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Abstract  63 

Characterizing the dynamics of microbial community succession in the infant gut microbiome is 64 

crucial for understanding child health and development, but no normative model currently exists. 65 

Here, we estimate child age using gut microbial taxonomic relative abundances from 66 

metagenomes, with high temporal resolution (±3 months) for the first 1.5 years of life. Using 67 

3,154 samples from 1,827 infants across 12 countries, we trained a random forest model, 68 

achieving a root mean square error of 2.61 months. We identified key taxonomic predictors of 69 

age, including declines in Bifidobacterium spp. and increases in Faecalibacterium prausnitzii 70 

and Lachnospiraceae. Microbial succession patterns are conserved across infants from diverse 71 

human populations, suggesting universal developmental trajectories. Functional analysis 72 

confirmed trends in key microbial genes involved in feeding transitions and dietary exposures. 73 

This model provides a normative benchmark of “microbiome age” for assessing  early gut 74 

maturation that can be used alongside other measures of child development.  75 
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Introduction 76 

The human gut microbiome is a complex ecosystem consisting of diverse microorganisms that 77 

interact with each other and form tight partnerships with their host. These are crucial for several 78 

physiological processes, including digestion, metabolism, and immune function1. The first major 79 

colonization event of an infant’s gastrointestinal tract happens at birth, and microbial succession 80 

continues over the first few years of life2,3. Age-dependent aspects of this succession are 81 

shaped by a combination of natural history and environmental exposures, such as breastfeeding 82 

behavior and the introduction of solid food4,5. Altered colonization events, especially in early life, 83 

may have significant implications on a child’s health, including the development of inflammatory 84 

disorders (e.g., allergies and asthma), metabolic disease (e.g., diabetes), neurocognitive 85 

outcomes, and other chronic conditions6,7. 86 

Specific microbial taxa tend to proliferate at different stages during early infancy8. Initial 87 

gastrointestinal tract colonizers include microorganisms capable of metabolizing human milk 88 

oligosaccharides or scavenging simple molecules9. The later introduction of a solid, complex 89 

and diverse diet brings opportunity for more fastidious colonizers and a more diverse 90 

community10. Recurring patterns of colonization and microbial succession across different life 91 

stages,  from birth to late life and  death11–15, have shown consistent links between chronology 92 

and microbiome development. 93 

These chronology-based approaches have been used to describe the phenotypic implications of 94 

an underdeveloped gut microbiome. Studies suggest that when the gut microbial community 95 

does not match the expected stage for a child's age, there can be significant health 96 

associations, particularly with growth and immune function16,17. This underdevelopment may 97 

respond to and contribute to a cycle of poor health and malnutrition, potentially affecting various 98 

aspects of the child’s physiology and behavior18,19. To measure this temporal mismatch, two 99 

things are necessary: a reference developmental trajectory of the gut microbiome in early life 100 

and a way to measure a subject’s deviation from such trajectory. One possible solution is to 101 

develop age estimation models using gut microbial communities sequenced across large and 102 

diverse cohorts. Those models can be trained to accurately produce an estimate of host age 103 

that can then be compared with the age at sample collection17. Following this approach, links 104 

between model outputs and health outcomes in childhood have been reported in multiple 105 

areas20,21. 106 

Despite showing promise, existing age models face several challenges to be applied in early 107 

childhood. Most existing models in this age range utilize data from 16S rRNA gene amplicon 108 

sequencing to estimate gut microbiome maturation17,22 but this provides only a limited taxonomic 109 

resolution as closely related taxa are often binned together23–25. Most quantitative age models 110 

focus on aging26–29 and span large age ranges that either exclude early childhood, or lack the 111 

necessary temporal resolution to produce meaningful predictions within the first year of life. 112 

Many models that account for early microbiome development with age do not produce a 113 
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numeric age estimate, instead relying on unsupervised learning and qualitative predictions or 114 

associations30. Models also tend to be trained on individual cohorts and not validated on 115 

external populations, and cross-geographic analyses31,32 have been lacking. In recent years, 116 

shotgun metagenomic sequencing data has become available from appropriately powered and 117 

diverse populations3, but these datasets have not yet been incorporated into multi-site age 118 

models. Therefore, there is an opportunity and need to develop a comprehensive, global-scale 119 

quantitative age model focused on early childhood. 120 

Here, we present such a model for age estimation developed using gut microbial taxonomic 121 

relative abundances, with high temporal resolution for the first 1.5 years of life. This model 122 

incorporates a large and geographically diverse population, comprising 3,154 shotgun-123 

sequenced samples from 12 countries spanning Africa, Europe, Asia and America. 124 

 125 

Results 126 

Global metagenomes enable large-scale meta-analysis 127 

We investigated developmental trajectories of the infant gut microbiome using a pooled dataset 128 

combining 3,154 stool samples sequenced with shotgun metagenomic sequencing from 1,827 129 

healthy individuals obtained from 12 studies. The metagenomes spanned 12 countries from 4 130 

continents (Table 1, Fig. 1A). All samples that matched inclusion criteria (see Methods) 131 

collected between ages 2-18 months (mean = 7.90 mo, SD = 3.99 mo) were incorporated into 132 

the model, resulting in a slight overrepresentation of younger samples (ages 2-4 months, Fig. 133 

