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Abstract

Uterine Natural Killer (uNK) cells, predominant leukocytes in mouse and human pregnant uteruses, play crucial
roles in angiogenesis and pregnancy protection. In mice, DBA lectin-reactive uNK cells expressing Gal-N-Ac

sugar exhibit angiogenic functions essential for pregnancy maintenance. This study compares the impact of
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different nutritional imbalances on mouse pregnancy and the activation of angiogenic DBA+ uNK cells to
safeguard against pregnancy complications. High Fat (HF), High Carbohydrate (HC), High Protein (HP), and
Food Restriction (FR) diets were administered from gestation day (GD) 1 to GD10 or until parturition. HF and
HC diets led to reduced expression of DBA-identified N-acetyl-D-galactosamine, akin to LPS-induced
inflammation, and decreased uNK perforin levels. Additionally, HF and HC diets resulted in elevated
endometrial cleaved caspase-3 and decreased smooth muscle alpha-actin, causing blood vessel wall thinning
without jeopardizing pregnancy term. FR impaired uNK differentiation, manifesting as an "all-or-none"
phenomenon with 50% pregnancy failure. Our findings highlight the intricate relationship between nutritional
imbalances and mouse pregnancy outcomes. Notably, high-fat diets elicited pronounced responses from DBA+
UNK cells, while high-protein diets had relatively weaker effects. This study underscores the importance of
comprehending uNK cell dynamics in maintaining pregnancy homeostasis under diverse dietary conditions,
paving the way for elucidating molecular mechanisms governing these interactions. By shedding light on these
complex relationships, this research offers valuable insights for improving maternal and fetal health in the
context of nutritional interventions during pregnancy.

Key words:

Introduction

Changes in nutritional patterns are known to influence metabolism, with overnutrition
increasing energy expenditure and undernutrition reducing it [1, 2]. Despite being opposite conditions,
both can have detrimental effects on reproductive capacity [3, 4].

Maternal undernutrition presents a significant risks of pregnancy complications and poor fetal
development.[5, 6]. As with undernutrition, overnutrition negatively affect fertility [7]. Obesity-
related pregnancy complications increase the risk of preterm birth, miscarriage, gestational diabetes,
and hypertensive disorders and fetal programming alterations, leading to long-term health issues in
offspring [8-10].

Normal pregnancy is characterized as an immunosuppressive state, with a high number of
uterine Natural Killer (uUNK) cells producing of Interferon-gamma (IFN-vy), essential for pregnancy-
induced spiral artery remodeling and placental development [11]. In pregnant mice, uNK cells rapidly
increase in number and size and acquire granules until gestational day (GD) 10, forming the transient

endometrial structure known as the mesometrial lymphoid aggregate of pregnancy (MLAp) [12].
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Subsequently, uNK cell numbers gradually decline until term, accompanied by nuclear fragmentation
[13, 14]. During mid-pregnancy, the majority of mouse uNK cells express a surface N-acetyl-D-
galactosamine (GalNac) sugar, selectively marked by Dolichos biflorus agglutinin (DBA) lectin
histochemistry, allowing the characterization of four maturation-related subtypes of DBA*uUNK cells
[15].

DBA*uNK cells predominantly express transcripts for angiogenic factors [16] and, although
poorly cytotoxic these cells containing granules encasing perforin and granzymes [17, 18]. About 95%
of the DBAUNK cells can be found in the uterus, precisely within the area of pregnancy-associated
neovascularization [19, 20].

This study aimed to prospectively investigate the impact of potential stressful and/or immune-
inflammatory unbalanced diets on a mouse pregnancy experimental model, focusing primarily on the
angiogenic DBA'UNK cell analyses. We hypothesized these nutritional alterations could impact these

cells found in mouse and human uterus during pregnancy.

Materials and methods

Animals

Female SWISS Webster mice (8-10 weeks old) were mated with SWISS males, and the presence of a
copulation plug was considered as GD1. The mice were housed in the Central Animal Facility of the
Federal University of Alfenas (Unifal-MG, Brazil) under controlled conditions of light (12:12h light-
dark cycle) and temperature (23+10C), with ad libitum access to food and water, except those
subjected to food restriction (FR). A total of 90 mice were included in the analysis, and all animal
procedures were following the U.K. Animals (Scientific Procedures) and approved by the local ethics

committee (Protocol number: 448/2012).

Diets

The diets were developed by the In vivo and in vitro Nutritional and Toxicological Analysis
Laboratory (Lantin) at UNIFAL-MG. At the GD1, pregnant females were assigned to one of the
following groups: Control (CD), High Protein (HP), High Fat (HF), High Carbohydrate (HC), or a
Food Restriction (FR) diet, where animals received 4g of feed/day (Figure 1). The detailed feed

composition of the diets is presented in supplementary data (Supplementary figure 1). From GD1 to
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GD10, all females were weighed, and the food intake was monitored.

