

1 **Local DNA compaction creates TF-DNA clusters that enable transcription**

2 Noémie M. Chabot<sup>1,2,†</sup>, Ramya Purkanti<sup>1,2,†</sup>, Alessia Del Panta Ridolfi<sup>3,4</sup>, Damian Dalle  
3 Nogare<sup>5</sup>, Haruka Oda<sup>6,7</sup>, Hiroshi Kimura<sup>6</sup>, Florian Jug<sup>5</sup>, Alma Dal Co<sup>3</sup>, Nadine L.  
4 Vastenhouw<sup>1,2\*</sup>

5

6 <sup>1</sup>Center for Integrative Genomics, University of Lausanne, Quartier Sorge, 1015 Lausanne,  
7 Switzerland, <sup>2</sup>Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse  
8 108, 01307 Dresden, Germany, <sup>3</sup>Department of Fundamental Microbiology, University of  
9 Lausanne, Quartier Sorge, 1015 Lausanne, Switzerland, <sup>4</sup>Biozentrum, University of Basel,  
10 Basel, Switzerland, <sup>5</sup>Fondazione Human Technopole, Viale Rita Levi-Montalcini 1, Area  
11 MIND, 20157 Milano, Italy. <sup>6</sup>Cell Biology Center, Institute of Innovative Research, Tokyo  
12 Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503,  
13 Japan, <sup>7</sup>Institute of Human Genetics, the National Center for Scientific Research, University of  
14 Montpellier, UMR9002, 141 rue de la Cardonille, Montpellier 34396, France. <sup>†</sup>These authors  
15 contributed equally. \*Corresponding author: nadine.vastenhouw@unil.ch.

16

17 **Transcription factor (TF) clusters have been suggested to facilitate transcription. The**  
18 **mechanisms driving the formation of TF clusters and their impact on transcription,**  
19 **however, remain largely unclear. This is mostly due to the lack of a tractable system.**  
20 **Here, we exploit the transcriptional activation of *mir430* in zebrafish embryos to**  
21 **simultaneously follow the dynamic formation of a large Nanog cluster, the underlying**  
22 **DNA, and transcription output by live imaging at high temporal and spatial resolution.**  
23 **We find that the formation of a Nanog cluster that can support transcription requires**  
24 **local DNA compaction. This brings more Nanog-binding sites into the cluster, and**  
25 **therefore more Nanog. Importantly, we find that Nanog stabilizes this TF-DNA cluster,**

26 **which emphasizes the interdependent relationship between TFs and DNA dynamics in**  
27 **cluster formation. Once the Nanog-DNA cluster at the *mir430* locus reaches a maximum**  
28 **amount of Nanog, transcription begins. This maximum is a locus-intrinsic feature, which**  
29 **shows that the locus self-regulates the recruitment of an optimal amount of Nanog. Our**  
30 **study supports a model in which endogenous TF clusters positively impact transcription**  
31 **and form through a combination of DNA binding and local DNA compaction.**

32

33 **Introduction**

34 Transcription factors (TFs) often form clusters in the nucleus <sup>1-8</sup>. It has been proposed that the  
35 local increase in protein concentration in clusters accelerates biochemical reactions <sup>9</sup>. In the  
36 nucleus, for example, TF or co-activator clustering has been demonstrated to decrease TF  
37 search time <sup>10</sup>, increase and stabilize TF binding to DNA <sup>10</sup>, bring together regulatory elements  
38 <sup>11-13</sup>, and enhance the recruitment of other TFs, co-activators or RNA Polymerase II (RNA Pol  
39 II) <sup>1,6,12-15</sup>. In line with these observations, it has been shown that clustering of TFs can increase  
40 the efficiency of transcription <sup>12,13,15-19</sup>, in some cases by increasing burst frequency <sup>14,20,21</sup>.  
41 Most of these conclusions, however, stem from research on artificially induced clusters <sup>14-19,21</sup>  
42 or mutated TFs in the context of cancer <sup>22</sup>. For physiological, non-pathological clusters, data  
43 on their effect on transcriptional activity is sparse and conflicting <sup>12,13,23-26</sup>.

44

45 TF assembly into clusters has been proposed to be driven by binding of TFs to DNA, followed  
46 by the recruitment of additional factors, potentially facilitated by interactions between  
47 intrinsically disordered regions (IDRs) in these proteins <sup>27,28</sup>. According to this model, the size  
48 of clusters would heavily depend on the number of TF binding sites in DNA. Indeed, number  
49 and density of TF binding sites has been shown to impact cluster size both *in vitro* and *in vivo*  
50 <sup>21,29</sup>, and the few endogenous sequences that have been shown to seed TF clusters are mostly

51 super enhancers<sup>5,6,30</sup>, which are characterized by high numbers of TF binding sites<sup>31</sup>. It thus  
52 seems clear that the number of TF binding sites is key in cluster formation. *In vitro* studies,  
53 however, have shown that TF clusters can pull in DNA<sup>32-34</sup>, suggesting a dynamic interaction  
54 between TF clustering and the underlying DNA. How DNA and TFs act together to generate  
55 TF clusters and regulate transcription *in vivo* however, is not clear.

56

57 To understand how clusters form and impact transcription *in vivo*, the dynamics of cluster  
58 formation needs to be studied in relationship to the underlying DNA as well as transcriptional  
59 output. This has been difficult to achieve in practice, because TF clusters are often small,  
60 numerous, and highly dynamic, and in most cases, it is unclear on what sequence they form. In  
61 zebrafish embryos, transcription is initially absent after fertilization, and invariably begins with  
62 the transcription of the *mir430* locus<sup>35,36</sup>. This is visible as two large transcription bodies in a  
63 nucleus that is otherwise transcriptionally inactive<sup>2,37-42</sup>. Nanog is essential for *mir430*  
64 transcription<sup>2,43</sup>. It forms multiple clusters in the nucleus, two of which colocalize with *mir430*  
65 transcription. Here, we use a live-imaging approach and exploit the transcriptional activation  
66 of *mir430* to analyze the formation of a Nanog cluster, how this relates with the organization  
67 of *mir430* DNA, and how it impacts transcription activation.

68

## 69 **Results**

### 70 ***Nanog clusters associated with *mir430* transcription are the largest and brightest***

71 To investigate the relationship between Nanog and *mir430* transcription, we simultaneously  
72 visualized Nanog, transcription initiation, and MiR430 transcripts in live embryos. To this end,  
73 we injected 1-cell stage zebrafish embryos that lack endogenous Nanog (MZnanog<sup>-/-</sup>) with  
74 synthetic mRNA encoding Nanog-mNeonGreen (mNG), Cy5-labelled antigen-binding  
75 fragments (Fab) targeting the initiating form of RNA Pol II (RNA Pol II phosphorylated on

76 Serine 5 (RNA Pol II Ser5P))<sup>44-47</sup>, as well as an array of fluorescently tagged (Lissamine)  
77 antisense oligonucleotides designed to detect MiR430 transcripts (Morpholinos for the  
78 VIsualization of Expression, or MoVIE<sup>38</sup>). We imaged developing embryos on a spinning disk  
79 confocal microscope and performed our analysis in 1k-cell embryos, unless otherwise  
80 indicated. We observed, as before<sup>2,41</sup>, that Nanog forms multiple clusters in the nucleus (Fig.  
81 1a, Extended Data Fig. 1). Two of these colocalize with RNA Pol II Ser5P and MiR430  
82 transcript signals. The Nanog clusters that colocalize with MiR-430 transcripts appear to be  
83 larger and more intense than other clusters in the nucleus (Fig. 1a). We quantified the volume  
84 and intensity of Nanog clusters that do or do not colocalize with the first RNA Pol II Ser5P  
85 transcription bodies that appear during the cell cycle (and MiR430 transcripts) and found that  
86 the Nanog clusters associated with MiR430 transcripts are indeed the largest and the brightest  
87 in the nucleus at the time of *mir430* activation (Fig. 1b, Extended Data Fig. 2).

88

#### 89 ***mir430* transcription starts when Nanog reaches a maximum**

90 We proceeded to analyze how the Nanog signal associated with MiR430 transcription evolves  
91 prior to transcription. We tracked Nanog signal in single nuclei and associated it with the  
92 initiation of *mir430* transcription (Fig. 1c, d). We observed that Nanog signal is initially rather  
93 diffuse, and that over time, clusters appear. These clusters are highly dynamic and often split  
94 and merge as has been observed before for TF clusters (Sabari et al., 2018; Cho et al., 2018;  
95 Sharma et al., 2021; Kim et al., 2023; Gaskill et al., 2023). We noticed that in most cases (65%),  
96 two or more Nanog clusters merge to form one Nanog cluster prior to transcription (defined as  
97 merging clusters; Fig. 1c, d, Supplementary Video 1). In other cases (35%) we see only one  
98 cluster prior to transcription start (defined as non-merging clusters; Fig. 1c, d, Supplementary  
99 Video 1). For both merging and non-merging clusters, the amount of Nanog in individual  
100 clusters increases prior to *mir430* transcription (Fig. 1e). To investigate how the increasing

101 amount of Nanog relates to the onset of *mir430* transcription, we used RNA Pol II Ser5P signal  
102 to identify the start of *mir430* transcription and identified the associated Nanog cluster. We  
103 then tracked this Nanog cluster back in time to determine how its fluorescence intensity evolved  
104 prior to transcription initiation. If the cluster that activates the *mir430* locus was the result of a  
105 merging event, we report the combined intensity of these individual clusters. This revealed that  
106 Nanog intensity increases steadily prior to transcription, peaks at transcription initiation and  
107 decreases afterwards (Fig. 1f, left panel). To investigate the effect of transcription elongation  
108 on Nanog intensity, we repeated the experiment in the presence of  $\alpha$ -amanitin, which inhibits  
109 transcription elongation<sup>48</sup>. In this case, Nanog intensity does not decrease after reaching a  
110 maximum (Fig. 1f, right panel). This is in line with the observation that *mir430*-associated  
111 Nanog clusters decrease in intensity after transcription initiation<sup>41</sup>. Remarkably, however, we  
112 observe that even in the absence of transcription, a maximum in Nanog intensity is reached.  
113 This suggests that there is an upper limit to the amount of Nanog that can associate with the  
114 *mir430* locus. This maximum appears to be a locus-intrinsic feature and not the consequence  
115 of limiting amounts of Nanog, because the mean intensity of free Nanog is stable around the  
116 time of transcription initiation (Extended Data Fig. 3a). We conclude that the total amount of  
117 Nanog at the *mir430* locus increases prior to transcription and that transcription initiates when  
118 it reaches a maximum.

119

## 120 ***High amount of Nanog can be reached without observable cluster-merging***

121 We next characterized the effect of cluster merging on the amount of Nanog signal by plotting  
122 the intensity of clusters that merge prior to *mir430* transcription (Fig. 2a). Here, we report the  
123 intensities of individual clusters before merging, and the intensity of merged clusters after  
124 merging. As expected, merging increases the total amount of Nanog. Importantly, merging has  
125 a negligible effect on the concentration of Nanog in the cluster, but rather increases the volume,

126 and as such the total amount of Nanog in the cluster (Fig. 2a). In agreement with the need to  
127 reach a high amount of Nanog for transcription initiation, transcription follows merging in 94%  
128 of the cases in which merging can be observed (Fig. 2b). We conclude that high amounts of  
129 Nanog at the *mir430* locus can result from the merging of multiple clusters before transcription  
130 initiation. Merging of Nanog clusters is, however, not a prerequisite for transcription (Fig. 1c,  
131 d). In fact, merging and non-merging clusters show a similar increase in total Nanog intensity  
132 prior to transcription as merging ones (Extended Data Fig. 3b), and they initiate transcription  
133 at the same time during the cell cycle (Fig. 2c). This shows that the amount of Nanog in non-  
134 merging clusters evolves exactly as in merging ones and raises the possibility that merging and  
135 non-merging clusters are two representations of the same process. If this were the case,  
136 observing just one cluster could mean that merging happened prior to the image acquisition, or  
137 the imaging did not reach the temporal resolution to be able to observe it. To investigate this,  
138 we analyzed how quickly merging happens by resolving the cases in which we observe merging  
139 by the time for which we detect separate clusters (Fig. 2d). This revealed that in most cases  
140 (42%), we can see separate clusters for only 15 seconds and only in 18% of the cases we see  
141 multiple clusters for more than a minute (Fig. 2d). Thus, merging typically happens very  
142 quickly. If merging and non-merging are indeed the same process, it would be predicted that  
143 in cases where we observe merging, this is required to reach a high total amount of Nanog. To  
144 test this, we compared the increase in the total amount of Nanog between merging and non-  
145 merging cases (Fig. 2e). For merging cases, we plotted the amount of Nanog in individual  
146 clusters (individual), as well as the sum of individual clusters that merge (sum). Comparing  
147 these with the plot for non-merging cases showed that in merging cases, merging is required to  
148 reach sufficiently high amounts of Nanog to activate transcription. We conclude that Nanog  
149 clusters for which we observe merging and Nanog clusters for which we do not observe

150 merging are different representations of the same process, and that in both cases, the required  
151 amount of Nanog to activate *mir430* transcription is reached.

152

153 ***In vivo labelling of the mir430 locus using a dCas9 approach***

154 To understand how the Nanog clusters that activate *mir430* transcription are spatially related  
155 to the *mir430* locus, we adapted a dCas9 labelling approach<sup>49</sup> to visualize the DNA of the  
156 endogenous *mir430* locus live. We took advantage of the repetitive nature of the locus  
157 (Extended Data Fig. 4) and used two single guide RNAs (sgRNAs) that together bind to the  
158 locus twenty times<sup>37</sup> (Extended Data Fig. 4). We inserted eight MS2 loops in the tetraloop of  
159 each guide RNA<sup>50</sup>, and visualized them with MCP protein tagged with mNG. We injected  
160 embryos at the 1-cell stage with pre-assembled sgRNA-dCas9 complexes, together with  
161 mRNA encoding MCP-mNG (Fig. 3a). This resulted in a clear signal corresponding to the  
162 *mir430* locus, as evidenced by the colocalization with MiR430 RNA (Fig. 3b). Injections  
163 without dCas9, guide RNAs, or the target locus (*mir430*<sup>-/-</sup><sup>2,42</sup>) resulted in the loss of signal  
164 (Fig. 3b), further confirming that our technique detects the *mir430* locus specifically.

165

166 It has previously been shown that DNA of long, highly expressed genes expands when it is  
167 transcribed<sup>37,39,41,51</sup>. Hence, to test our method, we asked if we could detect an expansion of  
168 the long and highly expressed *mir430* locus as it starts to be transcribed. To this end, we  
169 followed the *mir430* locus during a complete cell cycle. This revealed a coordination between  
170 transcriptional activity and an increase in the volume of the *mir430* locus (Fig. 3c, d). Such  
171 expansion of the *mir430* locus was not observed when transcription of the locus was inhibited  
172 with  $\alpha$ -amanitin (Fig. 3e, f). Thus, our method faithfully detects the *mir430* locus live, and can  
173 be used to investigate how the Nanog clusters that activate the *mir430* locus relate to this locus  
174 in nuclear space.

175 ***The Nanog clusters that activate *mir430* transcription are seeded by the locus itself***

176 We hypothesized, in light of the size of the *mir430* locus<sup>39,41</sup> and its high number of Nanog  
177 binding sites (Extended Data Fig. 4), that Nanog clusters that ultimately activate *mir430*  
178 transcription could form on the locus itself (Fig. 4a). Alternatively, however, they could form  
179 away from the locus and subsequently move towards it (Fig. 4a). To distinguish between these  
180 two possibilities, we combined the visualization of Nanog (Nanog-HaloTag (JFX650)), the  
181 *mir430* locus (MCP-mNG), and MiR430 transcripts (*mir430* MoVIE lissamine) (Fig. 4b). We  
182 observed that the *mir430* DNA signal is initially rather weak and becomes better visible as we  
183 approach transcription initiation. Often, the *mir430* DNA signal is punctuated, which we  
184 propose reflects differences in DNA density. As before (Fig. 1c), we observe that Nanog  
185 clusters are highly dynamic, and that there are merging and non-merging Nanog clusters.  
186 Overall, we observe a high degree of overlap between *mir430* DNA signal and Nanog signal,  
187 even before transcription initiation (Fig. 4b). A quantification of how often Nanog clusters  
188 overlap with the signal of *mir430* locus, confirmed that most clusters (~90%) colocalize with  
189 *mir430* at the time of merging as well as at all the earlier time points (Fig. 4c, left panel).  
190 Because we cannot do this analysis for non-merging clusters, we also used the time of  
191 transcription initiation (Fig. 4c, middle and right panels). Both for merging and non-merging  
192 clusters, this confirms that most clusters (98% for merging, 97% for non-merging) colocalize  
193 with *mir430* at the time of transcription initiation as well as at earlier time points. We conclude  
194 that the Nanog clusters that activate the *mir430* locus are seeded by the locus itself. Importantly,  
195 if merging clusters form on the *mir430* locus, merging does not increase the total amount of  
196 Nanog associated with the *mir430* locus, but rather brings all Nanog into one place. This has  
197 important implications for our interpretation of the impact of cluster merging on transcription  
198 (see discussion).

