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Abstract 1 

 2 

The characterization of phenotypes in cells or organisms from microscopy data largely 3 

depends on differences in the spatial distribution of image intensity. Multiple methods exist 4 

for quantifying the intensity distribution - or image texture - across objects in natural images. 5 

However, many of these texture extraction methods do not directly adapt to 3D microscopy 6 

data. Here, we present Spherical Texture extraction, which measures the variance in intensity 7 

per angular wavelength by calculating the Spherical Harmonics or Fourier power spectrum 8 

of a spherical or circular projection of the angular mean intensity of the object. This method 9 

provides a 20-value characterization that quantifies the scale of features in the spherical 10 

projection of the intensity distribution, giving a different signal if the intensity is, for example, 11 

clustered in parts of the volume or spread across the entire volume. We apply this method to 12 

different systems and demonstrate its ability to describe various biological problems through 13 

feature extraction. The Spherical Texture extraction characterizes biologically defined gene 14 

expression patterns in Drosophila melanogaster embryos, giving a quantitative read-out for 15 

pattern formation. Our method can also quantify morphological differences in Caenorhabditis 16 

elegans germline nuclei, which lack a predefined pattern. We show that the classification of 17 
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germline nuclei using their Spherical Texture outperforms a convolutional neural net when 18 

training data is limited. Additionally, we use a similar pipeline on 2D cell migration data to 19 

extract polarization direction, quantifying the alignment of fluorescent markers to the 20 

migration direction. We implemented the Spherical Texture method as a plugin in ilastik, 21 

making it easy to install and apply to any segmented 3D or 2D dataset. Additionally, this 22 

technique can also easily be applied through a Python package to provide extra feature 23 

extraction for any object classification pipeline or downstream analysis. 24 

 25 

Author summary 26 

We introduce a novel method to extract quantitative data from microscopy images by 27 

precisely measuring the distribution of intensities within objects in both 3D or 2D. This method 28 

is easily accessible through the object classification workflow of ilastik, provided the original 29 

image is segmented into separate objects. The method is specifically designed to analyze 30 

mostly convex objects, focusing on the variation in fluorescence intensity caused by 31 

differences in their shapes or patterns.  32 

We demonstrate the versatility of our method by applying it to very different biological 33 

samples. Specifically, we showcase its effectiveness in quantifying the patterning in D. 34 

melanogaster embryos, in classifying the nuclei in C. elegans germlines, and in extracting 35 

polarization information from individual migratory cells. Through these examples, we illustrate 36 

that our technique can be employed across different biological scales. Furthermore, we 37 

highlight the multiple ways in which the data generated by our method can be used, including 38 

quantifying the strength of a specific pattern, employing machine learning to classify diverse 39 

morphologies, or extracting directionality or polarization from fluorescence intensity. 40 

 41 

  42 

2

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 25, 2024. ; https://doi.org/10.1101/2024.07.25.605050doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.25.605050
http://creativecommons.org/licenses/by/4.0/


Introduction 43 

44 

Patterns are widespread in nature and can be observed across scales from subcellular to 45 

tissue and organism level. The complex interactions and mechanisms that underlie pattern 46 

formation processes are a topic of great interest in various fields (Rombouts et al., 2023). On 47 

a tissue- or cellular-scale, pattern formation is captured through 2D or 3D microscopy. 48 

Analyzing patterns in such images requires specific image analysis tools. One such class of 49 

analysis tools is texture extraction tools that describe the pattern, or generally, the 50 

morphology of biological systems, in microscopy images as a texture: the variation in signal 51 

intensity across an image (Armi & Fekri-Ershad, 2019). A number of different methods to 52 

extract texture information from images currently exist (Armi & Fekri-Ershad, 2019; Humeau-53 

Heurtier, 2019). However, many of the methods rely on 2D natural images and cannot readily 54 

be applied to 3D biological microscopy data. Additionally, with the recent rise in accessible 55 

3D microscopy segmentation methods (Berg et al., 2019; Stringer et al., 2021; Weigert et al., 56 

2020), the number of applications in biology for accessible texture extraction from 3D data 57 

has risen. This need is shown by the different solutions using frequency space quantification 58 

for cell-cortical intensity (Mazloom-Farsibaf et al., 2023) and cell shape (van Bavel et al., 59 

