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Abstract

Characterizing the dynamics of microbial community succession in the infant gut microbiome is
crucial for understanding child health and development, but no normative model currently exists.
Here, we estimate child age using gut microbial taxonomic relative abundances from
metagenomes, with high temporal resolution (+3 months) for the first 1.5 years of life. Using
3,154 samples from 1,827 infants across 12 countries, we trained a random forest model,
achieving a root mean square error of 2.61 months. We identified key taxonomic predictors of
age, including declines in Bifidobacterium spp. and increases in Faecalibacterium prausnitzii
and Lachnospiraceae. Microbial succession patterns are conserved across infants from diverse
human populations, suggesting universal developmental trajectories. Functional analysis
confirmed trends in key microbial genes involved in feeding transitions and dietary exposures.
This model provides a normative benchmark of “microbiome age” for assessing early gut
maturation that can be used alongside other measures of child development.
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76 Introduction

77  The human gut microbiome is a complex ecosystem consisting of diverse microorganisms that
78 interact with each other and form tight partnerships with their host. These are crucial for several
79  physiological processes, including digestion, metabolism, and immune function®. The first major
80 colonization event of an infant’s gastrointestinal tract happens at birth, and microbial succession
81  continues over the first few years of life?*. Age-dependent aspects of this succession are

82  shaped by a combination of natural history and environmental exposures, such as breastfeeding
83  behavior and the introduction of solid food*®°. Altered colonization events, especially in early life,
84  may have significant implications on a child’s health, including the development of inflammatory
85 disorders (e.g., allergies and asthma), metabolic disease (e.g., diabetes), neurocognitive

86  outcomes, and other chronic conditions®’.

87  Specific microbial taxa tend to proliferate at different stages during early infancy?®. Initial

88  gastrointestinal tract colonizers include microorganisms capable of metabolizing human milk
89 oligosaccharides or scavenging simple molecules®. The later introduction of a solid, complex
90 and diverse diet brings opportunity for more fastidious colonizers and a more diverse

91 community®. Recurring patterns of colonization and microbial succession across different life
92 stages, from birth to late life and death!='5, have shown consistent links between chronology
93 and microbiome development.

94  These chronology-based approaches have been used to describe the phenotypic implications of

95 an underdeveloped gut microbiome. Studies suggest that when the gut microbial community

96 does not match the expected stage for a child's age, there can be significant health

97  associations, particularly with growth and immune function'®'?. This underdevelopment may

98 respond to and contribute to a cycle of poor health and malnutrition, potentially affecting various

99 aspects of the child’s physiology and behavior'®!®. To measure this temporal mismatch, two
100 things are necessary: a reference developmental trajectory of the gut microbiome in early life
101  and a way to measure a subject’s deviation from such trajectory. One possible solution is to
102 develop age estimation models using gut microbial communities sequenced across large and
103 diverse cohorts. Those models can be trained to accurately produce an estimate of host age
104 that can then be compared with the age at sample collection’. Following this approach, links
105 between model outputs and health outcomes in childhood have been reported in multiple
106  areas®*?,

107  Despite showing promise, existing age models face several challenges to be applied in early
108 childhood. Most existing models in this age range utilize data from 16S rRNA gene amplicon
109 sequencing to estimate gut microbiome maturation!’?2 but this provides only a limited taxonomic
110 resolution as closely related taxa are often binned together?*-%5, Most quantitative age models
111  focus on aging®-2° and span large age ranges that either exclude early childhood, or lack the
112  necessary temporal resolution to produce meaningful predictions within the first year of life.

113  Many models that account for early microbiome development with age do not produce a
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numeric age estimate, instead relying on unsupervised learning and qualitative predictions or
associations®. Models also tend to be trained on individual cohorts and not validated on
external populations, and cross-geographic analyses®32 have been lacking. In recent years,
shotgun metagenomic sequencing data has become available from appropriately powered and
diverse populations?, but these datasets have not yet been incorporated into multi-site age
models. Therefore, there is an opportunity and need to develop a comprehensive, global-scale
guantitative age model focused on early childhood.

Here, we present such a model for age estimation developed using gut microbial taxonomic
relative abundances, with high temporal resolution for the first 1.5 years of life. This model
incorporates a large and geographically diverse population, comprising 3,154 shotgun-
sequenced samples from 12 countries spanning Africa, Europe, Asia and America.

