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Abstract:

Efficient decision-making requires two key processes: learning values from actions and identifying a set
of relevant actions to learn from in a given context. While dopamine (DA) is a well-known substrate for
signaling reward prediction errors (RPEs) from selected actions to adjust behavior, the process of
establishing and switching between action representations is still poorly understood. To address this gap,
we used fiber photometry and computational modelling in a three-armed bandit task where mice learned
to seek rewards delivered through three successive rule sets, displaying distinct strategies in each rule.
We show that DA dynamically reflected RPEs computed from different task features, revealing context-
specific internal representations. Our findings demonstrate that mice not only learned and updated action
values but also action representations, adapting the features from which they learn across rules for flexible
adjustment of their decision strategy.
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Introduction

Toddlers solving puzzles can successfully associate either shapes or colors depending on the game they
are playing (Fig 1A), highlighting the importance of context in learning value from environmental
featuress, and thereby developing an internal model of a task structure. Efficient decision making indeed
requires both to learn from the consequences of actions (reinforcement learning) and to identify features
and dimensions (i.e., a state space) that define a set of relevant actions from which to learn about
(representation learning) (1-4). A cornerstone of understanding the mechanisms governing reinforcement
learning and decision making is the interplay between prediction errors and state representation. Failure
in such representation learning can lead to superstitions or false beliefs that interfere with efficient learning
and decision making (5). Despite its fundamental importance for adaptive behavior, the role of
representation learning in decision-making has been experimentally overlooked, limiting our
understanding of how state representations are formed through experience (4). This issue becomes
increasingly important as researchers shift their focus from experiments with a simple task structure to
more elaborated tasks (6—10) that more closely resemble natural decision-making, with multiple (and
possibly overlapping or competing) features that animals may use as state representations, as well as
potentially abrupt changes over time in the state representations being used.

The identification of the neural substrate of this representation can be an indication that this representation
is actually being used by the animal. While multiple brain areas contribute to the encoding of such features
(11-14), it is still difficult to know, in a given context, which one of these features are recognized and
effectively used by a subject to build a relevant internal model of the world, e.g., to predict values, compute
errors, and guide goal-directed actions. We hypothesize that dopamine (DA) could be an excellent
indicator of the representations used to navigate an environment. DA is a very well-established substrate
to signal value and compute reward prediction error (RPE) (15-26), integrating outcome-related
dimensions in a common currency (27-29), and driving reinforcement learning and decision making (21,
27, 28, 30-33). Consequently, DA-mediated RPE should necessarily depend on the most relevant
features for obtaining rewards and driving strategy, thereby providing insights into the subject’s current
state representation. To demonstrate this, we propose a novel experimental approach designed to follow
the learning and shifts in task representations. We used behavioral assays, fiber photometry recording
and computational modeling to explore how dopamine-mediated RPE signatures are related to specific
features or action in different rules of a spatial bandit task (7, 8, 34, 35) and how these features vary
across rules. Our results show that mice not only learned value from actions, but also adapted their set
of relevant actions from which to learn, efficiently adjusting their reward-seeking strategies.

Each reward context is associated with a specific reward-seeking strategy
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Using different versions of a spatial bandit task adapted for mice (7, 8, 34, 35), we aimed to obtain rule-
specific and feature-dependent strategies (Fig 1A-B). In this task, animals learned to navigate between
three marked locations in an open field, each associated with an intracranial self-stimulation (ICSS) of the
medial forebrain bundle (MFB). Mice could not receive two consecutive ICSS at the same location; and
therefore, had to alternate between rewarding locations, resulting in a sequence of movements and binary
choices (i.e., trials) (Fig 1B, top). Despite the apparent simplicity of this self-generated, goal-oriented
behavior, mice can use different features of the environment to guide their actions and obtain rewards
(Fig 1B, bottom). Mice were initially trained in a deterministic context (Det) where all locations
consistently delivered ICSS, developing typical ballistic speed profiles (Fig 1C) and increasing trial
numbers, with similar learning curves observed in both males and females (Fig S1A). Subsequently, mice
were switched to complex and probabilistic reward delivery rules, requiring them to adapt their strategies
(Fig 1D, Fig S1B-C). In the complex context (Cplx), reward delivery was determined by the variability
compared to decision patterns identified in the previous nine choices (Fig S2A) (8), while the probabilistic
context (Proba) offered different reward probabilities at each location (100%, 50%, 25%)(35). These
varying conditions resulted in distinct trajectory patterns (Fig 1D), success rates (Fig 1E), and decision-
making strategies. In Det, animals tended to adopt circular trajectories with minimal U-turns (~20%). In
contrast, the Cplx rule resulted in random trajectory patterns characterized by high sequence complexity
(Fig 1E, Fig S2B). In Proba, mice exhibited a bias toward locations with higher probability of reward
delivery, resulting in a high percentage of U-turns and a preference for p100 and p50 (Fig 1F). We also
ensured that those differences in decision strategy were not due to motivation or vigor to perform the
three versions of the task (Fig S$3). Overall, while the basic design of the task remained constant, each
rule is associated with a specific reward structure promoting different action-outcome causalities. The
evolution of decision dynamics across rules demonstrates that mice can extract such contingencies to
dynamically adjust and improve their reward-seeking strategies, allowing for the longitudinal study of both
choice behavior adaptations and their neural correlates.

Dopamine dynamics reveal expectations built upon rule-specific features

We next examined DA release dynamics during the task, across the three rules, using the fluorescent
sensor GRABpazu expressed in the lateral shell of the nucleus accumbens (NAc) in a new cohort of wild-
type male mice (Fig 2A, Fig S4A). Positive transients in DA release occurred upon receiving expected
rewards, whereas negative events were observed when expected rewards were omitted (Fig 2B-C, Fig
S4B), indicative of a negative RPE (for simplicity, these events, whether positive or negative, are referred
to as transients). Similar responses were observed while recording Ventral Tegmental Area (VTA) DA
neurons activity with GCaMP in DAT-iCre mice, ensuring consistency in the interpretation of DA dynamics
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89  between release and firing processes (Fig S4C-D). Analysis of the amplitude distribution of DA transients
90 (positive and negative) across the different rules showed greater variability compared to unexpected
91 random stimulation in a rest cage, suggesting an active mechanism related to reward expectation
92  modulating the DA response, rather than being a mere response to the ICSS (Fig 2D). Additional
93  experiments with unexpected rewards delivered either during the task but off-target (i.e. when the animal
94  was in-between rewarded locations, Fig 2E) or in a rest cage (Fig S4E-F) demonstrated a larger transient
95  compared to expected rewards during the task, yet only after conditioning (Supp 4G-H), further supporting
96 the role of expectation in modulating DA release. We also controlled for a potential impact of sensor
97  fatigue and found no effect on DA signal when stimulations were given in the rest cage with varying
98  durations in-between stimulation (matching those observed in the task, typically from 2s to 7s) (Fig S5A-
99  B). Altogether, these findings, consistent with positive and negative RPE patterns, illustrate that DA
100  dynamics during the task are not solely driven by MFB stimulation but are significantly influenced by the
101  mice's learned expectations and internal task representations.
102  We next wondered which task features those expectations were built upon. To do this, we applied
103  generalized linear models (GLMs) to analyze fluctuations in DA peaks and dips amplitudes across trials,
104  running separate regression analyses for each individual mouse at the end of each rule (last two sessions)
105  (Fig 2F). The predictors included current and previous trial outcomes (reward or omission), the specific
106  target where outcomes occurred (locations pA, pB, and pC; or p100, p50 and p25 in Proba), and the
107  direction taken (Forward movement or U-turn) (Fig 2F). In the Det setting, where all trials were rewarded,
108  we observed that the key predictor for differentiating trials was direction but not target (Fig 2G). In the
109  Cplx setting, trial outcome accounted for the biggest part of DA variation (positive for rewards, negative
110 foromissions, Fig 2H), with an additional positive effect of previous outcome (having received an omission
111  at trial n-1 increases DA signal at trial n), regardless of targets or directions. In Proba, this effect of
112 previous outcome disappeared, and the target probability significantly influenced DA variations (Fig 2I).
113 Overall, the GLM analysis revealed that the primary drivers of DA fluctuations varied depending on the
114  task setting, with direction, trial outcome, and target probability each playing distinct roles. Direct
115  examinations of DA transients, categorized by direction, previous outcome or target, confirmed and
116  complemented these results. In Det, DA release depends on direction (Fig 2J, Fig S5C) but not on the
117  target (Fig S5D). In Cplx, omission on previous trial led to greater rewards-induced peaks and shallower
118  omissions-induced dips (Fig 2K, Fig S5E), while neither the target nor the direction showed significant
119  effects (Fig S5F-G). At the end of the Proba setting, the DA signals were negatively influenced by target
120  probability, with higher probabilities resulting in lesser positive DA release for rewards and more
121 pronounced DA decrease for omissions (Fig 2L, Fig S5H). Finally, no effect of direction was observed on
122 DA transients (Fig S5I), and regarding outcome at previous trial, we observed a small effect only for
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123 rewarded trials (Fig S5J). Altogether, these results reveal specific patterns in the modulation of phasic
124 DA peaks or dips across task settings. Notably, DA fluctuations were not consistently associated with the
125  same features across rules. In Cplx, the current and previous outcomes explained most of the DA
126  variations. However, the dependency on directions in the Det and targets in Proba underscores the distinct
127  nature of DA computation in response to each of the three rules. This reinforces the idea of differences in
128  task representation.

129

130 DA signal encodes state-specific RPEs

131  The observed DA fluctuations suggest a link with reward prediction errors (RPEs), which we explored
132 through computational modeling. At each trial, we modeled DA as the sum of obtained reward (0 or 1)
133 and RPE, adjusting RPEs trial-by-trial using the Rescorla-Wagner model (Fig 3A, Fig S6A). From
134  previous behavioral and fiber photometry results, we posited and tested three states or configurations of
135  value representations: a simple model (M1) treating all trials equally, a model based on action (M2) with
136  distinct values for forward and U-turn actions, and a model based on state (M3) with specific values for
137  each target. We then used the mice’s actual choices to compute model-dependent theoretical RPEs
138  (RPEwm) and used these to fit DA variations for each mouse (Fig 3A, Fig S6A). GLM analysis indicated
139 thatfor each rule, only one model significantly explained DA variation, while the others two have no effect.
140  Specifically, only M2 is significant in Det (Fig 3B), only M1 in Cplx (Fig 3C), and only M3 in Proba (Fig
141 3D). To confirm this analysis, we show that in the Det setting only M2 was able to capture the U-
142 turn/Forward effect observed in the fiber photometry data (Fig 3E, Fig S6B), and this across all learning
143  ratestested (a, see Methods). In Cplx, M1 was the only model that correctly captured DA variations based
144  on the previous outcome (Fig 3G, Fig S6C). Finally, in the Proba context, only M3, where mice learned
145  distinct values for each target based on their probabilities, reproduced the data (Fig 3G, Fig S6D). To
146  further validate these results, we performed an extra Proba session, where p100 was changed into
147  another p50. We observed that DA variations were still in line with the previous probability set, and that
148  unexpected omissions at this new p50 target (with V., still ~1) triggered even greater DA dips (Fig 3H).
149  These findings demonstrate that mice not only learned action-value associations through DA-mediated
150 RPE (contingency learning), but also adapted their set of relevant actions by changing their state
151  representation from one rule to the next (representation learning).

152

153 DA dynamics adaptively reflects reward structure to foster strategy adaptation.

154  We next investigated how such evolution in state representation occurred within and across each rule,
155  analyzing DA release at different phases and applying mice choice sequences to our three RL models to
156  compute RPEs. Successive GLMs revealed evolving dominance of specific models across contexts and
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157  sessions (Fig 4A, top). In the Det sessions, DA variations correlated with M2 (Fwd vs Uturn) RPEs
158 towards the end, transitioning to M1 (any trial) dominance throughout the Cplx sessions, and then
159  progressively to M3 (p100 vs p50 vs p25) across the Proba sessions (Fig 4A, top). Changing the learning
160 rate of the RL algorithm affected some statistics, without altering these patterns of evolution (Fig S7A).
161  Changes in the success rates associated with each action paralleled changes in representations (Fig 4A,
162  bottom), especially at transitions from one rule to another, while mice face strong discrepancies between
163 their current internal model of the world and environmental feedbacks, requiring them to update their
164  representation to solve a new rule. This result suggests an adaptation to changes in reward structure.
165  Transitioning to Cplx, the success rates of all possible actions (Fwd vs Uturn, or pA vs pB vs pC) are
166  deprecated (Fig 4A, bottom), and the reward structure does not depend on specific actions but rather on
167 the variability in the successive execution of these actions. The increase in the average success rate is
168  actually achieved by an increase in all option-specific success rates in parallel, making a simple trial-
169  based representation (M1) suitable to behave with this rule. When exposed to the Proba rule, mice again
170  detect a change in the reward structure, with greater differences in success rates between locations (Fig
171  4A, bottom), making a target-based model (M3) very efficient to represent the task, drive choice and
172 improve performance.

