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ABSTRACT

Alterations in the FMS-like tyrosine kinase 3 (FLT3) gene are the most frequent driver
mutations in acute myeloid leukaemia (AML), linked to a high risk of relapse in patients with
internal tandem duplications (FLT3-ITD). Tyrosine kinase inhibitors (TKIs) targeting the FLT3
protein are approved for clinical use, yet resistance often emerges. This resistance is mainly
seen following the acquisition of additional point mutations in the tyrosine kinase domain
(TKD), resulting in a double mutant FLT3-ITD/TKD, which sustains cell signalling and survival
despite the presence of FLT3 inhibitors. Here, we developed a FLT3-mutant AML model with
adaptive resistance to type Il TKils, sorafenib, and quizartinib by in vitro drug selection.
Through global multiomic profiling, we identified upregulation of proteins involved in reactive
oxygen species (ROS) production, particularly NADPH-oxidases, driving cellular 'ROS-
addiction’, with resistant cells relying on ROS for survival, and genome fidelity preserved by
ATM-driven DNA repair. Transcriptomic analysis of adult and paediatric AML (pAML) patients
identified high ATM expression as a biomarker for shorter median overall survival in both the
de novo and relapsed settings. Inhibition of ATM with clinically relevant therapy WSD-0628
effectively killed TKI- and chemotherapy-resistant AML cells in vitro and significantly extended
the survival of mice with sorafenib- and quizartinib-resistant FLT3-ITD AML in vivo. We
propose a new treatment strategy to improve survival of patients who develop resistance to
sorafenib and quizartinib, as well as relapsed and refractory pAML, exploiting resistance
mechanisms to precision therapies and cell-intrinsic features of high-risk cases, highlighting a

clinically relevant salvage strategy.

KEYWORDS: acute myeloid leukaemia (AML); paediatric AML (pAML); tyrosine
kinase inhibitors; FLT3; resistance; relapsed refractory; DNA damage; DNA repair; ATM

signalling; sorafenib; quizartinib; WSD-0628; reactive oxygen species; ROS; salvage strategy
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80 INTRODUCTION
81 Constitutive activation of the FMS-like Tyrosine Kinase 3 receptor (FLT3; CD135)

82  following the acquisition of genetic mutations is seen in 20-30% of acute myeloid leukaemia
83  (AML) cases (1), leading to high relapse risk and poor survival (2, 3). FLT3, a type lll receptor
84  tyrosine kinase (RTK-IIl), regulates haematopoietic cell differentiation, proliferation, and
85  survival (4). Binding of FLT3 ligand (FLT3L) activates ERK/MAPK (5), JAK/STAT (6), and
86  PI3K/AKT signalling (7). The most common FLT3 mutations in AML are internal tandem
87  duplications (FLT3-ITD; 20-25%) (8), followed by point mutations in the second tyrosine kinase
88 domain (FLT3-TKD; 5-10%) (8, 9) both causing constitutive FLT3 activation and oncogenic

89  signalling (9).

90 The high prevalence of FLT3 mutations in AML has led to the development and clinical
91 assessment of first- and second-generation tyrosine kinase inhibitors (TKls) (1, 10, 11).
92  However, single-agent TKI therapies often fail long-term due to unsustained anti-leukaemic
93 responses and secondary resistance (10-12). Midostaurin (PKC412) was the first TKI
94  approved for newly diagnosed FLT3-mutant AML with standard cytarabine and anthracycline
95 therapy in 2017 (13). Quizartinib (AC220), a second-generation FLT3 inhibitor, was approved
96 in 2023 for use with standard therapy and as maintenance monotherapy (14). Gilteritinib is
97  approved for relapsed/refractory AML (R/R-AML) with FLT3 mutation (15). Several other TKls

98 are in clinical assessment for AML (Supplementary Table S1).

99 Sorafenib, initially approved for solid tumours, shows promise in FLT3-ITD AML as a
100 maintenance therapy post-allo-HCT, improving relapse-free survival and as salvage therapy
101  for post-allo-HCT relapses (16). It is extensively studied for FLT3-mutant paediatric AML
102  (pAML) (17), offering multi-kinase inhibition, including FLT3, to combat resistance and improve

103 outcomes.

104 Despite initial improvements, resistance to FLT3-targeted therapies persists (10-12),
105 caused by FLT3L overexpression (18), clonal selection (19), bone marrow stromal protection

106  (20), off-target mutations, FLT3-independent/ downstream signalling pathway activation (21),
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107  or through additional mutations in FLT3 (FLT3-ITD/TKD) affecting drug binding sites (1, 10,
108 22, 23). Mutations at residues D835 (10, 12, 24), Y842 (22, 23), F691 (23), N676 (22), and

109  AB27 (23) confer resistance to type | and/or Il TKis.

110 Understanding oncogenic signalling pathways active in high-risk and resistance
111  settings aids precision medicine. This study integrates next-generation sequencing (NGS),
112  phosphoproteomics, and patient transcriptomics to identify upregulation of the oxidative
113  stress-driven ATM DNA repair signalling pathway in therapy-resistant AML, effectively
114  targeted by the novel ATM inhibitor, WSD-0628. These findings support early-phase trials for

115 R/R AML or high-risk pAML.

116 MATERIALS AND METHODS

117  Detailed materials and methods can be found in the Supplemental Information.

118  Study approval.

119  The use of patient-derived human AML cell lines was approved by the Human Ethics Research
120 Committee, University of Newcastle (H-2018-0241). All in vivo studies were approved by the

121 University of Newcastle Animal Care and Ethics Committee (A-2017-733, A-2023-308).

122 Invitro development of adaptive resistance

123 TKI and standard-of-care resistant MV4-11 cells were developed through serial passaging of
124  cells in increasing doses of sorafenib (Selleckchem, Houston, TX, USA) from 2.5 nM-1280 nM
125  over 20 weeks or cytarabine (Selleckchem) from 10 uM-500 uM followed by daunorubicin
126 (Sigma-Aldrich, Burlington, MA, USA) from 2 nM-12 nM. Cells were DNA sequenced by next
127  generation sequencing (Supplementary Table S2) using the Myeloid Solution panel, as

128  described in Supplemental Information.

