

1 Altering rRNA 2' O-methylation pattern during neuronal differentiation is regulated by 2 FMRP

3 Michelle Ninochka D'Souza ^{*1,2}, Naveen Kumar Chandappa Gowda^{*1,3, #}, Nivedita Hariharan², Syed
4 Wasifa Qadri ^{1,4}, Dasaradhi Palakodeti ^{2, #} and Ravi S Muddashetty ^{1, #}

5 1- Centre for Brain Research, Indian Institute of Science, Bangalore, India

6 2- Institute for Stem Cell Science and Regenerative Medicine, GKVK Campus, Bangalore, India

7 3- Centre for Advance Research and Excellence in Autism and Developmental Disorders
8 (CAREADD), St. John's Research Institute, St. John's National Academy of Health Science,
9 Bangalore, India

10 4- Manipal Academy of Higher Education (MAHE), Manipal, India

11 * - Equal contribution

12 # Corresponding authors- ravimshetty@cbri.iisc.ac.in, dasaradhip@instem.res.in,
13 naveenkumargc@gmail.com

14 **Abstract**

15 The Fragile X Messenger Ribonucleoprotein (FMRP) is a selective RNA-binding protein that localizes
16 to the cytoplasm and the nucleus. The loss of FMRP results in Fragile X Syndrome (FXS), an Autism
17 Spectrum Disorder. FMRP interacts with ribosomes and regulates the translation of mRNAs essential
18 for neuronal development and synaptic plasticity. However, the biochemical nature of this translation
19 regulation is unknown. Here we report that a key feature of FMRP-mediated translation regulation
20 during neuronal differentiation is modulating the 2' O-methylation of ribosomal RNA. 2' O-methylation,
21 facilitated by C/D box snoRNAs in the nucleus, is a major epitranscriptome mark on rRNA, essential
22 for ribosome assembly and function. We found that FMRP influences a distinct rRNA 2' O-Methylation
23 pattern across neuronal differentiation. We show that in H9 ESCs, FMRP interacts with a selected
24 set of C/D box snoRNA in the nucleus resulting in the generation of ribosomes with a distinct pattern
25 of rRNA 2' O-Methylation. This epitranscriptome pattern on rRNA undergoes a significant change
26 during the differentiation of ESCs to neuronal precursors and cortical neurons. ESCs display
27 maximum hypomethylated residues on rRNA, which is eventually reduced in neuronal precursors and
28 post-mitotic cortical neurons and this is correlated to the change in global protein synthesis among
29 the states of differentiation. Importantly, this gradual change in the 2' O-methylation pattern during
30 neuronal differentiation is altered in the absence of FMRP, which could impact neuronal development
31 and contribute to dysregulated protein synthesis observed in Fragile X Syndrome. This also suggests
32 the need for diversity in functional ribosomes during the early stages of development.

33 Introduction:

34 Dynamic change in the protein repertoire mediated by translation regulation has shown to be a critical
35 determinant of Embryonic stem cell (ESCs) maintenance and differentiation^{1,2}. Several factors
36 including non-coding RNAs, RNA binding proteins, and epitranscriptomic modifications such as
37 mRNA m6A modifications are shown to alter translation rates, thereby, regulating the protein
38 repertoire of ESCs³. Recent work showed that rRNA modifications that change between cell types

39 could potentially regulate translation by modulating the interaction between mRNA and the ribosomes
40 ⁴. However, the role of epitranscriptomic modification at the rRNA level and its contribution to ESC
41 differentiation are largely unexplored. 2' O-methylations are one of the major epitranscriptomic marks
42 found on rRNA. In humans, C/D box small nucleolar RNAs (snoRNAs) guide the addition of 2' O-
43 methylation on the ribose sugar of rRNA and this process can occur either co-transcriptionally or post-
44 transcriptionally⁵. rRNA methylation is important for ribosome biogenesis as it helps in the folding of
45 rRNA and assembly of ribosomes⁶. The idea of ribosomes being structurally and functionally uniform
46 entities has been seriously challenged in recent years and the idea of ribosome heterogeneity is
47 gaining wide acceptance⁷⁻⁹. Ribosome heterogeneity can be attributed to content and the
48 modifications of both proteins and rRNA. Though the change in the protein composition of ribosomes
49 was shown to have a regulatory role in translation, the consequence of rRNA-based ribosome
50 heterogeneity based on translation regulation is largely unexplored¹⁰.

51 In our previous work, we showed that the differential pattern of rRNA 2' O-methylation in Shef4 hESCs
52 was contributed by a large extent of hypomethylated residues. Further, our work also demonstrated
53 that Fragile X Messenger Ribonucleo-binding protein (FMRP), an RNA binding protein, modulates
54 this rRNA methylation at several specific sites generating a differential 2' O-methylation pattern¹¹.
55 Consequently, the differential 2' O-methylation pattern on the ribosome assists in the binding of FMRP,
56 which plays an important role in the regulation of protein synthesis¹¹. FMRP-mediated translation
57 regulation is critical for brain development and functioning¹²⁻¹⁴. Consequently, the loss of FMRP
58 results in a severe form of Autism Spectrum Disorder called Fragile X Syndrome, which is primarily
59 characterized by intellectual disability¹⁵

60 In our current study, we investigated the changes and functional relevance of the 2' O-methylation
61 pattern of rRNA in the maintenance and differentiation of hESCs to neural fates. Our results show
62 that the translation rates are higher in NSCs compared to ESCs suggesting that cell state changes
63 correlate with dynamic change in the rates of protein synthesis. We conclude that rRNA
64 hypomethylation broadly correlates to lower translation as in the case of WT ESCs while rRNA
65 hypermethylation correlates with increased translation as seen in WT NSCs. This correlation was also
66 observed in FMR1 KO ESCs. Our study captures the significant change in the 2' O-methylation pattern
67 during differentiation with a maximum number of hypo-methylated sites in the ESCs. Further, our
68 results show changes in the 2' O-methylation of rRNA in translating and non-translating pools of the
69 ribosome, suggesting that these methylation statuses might have a profound influence on translation
70 rates. Our work also demonstrates that the changes in methylation patterns from ESCs to NSCs are
71 particularly regulated by specific snoRNAs in association with FMRP. Together, this study provides
72 insights into 2' O-methylation-dependent translation regulation mediated by FMRP and its importance
73 in the differentiation of ESCs to neural lineages.

74 **Results :**

75 ***The hypomethylated sites are maximum in ESC rRNA and significantly reduce as they***
76 ***differentiate into NSCs and neurons.***

77 We sought to investigate the changes in 2' O-methylation marks on ribosomal RNA during ESC
78 differentiation to neuronal precursors and mature neurons. For this purpose, H9 ESCs were
79 differentiated into Neural Stem Cells (NSCs) and finally into forebrain glutamatergic neurons through
80 the inhibition of the SMAD signaling pathway (**Figure S1 A-C**). RNA from ESCs, NSCs, and
81 differentiated neurons was subjected to RiboMethSequencing (RMS) to estimate the changes in the

82 2' O-methylation patterns across 18S and 28S rRNA as described previously¹⁶. In brief, 2 micrograms
83 of total RNA were subjected to controlled alkaline hydrolysis followed by library preparation and
84 sequencing (**Figure 1A**). The extent of 2' O-methylation of specific sites of the 18S and 28S rRNA
85 are represented as methylation indices (MI). MI=1 indicates complete methylation at a particular site,
86 while MI=0.1 indicates a methylation of only 10% of the rRNA population at a particular site. RiboMeth
87 scores for ESCs, NSCs, and neurons indicate differential patterns of 2' O-methylation in 18S and 28S
88 rRNA across these three stages of neural differentiation (**Figure 1B and 1C**). Our RiboMethSeq
89 captured a total of 103 differentially methylated sites with 39 residues in 18S rRNA and 64 residues
90 in 28S rRNA respectively (**Figure 1B and 1C**). Further, we captured two distinct patterns in our RMS
91 score: a) Among the three differentiation stages, ESC rRNA displayed the highest number of sites
92 with partial 2' O-methylation. This indicates that ESCs contain a maximum number of ribosomes
93 having hypomethylated residues and b) the number of 2' O hypo-methylated residues decreases as
94 the ESCs differentiate to NSCs and reduce even further as the NSCs undergo transition to post-
95 mitotic neurons (**Figure 1B and 1C and Figure S1D and S1E**). Detailed information on sites that
96 show a significant increase in methylation across ESC to neurons is provided in **Table 1**. Conversely,
97 a few sites in 18S and 28S rRNA show a significant shift to hypomethylation in NSCs and neurons
98 compared to ESC (indicated in **Table 2**), which is an opposite trend observed in the majority of the
99 sites mentioned earlier. The pattern of 2' O-methylation obtained was distinct among H9 ESCs and
100 the differentiated NSCs and neurons. However, the hypomethylated residues in H9 ESC were the
101 same as those captured in our previous study using an alternate ESC line Shef4¹¹

102 Next, we independently validated the changes in 2' O-methylation on specific sites of 18S and 28S
103 rRNA through a qPCR-based tool referred to as RTL-P¹⁷. Details of the primer design and product
104 amplification have been described in **Figure 1D**. We have validated the changes in methylation for
105 three different positions on rRNA- site 428 in 18S rRNA and sites 400 and 3867 in 28S rRNA. Position
106 391 on 28s rRNA was found to be methylated in all 3 differentiation stages (**Figure 1C**). Sites 428
107 and 3867 in 18S and 28S rRNA respectively show increasing trends of methylation in the NSC and
108 neuronal stages (**Figure 1C**). Using RTL-P, we confirmed the complete methylation of Site 400 across
109 the 3 different cell types and increased methylation of sites 428 and 3867 as the cells differentiated
110 into neurons, validating the RMS data generated by next-generation sequencing (**Figure 1E**).
111 Together, our results show maximum hypomethylation of rRNA in the ESCs which significantly
112 decreases as the cells differentiate to post mitotic neurons.

113 ***The effect of FMRP on 2' O-methylation of rRNA is maximum in ESCs***

114 Our published work demonstrated a novel role for FMRP in regulating the methylation of 2' O ribose
115 sugars of specific bases in ESCs¹¹. In the current study, we aimed to understand the effect of FMRP
116 on 2' O-methylation of rRNA during the differentiation of ESCs into NSCs and cortical neurons. For
117 this, we used H9 ESC and FMR1 KO H9 ESC lines. The knockout of FMRP was performed through
118 CRISPR-Cas9 deletion of exon1 of the FMR1 gene (**Figure S2D**)¹⁸. FMR1 KO ESCs were
119 characterized for stem cell markers OCT4 and Nanog (**Figure 2A and S2A**). ESCs were differentiated
120 into NSCs and neurons as described earlier¹⁹. Differentiated states were confirmed by the presence
121 of Nestin and Pax6 in NSCs and MAP2 and VGlut1 in neurons (**Figure S2B and 2C**).