173  To validate this interpretation, we returned to behavior to examine whether we could directly correlate
174  concurrent evolution of decision strategy and DA dynamics. Specifically, we estimated ADA, the
175  difference between DA transients associated with some options, e.g. DA(rewlpA) vs DA(rewlpB),
176  reasoning that this ADA might vary with choice and performance — and thus with policy (i.e., the
177  preference for one option among others). In Det, optimizing reward seeking involved reducing U-turns
178  and sequence complexity, with no direct DA-behavior correlation (Fig S7B-D). Upon transitioning to the
179  Cplx rule, mice initially faced a high rate of omissions, across all available action features, due to
180  persistence of repetitive circular choice patterns, resulting in a low success rate (Fig S7E). Over time,
181  they improved their success by increasing both U-turns and sequence complexity, generating more
182  variability (Fig STE). However, the gap in DA signals regarding previous outcome did not evolve across
183  Cplx, nor did it correlate with any decision parameter (Fig 4B), showing persistent differences based on
184  reward history only (Fig S8A-B). Moreover, although locally performing a Uturn led to higher chance of
185  success (Fig S8C), mice did not seem to use that contingency as a heuristic: first, omissions did not
186 locally trigger more Uturns (Fig S8D), and second, mice did not increase success by performing Uturns
187  in chains, but rather by progressively learning to spread them among trials to increase variability (Fig
188  S8E-F). Altogether, the results indicate that the adaptation of decision strategy in the Cplx rule was neither
189  accompanied by concurrent adaptation of the DA signal nor was it a local reaction to omissions that
190 generated negative RPEs. Upon transition to Proba, mice again encountered a high rate of omissions,
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191  but the distribution of those omissions was very different between possible actions, especially regarding
192  targets (Fig 4A, bottom). Across Proba sessions, mice progressively increased success, U-turns, and
193  exploitation of high-probability targets (FigS7F), correlating with emerging DA differences between targets
194  (Fig 4C). These concurrent adaptations, in choice preferences and in DA release, highlight independent
195  evolution of expected values for each rewarded location. This hypothesis was confirmed by correlation
196  analyses, demonstrating that greater divergence in DA responses to p100, p50, and p25 (higher absolute
197  ADA) correlated with greater success rate, U-turns (not shown), and exploitation of high-probability
198 targets, across both individuals and sessions (Fig 4C).

199

200 Discussion

201 By recording NAc DA release in a spatial three-armed bandit task with different rules of reward delivery,
202  we show how DA dynamics reflected Reward Prediction Error (RPE) computations based on different
203  task features. DA release not only conveyed value and RPE upon reward delivery or omission, but also
204  adapted based on task contingencies, thus revealing mice internal model and representation. As the
205  causal relationship between actions and outcomes varied across the different task rules, we hereby
206  demonstrate that mice learned and updated values from actions (contingency learning), and changed
207 their set of relevant states or actions from which to learn about across rules (representation learning).
208  First, our results confirm and extend a consistent pattern observed across the dopamine literature,
209  wherein phasic DA carries information regarding both the obtained value and the RPE upon delivery or
210  omission of an expected reward (6, 15-24). More specifically, DA showed peaks in response to ICSS,
211 regardless of whether the reward was expected or not. It remains unclear whether this response stems
212 from direct stimulation of MFB DA fibers, resulting in DA release in the NAc, or whether it reflects a
213 subjective value mediated by circuits beyond the DA system alone (36, 37). Nevertheless, the amplitude
214  of those peaks was modulated by task contingencies and expectations. We observed positive DA
215  transients of greater amplitude upon unexpected rewards, and negative transients following unexpected
216  omissions, a common observation in similar reward conditioning paradigms, interpreted as positive and
217  negative RPEs (6, 7, 24, 38). Using a task structured around sequential trials and choices enabled online
218  observation of such RPE computations (both positive and negative), a phenomenon yet rarely reported
219 (6, 24, 29, 39, 40), especially in the context of uncued and self-paced goal-directed decisions. These
220 findings highlight the importance of real-time trial-based RPE measurement in detecting longitudinal
221  changes in internal representation.

222 Second, mice demonstrated flexibility by switching representations and selecting relevant features to
223 efficiently associate actions with outcomes and solve various task rules, thereby improving performance.
224 These changes occurred during transitions between rules, when mice faced unexpected decrease in
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225  reward reward rates, suggesting that negative prediction errors and inhibition of downstream circuits by
226 DA dips may facilitate exploration of new action representations. Under the complex rule, despite all
227  models would have yielded similar outcomes due to the nature of the algorithm, mice opted for a specific
228  representation that treat all trials equally, regardless of choice. The latter indicates a value-independent
229  decision strategy, possibly together with a meta-regulation of policy parameters (for example an adaptive
230 temperature B parameter) that promote random exploration (8, 41, 42). Upon transitioning to probabilistic
231  setting, mice required several sessions to adjust their value representation, linking expected values to
232 spatial preferences in a classical value-based decision-making process.

233 Learning rates also influenced DA variations and choice preferences. Although we used a constant rate
234 for simplicity, learning rates might vary across contexts and individuals. Selective attention (7, 43) has
235  been proposed as an adaptive mechanism by which individuals can identify and assign credit to task-
236  relevant features from which to learn about (1, 43) possibly adjusting learning rates independently for
237  each feature to widen the range of decision strategy adaptations. Lastly, while multiple brain areas appear
238  toencode specific environmental features (717-14), the DA signal recorded here appeared to resolve only
239  those features that are important for action-outcome association and used for action selection. As a result,
240 DA dynamics could be leveraged to infer how representations are formed and how mice can flexibly adapt
241  them to solve new rules.
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380 Fig. 1. Mice display distinct reward seeking strategies adapted to each rule. A. From a variety of
381  overlapping features, individuals can learn value and take decisions depending on the rule. B. Mice
382  perform successive binary choices to collect ICSS rewards. Choice could rely on various overlapping sets
383  ofactions. C. Speed profiles and trajectories throughout conditioning. D. Three reward delivery rules were
384  successively proposed: Deterministic (Det) where all trials were rewarded (P=100%), Complexity (Cplx),
385  where trials are rewarded based on sequence variability, and Probabilistic (Proba), with each target
386  associated to a given probability (P=25%, 50%, and 100%). E. Succession of trials and choices generates
387  sequences of outcomes (rewards and omissions), targets (A, B and C) and directions (Forwards and
388  Uturns). Comparison of success rate, sequence complexity and Uturn rate reveals distinct reward seeking
389 strategies across contexts. F. Locally, a mouse on one location (ex: pa) has the choice between the two
390 others (ex: ps vs pc), and therefore performs a gamble computed as ga = P(ps|pa). 3>50% corresponds
391 to clockwise rotation for Det and Cplx, and to preference for highest probability of reward for Proba.
392  Proportion of target visits and choice preference at each gamble show a bias for circular foraging in Det,
393  exploitation in Proba, and randomness in Cplx. Data are shown as individual points, and mean tsem.
394 N=49 mice (23 males and 26 females).
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395 Fig. 2: NAc DA release dynamics reveal expectations built upon rule-specific features. A.
396  Schematic of the experimental design to record DA release during the task with chronic fiber photometry.
397  B. Representative signal from one 5-min session. C. For the same example session, signal is time-locked
398  onlocation entry (t0) and averaged. Rewards induce peaks and omissions induce dips of DA release. D.
399  Density distribution of averaged DA variations for rewards and omissions for the last two sessions of Det,
400  Cplx or Proba, and for random stimulations in the rest cage (performed on last day of Det). E. After
401  conditioning, mice were randomly and unexpectedly stimulated during the task outside of the rewarded
402  zones (off-target), triggering DA peaks of greater amplitude. F. Each trial is defined by predictors (outcome
403  received, previous outcome received, trajectory chosen to reach target, and target chosen) to fit DA
404  amplitude using GLMs. G-H-l. GLM results at the end of Det, Cplx and Proba. Features explaining DA
405  variations vary across contexts. J-K-L. Direct analysis of DA transients locked on those significant
406  features (Uturn vs Fwd in Det ; reward vs omission at previous trial in Cplx ; p25 vs p50 vs p100 in Proba).
407  Data are shown as individual points, and/or mean tsem. n is the number of trials, N the number of mice

408 in each condition.
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409  Fig. 3: DA signal embeds an RPE component, modelled from distinct value representations
410 specific to each rule. A. Mice choice sequences were taken to train Reinforcement Learning (RL)
411  algorithms, testing three possible action representations to update values and compute corresponding
412 RPEs. Model 1 (M1) treats all trials equally with fluctuating { Vany }. M2 updates a set of two distinct values
413 {Vrwd; Vuwm }. A spatial model (M3) computes three independent values for each target { Vpa ; Vs ; Ve
414  }. We then trained another GLM assuming DA = Vootained + RPE, with trial RPEs generated from M1, M2
415 and M3. B-C-D. GLM results in Det, Cplx and Proba. Models reproducing RPEs that explained DA
416  variations vary across contexts. E-F-G. Evolution of expected value and RPE for M1, M2 or M3 in example
417  sessions (left) and on average (right). E. In M2-Det, convergence toward 1 is slower for Uturns, leading
418  to higher RPEuwm and reproducing DA data. F. In M1-Cplx, Vany is always updated and fluctuates around
419  mean success rate. Plotting corresponding RPEs regarding current and previous outcomes mimic DA
420 data. G. In M3-Proba, value of each target converges and then fluctuates around its probability, and
421  corresponding RPEs reproduce DA data. H. At the end of Proba, probability of the p100 location was
422  changed to 50%. Omissions at target p100=>50 triggered deeper DA dips, while GLM shows DA still
423  varies with the old probability set. Data are shown as individual points, and/or mean sem. n is the number
424 of trials, N the number of mice in each condition.
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425  Fig. 4: DA reflects switches in task representations, fostering strategy adaptation to improve
426  performance. A. Top: The approach of RL modelling and GLM fitting DA data with computed RPEs used
427 in Fig 3 was extended at different phases across each rule. To mimic mice learning, we took the final
428  values of models at phase n to feed the initial values of models at phase n+1. Plots show evolution of
429  RPEw (black), RPEm2 (brown) and RPEws (purple) weights over time. Bottom: Parallel general or action-
430 related success rates. Rule transitions represent high degrees of discrepancy. B. ADA is computed for
431  each session of each mouse as the relative difference A = (prev_omi—prev_rew) / prev_rew, for both
432  rewards and omissions, showing significant effect of previous outcome for all phases in Cplx, but with
433  neither ADA adaptation across sessions, nor correlation with any decision parameter across sessions and
434  individuals. C. Same as B, but computing ADA as difference between high and low probability targets in
435  Proba. ADA adapts throughout the Proba sessions, with strong correlations with decision parameters.
436  (Data are shown as individual points, and/or mean + sem. In B, C linear regressions, each data point is
437  one animal at one phase. In A, due to multiple corrections (x10) generating dilutions in p-values, # symbol
438 has been added to highlight p<0.12 after correction. N is always the number of mice in each context.


https://doi.org/10.1101/2024.07.28.605479
http://creativecommons.org/licenses/by-nc-nd/4.0/

A OW N =

bioRxiv preprint doi: https://doi.org/10.1101/2024.07.28.605479; this version posted July 29, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

Supplementary Materials


https://doi.org/10.1101/2024.07.28.605479
http://creativecommons.org/licenses/by-nc-nd/4.0/

O 00 3O\ Wn

10

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

bioRxiv preprint doi: https://doi.org/10.1101/2024.07.28.605479; this version posted July 29, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

made available under aCC-BY-NC-ND 4.0 International license.

Materials and Methods

Animals: Experiments were performed on adult C57BI/6R] wild-type mice (Janvier Labs, France). Both
male and female mice, weighing 20-30 g and 8 weeks old at the time of surgery, were used for behavioral
experiments. Only male mice were used in the GRABpa fiber photometry cohorts. For cre-dependent
GCaMP experiments, DATiCre male mice were used. All mice were kept in an animal facility where
temperature (20 + 2°C) and humidity were automatically monitored and a circadian 12/12h light—dark
cycle was maintained. All experiments were performed in accordance with the recommendations for
animal experiments issued by the European Commission directives 219/1990, 220/1990, and 2010/63,
and approved by Sorbonne University and ESPCI.

AAV production: AAVs for GRABuun (pXR1-AAV-hSyn-GRAB-DA4.4) were produced as previously
described (1) (using the cotransfection method from plasmids generously provided by Dr. Yulong Lee (2,
J) and purified by iodixanol gradient ultracentrifugation(4)). AAV vector stocks were tittered by quantitative
PCR (gPCR) (5) using SYBR Green (Thermo Fischer Scientific). AAV vectors for GCaMP6f (AAV1-EF1a-
DIO-GCaMP6f-P2A-nIs-dTomato) and GCaMP7c (pGP-AAV1-syn-FLEX-jGCaMP7c variant 1513-
WPRE) were directly ordered from Addgene.