1B, Supplementary Fig. 1). Building the analysis dataset from a wide array of global sources 134 

enabled us to include a significant portion of data from low- and middle-income countries 135 

(LMICs), representing approximately 46 % of our total sample pool. The 1kD Wellcome LEAP 136 

effort contributed a total of 1,817 samples that have not been used previously in age-related 137 

studies. 427 of those samples were collected by the Khula study in South Africa33 and have not 138 

been published before. These 1kD-LEAP samples are slightly younger (mean = 6.86 mo, SD = 139 

3.55 mo), and the majority (80.57 %) are from LMICs. 140 

Harmonized computational processing provides a continuous diversity landscape 141 

After processing all sequence data using the same bioinformatics pipeline (BioBakery V3, Fig. 142 

1C), we pooled all community profiles for the downstream analyses. To quantify the variation in 143 

gut microbial taxa associated with both age and data source, we used permutational analysis of 144 

variance (PERMANOVA) accounting for those factors (Fig. 1D-E). Sample group (source) and 145 

age explained 5.03% (p = 0.001) and 3.38% (p = 0.001) of the variance, respectively. In a 146 

multivariable analysis combining both factors, age still explained 2.28% (p = 0.001) of the 147 

variance after accounting for the data source contribution. 148 

Pooled metagenomes predict age with high resolution 149 
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To assess the predictive potential of gut taxonomic profiles for the chronology of gut 150 

development, we trained a 5-fold cross-validated (CV) random forest (RF) model on features 151 

derived exclusively from the community composition obtained from shotgun metagenomic 152 

sequencing. Our inputs were the relative abundances of species present in at least 5% of 153 

samples, alongside the α-diversity estimated as the Shannon index. After removing samples 154 

with no reads assigned to at least one of the prevalence-filtered species, our analysis comprised  155 

3,153 samples (~630 per fold) and 149 species. Our model targeted continuous age as a 156 

univariate regression output and generated validation-set predictions that reach a root mean 157 

square error of cross-validation (RMSECV) of 2.56 months (16.0% of the effective dynamic 158 

range, 64.1% of output SD) and a Pearson correlation of 0.803 with the ground truth values, on 159 

a 100x repeated 5-fold CV setting (Fig. 2A). 160 

Changing taxa show feeding transitions and dietary exposures 161 

To derive biological insight from the trained models, we analyzed the fitness-weighted variable 162 

importances on the cross-validated models, producing a list of top predictive features (Fig. 2B). 163 

The 35 highest ranking predictors (23.3% of inputs) were responsible for 70% of the cumulative 164 

weighted variable importance. Among those, 25 (71.4%) were positively correlated with age 165 

(mean R(age) = 0.18, SD = 0.12), with the remaining 10 (28.6)% negatively correlated to age 166 

(mean R(age) = -0.11, SD = 0.07, Supplementary Fig. 2). α-diversity measured as the Shannon 167 

index was the third most important predictor (4.86% of total importance, R(age) = +0.52, Fig. 2C). 168 

All but one of the top predictive taxa (97%) were present in every major cohort (see Methods), 169 

with only Roseburia intestinalis remaining undetected in the 1kDLEAP-M4EFaD samples. 170 

Additionally,  there were several examples of site-biased or site-specific importances. For 171 

instance, Dorea longicatena and Dorea formicigenerans (Fig. 2D) were elevated in the South 172 

African cohort, and Escherichia coli (Fig. 2E) was elevated in the Brazilian cohort. Most of the 173 

top predictive taxa are species consistently prevalent across all cohorts, indicating that the 174 

relevant predictors are robust indicators of age across diverse populations, overcoming 175 

population-specific effects. 176 

Across all cohorts, Faecalibacterium prausnitzii (Fig. 2F) and Anaerostipes hadrus were the 177 

taxa with the greatest importance scores for age prediction, accounting for 17.3% of the total 178 

weighted variable importance, together. Individually, those species positively correlate with age 179 

in our dataset (respectively, +0.41 and +0.32). The opposite trend is observed in another key 180 

group of predictors that include Bifidobacterium longum and Bifidobacterium breve (Fig. 2G), 181 

with 2.2% combined importance, exhibiting negative prior correlations with age (respectively, -182 

0.14 and -0.14). The presence of certain species in the family Lachnospiraceae previously tied 183 

to developmental outcomes, such as Ruminococcus gnavus and Blautia wexlerae34 is also 184 

noteworthy as a cluster of high-importance predictors of age. The former follows the same trend 185 

as the Bifidobacterium spp. (2.5% of total importance, R(age) = -0.063, p = 0.001), in agreement 186 

with previous studies35. 187 
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Learned gut microbial patterns generalize across different sites 188 