122 To understand how FMRP influences 2' O-methylation levels at each stage of differentiation, we
123 performed RiboMethSequencing from ESCs, NSCs, and neurons from both WT and FMR1 KO cell
124 lines (**Figure 2A**). RMS data from FMR1 KO cells indicates maximum hypomethylation of rRNA was
125 in the ESC stage compared to NSCs and neurons, which was similar to our observation in the WT

126 condition. This suggests that the overall trend of increasing 2' O-methylation among ESC, NSC, and
127 mature neurons does not change between WT and FMR1 KO conditions. (**Figure 2B, Figure S2E**
128 **and S2F**). However, to study specific changes in 2' O-methylation status due to the loss of FMRP, we
129 selected sites in WT ESC 18S and 28S rRNA that have an MI score less than/ equal to 0.9 and
130 examined their MI in the FMR1 KO ESCs (**Figure 2B**). Furthermore, we compared the MI of these
131 sites in WT and FMR1 KO NSCs (**Figure 2C**) and neurons (**Figure 2D**). We observed that the fold
132 difference in 2' O-methylation between the WT and KO conditions of certain sites (e.g. Site 428 in 18S
133 rRNA and site 2824 in 28S rRNA) drastically reduces from the ESC to NSC to neuronal types.
134 Additionally, the number of hypomethylated sites (6 sites in 18S rRNA and 12 sites in 28S rRNA)
135 reduced as we differentiated ESCs into NSCs and neurons. Details of these sites are provided in
136 **Table 1** (Highlighted in red).

137 Further, we plotted a heat map by grouping variable positions and saturated positions across the
138 differentiated cell states and compared them with the FMR1 KO condition (**Figure S2G and S2H**).
139 We have indicated the sites on 18S and 28S rRNA showing significant changes in 2' O-methylation
140 between WT and FMR1 KO ESCs/NSCs/neurons in **Tables 3-5**. These results indicate that the
141 number of hypomethylated positions in both 18S and 28S rRNA are reduced over differentiation
142 suggesting that the effect of FMRP on rRNA 2' O-methylation is maximum in ESCs. To further validate
143 this result, we selected positions 428 from 18S rRNA and 3867 from 28S rRNA. The Methylation
144 Index for these positions was measured by RTL-P in WT and FMR1 KO ESCs, NSCs, and neurons
145 (**Figure 2E and Figure 2F**). In ESCs, sites 428 and 3867 show a significant increase in methylation
146 status in the absence of FMRP compared to the WT condition. Further validation of the same sites in
147 NSCs and neurons shows no difference in 2' O-methylation between WT and FMR1 KO conditions,
148 suggesting that the role of FMRP in regulating 2' O-methylation is reduced across neuronal
149 differentiation (**Figure 2E and Figure 2F**).

150 ***rRNA hypermethylation in NSCs is a result of reduced FMRP-snoRNA interaction***

151 From our results, we observe a trend of hypermethylation in 18S and 28S rRNA as ESCs differentiate
152 from NSCs. We have previously shown that FMRP interacts with C/D Box snoRNAs and regulates
153 the 2' O-methylation profile of rRNAs in ESCs¹¹. Hence, we wanted to investigate the effect of FMRP-
154 snoRNA interaction on 2' O-methylation in the context of neuronal differentiation¹¹. To begin with, we
155 examined the relative expression of selected C/D Box snoRNAs in ESCs and NSCs. We chose
156 snoRNA candidates based on the sites that were hypomethylated on 18S and 28S rRNA in WT ESCs.
157 We observed that the steady-state expression of these C/D Box snoRNAs did not significantly alter
158 as ESCs differentiate into NSCs (**Figure 3A**). Further, we observed no significant difference in the
159 levels of the target snoRNAs between WT and FMR1 KO ESCs and NSCs confirming that FMRP
160 does not affect the steady-state expression of these snoRNAs (**Figure 3B and Figure S3A**).

161 Since we did not capture any alterations in the levels of snoRNAs along differentiation or in the FMR1
162 KO condition, we investigated whether the altered 2' O-methylation pattern between WT ESCs and
163 WT NSCs could be due to differences in FMRP-snoRNA interactions. Our previous work indicated
164 that FMRP binds to several C/D box snoRNAs in ESCs as well as in NSCs¹¹. However, the extent of
165 FMRP-snoRNA interaction between these two cell states was not known. To test this, we performed
166 an FMRP-immunoprecipitation from ESCs and NSCs and quantified the copy number of specific
167 snoRNAs that were bound to FMRP in these two systems through qPCR (**Figure 3C**). We observed
168 that the extent of binding of selected snoRNAs to FMRP is significantly reduced in WT NSCs in
169 comparison to WT ESCs (**Figure 3C**).

170 We mapped the FMRP-bound snoRNAs to their respective target sites on rRNA to examine the
171 changes in 2’O-methylation between WT ESCs, FMR1 KO ESCs, and WT NSCs (**Figure 3D**). We
172 observe that the sites corresponding to FMRP-bound snoRNAs shift from hypomethylation to
173 hypermethylation state between WT and FMR1 KO ESCs (**Figure 3D**). Similarly, we see a similar
174 shift from hypomethylation to hypermethylation when we compare WT ESCs and WT NSCs for these
175 sites (**Figure 3D**). Thus, FMRP has a strong affinity to selected C/D Box snoRNAs in the WT ESCs
176 which results in the hypomethylation of the sites targeted by these snoRNAs (**Figure 3E**). This
177 interaction is lost in FMR1 KO ESCs or is reduced in the case of WT NSCs, both of which result in
178 hypermethylation of the sites targeted by the FMRP-bound snoRNAs (**Figure 3E and Table 4**).

179 ***Loss of FMRP results in protein synthesis defects in ESCs but not in NSCs.***

180 Cell state transitions are controlled by changes in global protein synthesis. To capture changes in
181 global protein synthesis in the absence of FMRP along the differentiation of ESC to NSC, we made
182 use of a non-canonical amino acid tagging system called FUNCAT²⁰. The rate of production of newly
183 synthesized proteins was measured in WT and FMR1 KO ESCs and NSCs through the quantification
184 of the FUNCAT signal, which was normalized to endogenous α -tubulin protein levels in each condition
185 (**Figure 4A**). We observed that isolated ESCs lose their pluripotency signal upon separation from the
186 ESC colony. Hence we quantified the total FUNCAT and α -tubulin signal from whole ESC colonies
187 and not from individual cells as we did in the case of NSCs. Our results indicate that the absence of
188 FMRP caused a significant upregulation of global protein synthesis in ESCs compared to the WT
189 condition (**Figure 4B and 4C**). Interestingly, we did not capture this trend in the differentiated NSCs
190 (**Figure 4D and 4E**). There was no significant difference observed in the rates of translation between
191 WT and FMR1 KO NSCs (**Figure 4D and 4E**). This finding indicates that FMRP might have a
192 prominent role in regulating translation at early developmental stages as opposed to intermediate
193 stages of differentiation. To confirm our observations, we also measured rates of global protein
194 synthesis in WT and FMR1 KO ESCs by quantifying the levels of puromycin incorporation between
195 the two conditions (**Figure 4F**). We observe a significant increase in the levels of puromycin-labelled
196 proteins in the absence of FMRP (FMR1 KO ESCs) indicating an overall increase in translation
197 (**Figure S4A-S4D**). Since we hypothesize that increased 2’O-methylation on rRNA could result in
198 increased rates of translation and WT NSCs have hypermethylated rRNA residues compared to WT
199 ESC rRNA, we examined the rates of protein synthesis between WT ESCs and WT NSCs by
200 measuring the levels of puromycin-labeled proteins. We did not measure this parameter through
201 FUNCAT since it is not possible to compare the FUNCAT intensity between ESC colonies and
202 individual NSCs. Our data shows that there is a significant increase in puromycin incorporation in WT
203 NSCs compared to WT ESCs indicating that overall protein synthesis increases as cells differentiate
204 from ESCs to NSCs (**Figure 4G-H and Figure S4E-F**).

205 From our previous study, we know that FMRP regulates translation by affecting the epitranscriptome
206 of the ribosome¹¹. We aimed to understand the effect of FMRP on the 2’O-methylation of translating
207 monosomes and polysomes. For this, total cell lysate from WT and FMR1 KO ESCs was loaded on
208 a linear sucrose density gradient and components were separated based on density through
209 ultracentrifugation. We collected RNA from the pools of monosomes and Polysomes from WT and
210 FMR1 KO conditions and subjected the RNA to RiboMethSequencing (**Figure 4I**). Our data suggests
211 that there are more hypomethylated sites in the 28S rRNA compared to 18S rRNA in both monosome
212 and polysome populations (**Figure 4J-M and S4G-J**) and the absence of FMRP results in the
213 hypermethylation of a majority of these sites in both the ribosomal populations (**Figure 4J-M and**
214 **S4G-J**).

215 **Discussion**

216 Cellular differentiation is an event where a state of specialization is achieved to facilitate a unique
217 cellular function. This process is contributed by an amalgamation of various processes such as
218 transcription, epigenetic changes epitranscriptomic changes, protein synthesis, and cell signaling.
219 Our study focuses on specialized ribosomes generated from epitranscriptome changes, which provide
220 an important layer of complexity to protein synthesis during neuronal differentiation of pluripotent
221 embryonic stem cells. Ribosomal RNA heterogeneity is generated primarily through altered sequence
222 or epitranscriptomic modification of the rRNA^{7,8}. Our study shows a distinct pattern of 2' O-methylation
223 on both 18S and 28S rRNA in human ESCs. We observe that many of these sites on rRNA are
224 hypomethylated in the stem cell state. However, these same sites get further methylated when the
225 cells are differentiated along the neuronal lineage. As cells achieve their post-mitotic fate, we observe
226 the highest number of completely methylated sites. In other words, there is more 2' O hypomethylation
227 of rRNAs in ESCs which reduces as ESCs are differentiated into NSCs and neurons (**Figure 5B**).
228 This is a very surprising result since neurons are highly polarized cells that will require elaborate
229 compartmentalized and activity-mediated protein synthesis. Therefore, we expected a higher level of
230 specialized ribosomes in them. On the contrary, our results indicate the highest level of rRNA 2' O
231 hypomethylation is in ESCs and relatively reduced 2' O-methylation is in neurons. While considering
232 our results, it is important to note that our RMS was performed with lysates from whole neurons and
233 not from specific compartments. Neurons show localized protein translation at the synapses, tightly
234 regulated by synaptic activity²¹⁻²³. Hence, it is possible that there could exist a higher level of
235 hypomethylated ribosomes within these compartments. Broadly, our data suggests that ESCs
236 possess higher rRNA hypomethylation which we correlate with the pluripotent state of the cell.

237 We observe a maximum number of hypomethylated sites in ESCs indicating a very high number of
238 partially methylated ribosomes. This seemingly counterintuitive finding becomes logical once we
239 carefully consider the pluripotent nature of ESCs. Translation rate is presumably low in ESCs and is
240 thought to go up as they differentiate¹. Cell differentiation is a highly dynamic process that occurs in
241 response to various intrinsic and extrinsic cues. This requires quick proteomic remodeling which is
242 largely determined by translation regulation. It is essential for ESCs to rapidly respond to these cues
243 either by enhancing transcription or by priming the existing ribosomes. Here, we argue that a high
244 level of hypomethylated ribosomes provides ESCs with such a potential. The high level of
245 hypomethylated rRNA in ESCs suggests that there are large numbers of different ribosomal pools,
246 each having its distinct pattern of methylation (**Figure 4J-M**). We argue that since ESCs are primed
247 to differentiate into multiple germ layers, the system is equipped to translate different pools of mRNAs
248 when required. In other words, we propose that pluripotency in ESCs is maintained because of the
249 multiple pools of specialized ribosomes. Once differentiation is initiated, rRNA gets hypermethylated
250 and the cells begin to produce a more homogenous population of ribosomes.