Intracranial self-stimulation (ICSS) electrode implantation: Male and female WT mice were
anaesthetized with a gas mixture of oxygen (1 L/min) and 1-3% of isoflurane (Piramal Healthcare, UK)
and then placed into a stereotaxic frame (Kopf Instruments, CA, USA). After the administration of a local
anesthetic (Lurocain, 0.1 mL at 0.67 mg/kg), a median incision revealed the skull, which was drilled at the
level of the median forebrain bundle (MFB). For ICSS, a bipolar stimulating electrode (PlasticOne 2
channels, stainless steel, 10 mm) was then implanted unilaterally (left or right, randomized) in the brain
using the following stereotaxic coordinates (from bregma according to Paxinos atlas): AP -1.4 mm, ML
+1.2 mm, DV -4.8 mm from the brain). Dental cement (SuperBond, Sun Medical) was used to fix the
implant to the skull. An analgesic solution of buprenorphine at 0.015 mg/L (0.1 mL/10 g) was delivered
prior to awakening from the surgery and, if necessary, the following recovering days. After stitching, mice
were placed back in their home-cage and had a minimum of 5 days to recover from surgery. The efficacy
of electrical stimulation was verified through the rate of conditioning during the deterministic setting (see
Intracranial Self Stimulation (ICSS) bandit task). Out of the 54 mice implanted (27 for each sex), 49 were
included in the results (23 males and 26 females).
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Virus injections and fiber photometry recordings: 3 cohorts of WT male mice (total of 24) were
anaesthetized (Oxygen 1 L/min, Isoflurane 1-3%) and implanted with an ICSS electrode as described
above. They were then injected unilaterally (randomized left/right side and ipsi/contralateral side regarding
the ICSS electrode) in the NAc lateral shell (1 L, coordinates from bregma: AP +1.45mm; ML £1.55mm;
DV -4.05mm from the skull) with an adeno-associated virus (2, 3) to express GRABpa2m. An optical fiber
(200 um core, NA = 0.39, Thor Labs) coupled to a metallic ferule (1.25 mm) was implanted 100 um above
the injection site in target region and cemented to the skull with blackened cement. 5 DATiCre male mice
followed the same procedures for GCaMP experiments in the VTA (1 pL, coordinates from bregma: AP -
3.10mm; ML £0.50mm; DV -4.20mm from the brain), 3 of them with GCaMP7c and 2 with GCaMPG6f.
Viral expression typically took 10-15 days to achieve a satisfying signal and lasted for up to 3 months.
However, some mice exhibited a shorter duration of expression and were therefore excluded for the
analysis of later sessions. Although the mice performed the task on a daily basis, fluorescent recordings
were made only every 2 or 3 days to prevent sensor bleaching. Low power (100-200 mA) LEDs (465 nm
and 405 nm, Doric Lenses) coupled to a patch cord (500 uym core, NA = 0.5, Prizmatix) were used for
optical stimulation of the sensors in lock-in mode (572.205 Hz for the 465 nm LED, 208.616 Hz for the
405 nm LED) and collection of 520 nm fluorescence. 405 nm was used as the isobestic wavelength. The
optical stimulation patch cord was plugged onto the ferrule during all experimental sessions, even those
without recordings, to habituate animals and control for latent experimental effects. After the daily session,
a short recording of the autofluorescence signal F(auto), coming from the patchcord only, was
performed with same LED intensities, no animal plugged and room in the dark. Raw 520 nm fluorescence
was demodulated by the software (Doric Lenses) to extract 465 nm and 405 nm signals. The 405 nm
signal was visually checked to account for instability artefacts coming from head movements or patch
cord unplugging during the session, and if needed correct the associated 465 nm signal accordingly,
otherwise it was not used for signal treatment. 465 nm signal F; follows several treatment steps according
to this formula:

dF;, F;,—F(auto) — Fi(fit)
Fy - Fy(fit)

First Fiis subtracted with the constant value of autofluorescence F(auto) measured with patch cord only,

improving drastically the signal-to-noise ratio. Then, largest transients induced by ICSS were excluded to
perform a smoothing on the subsequent truncated signal. We then computed a mono-exponential fit
F;(fit) on this smoothed signal, which was also subtracted to F; at each time point i to account for

exponential decay. The result is then divided by the same F,-( f it) at each time point i to normalize the

signal around 1, and subtracted by the constant 1 to normalize to 0 and obtain positive or negative
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70  transients as dFi/Fo over an entire session (5 or 10min). In order to aggregate signals coming from different
71  sessions for each mouse, and then pool mice for the analysis, we also applied a z-scoring on dFi/Fo over
72 each entire session.
73
74 Intracranial self-stimulation (ICSS) bandit taskThe ICSS bandit task (6-9), took place in a circular
75  open-field with a diameter of 68 cm. Three explicit square-shaped marks (2 x 2 cm) were taped in the
76  open field, forming an equilateral triangle (side = 35 cm). Entry in the circular zones (diameter = 6 cm)
77  around each mark was associated with the delivery of a rewarding ICSS stimulation. A LabVIEW (National
78  Instruments) application precisely tracked and recorded the animal’s position with a camera (20 frames/s).
79 When a mouse was detected in one of the circular rewarding zones, a TTL signal was sent to the electrical
80  stimulator, which generated a 200 ms train of 5 ms biphasic square waves pulsed at 100 Hz (20 pulses
81  per train). Two consecutive rewards could not be delivered on the same target, which motivated mice to
82  alternate between targets and therefore generate sequences of binary choices. ICSS intensity was
83  adjusted, within a range of 15-200 YA, during early conditioning sessions, so that mice would achieve
84  between 50 and 120 visits per session (5 min duration) for two successive sessions. ICSS intensity was
85  thenkept constant for all the experiments, even when reward delivery rules changed. Mice with insufficient
86  scores were excluded. Different reward delivery rules were used, and all animals went through all three
87  protocols successively. The first is a deterministic (Det) setting, with 10 to 15 daily sessions of 5 min. All
88  zones were associated with an ICSS delivery (P = 100%). The second, described previously in (6), is a
89  complex (Cplx) setting where a grammatical complexity algorithm (70) analyses online the choice
90  sequence that the mouse is producing, calculates the complexity of two potential sequences of length 10
91 (9 past targets + next target among the 2 available) and gives a reward only if the complexity of the
92  sequence increases. Repeating patterns of low complexity will therefore lead to series of omissions, while
93  increasing variability will increase success rate. Mice did daily sessions during 15-20 days. The third
94  setting is probabilistic (Proba): each target is associated with a probability to obtain an ICSS stimulation
95  among three (P = 25%, P = 50%, P = 100%), as described previously (7-9). The probabilities at each
96 location were pseudo-randomly assigned per mouse, and 15-20 sessions were performed. 2 cohorts of
97  both male and female mice followed deterministic, complexity and probability settings successively, with
98  no fluorescent sensor expression. Three cohorts of male mice expressing GRABpa and implanted with an
99  optical fiber implantation followed different settings: i) the first cohort performed only Det and Cplx, and
100  recordings started only at the end of Det, ii) the second and third cohorts performed Det, Cplx and Proba,
101  with recordings starting at the beginning of Det, and performed also some control experiments (especially,
102 unexpected rest cage and off-target ICSS). Consequently, there is variation in animal numbers among
103 conditions in the figures. Finally, one cohort of DATiCre male mice was tested in Det and Cplx only.
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104

105  Behavioral measures: For all those groups, the following measures were analyzed with custom codes
106 in Python (using mostly Numpy and Pandas libraries, on PyCharm CE) and compared throughout the
107  different rules: i) number of visits, i) success rate, iii) time-to-goal, iv) choice repartition (proportion of
108 visits at each location), v) percentage of U-turn (target n = target n+2) and vi) sequence complexity
109  (applying the same complexity algorithm calculation but offline and for all choices during a session).
110  Furthermore, the ICSS bandit task can be seen as a Markovian decision process: every transition can be
111  considered as a binary choice between two options, since a zone cannot be reinforced twice in a row.
112 The sequence of choices per session results from the succession of three specific binary choices, or
113 gambles. For deterministic and complexity, Gc = P(A|C) would be the total number of visits in target A
114  divided by the total number of visits in targets A and B, when the animal is in target C. Similarly, G, =
115  P(BJA) and G: = P(C|B). A gamble above 50% indicates that the animal has a preference for moving
116  clockwise (or below 50% for moving counter-clockwise). In probabilistic, direction of conditional
117  probabilities does not follow spatial repartition of locations, but rather preference for the high value option:
118  Gs=100% vs 50%, G = 50% vs 25% and Gs = 100% vs 25%. Applying this principle at each choice,
119  those 3 gambles can be aggregated into single values to give circularity index (going in circle, no matter
120  clockwise or counter-clockwise), exploitation index (always preferring the highest value option) or
121  repetition index (always making the same choice at given gamble, no matter the direction or exploitation).
122

123 Fiber photometry analysis: All treatments and analyses were performed in Python using custom codes
124 (mostly Numpy and Pandas libraries). After cleaning and processing each session signal to obtain dF/F
125  values and z-scored dF/F values, events of interest were extracted to align the signal in [-3s:3s] time
126  window in dataframes, 1, being the exact time of location entry (triggering reward delivery or omission),
127 with 1kHz sampling. Session-wise averages of given conditions for each mouse were then extracted, and
128  averaged again over multiple mice for statistical analyses. In some conditions, especially when events of
129 interest were rare (some scenarios of rewards or omissions chains in complexity, or some scenarios of
130  locations transition in probabilistic), two or more sessions from one animal were pooled as if they were
131  one (for instance, the last two sessions in a given context) to have enough trials for each animal in this
132 condition. For the same reason, the third cohort of GRABpa mice followed 10 min long sessions (instead
133 of 5 min) in Cplx and Proba settings, with no particular effect on the overall quality of the signal, nor the
134 duration of GRABpa expression (up to 3 months). For GRABpa, rewards-elicited positive transients
135  typically peaked around 250 ms after location entry (duration of ICSS being 200 ms) and decayed during
136 abitless than 1s: we therefore extracted maximum and mean of the signal in a 1 s window post location
137  entry. Omissions-elicited negative transients were longer, reaching their minimum around 800 ms after
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138  location entry and taking roughly 700-800 ms to go back to baseline: we therefore extracted minimum and
139  mean of the signal in 1.5 s window post location entry. For GCaMP, kinetics depended on the sensor
140  used: peaks reached maximum value around 250-300 ms post location entry for GCaMP6f and 350-400
141  ms for GCaMP7c, while dips reached minimum value around the same time (900-1050 ms post location
142 entry) for both sensors. However, return to baseline after reward-induced peaks was much shorter for
143  GCaMP6f (500-600 ms post location entry) than for GCaMP7c (2-3 s). For some correlation analyses
144 (using SciKit Learn Python library), especially the ones regarding z-scored peaks or dips amplitude
145  regarding outcome chain history, all trials of all mice were pooled together in a given condition.

146

147  Generalised Linear Model (GLM) approach: GLM was performed in Python using custom codes
148  (StatsModels or SciKit Learn library). To disentangle multiple factors that could explain DA signal, due to
149  high degree of behavioral and task-related variables correlated to each other from one trial to the next,
150  we designed a generalized linear model where a variable Y is explained by a linear combination of
151  multiples variables X;, each of them weighted by a parameter w,, plus a residual (or intercept) wy,

152 Y= w,+ wl.X1+ w2.X2+...

153 The model aims at fitting variations of Y’ by determining the weights w, and their significance. Dependent
154  variable Y was post location entry 1s average for reward-induced peaks or 1.5s average for omission-
155  induced dips. Multiple X; variables have been used, namely: i) reward or omission at previous and current
156  location, ii) Forward or U-turn at previous trial, iii) current target visited (spatially A, B or C, or in Proba
157  pw, P= OF Ps), and iv) time since last stimulation (in Restcage stimulation condition). A single GLM was
158  applied for each mouse in a given condition, then w, parameters resulting from all those GLMs were
159  averaged among mice, and the average was statistically compared to 0. Significance, either with positive
160  or negative weight, indicates that this variable explains part of DA variations.

161

162  Reinforcement Learning (RL) models: We used Reinforcement Learning (RL) to compute Reward
163 Prediction Errors (RPEs) from actual mice choice sequences and see how they match DA data. Before
164  each trial, the agent contains a set of expected values for each possible action. As one of these actions
165 s selected, it leads to either a reward (Vobtaines = 1) or an omission (Vootaineds = 0), then RPE is calculated
166 as Vobtained - Vexpected, and a new expected value of this action is fed back into the agent’s set for next trials.
167  From both behavioural and photometry results, we hypothesised and tested three possible value
168  representations in the bandit task. First, we proposed a simple, one-order representation “going to any
169  target” or “performing any trial” to get a reward. In this case, all trials are similar, regardless of target or
170  trajectory choices, and we simply compute and update Vexpected = { Vany } at each trial. Second, a
171  representation of internal directionality with a set of two actions and Vexpected = { VFwd ; Vutum }. In this case,
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172 RPEs are specific and computed separately for each of the two actions. Third, a spatial representation
173 “going to target X" with a set of three actions and Vexpected = { Vpa ; Vs ; Vipc }. Again, RPEs are computed
174  for each target independently. Modelling the RPE values resulting from each of those three
175  representations allowed us to compare them and determine which simulation better replicates DA data in
176  each context. Initial Vexpected Were set consistently with behavior in the task. For Det End, they were all set
177 10 0.99. For both Cplx End and Proba End, they were set as mean success rate computed from the two
178  previous sessions. For example, for a given mouse, initial Vuwm to initiate the RL model with choice
179  sequence from sessions 9-10 is the proportion of rewarded Uturn trials from sessions 7-8. Exception is
180  for Vp100 in Proba End where it was also set to 0.99. We arbitrarily tested several learning rates a = {0.001;
181  0.01;0.05; 0.2; 0.4}. Results were consistent with experimental data for a = {0.01; 0.05; 0.2; 0.4}. Smaller
182  a(0.001) led to convergence that was too slow considering mice number of trials provided to models,
183  while larger a made convergence in Det too quick. In Fig 3 and Fig S6, a is set to 0.05. We next assumed
184  thatin our recordings, DA = Vontained + RPE, and tested which representation accounted most in the error
185  component using GLMs on top of our RL-computed RPEs (taking as input variables Vobtained = {1; 0} for
186  rewards or omissions, and theoretical RPEs computed from Model 1, 2 and 3). Similarly, models were
187  applied for each mouse in a given context, then w; parameters were averaged among mice for each
188  context, and the average was statistically compared to 0. Significant weight indicates that this variable
189  explains part of DA variations. Finally, we extended this compilation of RL-computed RPE values and
190  GLM to fit RPE weights to DA data across sessions and contexts (Fig 4 and Fig S7). In this case, we
191  started RL models with mice choice sequences in Det Start with all Vexpected €qual to zero (naive agents),
192  computed corresponding RPEs and updated corresponding Vexpected. Consistent with mice progressively
193 learning and updating values across sessions and contexts, the final Vexpected Of @ given time-point became
194 the initial Vexpected Of the next time point. For instance, from Det Start to Det Mid (all Vexpectes becoming
195  closerto 1, but not at the same speed). Or from Cplx End to Proba Start (Vexpected Of €ach target therefore
196  starting to diverge). To allow for longitudinal comparisons, we next scaled (z-score) our data (both
197  experimental DA and RL models-computed RPEs) on each time point, applied GLMs on each time point,
198  and then compared the weights i) across sessions in a given context and at each transition between
199  contexts, and i) each of them regarding its difference with 0.