2023). 60 

61 

For many biological systems, understanding and quantifying 3D morphology throughout the 62 

object is a prerequisite to gaining new insight into different processes. For example, well-63 

described developmental pattern formation, such as those arising during Drosophila 64 

melanogaster embryogenesis, are regulated by complex gene regulatory networks. The gene 65 

shavenbaby (svb) produces a striped expression pattern in the epidermis of the embryo, 66 

which later induces the formation of trichomes (Payre et al., 1999). Molecular changes in the 67 

upstream enhancers of svb have been shown to perturb the expression pattern, which can 68 

shape morphological evolution (Frankel et al., 2011) (Fig. 1A). To understand the phenotypic 69 

effects caused by sequence variations in regulatory elements, it is essential to analyze 70 

deviations from the typical wild-type expression pattern. Image texture can also provide 71 

biological information in systems where the pattern is not predefined but an emergent result 72 

of mechanical factors. A prime example here is the different chromatin morphologies that 73 

characterize the different substages of meiotic prophase I. These distinct substages, along 74 

with their corresponding DNA morphologies, are easily identified in the germline of the 75 

nematode C. elegans (Fig. 1B). As these varied morphologies directly correspond to the 76 
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Figure 1. Patterns and image texture reflect biological spatial variability. A) Expression patterns of a Lac-Z reporter 

controlled by three different variants of the E3N enhancer: wild-type E3N, showing the expected striped ventral 

‘shavenbaby’ phenotype patterning, the E3N mutant 10.1 with 10 mutations in E3N, with impaired patterning, and the 

E3N mutant 10.2 with 10 other mutations in E3N that lacks the patterning. These phenotypes reflect how random 
mutations disrupt the regulatory capacity of the E3N enhancer. B) C. elegans germline nuclei change DNA morphology 

during meiotic prophase I. The cells remain in the proliferative zone, showing small DAPI patches until they complete 

meiotic S-phase. In the transition zone, the chromatin is clustered as homologous chromosomes pair and co-align 

through synapsis. They then separate into strands of paired homologs in pachytene, as they designate the locations of 

crossovers, which are recombination events between maternal and paternal DNA. 
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underlying molecular processes, any discrepancies in the spatial distribution of these 77 

morphologies can serve as indicators for detecting defects in meiotic timing (Hillers et al., 78 

2017).  79 

 80 

Although their overall appearance is highly distinct, both the morphology of a fly embryo and 81 

of nematode meiotic nuclei can be described as a radial variance in fluorescence texture from 82 

their center of mass, allowing for robust quantitative analysis. 83 

  84 

In this paper, we present a texture extraction tool for segmented microscopy data through 85 

frequency analysis of radial variation of image intensity. Our analysis assumes that the 86 

analyzed objects are mostly convex, which is true for many biological systems and has been 87 

a basic assumption for other algorithms (Weigert et al., 2020). We show that our texture 88 

extraction method can detect patterns in D. melanogaster embryos and distinguish different 89 

morphologies in C. elegans nuclei. Simple machine learning models trained with this feature 90 

perform as well in the classification of C. elegans germline nuclei as convolutional neural 91 

network models, while being faster to train. We also include a 2D implementation that allows 92 

us to quantify the actin leading edge of cultured cells and gives options for subsequent signal 93 

analysis for directionality mapping. 94 

  95 

To make this method accessible, the method is implemented as a plugin for the user-friendly 96 

graphical software ilastik (Berg et al., 2019). Our implementation allows users to combine the 97 

Spherical Texture feature with other image features and quickly assemble a simple Random 98 

Forest classifier, which can be interactively trained within the program.  99 

 100 

 101 

  102 
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Results 103 

 104 

Spherical Texture Method 105 

In C. elegans, the condensation and organization of chromatin in the nucleus changes 106 

throughout meiosis. The nucleus shown in Fig. 2A is in pachytene, where pairs of homologous 107 

chromosomes are fully aligned as they perform the essential meiotic task of crossover 108 

formation. A typical 2D visualization of a 3D microscopy dataset is the maximum intensity 109 

projection over the Z-axis as shown in Fig. 2A. This projection loses detail in depth, especially 110 

with data such as these nuclei, where chromosomes are radially oriented along the nuclear 111 

envelope, avoiding a large central nucleolus. Because we assume that radial organization of 112 

the signal explains most of the variation, we map the data to a sphere. This mapping is 113 

achieved by first rescaling the data to a cube of 80 pixels per side (Fig. 2B). We subsequently 114 

cast rays from the center of the cube, taking the mean intensity of the pixels along the ray. 115 