Results
Global metagenomes enable large-scale meta-analysis

We investigated developmental trajectories of the infant gut microbiome using a pooled dataset
combining 3,154 stool samples sequenced with shotgun metagenomic sequencing from 1,827
healthy individuals obtained from 12 studies. The metagenomes spanned 12 countries from 4
continents (Table 1, Fig. 1A). All samples that matched inclusion criteria (see Methods)
collected between ages 2-18 months (mean = 7.90 mo, SD = 3.99 mo) were incorporated into
the model, resulting in a slight overrepresentation of younger samples (ages 2-4 months, Fig.
1B, Supplementary Fig. 1). Building the analysis dataset from a wide array of global sources
enabled us to include a significant portion of data from low- and middle-income countries
(LMICs), representing approximately 46 % of our total sample pool. The 1kD Wellcome LEAP
effort contributed a total of 1,817 samples that have not been used previously in age-related
studies. 427 of those samples were collected by the Khula study in South Africa®® and have not
been published before. These 1kD-LEAP samples are slightly younger (mean = 6.86 mo, SD =
3.55 mo), and the majority (80.57 %) are from LMICs.

Harmonized computational processing provides a continuous diversity landscape

After processing all sequence data using the same bioinformatics pipeline (BioBakery V3, Fig.
1C), we pooled all community profiles for the downstream analyses. To quantify the variation in
gut microbial taxa associated with both age and data source, we used permutational analysis of
variance (PERMANOVA) accounting for those factors (Fig. 1D-E). Sample group (source) and
age explained 5.03% (p = 0.001) and 3.38% (p = 0.001) of the variance, respectively. In a
multivariable analysis combining both factors, age still explained 2.28% (p = 0.001) of the
variance after accounting for the data source contribution.

Pooled metagenomes predict age with high resolution
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To assess the predictive potential of gut taxonomic profiles for the chronology of gut
development, we trained a 5-fold cross-validated (CV) random forest (RF) model on features
derived exclusively from the community composition obtained from shotgun metagenomic
sequencing. Our inputs were the relative abundances of species present in at least 5% of
samples, alongside the a-diversity estimated as the Shannon index. After removing samples
with no reads assigned to at least one of the prevalence-filtered species, our analysis comprised
3,153 samples (~630 per fold) and 149 species. Our model targeted continuous age as a
univariate regression output and generated validation-set predictions that reach a root mean
square error of cross-validation (RMSECV) of 2.56 months (16.0% of the effective dynamic
range, 64.1% of output SD) and a Pearson correlation of 0.803 with the ground truth values, on
a 100x repeated 5-fold CV setting (Fig. 2A).

Changing taxa show feeding transitions and dietary exposures

To derive biological insight from the trained models, we analyzed the fitness-weighted variable
importances on the cross-validated models, producing a list of top predictive features (Fig. 2B).
The 35 highest ranking predictors (23.3% of inputs) were responsible for 70% of the cumulative
weighted variable importance. Among those, 25 (71.4%) were positively correlated with age
(mean Rge) = 0.18, SD = 0.12), with the remaining 10 (28.6)% negatively correlated to age
(mean Rge) = -0.11, SD = 0.07, Supplementary Fig. 2). a-diversity measured as the Shannon
index was the third most important predictor (4.86% of total importance, Rge) = +0.52, Fig. 2C).
All but one of the top predictive taxa (97%) were present in every major cohort (see Methods),
with only Roseburia intestinalis remaining undetected in the 1kDLEAP-M4EFaD samples.
Additionally, there were several examples of site-biased or site-specific importances. For
instance, Dorea longicatena and Dorea formicigenerans (Fig. 2D) were elevated in the South
African cohort, and Escherichia coli (Fig. 2E) was elevated in the Brazilian cohort. Most of the
top predictive taxa are species consistently prevalent across all cohorts, indicating that the
relevant predictors are robust indicators of age across diverse populations, overcoming
population-specific effects.