200

201  Figures and Statistics: Raw figures were plotted using Python custom codes (mostly MatPlotLib library).
202  Graphics, typography and layout were formatted with Adobe lllustrator. All statistical analyses were
203  computed using Python with Scipy library and custom programs. Results were most frequently plotted as
204  individual data points and mean + sem. The total number of observations in each group and the statistics
205  used are indicated in figure legends and detailed statistics tables: unless specified, data points indicate
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206  the number of mice (N) on which the statistics were performed, and in some cases, they represent number
207  of trials (n) either for one example session from one animal, or from all sessions of all animals in a given
208  condition. Classical comparisons between means were performed using parametric tests (Student’s t-
209  test, or ANOVA for comparing more than two groups, when parameters followed a normal distribution
210  (Shapiro test P > 0.05)), and non-parametric tests when the distribution was skewed (here, Wilcoxon or
211 Mann-Whitney U for one/two samples and whether comparison is paired or not, or Kruskall-Wallis for
212 more than two groups). More complex comparisons with several factors were performed using two-way
213 or mixed ANOVA regardless of normal distribution for simplicity, with no major impact on results
214 interpretation (see Fig S1, sex X session effects). Multiple comparisons were corrected using a
215  sequentially rejective multiple test procedure (Holm). Linear regressions were assessed either with
216  Pearson (parametric) or Spearman (non-parametric) tests. Probability distributions were compared using
217  the Kolmogorov—Smirnov (KS) test. All statistical tests were two-sided. p > 0.05 was considered not to be
218  statistically significant. In some cases, p > but close to 0.05 were indicated in the figure (see Tables of
219  detailed statistics for more information).

220

221  Fluorescence immunohistochemistry: After completing the successive rules of the task, mice from the
222 GRABpa cohorts were euthanatized by IP injection of euthasol (0.1mL per 30g at 150mg/kg), immediately
223  followed by paraformaldehyde (PFA) intra-cardiac perfusion, and brains were rapidly removed and post-
224 fixed in 4% PFA for 2 to 4 days. Serial 60um sections were cut with a vibratome (Leica).
225 Immunohistochemistry was performed as follows: free-floating VTA and NAc brain sections were
226  incubated for 1h at 4°C in a blocking solution of phosphate-buffered saline (PBS) containing 3% bovine
227  serum albumin (BSA, Sigma A4503) and 0.2% Triton X-100, and then incubated overnight at 4 °C with i)
228  amouse anti-tyrosine hydroxylase primary antibody (TH, Sigma, T1299) at 1:500 dilution and ii) a chicken
229  anti-eYFP primary antibody (Life technologies Molecular Probes, A- 6455) at 1:1000 dilution, both in PBS
230  containing 1.5% BSA and 0.2% Triton X-100. The following day, sections were rinsed with PBS and then
231  incubated for 3 h at 22-25 °C with i) Cy3-conjugated anti-mouse secondary antibody (Jackson
232 ImmunoResearch, 715-165-150) at 1:500 dilution and ii) a goat anti-chicken AlexaFluor 488 secondary
233 antibody (711-225-152, Jackson ImmunoResearch) at 1:1000 dilution, both in a solution of 1.5% BSA and
234 0.2% Triton X-100in PBS. After three rinses in PBS, slices were wet-mounted using Prolong Gold Antifade
235  Reagent with DAPI (Invitrogen, P36930). Microscopy was carried out with a fluorescent microscope Leica
236  DMR, and images captured in gray level using MetaView software (Universal Imaging Corporation) and
237  colored post-acquisition with ImagedJ. Labeling for YFP in the NAc (along with satisfying signal during the
238  task) allowed to confirm GRABpa expression, and fiber implantation in the NAc lateral shell was also
239  visually checked. Similar procedures were used to check for GCaMP7¢ and GCaMP6f expression in VTA
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DA neurons. For GCaMP7¢ we used the same anti-TH and anti-eYFP antibodies as previously described.
For GCaMPG6f we used a sheep anti-TH primary antibody (AB-1542, Milipore) at 1:500 dilution coupled
with a donkey anti-sheep secondary antibody (713-165-147, Jackson ImmunoResearch) at 1:500 dilution
to highlight DA neurons, and simply used the virus-associated tdTomato to validate expression in the VTA
and optic fiber implantation site. For MFB slices, 100 um sections were performed and slices were directly
visualized with visible light to check for ICSS electrode implantations.

Statistics and Reproducibility: All experiments were replicated with success (several successive

cohorts of mice)..
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Fig. S1: Evolution of decision behaviour across sessions, with no major sex effects.

A. Decision parameters throughout Det sessions for males and females. Comparison of (left) the
number of trials per session, (middle-left) the Uturn rate, (middle-right) the sequence complexity, and
(right) the circularity index between sessions 182, sessions 4&5 and the last 2 sessions in male and
female mice. In addition, we also compared the final states (Last2) between males and females. A fully
circular mouse would have 0% Uturn, low seq. cplx and 0.5 circul. idx. B. Same as in A) for Cplx
sessions. A mouse keeping circular strategy would have low success, 0% Uturn, low seq. cplx and 0.5
circul. idx. A random mouse would have 75% success, 50% Uturn, seq cplx = 1 and circul. idx = 0. C.
Same as in A) for Proba sessions. An exploitative mouse would have 75% success, 100% Uturn, low
seq. cplx and 0.5 exploit. idx. A random mouse would have 58.3% success, 50% Uturn, seq cplx = 1 and
exploit. idx = 0. (Data are shown as individual points, and mean +sem. N = 23 male and 26 female mice.)
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260  Fig. S2: Additional information on the Cplx rule and mice sequence patterns.

261  A. Detailed schematic representation of the Cplx rule. The first 9 trials of each session provide
262  deterministic rewards (P=100%) to launch the Cplx algorithm, which then determines at each trial, in a
263  sliding window, which target will lead to a reward by comparing the Lempel-Ziv grammatical complexity
264  of the two potential sequences: 9 past choices + first remaining target VS. 9 past choices + second
265  remaining target. The mouse will be rewarded only if it chooses the target that increases complexity. If
266  both sequences have the same complexity, both targets will be rewarded (see Methods). Taking all
267  possible sequences of size 10 starting from one location, 75% of them are rewarded on the 10t trial.
268  Therefore, a random agent exploring homogeneously this sequences tree will converge to 75% success
269 rate. B. Distribution of mice choice sequences of length 10 at the end of Det and Cplx. Two
270  distribution peaks (paths in the decision tree) appear in Det, corresponding to circling behavior (clockwise
271  and counterclockwise), representing together roughly 25% of all produced sequences (among 512
272 possibilities). In Cplx, these peaks strongly reduce in size, in favor of more distributed visits of all possible
273 sequences. (Insert) Cumulative distribution comparison between Det and Cplx (Last2 sessions for each
274 rule). (In B, n is the total number of sequences of length 10, computed from sessions-wise mice

275  successive choices, from N=49 mice both males and females).
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276  Fig. S3: Motivation throughout the task and decoupling between vigor and choice parameters.

277  A. Evolution of motivation across contexts and sessions. Comparison of number of trials across
278  contexts and sessions (mean of 2 sessions each time). B. Correlation matrices between various vigor
279  and choice parameters across mice in different contexts. Parameters are computed for each mouse
280  as the mean of 2 sessions (either First2 or Last2, for a given context). Each box represents the linear
281  correlation between two parameters (Pearson for parametric, Spearman for non-parametric, each dot
282  Dbeing a mouse). The filling color of each box represents the R value. The frame color of each box
283  represents the p-value (after Bonferroni correction). The warmer the color, the more those two parameters
284  are significantly correlated. (Left) Last2 sessions of Det (11 parameters, x66 Bonferonni correction).
285  (Middle) First2 and Last2 sessions of Cplx (12 parameters, x78 Bonferonni correction). (Right) First2 and
286  Last2 sessions of Proba (13 parameters, x91 Bonferonni correction). (In A, data are shown as individual
287  points, and mean tsem. In B, only R and corrected p-values are shown with color code. Individual data

288  are available upon request. N is always the number of mice.)
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289  Fig. S4: DA fiber photometry signals in various configurations.

290  A.NAc and MFB slices immunohistochemistry. Post-hoc verification of optic fiber implant and Grabpa
291  virus expression in the NAc lateral shell (left), and stimulation electrode implant in the MFB (right). B.
292  Individual mice NAc DA release for rewards and omissions in Cplx. Each line and colour is an
293  individual mouse, averaged for all trials during last Cplx session, in [-3s:3s] time window locked on location
294 entry. Every single mouse included in the results displayed reward-induced peaks and omission-induced
295  dips of DA release significantly different from zero (dashed black lines). C-D. DA cell activity using
296  GCaMP fiber photometry. DATiCre mice were injected with an AAV to express either GCaMPG6f or
297  GCaMP7c in VTA DA neurons, implanted with an optic fiber in the VTA, and stimulation electrode in the
298  MFB, to assess DA neuron activity in the task. C. GCaMP6f. Using similar experimental procedures and
299  signal analyses in the Cplx context, calcium dynamics of VTA DA neurons show similar reward-induced
300 peaks and omission-induced dips than NAc lateral shell DA release, in this case with faster kinetics for
301  peaks, and smaller signal amplitudes (worse signal-to-noise ratio) for both peaks and dips. D. GCaMP7c.
302  Same as B for GCaMP7c, with slower kinetics for peaks, and greater signal amplitudes (better signal-to-
303  noise ratio) for both peaks and dips. E. DA response to expected (Task) vs unexpected (Restcage)
304 rewards in Det Last session. Comparison between Task and Restcage ICSS (same session, same
305  currentintensity). F. DA response to expected (On-target) vs unexpected (Off-target) rewards in Det
306  Last session. Individual data corresponding to Fig2.E. Comparison between On-target and Off-target
307 ICSS (same session, same current intensity). G. DA response to Task vs Restcage rewards in Det
308  first (S1) session. Same as D but during first session (S1) of conditioning in Det. H. DA response to
309  On-target vs Off-target rewards in Det second (S2) session. Same as E but during second session
310  (S2) of conditioning in Det. (In B, C, D, curves are shown as mean tsem for a single session, n is the
311 number of reward or omission trials in this session. In E, G, H, curves are shown as mean tsem for
312 session-wise average of several mice, N is the number of mice in each condition. In E, F, G, H, Bar plots
313  are shown as mean +sem, in addition to individual data points.)


https://doi.org/10.1101/2024.07.28.605479
http://creativecommons.org/licenses/by-nc-nd/4.0/

uthor/fupder, who has

bioRxiv preprint doi: https://doi.org/10.1101/2024.07.28.605479; this version posted July 29, 2024. The copyright holder for this preprint
(which was not certified by peer review) is th

), " SR tz%l:luoRxw a “cle@:o display the preprint in perpetuity. It is
@ Restcage N 14 made a e&n al . .0 Internationa Se. @ End (N=19)
§ 3 EUturn
§1-5 End BWFwd
(O]
R ANOVAns Avglts] 5 1 Avg[1s] A Avgl1s]
] . °|ANOVAns o 3 mpA & 3) ANOVA:ns
8 . T< 33 E c_>u ns 8 . pc 8 R
({) 8 1 = 0 ok g 8 1
N P < Q|| N P
N 7777777777777777777 7777777777 o 0 éo°§§® NN - N 0
-4 Time(s) 3 NV -1 Time(s) 3
[ prev = rew. @ =17 @ =17
[ prev = omi. Avg[1s]
Avg[1s] 31 ANOVA:ns
3 P S e
w 52 5
52 B B
3 o1 S
— [&] (&)
31 ‘If‘ :L)
@D 0 T T )
N -1 Time (s) 3
0 X
L EHpB w B Uturn
505 @ BErCc 5 @ BFwd
3 3 ‘-@- ' ”””” = 3 ‘ mv,f
S 2 N 8 P
@ N D N
N — N —
4 Time(s) 3 A Time(s) 3 M
25 J
Prova B LN @D End(N=10) End (N=10)
End M p100 R  Avglts] ? Avg[1s1
ns
AN@\//%\[-!&S] BEUturn = [ prev = rew. &
. L
= M Fwd gz B = I prev = omi. %2 %
L O D o o)
o P a1 P 51
5 N 3 NN S
g N T T T 1 I{l 0 N T T 1 '{‘ 0
8 4 Time(s) 3 4 Time(s) 3
N
Avg[1.55] X Avg[1.55] X Avg[1.5s]
0 Hutun 0 Clprev=rew. 0
= BFfwd T [ prev=omi. T+
505 o 505 o S.05
Q L] o Rl
s 3 o 3 O
st 4 o
g - N § -1 g -1
l{l ~ T T T 1 N T T 1 N
15 -1 Time(s) 3 -15 -4 Time(s) 3 15

Supplementary figure 5


https://doi.org/10.1101/2024.07.28.605479
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.07.28.605479; this version posted July 29, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

314  Fig. S5: Additional analyses of NAc DA release regarding task behavioural features.

315 A. GLM in Restcage the same day as Last Det. Weight value of each variable compared to zero. B.
316 Inter-stimulation interval effect on DA transients in Restcage the same day as Last Det. Comparison
317  between short (<3s), mid ([3s:5s]) and long (>5s) intervals. C. Trajectory effect on DA transients in Det
318  End. Individual data corresponding to Fig2.J. Comparison between Fwd and Uturn. D. Target effect on
319 DA transients in Det End. Comparison between pA, pB and pC. E. Previous outcome effect on DA
320 transients in Cplx End. Individual data corresponding to Fig2.K. (Top) Reward peak comparison
321  between previous reward and previous omission. (Bottom) Omission dip comparison between previous
322 reward and previous omission. F. Target effect on DA transients in Cplx End. (Top) Reward peak
323 comparison between pA, pB and pC. (Bottom) Omission dip comparison between pA, pB and pC. G.
324  Trajectory effect on DA transients in Cplx End. (Top) Reward peak comparison between Uturn and
325  Fwd. (Bottom) Omission dip comparison between Uturn and Fwd. H. Target effect on DA transients in
326  Proba End. Individual data corresponding to Fig2.L. (Top) Reward peak comparison between p100, p50
327 and p25. (Bottom) Omission dip comparison between p50 and p25. I. Trajectory effect on DA
328 transients in Proba End. (Top) Reward peak comparison between Uturn and Fwd. (Bottom) Omission
329  dip comparison between Uturn and Fwd. I. Previous outcome effect on DA transients in Proba End.
330  (Top) Reward peak comparison between previous reward and previous omission. (Bottom) Omission dip
331  comparison between previous reward and previous omission. (In A, B, C, D, E, F, G, H, |, J Bar plots are
332 shown as mean xsem, in addition to individual data points. In A, D, F, G, |, J, signal curves are shown as

333 mean xsem. N is always the number of mice in each context.)
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334  Fig. S6: Additional information on the three RL models, comparison of computed RPEs in various
335  behavioural scenarios, and results in Proba Change context.