This transformation yields a dataset of the average data in spherical coordinates, the 116 

spherical projection. To compare different objects, we also normalize the spherical projection 117 

map such that the total variance is 1 and the mean is 0 (Fig. 2C). 118 

The spherical projection represents a meaningful dimension reduction while keeping the 119 

variation that defines the radial signal. To extract texture information from the spherical 120 

projection, we apply a Spherical Harmonics (SH) decomposition, a transformation to 121 

frequency space that is analogous to a Fourier decomposition. We decompose the spherical 122 

projection into a sum of waves (the spherical harmonics basis functions). These waves are a 123 

combination of relative scale (harmonic degree, ℓ) in different conformations (defined by 124 

harmonic order, m) (Fig. 2D) up to the scale of 1-pixel differences (ℓ = 251). By integrating 125 

over all harmonic orders of the signal, we get a power spectrum with a single rotationally 126 

invariant value for each degree (Fig. 2E). By normalizing to a mean of 0, the power 127 

corresponds to the variance as a function of ℓ (Wieczorek & Meschede, 2018). Therefore, the 128 

power spectrum can be reinterpreted as a measure of variance versus the approximate 129 

wavelength of each harmonic degree (Fig. 2F). Furthermore, through normalizing the 130 

projection to unit variance, the area under the curve of the Spherical Texture output equals 131 

1. The method is also illustrated in video SV1.  132 

  133 
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Figure 2. Spherical Texture method design. A) A C. elegans meiotic nucleus in the pachytene stage, stained with 
DAPI, shown as maximum intensity projections over Z (left) and X, with the YZ view rescaled  

isotropically (center) and square pixels (right) about the XY view. B) Data from A rescaled to 80x80x80 pixels in XY (left) 

and YZ (right) views C) A graphic showing the mean intensity projection to spherical space, showing first a subset of the 

radial rays (left, red lines) used to generate the mean-intensity spherical projection as spherical data and as planar map 

projection (center). The mean intensities are normalized to mean=0 and variance=1 (right). D) Projections of the 

spherical harmonics basis functions on the sphere of the first 7 spherical harmonic degrees. E) The spherical harmonics 

power spectrum of the spherical projection in C shows a distinct peak around approx. the 10th harmonic degree. F) 
Rescaling the harmonic degrees to approximate wavelength yields a spherical harmonics spectrum, which shows a 

corresponding peak in the contribution to variance around a wavelength of approx. 0.1 rad/2π G) The standard output 

of the Spherical Texture method corresponds to the binned spectrum shown in F. H) The Spherical Texture extraction is 

implemented as a Python package and directly in ilastik, allowing for its adoption into the Object Classification workflow. 

In this workflow, users can interactively train a Random Forest machine learning classifier. Shown here is a part of a C. 

elegans gonad with segmented nuclei, where some nuclei were labeled as Class 1 and others as Class 2 (solid colors). 

Based on the Spherical Texture of these labels, ilastik predicts the class of all other nuclei (transparent colors). 
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For accessibility, we implemented the technique as a plugin for ilastik (Berg et al., 2019), 134 

allowing users to quickly select the Spherical Texture features for a Random Forest object 135 

classification algorithm. To reduce the number of features to a more relevant set, we 136 

subsample the spectrum to 20 values along the log2 axis in this implementation for further 137 

analysis (Fig. 2G-H). Here we bin these values by integrating, which ensures that the area 138 

under the curve remains equal to 1. 139 

 140 

Texture Extraction  141 

To test the ability of the Spherical Texture technique to extract textures, we used synthetic 142 

data generated with Perlin 3D noise (Fig. 3A). This synthetic data allows us to create 3D 143 

patterns at varying spatial scales. Assessing these test patterns with the Spherical Texture 144 

method yields a quantification that shows how much a certain spatial scale contributes to the 145 

variance. Thus, we expect the fine patterns to have more power at small wavelengths, while 146 

the coarser patterns have the most power at larger wavelengths. Indeed, as the synthetic 147 

data gets coarser, the spectra of the Spherical Texture method shift from shorter wavelengths 148 

(black) towards longer wavelengths (light gray) (Fig. 3A). 149 

 150 

We next tested the ability of the Spherical Texture method to distinguish morphological 151 

differences in 3D microscopy images. In D. melanogaster, the minimal E3N enhancer drives 152 

shavenbaby (svb) expression in the ventral stripes of the embryo at developmental stage 15. 153 