Across all cohorts, Faecalibacterium prausnitzii (Fig. 2F) and Anaerostipes hadrus were the
taxa with the greatest importance scores for age prediction, accounting for 17.3% of the total
weighted variable importance, together. Individually, those species positively correlate with age
in our dataset (respectively, +0.41 and +0.32). The opposite trend is observed in another key
group of predictors that include Bifidobacterium longum and Bifidobacterium breve (Fig. 2G),
with 2.2% combined importance, exhibiting negative prior correlations with age (respectively, -
0.14 and -0.14). The presence of certain species in the family Lachnospiraceae previously tied
to developmental outcomes, such as Ruminococcus gnavus and Blautia wexlerae®* is also
noteworthy as a cluster of high-importance predictors of age. The former follows the same trend
as the Bifidobacterium spp. (2.5% of total importance, Rge) = -0.063, p = 0.001), in agreement
with previous studies®.
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Learned gut microbial patterns generalize across different sites

To evaluate the generalizability of our model across different data sources and test the
predictive ability of each data source toward age, we performed a leave-one-datasource-out
cross-validation (LOOCYV) experiment. LOOCYV yielded an average RMSE of leave-one-out
cross-validation of 3.03 +- 0.63 months (Supplementary Table 1, Supplementary Fig. 3). We
hypothesized that this generalizability resulted from combined effects from abundance trends
and underlying prevalence trends (Fig. 2D-G, Supplementary Fig. 2). This would mean that
predictors would be important, in part, because they would appear and disappear from the infant
gut following similar trends, regardless of geographical origin.

By grouping a subset of our samples by location - Baltic countries, United States and South
Africa - and binning them by age (in months), we computed monthly prevalences for the 34 top
taxonomic predictors of gut chronology. Strikingly similar patterns of succession emerged
between all tested locations (Fig. 3), evidenced by whole-matrix mean prevalence correlations:
Baltic/lUSA = 0.799; USA/SA = 0.750; Baltic/SA = 0.749. This consistency suggests that many
of the succession patterns identified by our model are likely universal, transcending local
environmental influences.

Hierarchical cluster analysis of the binned prevalence time series revealed one large universal
cluster of species and succession patterns containing 18 (53%) of the top 34 taxonomic
predictors, which correlated highly between sites, along with smaller clusters of decentralized
patterns. Representatives of the larger, common core are species as mentioned above, such as
F. prausznitzii, positively correlated with the outcome on all three cases, alongside early
colonizers such as E. coli (1.3% of total importance, R = -0.25 with age), that follow the opposite
pattern consistently on the three sites. Among the divergent cluster, besides the aforementioned
Dorea genus (D. longicatena and D. formigicerans, 2.8% combined importance) in South Africa,
we identified taxa such as Prevotella copri (0.9% of total importance, R = +0.22 with age), which
exhibit distinct abundance and prevalence patterns between westernized and non-westernized
populations?®.

Enzyme changes in the first year corroborate prior studies

We hypothesized that, as was the case with taxonomic composition, the functional composition
in terms of microbial metabolic enzymes would change similarly between sites. Utilizing
longitudinal samples in the South African cohort, we measured the consistency of the direction
of EC abundance transitions between earlier and later samples from the same subject using a
Transition Score (TS, see Methods). We then selected the top hits in both directions - later
enrichment (highest scores) and later depletion (lowest scores), and stratified their abundances
into the corresponding top predictive taxa (Fig. 4).

The lowest-scored EC (decreasing on most subjects) was transaldolase (2.2.1.2), with a TS of -
0.84 and a variation of -86.74 + 11.46 counts per million reads (CPM). It is followed by
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succinate-CoA ligase (ADP-forming, 6.2.1.5) and pyridoxal kinase (2.7.1.35), both with a TS of -
0.81 and variations of -119.89 + 20.15 CPM and -67.40 + 11.44, respectively. The expanded list
of stratified ECs decreasing in abundance with age was dominated by functions associated with
B. longum, B. breve, R. gnavus and E. coli, consistent with the aforementioned depletion of
those species along the first year of life. That group of species and the highlighted functions
account for a consistent average fold change of -0.46 + 0.01 logio CPM between younger and
older samples.

The highest-scored ECs (increasing on most subjects) were [ribosomal protein S12]
(aspartate(89)-C(3))-methylthiotransferase (2.8.4.4, TS = +0.84, A = +53.89 £ 9.49 CPM), and
coproporphyrinogen dehydrogenase (1.3.99.22, TS = +0.79, A = +31.54 £ 5.18 CPM).
Stratification of the ECs that increase in abundance with age is more diverse, and contains ECs
assigned to a wider array of fastidious anaerobes: F. prausnitzii, A. hadrus, B. wexlerae, Blautia
obeum, D. longicatena and P. copri. Combined, highlighted functions assigned to those species
exhibit an average fold change of +0.99 + 0.10 logio CPM between younger and older samples.