251 Previously we have shown that FMRP associates with a specific set of C/D box snoRNAs in ESCs
252 and this can lead to the generation of specific rRNA methylation patterns and thus specialized
253 ribosomes¹¹. Our current data shows that the steady-state expression of specific snoRNAs is
254 unaltered between ESCs and NSCs. Further, the expression of specific snoRNAs is not affected in
255 the absence of FMRP (**Figure 3B** and **Figure S3A**). This finding was anticipated as snoRNAs are
256 very abundant yet essential for the process of ribosome biogenesis²⁴. However, this result did not
257 explain the differences in 2' O-methylation that we captured between ESCs and NSCs. Further, this
258 also did not explain the trend of hypermethylation we observed in conditions where FMRP is absent.
259 We hypothesize that the differential methylation of rRNA between cell states could be due to the

260 differential interaction of FMRP with its target snoRNAs. We have shown that the interaction of FMRP
261 with its target C/D Box snoRNAs is similar across different ESC lines such as Shef4 ESCs and H9
262 ESCs¹¹. Our current data shows that the extent of FMRP-snoRNA interaction is significantly reduced
263 from ESCs to NSCs (**Figure 3C**). This suggests that the binding of FMRP to snoRNAs is the strongest
264 in ESCs making them less available to target the methylation sites on rRNA (**Figure 3D**). This data
265 indicates that FMRP-dependent snoRNAs may be a critical factor in defining specialized ribosomes
266 during neuronal differentiation. The exact molecular reasoning for this is unclear. Due to the higher
267 sequestration of snoRNAs by FMRP in ESCs, we capture a high number of hypomethylated sites in
268 ESC ribosomes. Since this interaction is reduced in NSCs, an increase in the number of available
269 guide snoRNAs leads to more methylation on NSC rRNA (**Figure 3E and Figure 5B**). The decrease
270 in FMRP-mediated snoRNA sequestration between WT ESCs and WT NSCs is very similar to the
271 loss of snoRNA sequestration in FMR1 KO ESCs (**Figure 3E**). Correspondingly, the availability of
272 free FMRP-target snoRNAs in FMR1 KO ESCs leads to the hypermethylation of rRNA (**Figure 3E**
273 and **Figure 5B**). Hence, we can conclude that a shift in the extent of snoRNA sequestration by FMRP
274 can determine the impact on rRNA methylation.

275 Since there is mounting evidence to link epitranscriptomic changes in rRNA to altered translation^{25,26},
276 we decided to test the effect of altered rRNA 2' O-methylation on global protein synthesis in the ESCs
277 and NSCs in the presence or absence of FMRP. FMRP is a regulator of translation, however, it is
278 predominantly known to inhibit translation through the stalling of ribosomes^{27,28}. Our analysis indicates
279 that FMR1 KO ESCs show a significant upregulation of overall protein synthesis compared to WT H9
280 ESCs (**Figures 4B and 4C**). This phenomenon is only evident at the ESC stage. There was no
281 difference in the global protein synthesis between WT-NSCs and FMR1 KO NSCs. Interestingly, the
282 correlating observation of rRNA hypermethylation to increased protein synthesis was captured when
283 we compared ESCs with their differentiated neuronal precursor forms (**Figure 4G and 4H**). Since
284 protein expression during cellular differentiation is largely controlled by ribosomal function, this
285 regulation is likely determined by cell-state-specific specialized ribosomes. Currently, we do not know
286 the consequence of a 2' O Methylated rRNA residue on protein synthesis. However, it is clear that
287 rRNA hypermethylation increases translation and hypomethylation reduces translation.

288 In addition, our general observation shows that 28S rRNA possesses the maximum number of
289 hypomethylated residues in monosomal and polysomal pools in comparison to the 18S rRNA. This
290 result is in line with the concept that the rRNA of the ribosomal small subunit is less variable compared
291 to the large subunit^{29,30}. Also, the absence of FMRP causes hypermethylation of a majority of sites
292 across 18S and 28S rRNA in both the ribosomal populations (**Figure 5B**). This implies that the
293 occurrence of specialized ribosomes and their alteration due to the loss of FMRP is only significant
294 at the early stages of embryonic development (**Figure 5B**). Further, the importance of FMRP in
295 regulating ribosome biogenesis might be particularly relevant at the ESC state while FMRP might
296 adopt alternate roles in the NSCs and neurons to regulate protein synthesis.

297 In summary, our study shows a clear role of FMRP-dependent ribosome heterogeneity in ESCs which
298 is supported by our translation assays and snoRNA interaction. This will be the first report to show
299 how RNA-binding proteins like FMRP may contribute to generating differential 2' O-methylation across
300 the differentiation of pluripotent cells to terminal differentiated cells. Our data suggests that the key
301 methylation positions vary between (WT and FMR1 KO ribosomes and along differentiation around
302 the PTC (Peptidyl Transferase Center) (**Figure 5A**) and studying them in detail would open up many
303 interesting avenues to understand 2' O-methylation-dependent translation regulation. Further, our

304 study also shows how distinct 2' O-methylation patterns on rRNA can be used as indicators of specific
305 cell states during differentiation and development.

306 **Materials and Methods:**

307 **Ethics statement:**

308 All the human stem cell work was carried out as per approval from the Institutional Human Ethics
309 Committee and Institutional Biosafety Committee at InStem, Bengaluru, India, and Centre for Brain
310 Research, Indian Institute of Science Campus, Bangalore, India.

311 **Embryonic Stem Cell culture:**

312 H9 ESCs and FMR1 KO ESCs were cultured on Matrigel (#3545277 BD Biosciences) coated plates
313 containing mTeSR1 medium (#5850, StemCell Technologies) at 37°C in a 5% CO₂ environment.
314 Cells were passaged with an enzyme cocktail containing 1 mg/ml of Collagenase type IV (#17104019,
315 Invitrogen), 20% KOSR (#10828010, Gibco), 0.25% Trypsin, and 1 mM CaCl₂ dissolved in 1X PBS
316 without CaCl₂ or MgCl₂ pH 7.2. For immunostaining experiments, H9 ESC colonies were plated on
317 Matrigel-coated glass coverslips and cultured as mentioned above. H9 ESCs were further
318 differentiated into Neural Precursor Cells (NPCs) by inducing them with a Neural Induction Medium
319 for 14 days¹⁹. The protocol for neural differentiation was adapted from *Shi et al*¹⁹ to differentiate iPSCs
320 into forebrain glutamatergic neurons. The Neural Basic Media (NBM) for differentiation contained 50%
321 DMEM F-12 (21331–020, ThermoFisher Scientific), 50% Neurobasal, 0.1% PenStrep, Glutamax, N2
322 (17502–048, ThermoFisher Scientific), and B27 without Vitamin A (12587–010, ThermoFisher
323 Scientific). Once the iPSCs reached 70-80% confluence, they were subjected to monolayer neural
324 induction by changing the mTeSR1 media to Neural Induction Media (NIM). NIM is composed of NBM
325 supplemented with small molecules SB431542 (10 µM, an inhibitor of TGFβ pathway) (72232, Stem
326 Cell Technologies) and LDN193189 (0.1 µM, an inhibitor of BMP pathway) (72142, Stem Cell
327 Technologies). The cells were subjected to neural induction for 12-15 days by changing the media
328 every day till a uniform neuroepithelial had formed. After the induction, the monolayer was dissociated
329 using Accutase (A6964, Sigma), and centrifuged at 1200 rpm for 3 minutes at room temperature. The
330 cells were plated overnight in NIM containing 10 µM ROCK inhibitor (Y0503, Sigma) on pre-coated
331 poly-L-ornithine/laminin dishes. Poly-L-Ornithine (1:10 dilution in 1X PBS) (P4957, Sigma) coating
332 was performed at 37°C for a minimum of 4 hours, washed thrice with 1X PBS, followed by overnight
333 coating with Laminin (5 µg/ml diluted in 1X PBS) (L2020, Sigma) at 37°C. The NSCs were maintained
334 in Neural Expansion Media (NEM) composed of NBM supplemented with FGF (10 ng/ml) (100-18C,
335 Peprotech) and EGF (10 ng/ml) (AF-100-15, Peprotech). Neuronal maturation and terminal
336 differentiation were achieved by plating the NSCs at a density of 25,000-35,000 cells/ cm² in the
337 Neural Maturation Media (NMM) composed of NBM supplemented with BDNF (20 ng/ml) (450-02,
338 Peprotech), GDNF (10 ng/ml) (450-10, Peprotech), L-Ascorbic Acid (200 µM) (A4403, Sigma) and
339 db-Camp (50 µM) (D0627, Sigma). The neurons were subjected to maturation for 4-5 weeks by
340 supplementing them with NMM every 4-5 days.

341 **Characterization of stem cells:**

342 ESCs, NSCs, and neurons were fixed with 4% PFA for 15 minutes followed by 1X PBS wash and
343 permeabilization with 0.3% Triton X-100 (made in TBS₅₀) for 10 minutes. This was followed by 1 hour
344 blocking with 2% BSA and 2% FBS prepared in TBS₅₀T (with 0.1% Triton X-100). They were incubated
345 with the primary antibody (prepared in blocking buffer) overnight at 4°C. This was followed by 3

346 washes with TSB₅₀T and 1-hour incubation with the secondary antibody (prepared in blocking buffer)
347 at room temperature. After 3 washes with TBS₅₀T, the cells were mounted with Mowiol.

348 ***Metabolic labeling:***

349 ESCs and NSCs were incubated in methionine-free Dulbecco's Modified Essential Medium (Thermo#
350 21013024) for 30min followed by the addition of azidohomoalanine (AHA; 1 μ M #C10102, Thermo) in
351 the same medium. This was incubated for 30 minutes and fixed with 4%PFA for 10 minutes. Cells
352 were then permeabilized in PBS+0.3% Triton X-100 solution and blocked with buffer containing
353 PBS+0.1% Triton X-100 + 2%BSA + 4% FBS solution. Newly synthesized proteins were then labeled
354 with Alexa-Fluor-555–alkyne [Alexa Fluor 555 5-carboxamido-(propargyl), bis (triethylammonium salt)
355 (#A20013, ThermoFisher scientific], by allowing the fluorophore alkyne to react with AHA azide group
356 through click chemistry(CLICK-iT cell reaction buffer kit, #C10269). The cells were subjected to
357 immunostaining for α -tubulin (ESCs and NSCs) and MAP2 (neurons) to identify the cells. Mowiol® 4-
358 88 mounting media was used to mount the coverslips (#81381 Sigma).

359 ***Imaging:***

360 Mounted coverslips were imaged on an Olympus FV3000 confocal laser scanning inverted
361 microscope with a 20X objective. The pinhole was kept at 1 Airy Unit and the optical zoom at 2X to
362 satisfy Nyquist's sampling criteria in XY direction. The objective was moved in Z-direction with a step
363 size of 1 μ M (~8-10 Z-slices) to collect light from the planes above and below the focal plane. For
364 FUNCAT, the cells were identified using α -tubulin channel respectively. The image analysis was
365 performed using ImageJ software and the maximum intensity projection of the slices was used for
366 quantification of the mean fluorescent intensities. The region of interest (ROI) was drawn around the
367 cells using the α -tubulin channel. Data is represented as box plots indicating the quantification of the
368 FUNCAT fluorescent intensity normalized to α -tubulin fluorescent intensity. The box extends from the
369 25th to the 75th percentile. The middlemost line represents the median of the dataset and the
370 whiskers of the box plot range from minimum to maximum data points.

371 ***Linear sucrose density centrifugation:***

372 Polysome assay was done from WT and FMR1 KO ESC lysate as described previously³¹. In brief,
373 cell lysate was separated on a 15%–45% linear sucrose gradient in the presence of 0.1mg/ml
374 Cycloheximide (CHX) (#C7698-5G, Sigma) and Phosphatase inhibitor (#4906837001, Roche) by
375 centrifugation at 39,000 rpm in SW41 rotor for 90 min. The sample was fractionated into 12 1.0 mL
376 fractions with continuous UV absorbance measurement (A254). Fractions were pooled as
377 monosomes (F4 and F5) and polysomes (F6-12) according to ribosomal subunit distribution based
378 on the peaks. RNA was isolated from the pooled fractions and subjected to RiboMethSequencing and
379 RTL-P.