199

200 ***Local DNA compaction brings Nanog clusters together***

201 If the Nanog clusters that activate the *mir430* locus are seeded by the locus itself, local DNA  
202 compaction could be a potential mechanism to bring Nanog clusters together. To explore this  
203 possibility, we analyzed the shape changes of the *mir430* DNA signal in relation to the onset  
204 of transcription (Fig. 5a). We segmented the *mir430* locus in 3D and determined the radial  
205 distances between the center of gravity and each edge pixel of the maximum-intensity projected  
206 mask in 2D for each locus (see Methods). We then calculated the coefficient of variation (CoV)  
207 of the radial distances to describe the shape of the locus. According to this metrics, if the locus  
208 is fully compacted, the value would be 0.08 (see Methods) whereas higher values would  
209 correspond to more elongated shapes (Fig. 5a, left). As such, the CoV of the radial distances  
210 within the segmented *mir430* DNA signal can be used as a proxy for its compaction state. Using  
211 this approach, we detected a decrease in the CoV before transcription initiation and the lowest  
212 value is reached at the time of transcription initiation (Fig. 5a), regardless of the detectability  
213 of merging events (Extended Data Fig. 5a). Importantly, the CoV of the radial distances  
214 decreases to values measured during mitosis (dashed green line in Fig. 5a), suggesting that the  
215 locus is highly compacted. We conclude that transcription starts at the most compacted state of  
216 the *mir430* locus.

217

218 To investigate how compaction of the *mir430* locus relates to Nanog accumulation, we next  
219 included Nanog signal in our analysis. First, we observed that prior to transcription activation,  
220 *mir430* DNA signal is increasingly covered by Nanog signal (Fig. 5b). We then asked whether  
221 the intensity of Nanog signal correlates with the intensity of the *mir430* DNA signal. To do so,  
222 we determined the correlation between Nanog and *mir430* DNA intensities within the *mir430*  
223 DNA mask. We observe that the correlation increases prior to transcription (Fig. 5c, in black).  
224 As a control, we scrambled the pixel intensities of Nanog within the mask. In this case, no

225 increase in the correlation between signals was observed (Fig. 5c, in red). These results show  
226 that prior to transcription, the increasing amount of Nanog correlates with the local compaction  
227 of *mir430* DNA. In agreement with this observation, we find that the Nanog signal is  
228 increasingly covered by the *mir430* DNA signal (Fig. 5d). We note that similar results were  
229 obtained independent of whether merging Nanog clusters were observed (Extended Data Fig.  
230 5). We conclude that local DNA compaction brings Nanog and DNA together in a TF-DNA  
231 cluster.

232

233 Despite the correlation of transcription initiation with *mir430* locus compaction in averaged  
234 data (Fig. 5a), plots of individual alleles show that the condensation process is highly dynamic,  
235 and transcription does not always begin the first time that the DNA is in its most compacted  
236 state (arrowheads in Fig. 5e, Extended Data Fig. 6). To better understand the relationship  
237 between *mir430* locus compaction and Nanog accumulation, we added the total amount of  
238 Nanog associated with the *mir430* locus to the compaction plots. Taking both parameters into  
239 account, we observed that transcription often initiates when DNA is in the most compacted  
240 state but only once higher amounts of Nanog have accumulated on the *mir430* locus (Fig. 5e).  
241 This supports a model in which local DNA compaction is important but only when there is  
242 enough Nanog to be brought together. To look at this in more detail, we plotted the Nanog  
243 amount on the *mir430* locus as a function of the compaction state of the *mir430* locus (Fig. 5f).  
244 We observe that high levels of Nanog often correlate with compaction, as 62.6% of all  
245 observations are found in the lower right quadrant. Of these, 20.1% are associated with *mir430*  
246 transcription, which is a higher percentage than in the other quadrants. We conclude that a local  
247 compaction of the *mir430* locus helps to create a TF-DNA cluster that facilitates transcription  
248 initiation.

249

250 ***Nanog stabilizes TF-DNA clusters***

251 Our data shows that the Nanog clusters that activate *mir430* transcription are seeded by the  
252 *mir430* locus (Fig. 4), and that compaction of the locus facilitates the formation of a Nanog-  
253 DNA cluster that enables transcription initiation (Fig. 5). Because it has been shown that TFs  
254 can pull in DNA<sup>32-34</sup>, we next set out to test whether Nanog itself contributes to the local  
255 compaction of the *mir430* locus. Here, we used a parameter for DNA compaction that is based  
256 on the changes in relative distances between local maxima of intensity in the *mir430* DNA  
257 signal (Fig. 6a). We define the locus as compacted when we detect only one density (distance  
258 equal to 0), and as decompact when otherwise. To study the compaction of the *mir430* locus in the  
259 presence or absence of Nanog independently of transcriptional output, we compared Nanog  
260 mutant embryos, in which *mir430* transcription is absent<sup>2</sup>, to Nanog mutant embryos injected  
261 with Nanog and the transcription inhibitor  $\alpha$ -amanitin (Fig. 6b, Extended Data Fig. 7a). We  
262 found that loci compact and decompact often (Fig. 6b), which is in line with the dynamic  
263 behavior of the *mir430* locus that we observed previously (Fig. 4b). We then calculated the  
264 speed at which the locus compacts, as defined by the time it takes for the distance between two  
265 or more densities to be reduced to zero (Fig. 6a). This speed is not significantly different with  
266 and without Nanog (Fig. 6c, Extended Data Fig. 7b), suggesting that Nanog does not directly  
267 impact the speed at which the *mir430* locus compacts. In absence of Nanog, however, loci are  
268 more dynamic than in its presence (Fig. 6b). This can be seen in number of fluctuations per  
269 locus (1.4 on average with Nanog, versus 1.9 on average without,  $p=0.026$ ). This prompted us  
270 to compare the stability of the locus in the presence and the absence of Nanog. Here, we assess  
271 stability based on how long the locus spends in a compacted state (Fig. 6a). This revealed that  
272 in nuclei with Nanog present, loci spend significantly more time in the compacted state,  
273 compared to nuclei in which Nanog is absent (Fig. 6d, Extended Data Fig. 7c). This suggests  
274 that Nanog plays a role in stabilizing TF-DNA clusters. If Nanog indeed plays a role in keeping

275 clusters compacted, one would predict that the average distance between DNA signal densities  
276 is shorter in the presence of Nanog than in its absence. This is indeed the case (Fig. 6e, Extended  
277 Data Fig. 7d). We thus conclude that Nanog does not drive the compaction of the *mir430* locus  
278 but stabilizes Nanog-DNA clusters.

279

## 280 **Discussion**

281 Here, we used a live-imaging approach to study the formation of endogenous Nanog clusters  
282 on the *mir430* locus and relate this to transcriptional activity. We find that *mir430* transcription  
283 begins when a maximum amount of Nanog is reached. This maximum is reached by binding  
284 of Nanog to the locus, in combination with local DNA compaction, which brings the locus and  
285 Nanog together in a TF-DNA cluster. Nanog itself does not drive the process of DNA  
286 compaction, but rather stabilizes Nanog-DNA clusters.

287

### 288 ***Endogenous clusters self-regulate to reach optimal amount of transcription factor***

289 We show that *mir430* transcription begins when a maximum amount of Nanog is reached in  
290 the cluster associated with the *mir430* locus. This is in line with previous work in which  
291 clustering of transcriptional machinery was shown to enhance the transcription of target genes  
292 <sup>12–15,17–19,21,23,25,26</sup>. Other studies have, however, reported a negative effect of clustering on  
293 transcription <sup>24,52–54</sup>. When negative effects were observed, cluster formation was often  
294 manipulated by changing features of the clustered proteins <sup>52–54</sup>. Because negative effects have  
295 been ascribed to molecular crowding <sup>24,53</sup> and the precise composition of clusters impacts  
296 transcription <sup>24,52,53</sup>, artificial induction of clustering or changing protein-features can probably  
297 explain these observed negative effects of clustering. In our work, we focused on a cluster that  
298 forms on an endogenous locus and found that the amount of Nanog that triggers *mir430*  
299 transcription, is – at the same time – the maximum amount of Nanog that can be associated with

300 the locus. This suggests that the *mir430* locus regulates the amount of Nanog that can be  
301 associated with it. We conclude that there is an optimum amount of TF to activate transcription,  
302 and that endogenous clusters can self-regulate to reach this optimum.

303

304 ***A role for DNA compaction in TF cluster formation***

305 We identified two processes that contribute to the accumulation of sufficient amounts of Nanog  
306 to activate *mir430* transcription (Fig. 6f). On the one hand, Nanog binds in high amounts to the  
307 *mir430* locus, rich in Nanog binding sites. This has been observed before by us and others  
308<sup>2,13,41,55</sup> and is in line with the density of Nanog binding sites on the locus<sup>39,41</sup>. We find that  
309 Nanog binding on the locus often results in the formation of Nanog clusters. On the other hand,  
310 the *mir430* locus locally compacts, which brings the *mir430* locus and the associated Nanog  
311 together to generate a larger TF-DNA cluster. We note that compaction brings more Nanog  
312 into one place, regardless of whether separate clusters visibly merge. Because loading of Nanog  
313 and DNA compaction occur simultaneously, it is difficult to identify the precise role of  
314 compaction in transcription activation, especially because the total amount of Nanog on the  
315 locus does not increase because of compaction. Given the emergent properties of clusters, we  
316 can imagine that the formation of a cluster allows for a higher amount of Nanog to be associated  
317 with the *mir430* locus than could be achieved simply by Nanog binding to a locus that is not  
318 compacted. Along the same lines, a cluster may facilitate the recruitment of additional factors.  
319 More detailed biophysical experiments will be needed to determine exactly which emergent  
320 properties of TF-DNA clusters impact transcription activation.

321

322 ***Nanog stabilizes TF-DNA clusters***

323 Our work shows that Nanog stabilizes clusters of locally compacted DNA and Nanog itself.  
324 Previous *in vitro* work has shown that TF clusters are able to pull in DNA<sup>32-34</sup>. We show here,

325 however, that Nanog does not affect the speed by which DNA compacts, but rather the stability  
326 of the cluster once formed. Further work will be required to determine which factor(s) drive  
327 the compaction itself. TF clustering is facilitated by the presence of IDRs as these mediate low  
328 affinity interactions between proteins <sup>12,56-58</sup>. Specifically, for Nanog, we have previously  
329 shown that at least one IDR is required to form clusters at the *mir430* locus <sup>2</sup>. It is therefore  
330 possible that the stabilizing function of Nanog is related to its ability to form clusters, but we  
331 cannot exclude the possibility that other factors are involved. Because transcription of the  
332 *mir430* locus depends on Nanog <sup>2,43</sup> and DNA compaction helps to bring in the required amount  
333 of Nanog (this study), we propose that the stabilizing function of Nanog helps to maintain high  
334 enough levels of Nanog associated with the *mir430* locus to trigger transcription. Nanog is a  
335 well-known pluripotency factor <sup>59</sup> with important roles in reprogramming <sup>60,61</sup>, lineage  
336 specification <sup>62-64</sup>, and zebrafish genome activation <sup>43,65-67</sup>. A role for Nanog in stabilizing TF-  
337 DNA clusters, however, was not reported before, and this is a novel function for Nanog.

338 **References**

339 1. Cho, W.-K. *et al.* Mediator and RNA polymerase II clusters associate in transcription-dependent  
340 condensates. *Science* **361**, 412–415 (2018).

341 2. Kuznetsova, K. *et al.* Nanog organizes transcription bodies. *Curr. Biol.* **33**, 164-173.e5 (2023).

342 3. Li, J. *et al.* Single-gene imaging links genome topology, promoter–enhancer communication and  
343 transcription control. *Nat. Struct. Mol. Biol.* **27**, 1032–1040 (2020).

344 4. Mir, M. *et al.* Dynamic multifactor hubs interact transiently with sites of active transcription in  
345 Drosophila embryos. *eLife* **7**, (2018).

346 5. Nair, S. J. *et al.* Phase separation of ligand-activated enhancers licenses cooperative chromosomal  
347 enhancer assembly. *Nat. Struct. Mol. Biol.* **2019** *263* **26**, 193–203 (2019).

348 6. Sabari, B. R. *et al.* Coactivator condensation at super-enhancers links phase separation and gene  
349 control. *Science* **361**, (2018).

350 7. Tsai, A. *et al.* Nuclear microenvironments modulate transcription from low-affinity enhancers.  
351 *eLife* **6**, (2017).

352 8. Tsai, A., Alves, M. R. P. & Crocker, J. Multi-enhancer transcriptional hubs confer phenotypic  
353 robustness. *eLife* **8**, (2019).

354 9. Hyman, A. A., Weber, C. A. & Jülicher, F. Liquid-Liquid Phase Separation in Biology. *Annu.*  
355 *Rev. Cell Biol* **30**, 39–58 (2014).

356 10. Kent, S. *et al.* Phase-Separated Transcriptional Condensates Accelerate Target-Search Process  
357 Revealed by Live-Cell Single-Molecule Imaging. *Cell Rep.* **33**, 108248 (2020).

358 11. Ahn, J. H. *et al.* Phase separation drives aberrant chromatin looping and cancer development.  
359 *Nature* **595**, 591–595 (2021).

360 12. Chowdhary, S., Kainth, A. S., Paracha, S., Gross, D. S. & Pincus, D. Inducible transcriptional  
361 condensates drive 3D genome reorganization in the heat shock response. *Mol. Cell* **82**, 4386–  
362 4399.e7 (2022).

363 13. Wang, W. *et al.* A histidine cluster determines YY1-compartmentalized coactivators and  
364 chromatin elements in phase-separated enhancer clusters. *Nucleic Acids Res.* **50**, 4917–4937  
365 (2022).

366 14. Ma, L. *et al.* Co-condensation between transcription factor and coactivator p300 modulates  
367 transcriptional bursting kinetics. *Mol. Cell* **81**, 1682-1697.e7 (2021).

368 15. Wei, M. T. *et al.* Nucleated transcriptional condensates amplify gene expression. *Nat. Cell Biol.*  
369 **22**, 1187–1196 (2020).

370 16. Chen, L. *et al.* Hormone-induced enhancer assembly requires an optimal level of hormone  
371 receptor multivalent interactions. *Mol. Cell* **83**, 3438-3456.e12 (2023).

372 17. Kim, Y. J. *et al.* Light-activated macromolecular phase separation modulates transcription by  
373 reconfiguring chromatin interactions. *Sci. Adv.* **9**, (2023).

374 18. Schneider, N. *et al.* Liquid-liquid phase separation of light-inducible transcription factors  
375 increases transcription activation in mammalian cells and mice. *Sci. Adv.* **7**, (2021).

376 19. Wu, J. *et al.* Modulating gene regulation function by chemically controlled transcription factor  
377 clustering. *Nat. Commun.* **13**, (2022).

378 20. Du, M. *et al.* Direct observation of a condensate effect on super-enhancer controlled gene  
379 bursting. *Cell* **187**, 331-344.e17 (2024).

380 21. Kawasaki, K. & Fukaya, T. Functional coordination between transcription factor clustering and  
381 gene activity. *Mol. Cell* **83**, 1605-1622.e9 (2023).

382 22. Song, L. *et al.* Hotspot mutations in the structured ENL YEATS domain link aberrant  
383 transcriptional condensates and cancer. *Mol. Cell* **82**, 4080-4098.e12 (2022).

384 23. Li, J. *et al.* Single-Molecule Nanoscopy Elucidates RNA Polymerase II Transcription at Single  
385 Genes in Live Cells. *Cell* **178**, 491-506.e28 (2019).

386 24. Meeussen, J. V. W. *et al.* Transcription factor clusters enable target search but do not contribute  
387 to target gene activation. *Nucleic Acids Res.* **51**, (2023).

388 25. Xie, J. *et al.* Targeting androgen receptor phase separation to overcome antiandrogen resistance.  
389 *Nat. Chem. Biol.* **18**, 1341–1350 (2022).

390 26. Zhang, H. *et al.* Reversible phase separation of HSF1 is required for an acute transcriptional  
391 response during heat shock. *Nat. Cell Biol.* **24**, 340–352 (2022).

392 27. Furlong, E. E. M. & Levine, M. Developmental enhancers and chromosome topology. *Science*  
393 **361**, 1341–1345 (2018).