When compared to the results published by Vatanen and colleagues®, our list of the top 1.5%
increasing or decreasing ECs (Fig. 4) contains 11 (27.5%) of the previously-reported
transitioning ECs. This overlap between the results happened on both major trend clusters, as
exemplified by the previously reported decreases in ribokinase (2.7.1.15, TS=-0.73, A= -
155.44 + 22.25 CPM) and transaldolase or the increase in 6-phosphofructokinase (2.7.1.11, TS
=+0.59, A = +102.66 + 25.10 CPM). Furthermore, we identified transitioning ECs not previously
reported. In this group of novel ECs, notable variations were the decrease in pyridoxal kinase
and the increase in malate dehydrogenase (1.1.1.40, TS = 0.66, A = +39.62 + 8.50 CPM).

Discussion

In this study, we show that the succession of a small number of key taxa in the early-life gut
microbiome follows common patterns, even across various geographical and socioeconomic
settings. These patterns are strong and consistent enough to be learned by our microbiome age
model, allowing it to generalize beyond individual cohort boundaries. One of the main reasons
why we were able to build such a robust model was our large-scale pooling strategy, which
enabled us to sample diverse backgrounds in, for example, dietary practices and diet
composition, an exposure strongly reflected on the learned patterns. As a result, we captured a
broad and representative spectrum of microbial profiles, enhancing the robustness of our model
towards regional variations, considered a key obstacle to the generalization of microbiome-
based models for a variety of phenotypes®®.

Most studies to date characterized microbiome age using taxonomic classifications from
amplicon sequencing of the 16S rRNA gene. Some of the limitations associated with this
sequencing technique are the biases introduced by the choice of primers and target region for
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the experiment, and substantially reduced taxonomic resolution?-25, In our work, by building a
model using well-defined species identified by metagenomic sequencing, rather than solely
relying on 16S rRNA sequencing, we leveraged the ability of the metagenomic approach to
sample all genes in a complex sample. The bacterial genes themselves are too highly
dimensional and sparse to act as raw simultaneous inputs to multivariable predictive models,
but, when processed, allow for the identification of a broader array of taxa at a higher resolution
when compared with the depth of information offered by 16S rRNA gene sequencing?.
Additionally, through the identification of the functional pathways to which those genes belong,
we can get a better understanding of how the functional repertoire of the microbial communities
evolved with age.

Importance analysis of the fitted random forest models revealed that the main age predictors
were the taxa involved in the microbiome's natural succession influenced by key events such as
changes in diet. For example, F. prausnitzii and A. hadrus are important age predictors in the
first two years of life. Those taxa are butyric acid producers®® that usually appear with the
cessation of breastfeeding, which marks the transition to a Firmicutes-dominated gut
characterized with increased production of short-chain fatty acids (SCFA)*%4!, The same
phenomenon explains the learned importance of known metabolizers of human milk
oligosaccharides, namely Bifidobacterium spp.#?, characteristic of the early stages of infancy,
especially in locations where exclusive breastfeeding is prevalent. Alongside these taxa, the
Shannon index (alpha diversity) also emerged as an important predictor. This was expected, as
microbial diversity in the gut increases with age in early infancy?®. Many of the top predictive
taxa showed similar succession patterns during the first 13 months of life (Fig. 3) across all
tested geographical sites (USA, Europe, South Africa), despite significant socioeconomic
differences. This suggests that there is a strong, consistent, and machine-learnable pattern for
determining age based on microbial succession, regardless of metadata variations, among the
geographical sites tested in this work.

Our study corroborates a significant portion of the results from a previous study®’ that also
examined temporal transitions in ECs in early life. This implies that age-determining taxa and
their functions are consistent across different microbial communities, even with the diverse
lifestyles and ethnic backgrounds of the several cohorts sampled®2. The ECs that showed most
change were primarily involved in central carbohydrate metabolisms, many of which are
associated with bifidobacteria. For example, B. breve utilizes ribokinase (2.7.1.15) to harvest
ribose as a carbon source in the early gut*, and several Bifidobacterium spp. have
transaldolase (2.2.1.2)*4%, The presence of glycolytic and pentose-phosphate cycle enzymes
supports the idea that diet-related transitions, particularly those tied to the intake of complex
carbohydrates, are major drivers of age-determining patterns. In this context, one enzyme of
particular interest is pyridoxal kinase (2.7.1.35), which plays a role in the GABA synthesis
pathway typical of bifidobacteria®®. Notably, GABA concentrations in infant stool have been
associated with behavioral traits in early infancy*’¢. Our findings suggest a specific functional
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link of this association between GABA and Bifidobacterium spp. that is also related to age,
highlighting a pathway that can be a strong candidate for studying behavioral outcomes in the
first year of life.