380 ***snoRNA quantification:***

381 CDNA of snoRNA was prepared using reverse primers specific to individual snoRNA candidates ¹¹.
382 CDNA was amplified using SYBR premix by qPCR. Arbitrary copy numbers were calculated from a
383 standard curve drawn from Ct values obtained from serial dilutions of cDNA for snoRNA candidate
384 HBII99. Copy numbers for various snoRNA candidates were obtained using the equation generated
385 from the standard curve.

386 ***Immunoprecipitation***

387 ESCs and NSCs were lysed in 1% NP40 containing lysis buffer (20 mM Tris-HCl pH 7.5, 150 mM
388 NaCl, 5mM MgCl₂ with protease and RNase inhibitors) and spun at 18000 rcf (12500 rpm) for 20
389 minutes at 4°C. Precleared supernatant was used for immunoprecipitation with Protein G Dynabeads.
390 5µg of anti-FMRP antibody was coupled to the Protein G Dynabeads. Lysates were incubated with
391 antibody-conjugated beads for 1h at RT following which RNA was isolated using Trizol.

392 ***Immunoblotting:***

393 The lysates from WT and FMR1 KO ESCs, NSCs, and neurons were characterized by western blot
394 for the expression of FMRP. Briefly, the denatured lysates were run on 10% resolving and 5% stacking
395 acrylamide gels and subjected to overnight transfer onto the PVDF membrane. The blots were
396 subjected to blocking for 1h at room temperature using 5% Blotto prepared in TBST (TBS with 0.1%
397 Tween-20). This was followed by primary antibody (prepared in blocking buffer) incubation at RT for
398 3 hours. HRP-tagged secondary antibodies were used for primary antibody detection. The secondary
399 antibodies (prepared in blocking buffer) were incubated with the blots for 1h at room temperature.
400 Three washes of TBST solution were given after primary and secondary antibody incubation. The
401 blots were subjected to chemiluminescent-based detection of the HRP-tagged proteins.

402 ***RiboMethSequencing and analysis:***

403 2µg of total RNA extracted from WT and FMR1 KO ESCs, NSCs, neurons, and ribosomal fractions
404 was used for library preparation. RNA was hydrolyzed with alkaline Tris buffer (pH 10) at 95°C for 5
405 minutes and ethanol precipitated. Isolated RNA was run on a 12% TBE PAGE gel and a band
406 corresponding to 30-50 bp was excised out. Sequencing libraries were prepared using the TruSeq
407 small RNA library preparation Kit from Illumina and were sequenced on the Hiseq2500 platform.
408 FastQC (v0.11.5) was used to assess the quality of the 50bp reads across all the samples. Adapter
409 sequences (TGGAATTCTCGGGTGCCAAGG) were trimmed using Cutadapt (v2.10). The trimmed
410 reads were aligned to the reference rRNA sequences (ENST00000606783–18S rRNA &
411 ENST00000607521–28S rRNA) using bowtie (v1.1.2) with default parameters in the end-to-end
412 mode. The alignment files were sorted and indexed using samtools (v1.7), which were then used for
413 counting the number of 5' and 3' read-ends that were mapped to each position on the reference rRNA
414 using bedtools (v2.25.0). The 5' counts were shifted up by one position and combined with the 3'
415 counts to ascertain the methylated positions in the reference sequence. Further, RiboMeth-Seq
416 scores³² were calculated for all the known methylated positions (64 from 28S rRNA and 42 from 18S
417 rRNA) using custom bash and awk scripts. Heatmaps of the score C from the various samples were
418 plotted in R using the package 'pheatmap'.

419 ***RTL-P (Reverse transcription at low-dNTP concentration followed by PCR)***

420 2 ng of sample RNA was used for cDNA preparation using reverse primers (10µM) specific to
421 methylation sites under high dNTP (10 mM) and low dNTP (1 nM) concentrations. For real-time PCR,
422 we adopted a method from (Dong et al., 2012)¹⁷. We have used two forward primers for a methylation
423 site; one up-stream (P1) and one down-stream (P2) from the methylation site, along with a common
424 reverse primer (P3). Amplification with these sets of primers would yield one product over the
425 methylation site which will be the longer product and another will be within the methylation site and
426 would yield a small-length product. The extent of methylation for a given site is calculated as a
427 methylation score as previously described in D'Souza et al 2019¹¹.

428 ***Puromycin labeling:***

429 ESCs and NSCs were incubated with 5 μ M Puromycin (Cat no: P8833-25MG, Sigma) for 10 minutes.
430 and were lysed in buffer (20 mm Tris-HCl, 100 mm KCl, 5 mm MgCl₂, 1% NP40, 1 mm DTT, 1 \times
431 protease inhibitor cocktail, and 1 \times phosphatase inhibitor). The protein levels were quantified from
432 precleared lysates using the BCA method (Cat no: 23227, ThermoFisher Scientific). 50 μ g of total
433 protein was loaded for all samples on a 10% SDS polyacrylamide gel. Immunoblots were stained with
434 ponceau to ensure the successful transfer of proteins. The blots were blocked in 5% BSA made in 1 \times
435 TBST. The blots were incubated in puromycin antibody (Cat no: MABE343, Sigma; 1:10000) for 3
436 hours at RT followed by anti-mouse HRP antibody (Cat. No: A9044, Sigma; 1:10000) for 1 hour at
437 room temperature. The same immunoblots were stripped of the puromycin antibody (62.5 mM Tris
438 Buffer (pH 6.8), 2% SDS, 0.7% Beta Mercaptoethanol). This was followed by incubation with GAPDH
439 (Cat no. 2118S, Cell Signaling Technologies; 1:5000) for 1 hour at room temperature and anti-rabbit
440 HRP antibody (Cat. No: A0545, Sigma; 1:10000) for 1 hour at room temperature. The puromycin
441 signal was normalized to the GAPDH levels.

442 ***Statistical analysis:***

443 All statistical analyses were performed using Graph Pad Prism software. The normality of the data
444 was tested using the Kolmogorov-Smirnov test. For experiments with less than 5 data points,
445 parametric statistical tests were applied. Data were represented as mean \pm SEM in all in-vitro and
446 polysome experiment graphs. FUNCAT data was represented as boxes and whiskers with all the
447 individual data points. Statistical significance was calculated using Unpaired Student's t-test (2 tailed
448 with equal variance) in cases where 2 groups were being compared. One-way ANOVA was used for
449 multiple group comparisons, followed by Tukey's multiple comparison tests, Bonferroni's multiple
450 comparison test, or Dunnett's multiple comparison test. Unpaired Student's t-test was used to
451 calculate statistical significance for all snoRNA qPCR assays and Puromycin incorporation assays.

452 ***Acknowledgments***

453 The work has been funded by the Core funds from CBR, IISc. R.S.M. acknowledges the SERB-DST
454 grant (Reference number: EMR/2016/006313). D.P. would like to acknowledge his DST
455 Swarnajayanti Fellowship (DST/SJF/LSA-02/2015-16). N.K.C.G acknowledges his National
456 Postdoctoral Fellowship from DST for the same (Reference number: PDF/2018/000663). N.H. would
457 like to acknowledge CSIR and DBT-InStem for funding. We would like to thank the Stem Cell Facilities
458 at InStem and CBR. We would also like to thank the Sequencing facility at InStem and the Imaging
459 facility at CBR. We would like to thank all Muddashetty laboratory members for their suggestions and
460 advice during this work.

461 ***Author Contributions***

462 Conceptualization - M.N.D., N.K.C.G., N.H, D.P and R.S.M.; Validation - M.N.D. and N.K.C.G.;
463 Biochemical assays- SWQ; Formal Analysis – N.H, M.N.D and N.K.C.G.; Resources – D.P and
464 R.S.M; Writing, Review & Editing, M.N.D., N.K.C.G., N.H , D.P, and R.S.M.; Funding-D.P and R.S.M.;
465 Supervision, R.S.M and D.P.

466 ***Data Availability***

467 Sequencing data have been deposited at NCBI Genbank under the following identifiers.

468 BioProject Accession: PRJNA1129659

469 Reviewer Link:

470 <https://dataview.ncbi.nlm.nih.gov/object/PRJNA1129659?reviewer=oe0h4lu4haoqqg16132a2dt6f2>

471 **References**

- 472 1. Tahmasebi, S., Amiri, M. & Sonenberg, N. Translational Control in Stem Cells. *Front. Genet.* **9**,
473 709 (2019).
- 474 2. Gabut, M., Bourdelais, F. & Durand, S. Ribosome and Translational Control in Stem Cells. *Cells*
475 **9**, 497 (2020).
- 476 3. Young, R. A. Control of the Embryonic Stem Cell State. *Cell* **144**, 940–954 (2011).
- 477 4. Marcel, V. *et al.* p53 Acts as a Safeguard of Translational Control by Regulating Fibrillarin and
478 rRNA Methylation in Cancer. *Cancer Cell* **24**, 318–330 (2013).
- 479 5. Henras, A. K., Plisson-Chastang, C., O'Donohue, M.-F., Chakraborty, A. & Gleizes, P.-E. An
480 overview of pre-ribosomal RNA processing in eukaryotes: Pre-ribosomal RNA processing in
481 eukaryotes. *Wiley Interdiscip. Rev. RNA* **6**, 225–242 (2015).
- 482 6. Polikanov, Y. S., Melnikov, S. V., Söll, D. & Steitz, T. A. Structural insights into the role of rRNA
483 modifications in protein synthesis and ribosome assembly. *Nat. Struct. Mol. Biol.* **22**, 342–344
484 (2015).
- 485 7. Genuth, N. R. & Barna, M. The Discovery of Ribosome Heterogeneity and Its Implications for
486 Gene Regulation and Organismal Life. *Mol. Cell* **71**, 364–374 (2018).
- 487 8. Norris, K., Hopes, T. & Aspden, J. L. Ribosome heterogeneity and specialization in
488 development. *WIREs RNA* **12**, e1644 (2021).
- 489 9. Li, D. & Wang, J. Ribosome heterogeneity in stem cells and development. *J. Cell Biol.* **219**,
490 e202001108 (2020).
- 491 10. Simsek, D. *et al.* The Mammalian Ribo-interactome Reveals Ribosome Functional Diversity and
492 Heterogeneity. *Cell* **169**, 1051-1065.e18 (2017).
- 493 11. D'Souza, M. N. *et al.* FMRP Interacts with C/D Box snoRNA in the Nucleus and Regulates
494 Ribosomal RNA Methylation. *iScience* **12**, 368 (2019).
- 495 12. Till, S. M. The developmental roles of FMRP. *Biochem. Soc. Trans.* **38**, 507–510 (2010).

496 13. Richter, J. D. & Zhao, X. The molecular biology of FMRP: new insights into fragile X syndrome.
497 *Nat. Rev. Neurosci.* **22**, 209–222 (2021).

498 14. Wang, X. *et al.* Temporal-specific roles of Fragile X mental retardation protein in the
499 development of hindbrain auditory circuit. *Development* dev.188797 (2020)
500 doi:10.1242/dev.188797.

501 15. Feng, Y. *et al.* FMRP Associates with Polyribosomes as an mRNP, and the I304N Mutation of
502 Severe Fragile X Syndrome Abolishes This Association. *Mol. Cell* **1**, 109–118 (1997).