To evaluate the generalizability of our model across different data sources and test the 189 

predictive ability of each data source toward age, we performed a leave-one-datasource-out 190 

cross-validation (LOOCV) experiment. LOOCV yielded an average RMSE of leave-one-out 191 

cross-validation of 3.03 +- 0.63 months (Supplementary Table 1, Supplementary Fig. 3). We 192 

hypothesized that this generalizability resulted from combined effects from abundance trends 193 

and underlying prevalence trends (Fig. 2D-G, Supplementary Fig. 2). This would mean that 194 

predictors would be important, in part, because they would appear and disappear from the infant 195 

gut following similar trends, regardless of geographical origin. 196 

By grouping a subset of our samples by location - Baltic countries, United States and South 197 

Africa - and binning them by age (in months), we computed monthly prevalences for the 34 top 198 

taxonomic predictors of gut chronology. Strikingly similar patterns of succession emerged 199 

between all tested locations (Fig. 3), evidenced by whole-matrix mean prevalence correlations: 200 

Baltic/USA = 0.799; USA/SA = 0.750; Baltic/SA = 0.749. This consistency suggests that many 201 

of the succession patterns identified by our model are likely universal, transcending local 202 

environmental influences. 203 

Hierarchical cluster analysis of the binned prevalence time series revealed one large universal 204 

cluster of species and succession patterns containing 18 (53%) of the top 34 taxonomic 205 

predictors, which correlated highly between sites, along with smaller clusters of decentralized 206 

patterns. Representatives of the larger, common core are species as mentioned above, such as 207 

F. prausznitzii, positively correlated with the outcome on all three cases, alongside early 208 

colonizers such as E. coli (1.3% of total importance, R = -0.25 with age), that follow the opposite 209 

pattern consistently on the three sites. Among the divergent cluster, besides the aforementioned 210 

Dorea genus (D. longicatena and D. formigicerans, 2.8% combined importance) in South Africa, 211 

we identified taxa such as Prevotella copri (0.9% of total importance, R = +0.22 with age), which 212 

exhibit distinct abundance and prevalence patterns between westernized and non-westernized 213 

populations36. 214 

Enzyme changes in the first year corroborate prior studies 215 

We hypothesized that, as was the case with taxonomic composition, the functional composition 216 

in terms of microbial metabolic enzymes would change similarly between sites. Utilizing 217 

longitudinal samples in the South African cohort, we measured the consistency of the direction 218 

of EC abundance transitions between earlier and later samples from the same subject using a 219 

Transition Score (TS, see Methods). We then selected the top hits in both directions - later 220 

enrichment (highest scores) and later depletion (lowest scores), and stratified their abundances 221 

into the corresponding top predictive taxa (Fig. 4). 222 

The lowest-scored EC (decreasing on most subjects) was transaldolase (2.2.1.2), with a TS of -223 

0.84 and a variation of -86.74 ± 11.46 counts per million reads (CPM). It is followed by 224 
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succinate-CoA ligase (ADP-forming, 6.2.1.5) and pyridoxal kinase (2.7.1.35), both with a TS of -225 

0.81 and variations of -119.89 ± 20.15 CPM and -67.40 ± 11.44, respectively. The expanded list 226 

of stratified ECs decreasing in abundance with age was dominated by functions associated with 227 

B. longum, B. breve, R. gnavus and E. coli, consistent with the aforementioned depletion of 228 

those species along the first year of life. That group of species and the highlighted functions 229 

account for a consistent average fold change of -0.46 ± 0.01 log10 CPM between younger and 230 

older samples. 231 

The highest-scored ECs (increasing on most subjects) were [ribosomal protein S12] 232 

(aspartate(89)-C(3))-methylthiotransferase (2.8.4.4, TS = +0.84, Δ = +53.89 ± 9.49 CPM), and 233 

coproporphyrinogen dehydrogenase (1.3.99.22, TS = +0.79, Δ = +31.54 ± 5.18 CPM). 234 

Stratification of the ECs that increase in abundance with age is more diverse, and contains ECs 235 

assigned to a wider array of fastidious anaerobes: F. prausnitzii, A. hadrus, B. wexlerae, Blautia 236 

obeum, D. longicatena and P. copri. Combined, highlighted functions assigned to those species 237 

exhibit an average fold change of +0.99 ± 0.10 log10 CPM between younger and older samples. 238 

When compared to the results published by Vatanen and colleagues37, our list of the top 1.5% 239 

increasing or decreasing ECs (Fig. 4) contains 11 (27.5%) of the previously-reported 240 

transitioning ECs. This overlap between the results happened on both major trend clusters, as 241 

exemplified by the previously reported decreases in ribokinase (2.7.1.15, TS = -0.73, Δ =   -242 

155.44 ± 22.25 CPM) and transaldolase or the increase in 6-phosphofructokinase (2.7.1.11,  TS 243 

= +0.59, Δ = +102.66 ± 25.10 CPM). Furthermore, we identified transitioning ECs not previously 244 

reported. In this group of novel ECs, notable variations were the decrease in pyridoxal kinase 245 

and the increase in malate dehydrogenase (1.1.1.40, TS = 0.66, Δ = +39.62 ± 8.50 CPM).  246 