Despite the strong benchmarks reported by our models, there are several limitations that future
studies need to address. For example, one key decision in our model development was to
exclude all additional participant and biospecimen metadata, using only participant age and
microbial data. This decision was made due to the lack of uniformity in metadata collection and
annotation across studies. However, previous studies have shown that metadata such as
feeding practices!#, socioeconomic status*®, delivery mode and gestational age* can enhance
the predictive power in microbial-based models. Notably, in our case, including these
covariables would have resulted in a significant loss of samples due to missing metadata,
which would have compromised the model's generalizability and made comparative
benchmarks unfeasible. Another area of improvement would be to incorporate season as an
external effect to model the time-serial succession patterns, accounting®® for different
hemispheres. It is also worth mentioning that, even though there are many reference genomes
for the early-life gut microorganisms, detailed information on their functions and biochemical
characteristics is still biased toward a few well-characterized microorganisms®2. While we were
able to corroborate findings from Vatanen et al. (2018) despite the time gap between the
studies, this may partly be due to the limited characterization of the annotated functional space.

Studying developmental changes associated with dynamic processes can be challenging
without benchmarks or standards that provide expected ranges of values. Given the high
dimensional and highly dynamic nature of microbial composition, simple standards such as
those used in anthropometrics (e.g., age-standardized Z-scores for length or weight in infants)
are not feasible, and studying microbial associations with child development has been
challenging without such an agreed upon normative developmental trajectory. The microbiome-
age model provided here, built from a diverse and global population of human children provides
a model of development that may be deployed to advance our understanding of the gut
microbiome in child growth and flourishing.

Methods

Sample collection and processing for the Khula cohort

Participants and study design

Infants were recruited from local community clinics in Gugulethu, an informal settlement in Cape
Town, South Africa as part of an ongoing longitudinal study (most of the enroliment happened

prenatally with 38.82% of infants enrolled shortly after birth3). The first language of the majority
of residents in this area is Xhosa. Study procedures were offered in English or Xhosa depending
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on the language preference of the mother. This study was approved by the Health Research
Ethics Committees (study number: 666/2021). Informed consent was collected from mothers on
behalf of themself and their infants. Demographic information, including maternal place of birth,
primary spoken language, maternal age at enrollment, maternal educational attainment, and
maternal income, was collected at enroliment (Table 2).

Families were invited to participate in three in-lab study visits over their infant’s first 18 months
of life. At the first in-lab study visit (hereafter Visit 1), which took place when the infants were
between approximately 2 and 6 months of age (M=3.63, SD=0.78, range=2.13-5.34), the
following data were collected: the infants' age (in months), sex, and infant stool samples. At the
second study visit (hereafter Visit 2), occurring when infants were between approximately 6
months and 12 months of age (age in months: M=8.77, SD=1.39, range=5.38-11.90) and at the
third study visit (hereafter Visit 3), occurring when infants were between approximately 12
months and 17 months of age (age in months: M=14.01, SD=1.31, range=11.63-17.97), infant
stool samples were collected again. At visits where infants could not donate stool samples on
the same day, samples were collected on different days close to the visit date.

Sample collection

Stool samples (n=427) were collected in the clinic by the research assistant directly from the
diaper and transferred to the Zymo DNA/RNA Shield™ Fecal collection Tube (#R1101, Zymo
Research Corp., Irvine, USA) and immediately frozen at -80 °C. Stool samples were not
collected if the subject had taken antibiotics within the two weeks prior to sampling.

DNA extraction

DNA was extracted at the Medical Microbiology Department, University of Cape Town, South
Africa from stool samples collected in DNA/RNA Shield™ Fecal collection tube using the Zymo
Research Fecal DNA MiniPrep kit (# D4300, Zymo Research Corp., Irvine, USA) following
manufacturer’s protocol. To assess the extraction process's quality, ZymoBIOMICS® Microbial
Community Standards (#D6300 and #D6310, Zymo Research Corp., Irvine, USA) were
incorporated and subjected to the identical process as the stool samples. The DNA yield and
purity were determined using the NanoDrop® ND -1000 (Nanodrop Technologies Inc.
Wilmington, USA).