To dissect the regulatory activity encoded in this enhancer, Fuqua et al. (2020) created a 154 

transgenic D. melanogaster library harboring random mutants of the E3N enhancer. The 155 

mutants were generated via error-prone PCR, and their activity is actualized by a downstream 156 

promoter (hsp70) and reporter gene (lacZ) (Fig. 3B). To further characterize this mutational 157 

library, a subset of 91 lines ranging from 1-10 mutations were imaged using fluorescent 158 

antibodies and confocal microscopy to study the patterns in more detail (Galupa et al., 2023). 159 

However, the analysis of high-throughput data requires an accurate and automated 160 

assessment of pattern formation. For this, the Spherical Texture can serve as a reliable 161 

metric. When applied to both a wild-type E3N reporter and two unique variants of E3N each 162 

harboring 10 point mutations (10.1 and 10.2), the Spherical Texture method distinctly 163 

differentiates between the mutants and the WT E3N control: the WT shows a characteristic 164 

profile, with a peak in variance at a wavelength λ ≈ 0.044 rad/2π. This peak is diminished in 165 

E3N-10.1 embryos which showcase less defined stripes, and it is virtually absent in E3N-10.2 166 

embryos, which lost all stripe formation (Fig. 3C). We can thus effectively analyze the 167 
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Figure 3. The Spherical Textures reflect the coarseness of 3D data and can be applied to quantify patterning in 
D. melanogaster embryos. A) Spherical Textures of synthetic 3D Perlin noise spheres. Coarser data corresponds to

more variance at large wavelengths. B) Graphic showing the design of the mutant E3N enhancer screen and genetic

setup. Wild-type E3N drives the expression of a lac-Z reporter in a striped pattern in the D. melanogaster embryo. By
introducing mutations in the enhancer via error-prone PCR, the effect of many variants on the activity of the E3N

enhancer can be tested by screening for changes in this pattern. C) Spherical Texture responses of embryos of three

genotypes of the assay in B. The WT embryo (n=13) shows a distinctive average profile with a peak at λ ≈ 0.044 (red

arrow), that is lost in the E3N-10.2 (n=17). The E3N-10.1 (n=18), with impaired patterning, shows an intermediate profile.

D) Average profiles of all genotypes in the screen, clustered by number of mutations. The red dashed line is the

characteristic WT wavelength, with a plane wave at the same wavelength (λ = 0.044 /object length) shown as a simplified

interpretation of the wavelength. This plane wave corresponds to the distance between the stripes (inset, red stripes).

E) The effect of different E3N enhancer variants on the gene expression pattern is described by taking the average
power at λ ≈ 0.044 rad/2π for all genotypes. Separate dots are separate experiments for WT, and separate genotypes

for mutants.
9

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 25, 2024. ; https://doi.org/10.1101/2024.07.25.605050doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.25.605050
http://creativecommons.org/licenses/by/4.0/


 

complete high-throughput screening data and assess the degree of pattern formation in 91 168 

different lines (Fig. 3D-E). Our analysis reveals an abrupt decline in pattern formation fidelity 169 

from the WT strain to any of the mutated strains. However, the introduction of more than three 170 

mutations does not reveal a discernible trend. This finding suggests that the exact number of 171 

mutations (up to 10) does not define the regulatory capacity of this minimal enhancer, and 172 

some mutations may rescue other mutations in an epistatic manner. 173 

 174 

Classification of meiotic nuclei 175 

 176 

To showcase a very different type of biological data, we turn to C. elegans germline nuclei. 177 

While the D. melanogaster embryos are large (500 µm diameter) and the pattern of the E3N 178 

enhancer is clearly defined, the C. elegans germline nuclei are very small (2-5 µm diameter) 179 

and lack a defined pattern. However, as the Spherical Texture is agnostic to the original size 180 

of the object but quantifies the scale of the morphology, we hypothesized that this method 181 

should also distinguish morphological differences in C. elegans germline nuclei. 182 

C. elegans germline nuclei are typically categorized into three morphological stages: 183 

Proliferative zone nuclei are relatively small with chromatin distributed across the nucleus. 184 

The proliferative nuclei are mitotically dividing stem cells, generating meiotic progenitor cells. 185 