Protein (%) Fat (%) Ash (%) Moisture (%) Carbohydrate Food

Diet 123 123 123 123 (%) 24 availability

cD 1530+0.05 7.09+ 215+ 7.25+0.05 67.21 Ad libitum
i 0.06° 0.08°2 .

HP 3126 +0.17 7.07 + 218 + 7.15+0.06 52.34 Ad libitum
= 0.05° 0.09°2 o

HF 16.55+0.03 3251+ 219 + 7.16 +0.06 41.59 Ad libitum
. 0.03° 0.04° G

HC 1050+ 0.05 245+ 2.14 + 7.19+0.03 11.12 Ad libitum
g 0.03° 0.09° 2

FR 1530+0.05 7.09+ 215+ 7.25+0.05 67.21 4g/day
& 0.06° 0.08 @ °

Figure 1. Centesimal composition of the experimental diets. 1. Values correspond to means (+ SD) of three
determinations; 2. Values expressed in dry basis; 3. Values not sharing similar letter in the same column are
different (p < 0.05) in Tukey test; 4. Calculated by difference = 100 — (protein + total fat + ash + moisture).
Control Diet (CD). High Proteic Diet (FR). High Fat Diet (HF). High carbohydrate diet (HC) and Food restriction
diet (FR).

Pregnancy viability and litter analysis

On GD10, sixty-five females were anesthetized with 2% inhaled Isoflurane (BoChimico, Itatiaia, RJ,
Brazil) and perfused with 4% paraformaldehyde (Sigma-Aldrich, St. Louis, MO, USA) in PBS
(50mM). The developing implantation sites and/or reabsorbed implantation sites were
macroscopically analyzed to assess pregnancy viability (CD: n=10 mice; HP: n=10; HF: n= 10; HC:
n=14 and FR: n=21). Five randomly selected pregnant females from each group had their implantation
sites dissected and subjected to Hematoxylin and Eosin (H&E) staining, DBA Lectin, a-actin, perforin
and cleaved caspase-3 labeling. Histological sections stained with H&E were analyzed under light
microscopy to verify the incidence of implantation sites under resorption and possible dietary-induced

morphological alteration. Litter size and pup weight analyses were performed on 25 animals fed the
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102  diets until full term pregnancy (5 animals/group).

103

104  DBA lectin histochemistry

105 Histological sections from five mice per group were deparaffinized, hydrated, and subjected to DBA
106 lectin histochemistry as described by Paffaro et al., 2003. The sections were then examined under light
107  microscopy (Nikon Eclipse 80i, Tokyo, Japan).

108

109  Stereological and Morphometric Study

110  Three histological mid-sagittal sections (7um) labbeled with DBA lectin from three implantation sites
111 of five animals from each experimental group were used for stereological analysis. The density profiles
112 (QA) of the four morphological subtypes of DBA"UNK cells were determined based on cells size,
113  chromatin condensation, and N-acetyl-galactosamine expression on their cell surface and in granules.
114  The diameters of the four uNK cells subtypes were measured (50 cells/subtype/group) and counted by
115  two experienced observers in three regions of the implantation site on GD10 (Figure 4). In these
116  regions, three test areas (TA) of 4.104um2 were used to quantify the subtypes, with TA defined as a
117  quadratic test system with two exclusion lines, including only cells with visible nucleus.

118  Arteriole wall and DB+MLAp morphometry was assessed in implantation sites (n= 5 animals/group)
119  under light microscopy (Nikon Eclipse 80i, Tokyo, Japan) using image analysis software (NIS-
120  Elements/Nikon/Japan). The ratio of the Total Area to Luminal Area was determined from 300
121 arterioles (75 arterioles/group). The total area of DB+MLAp was also measured in the same
122 histological slides.

123

124 Perforin, a-actin and cleaved caspase-3 immunohistochemistry

125  Histological sections from implantation sites (n=5 animals/group) were deparaffinized, hydrated, and
126  subjected to immunohistochemistry. For Perforin and a-actin analyses, sections were submitted to 1%
127  hydrogen peroxide (Sigma-Aldrich, St. Louis, MO, USA) for 30 min. After washing with 50mM PBS,