394 28. Hnisz, D., Shrinivas, K., Young, R. A., Chakraborty, A. K. & Sharp, P. A. Leading Edge  
395 Perspective A Phase Separation Model for Transcriptional Control. *Cell* **169**, 13–23 (2017).

396 29. Shrinivas, K. *et al.* Enhancer Features that Drive Formation of Transcriptional Condensates In  
397 Brief Transcription-associated proteins form condensates localized at specific DNA elements.  
398 *Mol. Cell* **75**, 549-561.e7 (2019).

399 30. Saravanan, B. *et al.* Ligand dependent gene regulation by transient ER $\alpha$  clustered enhancers.  
400 *PLoS Genet.* **16**, e1008516 (2020).

401 31. Whyte, W. A. *et al.* Master transcription factors and mediator establish super-enhancers at key  
402 cell identity genes. *Cell* **153**, 307–319 (2013).

403 32. Keenen, M. M. *et al.* HP1 proteins compact DNA into mechanically and positionally stable phase  
404 separated domains. *eLife* **10**, e64563 (2021).

405 33. Nguyen, T. *et al.* Chromatin sequesters pioneer transcription factor Sox2 from exerting force on  
406 DNA. *Nat. Commun.* **13**, 3988 (2022).

407 34. Quail, T. *et al.* Force generation by protein–DNA co-condensation. *Nat. Phys.* **2021** *17*,  
408 1007–1012 (2021).

409 35. Heyn, P. *et al.* The earliest transcribed zygotic genes are short, newly evolved, and different  
410 across species. *Cell Rep.* **6**, 285–292 (2014).

411 36. White, R. J. *et al.* A high-resolution mRNA expression time course of embryonic development in  
412 zebrafish. *eLife* **6**, (2017).

413 37. Chan, S. H., Tang, Y., Bazzini, A. A., Moreno-Mateos, M. A. & Giraldez, A. J. Brd4 and P300  
414 Confer Transcriptional Competency during Zygotic Genome Activation. *Dev. Cell* **49**, 867–  
415 881.e8 (2019).

416 38. Hadzhiev, Y. *et al.* A cell cycle-coordinated Polymerase II transcription compartment  
417 encompasses gene expression before global genome activation. *Nat. Commun.* **10**, (2019).

418 39. Hadzhiev, Y. *et al.* The miR-430 locus with extreme promoter density forms a transcription body  
419 during the minor wave of zygotic genome activation. *Dev. Cell* **58**, 155–170.e8 (2023).

420 40. Hilbert, L. *et al.* Transcription organizes euchromatin via microphase separation. *Nat. Commun.*  
421 *2021* **12**, 1–12 (2021).

422 41. Pownall, M. E. *et al.* Chromatin expansion microscopy reveals nanoscale organization of  
423 transcription and chromatin. *Science* **381**, 92 (2023).

424 42. Ugolini, M. *et al.* Transcription bodies regulate gene expression by sequestering CDK9. *Nat. Cell*  
425 *Biol.* **26**, 604–612 (2024).

426 43. Lee, M. T. *et al.* Nanog, Pou5f1 and SoxB1 activate zygotic gene expression during the maternal-  
427 to-zygotic transition. *Nature* **503**, 360–364 (2013).

428 44. Hayashi-Takanaka, Y. *et al.* Tracking epigenetic histone modifications in single cells using Fab-  
429 based live endogenous modification labeling. *Nucleic Acids Res.* **39**, 6475–6488 (2011).

430 45. Kimura, H. & Yamagata, K. Visualization of epigenetic modifications in preimplantation  
431 embryos. *Methods Mol. Biol.* **1222**, 127–147 (2015).

432 46. Sato, Y. *et al.* Histone H3K27 acetylation precedes active transcription during zebrafish zygotic  
433 genome activation as revealed by live-cell analysis. *Development* **146**, 19 (2019).

434 47. Stasevich, T. J. *et al.* Regulation of RNA polymerase II activation by histone acetylation in single  
435 living cells. *Nat. 2014* **5167530** **516**, 272–275 (2014).

436 48. Rudd, M. D. & Luse, D. S. Amanitin greatly reduces the rate of transcription by RNA polymerase  
437 II ternary complexes but fails to inhibit some transcript cleavage modes. *J. Biol. Chem.* **271**,  
438 21549–21558 (1996).

439 49. Dominguez, A. A., Lim, W. A. & Qi, L. S. Beyond editing: repurposing CRISPR–Cas9 for  
440 precision genome regulation and interrogation. *Nat. Rev. Mol. Cell Biol.* **17**, 5–15 (2016).

441 50. Ma, H. *et al.* CRISPR-Sirius: RNA scaffolds for signal amplification in genome imaging. *Nat.*  
442 *Methods* **15**, 928–931 (2018).

443 51. Leidescher, S. *et al.* Spatial organization of transcribed eukaryotic genes. *Nat. Cell Biol.* **24**, 327–  
444 339 (2022).

445 52. Chong, S. *et al.* Tuning levels of low-complexity domain interactions to modulate endogenous  
446 oncogenic transcription. *Mol. Cell* **82**, 2084-2097.e5 (2022).

447 53. Mazzocca, M., Fillot, T., Loffreda, A., Gnani, D. & Mazza, D. The needle and the haystack:  
448 single molecule tracking to probe the transcription factor search in eukaryotes. *Biochem. Soc.*  
449 *Trans.* **49**, 1121 (2021).

450 54. Trojanowski, J. *et al.* Transcription activation is enhanced by multivalent interactions  
451 independent of phase separation. *Mol. Cell* **82**, 1878-1893.e10 (2022).

452 55. Xu, C. *et al.* Nanog-like Regulates Endoderm Formation through the Mxtx2-Nodal Pathway. *Dev.*  
453 *Cell* **22**, 625 (2012).

454 56. Boija, A. A. *et al.* Transcription Factors Activate Genes through the Phase-Separation Capacity of  
455 Their Activation Domains In Brief Activation domains from a diverse array of mammalian and  
456 yeast transcription factors form phase-separated condensates with Mediator to activate gene  
457 expression. *Cell* **175**, 1842-1855.e16 (2018).

458 57. Chong, S. *et al.* Imaging dynamic and selective low-complexity domain interactions that control  
459 gene transcription. *Science* **361**, (2018).

460 58. Shi, B. *et al.* UTX condensation underlies its tumour-suppressive activity. *Nature* **597**, 726–731  
461 (2021).

462 59. Heurtier, V. *et al.* The molecular logic of Nanog-induced self-renewal in mouse embryonic stem  
463 cells. *Nat. Commun.* **10**, 1109 (2019).

464 60. Silva, J. *et al.* Nanog Is the Gateway to the Pluripotent Ground State. *Cell* **138**, 722–737 (2009).

465 61. Theunissen, T. W. *et al.* Nanog Overcomes Reprogramming Barriers and Induces Pluripotency in  
466 Minimal Conditions. *Curr. Biol.* **21**, 65–71 (2011).

467 62. Allègre, N. *et al.* NANOG initiates epiblast fate through the coordination of pluripotency genes  
468 expression. *Nat. Commun.* **13**, 3550 (2022).

469 63. Piazzolla, D. *et al.* Lineage-restricted function of the pluripotency factor NANOG in stratified  
470 epithelia. *Nat. Commun.* **5**, 4226 (2014).

471 64. Wang, Z., Oron, E., Nelson, B., Razis, S. & Ivanova, N. Distinct lineage specification roles for  
472 NANOG, OCT4, and SOX2 in human embryonic stem cells. *Cell Stem Cell* **10**, 440–454 (2012).

473 65. Miao, L. *et al.* The landscape of pioneer factor activity reveals the mechanisms of chromatin  
474 reprogramming and genome activation. *Mol. Cell* **82**, 986-1002.e9 (2022).

475 66. Pálfy, M., Schulze, G., Valen, E. & Vastenhouw, N. L. Chromatin accessibility established by  
476 Pou5f3, Sox19b and Nanog primes genes for activity during zebrafish genome activation. *PLoS  
477 Genet.* **16**, e1008546 (2020).

478 67. Veil, M., Yampolsky, L. Y., Grüning, B. & Onichtchouk, D. Pou5f3, SoxB1, and Nanog remodel  
479 chromatin on high nucleosome affinity regions at zygotic genome activation. *Genome Res.* **29**,  
480 383–395 (2019).

481 68. Veil, M. *et al.* Maternal Nanog is required for zebrafish embryo architecture and for cell viability  
482 during gastrulation. (2018) doi:10.1242/dev.155366.

483 69. The Zebrafish Book: A Guide for the Laboratory Use of Zebrafish (Danio Rerio) - Monte  
484 Westerfield - Google Books.

485 70. Waldo, G. S., Standish, B. M., Berendzen, J. & Terwilliger, T. C. Rapid protein-folding assay  
486 using green fluorescent protein. *Nat. Biotechnol.* **17**, 691–695 (1999).

487 71. Hayashi-Takanaka, Y. *et al.* Tracking epigenetic histone modifications in single cells using Fab-  
488 based live endogenous modification labeling. *Nucleic Acids Res.* **39**, 6475-6488 (2011).

489 72. Schindelin, J. *et al.* Fiji: an open-source platform for biological-image analysis. *Nat. Methods  
490 2012* **9**, 676–682 (2012).

491 73. Ershov, D. *et al.* TrackMate 7: integrating state-of-the-art segmentation algorithms into tracking  
492 pipelines. *Nat. Methods* **19**, 829–832 (2022).

493

494 **Acknowledgements**

495 We thank members of the Vastenhouw lab (especially Gilles Willemin and Edlyn Wu) for their  
496 support, helpful feedback, and stimulating discussions. We thank Shivali Dongre, Maria  
497 Cristina Gambetta, Maciej Kerlin, Arianna Penzo, and Aleksandar Vještica for comments on  
498 the manuscript, and the following facilities and services for their support: MPI-CBG - fish  
499 facility, light microscopy facility, and scientific computing, UNIL - cellular imaging facility,  
500 fish facility, EPFL – BioImaging and Optics Core and fish facility. Research in N.L.V.’s  
501 laboratory was supported by the Max Planck Society, the University of Lausanne, a European  
502 Research Council Consolidator Grant (101003023), the Volkswagen Foundation (94773), and  
503 the German Research Foundation (VA 1209/2-1). Research in H.K.’s laboratory was supported  
504 by the Japan Society for the Promotion of Science KAKENHI (JP18H05527, JP21H04764 and  
505 JP20K06484).

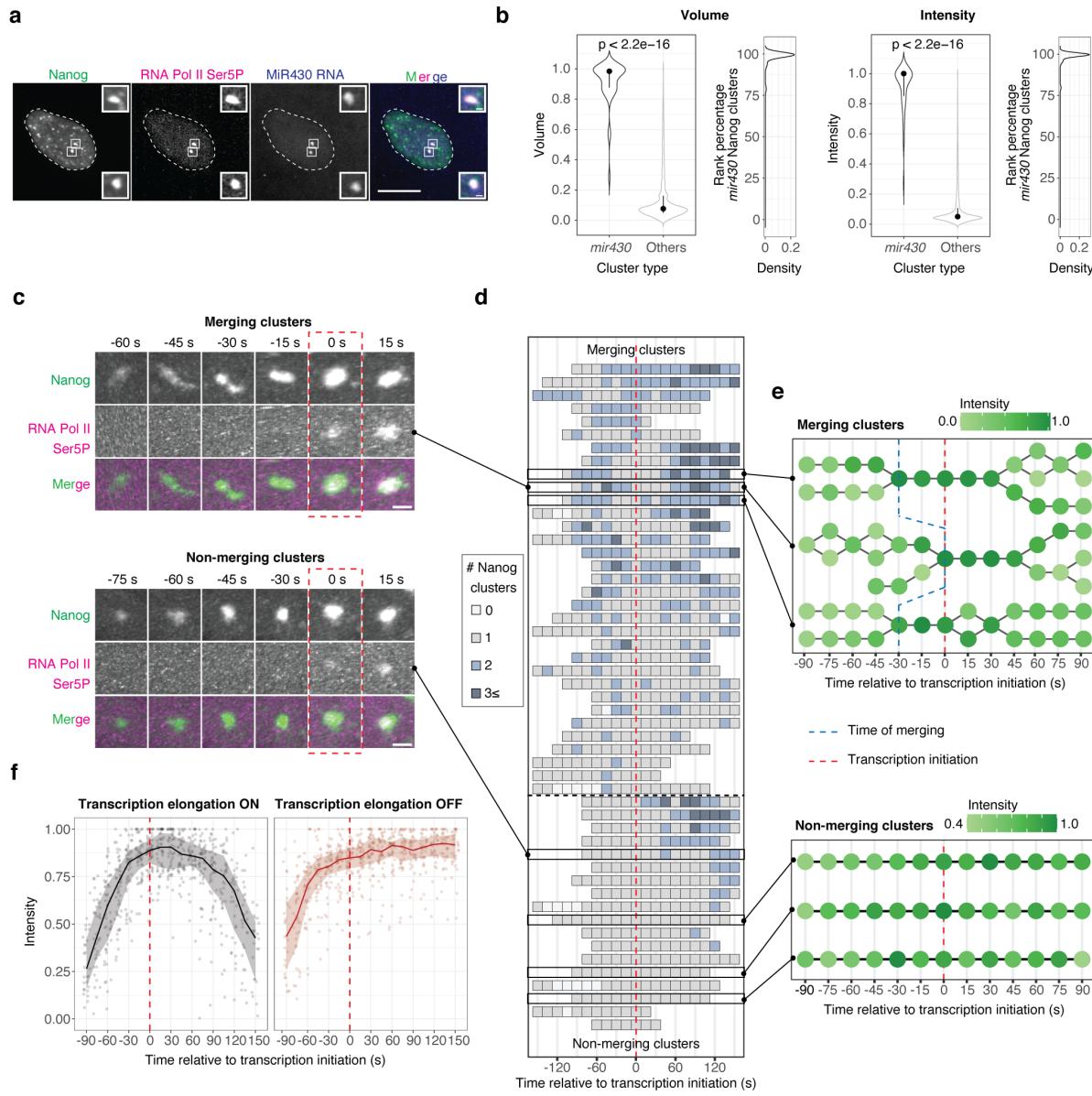
506

507 **Author contributions**

508 Conceptualization: N.M.C., R.P., N.L.V. Methodology: N.M.C., R.P., H.O. H.K. Investigation:  
509 N.M.C., R.P. Data analysis: N.M.C., R.P., A.D.P.R., D.D.N, F.J., A.D.C Writing – original  
510 draft: N.M.C. and N.L.V. Writing – reviewing & editing: all authors. Funding acquisition:  
511 N.L.V., H.K. F.J. Supervision: N.L.V.

512

513 **Competing interests**


514 Authors declare that they have no competing interests.

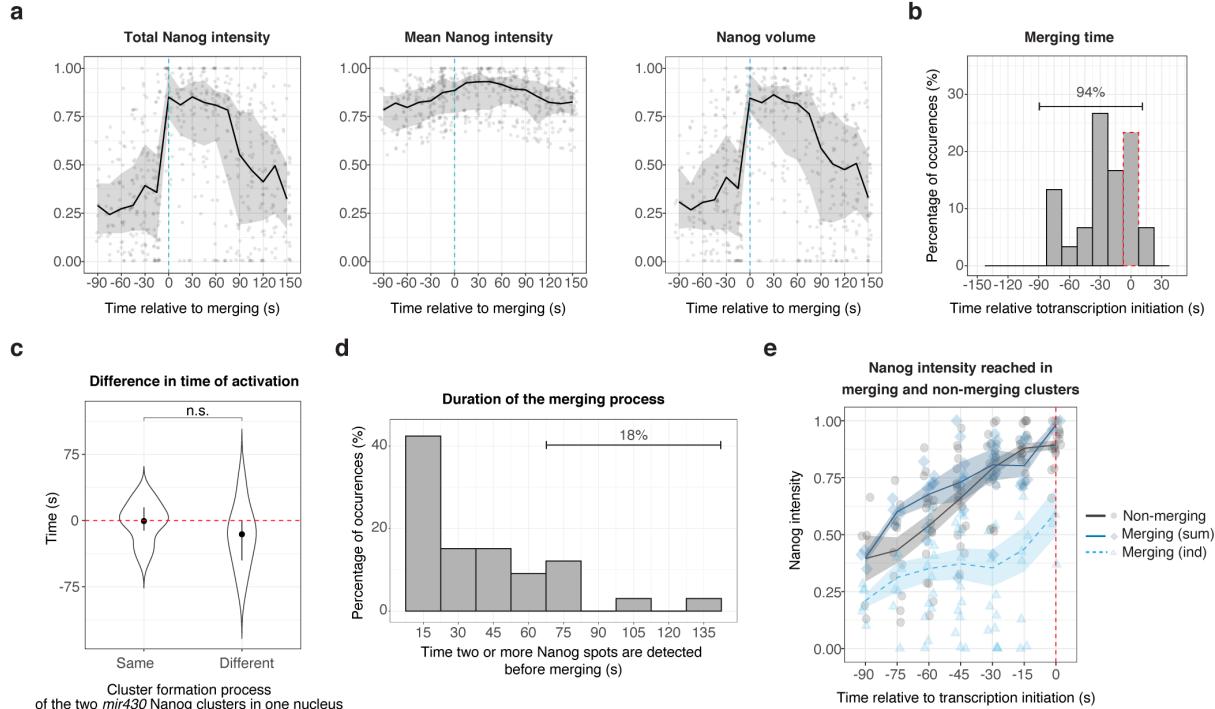
515

516 **Data and materials availability**

517 Raw imaging data are available upon request. All other data is available in the main text or the  
518 extended data.

