133 Holm (x10) : p=1

GLM RPE(M3) weight vs 0 : Cplx Start one sample Student t-test p=0.0068 Holm (x10) : p=0.0541

GLM RPE(M3) weight vs 0 : Cplx Mid one sample Wilcoxon p=0.0202 Holm (x10) : p=0.1210

GLM RPE(M3) weight vs 0 : Cplx Last one sample Wilcoxon p=0.2247 Holm (x10) : p=1

GLM RPE(M3) weight vs 0 : Proba Start one sample Wilcoxon p=0.2334 Holm (x10) : p=1

GLM RPE(M3) weight vs 0 : Proba Mid one sample Wilcoxon p=0.0049 Holm (x10) : p=0.0472

GLM RPE(M3) weight vs 0 : Proba Late one sample Student t-test p=0.0047 Holm (x10) : p=0.0472

GLM RPE(M3) weight vs 0 : Proba Last one sample Student t-test p=0.0140 Holm (x10) : p=0.0979

A (bottom) Success rate Trial Det_End vs Cplx_Start Student unpaired t-test p<10-5

Success rate Trial Cplx Start vs Mid vs 
End

one way ANOVA p=0.0019

Success rate Trial Cplx_End vs 
Proba_Start

Student unpaired t-test p<10-5

Success rate Trial Proba Start vs Mid vs 
Late vs Last

one way ANOVA p=0.0104

Success rate Uturn Det_End vs Cplx_Start Mann-Whitney U test (unpaired) p<10-5

Success rate Uturn Cplx Start vs Mid vs 
End

Kruskall-Wallis p=0.6140

Success rate Uturn Cplx_End vs 
Proba_Start

Student unpaired t-test p=0.00003

Success rate Uturn Proba Start vs Mid vs 
Late vs Last

Kruskall-Wallis p=0.1553

Success rate Fwd Det_End vs Cplx_Start Student unpaired t-test p<10-5

Success rate Fwd Cplx Start vs Mid vs 
End

Kruskall-Wallis p=0.0027

Success rate Fwd Cplx_End vs 
Proba_Start

Mann-Whitney U test (unpaired) p=0.0004

Success rate Fwd Proba Start vs Mid vs 
Late vs Last

Kruskall-Wallis p=0.1553

Success rate pC Det_End vs Cplx_Start Mann-Whitney U test (unpaired) p<10-5

Success rate pC-p100 Cplx Start vs Mid 
vs End

Kruskall-Wallis p=0.0070

Success rate pC-p100 Cplx_End vs 
Proba_Start

Student unpaired t-test p<10-5

Success rate pB Det_End vs Cplx_Start Student unpaired t-test p<10-5

Success rate pB-p50 Cplx Start vs Mid vs 
End

one way ANOVA p=0.0185

Success rate pB-p50 Cplx_End vs 
Proba_Start

Student unpaired t-test p<10-5

Success rate pA Det_End vs Cplx_Start Student unpaired t-test p<10-5

Success rate pA-p25 Cplx Start vs Mid vs 
End

one way ANOVA p=0.0029

Success rate pA-p25 Cplx_End vs 
Proba_Start

Student unpaired t-test p<10-5

B (left, middle) Cplx post-reward dDA across sessions : 
Start (N=17) vs Mid (N=17) vs Last (N=17)

Kruskall-Wallis p=0.9577

Cplx dDA : Start vs 0 one sample Student t-test p=0.0003 Holm (x3) : p=0.0003

Cplx dDA : Mid vs 0 one sample Wilcoxon p=0.00005 Holm (x3) : p=0.0001

Cplx dDA : Last vs 0 one sample Wilcoxon p=0.00002 Holm (x3) : p=0.00006

B (left, bottom) Cplx post-omission dDA across sessions : 
Start (N=17) vs Mid (N=17) vs Last (N=17)

one way ANOVA p=0.1659

Cplx dDA : Start vs 0 one sample Student t-test p=0.00005 Holm (x3) : p=0.0002

Cplx dDA : Mid vs 0 one sample Student t-test p=0.0286 Holm (x3) : p=0.0286

Cplx dDA : Last vs 0 one sample Student t-test p=0.0018 Holm (x3) : p=0.0036

B (right, middle) Cplx across sessions : linear regression 
post-reward DA with success rate

Spearman correlation p=0.2359 ; R2 = 0.073

B (right, bottom) Cplx across sessions : linear regression 
post-omission DA with sequence 
complexity

Pearson correlation p=0.2037 ; R2 = 0.033

C (left, middle) Proba post-reward dDA across sessions : 
Start (N=12) vs Mid (N=12) vs Last (N=11) 
vs Last (N=10)