128  sections were incubated with 1% bovine serum albumin (BSA) (Sigma, St Louis, MO, USA) in PBS
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129  for 30 min, followed by overnight incubation at 4°C with rabbit-primary antibodies anti-mouse
130  Perforin (1:50) (PA5-17431, Thermo Scientific. USA) or anti-mouse a-actin (1:100) (A2103, Sigma-
131  Aldrich. MO.USA) over-night at 4°C. Sections were subsequently incubated with biotinylated anti-
132 rabbit secondary antibody (1:500) (B8895 Sigma-Aldrich. MO.USA) for 60 min at room temperature.
133  Subsequently, sections were washed in PBS and incubated with RTU Horseradish Peroxidase
134  Streptavidin (SA-5704, Vector Laboratories, Burlingame, CA) for 1 hour at room temperature and
135  3,3-diaminobenzidine (Sigma, St. Louis, MO, USA) in 50mM TBS containing 0.1% hydrogen
136  peroxide. Sections were counterstained with Harris’s hematoxylin, mounted with Entellan (Merck,
137  Darmstadt, Germany) and observed under light microscopy (Nikon Eclipse 80i, Tokyo, Japan). For
138  cleaved caspase-3 immunostaining, the deparaffinized and hydrated sections were washed with 0.5M
139  PBS, pH 7.4, followed by blocking of unspecific binding sites with 1% PBS/BSA (Bovine serum
140  albumin- SIGMA) for 30 min. Sections were then incubated with anti-cleaved caspase-3 antibody
141 (1:50, MI0035, Rhea Biotech, BRA) overnight at 4°C. Subsequently, sections were incubated for
142 120min with anti-rabbit FITC secondary antibody (1:250, FO0382, Sigma-Aldrich. MO.USA) and 4°,6-
143  diamidino-2-phenylindole (DAPI, 1:1000, D9542, Sigma-Aldrich. MO.USA) for 5 min.

144

145  Staining quantification by Pixel density

146  From histological sections submitted to DBA lectin histochemistry, anti-Perforin, anti-a-actin and
147  anti-cleaved caspase-3 investigation, at least five images/captured at 100x magnification were
148  analyzed for pixel density using GNU Image Manipulation Program (GIMP 2.8.10 software) as
149  previously described. During pixel density analyses, careful examination was done to avoid technical
150 artifacts, such as over-development and precipitation in all sections.

151

152  Statistical analysis

153  After analyzing the data for column homoscedasticity, we performed a one-way ANOVA test,
154  followed by post-test analysis. Weight differences were analyzed by Student's t test. Statistical

155  significance was set atp<0.05.
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Results

Food Intake and weight analyses

The HC-diet mice exhibited increased food intake compared to CD-diet mice on GD2 (p<0.001). However, no
difference in food intake was observed between the groups on GD3 (p>0.05). The FR group received 4g of the
control diet daily, and the total consumption of the 4g feed by all mice from this group was observed every
morning (Figure 2A).

Evaluation of weight gain from GD1 to GD10 showed that mice fed the HF diet exhibited a significant weight
gain (7.31g, p<0.001) compared to control diet (Figure 2B). HF diet-fed mice also exhibited a greater amount of
visceral adipose tissue (VAT) (Figure 2C, Figure 2D) while FR diet-fed mice exhibited less VAT (Figure 2E)
and weight loss (-4.25g, p<0,0001). However, no differences in weight gain were found in mice fed the HP

(5.82g) and HC (2.62g) diets (p>0.05) compared to the control (4.51g).
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Figure 2. Food intake analyses (A). High carbohydrate diet [ A ] High Protein diet [®]. High HF diet [A], Calorie
diet [o] and Food Restriction [¢]. Blood weight gain analyses (B). Control Diet (CD). High protein diet (HP).
High Fat diet (HF). High Carbohydrate diet (HC). Food restriction diet (FR). p<0.05 (**,***) Macroscopic
images of perigonadal adipose tissue (arrow heads) from CD-fed mice (C), HF-fed mice (D) and FR-fed mice (E).

Implantation Site Analysis
The IS from all animals analyzed were macroscopically evaluated and counted when pregnancy was confirmed

during laparotomy on GD10. There were no differences (p>0.05) among pregnant mice fed on HP (13.27
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IS/mouse), HF (13.92

o

IS/mouse), HC (14.54

Number of IS
mice number
o

Pregnant and non-pregnant
MLAp+DB area (mmz)

IS/mouse) and FR (14.30

A BOFJPFNPPNPPNPFNP C
L | NN Ry N | .
= IS/mouse) compared with

CD-diet  mice  (14.15
IS/mouse) (Figure 3A).
However, four animals from
HC group and 11 animals
from FR group did not
exhibit IS after laparotomy
and so they were considered
not pregnant (Figure 3B),
while animals from CD, HP
and HF groups exhibited
100% pregnancy rates.