503 16. Krogh, N. *et al.* Profiling of 2'- O -Me in human rRNA reveals a subset of fractionally modified
504 positions and provides evidence for ribosome heterogeneity. *Nucleic Acids Res.* **44**, 7884–7895
505 (2016).

506 17. Dong, Z.-W. *et al.* RTL-P: a sensitive approach for detecting sites of 2'-O-methylation in RNA
507 molecules. *Nucleic Acids Res.* **40**, e157–e157 (2012).

508 18. Giri, S., Purushottam, M., Viswanath, B. & Muddashetty, R. S. Generation of a FMR1
509 homozygous knockout human embryonic stem cell line (WAe009-A-16) by CRISPR/Cas9
510 editing. *Stem Cell Res.* **39**, 101494 (2019).

511 19. Shi, Y., Kirwan, P. & Livesey, F. J. Directed differentiation of human pluripotent stem cells to
512 cerebral cortex neurons and neural networks. *Nat. Protoc.* **7**, 1836–1846 (2012).

513 20. Tom Dieck, S. *et al.* Direct visualization of newly synthesized target proteins in situ. *Nat.*
514 *Methods* **12**, 411–414 (2015).

515 21. Rajgor, D., Welle, T. M. & Smith, K. R. The Coordination of Local Translation, Membranous
516 Organelle Trafficking, and Synaptic Plasticity in Neurons. *Front. Cell Dev. Biol.* **9**, 711446
517 (2021).

518 22. Rangaraju, V., tom Dieck, S. & Schuman, E. M. Local translation in neuronal compartments:
519 how local is local? *EMBO Rep.* **18**, 693–711 (2017).

520 23. Fernandez-Moya, S. M., Bauer, K. E. & Kiebler, M. A. Meet the players: local translation at the
521 synapse. *Front. Mol. Neurosci.* **7**, (2014).

522 24. Fafard-Couture, É., Bergeron, D., Couture, S., Abou-Elela, S. & Scott, M. S. Annotation of
523 snoRNA abundance across human tissues reveals complex snoRNA-host gene relationships.
524 *Genome Biol.* **22**, 172 (2021).

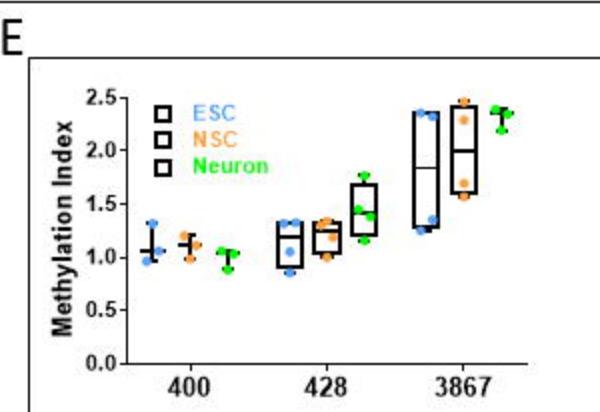
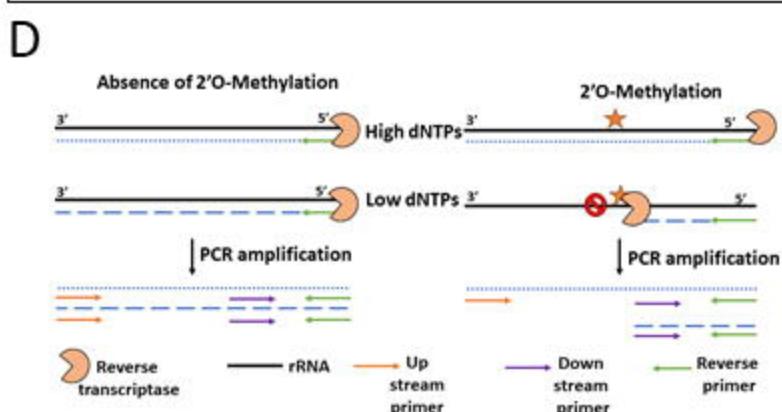
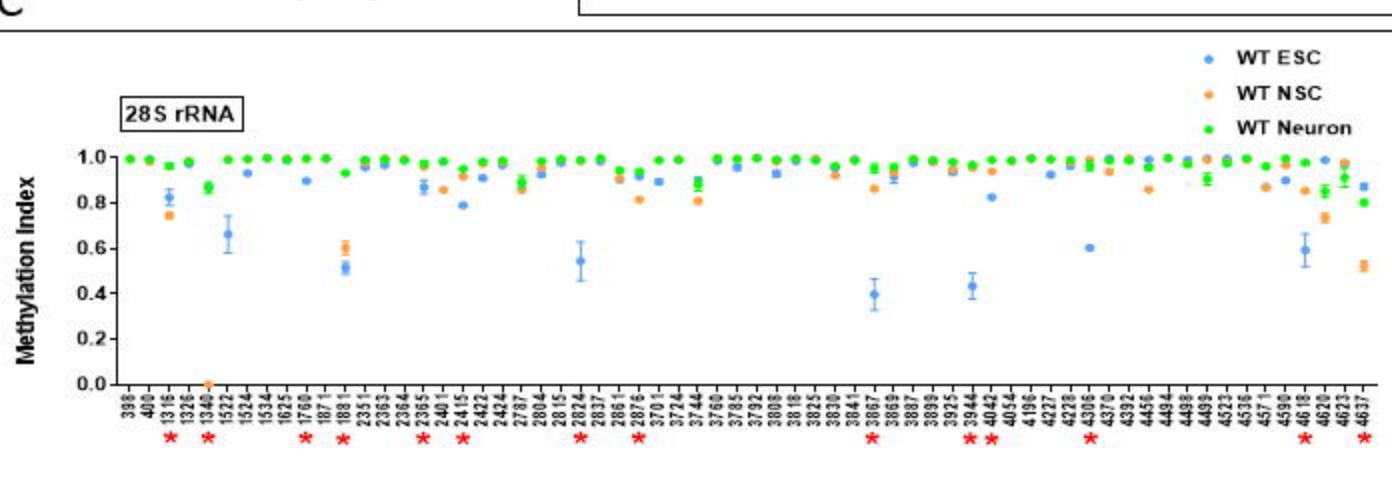
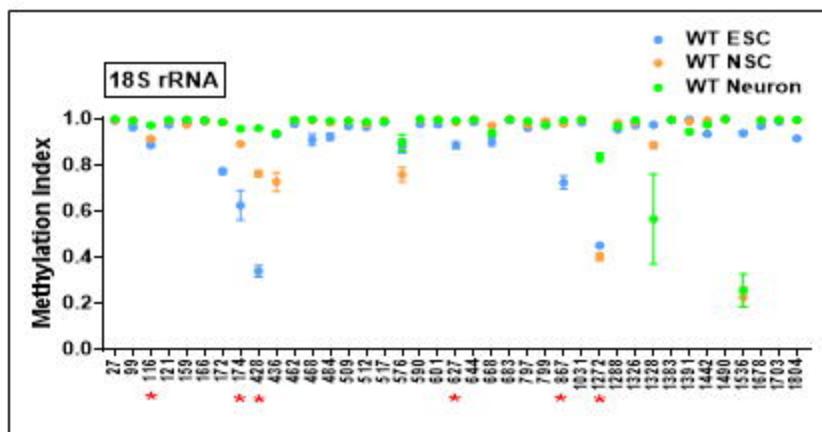
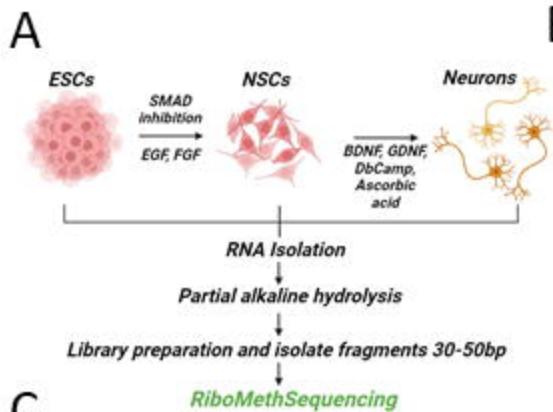
525 25. Dannfald, A., Favory, J.-J. & Deragon, J.-M. Variations in transfer and ribosomal RNA
526 epitranscriptomic status can adapt eukaryote translation to changing physiological and
527 environmental conditions. *RNA Biol.* **18**, 4–18 (2021).

528 26. Wanowska, E., McFeely, A. & Sztuba-Solinska, J. The Role of Epitranscriptomic Modifications
529 in the Regulation of RNA–Protein Interactions. *BioChem* **2**, 241–259 (2022).

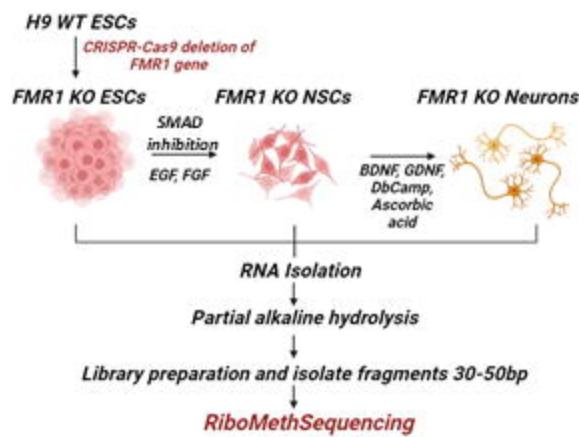
530 27. Darnell, J. C. & Klann, E. The translation of translational control by FMRP: therapeutic targets
531 for FXS. *Nat. Neurosci.* **16**, 1530–1536 (2013).

532 28. Darnell, J. C. *et al.* FMRP Stalls Ribosomal Translocation on mRNAs Linked to Synaptic
533 Function and Autism. *Cell* **146**, 247–261 (2011).

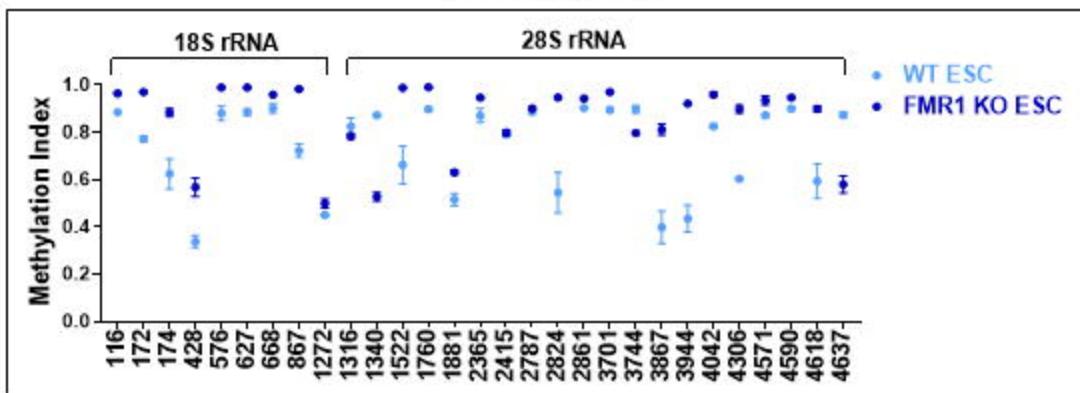
534 29. Sharma, S., Marchand, V., Motorin, Y. & Lafontaine, D. L. J. Identification of sites of 2'-O-
535 methylation vulnerability in human ribosomal RNAs by systematic mapping. *Sci. Rep.* **7**, 11490
536 (2017).