129  Structural modelling of tyrosine kinase inhibitors binding to FLT3
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130  Several crystal structures detailing the intracellular domains of FLT3, including the inactive
131  conformation of the TKDs were used as templates to create a multiple sequence alignment

132 homology model of the inactive kinase as previously described (25).

133  pHASED phosphoproteomics

134  Quantitative phosphoproteomics of MV4-11 parental and TKI resistant cells was performed as
135  previously described (26). The mass spectrometry proteomics data is deposited to the
136  ProteomeXchange Consortium via the PRIDE partner repository (27) with the dataset identifier
137  PXD053329 and 10.6019/PXD053329. Reviewer access via the PRIDE website - Username:

138  reviewer_pxd053329@ebi.ac.uk Password: [TehOPPIMcF;j

139  Analysis of publicly available patient survival and expression data

140 RNA-seq and clinical data from the Therapeutically Applicable Research to Generate Effective
141 Treatments (TARGET) and Beat AML initiatives was minded and analysed using GraphPad

142  Prism Software (version 10.0.2, GraphPad, Boston, MA, USA) (28).

143  Detection of reactive oxygen species

144  Dihydroethidium (DHE) (Life Technologies, Australia) was used to detect intracellular

145  cytoplasmic superoxide as previously described (29).

146  ATM knockdown

147  MV4-11 sensitive and resistant cell lines were transfected using RNAIMAX lipofectamine
148  reagent (Invitrogen, Carlsbad, CA) as per manufacturer’s instructions with ATM—specific small

149 interfering RNA (siRNA) or a scrambled siRNA control.

150 Terminal Deoxynucleotidyl Transferase dUTP Nick End Labelling (TUNEL) DNA
151  Fragmentation Assay and Oxidative DNA Damage Assessment by 8-hydroxy-2*-

152  deoxyguanosine (8-OHdG)
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153 MV4-11 FLT3-ITD sensitive and TKI resistant cell lines were treated with either 250 nM WSD-
154 0628 for 24 h, 1 mM H>O, for 30 min or ATM-siRNA or scramble control and assessed for

155  formation of TUNEL or oxidative DNA damage through 8-OHdG ICC fluorescence (30).
156  AML xenograft mouse modelling

157  NOD-Ragl™" IL2rg™" (NRG) mice were engrafted with FLT3-ITD TKI sensitive or resistant,
158  MV4-11-luc cells (1€° cells in PBS) by tail vein injection. Bioluminescence imaging (BLI) was
159 used to detect leukemic cell engraftment, and randomized for treatment once BLI reached a
160 mean radiance of 1 x 10° p/s. Mice were treated with either vehicle control, sorafenib (10
161 mg/kg/day MV4-11 resistant; 2.5 mg/kg/day MV4-11 sensitive), quizartinib (2 mg/kg/day) or
162 WSD-0628 (5 mg/kg/day) as monotherapies, or in combination, for four weeks. Mice were
163  euthanized at ethical endpoint, including weight loss exceeding 20% or body condition scores

164  indicating ethical endpoint.

165

166 RESULTS

167  Establishment of a human cell line model of adaptive TKI resistance

168 Dual FLT3-ITD and D835V/Y mutations are a known mechanism of resistance to type
169 Il TKIs. Previously, we generated isogenic FLT3-ITD AML cell line models with these
170  mutations (24). Quantitative proteomics identified the activation of the ATM pathway,
171  promoting cell survival despite high dose sorafenib (26). Here, we have expanded these
172 studies by developing a human FLT3-ITD AML cell line (MV4-11) model of adaptive resistance
173 to type Il TKls by treating cells with increasing sorafenib doses (0 nM - 1280 nM)
174  (Supplementary Figure S1). Next generation sequencing (NGS) was performed on the
175  sorafenib resistant cell line, identifying the acquisition of a point mutation in residue 842 in the
176  second TKD (TKD2), resulting in the substitution of tyrosine (Y) for cysteine (C), thus

177  generating a double mutant FLT3-ITD/Y842C receptor (Supplementary Table S2).
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178 Treatment of these cells with type Il TKIs sorafenib (Figure 1A) and quizartinib (Figure
179  1B), resistant cells showed an 80-fold (p=0.0003; area under the curve (AUC) 2-fold,
180 p<0.0001), and 881.5-fold (p=0.004; AUC 3.7-fold, p<0.0001) increase in ICso compared to
181 FLT3-ITD sensitive cell lines, respectively (Supplementary Table S3). Consistent with
182  previous reports of TKD2 mutations (22), these TKI resistant cells (FLT3-ITD/Y842C) showed
183  increased sensitivity to type | TKIs midostaurin (ICsy 0.50-fold, p=0.01; AUC 0.73-fold, p=0.01)
184  (Figure 1C), and crenolanib (ICso 0.90-fold, p=0.04; AUC 0.85-fold, p=0.02) (Figure 1D)
185 compared to the sensitive cells (Supplementary Table S3). No increase in Annexin V/PI
186  staining was seen in TKI resistant cells treated with either sorafenib (mean viability = 88.2%)
187  or quizartinib (mean viability = 85.9%). In contrast, treatment with the type Il TKIs midostaurin
188 (mean viability = 69.4%, p < 0.0001) or crenolanib (mean viability = 38.2%, p < 0.0001)
189  promoted cell death. This effect was particularly notable in resistant cells compared to FLT3-