Macroscopic analyses of

mice that were fed on CD,

RO

HP, HF, HC and FR diets

showed uterine horns

“,ﬂ ey, it
g

containing IS with regular

w5 o/ o
Figure 3. Study of gestational viability on the 10th day of gestation showing number
of implantation sites (A), pregnancy rate (B), Mesometrial lymphoid aggregate of
pregnancy (MLAp) plus Decidua Basalis (DB) area (C). p<0.05 (***). Macroscopic
images show examples of implantations sites from CD (D), HP (E), and HF-fed mice
(F). Photomicrographs of histological sections from CD (G), HP (H) and HF-fed
mice (I). Macroscopic images show examples of implantation sites from HC (J and
K), Food restriction mice (L-M). Photomicrographs of histological sections from HC
(N and O), Food restriction (P and Q). Note examples of non-pregnant uterus only
from HC (K and O) and from FR mouse (M and Q). In P, note the resorption aspect
of the embryo implantation site. Ovaries (Arrow). Implantation sites (arrowhead).
Luminal epithelium (LE), Endometrium (EN). Myometrium (Mi). HP, HF, and HC-diet fed

morphology and without

_——

resorption or hemorrhagic
sites (Figures 3D, 3E, 3F, 3],
3L). Microscopic analyses
showed regular IS

histoarchitecture from CD,
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198  mice. Inthose IS, it was possible to identify the large MLAp and Decidua Basalis (Figure 3G, 3H, 31, 3N). About
199 2 1S/mice resembling resorptions were observed in histological sections of pregnant FR diet-fed mice. In these
200 animals, a disorganized uterine histoarchitecture, a large lumen, and hemorrhagic sites containing cells with
201  pyknotic nuclei were identified (Figure 3P). Microscopic evaluation of non-pregnant HC and FR diet-fed mice
202  uterus showed the regular virgin uterine morphology (Figure 30, 3Q) consistent with macroscopic analyses
203  (Figure 3K, 3M).

204

205  DBA lectin histochemical analysis

quantification
=

my

7

/

Relative pixel NacGal

n>
E—1
P—1
%

u

Figure 4. Photomicrographs of implantation sites (IS) from pregnant mouse uterus on GD10. Note the regions that were
used to uNK cells quantification (R1, R2 and R3) in the panoramic pictures from these IS (A-E). Decidua Basalis (DB).
Mesometrial lymphoid aggregate of pregnancy (MLAp). Observe the strong DBA reaction in the mice fed with CD (A),
HP (B) and FR (E) diets compare to the weak DBA reaction observed in mouse fed HF (C) and HC (D) diets. Detail of
the DBA lectin reaction pattern found in IS from CD fed mouse (F). Note subtype 1 (S1), Subtype 2 (S2), Subtype 3,
(S3) and Subtype 4 (S4) uNK cells. Insert in F shows the same S3 uNK cell as a large and high granulated cell exhibiting
predominantly euchromatin in the nucleus and nucleoli. Detail of the DBA lectin reaction pattern found in IS from HF
fed mouse (G). Note the weak reaction in several uNK cells (DBA"Y). Insert in G shows DBA™ uNK cell subtype
exhibiting irregular DBA lectin reaction in the surface and several large empty-like granules, nucleus with predominantly
euchromatin and nucleoli. Relative pixel NacGal-DBA lectin detected uantification (H).

206  DBA lectin histochemical analysis showed GalNac expression (DBA+ reaction) in all IS analyzed. DBA*

207  reactions were localized on uNK cell that were distributed at the three regions of the IS (Figure 4A, 4B, 4C, 4D,
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208  4E). In the CDS group, DBA+ reactions were localized on the uNK plasma surface and granules which allowed
209 the identification of four morphological DBA*UNK subtypes (Figure 4F) [15, 21]. We observed in IS from HF
210  and HC diet-fed mice several uNK cells that had low expression of GalNac sugar (DBA"uNK). These uNK
211 cell subtype exhibited low DBA lectin reactivity on their surface and/or within their granules (Figure 4G). The
212 lower DBA reactivity was confirmed also by semi-quantitative analysis (Figure 4H) which showed GalNac
213 expression was significantly weak (p<0.05) in the IS from mice that were fed on the HF (Figure 4C) and HC
214  (Figure 4D) diets in comparisonwith the control.

215

216  Morphometric and Stereological analysis of DBA*UNK

217  To address the effect of different diets on DBATUNK from pregnant mice, we carefully analyzed, measured, and
218  quantified the four subtypes of DBA*uNK cells and the DBA'"uNK subtype at three regions from histological
219  sections of implantation sites.

220  The number of the subtype | of DBAUNK cells had not changed in any of the three regions of all the five
221 experimental groups. This uNK cell subtype was abundant at region 1 of IS from mice fed on HP, HF, HC, and
222 FR diets similar to control diet-fed mice (Figure 5A, 5B, 5C). However, they were bigger in HC and HP diet-
223 fed mice compared with control (Figure 5D).

224 The subtype Il of DBATUNK cells decreased in number at IS regions 1 in HF and HC diet-fed mice. However,
225  in FR diet-fed mice at IS region 2 and 3, the number of subtype Il was higher (Figure 5F and 5G).

226 The number of subtype 111 DBAUNK cells were different in all experimental groups compared to control. In
227  mice fed with HF, HC, and FR the number of these cells was reduced at IS regions 1, 2 and 3. While HP group
228  showed reduced number of these cells only in regions 2 and 3 (Figure 5E, 5F and 5G). At region 3 from FR fed-
229  diet mice (Figures 51, 5J, 5K), the subtype 111 of DBATUNK cells was higher than the same region of CD group.
230  Subtype Il cells presented smaller diameter in FR diet-fed mice compared to control group at the same region
231 (Figure 5L).