Kruskall-Wallis p=0.0092

Proba dDA : Start vs 0 one sample Student t-test p=0.8041 Holm (x4) : p=0.8041

Proba dDA : Mid vs 0 one sample Wilcoxon p=0.0001 Holm (x4) : p=0.0039

Proba dDA : Late vs 0 one sample Wilcoxon p=0.0049 Holm (x4) : p=0.0146

Proba dDA : Last vs 0 one sample Wilcoxon p=0.0137 Holm (x4) : p=0.0125

C (left, bottom) Proba post-omission dDA across sessions 
: Start (N=12) vs Mid (N=12) vs Last (N=11) 
vs Last (N=10)

Kruskall-Wallis p=0.0651

Proba dDA : Start vs 0 one sample Student t-test p=0.9590 Holm (x4) : p=0.9590

Proba dDA : Mid vs 0 one sample Wilcoxon p=0.1294 Holm (x4) : p=0.2588

Proba dDA : Late vs 0 one sample Student t-test p=0.0225 Holm (x4) : p=0.0676

Proba dDA : Last vs 0 one sample Student t-test p=0.0020 Holm (x4) : p=0.0078

C (right, middle) Proba across sessions : linear regression 
post-reward dDA with exploitation index

Spearman correlation p<10-5 ; R2 = 0.1660

C (right, bottom) Proba across sessions : linear regression 
post-omission dDA with #Success

Spearman correlation p=0.0040 ; R2 = 0.1423
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Supp 1

Panel Comparison Test type p-values Corrections

A (left) #Trials, male (N=23) vs female (N=26), 
S1-2 vs S4-5 vs Last2 (N=3 repeated 
measures)

mixed ANOVA (sex X session 
effect, with repeated measures 
on sessions)

Sex effect: p=0.7131

Session effect: p<10-5 
Interaction effect: p=0.0561

#Trials in Det Last2, male (N=23) vs female 
(N=26)

Student unpaired t-test p=0.3647

A (center-left) %Uturn in Det, male (N=23) vs female 
(N=26), S1-2 vs S4-5 vs Last2 (N=3 
repeated measures)

mixed ANOVA (sex X session 
effect, with repeated measures 
on sessions)

Sex effect: p=0.5300

Session effect: p<10-5 
Interaction effect: p=0.1597

%Uturn in Det Last2, male (N=23) vs 
female (N=26)

Student unpaired t-test p=0.3469

A (center-right) Sequence cplx in Det, male (N=23) vs 
female (N=26), S1-2 vs S4-5 vs Last2 (N=3 
repeated measures)

mixed ANOVA (sex X session 
effect, with repeated measures 
on sessions)

Sex effect: p=0.1672

Session effect: p<10-5 
Interaction effect: p=0.1952

Sequence cplx in Det Last2, male (N=23) 
vs female (N=26)

Mann-Whitney U-test p=0.0346

A (right) Circularity index in Det, male (N=23) vs 
female (N=26), S1-2 vs S4-5 vs Last2 (N=3 
repeated measures)

mixed ANOVA (sex X session 
effect, with repeated measures 
on sessions)

Sex effect: p=0.2553

Session effect: p=0.0022 
Interaction effect: p=0.3185

Circularity index in Det Last2, male (N=23) 
vs female (N=26)

Mann-Whitney U-test p=0.2255

B (left) %Success in Cplx, male (N=23) vs female 
(N=26), S1-2 vs S4-5 vs Last2 (N=3 
repeated measures)

mixed ANOVA (sex X session 
effect, with repeated measures 
on sessions)

Sex effect: p=0.3353

Session effect: p<10-5 
Interaction effect: p=0.0717

%Success in Cplx Last2, male (N=23) vs 
female (N=26)

Student unpaired t-test p=0.5886

B (center-left) %Uturn in Cplx, male (N=23) vs female 
(N=26), S1-2 vs S4-5 vs Last2 (N=3 
repeated measures)

mixed ANOVA (sex X session 
effect, with repeated measures 
on sessions)

Sex effect: p=0.5934

Session effect: p<10-5 
Interaction effect: p=0.0087

%Uturn in Cplx Last2, male (N=23) vs 
female (N=26)

Student unpaired t-test p=0.6816

B (center-right) Sequence cplx in Cplx, male (N=23) vs 
female (N=26), S1-2 vs S4-5 vs Last2 (N=3 
repeated measures)

mixed ANOVA (sex X session 
effect, with repeated measures 
on sessions)

Sex effect: p=0.0462 
Session effect: p=0.0001 
Interaction effect: p=0.7944

Sequence cplx in Cplx Last2, male (N=23) 
vs female (N=26)

Mann-Whitney U-test p=0.2662

B (right) Circularity index in Cplx, male (N=23) vs 
female (N=26), S1-2 vs S4-5 vs Last2 (N=3 
repeated measures)

mixed ANOVA (sex X session 
effect, with repeated measures 
on sessions)

Sex effect: p=0.3757

Session effect: p= p<10-5 

Interaction effect: p=0.7407

Circularity index in Cplx Last2, male 
(N=23) vs female (N=26)