190 ITD sensitive cell lines (p < 0.0001) (Figure 1E-F; Supplementary Table S4).

191

192  Acquisition of FLT3-TKD2 mutations impact sorafenib and quizartinib binding

193 FLT3 is a 993 amino acid receptor tyrosine kinase with five immunoglobulin-like
194  extracellular domains, a transmembrane domain, a cytoplasmic juxtamembrane (JM) domain,
195 and two intracellular tyrosine kinase domains (TKD) (Figure 2A) (4). FLT3-ITD mutations
196 disrupt the JM domain's auto-inhibitory function, switching the receptor to its active
197  conformation without FLT3L binding (31). To understand type Il TKI resistance due to TKD2
198  point mutations, we performed in silico mutagenesis of the FLT3-TKD activation loop (aa 829
199 - aa 858) and analysed sorafenib and quizartinib binding (Figure 2B-E). Our resistance model
200 includes ITD and a Y842C mutation in the second TKD (Supplementary Table S2). Both D835
201 and Y842 are within the activation loop and are inaccessible during auto-inhibitory
202  conformation (Figure 2B-D) (9, 32). Type Il TKls (sorafenib and quizartinib) bind to the ATP-
203  binding pocket of inactive FLT3 (yellow) (Figure 2B), while the active conformation sterically

204  blocks binding due to phenylalanine 855 (F855) in the ‘back pocket’ (Figure 2D).
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205 Studies show that D835 and Y842 mutations cause loss of key hydrophobic and
206  hydrogen bond interactions, destabilising the auto-inhibitory conformation and promoting the
207  active loop, reducing drug affinity, especially with ITD mutations (9). ChemPLP binding affinity
208  scores from in silico modelling (25) indicated reduced binding efficiency for quizartinib and
209  sorafenib with TKD mutations. For FLT3-ITD/TKD-Y842C resistant cells, quizartinib binding
210 decreased from 83.28 (ITD alone) to 78.17 (with Y842C), and sorafenib binding from 62.52 to
211 57.51 (Figure 2E). Thus, TKD point mutations decrease drug binding affinity by altering the

212 activation loop conformation (Figure 2C-D).

213

214 TKIl resistant cells carry an increased dependency on DNA damage and repair pathways for

215 survival

216 Differential signalling pathway analysis in resistance to type Il TKls, we performed by
217  global, quantitative phosphoproteomics (n=3 independent biological replicates per cell line).
218  Here we identified 1,469 unique phosphoproteins and 6,645 unique phosphorylated peptides
219 (FDR 1%), with 1,335 phosphopeptides (20.1%) shown to be significantly altered in resistant
220  cells to sensitive (p<0.05). Two major clusters were shown to be differentially regulated in
221  resistance (log. £ 0.5, p<0.05) (Figure 3A; Supplementary Table S5). Alterations in cell death
222 and survival (p<0.01), and DNA replication, recombination and repair (p<0.009) were identified
223  amongst the molecular and cellular functions modified by differential phosphorylation in both

224  clusters (Figure 3B; Supplementary Table S6).

225 Indeed, constitutive DNA damage and repair (DDR) has previously been found to
226  contribute to disease progression and therapeutic response in haematological malignancies,
227  including FLT3-mutant AML (33). Analysis of the phosphorylation changes in resistant vs
228  sensitive cells in DDR proteins identified BRCA1 (logio p=6.82), ATM (logio p=6.57), and
229  Nucleotide excision repair (NER) (logio p=6.26) pathways as the top 3 DDR-associated

230  signalling pathways in resistance (Figure 3C; Supplementary Table S7) corroborating studies
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231  of resistance signalling in FLT3-ITD/D835V/Y mutations (26). Accordingly, Kinase-Substrate
232 Enrichment Analysis (KSEA) predicted the key DDR kinases, DNA-dependent Protein Kinase
233  PRKDC (DNA-PK; z-score = 1.99, p=0.02), and ATM kinase (z-score= 1.01), to be increased
234 in activity in TKI resistant cells with a positive z-score indicating activation (Figure 3D;
235  Supplementary Table S8). Protein-protein interaction analysis of DDR kinases identified by
236 KSEA with a positive z-score (indicating activation) revealed four separate nodes of kinase
237  interaction, predominantly connected through the ATM kinase (Figure 3E), validated by
238 immunoblotting (Figure 3F). Increase in phosphorylation of the key DNA damage marker
239 H2AX (S139) was seen in resistant cells (p=0.006) (Figures 3F-G), so we analysed the
240  phosphoprotein changes in key proteins regulating ATM-driven DDR signalling (logz £ 0.5)
241 (Figure 3H, Supplementary Table S9), including the Double-Strand Break (DSB) repair protein
242 MRE11 (S688; S689; p=0.03), whereas its DNA repair inhibitory site (S649) was significantly
243  decreased in phosphorylation (p=0.01). Increased phosphorylation of the activating sites of
244  DNA-PK, S2612 (log. fold=2.4) and S2609 (log. fold=1.3), as well as cellular tumour antigen
245  p53, S392 (log. fold=0.5), were also identified via phosphoproteomics (Figure 3H) and

246 confirmed via immunoblotting (Figure 3F).