232 Subtype IV statistically increased in IS from mice HP diet-fed in all the implantations sites regions (1, 2 and 3)
233 compared with control group. In FR mice, however, the number of Subtype IV was lower at region 3 (Figures

234  5M, 5N, 50). Also, these cells were smaller in FR diet-fed mice than in control group (Figure 5P).
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The DBA”" uNK subtype was found through all regions of IS from HP, HF, and HC mice (Figures 5Q, 5R,

5S), but were rare in FR (Figure 5T) and control mice. Also, the DBA'™ uNK found in FR were smaller than

the ones found in the other groups.
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Figure 5. Stereological and morphometric uNK cell analyses. Quantification and cell size measurement of four
DBA+ uNK cell subtypes (S1-S4) and the DBA'"" uNK cell (DBA") in each of the three regions of the GD10
embryo implantation site from each experimental groups. Control diet fed mice (CD), High Protein diet fed mice
(HP) High Fat diet fed mice (HF), High Carbohydrate diet fed mice (HC), Food restriction diet fed mice (FR).
p<0.05 (*’ ok ko ****)
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Immunohistochemistry to
perforin and cleaved

caspase-3

As expected, a strong
well-localized and
specific perforin reaction
was observed in
cytoplasmic granules of
DBAUNK cells at region
1 (Figure 6A), region 2
(Figure 6B) and region 3
(Figure 6C) of IS from
control mice.
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(Figure 6E, 6F, and 6G).

Figure 6. Photomicrographs of Perforin immunocytochemistry analyses in each of the In IS of HF diet-fed mice,
three regions (R1, R2 and R3) of the gdl0 embryo implantation site from each
experimental group (A-T). Control diet fed mice (CD), High Protein diet fed mice (HP)  the granules from uNK
High Fat diet fed mice (HF), High carbohydrate diet fed mice (HC), Food restriction
diet fed mice (FR). Observe the weak perforin reaction in the images from HF and HC ~ cells resemble empty
mice compared to the CD mice. Negative control for perforin (Neg.Ctr). Inserts show
high magnification of uNK cells and their reactivity to the perforin antibody in all 3 granules and the perforin
regions analyzed. Mesometrial lymphoid aggregate of the pregnancy (MLAp).
Decidua Basalis (DB). Relative pixel perforin quantification (U). p<0.05 (*). positive reaction were
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observed delineating the
granules similar to the
DBA™uNK cell subtype
observed in our
histochemical studies
(Figures 61, 6J and 6K).
The same happened at IS
from HC fed-diet mice
(Figures 6M, 6N, and 60).

However, IS of FR females

showed  strong  anti-

[
§: perforin staining in the
§.§ 1000
i1 granules of uNK cells in a
;‘,5 500
'«;EU similar  well localized
14 o v T

P cD HP HF HC FR manner observed in the

Figure 7. Immunofluorescent photomicrographs of the GD10 embryo implantation ~ control (Figure 6Q, 6R,
site from each experimental groups submitted to the 3 cleaved caspase. 3-cleaved
caspase (Green) in control diet fed mice (B), High protein (C), High Fat (D), High ~ 6S). Quantitative
carbohydrate (E) and Food restriction (F). 3 cleaved caspase (Green) and DAP (Blue)
in control diet fed mice (G), High protein (H), High Fat (I), High carbohydrate (J)and ~ densitometry ~showed a
Food restriction (K). Examples of 3-cleaved caspase negative control in each
treatment respectively (K-O). Relative 3 -cleaved caspase quantification (A) p<0.05  Significantly lower anti-

) perforin reaction in IS on
285  mice fed on the HF (p<0,05) and HC (p<0,001) diets (Figure 6U) compared with the control.
286  The analysis of the fluorescent staining for cleaved caspase-3 showed a weak reaction in IS from control (Figures
287  7A, 7F), HP (Figures 7B, 7G) and FR-fed mice (Figures7C, 7H), while in 1S from HF (Figure 7D, 71) and HC
288  (Figures 7E, 7J) fed mice the reaction was strong. Unfortunately, the exact cell types reacting with the anti-
289  caspase 3 antibody were not identified in our study. The quantitative densitometry analyses of the

290  immunoreaction confirm data obtained under microscopy (Figure 7P).