Mann-Whitney U-test p=0.6961

C (left) %Success in Proba, male (N=23) vs 
female (N=26), S1-2 vs S4-5 vs Last2 (N=3 
repeated measures)

mixed ANOVA (sex X session 
effect, with repeated measures 
on sessions)

Sex effect: p=0.8112

Session effect: p<10-5 
Interaction effect: p=0.9326

%Success in Proba Last2, male (N=23) vs 
female (N=26)

Student unpaired t-test p=0.4590

C (center-left) %Uturn in Proba, male (N=23) vs female 
(N=26), S1-2 vs S4-5 vs Last2 (N=3 
repeated measures)

mixed ANOVA (sex X session 
effect, with repeated measures 
on sessions)

Sex effect: p=0.8129

Session effect: p<10-5 
Interaction effect: p=0.2954

%Uturn in Proba Last2, male (N=23) vs 
female (N=26)

Mann-Whitney U-test p=0.4770

C (center-right) Sequence cplx in Proba, male (N=23) vs 
female (N=26), S1-2 vs S4-5 vs Last2 (N=3 
repeated measures)

mixed ANOVA (sex X session 
effect, with repeated measures 
on sessions)

Sex effect: p=0.2919

Session effect: p<10-5 
Interaction effect: p=0.6391

Sequence cplx in Proba Last2, male 
(N=23) vs female (N=26)

Mann-Whitney U-test p=0.3312

C (right) Circularity index in Proba, male (N=23) vs 
female (N=26), S1-2 vs S4-5 vs Last2 (N=3 
repeated measures)

mixed ANOVA (sex X session 
effect, with repeated measures 
on sessions)

Sex effect: p=0.8792

Session effect: p= p<10-5 

Interaction effect: p=0.4908

Circularity index in Proba Last2, male 
(N=23) vs female (N=26)

Student unpaired t-test p=0.6511
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Supp 2

Panel Comparison Test type p-values Corrections

B Frequency distribution of 10-length chains 
for all mice End sessions, Det (n=2129 
seq) vs Cplx (n=2838)

Kolmogorov-Smirnov 
(distribution)

p<10-5
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Supp 3

Panel Comparison Test type p-values Corrections

A #Trials across time point (N=49 mice, all 
paired)

one-way ANOVA (time point 
effect)

p<10-5

Post-hoc, #Trials Det: First2 vs Last2 
(N=49)

Wilcoxon (paired) p<10-5 Holm (x5) : p<10-5

Post-hoc, #Trials: Det Last2 vs Cplx First2 
(N=49)

Student paired t-test p<10-5 Holm (x5) : p<10-5

Post-hoc, #Trials Cplx: First2 vs Last2 
(N=49)

Student paired t-test p<10-5 Holm (x5) : p<10-5

Post-hoc, #Trials: Cplx Last2 vs Proba 
First2 (N=49)

Student paired t-test p=0.5305 Holm (x5) : p=0.5305

Post-hoc, #Trials Proba: First2 vs Last2 
(N=49)

Student paired t-test p=0.0105 Holm (x5) : p=0.0210

B (left) Correlation between behavioural 
parameters in Det Last2 (N=49)

Pearson if normal, Spearman if 
not

See colour code in figure Bonferroni (x66), see figure

B (center) Correlation between behavioural 
parameters in Cplx First2 and Last2 (N=49)

Pearson if normal, Spearman if 
not

See colour code in figure Bonferroni (x78), see figure

B (right) Correlation between behavioural 
parameters in Proba First2 and Last2 
(N=49)

Pearson if normal, Spearman if 
not

See colour code in figure Bonferroni (x91), see figure
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Supp 4

Panel Comparison Test type p-values Corrections

E Det Last, Post-ICSS avg per mouse (N=14), 
Expected (task) vs Unexpected (restcage) 
(individual data from Fig2.E.)

Student paired t-test p=0.0019

F Det Last, Post-ICSS avg per mouse (N=13), 
Expected (on-target) vs Unexpected (off-
target) (individual data from Fig2.F.)

Student paired t-test p<10-5

G Det S1, Post-ICSS avg per mouse (N=9), task 
vs restcage

Wilcoxon (paired) p=0.1641

H Det S2, Post-ICSS avg per mouse (N=9), on-
target vs off-target

Student paired t-test p=0.0430
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Supp 5

Panel Comparison Test type p-values Corrections

A Restcage stimulation dF/F avg per mouse 
(N=14) : short (<3s) vs mid vs long (>5s)

one-way ANOVA p=0.1508

B Restcage stimulation GLM : Intercept weight 
vs 0 (N=14)

one sample Student t-test p<10-5 Holm (x2) : p<10-5

Restcage stimulation GLM : T_inter_stim 
weight vs 0 (N=14)

one sample Student t-test p=0.1526 Holm (x2) : p=0.1526

C Det End post-reward dF/F avg per mouse 
(N=19) : Uturn vs Forward (individual data from 
Fig3.C.)