247

248  TKIl resistant cells show decreased cell growth and proliferation

249 Alterations in cell cycle regulation were significantly overrepresented in the cluster with
250 decreased phosphorylation in resistant cells (Figure 3B; Supplementary Table S6). IPA
251  analysis predicted significant associations between phosphorylation changes in TKl-resistant
252  cells and G2/M (log10 p=4.58) and G1/S (log10 p=3.29) cell cycle checkpoint regulation
253  (Figure 3C; Supplementary Table S7). Given that cell cycle checkpoint activation controls DDR
254  response (34), we assessed growth profiles of FLT3-ITD sensitive and resistant cell lines using

255  cell proliferation (Figure 31-J) and cell cycle (Figure 3K) assays.
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256  Resistant cells displayed a 1.36-fold decrease in cell proliferation at the 48-hour timepoint
257 compared to sensitive cells (p=0.02) (Figure 3I-J). Flow cytometry analysis showed
258  differences in all cell cycle phases between sensitive and resistant lines, with a higher
259  percentage of resistant cells in the S phase at 24 and 48 hours (p=0.01), and in the G2/M

260 phase at 72 hours (p=0.03) (Figure 3K; Supplementary Table S10).

261

262  High ATM expression associated with worse overall outcomes in in paediatric AML and FLT3-

263 mutant adult AML

264 To assess the clinical relevance of ATM expression in AML, we examined ATM
265  expressionin adult FLT3-ITD mutant patients at diagnosis and paediatric patients at diagnosis,
266  progression, and relapse, using data from the Beat AML and Therapeutically Applicable
267 Research to Generate Effective Treatments (TARGET) databases (33,34). In FLT3-ITD AML
268  patients, high ATM expression is associated with shorter median overall survival (OS)
269 compared to low ATM expression (n=68; p=0.019; 95% CI=1.1886 log-rank) (Figure 4A).
270  Among paediatric patients, high ATM expression is linked to shorter event-free survival
271 (n=239; p=0.012; 95% CI=1.1489 log-rank) (Figure 4B), shorter OS (p=0.013, 95% CI=1.565
272 log-rank) (Figure 4C), and shorter OS at relapse (n=125, p=0.048, 95% CI=1.552 log-rank)
273 (Figure 4D). Increased ATM expression was observed at relapse compared to diagnosis

274  (n=242, p=0.0015, Two-Tailed Welsch T-Test) (Figure 4E).

275 To evaluate the sensitivity of paediatric AML cells treated with the clinically relevant
276  brain-penetrant ATM inhibitor WSD-0628, we exposed standard-of-care sensitive (SOC)
277  sensitive and resistant AML cells (cytarabine and daunorubicin) for 48 h and measured
278  viability. Both SOC sensitive and resistant cells demonstrated high sensitivity to WSD-0628,
279  however, SOC-resistant cells were significantly more sensitive than SOC-sensitive cells

280  (p<0.0001, Two-Way ANOVA) (Figure 4F).

281
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282  Type Il TKI resistant cells reside in a state of high-level oxidative stress and oxidative DNA

283  damage

284 Activation of DDR pathways, including ATM signalling, is triggered by the presence of
285 DNA DSBs (35) commonly caused by excessive levels of ROS, considered a driver of disease
286  progression in FLT3-mutant AML (29, 36, 37). Additionally, FLT3 inhibition itself is reported to
287  result in the accumulation of ROS, consequently activating ATM signalling to maintain redox
288  homeostasis (38). Commensurate with SOC resistant AML cells and patients (36, 37, 39),
289  TKl-resistant cells showed increased cytoplasmic superoxide (DHE positive fluorescence)
290 compared to sensitive cells, with a 1.93-fold increase in ROS levels (p=0.004) (Figure 5A-B).
291  We next tested cell proliferation following treatment with the ROS scavenger N-Acetylcysteine
292 (NAC, 1.25-20 mM). TKiI-resistant cell lines showed significantly higher proliferation rates in
293 20 mM NAC (p=0.03) (Figure 5C). Phosphoproteomic analysis of ROS-associated canonical
294  pathways in resistant cells identified significant increases in the ERK/MAPK (log10 p=8.9),
295 PI3K/AKT (log10 p=3.5), and NRF2-mediated oxidative stress response (log10 p=1.45)

296  pathways (Figure 5D).

297 Based on these data, we assessed whether the increased levels of ROS could result
298 from differences in the expression of the NADPH oxidases (NOX2/4). Indeed,
299  phosphoproteomic analysis identified ELF1 and IRF8 transcription factors as differentially
300 phosphorylated in resistance, responsible for the transcriptional regulation of NOX2 and its
301  associated subunits (Figure 5E) (40). Consistent with these findings, NOX2 and NOX4 protein
302 expression showed increased expression in TKI resistant cells (Figure 5F). Finally,
303 assessment of DNA damage in resistant cells revealed similar levels of DNA fragmentation in
304 FLT3-ITD sensitive and TKI resistant cells under normal conditions. However, blocking DNA
305 repair via inhibition of ATM using WSD-0628, resulted in a significant increase in DNA
306 fragmentation in TKI resistant cells (3.8-fold, p=0.008) (Figure 5G). Similarly, blocking DNA
307 repair through the pharmacological inhibition of ATM led to a significant increase in oxidative

308 DNA damage in resistance, indicated by the presence of the oxidized DNA nucleoside
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309 guanosine (8-OHdG) (Figure 5H). Equally, molecular inhibition of ATM (Figure 5I) led to a
310 significant increase in oxidative DNA damage, analogous to that seen with WSD-0628

311  treatment, restricted to TKI resistant cells (Figure 5H).