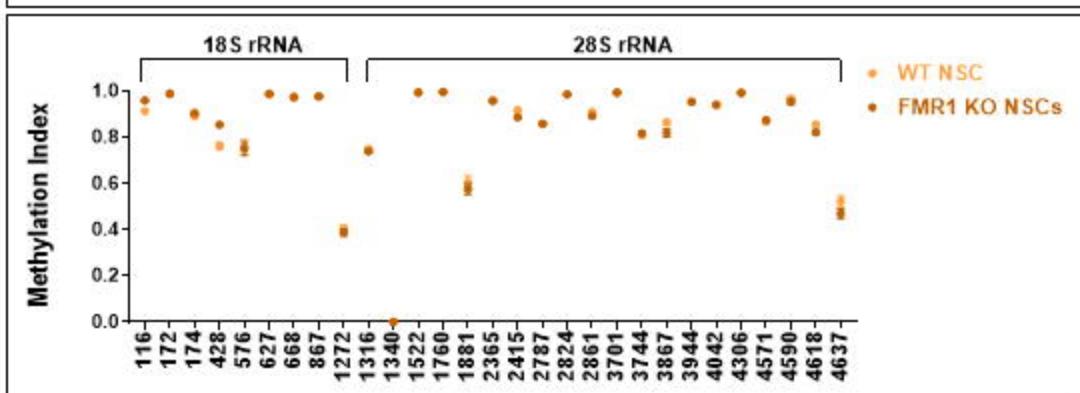





537 30. Motorin, Y., Quinternet, M., Rhalloussi, W. & Marchand, V. Constitutive and variable 2'-O-
538 methylation (Nm) in human ribosomal RNA. *RNA Biol.* **18**, 88–97 (2021).

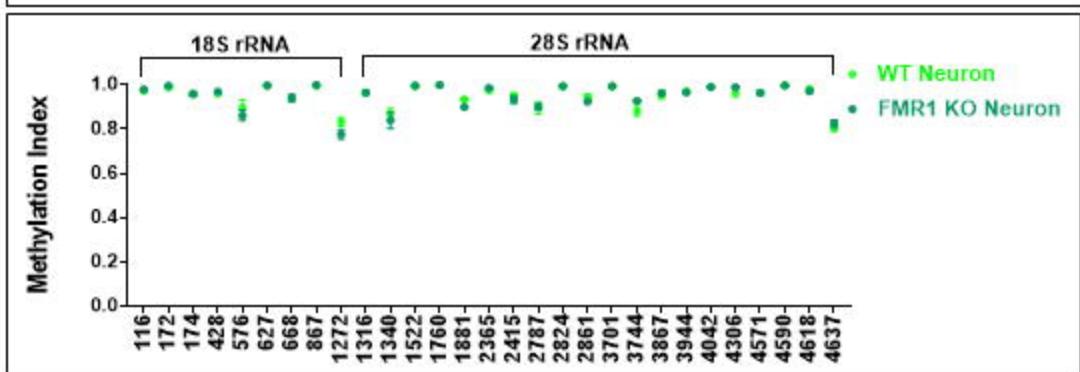
539 31. Kute, P. M., Ramakrishna, S., Neelagandan, N., Chattarji, S. & Muddashetty, Ravi. S. NMDAR
540 mediated translation at the synapse is regulated by MOV10 and FMRP. *Mol. Brain* **12**, 65
541 (2019).

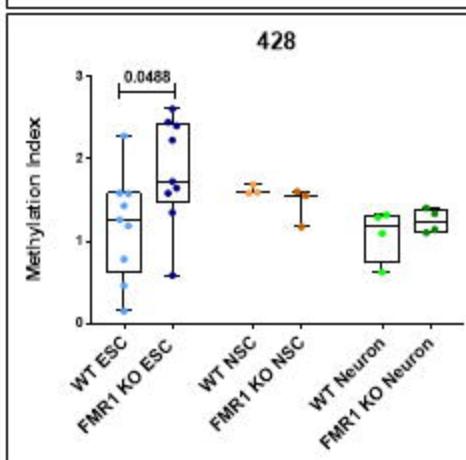

542 32. Birkedal, U. *et al.* Profiling of Ribose Methylation in RNA by High-Throughput Sequencing.
543 *Angew. Chem. Int. Ed.* **54**, 451–455 (2015).

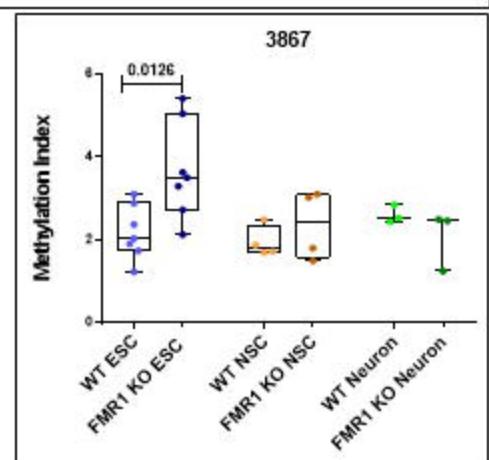
544

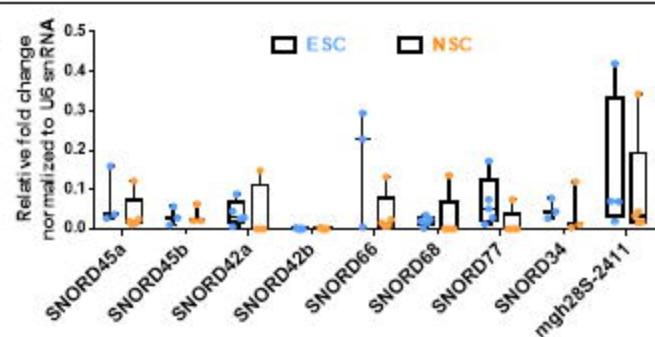

545

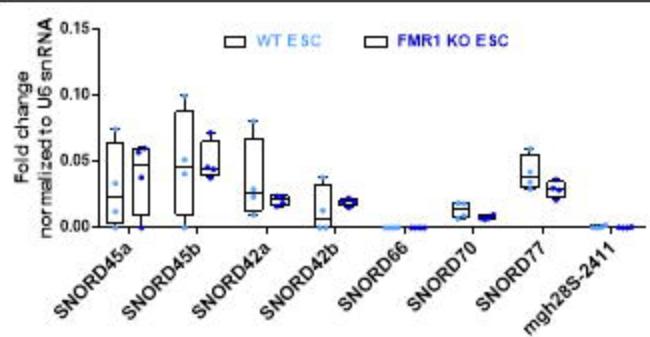

A

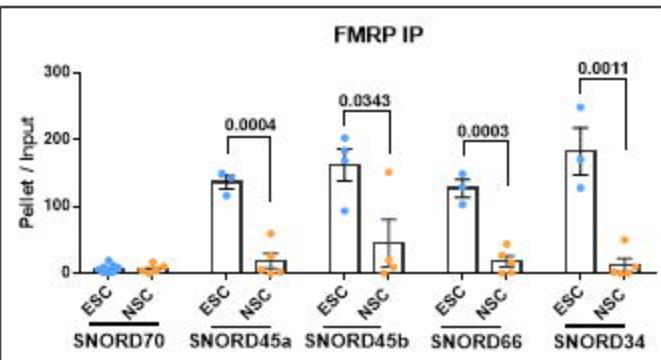

B

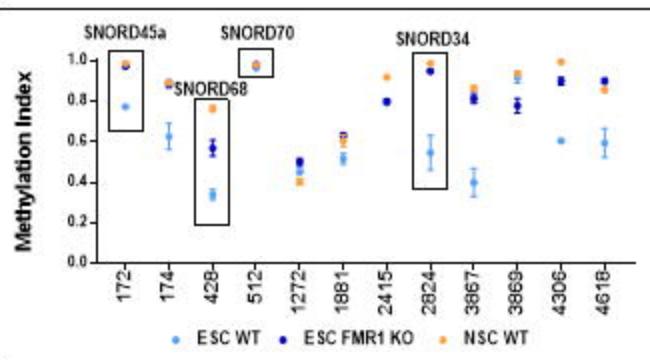

C

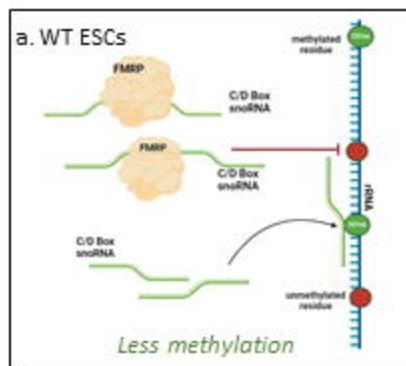

D


E

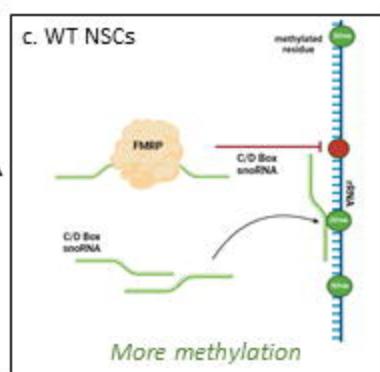
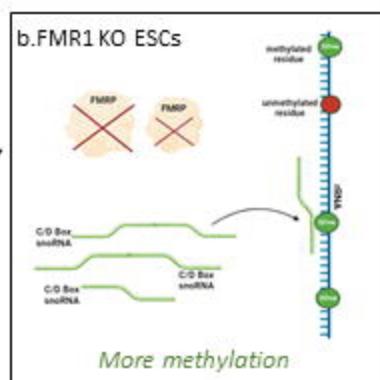

F


A

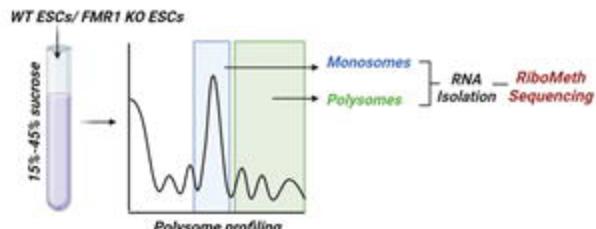

B


C

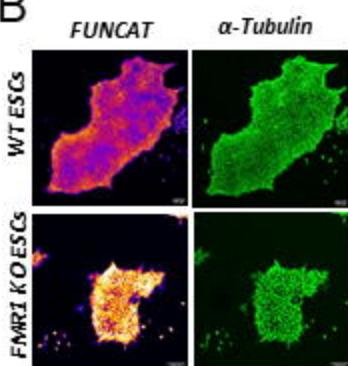
D

E

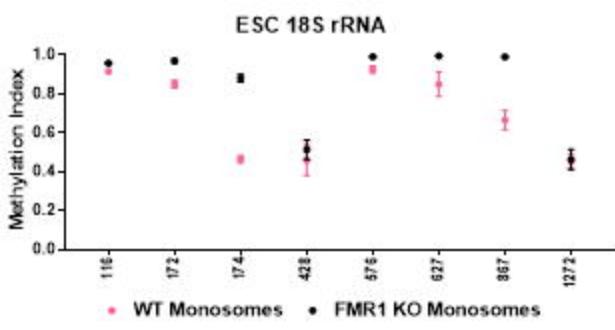

FMR1 KO

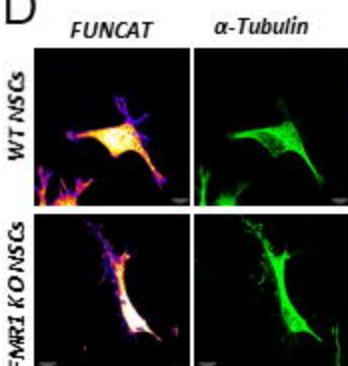
Differentiation

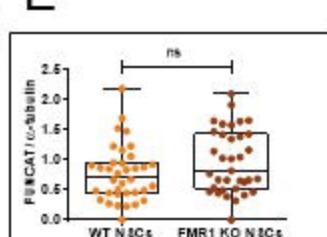


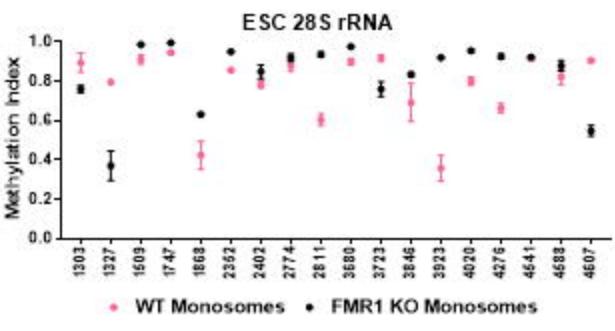
A

WT ESCs	Met free DMEM	AHA	Click reaction and fixation
FMR1 KO ESCs			
WT NSCs	30min	30min	Imaging
FMR1 KO NSCs			