Student paired t-test p=0.0012

D Det End post-reward dF/F avg per mouse 
(N=19) : pA vs pB vs pC

one-way ANOVA p=0.6686

E (top) Cplx End post-reward dF/F avg per mouse 
(N=17) : Reward prev=rew vs prev=omi 
(individual data from Fig3.E.)

Student paired t-test p=0.0003

E (bottom) Cplx End post-reward dF/F avg per mouse 
(N=17) : Omission prev=rew vs prev=omi 
(individual data from Fig3.E.)

Student paired t-test p=0.0357

F (top) Cplx End post-reward dF/F avg per mouse 
(N=17) : Reward p100 vs p50 vs p25

one-way ANOVA p=0.8132

F (bottom) Cplx End post-reward dF/F avg per mouse 
(N=17) : Omission pA vs pB vs pC

one-way ANOVA p=0.3823

G (top) Cplx End post-reward dF/F avg per mouse 
(N=17) : Reward Uturn vs Fwd

Student paired t-test p=0.1901

G (bottom) Cplx End post-reward dF/F avg per mouse 
(N=17) : Omission Uturn vs Fwd

Student paired t-test p=0.3378

H (top) Proba End post-reward dF/F avg per mouse 
(N=10) : p100 vs p50 vs p25 (individual data 
from Fig3.G.)

one-way ANOVA p=0.0364

Post-hoc, p100 vs p50 Student paired t-test p=0.0171 Holm (x3) : p=0.0282

Post-hoc, p50 vs p25 Student paired t-test p=0.0141 Holm (x3) : p=0.0282

Post-hoc, p100 vs p25 Student paired t-test p=0.0079 Holm (x3) : p=0.0237

H (bottom) Proba End post-omission dF/F avg per mouse 
(N=10) : p50 vs p25 (individual data from 
Fig3.G.)

Student paired t-test p=0.0173

I (top) Proba End post-reward dF/F avg per mouse 
(N=10) : Reward prev=rew vs prev=omi

Student paired t-test p=0.0161

I (bottom) Proba End post-reward dF/F avg per mouse 
(N=10) : Omission prev=rew vs prev=omi

Student paired t-test p=0.9324

J (top) Proba End post-reward dF/F avg per mouse 
(N=10) : Reward Uturn vs Fwd

Student paired t-test p=0.1628

J (bottom) Proba End post-reward dF/F avg per mouse 
(N=10) : Omission Uturn vs Fwd

Student paired t-test p=0.0840
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Supp 6

Panel Comparison Test type p-values Corrections

B (top-left) Det End RPE(M1) avg per mouse (N=19) : pA 
vs pB vs pC

one-way ANOVA p=0.9222

B (top-right) Det End RPE(M1) avg per mouse (N=19) : 
Uturn vs Fwd

Wilcoxon p=0.0204

B (center-left) Det End RPE(M2) avg per mouse (N=19) : pA 
vs pB vs pC

one-way ANOVA p=0.8711

B (center-right) Det End RPE(M2) avg per mouse (N=19) : 
Uturn vs Fwd (Same as Fig 4.C.)

Wilcoxon p=0.00002

B (bottom-left) Det End RPE(M3) avg per mouse (N=19) : pA 
vs pB vs pC

one-way ANOVA p=0.9801

B (bottom-right) Det End RPE(M3) avg per mouse (N=19) : 
Uturn vs Fwd

Student paired t-test p=0.4844

C (top-left) Cplx End RPE(M1) avg per mouse (N=17) : pA 
vs pB vs pC

Rew: one-way ANOVA

Omi: one-way ANOVA

Rew: p=0.9843

Omi: p=0.9697

C (top-middle) Cplx End RPE(M1) avg per mouse (N=17) : 
Uturn vs Fwd

Rew: Student paired t-test

Omi: Student paired t-test

Rew: p=0.0223 
Omi: p=0.0018

C (top-right) Cplx End RPE(M1) avg per mouse (N=17) : 
prev=rew vs prev=omi (Same as Fig 4.F.)