These nuclei undergo significant remodeling as they enter meiotic prophase I: the 186 

chromosomes are partially condensed and polarized within relatively small "Transition Zone" 187 

nuclei, resulting in a crescent-shaped and dense distribution of DNA. This morphological 188 

stage is indicative of the meiotic stages involving homologous chromosome pairing and 189 

synapsis. After completion of synapsis, nuclei enter the pachytene stage which is 190 

characterized by larger nuclei and separated chromosome strands representing partially 191 

condensed and synapsed homologous chromosome pairs (Hillers et al., 2017). If we apply 192 

the Spherical Texture to these nuclei, we find that, indeed, the Spherical Texture spectra 193 

represent the differences between these three morphological classes (Fig. 4A). Notably, the 194 

transition zone nuclei, where chromosomes form a large crescent-shaped structure, exhibit 195 

significantly increased variance at λ = 1 rad/2π, which implies the chromatin is organized into 196 

a half-moon-like organization. This matches the canonical description of crescent-shaped 197 

DNA morphology. For pachytene nuclei, a local peak in the spectrum is observed around λ = 198 

0.1 rad/2π, which we infer to reflect a typical distance of separation between chromosomes 199 

in the nucleus (Fig. 4A). Thus, the Spherical Texture method accurately describes differences 200 

in the nuclear morphology of nuclei in the distal germline of C. elegans.  201 
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Figure 4. Spherical Textures and machine-learning classifications of C. elegans germline nuclei. A) Spherical 

Texture spectra for manually classified wild-type C. elegans germline nuclei show characteristic differences for each 

class. B) Classification accuracies of machine learning models classifying all annotated nuclei in one test image, trained 

on all annotated nuclei from 10 images. The Spherical Texture model is a Random Forest with the Spherical Texture 

and size in pixels as features. The Histogram of intensity model is a Random Forest with a 64-valued normalized 

histogram of intensity values and size in pixels as features. The ResNet18 is a 3D CNN with unscaled 0-padded 
normalized nuclei at original scale as input. The models behave similarly, but the ResNet slightly outperforms the 

Random Forest models as expected. Stated p-values are from a Wilcoxon one-sided paired test, testing for accuracy 

greater than Spherical Texture. C) The classification accuracy increases with increasing amount of training data for the 

three models. The color denotes the number of images used for training, and the x-axis represents the fraction of nuclei 

from each these images. Only the Spherical Texture trains monotonically and quickly, while the Histogram of intensity 

overfits with few images, and the ResNet requires a large amount of training data to reach high accuracy. 
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 202 

We then utilized the differences identified in the Spherical Texture spectra to classify the 203 

different stages of nuclei within the C. elegans distal germline. To achieve this, we used a 204 

machine-learning approach by training a Random Forest classifier. Random Forest classifiers 205 

are simple and minimal to set up, and implemented in available software such as ilastik, 206 

providing user-friendly interactive image classification and analysis (Berg et al., 2019). We 207 

included the Spherical Texture spectrum (Fig. 2E) and the original size of the nuclei as 208 

features. We compared this Spherical Texture classification to a Random Forest using the 209 

ilastik histogram of intensities and nucleus size as a feature set, or a more complex 210 

convolutional neural network model, a 3D ResNet18 (He et al., 2015), that learns a feature 211 

set from the 3D segmented nuclei. After training on 10 different annotated images containing 212 

over 1400 annotations, we found that all models had similar levels of accuracy. However, the 213 

ResNet was the most consistent among them (Fig. 4B).  214 

In bioimaging, the amount of training data is often limiting, as experimental techniques, the 215 

time required for annotation, and the inconsistency in experimental conditions all hinder the 216 

generation of comprehensive and consistent training datasets. Consequently, the efficiency 217 

of model training becomes a critical consideration. We systematically shuffled and 218 

subsampled our training set by the number of images and included objects, generating 219 

smaller subsets of our cross-validation dataset. By creating these smaller subsets, we were 220 

able to investigate how well the models learn to classify germline nuclei when training data 221 

is limited (Fig. 4C, S1). This analysis reveals that the Spherical Texture model exhibits fast 222 

and consistent training that improves monotonically with increasing training data size. The 223 

Histogram of intensity model also trains rapidly, but the accuracy declines as more data is 224 

added from a limited number of images. This decline is likely due to the highly sample-specific 225 

variations in fluorescence intensities which can lead to overfitting when only training on a 226 

small set of images. In contrast, the ResNet model, while accurate when trained on the full 227 

dataset, was far less accurate when provided with less training data, which is consistent with 228 

evaluations of 2D ResNet models (Brigato & Iocchi, 2020).  229 

 230 

We can now leverage the Spherical Texture model for germline classification to assess 231 

meiotic staging in the C. elegans gonad. This is feasible due to the temporo-spatial 232 

organization of the C. elegans gonad, wherein nuclei progress through the gonad while 233 

undergoing meiosis. Thus, the nuclei are separated into phenotypic zones (Hillers et al., 234 