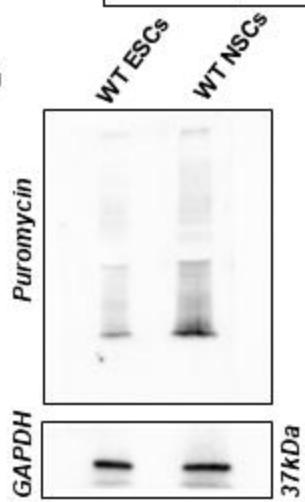

B

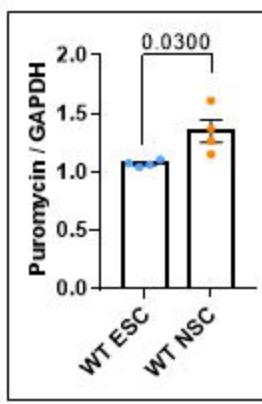

C


J

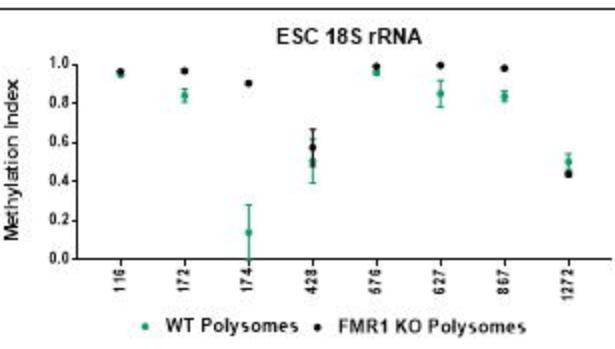

D

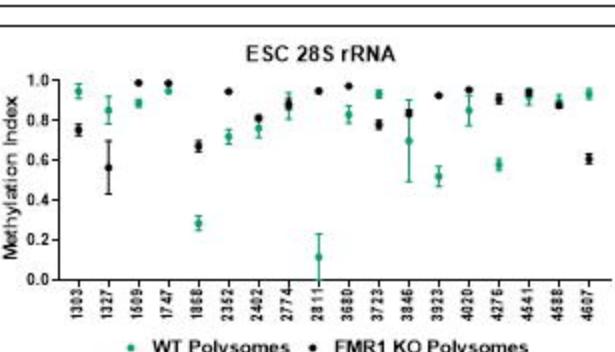
E

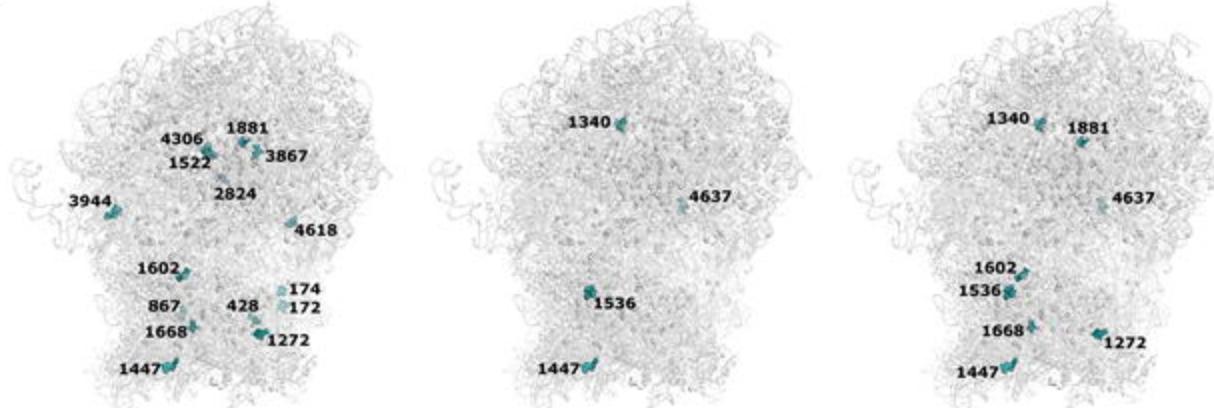

K

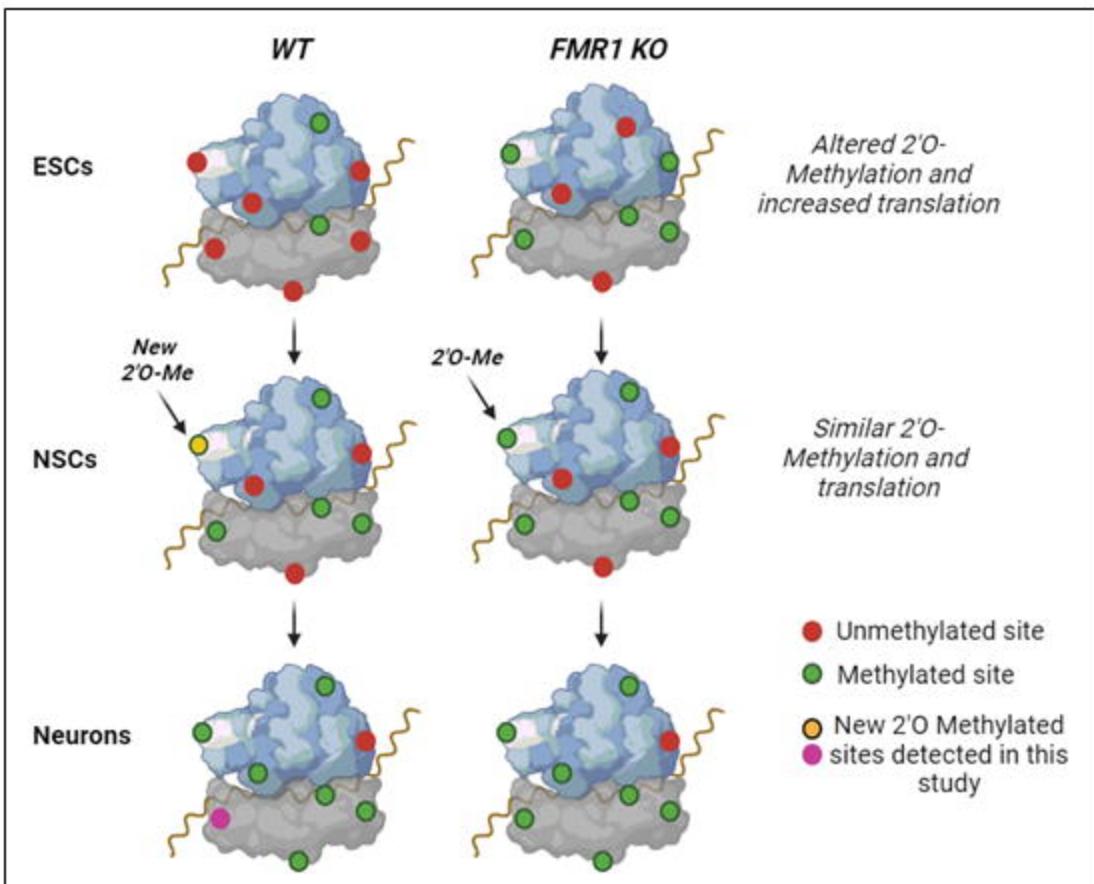

F

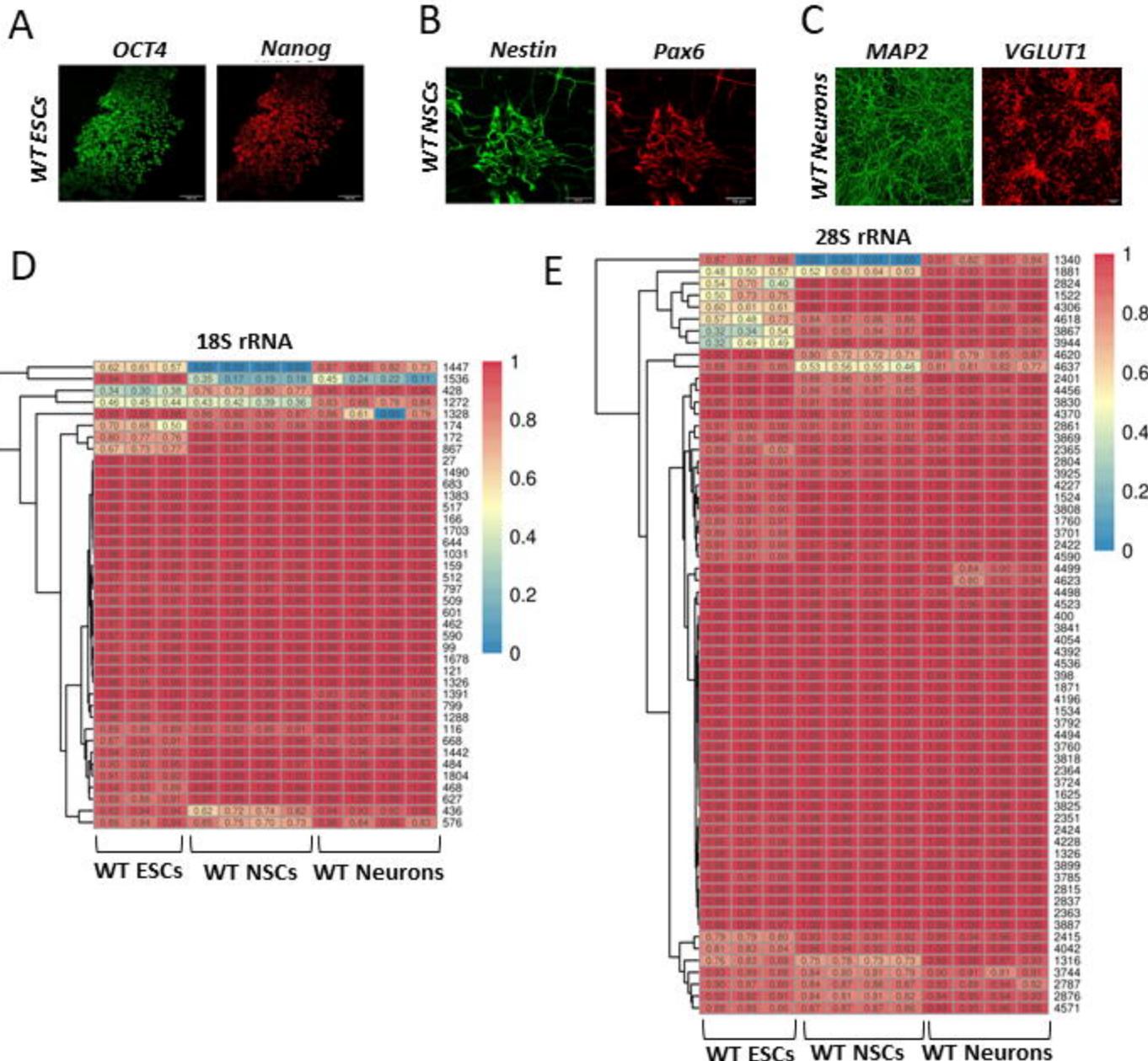
WT ESCs	Puromycin 5 μ M	Lyse cells
WT NSCs	10min	Immunoblot