291
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Figure 8. Photomicrographs showing examples of implantation sites alpha
actin immunocytochemistry analyses. Endometrium (A), detailed blood
vessels (B), myometrium (C) and Negative control reaction (D) from mice
fed control diet. Endometrium (E), detailed blood vessels (F), myometrium
(G) and Negative control reaction (H) from mice fed High Protein diet.
Endometrium (I), detailed blood vessels (J), myometrium (K) and Negative
control reaction (L) from mice fed High Fat diet. Endometrium (M), detailed
blood vessels (N), myometrium (O) and Negative control reaction (P) from
mice fed High Carbohydrate diet. Endometrium (Q), detailed blood vessels
(R) myometrium (S) and Negative control reaction (T) from mice fed Food
restriction diet. Relative blood vessels alpha actin quantification (U).
Morphometric blood vessels analyses (V) p<0.05.
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Alpha-actin
immunohistochemistry  and
Morphometric analysis of
uterine arteries

In control mice we, observed

strong a-actin staining inside

uNK cells, which were
morphologically normal
(Figure 8A). In addition, a

strong alpha-actin positive
reaction was found in the
smooth muscle of blood
vessels from the endometrium
(Figure 8B) and in smooth
muscle  cells in  the
myometrium (Figure 8C). The
same was observed in HP
(Figure 8E, 8F and 8G) and
FR fed mice (Figures 8Q-8T).
In HF (Figure 8I) and HC
(Figure 8M) fed-diet mice
sections, a weak positive
reaction was observed in cells
resembling uNK and at blood
vessels (Figure 8J and 8N),
but a strong myometrial

reaction could still be
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319  observed in these groups (Figure 8K and 80).

320  The weak blood vessels’ reaction from HF and HC were confirmed through relative pixel quantification (Figure
321  8U). The analyses of arteriole wall thickness showed no difference (p>0.05) between control (r=2,58) and HP
322 fed-diet mice (r=2.2). Regardless the HF (r=1.8; p<0.0001) HC (r=1.8; p<0.0001) and FR (r=2 and p<0.0001)
323  fed mice showed thinner arteriole walls in comparison with control mice (Figure 8V).

324

325  Litter size and weight analysis.

326  The present study showed a litter size reduction from FR group (4.2 pups), while HP (10.3pups), HF, (12.6 pups)
327  and HC (12.3) fed-diets mice were similar to control (14 pups) (Figure 9A). Pup weights were also lower in FR
328  (2.8g) and HP (3g) fed-diets mice compared with control (3.3g) (Figure 9B). The animals that carried gestation

329  toterm, the birth of offspring occurred within 20 days after copulation.
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Figure 9. Pregnancy to term study in each experimental groups: control diet fed
mice (CD), High protein (HP), High Fat (HF), High carbohydrate (HC) and Food
restriction (FR). Number of pup quantification (A). Pup weight (B).

330  Discussion
331  Uterine Natural Killer cells are essential for proper uterine spiral artery remodeling, fetal and placental

332  development, and the overall success of pregnancy. Our study elucidated how high intake of different


https://doi.org/10.1101/2024.07.25.605132
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.07.25.605132; this version posted July 25, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

333  macronutrients and food restriction can impact angiogenic uNK.

334  The pregnancy viability analysis showed that the FR and HC diets caused total pregnancy failure in 50% and
335  25% of the mice respectively. The phenomenon of pregnancy failure under food restriction has been previously
336  documented in mice [22] and rats [23, 24]. Pascalon and Bertrand (1987) [24] named t effect of FR on pregnancy
337  viability as an “all-or-none” phenomenon, where (i) females either fail to maintain pregnancies, or (ii) carry
338  them to term with full-size litters; as observed in our study.

339  Although the phenomenon has been described, its implications for IS haven not been deeply explored. There are
340 no data in the literature regarding the effects of FR on the angiogenic uNK cells activity. However, our analysis
341  showed that FR led impaired decidua/MLAp and uNK cells development, along with an increase of subtypes Il
342  and Il cells, a decrease in subtype 1V cells and smaller cells. The restriction of nutrients delayed the angiogenic
343  uNK cells development and contributed to the decreased wall/lumen diameter of decidua vessels. These results
344  evidently impacted the pregnancy viability in FR group, as the density and activation of uNK cells are associated
345  with pregnancy complications such as fetal growth restriction and recurrent spontaneous abortion [25], both
346  outcomes observed in our study.

347  The HC group had 25% pregnancy failure rate, and the pregnant females t showed an increase in number of
348  DBA"™™uNK cells and fewer subtypes Il and 111 uNK cells. DBA"uNK cells were also present in the HF diet
349  group. The similarity between these results is due to the similar effects induced by high fat and carbohydrate
350 intake, both of which have been shown to trigger inflammation [26]. Interesting, DBA'®YuNK cells were first
351  described in 2015 after the administration of LPS in pregnant mice [27].

352 It has been reported that LPS injection in pregnant mice induces down-regulation of alpha-actin and perforin
353  lossinuNK cells [27], similar to what was observed in IS from HC and HF groups. The molecular basis described
354 in the literature support the hypothesis that inflammation is the underlying cause of the outcomes observed in
355  HC and HF females. Both LPS and HC or HF diets can trigger inflammation through the activation of common
356  pathways such as NF-kB signaling [28, 29], the release of pro-inflammatory cytokines such as tumor necrosis
357  factor-alpha (TNF-a), [30, 31], and the promotion of tissue-specific inflammation [32-34].