Rew: Student paired t-test

Omi: Student paired t-test

Rew: p<10e-5 
Omi: p<10e-5

C (center-left) Cplx End RPE(M2) avg per mouse (N=17) : pA 
vs pB vs pC 

Rew: one-way ANOVA

Omi: one-way ANOVA

Rew: p=0.9125

Omi: p=0.9327

C (center-middle) Cplx End RPE(M2) avg per mouse (N=17) : 
Uturn vs Fwd

Rew: Student paired t-test

Omi: Student paired t-test

Rew: p=0.0004 
Omi: p=0.0002

C (center-right) Cplx End RPE(M2) avg per mouse (N=17) : 
prev=rew vs prev=omi

Rew: Student paired t-test

Omi: Student paired t-test

Rew: p=0.9737

Omi: p=0.00002

C (bottom-left) Cplx End RPE(M3) avg per mouse (N=17) : pA 
vs pB vs pC

Rew: one-way ANOVA

Omi: one-way ANOVA

Rew: p=0.5187

Omi: p=0.4841

C (bottom-middle) Cplx End RPE(M3) avg per mouse (N=17) : 
Uturn vs Fwd

Rew: Student paired t-test

Omi: Student paired t-test

Rew: p=0.2845

Omi: p=0.0612

C (bottom-right) Cplx End RPE(M3) avg per mouse (N=17) : 
prev=rew vs prev=omi

Rew: Student paired t-test

Omi: Student paired t-test

Rew: p=0.0211 
Omi: p=0.7743

D (top-left) Proba End RPE(M1) avg per mouse (N=10) : 
p100 vs p50 vs p25 for rewards, p50 vs p25 
for omissions

Rew: one-way ANOVA

Omi: Student paired t-test

Rew: p=0.8881

Omi: p=0.3362

D (top-middle) Proba End RPE(M1) avg per mouse (N=10) : 
Uturn vs Fwd

Rew: Student paired t-test

Omi: Student paired t-test

Rew: p=0.0085 
Omi: p=0.1934

D (top-right) Proba End RPE(M1) avg per mouse (N=10) : 
prev=rew vs prev=omi

Rew: Student paired t-test

Omi: Student paired t-test

Rew: p<10e-5 
Omi: p=0.00005

D (center-left) Proba End RPE(M2) avg per mouse (N=10) : 
p100 vs p50 vs p25 for rewards, p50 vs p25 
for omissions

Rew: one-way ANOVA

Omi: Student paired t-test

Rew: p=0.1195

Omi: p=0.0042

D (center-middle) Proba End RPE(M2) avg per mouse (N=10) : 
Uturn vs Fwd

Rew: Student paired t-test

Omi: Student paired t-test

Rew: p=0.00005 
Omi: p=0.00006

D (center-right) Proba End RPE(M2) avg per mouse (N=10) : 
prev=rew vs prev=omi

Rew: Student paired t-test

Omi: Student paired t-test

Rew: p=0.0004 
Omi: p=0.0005

D (bottom-left) Proba End RPE(M3) avg per mouse (N=10) : 
p100 vs p50 vs p25 for rewards, p50 vs p25 
for omissions (Same as Fig 4.I.)

Rew: Kruskall-Wallis

Omi: Student paired t-test

Rew: p<10e-5 
Omi: p=0.0020

D (bottom-middle) Proba End RPE(M3) avg per mouse (N=10) : 
Uturn vs Fwd

Rew: Student paired t-test

Omi: Wilcoxon

Rew: p=0.00006 
Omi: p=0.0020

D (bottom-right) Proba End RPE(M3) avg per mouse (N=10) : 
prev=rew vs prev=omi

Rew: Student paired t-test

Omi: Student paired t-test

Rew: p<10e-5 
Omi: p=0.6590
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Supp 7

Panel Comparison Test type p-values Corrections

A (top) GLM RPE(M1) weight across Det Kruskall-Wallis p=0.6029

GLM RPE(M1) weight : End Det vs Start 
Cplx 

Student unpaired t-test p=0.0001

GLM RPE(M1) weight across Cplx one-way ANOVA p=0.9001

GLM RPE(M1) weight : End Cplx vs Start 
Proba 

Student unpaired t-test p=0.4669

GLM RPE(M1) weight across Proba one-way ANOVA p=0.0031

GLM RPE(M1) weight vs 0 : Det Mid one sample Student t-test p=0.4476 Holm (x10) : p=1

GLM RPE(M1) weight vs 0 : Det Late one sample Student t-test p=0.6257 Holm (x10) : p=1

GLM RPE(M1) weight vs 0 : Det Last one sample Student t-test p=0.4849 Holm (x10) : p=1

GLM RPE(M1) weight vs 0 : Cplx Start one sample Student t-test p=0.00003 Holm (x10) : p=0.0003

GLM RPE(M1) weight vs 0 : Cplx Mid one sample Student t-test p=0.0004 Holm (x10) : p=0.0034

GLM RPE(M1) weight vs 0 : Cplx Last one sample Student t-test p=0.0006 Holm (x10) : p=0.0047

GLM RPE(M1) weight vs 0 : Proba Start one sample Student t-test p=0.0211 Holm (x10) : p=0.1476

GLM RPE(M1) weight vs 0 : Proba Mid one sample Wilcoxon p=0.4277 Holm (x10) : p=1

GLM RPE(M1) weight vs 0 : Proba Late one sample Student t-test p=0.3216 Holm (x10) : p=1

GLM RPE(M1) weight vs 0 : Proba Last one sample Student t-test p=0.3218 Holm (x10) : p=1