**Figure 1**



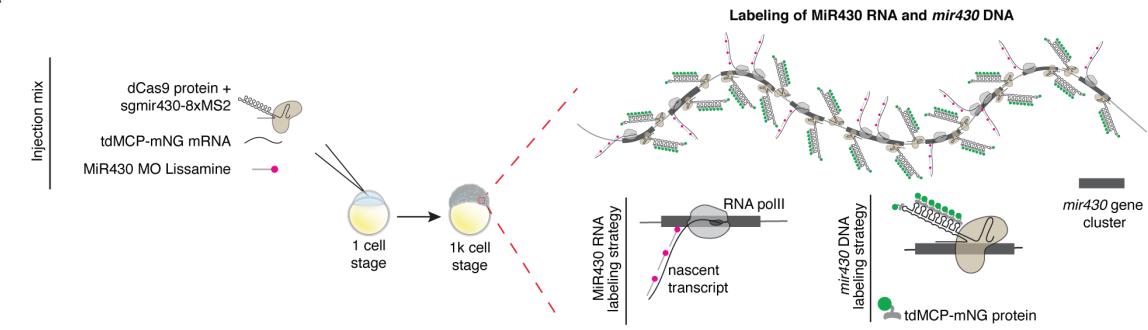

519

520 **Figure 1. Merging of clusters results in high amount of Nanog associated with *mir430***  
 521 **transcription.** **a.** Visualization of Nanog (mNeonGreen; green), initiating RNA Polymerase II  
 522 (RNA Pol II Ser5P Fab (Cy5); magenta), and *mir430* transcription (MoVIE lissamine; blue) at  
 523 the 1k-cell stage. Insets are zooms of the two Nanog clusters colocalizing with RNA Pol II  
 524 Ser5P and MiR430 transcripts. Shown are representative images at the time of *mir430*  
 525 transcription initiation. Scale bars are 10 and 1  $\mu$ m (insets). All images represent maximum  
 526 intensity projections in the z direction. **b.** Violin plots and density plots representing volume  
 527 (left) and total intensity (right) of Nanog clusters that colocalize with *mir430* transcription

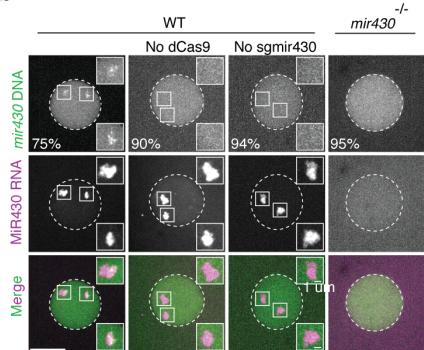
528 (*mir430*, N=3, n=41) or not (others, N=3, n=3781). Density plots represent the rank percentage  
529 of the Nanog clusters colocalizing with *mir430* transcription in comparison to other Nanog  
530 clusters. Values are normalized to the lowest and the highest values in each nucleus. Pairwise  
531 non-parametric Wilcoxon-Mann-Whitney test was performed. **c.** Visualization of Nanog  
532 clusters (mNeonGreen, green), and RNA Pol II Ser5P (RNA Pol II Ser5P Fab (Cy5), magenta).  
533 Shown are representative images of a merging event and a non-merging event (complete  
534 sequence in Supplementary Video 1). Time is relative to transcription initiation. Scale bars  
535 represent 1  $\mu$ m. Images are snapshots from the 3D rendering of the Imaris software. **d.**  
536 Schematic representation of all individual Nanog tracks in the dataset (separated by merging  
537 and non-merging), centered on transcription initiation (N=5, n=33 for merging clusters; N=5,  
538 n=18 for non-merging clusters). The number of Nanog clusters at each time point is indicated  
539 by different shades of blue. Tracks are aligned at transcription initiation. Tracks in black boxes  
540 are further represented in panels c and e. **e.** Three representative tracks of merging and non-  
541 merging Nanog clusters colocalizing with *mir430* transcription, centered on transcription  
542 initiation. Shades of green indicate total intensity for each Nanog cluster. Values are  
543 normalized to the maximum value for each track. The blue dashed line indicates merging time.  
544 **f.** Total intensity of Nanog clusters associated with *mir430* transcription as a function of time  
545 (relative to transcription initiation) with (left panel, N=5, n=51) and without (right panel, N=3,  
546 n=48) transcription elongation. If the Nanog cluster associated with transcription was the result  
547 of a merging event, we summed up the total intensity of all clusters per time point. The bold  
548 line represents the median and ribbon the 25<sup>th</sup> and 75<sup>th</sup> percentile of the distribution. Values are  
549 normalized to the maximum value for each track. In panels c-f, the red dash line/rectangle  
550 indicates the transcription initiation time. In this Figure, N is the number of biological  
551 replicates, and n the number of clusters.

552

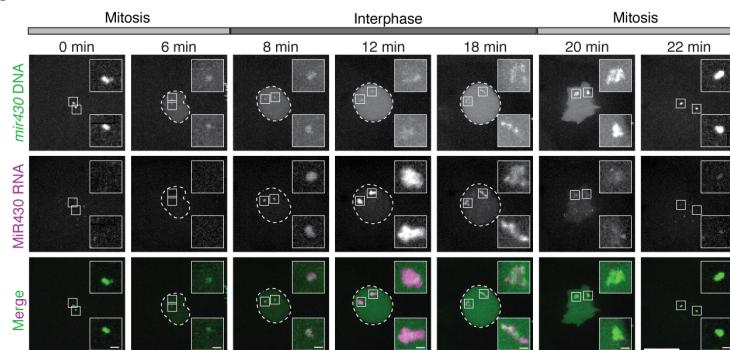
**Figure 2**



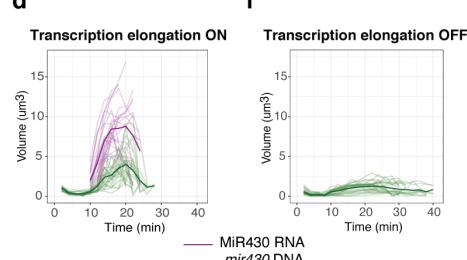

553 **Figure 2. Merging and non-merging cases are functionally identical. a.** Total fluorescence  
554 intensity (amount), mean intensity (concentration), and volume of Nanog signal in merging  
555 Nanog clusters (N=5, n=33) associated with *mir430* transcription as a function of time (relative  
556 to merging). Here, we report the intensities of individual Nanog clusters before merging, and  
557 the intensity of merged clusters after merging. The bold line represents the median and ribbon  
558 the 25<sup>th</sup> and 75<sup>th</sup> percentile of the distribution. **b.** Histogram showing the time at which Nanog  
559 clusters (N=5, n=33) merge relative to transcription initiation. **c.** Difference in time of  
560 activation between the two *mir430*-associated Nanog clusters per nucleus, depending on if they  
561 are forming the same way (both non-merging or both merging, N=5, n=10) or if they are form  
562 differently (one merging and one non-merging, N=4, n=13). Black spots represent the median  
563 and vertical bars the 25<sup>th</sup> and 75<sup>th</sup> percentile of the distribution. Pairwise non-parametric  
564 Wilcoxon-Mann-Whitney test was performed. n.s, indicates p > 0.05. **d.** Percentage of merging  
565 clusters for which two or more spots can be observed for the indicated time (N=5, n=33). **e.**  
566 Normalized intensity of merging and non-merging Nanog clusters associated with *mir430*  
567 transcription relative to transcription initiation. The lines represent the mean of the distribution  
568 The lines represent the mean of the distribution


569 with the ribbon indicating the standard error of mean. The value of the non-merging clusters is  
570 shown as a black solid line ( $N=4$ ,  $n=18$ ). The value of merging ones is shown as the sum of the  
571 merging clusters (blue solid line,  $N=5$ ,  $n=13$ ), as well as individually (blue dashed line,  $N=5$ ,  
572  $n=26$ ). For individual clusters, only tracks for which we can detect individual clusters for at  
573 least three consecutive time points before merging were plotted. For panels a, b, and e, the red  
574 dash line/rectangle indicates the transcription initiation time. In this Figure,  $N$  is the number of  
575 biological replicates, and  $n$  is the number of clusters.

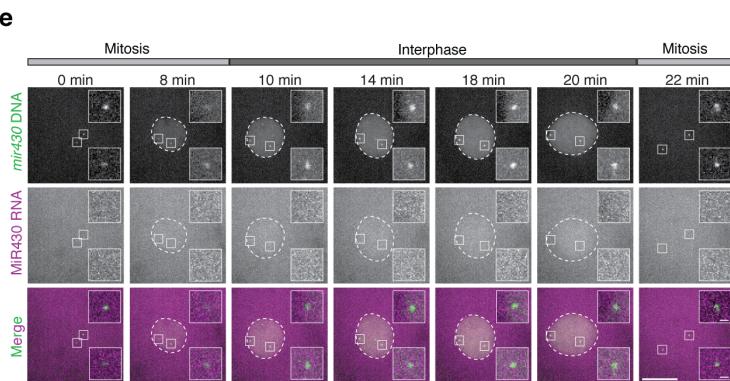
**Figure 3**


**a**




**b**




**c**

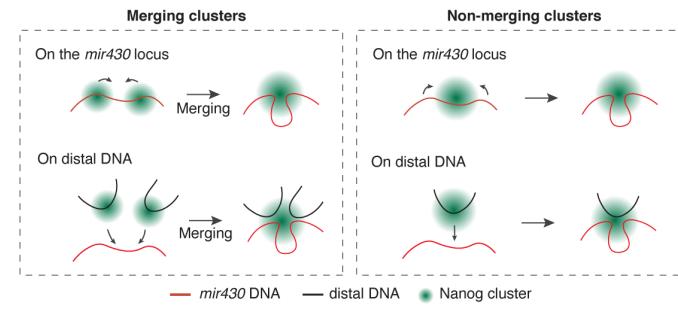


**d**

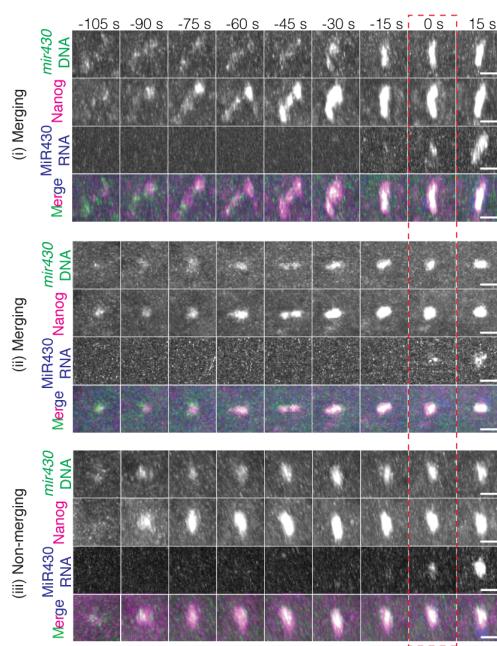


**f**

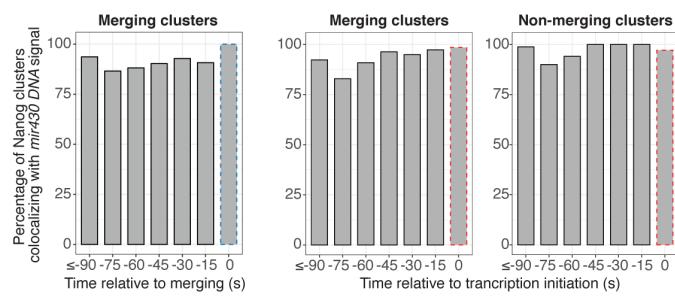



576

577 **Figure 3. Strategy to specifically visualize the *mir430* locus in living embryos. a.** Schematic  
578 of *mir430* DNA and RNA *in vivo* labelling technique (see Methods). **b.** Visualization of *mir430*  
579 DNA (tdMCP-mNG; green) and MiR430 RNA (MoVIE-lissamine; magenta) in WT embryos  
580 (+/- dCas9 and +/- sgRNAs), as well as in *mir430*<sup>-/-</sup> embryos. Shown are representative images  
581 of individual nuclei at the midpoint of the cell cycle (from metaphase to metaphase). Scale bars  
582 are 10 and 1 μm (insets). Percentages indicate the fraction of nuclei in which we observe the  
583 shown phenotype. **c.** Visualization of *mir430* DNA (tdMCP-mNG; green) and MiR430 RNA  
584 (MoVIE-lissamine; magenta) in WT embryos. Shown are representative images of individual  
585 nuclei during the cell cycle (metaphase to metaphase). Scale bars are 10 and 1 μm (insets). **d.**


586 Quantification of the changes in volume of *mir430* DNA (green) and MiR430 RNA (magenta)  
587 signal (N=3, n=24) during the cell cycle (from metaphase to metaphase). Each line is an  
588 individual allele, bold lines represent the mean. e,f. As c,d but in absence of transcription  
589 elongation. For f, N=3, n=28. In b, c and e, images represent maximum intensity projections in  
590 the z direction. In this Figure, N is the number of biological replicates, and n is the number of  
591 *mir430* alleles.

**Figure 4**


**a**



**b**



**c**



592

593 **Figure 4. Nanog clusters that activate *mir430* transcription are seeded by *mir430* locus. a.**

594 Schematics representing two hypotheses concerning the localization of *mir430*-associated

595 Nanog clusters relative to the *mir430* locus. **b.** Visualization of *mir430* DNA (tdMCP-mNG;

596 green), MiR430 RNA (MoVIE-lissamine; blue), and Nanog (HaloTag (JFX650); magenta) in

597 *nanog* *-/-* embryos. Shown are representative images of timelapse movies showing (i) Merging

598 Nanog clusters (and associated *mir430* DNA) that are separated for a couple of timeframes,

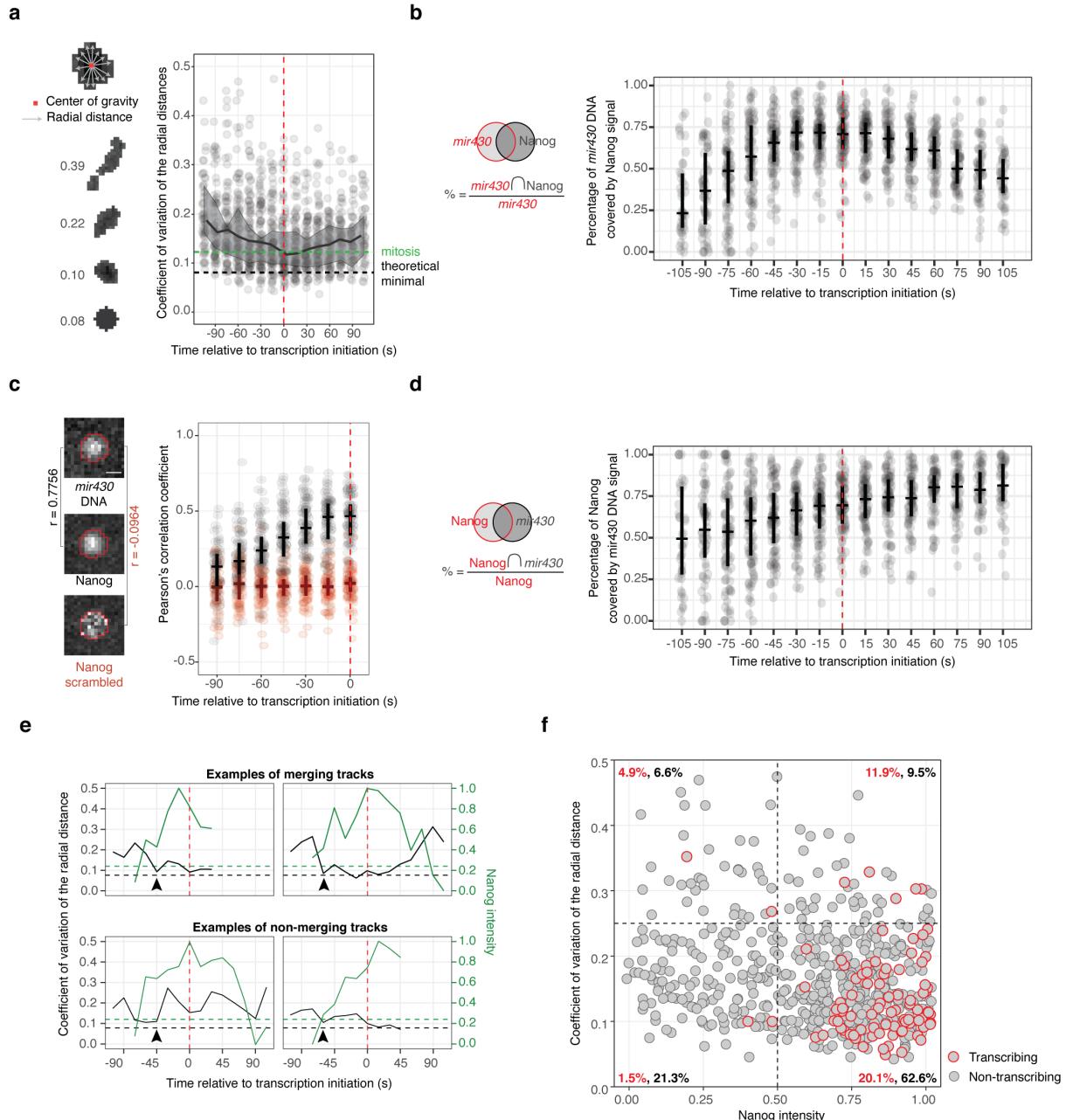
599 then merge (t=-30s) followed by transcription initiation (t=0s); (ii) Merging Nanog clusters