Sequencing

Shotgun metagenomic sequencing was performed on all samples at the Integrated Microbiome
Research Resource (IMR, Dalhousie University, NS, Canada). A pooled library (max 96
samples per run) was prepared using the lllumina Nextera Flex Kit for MiSeq and NextSeq from
1 ng of each sample. Samples were then pooled onto a plate and sequenced on the Illumina
NextSeq 2000 platform using 150+150 bp paired-end P3 cells, generating on average 24M
million raw reads and 3.6 Gb of sequence per sample®.
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Public metagenomic data acquisition

Publicly available metagenome metadata was obtained from the CuratedMetagenomicsData
database®. Database entries considered for inclusion were those annotated as stool samples
on the “body_site” property, pertaining to subjects identified as either “newborn” or “child” on the
“age_category” property and containing a valid numeric “infant_age” annotation in days. From
that set, samples identified as belonging to premature-born children were excluded. We also
excluded samples belonging to children suffering from acute infectious conditions - including
sepsis - at the time of sample collection. Future T1D-annotated samples, however, (3.9% of the
CMD-DIABIMMUNE samples) were not excluded. For the three DIABIMMUNE cohorts,
complementary metadata containing harmonized annotation was gathered from the
DIABIMMUNE study website and merged with the original set. Sequence data was then
downloaded from originally referenced data repositories (Table 1).

Computational processing, analyses and statistics
Metagenome processing

For the 1kDLEAP-Khula cohort samples, raw metagenomic sequence reads (Mean = 20.19M,
SD = 6.75M reads per sample) were processed using tools from the bioBakery suite, following
already-established protocols *°. Initially, KneadData v0.10.0 was employed with default settings
to trim low-quality reads and eliminate human sequences, using the hg37 reference database.
Subsequently, MetaPhlAn v3.1.0, utilizing the mpa_v31_CHOCOPhIAn_201901 database, was
applied with default parameters to map microbial marker genes and generate taxonomic
profiles. The taxonomic profiles, along with the same reads obtained in the initial step, were
then processed with HUMANN v3.7 to produce stratified functional profiles. Utilizing this
pipeline, the 1kDLEAP-Khula, the ECHO-Resonance®* (Mean = 9.34M, SD = 6.75M reads per
sample) and the CMD sequence reads (Mean = 15.35M, SD = 13.72M reads per sample) were
processed at Wellesley College, USA; the 1kDLEAP-Germina (Mean = 8.32M, SD = 6.48M
reads per sample) sequences were processed at the University of Sao Paulo, Brazil; the
1kDLEAP-Combine (Mean = 8.32M, SD = 6.48M reads per sample) sequences were processed
at the APC Microbiome Ireland, Ireland; and the 1kDLEAP-M4EFaD (Mean = 41.45M, SD =
6.63M reads per sample) sequences were processed at the Liggins Institute, New Zealand.

Sample pooling

Samples were pooled into the same collective dataset and were annotated to differentiate their
original data source. For the 4 Wellcome LEAP 1kD studies, every individual study became one
separate annotated data source. ECHO-Resonance samples were also annotated as their
individual data source. For simplification purposes in downstream analysis, all the CMD-derived
samples were annotated as belonging to the same meta-datasource, “CMD.” In analyses that
warranted a higher degree of discrimination, we divided this meta-group into two meta-
subgroups, “CMD-DIABIMMUNE” (containing 642 samples from Vatanen et al.®®, Kostic et al.%’
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and Yassour et al.*®) and “CMD-OTHER” (containing 471 samples from Asnicar et al.>®,
Backhed et al.3, Pehrsson et al.®°, Shao et al.5?).

Microbial community analysis

Computational analysis was conducted using the Julia programming language®2. Microbial
community profiles (taxonomic and functional) were parsed and processed using the
BiobakeryUtils.jl and Microbiome.jl packages®. Principal coordinates analysis (PCoA) with the
Bray-Curtis dissimilarity was calculated for all pairs of samples, focusing on species-level
classifications, using Distances.jl. Classical multidimensional scaling (MDS) was then performed
on the dissimilarity matrix with MultivariateStats.jl. Additionally, permutational analysis of
variance (PERMANOVA) was conducted using PERMANOVA |l

Machine Learning

Machine learning analysis was performed using the MLJ.jl package® and the associated
framework. Random forest regression utilized the backend from the DecisionTree.jl package®.
Linear bias correction was applied to forest outputs when necessary® using GLM.jI?’. Data
visualization was built using the Makie.jl package®.