 247 

Discussion 248 

In this study, we show that the succession of a small number of key taxa in the early-life gut 249 

microbiome follows common patterns, even across various geographical and socioeconomic 250 

settings. These patterns are strong and consistent enough to be learned by our microbiome age 251 

model, allowing it to generalize beyond individual cohort boundaries. One of the main reasons 252 

why we were able to build such a robust model was our large-scale pooling strategy, which 253 

enabled us to sample diverse backgrounds in, for example, dietary practices and diet 254 

composition, an exposure strongly reflected on the learned patterns. As a result, we captured a 255 

broad and representative spectrum of microbial profiles, enhancing the robustness of our model 256 

towards regional variations, considered a key obstacle to the generalization of microbiome-257 

based models for a variety of phenotypes38. 258 

Most studies to date characterized microbiome age using taxonomic classifications from 259 

amplicon sequencing of the 16S rRNA gene. Some of the limitations associated with this 260 

sequencing technique are the biases introduced by the choice of primers and target region for 261 
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the experiment, and substantially reduced taxonomic resolution23–25. In our work, by building a 262 

model using well-defined species identified by metagenomic sequencing, rather than solely 263 

relying on 16S rRNA sequencing, we leveraged the ability of the metagenomic approach to 264 

sample all genes in a complex sample. The bacterial genes themselves are too highly 265 

dimensional and sparse to act as raw simultaneous inputs to multivariable predictive models, 266 

but, when processed, allow for the identification of a broader array of taxa at a higher resolution 267 

when compared with the depth of information offered by 16S rRNA gene sequencing23. 268 

Additionally, through the identification of the functional pathways to which those genes belong, 269 

we can get a better understanding of how the functional repertoire of the microbial communities 270 

evolved with age. 271 

Importance analysis of the fitted random forest models revealed that the main age predictors 272 

were the taxa involved in the microbiome's natural succession influenced by key events such as 273 

changes in diet. For example, F. prausnitzii and A. hadrus are important age predictors in the 274 

first two years of life. Those taxa are butyric acid producers39 that usually appear with the 275 

cessation of breastfeeding, which marks the transition to a Firmicutes-dominated gut 276 

characterized with increased production of short-chain fatty acids (SCFA)40,41. The same 277 

phenomenon explains the learned importance of known metabolizers of human milk 278 

oligosaccharides, namely Bifidobacterium spp.42, characteristic of the early stages of infancy, 279 

especially in locations where exclusive breastfeeding is prevalent. Alongside these taxa, the 280 

Shannon index (alpha diversity) also emerged as an important predictor. This was expected, as 281 

microbial diversity in the gut increases with age in early infancy25. Many of the top predictive 282 

taxa showed similar succession patterns during the first 13 months of life (Fig. 3) across all 283 

tested geographical sites (USA, Europe, South Africa), despite significant socioeconomic 284 

differences. This suggests that there is a strong, consistent, and machine-learnable pattern for 285 

determining age based on microbial succession, regardless of metadata variations, among the 286 

geographical sites tested in this work. 287 

Our study corroborates a significant portion of the results from a previous study37 that also 288 

examined temporal transitions in ECs in early life. This implies that age-determining taxa and 289 

their functions are consistent across different microbial communities, even with the diverse 290 

lifestyles and ethnic backgrounds of the several cohorts sampled32. The ECs that showed most 291 

change were primarily involved in central carbohydrate metabolisms, many of which are 292 

associated with bifidobacteria. For example, B. breve utilizes ribokinase (2.7.1.15)  to harvest 293 

ribose as a carbon source in the early gut43, and several Bifidobacterium spp. have 294 

transaldolase (2.2.1.2)44,45. The presence of glycolytic and pentose-phosphate cycle enzymes 295 

supports the idea that diet-related transitions, particularly those tied to the intake of complex 296 

carbohydrates, are major drivers of age-determining patterns. In this context, one enzyme of 297 

particular interest is pyridoxal kinase (2.7.1.35), which plays a role in the GABA synthesis 298 

pathway typical of bifidobacteria46. Notably, GABA concentrations in infant stool have been 299 

associated with behavioral traits in early infancy47,48. Our findings suggest a specific functional 300 
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link of this association between GABA and Bifidobacterium spp. that is also related to age, 301 

highlighting a pathway that can be a strong candidate for studying behavioral outcomes in the 302 

first year of life. 303 

Despite the strong benchmarks reported by our models, there are several limitations that future 304 

studies need to address. For example, one key decision in our model development was to 305 

exclude all additional participant and biospecimen metadata, using only participant age and 306 

microbial data. This decision was made due to the lack of uniformity in metadata collection and 307 

annotation across studies. However, previous studies have shown that metadata such as 308 

feeding practices14, socioeconomic status49, delivery mode and gestational age50 can enhance 309 

the predictive power in microbial-based models. Notably, in our case, including these 310 

covariables would have resulted in  a significant loss of samples due to missing metadata, 311 

which would have compromised the model's generalizability and made comparative 312 

benchmarks unfeasible. Another area of improvement would be to incorporate season as an 313 

external effect to model the time-serial succession patterns, accounting51 for different 314 

hemispheres. It is also worth mentioning that, even though there are many reference genomes 315 

for the early-life gut microorganisms, detailed information on their functions and biochemical 316 

characteristics is still biased toward a few well-characterized microorganisms52. While we were 317 

able to corroborate findings from Vatanen et al. (2018) despite the time gap between the 318 

studies, this may partly be due to the limited characterization of the annotated functional space. 319 