600 (and associated *mir430* DNA) that split (t=-45s) and then merge rapidly (t=-30s), followed by

601 transcription initiation; (iii) Non-merging: a single Nanog cluster (and associated *mir430* DNA)

602 that grows in intensity, followed by transcription initiation. Scale bars are 1  $\mu$ m. Movies are

603 aligned at transcription initiation, which is boxed in red. All images are snapshots from the 3D


604 rendering of the Imaris software. **c.** The percentage of merging Nanog clusters that colocalize

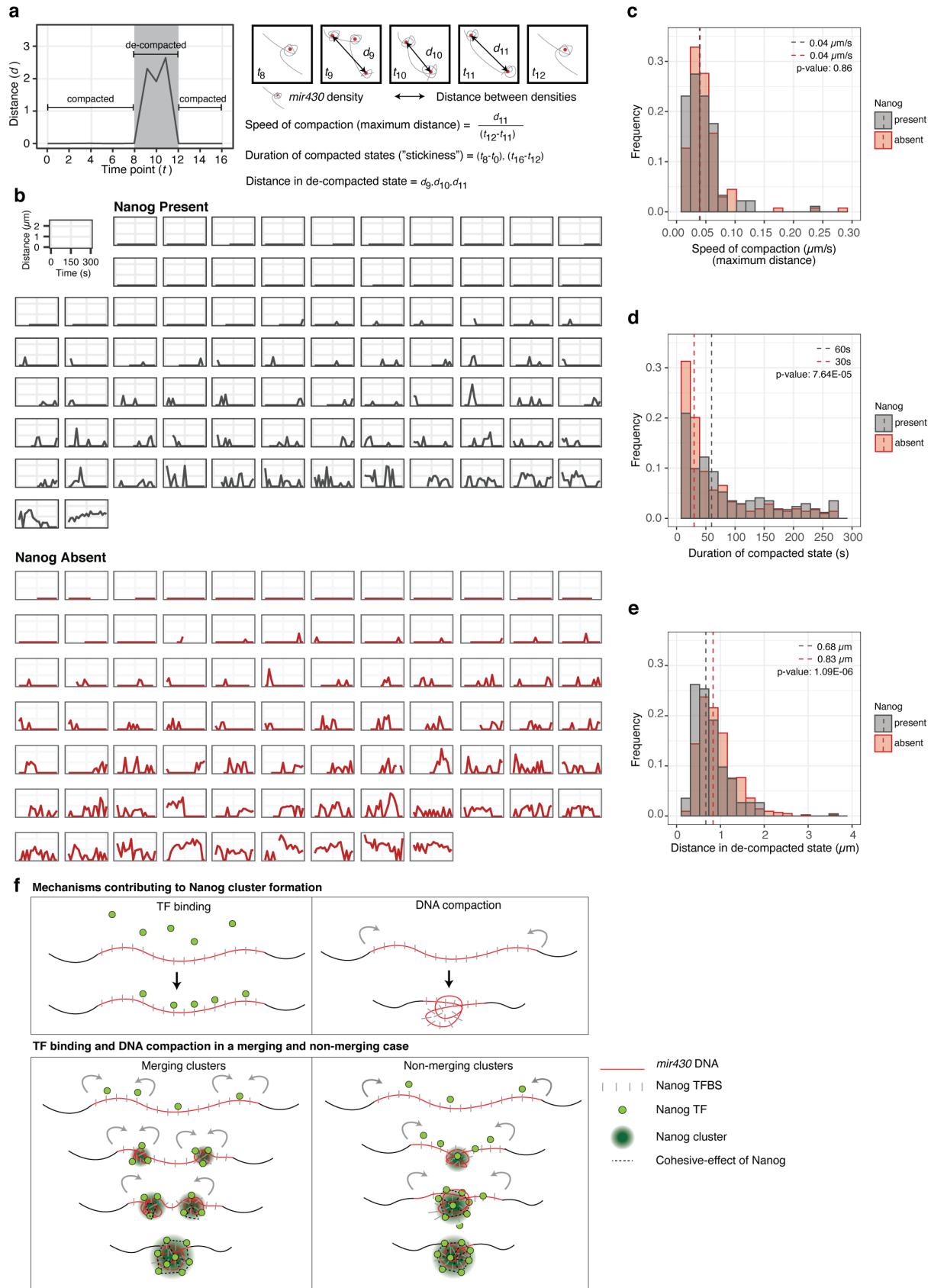
605 with the *mir430* locus signal for at least one voxel prior to / during merging (left plot; merging;

606 N=4, n=57), and the percentage of merging and non-merging Nanog clusters that colocalize

607 with the *mir430* locus signal for at least one voxel prior to/during transcription initiation  
608 (merging N=4 and n=57; non-merging, N=4 and n=32). See Methods for details. The red and  
609 blue dashed rectangle indicates transcription initiation. In this Figure, N is the number of  
610 biological replicates, and n is the number of tracks.

**Figure 5**




611

612 **Figure 5. Compaction of the *mir430* locus drives the formation of a Nanog-DNA cluster.**

613 **a.** Left: Schematic representation of the approach used to calculate the CoV of the radial  
 614 distances, as well as examples. Right: The CoV of the radial distances for all tracks is plotted  
 615 as a function of time, relative to transcription initiation. The black line indicates the median of  
 616 the distribution and the associated ribbon the 25th and 75th percentile of the distribution. The  
 617 green dashed line shows the average value of the coefficient of variation of the radial distance  
 618 of the *mir430* DNA mask measured during mitosis (see Methods). The black dashed line shows

619 the theoretical minimal value for a mask considered as a perfect sphere (see Methods). **b.**  
620 Percentage of *mir430* DNA signal that is covered by Nanog signal as a function of time relative  
621 to transcription initiation. The vertical lines represent respectively the 25 and 75% of the  
622 distribution, while the horizontal line represents the median. **c.** Left: Schematic representation  
623 of the approach used to calculate the correlation between *mir430* DNA and Nanog signal.  
624 Right: Boxplots showing the Pearson's correlation score between *mir430* DNA mask and the  
625 associated Nanog signal (black) or scrambled Nanog signal (red) for all tracks, relative to  
626 transcription initiation. **d.** Percentage of *mir430*-associated Nanog signal that is covered by  
627 *mir430* DNA signal as a function of time. The vertical lines represent respectively the 25 and  
628 75% of the distribution, while the horizontal line represents the median. **e.** Four selected tracks  
629 (two merging and two non-merging) showing the coefficient of variation of the radial distances  
630 of *mir430* DNA mask (black) and associated Nanog total intensity (green), relative to  
631 transcription (complete dataset in Extended Data Fig. 6). The green and black dashed lines are  
632 as in panel a. Black arrowheads indicate time points for which *mir430* DNA compaction  
633 reaches a minimum for the first time. **f.** Scatterplot showing the coefficient of variation of the  
634 radial distances of the *mir430* locus (for data points between -105 s until transcription initiation)  
635 as a function of the normalized total intensity of Nanog clusters. A red outline indicates  
636 associated transcriptional activity. The percentage of *mir430* alleles in each quadrant is  
637 indicated in black. The percentage of active alleles in a quadrant as a fraction of all alleles in  
638 that quadrant is indicated in red. For all panels, the red dash line indicates transcription  
639 initiation. For panels a, b, c, d and f, N=3 biological replicates and n=89 is the number of tracks.

**Figure 6**



640

641 **Figure 6. Nanog stabilizes clusters of Nanog and the *mir430* locus. a.** Left: Schematic

642 representation of the distances between DNA densities, used to derive the parameters assessed  
643 in this figure. Right: The gray line represents the *mir430* locus, the local accumulations are  
644 detected densities in *mir430* DNA signal. The red dots represent the centroid of detected  
645 densities, and the black arrow is the distance between the two most distant densities on the  
646 same *mir430* allele (centroid to centroid). **b.** Graphs of the distances between detected densities  
647 on the *mir430* DNA channel as a function of time for individual *mir430* DNA alleles in the  
648 presence (black) or absence (red) of Nanog. **c-e.** Histograms showing the speed of compaction  
649 (from the maximum distance) (c), the duration of compacted states (or stickiness) (d), and the  
650 distances in the decompactored states (e) in the presence (black, N=3 and n=80) and absence  
651 (red, N=4 and n=81) of Nanog for all stages combined (256-cell stage until High stage). Dashed  
652 lines indicate the medians of the distributions. P-values are calculated with one-sided Mann-  
653 Whitney test. Values for 1k stage-only are depicted in Extended Data Fig. 7. **f.** Model: Nanog  
654 accumulation and DNA compaction together result in the formation of a TF-DNA cluster that  
655 enables transcription, in merging as well as non-merging cases. In brief, while Nanog binds to  
656 the *mir430* locus, which is rich in Nanog binding sites, locus compaction brings in more Nanog  
657 binding sites, and thus more Nanog. Nanog helps to stabilize the resulting TF-DNA cluster. In  
658 this Figure, N is the number of biological replicates, and n is the number of *mir430* alleles.

659 **Methods**

660

661 **Zebrafish handling and molecular biology approaches**

662 *Zebrafish maintenance and manipulation*

663 Zebrafish were maintained and raised under standard conditions, and according to Swiss  
664 regulations (canton Vaud, license number VD-H28). To identify *nanog*<sup>-/-</sup> fish, we fin-clipped  
665 adults and genotyped them as previously described<sup>68</sup>. Wild type (ABTL), *mir430*<sup>-/-</sup> or *nanog*<sup>-</sup>  
666 <sup>-/-</sup> embryos were collected less than 10 minutes after fertilization. We always injected at the 1-  
667 cell stage and into the cell. The chorion was either mechanically removed with forceps, or  
668 chemically by incubating embryos for 3 minutes in 1.5 mg/mL Pronase E (Sigma-Aldrich,  
669 107433) in Danieu's 0.3X. To rescue *nanog*<sup>-/-</sup> embryos, we injected 120 pg of full-length  
670 Nanog as before<sup>66</sup> or the molar equivalence of this when injecting Nanog fusion constructs.  
671 Lissamine-labelled anti-MiR430 morpholino was injected at 25 fmole/embryo<sup>38</sup>. Nanog was  
672 visualized using Nanog-mNG or Nanog-HaloTag, and the mRNAs encoding these were  
673 injected at 180 and 210 pg/embryo, respectively. To inhibit transcription,  $\alpha$ -amanitin (A2263,  
674 Sigma-Aldrich) was injected at 0.25 ng/embryo. Transcription inhibition was confirmed by a  
675 developmental arrest prior to gastrulation as described before<sup>2</sup>. To label RNA Pol II Ser5P,  
676 Fabs ( $\alpha$ RNA\_PolII\_Ser5P\_Cy5) were injected at 1.8 ng/embryo. To label the *mir430* DNA  
677 locus, dCas9 protein was injected at 0.25 ng/embryo, sgRNAs (as a equimolar mix of  
678 *sgmir430\_1* and *sgmir430\_2*, see below)<sup>37</sup> were injected at 50 fg/embryo, and tdMCP-mNG  
679 mRNA at a 25 pg/embryo. After injection, embryos were raised at 28°C in Danieu's 0.3X or  
680 blue water until the desired stage<sup>69</sup>. For Nanog-HaloTag labelling, embryos were soaked for  
681 20 minutes in 5  $\mu$ M of JFX650-HaloTag dye (CS315109, Promega) diluted in Danieu's 0.3X.

682

683

684 *Generation of Nanog-HaloTag and NLS/NIS-tdMCP-mNeonGreen*

685 To generate the pCS2-Nanog-HaloTag plasmid, we obtained the HaloTag sequence from the  
686 Protein Expression and Purification facility (MPI-CBG) and amplified it by PCR using  
687 HaloTag specific primers that added a FseI and an AscI site at the 5' end. HaloTag was then  
688 cloned into an empty pCS2+ vector using Gibson Assembly (E2611, NEB), as well as a  
689 sequence encoding a linker protein (5'- GGATCCGCTGGCTCCGCTGCTGGTTCTGGC-3')  
690 <sup>70</sup>. The Nanog coding sequence was then amplified from a pCS2\_Nanog\_mNeonGreen  
691 plasmid<sup>2</sup> with primers that added Fse I and Asc I sites and cloned into the pCS2\_HaloTag  
692 plasmid using T4 DNA ligase (NEB, M0202S). The tdMCP gene was amplified from plasmid  
693 pME-NLStdMCP-tagRFP (AddGene #86244) and cloned into pCS2+ plasmid with a  
694 zebrafish-codon-optimized mNeonGreen tag at its C-terminus. Sequences for a Nuclear  
695 Localization Signal (NLS) and a Nucleus Export Signal (NES) were introduced at the N-  
696 terminus.

697

698 *mRNA production*

699 Nanog-mNeonGreen, Nanog-HaloTag and NLS/NIS-MCP-mNeonGreen were *in vitro*  
700 transcribed using the mMESSAGE mMACHINE<sup>TM</sup> SP6 Transcription Kit (AM1340,  
701 Invitrogen<sup>TM</sup>) from NotI-linearized plasmids. This was followed by digestion of the DNA  
702 template using TURBO DNase (AM1340, Invitrogen<sup>TM</sup>) for 15 min at 37°C. Synthetic  
703 transcripts were recovered using the RNeasy MinElute Cleanup Kit (QIAGEN, 7404), and  
704 quantified using the NanoDrop (NanoPhotometer<sup>©</sup> NP80) and Qubit (Qubit fluorometer<sup>©</sup>,  
705 Invitrogen) systems. Size and integrity were verified by gel electrophoresis. Single-use aliquots  
706 were stored at -80°C.

707

708

709 *Recombinant dCas9 expression and purification*

710 The gene encoding a catalytically inactive *Streptococcus pyogenes* Cas9 (D10A/H840A)  
711 (dCas9) was cloned in a T7 expression vector with a His-maltose binding protein (MBP) tag at  
712 the N-terminus. The dCas9 sequence also contained two copies of Nuclear Localization Signal  
713 (NLS) sequence at the N-terminus and one at the C-terminus, to facilitate nuclear import. The  
714 *S. pyogenes* Cas9 D10A/H840A mutant was expressed in T7 express strain (NEB, C2566H)  
715 containing the pRARE plasmid (Novagen, 71405) and cultured at 37°C in terrific broth  
716 medium supplemented with chloramphenicol (17 µg/mL), kanamycin (100 µg/mL) to OD<sub>600</sub> =  
717 0.5. Cultures were then shifted to 18°C and induced with 0.2 mM IPTG overnight. Cells were  
718 lysed in a lysis buffer (50 mM Tris pH 8.0, 1M NaCl, 1 mM DTT), supplemented with protease  
719 inhibitor cocktail (Roche). To remove any nucleic acid contaminants, polyethylenimine (PEI)  
720 was added to the clarified lysate (0.25% w/v) and the sample was clarified by high-speed  
721 centrifugation after 10 min incubation on ice. Clarified lysate was filtered through an 0.45-µm  
722 filter and loaded on a MBP Trap column. The column was washed with a lysis buffer without  
723 DTT and cleavage buffer (20 mM HEPES, 250mM KCl, 10% glycerol, 1 mM DTT). Protein  
724 was eluted with elution buffer (20 mM HEPES, 250mM KCl, 10% glycerol, 1 mM DTT and  
725 10mM Maltose) and cleaved with PreScission protease overnight to remove the His-MBP  
726 affinity tag. After cleavage, the protein was separated from MBP using cation-exchange  
727 chromatography with a 5 ml SP Sepharose HiTrap column (GE Life Sciences). Fractions  
728 containing dCas9 protein were pooled and the protein was concentrated with spin concentrators  
729 (Amicon Ultra 15, MWCO 30 k; Millipore), diluted to final concentration of 2.5mg/mL using  
730 storage buffer (20mM HEPES, 250mM KCl pH 7.25), flash-frozen in liquid nitrogen and  
731 stored at -80°C.