Functional Analysis

EC abundance profiles were obtained for each subject of the 1kDLEAP-Khula cohort that had
longitudinal samples collected on the 3 month and 12 month timepoints, for a total of 73 sample
pairs. Only ECs that could be assigned to at least one detected species were analyzed. ECs
were then assigned a transition score (TS) to represent the directionality and consistency of the
change in its abundance between the timepoints. For each EC, the TS score was calculated
according to the following expression:

n

TS =

where n is the total number of samples; sgn(a;*™° — a™°) is the sign of the difference in
community-wide enzyme abundance for the i" sample pair between the 12mo and 3mo
timepoints; and p; is a factor that controls for the significance of the EC abundance in either
timepoint, according to the expression:

pi := (Lif ((&@™° >= 10 CPM) or (a}*™° >= 10 CPM)); 0 otherwise)

A score close to +1.0 means that the enzyme is consistently increasing from 3 to 12 months,
and a score close to -1.0 means that the enzyme is consistently decreasing from 3 to 12
months. After scoring and ranking the ECs, we selected 1.5% of the total scored functions (48
ECs) equally distributed between the highest and lowest-scoring enzymes (24 in each major
trend cluster) for stratified functional analysis and visualization.
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Data availability

The processed datasets generated and/or analyzed during the current study have been
deposited in Data Dryad under DOI: https://doi.org/10.5061/dryad.dbrv15f9z. The raw
sequencing data for the Khula study have been deposited in the NCBI Sequence Read Archive
(SRA) under BioProject accession number PRINA1128723. All other relevant data supporting
the key findings of this study and instruction on how to obtain it are available within the article
and its Supplementary Information files, or are available from the corresponding author upon
reasonable request.

Code availability

Information for replicating the package environment and code for data analysis and figure
generation, as well as scripts for automated download of input files, are available on GitHub at
https://github.com/Klepac-Ceraj-Lab/MicrobiomeAgeModel2024 and archived on Zenodo under
DOI: https://zenodo.org/doi/10.5281/zen0d0.12822332.
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645 Figure Legends
646

647  Figure 1. A continuous diversity landscape arises from pooling a large number of globally
648 sampled, uniformly (computationally wise) processed early-life metagenomes. (A)
649  Geographical distribution of sample sources (total n=3,154), color-coded by major data source.
650 (B). Distribution of age at sample collection, binned by months since birth, in the dynamic range
651 of the age model, color-coded by major data source. Donut plot details the total sample
652  contribution by major data source. (C) Overview of methodology, from data acquisition (via
653  sampling, sourcing on public repositories or data collaboration), through the same processing
654  pipeline and downstream statistical analysis. (D-E) NMDS ordination of Bray-Curtis B diversity
655 colored by categorical data source (D) and by continuous age in months (E). Axis percentages
656  denote variance explained by principal coordinates.

657

658 Figure 2. Gut microbial taxon abundances from shotgun metagenomics predict host age
659 with high accuracy in early infancy. (A) Validation-set predicted ages versus ground-truth ages
660 for all samples, color-coded by major data source. (B) Directional importances of top predictive
661 features measured as mean decrease in impurity (MDI) for the trained RF models, multiplied by
662  sign of correlation between predictor and outcome. Absolute values in the x-axis represent a
663  proportion of the total fitness-weighted importance assigned to features. (C) Shannon index with
664  respect to host age, color-coded by major data source. (D-G) Relative abundances color-coded
665 by major data source and average month-by-month prevalences of the indicated important
666  species, D. formicigenerans (D), E. coli (E), F. prausnitzii (F), and B. breve (G), with respect to
667 host age.

668

669 Figure 3. Temporal succession patterns for a common core of age-predictive taxa
670 generalize beyond geographical boundaries. Heatmaps of average taxon prevalence for each
671  of the top 30 predictive species highlighted in Fig. 2. Species are ordered vertically by minimal-
672  distance hierarchical clustering. Samples are binned horizontally from 2 to 13 months. Each cell
673  represents the mean prevalence of that species in the samples collected on that specific month.
674  Panels represent samples belonging to (A) Baltic countries (FIN, EST, RUS, SWE); (B) the United
675  States (USA) and (C) South Africa (ZAF).