2017). Traditionally, the manual annotation of these zones relies on marking the transition 235 
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points where most nuclei change morphology (Fig. 5A). However, this approach becomes 236 

challenging, and at times biased, especially when genetic defects give rise to gradual 237 

transitions. We therefore use the Spherical Texture model, consisting of a Random Forest 238 

trained using the Spherical Texture spectrum and nucleus size as features to predict the 239 

stages of nuclei in germlines of wild-type animals (Fig. 5A, higher resolution in S2). Indeed, 240 

we find that the Spherical Texture classifications of individual nuclei of wild-type germlines 241 

mostly match the zones expected from the overall germline organization: nuclei in the distal 242 

(here shown left) part of the gonad are classified as "proliferative zone" nuclei, moving 243 

proximally to first transition zone and then pachytene nuclei. However, as the nuclei exit the 244 

transition zone and shift to early pachytene, some early pachytene nuclei are misclassified 245 

as "proliferative zone" nuclei. This finding suggests that the Spherical Texture model not only 246 

identifies the three canonical zones but also detects morphological differences between 247 

nuclei in early and mid/late pachytene, respectively.  248 

Due to the temporo-spatial organization of the C. elegans germline, the length of individual 249 

zones corresponds to the time individual nuclei spend within each stage (Hillers et al., 2017). 250 

Therefore, the length of the transition zone within a gonad is a reliable metric to determine 251 

the timely completion of homologous chromosome pairing and synapsis that take place in 252 

this zone. In animals with mutations in genes involved in pairing or synapsis, the transition 253 

zone length is altered. For instance, in zim-2 mutant animals pairing, and consequently 254 

synapsis, of a single chromosome, namely chromosome V, is eliminated (Phillips & Dernburg, 255 

2006), while in syp-4 mutant animals, synapsis is completely abolished (Smolikov et al., 256 

2009). Despite being trained solely on nuclei of wild-type germlines, the Spherical Texture 257 

method, predicts elongated transition zones for both zim-2 and syp-4 animals (Fig. 5A).  258 

With the Spherical Texture-based model, we can analyze meiotic progression across many 259 

different animals by automatically classifying all nuclei across many gonads allowing for 260 

automatic quantification of transition zone length (Fig. 5B). Notably, we observe robust 261 

progression through the three zones which matches manual annotations. The machine-262 

learning-based prediction pinpoints not only the most probable position of the transition 263 

between zones but also illustrates the steepness of this transition. In wild-type animals, shifts 264 

between zones occur rapidly, while the progression from the transition zone to pachytene is 265 

more gradual in both mutant animals. As a result, the Spherical Texture method predicts an 266 

even longer transition zone for both mutants compared to our manual annotations.  267 

 268 
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Figure 5. Automatic classification of germline nuclei provides quantifications of meiotic progression. A) 
Representative images of C. elegans gonads of three genotypes (Wild-type, zim-2, syp-4) with manually annotated 

zones, and automatic classifications of nuclear morphology using the Spherical Texture Random Forest model per 

nucleus. Higher resolution images are available in S2. B) Bulk analysis of Spherical Texture annotations in gonads 

reveals average zone sizes along the linearized gonad. The relative density distribution of nuclei per morphological 

classification is plotted along the gonad central spline. The point where the means of the zones cross are annotated 

(dashed lines) to compare against the manual annotations of these transition points. 
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Utilizing the Spherical Texture predictions along the length of the gonad offers a clear, highly 269 

informative, and easily interpretable representation of meiotic zones in C. elegans. This 270 

method allows for a consistent analysis of large datasets in a streamlined manner. Moreover, 271 

due to the model's fast training speed, the Spherical Texture model can easily be adapted to 272 

other imaging modalities or experimental conditions. 273 

 274 

2D texture and polarization quantification 275 

 276 

Despite the popularity of 3D imaging, 2D imaging remains a prevalent and valuable tool for 277 

addressing various biological questions. Similar to 3D, patterning and the distribution of 278 

intensity across objects remain central features also in 2D. To analyze textures in 2D data 279 

with the Spherical Texture method, we can project the intensities within the convex region of 280 

an object to a circle instead of a sphere decomposing with a 1D Fourier transform (Fig. 6A). 281 