732

733

734 *Preparation of in vitro transcribed gRNAs*

735 The sgRNAs were made by *in vitro* transcription for which the DNA templates were prepared  
736 by PCRs on plasmid pPUR-hU6-sgRNA-Sirius-8XMS2 (Addgene #121942) as the template  
737 encoding the optimized tracr RNA sequence with the integrated MS2 stem loops<sup>50</sup>. The forward  
738 primers were designed uniquely for each sgRNA with an overhang containing T7 promoter,  
739 the seed sequence, and a sequence complementary to the plasmid (sgmir430-1\_F: 5'-  
740 taatacgactcactataGAGGGTACCGATAGAGACAAgtttgagagctactgccatgagga-3' and  
741 sgmir430-2\_F: 5'-taatacgactcactataGGCTGAGTGTTAACGACTGgtttgagagctactgccatgagga-  
742 3'). The reverse primer (5'-AAAAAAAGCACCGACTCGGTGCC-3') was the same for both  
743 reactions.

744

745 PCR products were purified using QIAquick PCR purification kit (Qiagen, 28104). The  
746 purified product was used as a template for T7 *in vitro* transcription (HiScribe T7 High Yield  
747 RNA Synthesis Kit (NEB, E2040S). *In vitro* transcribed sgRNAs were DNase-treated, purified  
748 by phenol:chloroform:isoamyl alcohol (25:24:1) extraction, followed by ethanol precipitation.  
749 The sgRNA pellets were dissolved in 20 mM HEPES (pH 7.5) and 300 mM KCl. To refold  
750 purified sgRNAs, the sgRNAs were incubated at 70°C for 5 min and slowly cooled down to  
751 room temperature. MgCl<sub>2</sub> was then added to 1 mM final concentration and the sgRNA samples  
752 were incubated at 50°C for 5 min and slowly cooled down to room temperature. The sgRNAs  
753 were quantified, aliquoted to single-use aliquots and stored at -80°C.

754

755 *Preparation of the mir430 DNA labelling reagents*

756 To prepare reagents for mir430 locus live visualization, 1- $\mu$ L aliquot of dCas9 protein  
757 (2.5mg/mL) was diluted in 9  $\mu$ L of 20 mM HEPES, 300 mM KCl solution to a final  
758 concentration of 0.25mg/mL. 50 ng of each guide (sgmir430\_1-8xMS2 and sgmir430\_2-

759 8xMS2) were mixed with the dCas9 protein solution and incubated at 37°C for 10 minutes.

760 After incubation, the assembled dCas9-sgRNA RNP complex was stored on ice until injections.

761

762 *MiR430 RNA labelling*

763 *pre-miR430* transcripts were visualized using the Morpholino VIsualization of Expression  
764 (MoVIE) method as described before<sup>38</sup>. Briefly, a morpholino oligonucleotide complementary  
765 to the 5' end of *pre-miR430* transcripts is coupled at the 3' end with the red-emitting chemical  
766 lissamine fluorophore (GeneTools, <https://www.gene-tools.com/>).

767

768 *Preparation of RNA Pol II Ser5P antigen-binding fragments*

769 RNA Polymerase II was visualized using Fab-based live endogenous modification labelling  
770 (Fab) conjugated with a Cy5 dye<sup>45-47,71</sup>. Fluorescently labelled Fabs specific to RNA Pol II  
771 Ser5P were prepared from monoclonal antibodies specific to RNA Pol II Ser5 phosphorylation  
772 (CMA605/Pa57B7). Purified mouse IgG was digested with Ficin (ThermoFisher Scientific) or  
773 Papain (ThermoFisher Scientific), and Fabs were purified using HiTrap protein A-Sepharose  
774 columns (GE Healthcare) to remove Fc and undigested IgG. Fabs were concentrated up to more  
775 than 1 mg/mL using 10 k cut-off filters (Amicon Ultra-0.5 10 k; Merck), according to the  
776 manufacturer's instruction.

777

778 Fluorescent dye conjugation was conducted using 50 or 100 µg of purified Fab fragments. In a  
779 typical reaction, 50 µg of purified Fab was diluted in 45 µL PBS, mixed with 5 µL 1 M NaHCO<sub>3</sub>  
780 (pH 8.3) and then with 0.5 µL of Cy5 N-hydroxysuccinimide ester (10 mg/mL in DMSO;  
781 cytiva, PF11A25001). After incubating for 1.5h at room temperature with gentle rotation in the  
782 dark, unconjugated fluorescent dye molecules were removed using a PD MiniTrap G-25  
783 column (Cytiva, 28918004; pre-equilibrated with PBS). The reaction mixture (50 µL) was

784 applied onto a column and 550  $\mu$ L PBS was applied; the flowthrough fraction was discarded.

785 Dye-labelled Fab fragments were eluted with 500  $\mu$ L PBS and concentrated to  $\sim$ 1.2 mg/mL

786 using a 10-kDa cutoff Amicon Ultracell Centrifuge Filter Unit (Merck, UFC5010BK). Fab

787 concentration and Dye:Fab ratio was measured using a Nanodrop (NanoPhotometer $\circledR$  NP80).

788 Dye:Fab ratios were between 0.6:1.1 and 1:1. Aliquots of labelled Fabs were bead-loaded into

789 HeLa cells to validate that they distributed as expected and were then stored at 4°C in the dark.

790

## 791 **Identification of Nanog binding sites**

792 The Nanog binding motif was determined using ChIP-seq published data <sup>55</sup>. From this

793 canonical binding motif, all potential binding motifs were uncovered at the *mir430* DNA locus

794 sequence (GRCz11 genome assembly) with the AME software using a 5% false-negative cut-

795 off.

796

## 797 **Imaging**

### 798 *Preparing embryos for live-imaging*

799 Mounting was performed using 0.8% low-melting agarose solution (UltraPure Low Melting

800 Point Agarose, 16520050, ThermoFisher) diluted in Danieau's 0.3X and containing 25% v/v

801 OptiPrep density gradient medium (D1556, Sigma-Aldrich). The agarose solution was melted

802 at 70°C and then kept at 37°C during embryo mounting. Between 10 and 15 embryos were

803 transferred into a glass vial filled with the agarose solution and then moved to the surface of a

804  $\mu$ -Dish 35 mm, high imaging dish (ibidi, 81156). After waiting 10 minutes to allow the agarose

805 to polymerize, the plate containing the embryos was brought to the microscope under light-

806 protected conditions.

807

808

809 *Live-Imaging on the confocal spinning-disk microscope*

810 Imaging was performed on an inverted Nikon Ti2 microscope associated with a Yokogawa  
811 CSU-W1 spinning-disk confocal unit using a Nikon 100X Oil CFI Plan Achromat Microscope  
812 Objective. Images were acquired using a Photometrics Prime 95B and fluorophores were  
813 excited using one of the four available laser lines: 405, 488, 561 and 638. Embryos were  
814 maintained at a temperature of 28°C using a fully enclosed temperature-controlled chamber.  
815 Most of the imaging was done using simultaneous acquisition using a duo camera system, with  
816 one exception: when Nanog, *mir430* DNA and MiR430 transcripts were imaged, Nanog and  
817 *mir430* DNA were acquired first, followed by MiR430 transcripts.

818

819 **Image processing and analysis**

820 *Time-lapse max projection, mapping and cropping of nuclei*

821 Each time-lapse was projected on the Z axis using Fiji <sup>72</sup> to obtain 2D max-projected images  
822 in the Z plane. All time-lapses (recorded in the .nd2 file format) were converted into .ims files  
823 using the Imaris file converter (RRID:SCR\_007370, Bitplane). If the time-lapse contained  
824 several cell stages, these were isolated. Each individual nucleus was assigned a unique ID. As  
825 such, any nucleus used for analysis can be traced back to the raw data. Single nuclei were  
826 cropped manually using either Fiji or the 3D crop function in Imaris (RRID:SCR\_007370,  
827 Bitplane).

828

829 *Developmental stage determination*

830 Developmental stage was determined based on the time of mounting of embryos, the time that  
831 the embryos were allowed to develop during imaging, and the distances between nuclei. For  
832 the latter, we measured the distances between the center of neighboring nuclei in the same focal  
833 plane as the inter-nuclear distance in early stages is highly stable across embryos.

834 *Correction of channel registration*

835 Shifts in alignment between the two cameras were most often corrected at the software level  
836 using a calibration slide. If data still displayed registration shifts between two channels  
837 afterwards, such shifts were corrected post-imaging. To this end, nuclei were segmented in  
838 both channels, and X, Y, and geometric centered positions were retrieved. Using Imaris,  
839 registration was corrected by aligning the geometric center in X and Y.

840

841 *Segmentation of Nanog clusters, mir430 DNA and MiR430 RNA in 3D*

842 Objects were segmented using the following algorithms and parameters in Imaris:

|                               | <b>Nucleus</b>                   | <b>Nanog</b>                                            | <b>MiR430</b>                   | <b>Ser5P-Cy5</b>                | <b><i>mir430</i></b>            | <b><i>mir430</i></b>                                    |
|-------------------------------|----------------------------------|---------------------------------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------------------------------|
| <b>Algorithm</b>              | Surface                          | Spot                                                    | Surface                         | Surface                         | Surface                         | Spot                                                    |
| <b>Channel</b>                | Nanog/ <i>m<br/>ir430</i><br>DNA | Green/Far<br>red                                        | Red                             | Far red                         | Green                           | Green                                                   |
| <b>Initial<br/>parameters</b> | Object-<br>Object<br>Statistics  | Object-<br>Object<br>Statistics                         | Object-<br>Object<br>Statistics | Object-<br>Object<br>Statistics | Object-<br>Object<br>Statistics | Object-<br>Object<br>Statistics                         |
| <b>Diameter</b>               | 9 $\mu\text{m}$                  | XY: 0.325<br>$\mu\text{m}$<br>Z: 0.650<br>$\mu\text{m}$ | 0.5 $\mu\text{m}$               | 0.325 $\mu\text{m}$             | 0.5 $\mu\text{m}$               | XY:<br>0.325 $\mu\text{m}$<br>Z: 0.650<br>$\mu\text{m}$ |
| <b>Smoothing</b>              | 0.5 $\mu\text{m}$                | /                                                       | 0.220 $\mu\text{m}$             | 0.5 $\mu\text{m}$               | 0.5 $\mu\text{m}$               | /                                                       |

| Thresholding           | Variable                        | Variable                    | Variable                                   | Variable                                   | Variable                                   | Variable                    |
|------------------------|---------------------------------|-----------------------------|--------------------------------------------|--------------------------------------------|--------------------------------------------|-----------------------------|
| <b>Final filtering</b> | Remove other nuclei or vesicles | Remove extranuclear objects | Remove nuclear objects                     | Remove extranuclear objects                | Remove extranuclear objects                | Remove extranuclear objects |
| <b>Tracking</b>        | None                            | Manual                      | Manual or autoregression model (see below) | Manual or autoregression model (see below) | Manual or autoregression model (see below) | Manual                      |

843

844 *Manual tracking*

845 After segmentation using the spot algorithm in Imaris (see above for details), Nanog clusters  
846 that colocalize with *mir430* transcription were identified using RNA Pol II Ser5P or MiR430  
847 transcripts signal at transcription initiation. Once identified, the Nanog clusters were tracked  
848 manually using the manual tracking option in Imaris. For time points before transcription  
849 initiation, tracking was performed going back in time, frame by frame, from transcription  
850 initiation. All Nanog clusters that clearly connected across time points were manually  
851 associated together to the same track. If an association between clusters at consecutive  
852 timepoints was not clear, the Nanog track was removed from the dataset. For time points after  
853 transcription initiation, all Nanog clusters that colocalized with the transcription body (labeled  
854 by RNA Pol II Ser5P or MiR430 transcript signal), were considered as part of the same Nanog  
855 cluster and associated to the same track. For *mir430* DNA (segmented with the spot algorithm),

856 spots were manually linked to the same track using the manual tracking option in Imaris. If the  
857 *mir430* DNA signal at one time point was detected as more than one spot, spots were linked to  
858 the same track.

859

860 *Semi-automated tracking*

861 After segmentation using the shape algorithm in Imaris (see above for details), MiR430  
862 transcripts, RNA Pol II Ser5P or *mir430* DNA signals were tracked automatically using the  
863 tracking plugin of Imaris. The algorithm used was the autoregression model, with a maximum  
864 connecting distance of 4  $\mu$ m. The accepted number of missing time points was between 0 and  
865 5 depending on the time in the cell cycle. In cases where automatic tracking was not able to  
866 correctly link the same cluster over time, objects were tracked using the manual tracking option  
867 in Imaris.

868

869 *Colocalization and Pearson's correlation score analysis in 3D*

870 Nanog and *mir430* DNA signal were segmented as described above. Once segmented, a 3D  
871 mask of the signal was obtained, and each *mir430* allele was isolated. In general, if the  
872 segmented masks for Nanog or *mir430* DNA were composed of two or more parts (for example  
873 in the case of Nanog merging clusters), the two masks were merged. To calculate the  
874 percentage of cases where Nanog and *mir430* DNA signals overlap, we considered both signals  
875 as colocalizing if at least one voxel was shared between the two masks. To calculate the  
876 percentage of overlap between Nanog clusters and *mir430* DNA, we used a custom MATLAB  
877 script that calculated the percentage of voxels in the Nanog mask that overlapped with voxels  
878 from the *mir430* DNA mask over the total number of voxels contained in the *mir430* DNA  
879 mask. Conversely, to calculate the percentage of overlap between *mir430* DNA and Nanog, we  
880 calculated the percentage of voxels in the *mir430* DNA mask that overlapped with voxels from

881 the Nanog mask over the total number of voxels contained in the Nanog mask. We calculated  
882 the Pearson's correlation score between Nanog and *mir430* DNA using the raw pixel intensities  
883 of these two signals within the *mir430* DNA mask. As a control, the Nanog raw intensity values  
884 were scrambled.

885

886 *Determination of the radial distances inside *mir430* DNA mask*

887 DNA signal was segmented using the shape algorithm in Imaris (see above for details) then  
888 tracked in 3D using TrackMate v7.11.1<sup>73</sup>. Object detection was performed using the mask  
889 detector and linking using the Advanced Kalman Tracker. Tracks were manually validated and  
890 corrected in napari (napari contributors, 2019 at <https://zenodo.org/records/8115575>).  
891 Following tracking, each individually tracked 3D mask was projected into 2D using maximum  
892 projection. A 2D convex hull was created around each mask and an array containing the  
893 distance from the center of gravity of the convex hull (calculated with subpixel accuracy) to  
894 the center of each boundary pixel was calculated for each time frame. This analysis was  
895 performed in python using the numpy (1.23.1), skimage (0.19.3) and pandas (1.5.3) libraries.  
896 From this array of radial distances, the coefficient of variation (CoV) was calculated for each  
897 DNA mask at each time point. To determine the time of transcription initiation, we used the  
898 segmented mask of the RNA channel, generated as described above. We considered the  
899 initiation of transcription to be the first appearance of non-zero pixels in this masked image.  
900 Once an RNA mask was detected, it was associated with the nearest DNA mask to determine  
901 the unique onset of transcription per allele. To obtain the theoretical minimal value of the CoV  
902 of the radial distances, we generated a perfect circle as a pixelated image with a radius of 4  
903 pixels using the OpenCV circle function. Radial distances were calculated the same way as for  
904 *mir430* DNA masks. To calculate the CoV of radial distances value during mitosis, we analyzed  
905 *mir430* DNA masks in nuclei with a sphericity less than 0.6 (calculated by Imaris).