336  A. Detailed schematic of RL modelling for each of the three models. From actual mice choice
337  sequences we applied RL models and computed corresponding RPEs. The first model consists in single
338  value representation “going to any target” or “performing any trial” to get a reward, where we simply
339  compute Vexpected = { Vany } and RPEany at each trial. The second model consists in two value
340  representations depending on chosen trajectory Vexpected = { VFwd ; Vuwm }. In this case, RPEywm and
341  RPErwq are specific and computed separately for each of those two actions. The third model consists in
342 three value representations depending on chosen target Vexpected = { Vpa ; Vo ; Ve }. Again, RPEpa, RPEys
343  and RPEc are computed for each target independently. B-C-D. For each model, computed RPEs were
344  averaged over mice sessions in the same scenarios used to characterise DA responses (regarding
345  target, trajectory, and previous outcome). The model that qualitatively reproduces best DA responses
346  in all scenarios in given context is supposed to be the best value representation that mice are using in
347  this context. B. End Det context. Top: Average M1-computed RPE comparison between targets, and
348 trajectories. Center: Same for M2 (same as Fig3.E). Bottom: Same for M3. C. End Cplx context. Top:
349  Average M1-computed RPE comparison between targets, trajectories and previous outcome (same as
350  Fig3.F). Center: Same for M2. Bottom: Same for M3. D. End Proba context. Top: Average M1-
351  computed RPE comparison between targets, trajectories and previous outcome. Center: Same for M2.
352  Bottom: Same for M3 (same as Fig3.G). (In B, C, D Bar plots are shown as mean +sem, in addition to
353 individual data points. In G, signal curves are shown as mean £sem. N is always the number of mice in

354  each context.)
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355  Fig. S7: Evolution of Model weights, DA transients and strategy parameters across rules and
356  sessions.

357  A. RL modelling and GLM fitting DA data with computed RPEs across sessions and contexts.
358  Same as FigdA with varying learning rates. Top: For learning rate a=0.4, evolution of RPEw1 (black),
359  RPEwm2 (brown) and RPEws (purple) weights over time and multiple comparisons of each time point with
360  zero. Middle: Same for learning rate a=0.2. Bottom: Same for learning rate a=0.01. B. Evolution of
361 choice parameters across Det sessions. Comparison of (left) Uturn rate and (right) sequence
362  complexity between sessions 1&2, sessions 4&5 and last 2 sessions in Grab-DA mice. C. Comparison
363  of ADA(directions) across Det sessions. Top: ADA is computed for each mouse as the relative
364  difference A = (Uturn—Fwd) / Fwd. Bottom: Comparison of ADA between Start, Mid, Late and Last
365  sessions, and multiple comparisons of each time-point with zero. D. Linear regressions between
366  ADA(directions) and Uturn in Det. Top: Reward ADA regarding Uturn rate of each mouse at each time
367  point (light grey Start => dark grey Last). E. Evolution of choice parameters across Cplx sessions.
368  Left: Example trajectories of first (cyan) and last (blue) Cplx sessions. Comparison of (middle-left)
369  Success rate, (middle) Uturn rate, (middle-right) sequence complexity and (right) circularity index
370  between sessions 1&2, sessions 4&5 and last 2 sessions in Grab-DA mice. F. Evolution of choice
371  parameters across Proba sessions. Left: Example trajectories of first (light green) and last (dark green)
372 Proba sessions. Comparison of (middle-left) Success rate, (middle) Uturn rate, (middle-right) sequence
373  complexity and (right) exploitation index between sessions 1&2, sessions 4&5 and last 2 sessions in
374  Grab-DA mice. (In B, C, E, F, data are shown as mean +sem, in addition to individual data points. In D,
375  each data point is one animal at one time point. signal curves are shown as mean xsem. In A, data are
376  shown as mean +sem for clarity. Individual data points are available upon requests. Due to multiple
377  corrections generating dilutions in p-values, # symbol has been used in the figure to highlight p<0.12 after
378  correction. N is always the number of mice in each context.)
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379  Fig. S8: Additional analyses of DA transients and choice behavior in Cplx.

380  A.Linear regressions of DA transients depending on the number of successive previous rewards
381  or omissions in chains in Cplx Start. Left: Reward-induced DA peak amplitudes regarding length of
382  successive previous rewards chains (green) or omissions chains (red). Right: Same for omission-induced
383 DA dip amplitudes regarding length of successive previous rewards chains (green) or omissions chains
384  (red). B. Same for Cplx End. Left: Reward-induced DA peak amplitudes regarding length of successive
385  previous rewards chains (green) or omissions chains (red). Right: Same for omission-induced DA dips
386  amplitude regarding length of successive previous rewards chains (green) or omissions chains (red). C.
387  Success rate depending on previous Uturn/Fwd choice in Cplx. Left: First 2 sessions. Right: Last 2
388  sessions. D. Uturn rate depending on previous outcome in Cplx. Left: First 2 sessions. Right: Last 2
389  sessions. E. Analysis of chains of successive rewards and omissions in Cplx. Top: In early Cplx,
390  mice tend to keep repeating circular patterns and therefore get long series of omissions. In late Cplx,
391  omissions are regularly distributed, generating smaller chains, as expected from a random agent.
392 Bottom-left: Cumulative distribution of reward and omission chain lengths during first 2 and last 2 Cplx
393  sessions. Bottom-right: Average chain lengths per mouse. E. Same for chains of successive forwards
394  and Uturns. Left: Cumulative distribution of forward and Uturn chains length during first 2 and last 2 Cplx
395  sessions. Right: Average chains length per mouse. For regressions in A, B, each dot is a trial of one
396  mouse. In C, D, E, F, Bar plots are shown as mean +sem, in addition to individual data points. In E, F,
397  cumulative distribution are computed for all trials of all mice together. n is always the number of trials, and

398 N the number of mice, in each context.)
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399  Tables of detailed statistics for figures 1-4 and supp 1-8:
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Figure 1

Panel Comparison Test type p-values Corrections
E (top, right) %Success across tasks, all mice (N=49), Student paired t-test p<10-5
Cplx vs Proba
E (bottom, left) Seq cplx across tasks, all mice (N=49), Det one-way ANOVA p<10-5
vs Cplx vs Proba
Post-hoc, Det vs Cplx Wilcoxon (paired) p<10-5 Holm (x3) : p<10-5
Post-hoc, Cplx vs Proba Wilcoxon (paired) p<10-5 Holm (x3) : p<10-5
Post-hoc, Det vs Proba Wilcoxon (paired) p=0.2121 Holm (x3) : p=0.2121
E (bottom, right) %Uturns across tasks, all mice (N=49), Det one-way ANOVA p<10-5
vs Cplx vs Proba
Post-hoc, Det vs Cplx Wilcoxon (paired) p<10-5 Holm (x3) : p<10-5
Post-hoc, Cplx vs Proba Wilcoxon (paired) p<10-5 Holm (x3) : p<10-5
Post-hoc, Det vs Proba Wilcoxon (paired) p<10-5 Holm (x3) : p<10-5

F (top, left)

F (top, right)

F (middle, left)

F (middle, right)

F (bottom, left)

F (bottom, right)

% Visits in Det, all mice (N=49), pA vs pB
vs pC (N=3)

Gamble %Pref in Det, all mice (N=49), gA
vs gB vs gC (N=3)

% Visits in Cplx, all mice (N=49), pA vs pB
vs pC (N=3)

Gamble %Pref in Cplx, all mice (N=49), gA
vs gB vs gC (N=3)

% Visits in Proba, all mice (N=49), p100 vs
p50 vs p25 (N=3)

Gamble %Pref in Proba, all mice (N=49),
g100 vs g50 vs g25 (N=3)

one-way ANOVA (target effect)

one-way ANOVA (gamble effect)

one-way ANOVA (target effect)

one-way ANOVA (gamble effect)

one-way ANOVA (target effect)

one-way ANOVA (gamble effect)

Target effect: p=0.1796

Gamble effect: p=0.9029

Target effect: p=0.9786

Gamble effect: p=0.9516

Target effect: p<10-5

Gamble effect: p<10-5
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Figure 2

Panel Comparison Test type p-values Corrections
C (bottom, left) Post-reward 1s-avg dF/F (n=47 trials) for one sample Student t-test p<10-5

one single session, vs 0
C (bottom, right) Post-omission 1.5s-avg dF/F (n=32 trials)  one sample Student t-test p<10-5

for one single session, vs 0

D

Post-reward 1s-avg dF/F for all mice End
sessions : Restcage (n=988) vs Det
(n=2288) vs Cplx (n=3150 trials) vs Proba

(n=1704)

Kolmogorov-Smirnov
(distribution)

Restcage vs Det : p<10-5
Restcage vs Cplx : p<10-5
Restcage vs Proba : p<10-5
Det vs Cplx : p<10-5

Det vs Proba : p<10-5

Cplx vs Proba : p<10-5

Holm (x6) : all p<10-5
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End sessions, Cplx (n=1107 trials) vs (distribution)
Proba (n=845)
E (right) Post-ICSS avg per mouse (N=13), Student paired t-test p<10-5
Expected (on-target) vs Unexpected (off-
target)
G Det End GLM : Intercept weight vs 0 one sample Student t-test p<10-5 Holm (x3) : p<10-5
(N=19)
Det End GLM : Uturn weight vs 0 (N=19) one sample Student t-test p=0.0007 Holm (x3) : p=0.0013
Det End GLM : Target weight vs 0 (N=19) one sample Student t-test p=0.1171 Holm (x3) : p=0.1171
H Cplx End GLM : Intercept weight vs 0 one sample Student t-test p=0.0672 Holm (x6) : p=0.2016
(N=17)
Cplx End GLM : Reward weight vs 0 one sample Student t-test p<10-5 Holm (x6) : p<10-5
(N=17)
Cplx End GLM : Omission weight vs 0 one sample Student t-test p<10-5 Holm (x6) : p<10-5
(N=17)
Cplx End GLM : Uturn weight vs 0 (N=17)  one sample Student t-test p=0.3264 Holm (x6) : p=0.3264
Cplx End GLM : Target weight vs 0 (N=17)  one sample Student t-test p=0.0875 Holm (x6) : p=0.2016
Cplx End GLM : Previous omission weight = one sample Wilcoxon p=0.00002 Holm (x6) : p=0.0002
vs 0 (N=17)
| Proba End GLM : Intercept weight vs 0 one sample Student t-test p=0.00001 Holm (x6) : p=0.00005
(N=10)
Proba End GLM : Reward weight vs 0 one sample Wilcoxon p=0.0020 Holm (x6) : p=0.0078
(N=10)
Proba End GLM : Omission weight vs 0 one sample Student t-test p<10-5 Holm (x6) : p<10-5
(N=10)
Proba End GLM : Uturn weight vs 0 (N=10) one sample Student t-test p=0.1615 Holm (x6) : p=0.3229
Proba End GLM : Target_proba weight vs  one sample Student t-test p=0.0090 Holm (x6) : p=0.0269
0 (N=10)
Proba End GLM : Previous omission one sample Student t-test p=0.4280 Holm (x6) : p=0.4280
weight vs 0 (N=10)
J (right) Det End post-reward dF/F avg per mouse | Student paired t-test p=0.0012
(N=19) : Uturn vs Forward
K (left) Cplx End post-reward dF/F avg per mouse @ Student paired t-test p=0.0003
(N=17) : previous=rew vs previous=omi
K (right) Cplx End post-omission dF/F avg per Student paired t-test p=0.0357
mouse (N=17) : previous=rew vs
previous=omi
L (left) Proba End post-reward dF/F avg per one-way ANOVA (target effect) p=0.0364
mouse (N=10) : p100 vs p50 vs p25
Post-hoc, p100 vs p50 Student paired t-test p=0.0171 Holm (x3) : p=0.0282
Post-hoc, p50 vs p25 Student paired t-test p=0.0141 Holm (x3) : p=0.0282
Post-hoc, p100 vs p25 Student paired t-test p=0.0079 Holm (x3) : p=0.0237
L (right) Proba End post-omission dF/F avg per Student paired t-test p=0.0173

mouse (N=10) : p50 vs p25
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Figure 3