GLM RPE(M2) weight across Det Kruskall-Wallis p=0.0117

GLM RPE(M2) weight : End Det vs Start 
Cplx 

Mann-Whitney U test (unpaired) p=0.1061

GLM RPE(M2) weight across Cplx Kruskall-Wallis p=0.6152

GLM RPE(M2) weight : End Cplx vs Start 
Proba 

Mann-Whitney U test (unpaired) p=0.0096

GLM RPE(M2) weight across Proba one-way ANOVA p=0.3649

GLM RPE(M2) weight vs 0 : Det Mid one sample Student t-test p=0.0295 Holm (x10) : p=0.2356

GLM RPE(M2) weight vs 0 : Det Late one sample Student t-test p=0.0006 Holm (x10) : p=0.0061

GLM RPE(M2) weight vs 0 : Det Last one sample Student t-test p=0.9577 Holm (x10) : p=1

GLM RPE(M2) weight vs 0 : Cplx Start one sample Wilcoxon p=0.0174 Holm (x10) : p=0.1569

GLM RPE(M2) weight vs 0 : Cplx Mid one sample Wilcoxon p=0.1324 Holm (x10) : p=0.6619

GLM RPE(M2) weight vs 0 : Cplx Last one sample Wilcoxon p=0.0569 Holm (x10) : p=0.3982

GLM RPE(M2) weight vs 0 : Proba Start one sample Student t-test p=0.0681 Holm (x10) : p=0.4085

GLM RPE(M2) weight vs 0 : Proba Mid one sample Student t-test p=0.2847 Holm (x10) : p=1

GLM RPE(M2) weight vs 0 : Proba Late one sample Student t-test p=0.8733 Holm (x10) : p=1

GLM RPE(M2) weight vs 0 : Proba Last one sample Student t-test p=0.9266 Holm (x10) : p=1

GLM RPE(M3) weight across Det one-way ANOVA p=0.3810

GLM RPE(M3) weight : End Det vs Start 
Cplx 

Student unpaired t-test p=0.6093

GLM RPE(M3) weight across Cplx Kruskall-Wallis p=0.4623

GLM RPE(M3) weight : End Cplx vs Start 
Proba 

Mann-Whitney U test (unpaired) p=0.25883

GLM RPE(M3) weight across Proba Kruskall-Wallis p=0.0761

GLM RPE(M3) weight vs 0 : Det Mid one sample Student t-test p=0.3899 Holm (x10) : p=1

GLM RPE(M3) weight vs 0 : Det Late one sample Student t-test p=0.9362 Holm (x10) : p=1

GLM RPE(M3) weight vs 0 : Det Last one sample Student t-test p=0.5057 Holm (x10) : p=1

GLM RPE(M3) weight vs 0 : Cplx Start one sample Student t-test p=0.1089 Holm (x10) : p=0.7621

GLM RPE(M3) weight vs 0 : Cplx Mid one sample Wilcoxon p=0.4529 Holm (x10) : p=1

GLM RPE(M3) weight vs 0 : Cplx Last one sample Wilcoxon p=0.9632 Holm (x10) : p=1

GLM RPE(M3) weight vs 0 : Proba Start one sample Wilcoxon p=0.1099 Holm (x10) : p=0.7621

GLM RPE(M3) weight vs 0 : Proba Mid one sample Wilcoxon p=0.0015 Holm (x10) : p=0.0146

GLM RPE(M3) weight vs 0 : Proba Late one sample Student t-test p=0.0050 Holm (x10) : p=0.0449

GLM RPE(M3) weight vs 0 : Proba Last one sample Student t-test p=0.0124 Holm (x10) : p=0.0988

B (left) Det %Uturns (N=19) : S1-2 vs S4-5 vs 
Last2

one-way ANOVA p<10-5

B (right) Det seq. cplx (N=19) : S1-2 vs S4-5 vs 
Last2

one-way ANOVA p<10-5

C Det dDA across sessions : Start (N=9) vs 
Mid (N=9) vs Late (N=14) vs Last (N=19)