Studying developmental changes associated with dynamic processes can be challenging 320 

without benchmarks or standards that provide expected ranges of values. Given the high 321 

dimensional and highly dynamic nature of microbial composition, simple standards such as 322 

those used in anthropometrics (e.g., age-standardized Z-scores for length or weight in infants) 323 

are not feasible, and studying microbial associations with child development has been 324 

challenging without such an agreed upon normative developmental trajectory. The microbiome-325 

age model provided here, built from a diverse and global population of human children provides 326 

a model of development that may be deployed to advance our understanding of the gut 327 

microbiome in child growth and flourishing.  328 

Methods 329 

Sample collection and processing for the Khula cohort 330 

 331 

Participants and study design 332 

Infants were recruited from local community clinics in Gugulethu, an informal settlement in Cape 333 

Town, South Africa as part of an ongoing longitudinal study (most of the enrollment happened 334 

prenatally with 38.82% of infants enrolled shortly after birth33). The first language of the majority 335 

of residents in this area is Xhosa. Study procedures were offered in English or Xhosa depending 336 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 26, 2024. ; https://doi.org/10.1101/2024.07.25.605223doi: bioRxiv preprint 

https://paperpile.com/c/qvzhBe/rXPj
https://paperpile.com/c/qvzhBe/mxiY
https://paperpile.com/c/qvzhBe/kNue
https://paperpile.com/c/qvzhBe/Wpdg
https://paperpile.com/c/qvzhBe/733j
https://paperpile.com/c/qvzhBe/q9Vy
https://doi.org/10.1101/2024.07.25.605223
http://creativecommons.org/licenses/by/4.0/


 

on the language preference of the mother. This study was approved by the Health Research 337 

Ethics Committees (study number: 666/2021). Informed consent was collected from mothers on 338 

behalf of themself and their infants. Demographic information, including maternal place of birth, 339 

primary spoken language, maternal age at enrollment, maternal educational attainment, and 340 

maternal income, was collected at enrollment (Table 2). 341 

Families were invited to participate in three in-lab study visits over their infant’s first 18 months 342 

of life. At the first in-lab study visit (hereafter Visit 1), which took place when the infants were 343 

between approximately 2 and 6 months of age (M=3.63, SD=0.78, range=2.13-5.34), the 344 

following data were collected: the infants' age (in months), sex, and infant stool samples. At the 345 

second study visit (hereafter Visit 2), occurring when infants were between approximately 6 346 

months and 12 months of age (age in months: M=8.77, SD=1.39, range=5.38-11.90) and at the 347 

third study visit (hereafter Visit 3), occurring when infants were between approximately 12 348 

months and 17 months of age (age in months: M=14.01, SD=1.31, range=11.63-17.97), infant 349 

stool samples were collected again. At visits where infants could not donate stool samples on 350 

the same day, samples were collected on different days close to the visit date. 351 

Sample collection 352 

Stool samples (n=427) were collected in the clinic by the research assistant directly from the 353 

diaper and transferred to the Zymo DNA/RNA ShieldTM Fecal collection Tube (#R1101, Zymo 354 

Research Corp., Irvine, USA) and immediately frozen at -80 ˚C. Stool samples were not 355 

collected if the subject had taken antibiotics within the two weeks prior to sampling.  356 

DNA extraction 357 

DNA was extracted at the Medical Microbiology Department, University of Cape Town, South 358 

Africa from stool samples collected in DNA/RNA Shield™ Fecal collection tube using the Zymo 359 

Research Fecal DNA MiniPrep kit (# D4300, Zymo Research Corp., Irvine, USA) following 360 

manufacturer’s protocol. To assess the extraction process's quality, ZymoBIOMICS® Microbial 361 

Community Standards (#D6300 and #D6310, Zymo Research Corp., Irvine, USA) were 362 

incorporated and subjected to the identical process as the stool samples. The DNA yield and 363 

purity were determined using the NanoDrop® ND -1000 (Nanodrop Technologies Inc. 364 

Wilmington, USA).  365 

Sequencing 366 

Shotgun metagenomic sequencing was performed on all samples at the Integrated Microbiome 367 

Research Resource (IMR, Dalhousie University, NS, Canada). A pooled library (max 96 368 

samples per run) was prepared using the Illumina Nextera Flex Kit for MiSeq and NextSeq from 369 

1 ng of each sample. Samples were then pooled onto a plate and sequenced on the Illumina 370 

NextSeq 2000 platform using 150+150 bp paired-end P3 cells, generating on average 24M 371 

million raw reads and 3.6 Gb of sequence per sample53. 372 
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Public metagenomic data acquisition 373 

Publicly available metagenome metadata was obtained from the CuratedMetagenomicsData 374 

database54. Database entries considered for inclusion were those annotated as stool samples 375 

on the “body_site” property, pertaining to subjects identified as either “newborn” or “child” on the 376 