Panel

Comparison

Test type

p-values

Corrections

Det End GLM on models RPE avg per
mouse (N=19) : Intercept weight vs 0

Det End GLM on models RPE avg per
mouse (N=19) : RPE(M1) weight vs 0

Det End GLM on models RPE avg per
mouse (N=19) : RPE(M2) weight vs 0

Det End GLM on models RPE avg per
mouse (N=19) : RPE(M3) weight vs 0

one sample Student t-test

one sample Student t-test

one sample Wilcoxon

one sample Wilcoxon

p=0.00002

p=0.9842

p=0.0024

p=0.5153

Holm (x4) : p=0.0002

Holm (x4) : p=1

Holm (x4) : p=0.0072

Holm (x4) : p=1

Eh was not certified by peer review
m3

Cplx End GLM on models RPE avg per
mouse (N=17) : Intercept weight vs 0

Cplx End GLM on models RPE avg per
mouse (N=17) : V(obtained) weight vs 0

Cplx End GLM on models RPE avg per
mouse (N=17) : RPE(M2) weight vs 0

Cplx End GLM on models RPE avg per
mouse (N=17) : RPE(M3) weight vs 0

one sample Student t-test

one sample Student t-test

1 OpixoBnalr G .M samancsledssRFPfosted Joer29, 2020rasaomplgnSiolderibdrittvsgieprint
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one sample Student t-test

one sample Student t-test

p=0.2690

p=0.0053

p=0.0044

p=0.1591

p=0.4564

Holm (x5) : p=0.5380

Holm (x5) : p=0.0221

Holm (x5) : p=0.0221

Holm (x5) : p=0.4773

Holm (x5) : p=0.5380

Proba End GLM on models RPE avg per
mouse (N=10) : Intercept weight vs 0

Proba End GLM on models RPE avg per
mouse (N=10) : V(obtained) weight vs 0

Proba End GLM on models RPE avg per
mouse (N=10) : RPE(M1) weight vs 0

Proba End GLM on models RPE avg per
mouse (N=10) : RPE(M2) weight vs 0

Proba End GLM on models RPE avg per
mouse (N=10) : RPE(M3) weight vs 0

one sample Student t-test

one sample Student t-test

one sample Student t-test

one sample Student t-test

one sample Student t-test

p=0.9262

p=0.0334

p=0.5484

p=0.9562

p=0.0111

Holm (x5) : p=1

Holm (x5) : p=0.1337

Holm (x5) : p=1

Holm (x5) : p=1

Holm (x5) : p=0.0556

Det End RPE(M2) avg per mouse (N=19) :

Uturn vs Forward

Wilcoxon (paired)

p=0.00002

F (right, top)

F (right, bottom)

Cplx End post-reward RPE(M1) avg per
mouse (N=17) : previous=reward vs
omission

Cplx End post-omission RPE(M1) avg per

mouse (N=17) : previous=reward vs
omission

Student paired t-test

Student paired t-test

p<10-5

p<10-5

G (right, top)

G (right, bottom)

Proba End post-reward RPE(M3) avg per
mouse (N=10) : p100 vs p50 vs p25

Proba End post-omission RPE(M3) avg per

mouse (N=10) : p50 vs p25

Kruskall-Wallis

Wilcoxon (paired) t-test

p<10-5

p=0.0019

H (left, bottom)

Proba Change post-omission dF/F avg per

mouse (N=6) : p100=>50 vs p50 vs p25
Post-hoc, p100=>50 vs p50

Post-hoc, p50 vs p25

Post-hoc, p100=>50 vs p25

Kruskall-Wallis

Wilcoxon
Student paired t-test

Wilcoxon

p=0.0013

p=0.0313
p=0.0060
p=0.0313

Holm (x3) : p=0.0625
Holm (x3) : p=0.0181
Holm (x3) : p=0.0625

H (right)

Proba Change GLM : Intercept weight vs 0

(N=6)

Proba Change GLM : Reward weight vs 0

(N=6)

Proba Change GLM : Omission weight vs

0 (N=6)

Proba Change GLM : Uturn weight vs 0
(N=6)

Proba Change GLM : Target_proba_old
weight vs 0 (N=6)

Proba Change GLM : Target_proba_new
weight vs 0 (N=6)

Proba End GLM : Previous omission
weight vs 0 (N=6)

one sample Student t-test

one sample Student t-test

one sample Student t-test

Wilcoxon

one sample Student t-test

one sample Student t-test

one sample Student t-test

p=0.0021

p=0.0008

p=0.0006

p=0.5625

p=0.0011

p=0.1334

p=0.0589

p=0.0082

p=0.0048

p=0.0043

p=0.5625

p=0.0056

p=0.2668

p=0.1768
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Figure 4

Panel Comparison Test type p-values Corrections
A (top) GLM RPE(M1) weight across Det one-way ANOVA p=0.7950
GLM RPE(M1) weight : End Det vs Start Student unpaired t-test p=0.00006
Cplx
GLM RPE(M1) weight across Cplx one-way ANOVA p=0.2407
GLM RPE(M1) weight : End Cplx vs Start | Student unpaired t-test p=0.5875
Proba
GLM RPE(M1) weight across Proba Kruskall-Wallis p=0.8552
GLM RPE(M1) weight vs 0 : Det Mid one sample Student t-test p=0.6810 Holm (x10) : p=1
GLM RPE(M1) weight vs 0 : Det Late one sample Student t-test p=0.8201 Holm (x10) : p=1
GLM RPE(M1) weight vs 0 : Det Last one sample Student t-test p=0.4648 Holm (x10) : p=1
GLM RPE(M1) weight vs 0 : Cplx Start one sample Student t-test p=0.00002 Holm (x10) : p=0.0002
GLM RPE(M1) weight vs 0 : Cplx Mid one sample Student t-test p=0.00006 Holm (x10) : p=0.0006
GLM RPE(M1) weight vs 0 : Cplx Last one sample Student t-test p=0.0094 Holm (x10) : p=0.0754
GLM RPE(M1) weight vs 0 : Proba Start one sample Student t-test p=0.0325 Holm (x10) : p=0.2275
GLM RPE(M1) weight vs 0 : Proba Mid one sample Wilcoxon p=0.1010 Holm (x10) : p=0.6592
GLM RPE(M1) weight vs 0 : Proba Late one sample Student t-test p=0.3017 Holm (x10) : p=1
GLM RPE(M1) weight vs O : Proba Last one sample Student t-test p=0.5886 Holm (x10) : p=1
GLM RPE(M2) weight across Det one-way ANOVA p=0.5767
GLM RPE(M2) weight : End Det vs Start Mann-Whitney U test (unpaired) p=0.00001
Cplx
GLM RPE(M2) weight across Cplx Kruskall-Wallis p=0.3804
GLM RPE(M2) weight : End Cplx vs Start = Student unpaired t-test p=0.3013
Proba
GLM RPE(M2) weight across Proba one-way ANOVA p=0.9336
GLM RPE(M2) weight vs 0 : Det Mid one sample Student t-test p=0.1612 Holm (x10) : p=1
GLM RPE(M2) weight vs 0 : Det Late one sample Student t-test p=0.2922 Holm (x10) : p=1
GLM RPE(M2) weight vs O : Det Last one sample Student t-test p=0.0130 Holm (x10) : p=0.1168
GLM RPE(M2) weight vs 0 : Cplx Start one sample Wilcoxon p=0.0002 Holm (x10) : p=0.0021
GLM RPE(M2) weight vs 0 : Cplx Mid one sample Student t-test p=0.0398 Holm (x10) : p=0.3187
GLM RPE(M2) weight vs 0 : Cplx Last one sample Student t-test p=0.2023 Holm (x10) : p=1
GLM RPE(M2) weight vs 0 : Proba Start one sample Student t-test p=0.9793 Holm (x10) : p=1
GLM RPE(M2) weight vs 0 : Proba Mid one sample Student t-test p=0.8436 Holm (x10) : p=1
GLM RPE(M2) weight vs 0 : Proba Late one sample Student t-test p=0.3895 Holm (x10) : p=1
GLM RPE(M2) weight vs 0 : Proba Last one sample Student t-test p=0.8098 Holm (x10) : p=1
GLM RPE(M3) weight across Det one-way ANOVA p=0.4364
GLM RPE(M3) weight : End Det vs Start Student unpaired t-test p=0.0695
Cplx
GLM RPE(MB3) weight across Cplx Kruskall-Wallis p=0.1509
GLM RPE(M3) weight : End Cplx vs Start Mann-Whitney U test (unpaired) p=0.2406
Proba
GLM RPE(MB3) weight across Proba Kruskall-Wallis p=0.1157
GLM RPE(M3) weight vs 0 : Det Mid one sample Student t-test p=0.3224 Holm (x10) : p=1
GLM RPE(M3) weight vs 0 : Det Late one sample Student t-test p=0.6185 Holm (x10) : p=1
GLM RPE(MB3) weight vs 0 : Det Last one sample Student t-test p=0.6133 Holm (x10) : p=1
GLM RPE(M3) weight vs 0 : Cplx Start one sample Student t-test p=0.0068 Holm (x10) : p=0.0541
GLM RPE(M3) weight vs 0 : Cplx Mid one sample Wilcoxon p=0.0202 Holm (x10) : p=0.1210
GLM RPE(MB3) weight vs 0 : Cplx Last one sample Wilcoxon p=0.2247 Holm (x10) : p=1
GLM RPE(M3) weight vs 0 : Proba Start one sample Wilcoxon p=0.2334 Holm (x10) : p=1
GLM RPE(M3) weight vs 0 : Proba Mid one sample Wilcoxon p=0.0049 Holm (x10) : p=0.0472
GLM RPE(M3) weight vs 0 : Proba Late one sample Student t-test p=0.0047 Holm (x10) : p=0.0472
GLM RPE(MS3) weight vs 0 : Proba Last one sample Student t-test p=0.0140 Holm (x10) : p=0.0979
A (bottom) Success rate Trial Det_End vs Cplx_Start = Student unpaired t-test p<10-5
Success rate Trial Cplx Start vs Mid vs one way ANOVA p=0.0019
End
Success rate Trial Cplx_End vs Student unpaired t-test p<10-5
Proba_Start
Success rate Trial Proba Start vs Mid vs one way ANOVA p=0.0104
Late vs Last
Success rate Uturn Det_End vs Cplx_Start Mann-Whitney U test (unpaired) p<10-5
Success rate Uturn Cplx Start vs Mid vs Kruskall-Wallis p=0.6140
End
Success rate Uturn Cplx_End vs Student unpaired t-test p=0.00003
Proba_Start
Success rate Uturn Proba Start vs Mid vs  Kruskall-Wallis p=0.1553
Late vs Last
Success rate Fwd Det_End vs Cplx_Start | Student unpaired t-test p<10-5
Success rate Fwd Cplx Start vs Mid vs Kruskall-Wallis p=0.0027
End
Success rate Fwd Cplx_End vs Mann-Whitney U test (unpaired) p=0.0004
Proba_Start
Success rate Fwd Proba Start vs Mid vs Kruskall-Wallis p=0.1553
Late vs Last
Success rate pC Det_End vs Cplx_Start Mann-Whitney U test (unpaired) p<10-5
Success rate pC-p100 Cplx Start vs Mid Kruskall-Wallis p=0.0070
vs End
Success rate pC-p100 Cplx_End vs Student unpaired t-test p<10-5
bioRkiv preprint doi: https://doi.org/10.] 1Broivas Star 605479; this version posted July 29, 2024. The copyright holder for this preprint
(whi - A A : ioRsieoican . o reprint
madgpvalalls yags" 38 Tt ERNR & TRIX "8tk '°e"Student unpaired t-test p<10-5
Success rate pB-p50 Cplx Start vs Mid vs | one way ANOVA p=0.0185
End
Success rate pB-p50 Cplx_End vs Student unpaired t-test p<10-5
Proba_Start
Success rate pA Det_End vs Cplx_Start Student unpaired t-test p<10-5
Success rate pA-p25 Cplx Start vs Mid vs  one way ANOVA p=0.0029
End
Success rate pA-p25 Cplx_End vs Student unpaired t-test p<10-5
Proba_Start
B (left, middle) Cplx post-reward dDA across sessions : Kruskall-Wallis p=0.9577
Start (N=17) vs Mid (N=17) vs Last (N=17)
Cplx dDA : Start vs 0 one sample Student t-test p=0.0003 Holm (x3) : p=0.0003
Cplx dDA : Mid vs 0 one sample Wilcoxon p=0.00005 Holm (x3) : p=0.0001
Cplx dDA : Lastvs 0 one sample Wilcoxon p=0.00002 Holm (x3) : p=0.00006
B (left, bottom) Cplx post-omission dDA across sessions : | one way ANOVA p=0.1659
Start (N=17) vs Mid (N=17) vs Last (N=17)
Cplx dDA : Startvs 0 one sample Student t-test p=0.00005 Holm (x3) : p=0.0002
Cplx dDA : Mid vs 0 one sample Student t-test p=0.0286 Holm (x3) : p=0.0286
Cplx dDA : Last vs O one sample Student t-test p=0.0018 Holm (x3) : p=0.0036
B (right, middle) Cplx across sessions : linear regression Spearman correlation p=0.2359 ; R2 = 0.073
post-reward DA with success rate
B (right, bottom) Cplx across sessions : linear regression Pearson correlation p=0.2037 ; R2 = 0.033
post-omission DA with sequence
complexity
C (left, middle) Proba post-reward dDA across sessions : | Kruskall-Wallis p=0.0092
Start (N=12) vs Mid (N=12) vs Last (N=11)
vs Last (N=10)
Proba dDA : Start vs 0 one sample Student t-test p=0.8041 Holm (x4) : p=0.8041
Proba dDA : Mid vs 0 one sample Wilcoxon p=0.0001 Holm (x4) : p=0.0039
Proba dDA : Late vs 0 one sample Wilcoxon p=0.0049 Holm (x4) : p=0.0146
Proba dDA : Last vs 0 one sample Wilcoxon p=0.0137 Holm (x4) : p=0.0125
C (left, bottom) Proba post-omission dDA across sessions = Kruskall-Wallis p=0.0651
: Start (N=12) vs Mid (N=12) vs Last (N=11)
vs Last (N=10)
Proba dDA : Start vs 0 one sample Student t-test p=0.9590 Holm (x4) : p=0.9590
Proba dDA : Mid vs 0 one sample Wilcoxon p=0.1294 Holm (x4) : p=0.2588
Proba dDA : Late vs 0 one sample Student t-test p=0.0225 Holm (x4) : p=0.0676
Proba dDA : Last vs O one sample Student t-test p=0.0020 Holm (x4) : p=0.0078