This process results in a power spectrum of the projection, which yields a quantification 282 

depicting the contribution to variance per wavelength, where the area under the curve equals 283 

1 when normalized to mean 0 and variance 1. When applied to 2D Perlin noise patterns 284 

corresponding to the middle slices of the 3D synthetic data depicted in Fig. 3A, a similar 285 

distribution of 2D power spectra emerges, mirroring what we observed for 3D spherical data: 286 

the peak of the power spectrum moves from short wavelengths to longer wavelengths as the 287 

data becomes coarser (Fig. 6B). Therefore, our Spherical Texture method efficiently 288 

quantifies textures not only in 3D but also 2D. 289 

 290 

An application for employing this method in 2D is in quantifying actin dynamics during cell 291 

polarization. In such assays, cells polarize forming a distinct ‘leading edge’ characterized by 292 

actin-rich lamellipodia oriented towards the direction of movement. To precisely define the 293 

position of the leading edge, we utilize an optogenetic approach. Here, a photosensitive tag 294 

on the membrane anchor CAAX recruits TIAM, a Rac1-specific guanine nucleotide exchange 295 

factor, upon light stimulation. With this setup, Rac1 can be activated at a specific site, thereby 296 

inducing leading edge formation at that exact site (Fig. 6C, Video SV2) (de Beco et al., 2018). 297 

We aim to quantify leading edge formation in this system, by using the Spherical Texture 298 

method on the live-cell actin probe SiR-actin to visualize actin dynamics and polarization 299 

together with CAAX and TIAM.  300 

 301 
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Figure 6. Texture and polarization extraction of 2D data. A) Explanation graphic of the Spherical Texture for 2D data 

(top left) – the data is sampled per angle (top right) and projected as mean intensity to a 1D circle (S1 space, middle), 

and normalized to unit variance, mean 0. The contribution to variance per wavelength is then calculated through the 

Fourier power spectrum (bottom). The ‘peak direction’ (red arrow) denotes the angle of the maximum value in the 
projection. B) 2D Spherical Texture spectra for synthetic Perlin noise circles. The finer-detailed spectra have more power 

at short wavelengths, while the coarse spectra only have power at long wavelengths. C) Graphic depicting the 

optogenetic system for Rac1 activation (de Beco, 2018). The membrane anchor CAAX (blue) is tagged with the 

photosensitive domain iLiD, which – upon activation with 470 nm light – recruits TIAM-SSPB (orange). TIAM acts as a 

guanine nucleotide exchange factor for Rac1 (gray). The Rac1-GTP induces the formation of actin-rich lamellipodia 

(green). D) Fluorescence images with E) projections (same axis as A) and F) spectra of an illuminated cell. The 

illuminated region is shown in cyan. Three different time points are shown from left to right. As time post-illumination 

progresses, both the TIAM (orange) and CAAX (blue) align to the illumination. By contrast, actin (green) switches from 
a broader distribution to an almost bipolar distribution with peaks at the site of illumination, and directly opposite. These 

changes are also reflected in the spectra where TIAM and CAAX gain power at 1 rad/2π and actin at 0.5 rad/2π. G) The 

graphic illustrates the measurement of the angle to illumination which denotes the shortest angle between the peak 

direction of individual channels and the peak of the illumination. Therefore, the maximum angle to illumination is π. H) 
Angle to illumination for all channels of three cells over time (illumination at 0 min). TIAM aligns immediately to the 

illumination angle, while CAAX aligns slower. Actin splits into two populations: one aligning to the illumination, and one 

that aligns directly opposite the illumination reflecting its bipolar distribution.  
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In unstimulated cells, both TIAM (orange) and CAAX (blue) are randomly distributed across 302 

the cell (Fig. 6D, 0 min). This random intensity distribution shows up as random fluctuations 303 

in circular intensity projections (Fig. 6E, 0 min), leading to an unstructured variance spectrum 304 

in the Spherical Texture quantification (Fig. 6F, 0 min,). Upon stimulation at 0 min, TIAM 305 

quickly accumulates at the activation site which is reflected by a higher contribution of larger 306 

wavelength to the variance of the signal reflecting the coarsening in the distribution of the 307 