Kruskall-Wallis p=0.3857

Det dDA : Start vs 0 one sample Student t-test p=0.3472 Holm (x4) : p=0.3472

Det dDA : Mid vs 0 one sample Student t-test p=0.0990 Holm (x4) : p=0.1980

Det dDA : Late vs 0 one sample Student t-test p=0.0353 Holm (x4) : p=0.1058

Det dDA : Last vs 0 one sample Wilcoxon p=0.0033 Holm (x4) : p=0.0134

D Det across sessions : linear regression 
post-reward DA with turn rate

Spearman correlation p=0.9643 ; R2 = 0.0025

E (center-left) Cplx %Success (N=18) : S1-2 vs S4-5 vs 
Last2

one-way ANOVA p<10-5

E (center) Cplx %Uturns (N=18) : S1-2 vs S4-5 vs 
Last2

one-way ANOVA p<10-5

E (center-right) Cplx seq. cplx (N=18) : S1-2 vs S4-5 vs 
Last2

one-way ANOVA p<10-5

E (right) Cplx circularity index (N=18) : S1-2 vs 
S4-5 vs Last2

one-way ANOVA p<10-5

F (center-left) Proba %Success (N=14) : S1-2 vs S4-5 vs 
Last2

one-way ANOVA p<10-5

F (center) Proba %Uturns (N=14) : S1-2 vs S4-5 vs 
Last2

one-way ANOVA p<10-5

F (center-right) Proba seq. cplx (N=14) : S1-2 vs S4-5 vs 
Last2

one-way ANOVA p<10-5

F (right) Proba exploitation index (N=14) : S1-2 vs 
S4-5 vs Last2

one-way ANOVA p<10-5
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Supp 8

Panel Comparison Test type p-values Corrections

A (left) Cplx Start: linear regression between DA 
reward peak and length of reward chains 
(n=1812)

Spearman correlation p<10-5 ; R2 = 0.009

Cplx Start: linear regression between DA 
reward peak and length of omission chains 
(n=385)

Spearman correlation p=0.00005 ; R2 = 0.083

A (right) Cplx Start: linear regression between DA 
omission dip and length of reward chains 
(n=395)

Spearman correlation p=0.00002 ; R2 = 0.030

Cplx Start: linear regression between DA 
omission dip and length of omission 
chains (n=816)

Spearman correlation p<10-5 ; R2 = 0.088

B (left) Cplx End: linear regression between DA 
reward peak and length of reward chains 
(n=2815)

Spearman correlation p=0.5887 ; R2 = 0.001

Cplx End: linear regression between DA 
reward peak and length of omission chains 
(n=604)

Spearman correlation p=0.00001 ; R2 = 0.015

B (right) Cplx End: linear regression between DA 
omission dip and length of reward chains 
(n=612)

Spearman correlation p=0.0002 ; R2 = 0.019

Cplx End: linear regression between DA 
omission dip and length of omission 
chains (n=666)

Spearman correlation p=0.0028 ; R2 = 0.008

C (left) Cplx Start: Success rate depending on 
previous choice : forward vs uturn (N=17)

Student paired t-test p<10-5

C (right) Cplx End: Success rate depending on 
previous choice : forward vs uturn (N=17)

Student paired t-test p=0.0005

D (left) Cplx Start: Uturn rate depending on 
previous outcome : reward vs omission 
(N=17)

Student paired t-test p=0.1443

D (right) Cplx End: Uturn rate depending on 
previous outcome : reward vs omission 
(N=17)

Student paired t-test p=0.0577

E (bottom, left) Outcome chains length for all trials Cplx 
sessions : Rew_First2 (n=3472) vs 
Omi_First2 (n=2247) vs Rew_Last2 
(n=6947) vs Omi_Last2 (n=2463) (N=49)

Kolmogorov-Smirnov 
(distribution)

First2: Rew vs Omi: p<10-5 

Last2: Rew vs Omi: p<10-5 

Rew: First2 vs Last2: p<10-5 

Omi: First2 vs Last2: p<10-5

Holm (x4) : all p<10-5

E (bottom, right) Outcome chains length for all mice Cplx 
sessions : Rew_First2 vs Omi_First2 vs 
Rew_Last2 vs Omi_Last2 (N=49)

one way ANOVA p<10-5

Post-hoc Rew_First2 vs Omi_First2: Wilcoxon test p=0.0230 Holm (x4) : p=0.0230

Post-hoc Rew_Last2 vs Omi_Last2: Wilcoxon test p<10-5 Holm (x4) : p<10-5

Post-hoc Rew_First2 vs Rew_Last2: Wilcoxon test p<10-5 Holm (x4) : p<10-5

Post-hoc Omi_First2 vs Omi_Last2: Wilcoxon test p<10-5 Holm (x4) : p<10-5

F (left) Uturn chains length for all trials Cplx 
sessions : Fwd_First2 (n=4235) vs 
Uturn_First2 (n=1386) vs Fwd_Last2 
(n=6137) vs Uturn_Last2 (n=3175) (N=49)

Kolmogorov-Smirnov 
(distribution)

First2: Fwd vs Uturn: p<10-5 

Last2: Fwd vs Uturn: p<10-5 

Fwd: First2 vs Last2: p<10-5 

Uturn: First2 vs Last2: p=0.9501

Holm (x4) : p<10-5 

Holm (x4) : p<10-5 

Holm (x4) : p<10-5 

Holm (x4) : p=0.9501

F (right) Uturn chains length for all mice Cplx 
sessions : Fwd_First2 vs Uturn_First2 vs 
Fwd_Last2 vs Uturn_Last2 (N=49)

one way ANOVA p<10-5

Post-hoc Fwd_First2 vs Uturn_First2: Wilcoxon test p<10-5 Holm (x4) : p<10-5

Post-hoc Fwd_Last2 vs Uturn_Last2: Wilcoxon test p<10-5 Holm (x4) : p<10-5

Post-hoc Fwd_First2 vs Fwd_Last2: Wilcoxon test p<10-5 Holm (x4) : p<10-5

Post-hoc Uturn_First2 vs Uturn_Last2: Wilcoxon test p=0.6860 Holm (x4) : p=0.6860