358  Another point of consideration is the effect of HC and HF diets on leptin levels. Levels of leptin increase

359  significantly during pregnancy [35] and play a crucial role in regulating conceptus growth and development,
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360 fetal/placental angiogenesis, and other events [36]. High intake of fat and carbohydrates also induces higher
361  leptin concentrations [37]. Leptin action contributes to chronic inflammation in obesity [37]. Maternal obesity,
362  which can lead to elevated leptin levels, has been linked to altered uNK activity through a functional imbalance
363  of killer immunoglobulin-like receptors (KIRs) [38].

364  Regarding the HP group, initially, the high protein intake did not seem to impact pregnancy as significantly as
365 the other diets. However, there was a significant increase in BDA®uNK cells with a decrease of pups’ weight
366  after birth. It has been shown that high dietary protein intake has detrimental effects in embryonic development
367  and can lead to low-birth-weight offspring [39]. Nevertheless, there is no data in the literature showing the impact
368  of HP diet on angiogenic uNK cells.

369  Studies in rats and humans have shown that consumption of HP diets induce hepatic gluconeogenesis [40-42].
370 During this process, the carbon skeleton of proteins is transformed into carbohydrates or fats to maintain plasma
371  glucose levels [42]. In fact, data from the literature describe the lower anti-inflammatory effects of HP diets due
372  tothe amount of saturated fatty acids, which promote inflammation [43]. The increase of inflammatory markers
373  due to consumption of HP diets has also been described [44]. It is plausible that even the HP diet might have
374  induced an increase in DBA""uNK cells due to inflammatory mechanisms, albeit on a lesser extent.

375 In summary, this prospective and translational study sheds light on the importance of uNK cells following a
376  dietary inflammatory process. Further research is essential to elucidate the intricate cellular signaling pathways
377  responsible for the observed changes in DBA"UNK cells following dietary consumption. This endeavor holds
378  promise for a comprehensive understanding of the molecular mechanisms underlying the polarization of
379  angiogenic uNK cells in response to nutritional imbalances. Such insights could not only deepen our
380 understanding of reproductive physiology but also pave the way for novel therapeutic interventions targeting
381  uNK cells to mitigate adverse pregnancy outcomes associated with dietary factors.
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Table 1- Centesimal composition of the experimental diets.

Diets Protein (%) Fat (%) Ash (%) Moisture (%) Carbohydrate Food
123 1.23 1.23 123 (o/o) 24 availability

cD 15.30+£005 709+ 2156+ 7.25+005 67.21 Ad libitum
e 0.06° 0.08° .

HP 31.26+017 7.07+ 218+ 7.15+0.06 52.34 Ad libitum
? 0.05° 0.09° N

HF 16.556+0.03 3251+ 219+ 7.16+0.06 41.59 Ad libitum
» 0.03° 0.04° °

HC 10.50+ 005 245+ 214+ 7.19+003 77.72 Ad libitum
. 0.03°¢ 0.09° e

FR 156.30+005 709+ 2156+ 7.25+0.05 67.21 4g/day
¢ 0.06° 0.08° 2

Table 1. Centesimal composition of the experimental diets. 1. Values correspond to means (+ SD) of three
determinations; 2. Values expressed in dry basis; 3. Values not sharing similar letter in the same column are different
(p < 0.05) in Tukey test; 4. Calculated by difference = 100 — (protein + total fat + ash + moisture). Control Diet
(CD). High Protein Diet (HP). High Fat Diet (HF). High carbohydrate diet (HC) and Food restriction diet (FR).


https://doi.org/10.1101/2024.07.25.605132
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.07.25.605132; this version posted July 25, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Figure 1
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Figure 1. Food intake analyses (A). High carbohydrate diet [ A] High Protein diet [®]. High HF diet
[A], Calorie diet [0] and Food Restriction [¢]. Body weight gain analyses (B). Control Diet (CD). High
protein diet (HP). High Fat diet (HF). High Carbohydrate diet (HC). Food restriction diet (FR). p<0.01
(**), p<0.001(***), Macroscopic images of perigonadal adipose tissue (arrow heads) from CD-fed mice
(C), HF-fed mice (D) and FR-fed mice (E).
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Figure 2.
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Figure 2- continued.