312

313  ATM inhibition reduced cell proliferation in vitro and increased survival in vivo

314 To assess the therapeutic potential of targeting DDR signalling following the
315 development of adaptive resistance to type Il TKls, we performed cytotoxicity analysis of
316  FLT3-ITD sensitive and TKI resistant cells using the DNA-PK inhibitor peposertib (formerly
317  known as M3814), ATM inhibitor KU-60019, and a second, more potent brain penetrant ATM
318 inhibitor, WSD-0628, as single agents (Supplementary Figure S3A-C). Both FLT3-ITD
319 sensitive and TKI resistant cell lines responded to DNA repair inhibition to all three single
320 agents. Treatment with peposertib (Supplementary Figure S3A) and KU-60019
321 (Supplementary Figure S3B) did not show significant differences in sensitivity between FLT3-
322 ITD sensitive and TKI resistant cells, even in the micromolar dose range. However, Both TKI
323  sensitive and resistant cells showed nanomolar sensitivity to WSD-0628, with TKI resistant
324  cells significantly more sensitive (ICso 116.5 nM TKI resistant; ICso 183.1 nM FLT3-ITD
325  sensitive; AUC resistant vs sensitive 0.60-fold, p=0.003) (Figure 6A-C, Supplementary Figure
326 S3C). We assessed the response of TKI resistant cells to WSD-0628 alone, and in
327  combination with the type Il TKls sorafenib or quizartinib (Figure 6A-C, Supplementary Figure
328 S3D, E). The combination of sorafenib with WSD-0628 (sorafenib 31.2 nM + WSD-0628 125
329 nM) significantly decreased cell proliferation by 1.8-fold (p=0.0008) compared to treatment
330  with sorafenib alone (Figure 6A, Supplementary Figure S3D). A similar response was seen for
331  quizartinib (quizartinib 12.5 nM + WSD-0628 125 nM), with a 1.6-fold reduction (p<0.0001)
332  (Figure 6B, Supplementary Figure S3E). Drug combinations were then assessed for
333  synergistic interactions via the computational synergy analysis BLISS, however, both
334  combinations only showed additive effects (Bliss score WSD-0628 + sorafenib: 4.09; Bliss

335 score WSD-0628 + quizartinib: 4.68) (Supplementary Figure S3F, S3G, respectively) (41)
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336  (Figure 6A-B). Consistently, treatment with WSD-0628 alone and in combination with
337  sorafenib, or quizartinib, promoted significant levels of cell death compared to the untreated
338 controls and either sorafenib or quizartinib alone (mean viability = 56.1%, p=0.0001 and

339  51.4%, p<0.0001 respectively) (Figure 6C, Supplementary Table S11).

340 To evaluate the downstream signaling response to WSD-0628 alone or in combination,
341 changes in ATM kinase and associated DNA damage and repair proteins were assessed via
342  immunoblotting. ATM auto-phosphorylates at S1981 in response to DNA damage (35), and
343  promotes chromosome relaxation by phosphorylating KAP1 at S824 (42). Phosphorylation
344  induces KAP1 co-localisation with yH2AX at damage sites, facilitating homologous
345 recombination (HR) and non-homologous end joining (NHEJ) repair (42, 43). Treatment with
346 WSD-0628 alone or combined with TKls decreased phosphorylation of ATM (S1981) and

347 H2AX (S139) in TKl-resistant cells, while TKI treatment alone did not (Figure 6D).

348 To evaluate the anti-AML potential of ATM inhibition, we engrafted NOD-Rag1™"
349  IL2rg™" (NRG) mice with luciferase transduced MV4-11 FLT3-ITD model of adaptive
350 resistance to type Il TKls. Mice were randomised on detection of BLI and treated with vehicle,
351  WSD-0628, sorafenib, quizartinib, or WSD-0628 combined with either sorafenib or quizartinib
352  (Figure 6E-J). After 4 weeks, leukaemia burden (BLI) significantly decreased in mice treated
353  with WSD-0628 alone (p=0.02) and combined with sorafenib (p=0.04), but not with sorafenib
354  alone (Figure 6E-F). Sorafenib monotherapy did not extend survival compared to the vehicle
355 group (59 days vs. 56.5 days) (Figure 6G). Mice treated with WSD-0628 monotherapy
356  survived longer than both the vehicle group (70.5 days vs. 56.5 days, p=0.006) and the
357 sorafenib group (70.5 days vs. 59 days, p=0.02). WSD-0628 combined with sorafenib
358  significantly extended survival compared to the vehicle (68 days vs. 56.5 days, p=0.003) and
359  sorafenib groups (68 days vs. 59 days, p=0.03), but not compared to WSD-0628 monotherapy

360 (68 days vs. 70.5 days) (Figure 6G).

361 Next, we evaluated the effects of WSD-0628 and quizartinib as monotherapies, and in

362  combination. After 4 weeks, mice treated with WSD-0628 alone (p=0.03) and in combination
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363  with quizartinib (p=0.01) showed a significant reduction in leukaemia burden, whereas those
364 treated with quizartinib alone did not (Figure 6H-I). Quizartinib monotherapy did not extend
365  survival compared to controls (74 vs. 71 days). In contrast, WSD-0628 alone significantly
366  extended survival (86.5 vs. 71 days, p=0.009). The combination of WSD-0628 and quizartinib
367 further extended survival compared to vehicle- (90 vs. 71 days, p=0.0003) and quizartinib-
368 treated groups (90 vs. 74 days, p=0.03), but not significantly compared to WSD-0628 alone
369 (90 vs. 86.5 days) (Figure 6J). After 120 days, 50% of mice treated with the combination

370 showed no signs of leukaemia (Figure 6J).