C (right, middle)

C (right, bottom)

Proba across sessions : linear regression
post-reward dDA with exploitation index

Proba across sessions : linear regression
post-omission dDA with #Success

Spearman correlation

Spearman correlation

p<10-5; R2 = 0.1660

p=0.0040 ; R2 = 0.1423
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Supp 1

Panel

Comparison

Test type

p-values Corrections

A (left)

A (center-left)

#Trials, male (N=23) vs female (N=26),
S1-2 vs S4-5 vs Last2 (N=3 repeated
measures)

#Trials in Det Last2, male (N=23) vs female
(N=26)

%Uturn in Det, male (N=23) vs female
(N=26), S1-2 vs S4-5 vs Last2 (N=3
repeated measures)

%Uturn in Det Last2, male (N=23) vs
female (N=26)

mixed ANOVA (sex X session
effect, with repeated measures
on sessions)

Student unpaired t-test

mixed ANOVA (sex X session
effect, with repeated measures
on sessions)

Student unpaired t-test

Sex effect: p=0.7131
Session effect: p<10-5
Interaction effect: p=0.0561

p=0.3647

Sex effect: p=0.5300
Session effect: p<10-5
Interaction effect: p=0.1597

p=0.3469

bioFx /Idoi.org/10. 'SrYﬁéﬁ@ 0315y Ydly 29, 2029‘;@? oV, %@ééw'nt Sex effect: p=0.1672

(whigh Kals not certl#gm peer review %ﬁggf ﬁé&éﬂ% T-)Pg bﬁ%’@ﬁl({ﬁ%’ge to |sg aw pitee%ﬁgé{e%e eetgl urgg Session effect: p<10-5
repeated measures) on sessions) Interaction effect: p=0.1952
Sequence cplx in Det Last2, male (N=23) Mann-Whitney U-test p=0.0346
vs female (N=26)

A (right) Circularity index in Det, male (N=23) vs mixed ANOVA (sex X session Sex effect: p=0.2553
female (N=26), S1-2 vs S4-5 vs Last2 (N=3 effect, with repeated measures Session effect: p=0.0022
repeated measures) on sessions) Interaction effect: p=0.3185
Circularity index in Det Last2, male (N=23) = Mann-Whitney U-test p=0.2255
vs female (N=26)

B (left) %Success in Cplx, male (N=23) vs female = mixed ANOVA (sex X session Sex effect: p=0.3353

B (center-left)

B (center-right)

(N=26), S1-2 vs S4-5 vs Last2 (N=3
repeated measures)

%Success in Cplx Last2, male (N=23) vs
female (N=26)

%Uturn in Cplx, male (N=23) vs female
(N=26), S1-2 vs S4-5 vs Last2 (N=3
repeated measures)

%Uturn in Cplx Last2, male (N=23) vs
female (N=26)

Sequence cplx in Cplx, male (N=23) vs
female (N=26), S1-2 vs S4-5 vs Last2 (N=3
repeated measures)

Sequence cplx in Cplx Last2, male (N=23)
vs female (N=26)

effect, with repeated measures
on sessions)

Student unpaired t-test

mixed ANOVA (sex X session
effect, with repeated measures
on sessions)

Student unpaired t-test

mixed ANOVA (sex X session
effect, with repeated measures
on sessions)

Mann-Whitney U-test

Session effect: p<10-5
Interaction effect: p=0.0717

p=0.5886

Sex effect: p=0.5934
Session effect: p<10-5
Interaction effect: p=0.0087

p=0.6816

Sex effect: p=0.0462
Session effect: p=0.0001
Interaction effect: p=0.7944

p=0.2662

B (right) Circularity index in Cplx, male (N=23) vs mixed ANOVA (sex X session Sex effect: p=0.3757
female (N=26), S1-2 vs S4-5 vs Last2 (N=3  effect, with repeated measures Session effect: p= p<10-5
repeated measures) on sessions) Interaction effect: p=0.7407
Circularity index in Cplx Last2, male Mann-Whitney U-test p=0.6961
(N=23) vs female (N=26)

C (left) %Success in Proba, male (N=23) vs mixed ANOVA (sex X session Sex effect: p=0.8112

C (center-left)

C (center-right)

C (right)

female (N=26), S1-2 vs S4-5 vs Last2 (N=3
repeated measures)

%Success in Proba Last2, male (N=23) vs
female (N=26)

%Uturn in Proba, male (N=23) vs female
(N=26), S1-2 vs S4-5 vs Last2 (N=3
repeated measures)

%Uturn in Proba Last2, male (N=23) vs
female (N=26)

Sequence cplx in Proba, male (N=23) vs
female (N=26), S1-2 vs S4-5 vs Last2 (N=3
repeated measures)

Sequence cplx in Proba Last2, male
(N=23) vs female (N=26)

Circularity index in Proba, male (N=23) vs
female (N=26), S1-2 vs S4-5 vs Last2 (N=3
repeated measures)

Circularity index in Proba Last2, male
(N=23) vs female (N=26)

effect, with repeated measures
on sessions)

Student unpaired t-test

mixed ANOVA (sex X session
effect, with repeated measures
on sessions)

Mann-Whitney U-test

mixed ANOVA (sex X session
effect, with repeated measures
on sessions)

Mann-Whitney U-test

mixed ANOVA (sex X session
effect, with repeated measures
on sessions)

Student unpaired t-test

Session effect: p<10-5
Interaction effect: p=0.9326

p=0.4590

Sex effect: p=0.8129
Session effect: p<10-5
Interaction effect: p=0.2954

p=0.4770

Sex effect: p=0.2919
Session effect: p<10-5
Interaction effect: p=0.6391

p=0.3312

Sex effect: p=0.8792
Session effect: p= p<10-5
Interaction effect: p=0.4908

p=0.6511
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Supp 2

Panel

Comparison

Test type

p-values

Corrections

Frequency distribution of 10-length chains
for all mice End sessions, Det (n=2129
seq) vs Cplx (n=2838)

Kolmogorov-Smirnov
(distribution)

p<10-5
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Supp 3

Panel Comparison Test type p-values Corrections

A #Trials across time point (N=49 mice, all one-way ANOVA (time point p<10-5
paired) effect)
Post-hoc, #Trials Det: First2 vs Last2 Wilcoxon (paired) p<10-5 Holm (x5) : p<10-5
(N=49)
Post-hoc, #Trials: Det Last2 vs Cplx First2 = Student paired t-test p<10-5 Holm (x5) : p<10-5
(N=49)
Post-hoc, #Trials Cplx: First2 vs Last2 Student paired t-test p<10-5 Holm (x5) : p<10-5
(N=49)
Post-hoc, #Trials: Cplx Last2 vs Proba Student paired t-test p=0.5305 Holm (x5) : p=0.5305
First2 (N=49)
Post-hoc, #Trials Proba: First2 vs Last2 Student paired t-test p=0.0105 Holm (x5) : p=0.0210
(N=49)

B (left) Correlation between behavioural Pearson if normal, Spearman if See colour code in figure Bonferroni (x66), see figure
parameters in Det Last2 (N=49) not

B (center) Correlation between behavioural Pearson if normal, Spearman if See colour code in figure Bonferroni (x78), see figure
parameters in Cplx First2 and Last2 (N=49) not

B (right) Correlation between behavioural Pearson if normal, Spearman if See colour code in figure Bonferroni (x91), see figure

parameters in Proba First2 and Last2

(N=49)

not
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Supp 4

target vs off-target

Panel Comparison Test type p-values Corrections
E Det Last, Post-ICSS avg per mouse (N=14), Student paired t-test p=0.0019
Expected (task) vs Unexpected (restcage)
(individual data from Fig2.E.)
F Det Last, Post-ICSS avg per mouse (N=13), Student paired t-test p<10-5
Expected (on-target) vs Unexpected (off-
target) (individual data from Fig2.F.)
G Det S1, Post-ICSS avg per mouse (N=9), task | Wilcoxon (paired) p=0.1641
Vs restcage
H Det S2, Post-ICSS avg per mouse (N=9), on- | Student paired t-test p=0.0430
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Supp 5
Panel Comparison Test type p-values Corrections
A Restcage stimulation dF/F avg per mouse one-way ANOVA p=0.1508
(N=14) : short (<3s) vs mid vs long (>5s)
B Restcage stimulation GLM : Intercept weight one sample Student t-test p<10-5 Holm (x2) : p<10-5
vs 0 (N=14)
Restcage stimulation GLM : T_inter_stim one sample Student t-test p=0.1526 Holm (x2) : p=0.1526
weight vs 0 (N=14)
(] Det End post-reward dF/F avg per mouse Student paired t-test p=0.0012
(N=19) : Uturn vs Forward (individual data from
Fig3.C.)
D Det End post-reward dF/F avg per mouse one-way ANOVA p=0.6686
(N=19) : pA vs pB vs pC
E (top) Cplx End post-reward dF/F avg per mouse Student paired t-test p=0.0003
(N=17) : Reward prev=rew vs prev=omi
(individual data from Fig3.E.)
E (bottom) Cplx End post-reward dF/F avg per mouse Student paired t-test p=0.0357
(N=17) : Omission prev=rew vs prev=omi
(individual data from Fig3.E.)
F (top) Cplx End post-reward dF/F avg per mouse one-way ANOVA p=0.8132
(N=17) : Reward p100 vs p50 vs p25
F (bottom) Cplx End post-reward dF/F avg per mouse one-way ANOVA p=0.3823
(N=17) : Omission pA vs pB vs pC
G (top) Cplx End post-reward dF/F avg per mouse Student paired t-test p=0.1901
(N=17) : Reward Uturn vs Fwd
G (bottom) Cplx End post-reward dF/F avg per mouse Student paired t-test p=0.3378
(N=17) : Omission Uturn vs Fwd
H (top) Proba End post-reward dF/F avg per mouse one-way ANOVA p=0.0364
(N=10) : p100 vs p50 vs p25 (individual data
from Fig3.G.)
Post-hoc, p100 vs p50 Student paired t-test p=0.0171 Holm (x3) : p=0.0282
Post-hoc, p50 vs p25 Student paired t-test p=0.0141 Holm (x3) : p=0.0282
Post-hoc, p100 vs p25 Student paired t-test p=0.0079 Holm (x3) : p=0.0237
H (bottom) Proba End post-omission dF/F avg per mouse | Student paired t-test p=0.0173
(N=10) : p50 vs p25 (individual data from
Fig3.G.)
| (top) Proba End post-reward dF/F avg per mouse Student paired t-test p=0.0161
(N=10) : Reward prev=rew vs prev=omi
| (bottom) Proba End post-reward dF/F avg per mouse Student paired t-test p=0.9324
(N=10) : Omission prev=rew vs prev=omi
J (top) Proba End post-reward dF/F avg per mouse Student paired t-test p=0.1628
(N=10) : Reward Uturn vs Fwd
J (bottom) Proba End post-reward dF/F avg per mouse Student paired t-test p=0.0840

(N=10) : Omission Uturn vs Fwd
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Supp 6

Panel Comparison Test type p-values Corrections

B (top-left) Det End RPE(M1) avg per mouse (N=19) : pA | one-way ANOVA p=0.9222
vs pB vs pC

B (top-right) Det End RPE(M1) avg per mouse (N=19) : Wilcoxon p=0.0204
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B (center-left) B &Y LA HBENMS  avg per mousa (NP8 "8X%® one-way ANOVA p=0.8711
vs pB vs pC

B (center-right) Det End RPE(M2) avg per mouse (N=19) : Wilcoxon p=0.00002
Uturn vs Fwd (Same as Fig 4.C.)

B (bottom-left) Det End RPE(M3) avg per mouse (N=19) : pA | one-way ANOVA p=0.9801
vs pB vs pC

B (bottom-right) Det End RPE(MS3) avg per mouse (N=19) : Student paired t-test p=0.4844
Uturn vs Fwd

C (top-left) Cplx End RPE(M1) avg per mouse (N=17) : pA | Rew: one-way ANOVA Rew: p=0.9843
vs pB vs pC Omi: one-way ANOVA Omi: p=0.9697

C (top-middie) Cplx End RPE(M1) avg per mouse (N=17) : Rew: Student paired t-test Rew: p=0.0223
Uturn vs Fwd Omi: Student paired t-test Omi: p=0.0018

C (top-right) Cplx End RPE(M1) avg per mouse (N=17) : Rew: Student paired t-test Rew: p<10e-5
prev=rew vs prev=omi (Same as Fig 4.F) Omi: Student paired t-test Omi: p<10e-5

C (center-left) Cplx End RPE(M2) avg per mouse (N=17) : pA | Rew: one-way ANOVA Rew: p=0.9125
vs pB vs pC Omi: one-way ANOVA Omi: p=0.9327

C (center-middle) Cplx End RPE(M2) avg per mouse (N=17) : Rew: Student paired t-test Rew: p=0.0004
Uturn vs Fwd Omi: Student paired t-test Omi: p=0.0002

C (center-right) Cplx End RPE(M2) avg per mouse (N=17) : Rew: Student paired t-test Rew: p=0.9737
prev=rew vs prev=omi Omi: Student paired t-test Omi: p=0.00002

C (bottom-left) Cplx End RPE(MB3) avg per mouse (N=17) : pA | Rew: one-way ANOVA Rew: p=0.5187
vs pB vs pC Omi: one-way ANOVA Omi: p=0.4841

C (bottom-middie) Cplx End RPE(M3) avg per mouse (N=17) : Rew: Student paired t-test Rew: p=0.2845
Uturn vs Fwd Omi: Student paired t-test Omi: p=0.0612

C (bottom-right) Cplx End RPE(M3) avg per mouse (N=17) : Rew: Student paired t-test Rew: p=0.0211
prev=rew vs prev=omi Omi: Student paired t-test Omi: p=0.7743

D (top-left) Proba End RPE(M1) avg per mouse (N=10) : Rew: one-way ANOVA Rew: p=0.8881
p100 vs p50 vs p25 for rewards, p50 vs p25 Omi: Student paired t-test Omi: p=0.3362
for omissions

D (top-middie) Proba End RPE(M1) avg per mouse (N=10) : Rew: Student paired t-test Rew: p=0.0085
Uturn vs Fwd Omi: Student paired t-test Omi: p=0.1934

D (top-right) Proba End RPE(M1) avg per mouse (N=10) : Rew: Student paired t-test Rew: p<10e-5
prev=rew vs prev=omi Omi: Student paired t-test Omi: p=0.00005

D (center-left) Proba End RPE(M2) avg per mouse (N=10) : Rew: one-way ANOVA Rew: p=0.1195
p100 vs p50 vs p25 for rewards, p50 vs p25 Omi: Student paired t-test Omi: p=0.0042
for omissions

D (center-middie) Proba End RPE(M2) avg per mouse (N=10) : Rew: Student paired t-test Rew: p=0.00005
Uturn vs Fwd Omi: Student paired t-test Omi: p=0.00006

D (center-right) Proba End RPE(M2) avg per mouse (N=10) : Rew: Student paired t-test Rew: p=0.0004
prev=rew vs prev=omi Omi: Student paired t-test Omi: p=0.0005

D (bottom-left) Proba End RPE(M3) avg per mouse (N=10) : Rew: Kruskall-Wallis Rew: p<10e-5
p100 vs p50 vs p25 for rewards, p50 vs p25 Omi: Student paired t-test Omi: p=0.0020
for omissions (Same as Fig 4.1.)