Figure 2. Study of gestational viability on the GD10 showing number of implantation sites (A),
pregnancy rate (B), Mesometrial lymphoid aggregate of pregnancy (MLAp) plus Decidua Basalis
(DB) area (C). p<0.001 (***). Macroscopic images show examples of implantations sites from
CD (D), HP (E), and HF-fed mice (F). Photomicrographs of histological sections from CD (G),
HP (H) and HF-fed mice (I). Macroscopic images show examples of implantation sites from HC
(J and K), Food restriction mice (L-M). Photomicrographs of histological sections from HC (N
and O), Food restriction (P and Q). Note examples of non-pregnant uterus only from HC (K and
0O) and from FR mouse (M and Q). In P, note the resorption aspect of the embryo implantation
site. Ovaries (Arrow). Implantation sites (arrowhead). Luminal epithelium (LE), Endometrium
(EN). Myometrium (My).
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Figure 3.
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Figure 3. Photomicrographs of implantation sites (IS) from pregnant mouse uterus on GD10. Note
the regions that were used to uNK cells quantification (R1, R2 and R3) in the panoramic pictures from
these IS (A-E). Decidua Basalis (DB). Mesometrial lymphoid aggregate of pregnancy (MLAp).
Observe the strong DBA reaction in the mice fed with CD (A), HP (B) and FR (E) diets compare to
the weak DBA reaction observed in mouse fed HF (C) and HC (D) diets. Detail of the DBA lectin
reaction pattern found in IS from CD fed mouse (F). Note subtype 1 (S1), Subtype 2 (S2), Subtype 3,
(S3) and Subtype 4 (S4) uNK cells. Insert in F shows the same S3 uNK cell as a large and high
granulated cell exhibiting euchromatin predominant in the nucleus and nucleoli. Detail of the DBA
lectin reaction pattern found in IS from HF fed mouse (G). Note the weak reaction in several uNK
cells (DBA™™). Insert in G shows DBA®" uNK cell subtype exhibiting irregular DBA lectin reaction
in the surface and several large empty-like granules, nucleus with euchromatin predominant and
nucleoli. Relative pixel NacGal-DBA lectin detected quantification (H). p<0.05 (*).
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Figure 4. Stereological and morphometric uNK cell analyses. Quantification and cell size
measurement of four DBA+ uNK cell subtypes (S1-S4) and the DBA™¥ uNK cell (DBA"®Y) in each of
the three regions of the GD10 embryo implantation site from each experimental group. Control diet
fed mice (CD), High Protein diet fed mice (HP) High Fat diet fed mice (HF), High Carbohydrate diet
fed mice (HC), Food restriction diet fed mice (FR). p<0.05 (*), p<0.01 (**), p<0.001(**%*),
p<0.0001(****),
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Figure 5-continued.

Figure 5. Photomicrographs of Perforin immunocytochemistry analyses in each of the three regions
(R1, R2 and R3) of the GD10 embryo implantation site from each experimental group (A-T). Control
diet fed mice (CD), High Protein diet fed mice (HP) High Fat diet fed mice (HF), High carbohydrate
diet fed mice (HC), Food restriction diet fed mice (FR). Observe the weak perforin reaction in the
images from HF and HC mice compared to the CD mice. Negative control for perforin (Neg.Ctr).
Inserts show high magnification of uNK cells and their reactivity to the perforin antibody in all 3
regions analyzed. Mesometrial lymphoid aggregate of the pregnancy (MLAp). Decidua Basalis (DB).
Relative pixel perforin quantification (U). p<0.05 (*).
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Figure 6. Immunofluorescent photomicrographs of the GD10 embryo implantation site from each
experimental group submitted to the 3 cleaved caspase. 3-cleaved caspase (Green) in control diet fed mice
(B), High protein (C), High Fat (D), High carbohydrate (E) and Food restriction (F). 3 cleaved caspase
(Green) and DAP (Blue) in control diet fed mice (G), High protein (H), High Fat (I), High carbohydrate
(J) and Food restriction (K). Examples of 3-cleaved caspase negative control in each treatment
respectively (K-O). Relative 3 -cleaved caspase quantification (A) p<0.05 (*).
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Figure 7.
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Figure 7- continued.

Figure 7. Photomicrographs showing examples of implantation sites alpha-actin
immunohistochemistry analyses. Endometrium (A), detailed blood vessels (B), myometrium (C)
and Negative control reaction (D) from mice ed control diet. Endometrium (E), detailed blood
vessels (F), myometrium (G) and Negative control reaction (H) from mice fed High Protein diet.
Endometrium (I), detailed blood vessels (J), myometrium (K) and Negative control reaction (L)
from mice fed High Fat diet. Endometrium (M), detailed blood vessels (N), myometrium (O) and
Negative control reaction (P) from mice fed High Carbohydrate diet. Endometrium (Q), detailed
blood vessels (R) myometrium (S) and Negative control reaction (T) from mice fed Food restriction
diet. Relative blood vessels alpha actin quantification (U). Morphometric blood vessels analyses
(V) p<0.05 (*), p<0.001 (*%*%*).
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Figure 8. Pregnancy to term study in each experimental group: control diet fed mice (CD), High
protein (HP), High Fat (HF), High carbohydrate (HC) and Food restriction (FR). Number of pup
quantification (A). Pup weight (B).
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