676

677  Figure 4. Functional changes are driven by taxonomic changes and centered around diet-
678 associated pathways. Top 24 increasing and top 24 decreasing ECs (in community-wide
679 abundance), stratified in a selected subset of the top taxonomic predictors of age. Cell colors
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680 reflect taxon-stratified EC abundance on younger (A) and older (B) samples, measured in logio
681 CPM (counts per million reads). Blue and red triangles indicate species that increase and
682  decrease in abundance in the first year of life, respectively.
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683 Tables
684  Table 1. Sources of data for the pooled analysis
Study # Reference Repository | Repository ID Nsuan;?)?ésf ms:;:%gg; Country(ies)

1 Asnicar, F. et al. (2017)%° SRA PRJINA339914 3 2.95 (0.0) ITA
2 Backhed, F. et al. (2015)3 SRA PRJEB6456 180 8.03 (4.04) SWE
3 Kostic, A. D. et al. (2015)57 SRA* PRINA231909 59 12.28 (3.88) | EST, FIN
4 Pehrsson, E. et al. (2016)%° SRA PRJINA300541 3 10.44 (6.91) SLV
5 Shao, Y. et al. (2019)5! ENA PRJEB32631 285 8.65 (1.95) GBR
6 Vatanen, T. et al. (2016)%° SRA** PRJINA290380 479 10.90 (4.28) F”\;ESST’
7 Yassour, M. et al. (2018)58 SRA** | PRINA290381 104 7.4 (4.25) FIN
8 Bonham, K. et al. (2023)3* SRA PRJINAG695570 224 7.50 (4.37) USA
9 This work SRA PRJINA1128723 427 9.36 (4.46) ZAF
10 Fatori, D. et al. (2024)%° SRA PRJINA1072081 963 5.41 (2.13) BRA
11  |[Hemmingway, A. etal. (2020)°| ENA PRJEB77202 353 6.75 (3.11) IRL
12 O'Sullivan, J. et al. (2024)™ SRA PRJINA1087376 74 11.88 (0.51) BGD

685  **_This is the NCBI BioProject ID for the DIABIMMUNE T1D cohort, but the data was instead obtained from the Broad
686 Institute mirror (https://diabimmune.broadinstitute.org/diabimmune/t1d-cohort)

687 ** - This is the NCBI BioProject ID for the DIABIMMUNE Three Country cohort, but the data was instead obtained from
688 the Broad Institute mirror (https://diabimmune.broadinstitute.org/diabimmune/tld-cohort)
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689 *** . This is the NCBI BioProject ID for the DIABIMMUNE Antibiotics cohort, but the data was instead obtained from the
690 Broad Institute mirror (https://diabimmune.broadinstitute.org/diabimmune/antibiotics-cohort)
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Table 2. Summary demographics of Khula study participants (mothers)

Overall
(N=2522)

Maternal Place of Birth

South Africa

249 (98.8%)

In the African Continent (not South Africa)

3 (1.2%)

Primary Spoken Language

Xhosa Language

245 (97.2%)

Sotho Language 2 (0.8%)
English Language 2 (0.8%)
Zulu Language 1 (0.4%)
Ndebele Language 1 (0.4%)
IAfrikaans Language 1 (0.4%)
Maternal Educational Attainment®

Completed Grade 6 (Standard 4) to Grade 7 (Standard 5) 5 (2.0%)

Completed Grade 8 (Standard 6) to Grade 11 (Standard 9) i.e., high school without]
matriculating

116 (46.0%)

Completed Grade 12 (Standard 10) i.e., high school

102 (40.5%)

Part of university/ college/ post-matric education 15 (5.9%)
Completed university/ college/ post-matric education 14 (5.6%)
Maternal Monthly Income¢ (South African Rand/ZAR)

Unknown 22 (8.7%)

Less than R1000 per month

44 (17.5%)

R1000 - R5000 per month

121 (48.0%)

R5000 - R10,000 per month

57 (22.6%)

More than R10 000 per month

8 (3.2%)

Depression Scored
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Overall
(N=2522)
Mean (SD) 12.9 (8.79)
Median [Min, Max] 12.0 [0, 42.0]
Infant Biological Sex
Female 119 (47.2%)
Male 133 (52.8%)

2 Table lists only Khula study participants that had at least one sample included in this work. For the full cohort
demographics, see

P The South African Educational System was formerly divided into years called standards, similarly to the way
the United States Educational System is divided into grades. The equivalent in terms of standards is provided in
parentheses next to each mentioned grade. “University/College/Post-Matric Education” refers to tertiary or post-
secondary education as defined by the World Bank.

© At the time of writing (JUN 15, 2024), 1 US Dollar = 18.35 South African Rand (ZAR).

4 Depression was measured using the Edinburgh Postnatal Depression Scale (EPDS) at enrollment.

692
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