“age_category” property and containing a valid numeric “infant_age” annotation in days. From 377 

that set, samples identified as belonging to premature-born children were excluded. We also 378 

excluded samples belonging to children suffering from acute infectious conditions - including 379 

sepsis - at the time of sample collection. Future T1D-annotated samples, however, (3.9% of the 380 

CMD-DIABIMMUNE samples) were not excluded. For the three DIABIMMUNE cohorts, 381 

complementary metadata containing harmonized annotation was gathered from the 382 

DIABIMMUNE study website and merged with the original set. Sequence data was then 383 

downloaded from originally referenced data repositories (Table 1). 384 

Computational processing, analyses and statistics 385 

Metagenome processing 386 

For the 1kDLEAP-Khula cohort samples, raw metagenomic sequence reads (Mean = 20.19M, 387 

SD = 6.75M reads per sample) were processed using tools from the bioBakery suite, following 388 

already-established protocols 55. Initially, KneadData v0.10.0 was employed with default settings 389 

to trim low-quality reads and eliminate human sequences, using the hg37 reference database. 390 

Subsequently, MetaPhlAn v3.1.0, utilizing the mpa_v31_CHOCOPhlAn_201901 database, was 391 

applied with default parameters to map microbial marker genes and generate taxonomic 392 

profiles. The taxonomic profiles, along with the same reads obtained in the initial step, were 393 

then processed with HUMAnN v3.7 to produce stratified functional profiles. Utilizing this 394 

pipeline, the 1kDLEAP-Khula, the ECHO-Resonance34 (Mean = 9.34M, SD = 6.75M reads per 395 

sample) and the CMD sequence reads (Mean = 15.35M, SD = 13.72M reads per sample) were 396 

processed at Wellesley College, USA; the 1kDLEAP-Germina (Mean = 8.32M, SD = 6.48M 397 

reads per sample) sequences were processed at the University of Sao Paulo, Brazil; the 398 

1kDLEAP-Combine (Mean = 8.32M, SD = 6.48M reads per sample) sequences were processed 399 

at the APC Microbiome Ireland, Ireland; and the 1kDLEAP-M4EFaD (Mean = 41.45M, SD = 400 

6.63M reads per sample) sequences were processed at the Liggins Institute, New Zealand. 401 

Sample pooling 402 

Samples were pooled into the same collective dataset and were annotated to differentiate their 403 

original data source. For the 4 Wellcome LEAP 1kD studies, every individual study became one 404 

separate annotated data source. ECHO-Resonance samples were also annotated as their 405 

individual data source. For simplification purposes in downstream analysis, all the CMD-derived 406 

samples were annotated as belonging to the same meta-datasource, “CMD.” In analyses that 407 

warranted a higher degree of discrimination, we divided this meta-group into two meta-408 

subgroups, “CMD-DIABIMMUNE” (containing 642 samples from Vatanen et al.56, Kostic et al.57 409 
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and Yassour et al.58) and “CMD-OTHER” (containing 471 samples from Asnicar et al.59, 410 

Bäckhed et al.3, Pehrsson et al.60, Shao et al.61). 411 

Microbial community analysis 412 

Computational analysis was conducted using the Julia programming language62. Microbial 413 

community profiles (taxonomic and functional) were parsed and processed using the 414 

BiobakeryUtils.jl and Microbiome.jl packages63. Principal coordinates analysis (PCoA) with the 415 

Bray-Curtis dissimilarity was calculated for all pairs of samples, focusing on species-level 416 

classifications, using Distances.jl. Classical multidimensional scaling (MDS) was then performed 417 

on the dissimilarity matrix with MultivariateStats.jl. Additionally, permutational analysis of 418 

variance (PERMANOVA) was conducted using PERMANOVA.jl. 419 

Machine Learning 420 

Machine learning analysis was performed using the MLJ.jl package64 and the associated 421 

framework. Random forest regression utilized the backend from the DecisionTree.jl package65. 422 

Linear bias correction was applied to forest outputs when necessary66 using GLM.jl67. Data 423 

visualization was built using the Makie.jl package68. 424 

Functional Analysis 425 

EC abundance profiles were obtained for each subject of the 1kDLEAP-Khula cohort that had 426 

longitudinal samples collected on the 3 month and 12 month timepoints, for a total of 73 sample 427 

pairs. Only ECs that could be assigned to at least one detected species were analyzed. ECs 428 

were then assigned a transition score (TS) to represent the directionality and consistency of the 429 

change in its abundance between the timepoints. For each EC, the TS score was calculated 430 

according to the following expression: 431 

𝑇𝑆 =
∑ ⬚𝑛

𝑖=1 (𝑝𝑖   𝑠𝑔𝑛(𝑎𝑖
12𝑚𝑜 − 𝑎𝑖

3𝑚𝑜))

𝑛
 432 

where n is the total number of samples; 𝑠𝑔𝑛(𝑎𝑖
12𝑚𝑜 − 𝑎𝑖

3𝑚𝑜) is the sign of the difference in 433 

community-wide enzyme abundance for the ith sample pair between the 12mo and 3mo 434 

timepoints; and pi is a factor that controls for the significance of the EC abundance in either 435 

timepoint, according to the expression: 436 

𝑝𝑖 ∶=  (1 𝑖𝑓 ((𝑎𝑖
3𝑚𝑜  >=  10 𝐶𝑃𝑀) 𝑜𝑟 (𝑎𝑖

12𝑚𝑜  >=  10 𝐶𝑃𝑀));  0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒) 437 