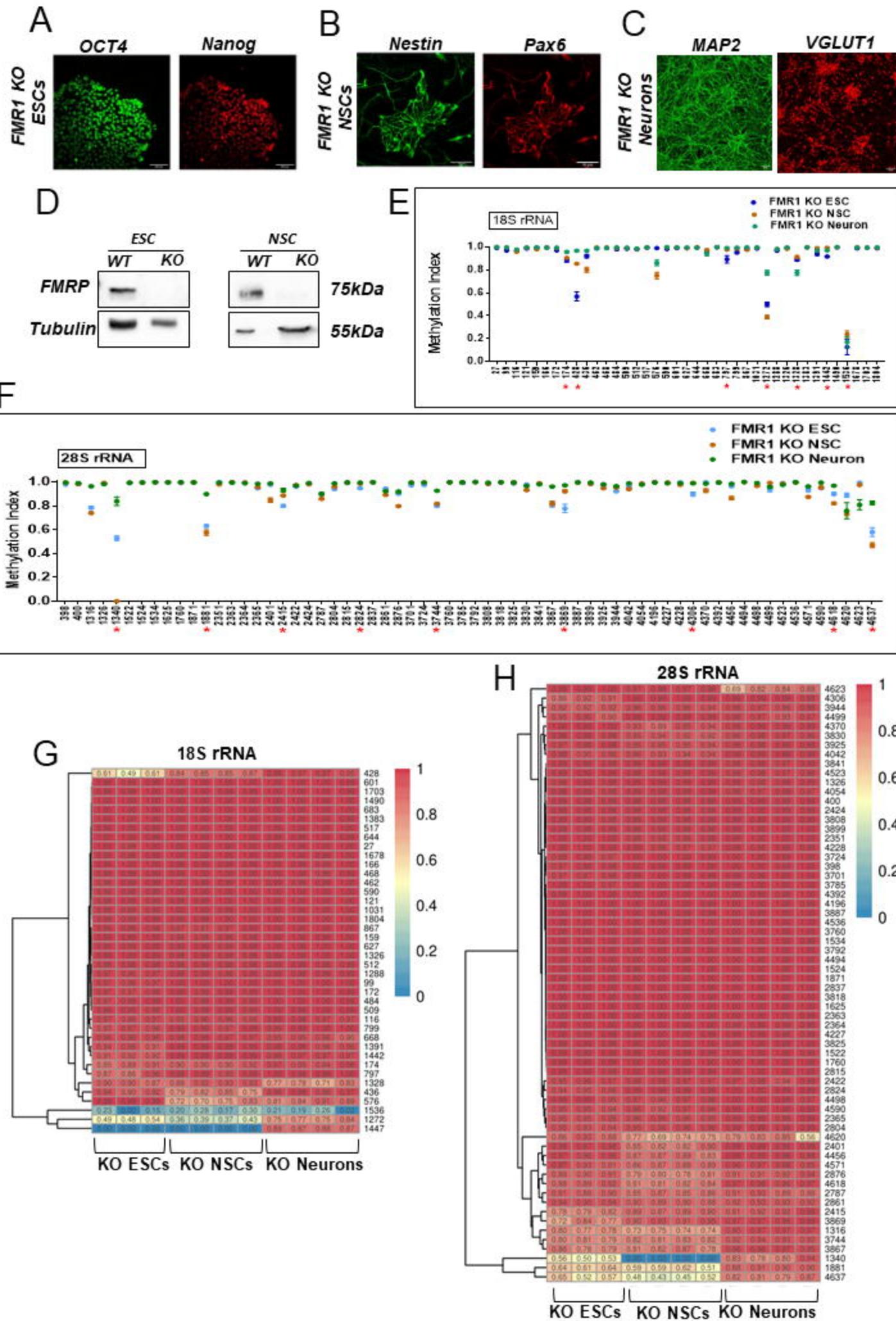

G

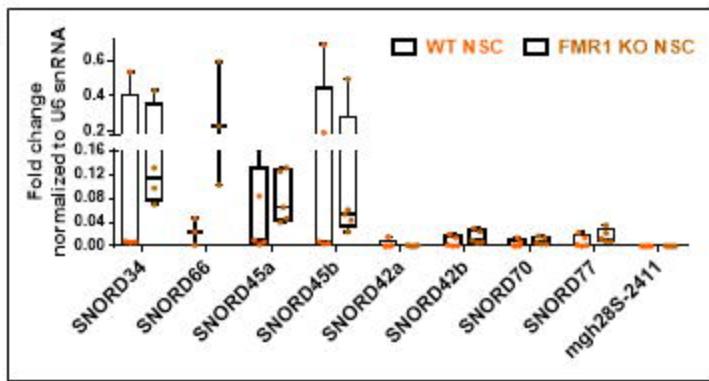

H

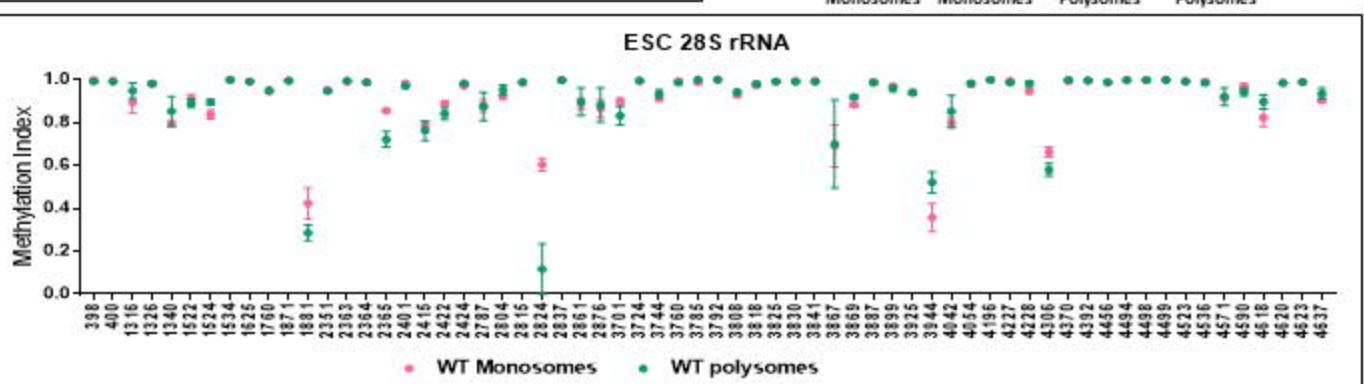
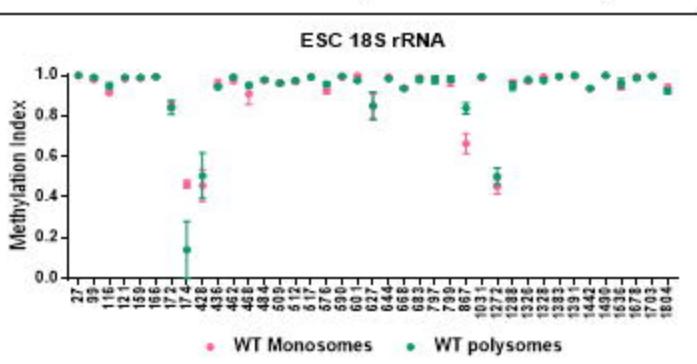
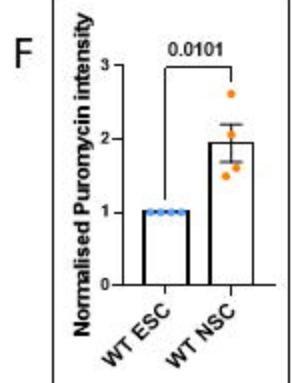
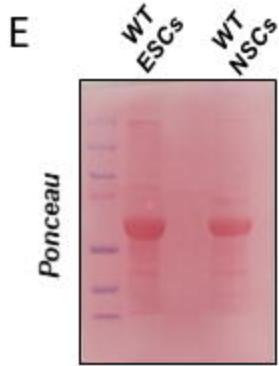
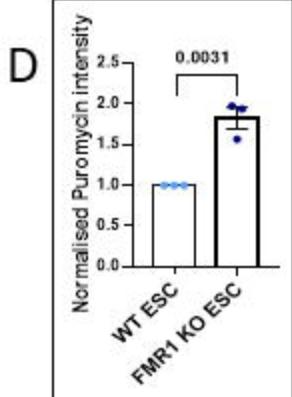
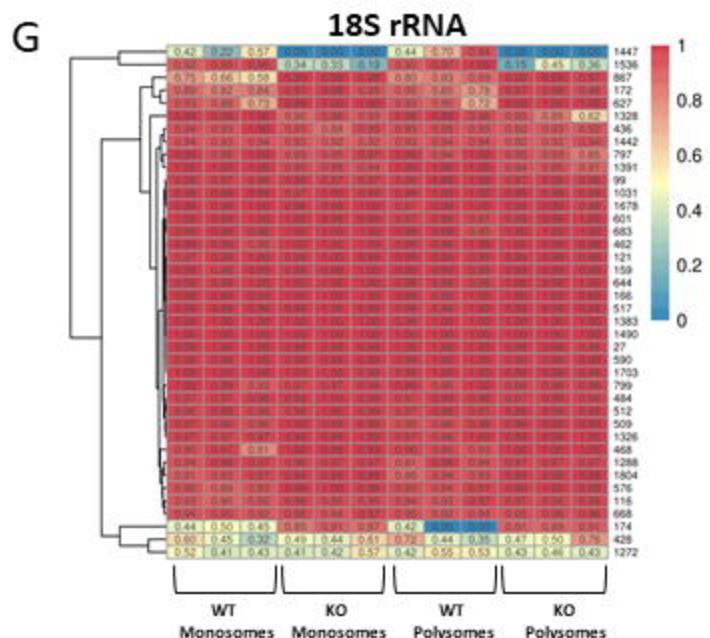
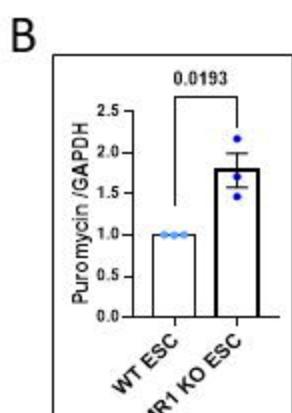
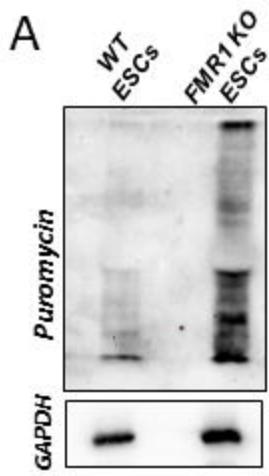

L


M




A *WT ESC* *FMR1 KO ESC* *WT NSC*


B

A