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 29, 2024. ; https://doi.org/10.1101/2024.07.28.605479doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.28.605479
http://creativecommons.org/licenses/by-nc-nd/4.0/


References Supplementary Materials 400 

1. H. Khabou, M. Garita-Hernandez, A. Chaffiol, S. Reichman, C. Jaillard, E. Brazhnikova, S. Bertin, V. 401 
Forster, M. Desrosiers, C. Winckler, O. Goureau, S. Picaud, J. Duebel, J.-A. Sahel, D. Dalkara, 402 
Noninvasive gene delivery to foveal cones for vision restoration. JCI insight 3, D358 (2018). 403 

2. F. Sun, J. Zeng, M. Jing, J. Zhou, J. Feng, S. F. Owen, Y. Luo, F. Li, H. Wang, T. Yamaguchi, Z. 404 
Yong, Y. Gao, W. Peng, L. Wang, S. Zhang, J. Du, D. Lin, M. Xu, A. C. Kreitzer, G. Cui, Y. Li, A 405 
Genetically Encoded Fluorescent Sensor Enables Rapid and Specific Detection of Dopamine in Flies, 406 
Fish, and Mice. Cell 174, 481-496.e19 (2018). 407 

3. F. Sun, J. Zhou, B. Dai, T. Qian, J. Zeng, X. Li, Y. Zhuo, Y. Zhang, Y. Wang, C. Qian, K. Tan, J. 408 
Feng, H. Dong, D. Lin, G. Cui, Y. Li, Next-generation GRAB sensors for monitoring dopaminergic 409 
activity in vivo. Nat. methods 17, 1156–1166 (2020). 410 

4. V. W. Choi, A. Asokan, R. A. Haberman, R. J. Samulski, Production of recombinant adeno-associated 411 
viral vectors. Current protocols in human genetics Chapter 12, Unit 12.9-12.9.21 (2007). 412 

5. C. Aurnhammer, M. Haase, N. Muether, M. Hausl, C. Rauschhuber, I. Huber, H. Nitschko, U. Busch, 413 
A. Sing, A. Ehrhardt, A. Baiker, Universal real-time PCR for the detection and quantification of adeno-414 
associated virus serotype 2-derived inverted terminal repeat sequences. Human gene therapy methods 415 
23, 18–28 (2012). 416 

6. M. Belkaid, E. Bousseyrol, R. D. Cuttoli, M. Dongelmans, E. K. Duranté, T. A. Yahia, S. Didienne, B. 417 
Hanesse, M. Come, A. Mourot, J. Naudé, O. Sigaud, P. Faure, Mice adaptively generate choice 418 
variability in a deterministic task. Communications Biology 3, 1–9 (2020). 419 

7. J. Naudé, S. Tolu, M. Dongelmans, N. Torquet, S. Valverde, G. Rodriguez, S. Pons, U. Maskos, A. 420 
Mourot, F. Marti, P. Faure, Nicotinic receptors in the ventral tegmental area promote uncertainty-421 
seeking. Nature Neuroscience 19, 471–478 (2016). 422 

8. E. Bousseyrol, S. Didienne, S. Takillah, C. Prevost-Solié, M. Come, T. A. Yahia, S. Mondoloni, E. 423 
Vicq, L. Tricoire, A. Mourot, J. Naudé, P. Faure, Dopaminergic and prefrontal dynamics co-determine 424 
mouse decisions in a spatial gambling task. Cell Rep. 42, 112523 (2023). 425 

9. M. Dongelmans, R. D. Cuttoli, C. Nguyen, M. Come, E. K. Duranté, D. Lemoine, R. Brito, T. A. Yahia, 426 
S. Mondoloni, S. Didienne, E. Bousseyrol, B. Hannesse, L. M. Reynolds, N. Torquet, D. Dalkara, F. 427 
Marti, A. Mourot, J. Naudé, P. Faure, Chronic nicotine increases midbrain dopamine neuron activity and 428 
biases individual strategies towards reduced exploration in mice. Nat Commun 12, 6945 (2021). 429 

10. A. Lempel, J. Ziv, On the Complexity of Finite Sequences. IEEE Trans. Information Theory 22, 75–430 
81 (1976). 431 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 29, 2024. ; https://doi.org/10.1101/2024.07.28.605479doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.28.605479
http://creativecommons.org/licenses/by-nc-nd/4.0/