371 To assess if ATM inhibition promotes similar responses in in vivo models of FLT3-ITD
372 TKI sensitive models MV4-11 FLT3-ITD cell lines were engrafted and treated with vehicle,
373 WSD-0628, or sorafenib (Supplementary Figure S4). After 4 weeks, sorafenib alone
374  significantly reduce leukaemia burden (p=0.0167) compared to vehicle controls. WSD-0628
375 did not significantly reduce BLI radiance over 4 weeks but stalled leukaemia progression,
376  showing a significant decrease after 5 weeks (p=0.0347) (Supplementary Figure S4A).
377  Sorafenib significantly extended survival (53 vs. 40 days, p=0.0155), as did WSD-0628

378  monotherapy (55 vs. 40 days, p=0.0006) (Supplementary Figure S4B).

379

380 DISCUSSION

381 The development and approval of TKls targeting FLT3 have improved treatment
382 strategies for FLT3-ITD AML patients. Currently, two TKIs, midostaurin and quizartinib, are
383  FDA-approved for use with induction chemotherapy in newly diagnosed FLT3-mutant AML.
384  Additionally, sorafenib is often used off-label post allo-HCT or following resistance in relapsed
385 FLT3-ITD AML patients who have also received gilteritinib salvage treatment (16). For the
386 treatment of pAML, sorafenib is the most extensively studied first-generation FLT3 inhibitor
387  (44), with reports showing it can be safely combined with standard of care chemotherapy to

388  improve outcomes in high allelic ratio (HAR) (AR > 0.4) FLT3-ITD pAML (AAML1031) (17).
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389 However, relapse following TKls remains a challenge, and the lack of alternative
390 treatments for patients who only transiently respond to current FLT3-targeted therapies
391 contributes to low survival rates. Here, we present a comprehensive phosphoproteomic
392  analysis of FLT3-ITD AML resistant to type Il TKIs, sorafenib and quizartinib. We found that
393 ROS-driven DDR signaling, particularly through ATM regulation, is overactivated in TKI-
394  resistant cells, promoting survival despite treatment. This study identifies key factors
395  controlling TKI-resistant cell survival, providing crucial information for designing patient-

396  specific therapies targeting both common and divergent oncogenic signaling pathways.

397 Our phosphoproteomics analysis revealed that ATM-driven DNA repair signalling is
398  crucial for cell survival and therapy resistance in FLT3-ITD/TKD cells. The DDR pathway,
399 activated by endogenous DNA damage often caused by ROS, is a key factor. High ROS levels
400  drive progression in FLT3-ITD AML (29, 36, 37). We confirmed that TKl-resistant cells produce
401 more ROS than TKi-sensitive cells due to increased NOX2/4 protein expression, indicating a
402 redox imbalance that aids survival. This pattern is also seen in AML patients resistant to SOC
403  (37). Reducing ROS increased the proliferation of resistant cells, suggesting less reliance on

404 DDR response and more energy for proliferation.

405 Acute FLT3 inhibition induces ROS accumulation, activating ATM signalling to
406  maintain redox homeostasis (48). We observed increased phosphorylation of histone H2AX
407  (YH2AX pSer139), ATM (S1981), and DNA-PK (S2609, S2612) kinases in resistant cells,
408  highlighting their role in DDR signalling regulation (45). Inhibiting ATM in TKI-resistant cells
409  significantly increased DNA fragmentation and oxidative DNA damage, which did not occur in
410 TKlI-sensitive cells. This underscores the importance of enhanced DNA repair via ATM for cell
411  survival under oxidative stress in TKl-resistance, presenting a novel therapeutic vulnerability

412  in TKI resistance and as a salvage therapy post-TKI failure.

413 In the current clinical management of leukaemia, minimal residual disease (MRD)
414  detection provides critical insight into the remission status of patients and has significantly

415  contributed to the overall improvement in survival rates (46). However, pAML patients with
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416  higher MRD-positive rates after standard induction therapies are at an increased risk of
417  relapse and have worse overall survival (47). Importantly, we identified that pAML patients
418  with high-level expression of ATM fare significantly worse across all disease settings than

419  those with low ATM expression.

420 Increased activity and expression of NOX enzymes responsible for high oxidative
421  stress in high-risk AML are well-documented, but therapeutic targeting remains challenging
422 (37, 48). Our findings suggest that ROS-mediated ATM signalling drives a constitutive DDR
423  feedback loop that sustains cell survival under ROS-induced stress (38, 48), presenting an
424  exciting therapeutic opportunity. Given the interest in ATM kinase inhibitors across various
425  cancers (49), we evaluated ATM inhibition as a strategy against SOC- and FLT3-ITD/TKD-
426  resistance. Treatment with the clinically relevant ATM inhibitor WSD-0628, alone and in
427  combination, successfully reduced resistant cell proliferation in vitro and decreased
428  phosphorylation of ATM kinase and yH2AX, critical for DSB repair fidelity (43). In vivo, ATM
429 inhibition reduced leukaemia burden and significantly increased survival of mice engrafted
430 with TKl-resistant cells, either as a single agent or in combination with TKls sorafenib and

431  quizartinib.

432 Clinically, WSD-0628 is being tested with radiation therapy for glioblastoma
433  (NCT05917145), and new studies are underway for paediatric diffuse midline gliomas. Our
434  data suggest that ATM inhibition could be a valuable addition to standard induction therapies,
435 used in consolidation, or as a salvage therapy at relapse in R/R FLT3-mutant AML. This
436  approach may address the high MRD-positive rates and poor outcomes associated with high
437  ATM expression, providing a novel and promising therapeutic strategy for improving patient

438 survival.