A score close to +1.0 means that the enzyme is consistently increasing from 3 to 12 months, 438 

and a score close to -1.0 means that the enzyme is consistently decreasing from 3 to 12 439 

months. After scoring and ranking the ECs, we selected 1.5% of the total scored functions (48 440 

ECs) equally distributed between the highest and lowest-scoring enzymes (24 in each major 441 

trend cluster) for stratified functional analysis and visualization. 442 
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Data availability 443 

The processed datasets generated and/or analyzed during the current study have been 444 

deposited in Data Dryad under DOI: https://doi.org/10.5061/dryad.dbrv15f9z. The raw 445 

sequencing data for the Khula study have been deposited in the NCBI Sequence Read Archive 446 

(SRA) under BioProject accession number PRJNA1128723. All other relevant data supporting 447 

the key findings of this study and instruction on how to obtain it are available within the article 448 

and its Supplementary Information files, or are available from the corresponding author upon 449 

reasonable request. 450 

Code availability 451 

Information for replicating the package environment and code for data analysis and figure 452 

generation, as well as scripts for automated download of input files, are available on GitHub at 453 

https://github.com/Klepac-Ceraj-Lab/MicrobiomeAgeModel2024 and archived on Zenodo under 454 

DOI: https://zenodo.org/doi/10.5281/zenodo.12822332.  455 
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Figure Legends 645 

 646 

Figure 1. A continuous diversity landscape arises from pooling a large number of globally 647 

sampled, uniformly (computationally wise) processed early-life metagenomes. (A) 648 

Geographical distribution of sample sources (total n=3,154), color-coded by major data source. 649 

(B). Distribution of age at sample collection, binned by months since birth, in the dynamic range 650 

of the age model, color-coded by major data source. Donut plot details the total sample 651 

contribution by major data source. (C) Overview of methodology, from data acquisition (via 652 

sampling, sourcing on public repositories or data collaboration), through the same processing 653 

pipeline and downstream statistical analysis. (D-E) NMDS ordination of Bray-Curtis β diversity 654 

colored by categorical data source (D) and by continuous age in months (E). Axis percentages 655 

denote variance explained by principal coordinates. 656 

 657 

Figure 2. Gut microbial taxon abundances from shotgun metagenomics predict host age 658 

with high accuracy in early infancy. (A) Validation-set predicted ages versus ground-truth ages 659 

for all samples, color-coded by major data source. (B) Directional importances of top predictive 660 

features measured as mean decrease in impurity (MDI) for the trained RF models, multiplied by 661 

sign of correlation between predictor and outcome. Absolute values in the x-axis represent a 662 

proportion of the total fitness-weighted importance assigned to features. (C) Shannon index with 663 

respect to host age, color-coded by major data source. (D-G) Relative abundances color-coded 664 

by major data source and average month-by-month prevalences of the indicated important 665 

species, D. formicigenerans (D), E. coli (E), F. prausnitzii (F), and B. breve (G), with respect to 666 

host age. 667 

 668 

Figure 3. Temporal succession patterns for a common core of age-predictive taxa 669 

generalize beyond geographical boundaries. Heatmaps of average taxon prevalence for each 670 

of the top 30 predictive species highlighted in Fig. 2. Species are ordered vertically by minimal-671 

distance hierarchical clustering. Samples are binned horizontally from 2 to 13 months. Each cell 672 

represents the mean prevalence of that species in the samples collected on that specific month. 673 

Panels represent samples belonging to (A) Baltic countries (FIN, EST, RUS, SWE); (B) the United 674 

States (USA) and (C) South Africa (ZAF). 675 

 676 

Figure 4. Functional changes are driven by taxonomic changes and centered around diet-677 

associated pathways. Top 24 increasing and top 24 decreasing ECs (in community-wide 678 

abundance), stratified in a selected subset of the top taxonomic predictors of age. Cell colors 679 
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reflect taxon-stratified EC abundance on younger (A) and older (B) samples, measured in log10 680 

CPM (counts per million reads). Blue and red triangles indicate species that increase and 681 

decrease in abundance in the first year of life, respectively.  682 
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Tables 683 

Table 1. Sources of data for the pooled analysis 684 

Study # Reference Repository Repository ID 
Number of 

samples 

Mean age in 

months (SD) 
Country(ies) 