906 *Association of Nanog with RNA Pol II Ser5P transcription bodies*

907 To associate Nanog with RNA Pol II Ser5P transcription bodies, we used two approaches. First,  
908 we calculated the distance in 3D between the gravity center of segmented Nanog clusters and  
909 transcription bodies using the Imaris software (*Shortest distance to Surfaces*). Next, we  
910 calculated the distance based on the coordinates of the objects from Imaris using R. Only if the  
911 calculated distance between the center of gravity of both segmented signals was less than 0.5  
912  $\mu\text{m}$  in Imaris and less than 1  $\mu\text{m}$  in R, Nanog was associated with the RNA Pol II Ser5P  
913 transcription bodies.

914

915 *Association of Nanog clusters with MiR430 transcription bodies*

916 To associate Nanog clusters and MiR430 transcription bodies, the same method was applied as  
917 described above for Nanog clusters and RNA Pol II Ser5P transcription bodies, with one  
918 difference: because the Nanog and MiR430 transcription body signals were acquired with a lag  
919 of approximatively 7 seconds, we allowed larger distances. Here, Nanog was associated with  
920 the MiR430 transcription bodies only if the calculated distance between the center of gravity  
921 of both segmented signals was less than 1  $\mu\text{m}$  in Imaris and less than 1.5  $\mu\text{m}$  using R. Note that  
922 in Figure 1, the Nanog clusters closest to *mir430* transcription were considered as mir430-  
923 associated Nanog clusters.

924

925 *Categorization of Nanog clusters into merging/non-merging categories*

926 Categorization of Nanog clusters in the merging or non-merging category was performed using  
927 R as follows: If Nanog cluster tracks showed a single cluster at all time-points prior to  
928 transcription activation it was called a non-merging cluster. If in the last 10 time points before  
929 transcription initiation, at least two spots were detected in at least one time point, it was called  
930 a merging cluster.

931 *Determination of the time of merging*

932 For merging cases, the time of merging was defined as the time when only one Nanog cluster  
933 was detected in a time window of -75 to +45 seconds around transcription initiation. If more  
934 than one time point met this criterion, the closest time point to transcription initiation was  
935 considered as the time of merging, with priority being given to a timepoint before transcription  
936 initiation. If no time point with a single cluster was detected in a range of -75 to +45 seconds  
937 around transcription initiation, the Nanog clusters were considered as never merging and no  
938 time of merging was calculated.

939

940 *Classification of cell cycle phase (mitosis or interphase)*

941 The phase of the cell cycle was determined by features such as the roundness of the nucleus,  
942 chromosome compaction, and the distance between two daughter cells. These features were  
943 observed using Nanog-mNG, Nanog-HaloTag or MCP-mNG signals.

944

945 *Analysis of compacted and decompacted state for mir430 DNA*

946 Time-series analysis of mir430 loci distances

947 To determine distances between DNA densities, Mir430 DNA densities were segmented using  
948 the spot algorithm (see above for details). If only one spot was detected, we considered the  
949 distance to be zero. For all other time points, we calculated the distance between all detected  
950 spots. If more than two spots were detected, we calculated the distances between all pairs of  
951 spots and considered the largest (maximum metric). The resulting trajectories of distances  
952 between detected spots exhibit an oscillatory behavior between the state in which only one spot  
953 is visible (compacted state) and the state in which spots are at some distance between each  
954 other's (decompacted state). We define an oscillation as the consecutive time points when more  
955 than one spot is detected. From the *mir430* loci trajectories we measured several parameters.

956 Speed: maximum distance value in oscillation divided by the time it takes to detect only one  
957 spot again. For each oscillation in each trajectory, we measured one speed value. We then  
958 pooled all speed values and plotted a histogram for all trajectories in presence and absence of  
959 Nanog, respectively.

960 Distances in decompacted state: For each trajectory we measured all distance values for each  
961 oscillation using the maximum distance metric as described above. We then pooled all distance  
962 values and calculated a histogram for all trajectories in presence and absence of Nanog,  
963 respectively.

964 Time in compacted state (stickiness): For each trajectory, we measured the duration of all time  
965 intervals between two successive oscillations. We then pooled all time values and calculated a  
966 histogram for all trajectories in presence and absence of Nanog, respectively.

967

## 968 **Data Normalization**

969 *Normalization of Nanog intensity*

970 To compare the volume and total intensity of Nanog clusters, the smallest/least intense clusters  
971 per nucleus were set to have a value of 0 and the largest/most intense clusters a value of 1. If  
972 more than one Nanog cluster colocalized with the same *mir430* transcription body, the volume  
973 and total intensity of these Nanog clusters was summed up to obtain only one value per time  
974 point and per transcription body. For the rank-based analysis, all Nanog clusters from the same  
975 nucleus were ranked based on their total intensity or volume. Percentages of the rank for all  
976 Nanog clusters colocalizing with Ser5P transcription bodies (all nuclei) were then plotted in  
977 the same density plot or plot for individual nuclei.

978 To study the evolution of Nanog intensity in the Nanog cluster associated with transcription,  
979 we normalized each value to the maximum value of the track. To avoid the bias of very bright  
980 Nanog clusters during mitosis, we considered only the values from -150 to +150 seconds

981 around transcription initiation. If one or more spot/shape was detected at one time point, their  
982 volume or total intensity were summed up and averaged before normalization.

983

#### 984 **Plotting and graph construction**

985 To make graphs, statistics were imported into R-Studio (Integrated Development for R.  
986 Rstudio, PBC, Boston, <http://www.rstudio.com/>). Data were pre-processed and plotted using  
987 packages like “ggplot2”, “tidyverse” and “dplyr”.

988

#### 989 **Sample size**

990 A minimum of 3 biological replicates (N) was acquired for each experiment. Each biological  
991 replicate was obtained from a different and independent batch of embryos. The number of  
992 biological replicates (N), embryos, nuclei, and clusters/tracks (n) for each figure panel are given  
993 below.

| Figure | Biological replicates (N) | Number of embryos | Number of nuclei | Number of clusters/tracks (n) |
|--------|---------------------------|-------------------|------------------|-------------------------------|
| 1b     | 3                         | 5                 | 25               | 41/3781                       |
| 1f     | 5/3                       | 7/4               | 28/26            | 51 (WT)/48 (inh)              |
| 2a     | 5                         | 7                 | 24               | 32                            |
| 2b     | 5                         | 7                 | 24               | 32                            |
| 2c     | 5/4                       | 5/6               | 10/13            | 10 (same)/ 13 (different)     |
| 2d     | 5                         | 7                 | 28               | 51                            |

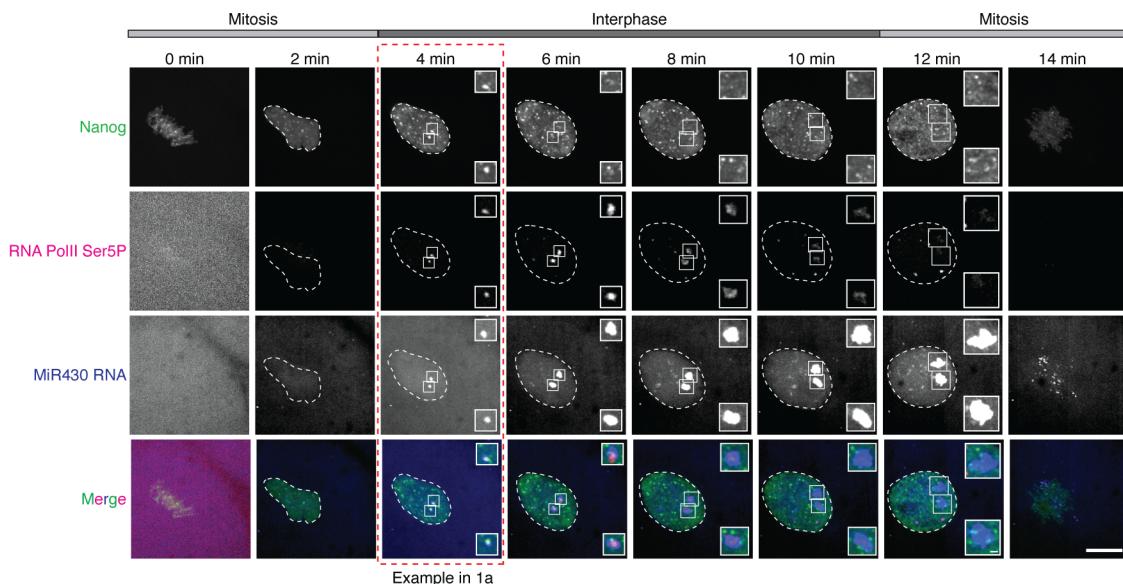
|              |         |         |             |                                                                                |
|--------------|---------|---------|-------------|--------------------------------------------------------------------------------|
| 2e           | 4/5/5   | 6/7/7   | 16/12/12    | 18 non-merging/13 merging (sum) / 26 merging (ind)                             |
| 3d           | 3       | 4       | 12          | 24 (WT)                                                                        |
| 3f           | 3       | 4       | 14          | 28 (inh)                                                                       |
| 4c           | 4/4     | 7/7     | 25/38       | 32 (non-merging)/57 (merging)                                                  |
| 5a, b,c,d,f  | 4       | 7       | 46          | 89                                                                             |
| 6a, c, d, e  | 3/4     | 17/13   | 25/46       | 80 (nanog) / (81 no nanog)                                                     |
| S2a, b       | 3       | 5       | 25          | 41/3781                                                                        |
| S3a          | 6       | 9       | 36          | /                                                                              |
| S3b          | 4/5/3/3 | 6/7/4/4 | 16/23/13/25 | 18 (WT, non-merging)/ 33 (WT, merging)/16 (Inh, non-merging)/32 (Inh, merging) |
| S5a, b, c, d | 4/4     | 7/7     | 25/38       | 32 (non-merging) /57 (merging)                                                 |
| S7b, c, d    | 3/3     | 5/5     | 28/22       | 44 (nanog) / (41 no nanog)                                                     |

994

995

996 **Statistics**

997 P-values for testing the difference in volume and total intensity of *mir430* and other Nanog  
998 clusters (Fig. 1b), as well as the difference in time of activation between merging and non-  
999 merging clusters (Fig. 2c) were calculated using the paired non-parametric Wilcoxon test. To  
1000 test the differences between the speed of compaction, duration of compaction and distances in  
1001 decompactated states between samples with and without Nanog (Fig. 6c, d, e), a one-sided Mann-  
1002 Whitney test was used.


1003

1004 Because in Figure 6c-e the number of tracks analyzed is small, we performed additional  
1005 statistical analysis. We randomly split the datasets for each parameter in two smaller  
1006 populations, both for the data in presence and in absence of Nanog and performed a two-sided  
1007 Kolmogorow-Smirnow Test (KS-test) to check if they have a similar distribution (data shown  
1008 below). We report that for all three parameters, this is the case. Moreover, we observed that  
1009 even when using half of the data, a significant difference in the distribution between the datasets  
1010 with or without nanog is observed for the time in a compacted state (Figure 6d), and the average  
1011 maximum distances between densities (Figure 6e), while this is not the case for the speed of  
1012 compaction (Figure 6c).

|           | <b>Comparison half-distribution</b><br><b>With Nanog</b> | <b>Comparison half-distribution</b><br><b>Without Nanog</b> | <b>Half with Nanog/Half without Nanog</b> |
|-----------|----------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------|
| Figure 6c | p= 0.6872                                                | p= 0.8617                                                   | p= 0.3076                                 |
| Figure 6d | p= 0.9017                                                | p= 0.5861                                                   | p=0.0006171                               |
| Figure 6e | p= 0.7046                                                | p=0.7092                                                    | p= 3.337e-12                              |

1013

## Extended Data Figure 1

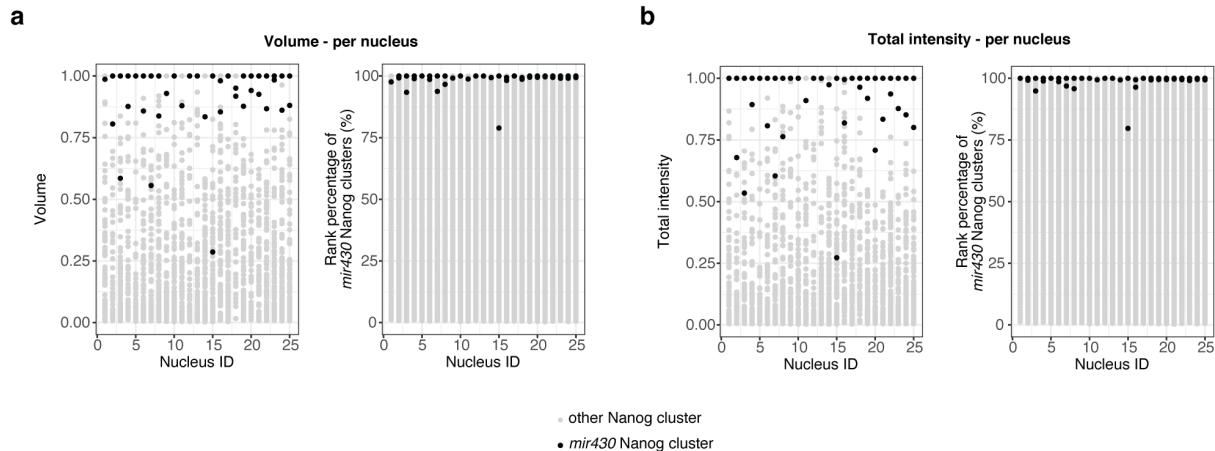


1014

1015 **Extended Data Figure 1. Images of the complete cell cycle for snapshots shown in Fig.1a.**

1016 Visualization of Nanog (mNeonGreen; green), initiating RNA Polymerase II (RNA Pol II

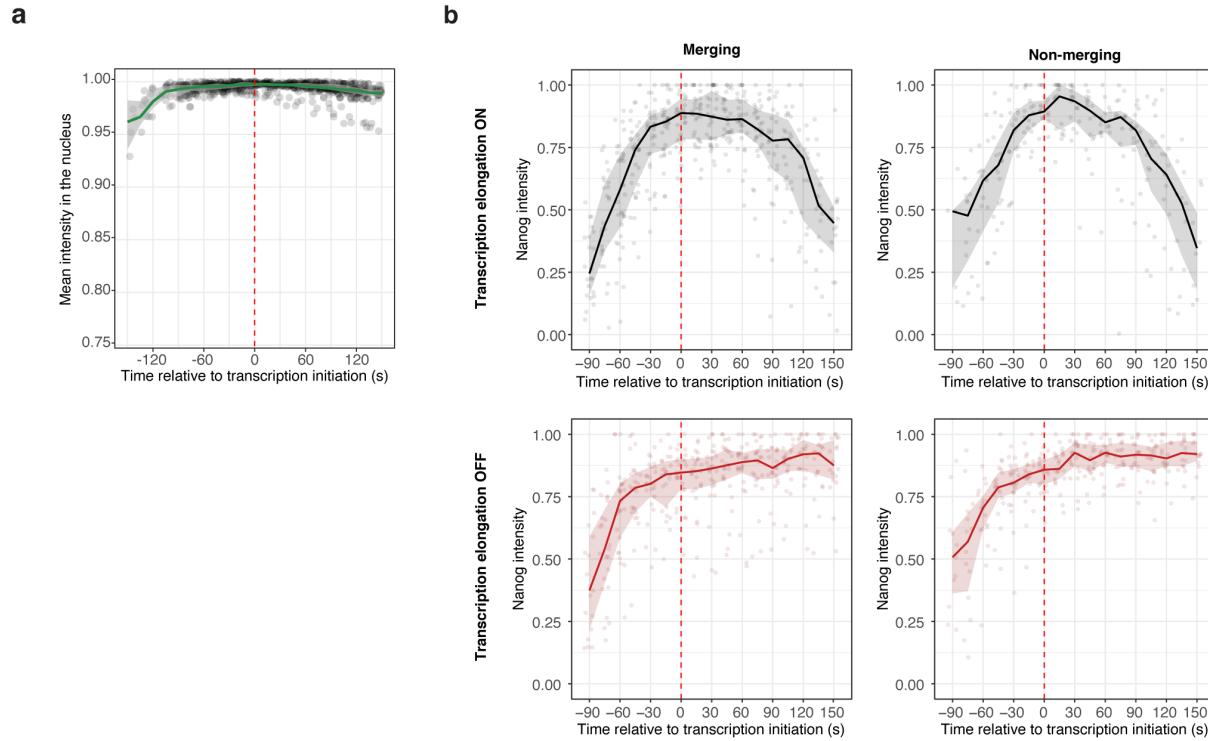
1017 Ser5P Fab (Cy5); magenta), and *mir430* transcription (MoVIE lissamine; blue) during 1k-cell


1018 stage. Insets are zooms of the two Nanog clusters colocalizing with RNA Pol II Ser5P and

1019 MiR430 transcripts. Shown are all timepoints recorded for an individual nucleus, the time point

1020 shown in Figure 1a is boxed in red. Scale bars are 10 and 1  $\mu$ m (insets). All images represent

1021 maximum intensity projections in the z direction.