439 Word count: 4020
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783  FIGURE LEGENDS

784  Figure 1. Comparison of tyrosine kinase inhibitor (TKI) sensitivity of MV4-11 FLT3-ITD
785  cell lines. (A-D) Drug-response for FLT3-ITD sensitive and FLT3-ITD resistant cell lines was
786  assessed using resazurin cell proliferation assays and area under the curve (AUC) was
787  calculated and compared following treatment with type | and type Il TKls as single agents.
788  Treatment with type Il TKIs (A) sorafenib and (B) quizartinib confirmed FLT3-ITD adaptive
789  resistance, whereas sensitivity was maintained following treatment with type | TKis (C)
790  midostaurin, and (D) crenolanib. Cell proliferation was assessed by resazurin fluorescence
791  following 48-hour treatment (unpaired t-test with Welch’s correction; n=3 independent
792  biological replicates). (E) Apoptosis and cell death was assessed via Annexin V/P| assay
793  following 48-hour treatment with TKI’s as single agents in FLT3-ITD sensitive and FLT3-ITD

794  resistant cell lines. Viable cells (Annexin V/PI negative) plotted as mean +/- SEM (ordinary
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795 one-way ANOVA; n=3 independent biological replicates). (F) Representative FACS image
796  analysis indicating differences in cell death (Pl) and apoptosis (Annexin V) after 48-hour

797  treatment with Type | or Il TKIs. Significance threshold of *p<0.05, **p<0.01 and ***p<0.001

798  Figure 2. Structural features of active and inactive FLT3/TKD conformations and
799 consequences for TKI binding. (A) A composite schematic of the FLT3 dimer bound to its
800 ligand (FLT3L) (extracellular domain - PDB: 3QS9, transmembrane and TKD — AF-P36888-
801  F1). (B) Structural overlay of the predicted active conformation for the FLT3 activation loop
802 induced by the ITD mutation, highlighting differential locations of D835 (purple) and Y842
803  (green) residues with respect to the binding locations of sorafenib. Orange represents the
804  active loop conformation whereas the inactive conformation is highlighted in yellow. (C) Active
805  TKD confirmation demonstrating preferred docking poses of sorafenib and quizartinib. Both
806 D835 (purple) and Y842 (green) residues, in the active confirmation, can influence the binding
807  pocket. (D) Docking poses of sorafenib in both the active (black) and inactive (pink) FLT3-TKD
808  conformations. The presence of D835 and Y842 mutations compromises the stability of the
809 inactive TKD1 conformation, promoting activation. In the activated conformation, F855
810 (represented by the orange sphere) blocks the ability for sorafenib to anchor in its deep cleft
811  (pink), causing it to bind superficially in the ATP pocket region (black). (E) Binding scores
812  (ChemPLP) of type Il TKI's quizartinib and sorafenib to discreet double mutant FLT3 receptor
813  models (higher score = better fit). Cell lines used throughout are indicated by green highlight

814  (MV4-11 resistant) and pink highlight (MV4-11 sensitive).

815 Figure 3. Phosphoproteomic analysis reveals overactivation of DNA damage and repair
816 (DDR) signalling in FLT3-ITD resistant cells. (A) ldentification of two independent
817  phosphosite clusters in resistance. Heatmap (left) and cluster profile (right) of the precursor
818 ion abundances for significantly up/down regulated phosphosites in three independent
819 replicates (logz +0.5; p<0.05). Yellow represents increased phosphorylation, whereas blue
820 indicates phosphorylation is decreased in TKI resistant cells. (B) Molecular and cellular

821  functions identified by Ingenuity Pathway Analysis (IPA) have been assigned to each cluster
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822  if significantly over-represented by phosphopeptides. (C) DNA damage and repair (DDR)
823  canonical pathways identified by IPA as significantly associated with phosphorylation changes
824  seen in FLT3-ITD resistant cells compared to sensitive cell lines. (D) Activity prediction for
825 DDR kinases based on phosphorylation changes in substrates identified by Kinase-Substrate
826  Enrichment Analysis (KSEA). (E) Protein-protein interaction network for DDR kinases
827 identified by KSEA with a positive z-score in resistance (https://string-db.org/). (F) Western
828  blot analysis further validated the increased expression and phosphorylation of DNA-PK
829 (S2612), ATM (S1981), p53 (S392), and phospho-H2AX (S139) in resistance. (G) Phospho-
830 H2AX (S139) western blotting data was quantified using Image Lab software and presented
831 as a column graph comparing mean values + SEM (n=3 independent biological replicates).
832 Data was analysed by unpaired Student’s t-test. (H) Phosphorylation changes in key DDR
833  signalling proteins identified by mass spectrometry. Values correspond to median log. fold
834 change in FLT3-ITD resistant cells compared to FLT3-ITD sensitive cell lines (logz £0.5; n=3
835 independent biological replicates). (I) Cell number based on relative cell count of FLT3-ITD
836  sensitive (pink) and FLT3-ITD resistant (green) cell lines. Values at timepoints 0-, 24-, and 48-
837 hours are shown (n=3 independent biological replicates). (J) Comparison of growth
838 advantages of FLT3-ITD sensitive and FLT3-ITD resistant cell lines based on 48-hour fold
839 change in cell density relative to day 0. Mean of triplicates £+ SEM are shown. (K) Flow
840 cytometry cell cycle analysis after staining with propidium iodide (PI). Cell cycle phase
841  distribution shows the percentage of FLT3-ITD sensitive and FLT3-ITD resistant cells in the
842 GO0/G1, S, and G2/M phases of cell cycle at 24-, 48-, and 72-hour timepoints (n=3 independent
843  biological replicates). Representative histogram of cell cycle profiles at 24-hours. Mean of

844  triplicates £ SEM are shown. Significance threshold of *p<0.05, **p<0.01 and ***p<0.001.