1 Asnicar, F. et al. (2017)59 SRA PRJNA339914 3 2.95 (0.0) ITA 

2 Backhed, F. et al. (2015)3 SRA PRJEB6456 180 8.03 (4.04) SWE 

3 Kostic, A. D. et al. (2015)57 SRA* PRJNA231909 59 12.28 (3.88) EST, FIN 

4 Pehrsson, E. et al. (2016)60 SRA PRJNA300541 3 10.44 (6.91) SLV 

5 Shao, Y. et al. (2019)61 ENA PRJEB32631 285 8.65 (1.95) GBR 

6 Vatanen, T. et al. (2016)56 SRA** PRJNA290380 479 10.90 (4.28) 
FIN, EST, 

RUS 

7 Yassour, M. et al. (2018)58 SRA*** PRJNA290381 104 7.4 (4.25) FIN 

8 Bonham, K. et al. (2023)34 SRA PRJNA695570 224 7.50 (4.37) USA 

9 This work SRA PRJNA1128723 427 9.36 (4.46) ZAF 

10 Fatori, D. et al. (2024)69 SRA PRJNA1072081 963 5.41 (2.13) BRA 

11 Hemmingway, A. et al.  (2020)70 ENA PRJEB77202 353 6.75 (3.11) IRL 

12 O'Sullivan, J. et al. (2024)71 SRA PRJNA1087376 74 11.88 (0.51) BGD 

** - This is the NCBI BioProject ID for the DIABIMMUNE T1D cohort, but the data was instead obtained from the Broad 685 

Institute mirror (https://diabimmune.broadinstitute.org/diabimmune/t1d-cohort) 686 

** - This is the NCBI BioProject ID for the DIABIMMUNE Three Country cohort, but the data was instead obtained from 687 

the Broad Institute mirror (https://diabimmune.broadinstitute.org/diabimmune/t1d-cohort) 688 
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*** - This is the NCBI BioProject ID for the DIABIMMUNE Antibiotics cohort, but the data was instead obtained from the 689 

Broad Institute mirror (https://diabimmune.broadinstitute.org/diabimmune/antibiotics-cohort)  690 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 26, 2024. ; https://doi.org/10.1101/2024.07.25.605223doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.25.605223
http://creativecommons.org/licenses/by/4.0/


 

Table 2. Summary demographics of Khula study participants (mothers) 691 

 
Overall 

 (N=252a) 

Maternal Place of Birth 

South Africa 249 (98.8%) 

In the African Continent (not South Africa) 3 (1.2%) 

Primary Spoken Language 

Xhosa Language 245 (97.2%) 

Sotho Language 2 (0.8%) 

English Language 2 (0.8%) 

Zulu Language 1 (0.4%) 

Ndebele Language 1 (0.4%) 

Afrikaans Language 1 (0.4%) 

Maternal Educational Attainmentb 

Completed Grade 6 (Standard 4) to Grade 7 (Standard 5) 5 (2.0%) 

Completed Grade 8 (Standard 6) to Grade 11 (Standard 9) i.e., high school without 

matriculating 
116 (46.0%) 

Completed Grade 12 (Standard 10) i.e., high school 102 (40.5%) 

Part of university/ college/ post-matric education 15 (5.9%) 

Completed university/ college/ post-matric education 14 (5.6%) 

Maternal Monthly Incomec (South African Rand/ZAR) 

Unknown 22 (8.7%) 

Less than R1000 per month 44 (17.5%) 

R1000 - R5000 per month 121 (48.0%) 

R5000 - R10,000 per month 57 (22.6%) 

More than R10 000 per month 8 (3.2%) 

Depression Scored 
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Overall 

 (N=252a) 

Mean (SD) 12.9 (8.79) 

Median [Min, Max] 12.0 [0, 42.0] 

Infant Biological Sex 

Female 119 (47.2%) 

Male 133 (52.8%) 

ᵃ Table lists only Khula study participants that had at least one sample included in this work. For the full cohort 

demographics, see 

b The South African Educational System was formerly divided into years called standards, similarly to the way 

the United States Educational System is divided into grades. The equivalent in terms of standards is provided in 

parentheses next to each mentioned grade. “University/College/Post-Matric Education” refers to tertiary or post-

secondary education as defined by the World Bank. 

c At the time of writing (JUN 15, 2024), 1 US Dollar = 18.35 South African Rand (ZAR). 

d Depression was measured using the Edinburgh Postnatal Depression Scale (EPDS) at enrollment. 
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Ribokinase [2.7.1.15]
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Pyridoxal kinase [2.7.1.35]
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5-methyltetrahydropteroyltriglutamate--homocysteine S-methyltransferase [2.1.1.14]
Glyceraldehyde-3-phosphate dehydrogenase (phosphorylating) [1.2.1.12]
Dihydroorotate dehydrogenase (quinone) [1.3.5.2]
Glucose-6-phosphate dehydrogenase (NADP(+)) [1.1.1.49]
Adenylate cyclase [4.6.1.1]
2,3,4,5-tetrahydropyridine-2,6-dicarboxylate N-succinyltransferase [2.3.1.117]
Lysophospholipase [3.1.1.5]
tRNA nucleotidyltransferase [2.7.7.56]
NADH dehydrogenase [1.6.99.3]
Phosphoglycerate mutase (2,3-diphosphoglycerate-dependent) [5.4.2.11]
Membrane alanyl aminopeptidase [3.4.11.2]
Glucose-6-phosphate 1-epimerase [5.1.3.15]
Phosphoenolpyruvate carboxylase [4.1.1.31]
Transferred entry: 5.4.2.11 and 5.4.2.12 [5.4.2.1]
Glutamate synthase (NADH) [1.4.1.14]
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