## Extended Data Figure 2

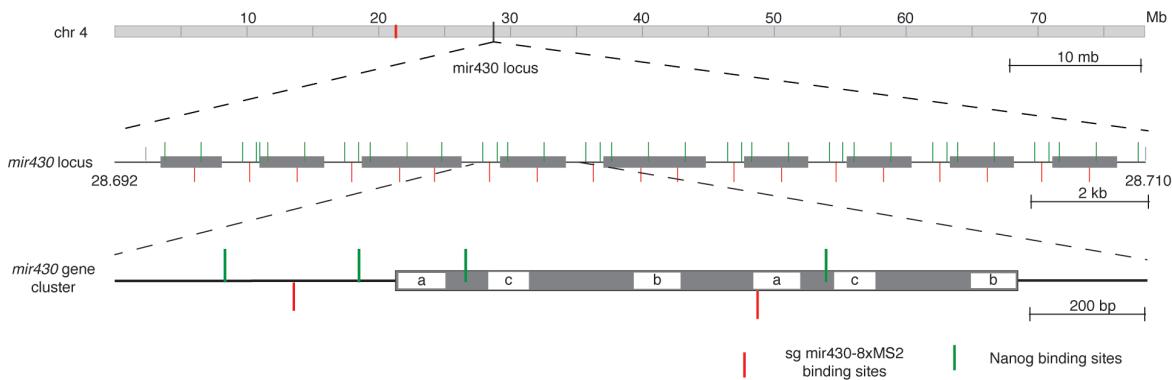


1022

1023 **Extended Data Figure 2. Nanog clusters colocalizing with MiR430 RNA are the largest**  
1024 **and brightest in individual nuclei.** **a.** Shown are the volume (left), and the rank percentage  
1025 (right) for Nanog clusters that colocalize with *mir430* transcription (black dots, N=3, n=41) or  
1026 not (grey dots, N=3, n=3781) in individual nuclei. **b.** Same as in a, but for the total intensity.  
1027 We note that because the analysis was done at the earliest time-point at which transcription  
1028 could be detected in a nucleus, and this was sometimes just at one *mir430* allele, there are some  
1029 nuclei in which just one Nanog cluster was analyzed. For a and b, if two or more Nanog clusters  
1030 were detected colocalizing with the same RNA Pol II Ser5P transcription body, their volume  
1031 and total intensity were summed up (see Methods). For a and b, values are normalized for the  
1032 lowest and the highest values in each nucleus. In this Figure, N is the number of biological  
1033 replicates, and n is the number of Nanog clusters.

**Extended Data Figure 3**




1034

1035 **Extended Data Figure 3. Both merging and non-merging Nanog clusters reach a**  
1036 **maximum amount of Nanog independently of transcription elongation. a.** Mean Nanog  
1037 nuclear intensity inside the nucleus (without clusters) relative to the time of transcription  
1038 initiation. Values are normalized to the maximum value for the same nucleus. Green line  
1039 indicates the median of the distribution and grey ribbons respectively 25% and 75% of the  
1040 distribution for the lower and upper limits at each time point. **b.** Related to Fig. 1f. Total  
1041 intensity of Nanog clusters associated with the *mir430* DNA locus relative to the time of  
1042 transcription initiation, with (black) and without (red) transcription elongation, split between  
1043 merging and non-merging clusters (non-merging, no inhibition, N=4, n=16; non-merging,  
1044 transcription inhibition, N=5, n=23; merging, no inhibition, N=3, n=19; merging, transcription  
1045 inhibition, N=3, n=19). If the Nanog cluster associated with transcription was the result of a  
1046 merging event, we summed up the total intensity of all clusters per time point. The bold line  
1047 represents the median and ribbon the 25<sup>th</sup> and 75<sup>th</sup> percentile of the distribution. Values are  
1048 normalized to the maximum value for each track. The red dash line indicates transcription

1049 initiation. In this Figure, N is the number of biological replicates, and n is the number of Nanog

1050 clusters.

#### Extended Data Figure 4



1051

1052 **Extended Data Figure 4. Structure of the *mir430* locus.** Shown is the structure of the *mir430*  
1053 locus on the long arm of chromosome IV, as described in the GRCz11 zebrafish genome  
1054 assembly (Howe et al., 2013). The three isoforms of *mir430* are indicated by the labels 'a', 'b'  
1055 and 'c'. Red and green bars indicate binding sites for the *mir430* sgRNA and predicted Nanog  
1056 motifs, respectively.

### Extended Data Figure 5



1058 **Extended Data Figure 5. Merging and non-merging cases display similar behavior. a.**

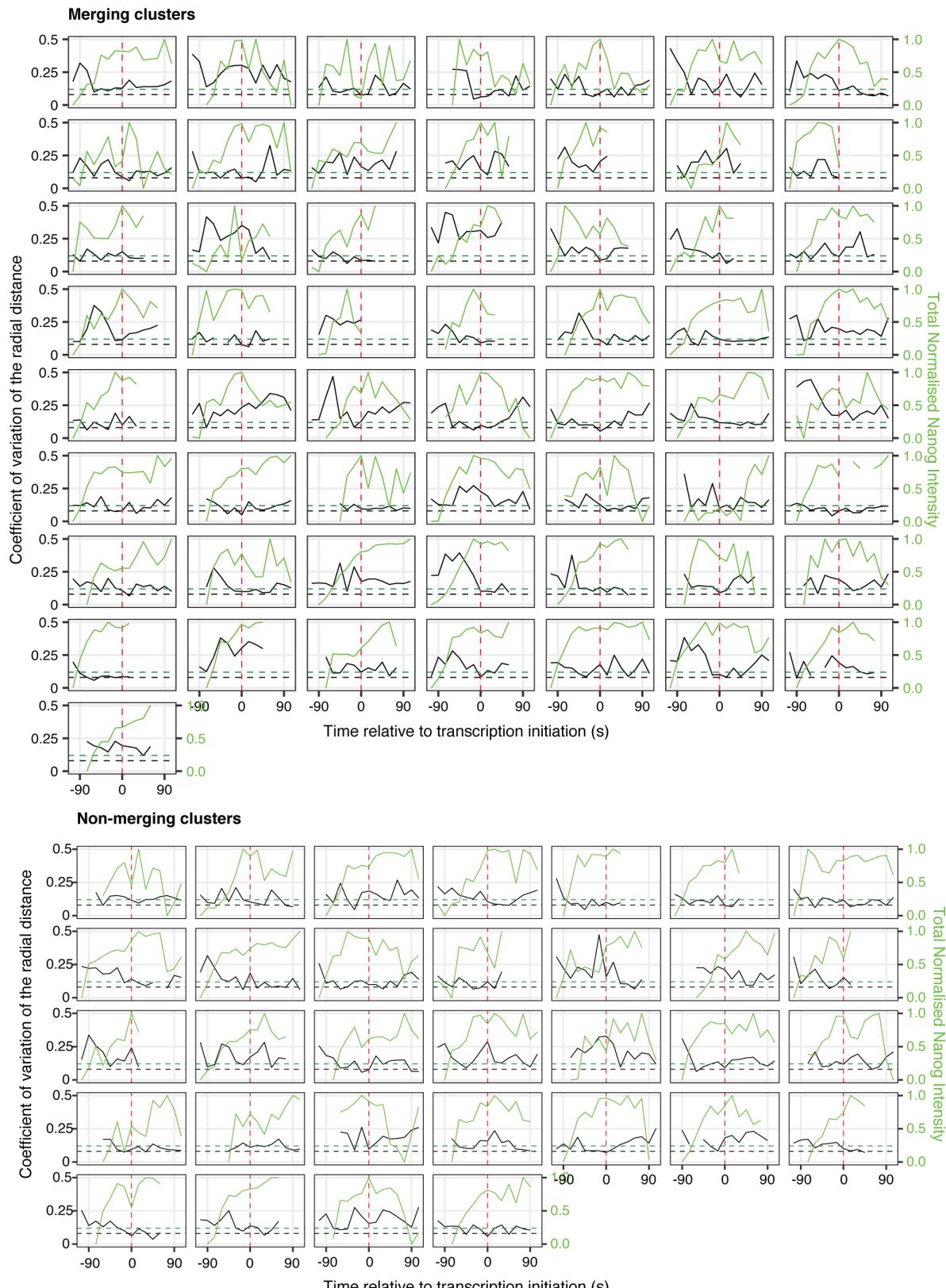
1059 Related to Fig. 5a, here separated for merging and non-merging clusters. The CoV of the radial

1060 distances for all tracks is plotted as a function of time, centered on transcription initiation. The

1061 grey line indicates the median of the distribution and the associated ribbon the 25th and 75th

1062 percentile of the distribution. The green dashed line shows the average value of the coefficient

1063 of variation of the radial distance of the *mir430* DNA mask measured during mitosis (see


1064 Methods). The black dashed line shows the theoretical minimal value for a mask considered as

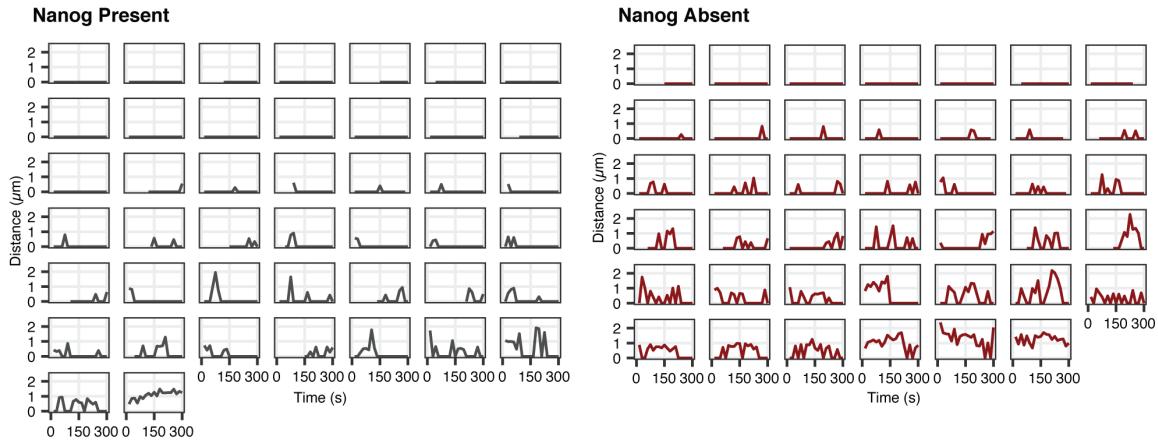
1065 a perfect sphere. **b.** Related to Fig. 5b, here separated for merging and non-merging clusters.

1066 Percentage of *mir430* DNA signal that is covered by Nanog signal as a function of time. The

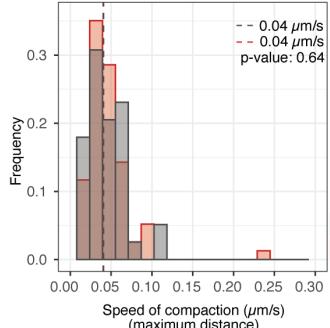
1067 vertical lines represent respectively the 25 and 75% of the distribution, while the horizontal  
1068 line represents the median. **c.** Related to Fig. 5c, here separated for merging and non-merging  
1069 clusters. Boxplots showing the Pearson's correlation score between *mir430* DNA mask and the  
1070 associated Nanog signal (black) or scrambled Nanog signal (red) for all tracks, relative to the  
1071 start of transcription. **d.** Related to Fig. 5d, here separated for merging and non-merging  
1072 clusters. Percentage of *mir430*-associated Nanog signal that is covered by *mir430* DNA signal  
1073 as a function of time. For all panels, the red dash line indicates transcription initiation. In this  
1074 Figure, with N=biological replicates and n=*mir430* alleles, N=4 and n=32 for non-merging  
1075 clusters, and N=4 and n=57 for merging clusters.

**Extended Data Figure 6**



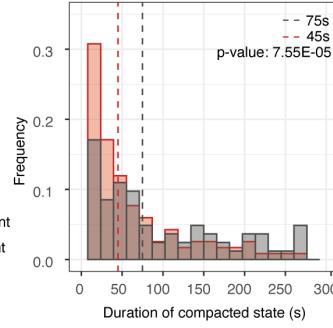

1076

1077 **Extended Data Figure 6. Individual plots for data shown in Fig. 5.** Coefficient of variation  
 1078 of radial distances of single *mir430* DNA alleles, as well as total intensity of associated Nanog

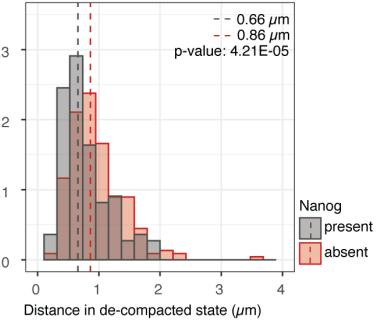

1079 signal as a function of time, relative to transcription initiation (indicated with a red dashed line).  
1080 Green dashed line represents the average value of the coefficient of variation of radial distances  
1081 of the *mir430* DNA mask during mitosis. The black dashed line shows the minimal value for a  
1082 mask considered as a perfect sphere.

**Extended Data Figure 7**

**a**




**b**




1083

**c**



**d**



1083

1084 **Extended Data Figure 7. 1k-cell stage data from Fig. 6. a.** Graphs of the distances between  
1085 detected densities on the *mir430* DNA channel as a function of time for individual *mir430* DNA  
1086 alleles in the presence (black) or absence (red) at 1k-cell stage only. **b-d.** Histograms showing  
1087 the speed of compaction (from the maximum distance) (c), the duration of compacted states  
1088 (or stickiness) (d), and the distances in decompacted states (e) in the presence (black, N=3 and  
1089 n=44) and absence (red, N=3 and n=41) of Nanog for the 1k-cell stage. Dashed lines indicate  
1090 the medians of the distributions. P-values are calculated with one-sided Mann-Whitney test. In  
1091 this Figure, N is the number of biological replicates, and n is the number of *mir430* alleles.

1092 **Supplementary Video 1. Movie of Nanog clusters merging followed by transcription**  
1093 **initiation. Related to Figure 1c.** Spinning-disk confocal microscope time-lapse of Nanog  
1094 clusters (mNeonGreen; left) and RNA Pol II Ser5P (RNA Pol II Ser5P Fab (Cy5); right) at 1k-  
1095 cell stage. Yellow and cyan arrowheads on the left point to merging and non-merging clusters,  
1096 respectively. White arrowheads on the right represent the transcription bodies. Time is relative  
1097 to transcription initiation. All images are snapshots from the 3D rendering of the Imaris  
1098 software.

1099

1100 **Supplementary Video 2. Complete movie of merging Nanog clusters with associated**  
1101 ***mir430* DNA and MiR430 RNA. Related to Figure 4b (i).** Spinning-disk confocal  
1102 microscope time-lapse of *mir430* DNA (tdMCP-mNG; green), MiR430 RNA (MoVIE-  
1103 lissamine; blue) and Nanog (HaloTag (JFX650); magenta) in *nanog* -/- embryos at 1k-cell  
1104 stage. Yellow arrowheads on the left point to the two merging Nanog clusters and on the right  
1105 to the associated transcription body. Time is relative to transcription initiation. All images are  
1106 snapshots from the 3D rendering of the Imaris software.

1107

1108 **Supplementary Video 3. Complete movie of Nanog clusters rapidly splitting and merging**  
1109 **with associated *mir430* DNA and MiR430 RNA. Related to Figure 4b (ii).** Spinning-disk  
1110 confocal microscope time-lapse of *mir430* DNA (tdMCP-mNG; green), MiR430 RNA  
1111 (MoVIE-lissamine; blue) and Nanog (HaloTag (JFX650); magenta) in *nanog* -/- embryos at  
1112 1k-cell stage. Yellow arrowheads on the left point to merging Nanog clusters and on the right  
1113 to the associated transcription body. Time is relative to transcription initiation. All images are  
1114 snapshots from the 3D rendering of the Imaris software.

1115

1116 **Supplementary Video 4. Complete movie of a unique Nanog cluster with associated**  
1117 ***mir430* DNA and MiR430 RNA. Related to Figure 4b (iii).** Spinning-disk confocal  
1118 microscope time-lapse of *mir430* DNA (tdMCP-mNG; green), MiR430 RNA (MoVIE-  
1119 lissamine; blue) and Nanog (HaloTag (JFX650); magenta) in *nanog* -/- embryos at 1k-cell  
1120 stage. Yellow arrowheads on the left point to the non-merging Nanog cluster and on the right  
1121 to the associated transcription body. Time is relative to transcription initiation. All images are  
1122 snapshots from the 3D rendering of the Imaris software.