D (bottom-middle) Proba End RPE(M3) avg per mouse (N=10) : Rew: Student paired t-test Rew: p=0.00006
Uturn vs Fwd Omi: Wilcoxon Omi: p=0.0020

D (bottom-right) Proba End RPE(M3) avg per mouse (N=10) : Rew: Student paired t-test Rew: p<10e-5
prev=rew vs prev=omi Omi: Student paired t-test Omi: p=0.6590
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Supp 7

Panel Comparison Test type p-values Corrections
A (top) GLM RPE(M1) weight across Det Kruskall-Wallis p=0.6029
GLM RPE(M1) weight : End Det vs Start Student unpaired t-test p=0.0001
Cplx
GLM RPE(M1) weight across Cplx one-way ANOVA p=0.9001
GLM RPE(M1) weight : End Cplx vs Start | Student unpaired t-test p=0.4669
Proba
GLM RPE(M1) weight across Proba one-way ANOVA p=0.0031
GLM RPE(M1) weight vs 0 : Det Mid one sample Student t-test p=0.4476 Holm (x10) : p=1
GLM RPE(M1) weight vs 0 : Det Late one sample Student t-test p=0.6257 Holm (x10) : p=1
GLM RPE(M1) weight vs 0 : Det Last one sample Student t-test p=0.4849 Holm (x10) : p=1
GLM RPE(M1) weight vs 0 : Cplx Start one sample Student t-test p=0.00003 Holm (x10) : p=0.0003
GLM RPE(M1) weight vs 0 : Cplx Mid one sample Student t-test p=0.0004 Holm (x10) : p=0.0034
GLM RPE(M1) weight vs 0 : Cplx Last one sample Student t-test p=0.0006 Holm (x10) : p=0.0047
GLM RPE(M1) weight vs 0 : Proba Start one sample Student t-test p=0.0211 Holm (x10) : p=0.1476
GLM RPE(M1) weight vs 0 : Proba Mid one sample Wilcoxon p=0.4277 Holm (x10) : p=1
GLM RPE(M1) weight vs 0 : Proba Late one sample Student t-test p=0.3216 Holm (x10) : p=1
GLM RPE(M1) weight vs 0 : Proba Last one sample Student t-test p=0.3218 Holm (x10) : p=1
GLM RPE(M2) weight across Det Kruskall-Wallis p=0.0117
GLM RPE(M2) weight : End Det vs Start Mann-Whitney U test (unpaired) p=0.1061
Cplx
GLM RPE(M2) weight across Cplx Kruskall-Wallis p=0.6152
GLM RPE(M2) weight : End Cplx vs Start Mann-Whitney U test (unpaired) p=0.0096
Proba
GLM RPE(M2) weight across Proba one-way ANOVA p=0.3649
GLM RPE(M2) weight vs 0 : Det Mid one sample Student t-test p=0.0295 Holm (x10) : p=0.2356
GLM RPE(M2) weight vs 0 : Det Late one sample Student t-test p=0.0006 Holm (x10) : p=0.0061
GLM RPE(M2) weight vs 0 : Det Last one sample Student t-test p=0.9577 Holm (x10) : p=1
GLM RPE(M2) weight vs 0 : Cplx Start one sample Wilcoxon p=0.0174 Holm (x10) : p=0.1569
GLM RPE(M2) weight vs 0 : Cplx Mid one sample Wilcoxon p=0.1324 Holm (x10) : p=0.6619
GLM RPE(M2) weight vs 0 : Cplx Last one sample Wilcoxon p=0.0569 Holm (x10) : p=0.3982
GLM RPE(M2) weight vs 0 : Proba Start one sample Student t-test p=0.0681 Holm (x10) : p=0.4085
GLM RPE(M2) weight vs 0 : Proba Mid one sample Student t-test p=0.2847 Holm (x10) : p=1
GLM RPE(M2) weight vs O : Proba Late one sample Student t-test p=0.8733 Holm (x10) : p=1
GLM RPE(M2) weight vs 0 : Proba Last one sample Student t-test p=0.9266 Holm (x10) : p=1
GLM RPE(M3) weight across Det one-way ANOVA p=0.3810
GLM RPE(MS3) weight : End Det vs Start Student unpaired t-test p=0.6093
o as ot cariiad oy pas ovio) 5 e aciartter o s oramet IORXK & legron 16 dioptey e areprE I perperiy e
mades R ISR A siGit Mehbsd TR national licenyge skall-Wallis p=0.4623
GLM RPE(MS3) weight : End Cplx vs Start Mann-Whitney U test (unpaired) p=0.25883
Proba
GLM RPE(M3) weight across Proba Kruskall-Wallis p=0.0761
GLM RPE(MS3) weight vs 0 : Det Mid one sample Student t-test p=0.3899 Holm (x10) : p=1
GLM RPE(MS3) weight vs 0 : Det Late one sample Student t-test p=0.9362 Holm (x10) : p=1
GLM RPE(M3) weight vs 0 : Det Last one sample Student t-test p=0.5057 Holm (x10) : p=1
GLM RPE(M3) weight vs 0 : Cplx Start one sample Student t-test p=0.1089 Holm (x10) : p=0.7621
GLM RPE(M3) weight vs 0 : Cplx Mid one sample Wilcoxon p=0.4529 Holm (x10) : p=1
GLM RPE(M3) weight vs 0 : Cplx Last one sample Wilcoxon p=0.9632 Holm (x10) : p=1
GLM RPE(M3) weight vs 0 : Proba Start one sample Wilcoxon p=0.1099 Holm (x10) : p=0.7621
GLM RPE(M3) weight vs 0 : Proba Mid one sample Wilcoxon p=0.0015 Holm (x10) : p=0.0146
GLM RPE(MS3) weight vs 0 : Proba Late one sample Student t-test p=0.0050 Holm (x10) : p=0.0449
GLM RPE(M3) weight vs 0 : Proba Last one sample Student t-test p=0.0124 Holm (x10) : p=0.0988
B (left) Det %Uturns (N=19) : S1-2 vs S4-5 vs one-way ANOVA p<10-5
Last2
B (right) Det seq. cplx (N=19) : S1-2 vs S4-5 vs one-way ANOVA p<10-5
Last2
C Det dDA across sessions : Start (N=9) vs Kruskall-Wallis p=0.3857
Mid (N=9) vs Late (N=14) vs Last (N=19)
Det dDA : Start vs 0 one sample Student t-test p=0.3472 Holm (x4) : p=0.3472
Det dDA : Mid vs 0 one sample Student t-test p=0.0990 Holm (x4) : p=0.1980
Det dDA : Late vs 0 one sample Student t-test p=0.0353 Holm (x4) : p=0.1058
Det dDA : Lastvs 0 one sample Wilcoxon p=0.0033 Holm (x4) : p=0.0134
D Det across sessions : linear regression Spearman correlation p=0.9643 ; R2 = 0.0025
post-reward DA with turn rate
E (center-left) Cplx %Success (N=18) : S1-2 vs S4-5vs | one-way ANOVA p<10-5
Last2
E (center) Cplx %Uturns (N=18) : S1-2 vs S4-5 vs one-way ANOVA p<10-5
Last2
E (center-right) Cplx seq. cplx (N=18) : S1-2 vs S4-5 vs one-way ANOVA p<10-5
Last2
E (right) Cplx circularity index (N=18) : S1-2 vs one-way ANOVA p<10-5
S4-5 vs Last2
F (center-left) Proba %Success (N=14) : S1-2 vs S4-5 vs  one-way ANOVA p<10-5
Last2
F (center) Proba %Uturns (N=14) : S1-2 vs S4-5 vs one-way ANOVA p<10-5
Last2
F (center-right) Proba seq. cplx (N=14) : S1-2 vs S4-5 vs one-way ANOVA p<10-5
Last2
F (right) Proba exploitation index (N=14) : S1-2vs  one-way ANOVA p<10-5

S4-5 vs Last2
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p<10-5; R2 = 0.088

Panel Comparison Test type p-values Corrections
A (left) Cplx Start: linear regression between DA Spearman correlation p<10-5; R2 = 0.009

reward peak and length of reward chains

(n=1812)

Cplx Start: linear regression between DA Spearman correlation p=0.00005 ; R2 = 0.083

reward peak and length of omission chains

(n=385)
A (right) Cplx Start: linear regression between DA Spearman correlation p=0.00002 ; R2 = 0.030

B (left) Cplx End: linear regression between DA Spearman correlation p=0.5887 ; R2 = 0.001
reward peak and length of reward chains
(n=2815)
Cplx End: linear regression between DA Spearman correlation p=0.00001 ; R2 = 0.015
reward peak and length of omission chains
(n=604)
B (right) Cplx End: linear regression between DA Spearman correlation p=0.0002 ; R2 = 0.019
omission dip and length of reward chains
(n=612)
Cplx End: linear regression between DA Spearman correlation p=0.0028 ; R2 = 0.008
omission dip and length of omission
chains (n=666)
C (left) Cplx Start: Success rate depending on Student paired t-test p<10-5
previous choice : forward vs uturn (N=17)
C (right) Cplx End: Success rate depending on Student paired t-test p=0.0005
previous choice : forward vs uturn (N=17)
D (left) Cplx Start: Uturn rate depending on Student paired t-test p=0.1443
previous outcome : reward vs omission
(N=17)
D (right) Cplx End: Uturn rate depending on Student paired t-test p=0.0577
previous outcome : reward vs omission
(N=17)
E (bottom, left) Outcome chains length for all trials Cplx Kolmogorov-Smirnov First2: Rew vs Omi: p<10-5 Holm (x4) : all p<10-5
sessions : Rew_First2 (n=3472) vs (distribution) Last2: Rew vs Omi: p<10-5
Omi_First2 (n=2247) vs Rew_Last2 Rew: First2 vs Last2: p<10-5
(n=6947) vs Omi_Last2 (n=2463) (N=49) Omi: First2 vs Last2: p<10-5
E (bottom, right) Outcome chains length for all mice Cplx one way ANOVA p<10-5
sessions : Rew_First2 vs Omi_First2 vs
Rew_Last2 vs Omi_Last2 (N=49)
Post-hoc Rew_First2 vs Omi_First2: Wilcoxon test p=0.0230 Holm (x4) : p=0.0230
Post-hoc Rew_Last2 vs Omi_Last2: Wilcoxon test p<10-5 Holm (x4) : p<10-5
Post-hoc Rew_First2 vs Rew_Last2: Wilcoxon test p<10-5 Holm (x4) : p<10-5
Post-hoc Omi_First2 vs Omi_Last2: Wilcoxon test p<10-5 Holm (x4) : p<10-5
F (left) Uturn chains length for all trials Cplx Kolmogorov-Smirnov First2: Fwd vs Uturn: p<10-5 Holm (x4) : p<10-5
sessions : Fwd_First2 (n=4235) vs (distribution) Last2: Fwd vs Uturn: p<10-5 Holm (x4) : p<10-5
Uturn_First2 (n=1386) vs Fwd_Last2 Fwd: First2 vs Last2: p<10-5 Holm (x4) : p<10-5
(n=6137) vs Uturn_Last2 (n=3175) (N=49) Uturn: First2 vs Last2: p=0.9501 Holm (x4) : p=0.9501
F (right) Uturn chains length for all mice Cplx one way ANOVA p<10-5
sessions : Fwd_First2 vs Uturn_First2 vs
Fwd_Last2 vs Uturn_Last2 (N=49)
Post-hoc Fwd_First2 vs Uturn_First2: Wilcoxon test p<10-5 Holm (x4) : p<10-5
Post-hoc Fwd_Last2 vs Uturn_Last2: Wilcoxon test p<10-5 Holm (x4) : p<10-5
Post-hoc Fwd_First2 vs Fwd_Last2: Wilcoxon test p<10-5 Holm (x4) : p<10-5
Post-hoc Uturn_First2 vs Uturn_Last2: Wilcoxon test p=0.6860 Holm (x4) : p=0.6860
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