845  Figure 4. Analysis of publicly available survival and expression data stratifies patients
846 based on ATM expression. (A) Patient data from BEAT AML Vizome database were
847  downloaded and expression values (TPM) as well as clinical information were obtained for 68

848  FLT3-ITD adult AML patients. Patients were separated into high and low ATM expression as
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849  determined by TPM value where high expression referred to the top 25% of patients and low
850 expression the bottom 25% of patients (Q1/Q4 split). Survival analysis was then performed
851 using the Kaplan-Meier model and the Log-rank, Mantel-Cox statistical test used to compare
852  overall survival at diagnosis. Next, the Therapeutically Applicable Research to Generate
853  Effective Treatments (TARGET) initiative, phs000465, was downloaded and again expression
854  values (TPM) as well as clinical information were obtained for 285 paediatric AML patients.
855  (B) Event free survival and (C) overall survival in all paediatric AML (pAML) cases, and (D)
856  overall survival in the relapse setting. (E) ATM expression (Log, TPM) was then compared
857 across all AML patients from the TARGET database segregated by diagnosis or relapse
858  subtype. Students t-test was performed for statistical comparison. (F) Resazurin proliferation
859  (percentage compared to untreated) assays of FLT3-ITD sensitive and FLT3-ITD DNR
860 (daunorubicin) and Ara-C (cytarabine) resistant cell lines after 48-hour exposure to 25 yM
861  AraC or 250 nM WSD-0628 (minimum of n=3 independent biological replicates). Significance

862 threshold of *p<0.05, **p<0.01 and ***p<0.001 (Two-Way ANOVA).

863  Figure 5. FLT3-ITD resistant cells display higher levels of reactive oxygen species
864 (ROS) in comparison to FLT3-ITD sensitive cell lines. (A) Flow cytometry histogram
865  overlay of cytoplasmic ROS (superoxide) levels in FLT3-ITD sensitive (pink), and FLT3-ITD
866  resistant (green) cell lines. ROS levels were assessed by DHE-PE fluorescence and analysed
867 using FlowJo software. (B) Geometric means were used for ROS quantification and fold
868  change comparison, presented as a column graph as mean values £+ SEM (n=3 independent
869  biological replicates). (C) Analysis of cell proliferation for FLT3-ITD sensitive and FLT3-ITD
870 resistant cells in increasing concentrations of ROS scavenger NAC. Cell proliferation was
871 assessed by resazurin assay following 48-hour treatment (n=3 independent biological
872  replicates). Mean of triplicates £+ SEM are shown. (D) ROS-associated canonical pathways
873 identified by Ingenuity Pathway Analysis (IPA) as significantly associated with phosphorylation
874  changes seen in FLT3-ITD resistant cells compared to FLT3-ITD sensitive cell lines. (E)

875  Phosphorylation changes in NOX2 transcription factors ELF1 and IRF8 in FLT3-ITD resistant
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876 cells compared to FLT3-ITD sensitive. (F) Western blotting reveals increased protein
877  expression of NADPH oxidase isoforms NOX2 and NOX4 in resistance. (G) ICC quantification
878  of DNA fragmentation (TUNEL-positive) in FLT3-ITD sensitive and FLT3-ITD resistant cells in
879  untreated conditions and after 48-hours treatment with 250 nM of the ATM inhibitor WSD-
880 0628. (H) ICC quantification of oxidative DNA damage (8-OHdG-positive) in FLT3-ITD
881  sensitive and FLT3-ITD resistant cells carrying knockdown (K.D) of ATM, scramble control or
882  treated for 48-hour with 250 nM WSD-0628. Significance threshold of *p<0.05, **p<0.01 and

883  ***p<0.001 (n=3 independent biological replicates).

884  Figure 6. Sensitivity to ATM inhibition alone and in combination with FLT3 inhibitors.
885  Resazurin proliferation (percentage compared to untreated) of FLT3-ITD resistant cell lines
886  after 48-hour exposure to WSD-0628 alone, and in combination with FLT3 inhibitors (A)
887  sorafenib and (B) quizartinib. Values shown as mean + SEM (n=3 independent biological
888  replicates). (C) Annexin V/PI apoptosis assay following 48-hour exposure to TKI as single
889  agents or in combination with WSD-0628 in FLT3-ITD resistant cell lines. Values presented
890 as mean x SEM (ordinary one-way ANOVA; n=3 independent replicates). (D) Phosphorylation
891 changes in proteins regulating the activation of DNA damage and repair following treatment
892  with ATM inhibitor alone, and in combination with sorafenib, or quizartinib, measured by
893  Western blotting. (E-J) MV4-11 FLT3-ITD resistant cell lines were injected into the lateral tail
894  vein of NOD-Rag1null IL2rgnull (NRG) mice. Treatment commenced once BLI reached a
895 mean radiance of 1 x 10 p/s. Sorafenib, quizartinib, and WSD-0628 were administered once
896  daily for 4 weeks. (E-F) In vivo monitoring of leukemia burden using bioluminescence BLI
897 imaging over time (representative BLI images presented, shaded area indicates treatment
898 time) of mice treated with WSD-0628, sorafenib or the combination. (G) Kaplan-Meier survival
899  analysis of MV4-11—Luc+ FLT3-ITD resistant cells (n= 8 mice per group, shading indicating
900 treatment duration) treated with WSD-0628, sorafenib, or combination (Log-rank, Mantel-
901  Cox). (H-I) Monitoring of leukemia burden in the second study using bioluminescence BLI

902 imaging over time (representative BLI images presented, shaded area indicates treatment
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time) of mice treated with WSD-0628, quizartinib or the combination. (J) Kaplan-Meier survival

analysis of MV4-11-Luc+ FLT3-ITD resistant cells (n= 8 mice per group, shading indicating

treatment duration) treated with WSD-0628, quizartinib, or combination (Log-rank, Mantel-
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