TIAM signal (Fig. 6D-F, at 4 and 13 min). Interestingly, the CAAX signal also intensifies at the 308 

activation site and almost completely overlaps with the TIAM signal. This observation is 309 

intriguing because CAAX is not specifically recruited by light stimulation. We infer that this 310 

apparent accumulation is a consequence of membrane ruffling and lamellipodia formation. In 311 

the circular projection at minute 4, the signals of TIAM and CAAX overlap, while we observe 312 

that the actin intensity is only slightly increased at the activated site and is, instead, 313 

concentrated at the rear of the cell as it retracts. However, at minute 13 we observe a clear 314 

accumulation of actin at the activation site in the circular projection, indicating the polarization 315 

of the cell. 316 

 317 

To analyze this further, we measure the angle between the illumination and the polarization 318 

direction of the circular projections to evaluate the alignment of TIAM, CAAX, or actin relative 319 

to the illumination (Fig. 6E). Assessing these angles across three cells over time reveals that 320 

TIAM aligns with the illumination almost immediately (time 0), and CAAX aligns within a few 321 

minutes until it is fully aligned about 10 minutes post-illumination (Fig. 6F). By contrast, the 322 

angle between illumination and peak actin intensity remains large throughout the imaging 323 

time. However, upon closer examination, we find a bimodal distribution of the angles with 324 

some peak intensities located at the activation site while most cluster around π, indicating 325 

that actin accumulates both at the activation site and at the rear end opposite the activation 326 

site, as previously observed in the circular projections. A modest accumulation of actin at the 327 

site of illumination is consistent with induced Rac1-mediated branched actin polymerization 328 

and lamellipodia formation. We infer that the increase in actin seen at the opposite side of 329 

the cell is consistent with a restructuring of the cell membrane and morphological changes, 330 

as a migratory rear edge is formed, where the intensity subsequently diminishes over time.  331 
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Discussion 332 

 333 

Here, we presented a texture extraction method designed for the quantification and 334 

classification of objects in microscopy images. This method efficiently extracts texture 335 

resolution from both 3D and 2D objects, operating under the assumption that many 336 

biological objects are largely convex and can be described as angular variations from their 337 

centroid. Our study showcases the effectiveness of this technique for diverse applications 338 

ranging from pattern recognition in 3D images of D. melanogaster embryos to the 339 

quantification of 3D nuclear morphology in C. elegans gonads. Furthermore, our texture 340 

analysis approach extends to 2D scenarios such as real-time images of migratory cells. 341 

When coupled with signal analysis and peak finding in circular projections, it provides a 342 

measure for cell polarization and migration direction. 343 

 344 

The Spherical Texture method yields a reliable metric to quantify pattern formation in gene 345 

expression driven by the E3N enhancer in the Drosophila melanogaster embryo, which 346 

features a clear and predefined biological pattern. The rotationally invariant signal produced 347 

by the Spherical Texture method allows for robust and consistent quantification that is 348 

independent of the orientation of the input image of the fly embryo. This independence of 349 

sample mounting on the quantification result makes the Spherical Texture method ideal for 350 

analysis of large-scale screens acquired by automated imaging. 351 

 352 

On the other hand, nuclei in the distal C. elegans germline lack a predefined pattern but 353 

exhibit general differences in their morphology that is a consequence of differences in DNA 354 

condensation and nuclear organization. The Spherical Texture method extracts features 355 

based on their scale which allows for the robust classification of nuclei based on their 356 

morphology - a task that was previously only achievable by manual annotation. Therefore, 357 

the Spherical Texture method can be applied to both structured patterns such as patterning 358 

during Drosophila embryogenesis, and unpatterned data such as nuclear morphologies in 359 

the C. elegans germline highlighting its versatility. 360 

 361 

To utilize the texture information obtained by our Spherical texture method for object 362 

classification, we integrated this tool into the easy-to-use interactive learning and 363 

segmentation software ilastik (Berg et al., 2019). Employing Random Forests using features 364 

derived from the Spherical Texture method to classify C. elegans nuclei demonstrated 365 
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consistent performance and outperformed more complex CNNs in scenarios with sparse 366 

training data. Even with a dataset of over 1400 annotations, the CNN-based model only 367 

marginally surpasses the consistency of the Random Forest model. This is particularly 368 

relevant since microscopy datasets are highly specific to the lab, microscope, and 369 

experiment, necessitating frequent (re)training. Additionally, the challenges of implementing 370 

a 3D CNN architecture require more expert knowledge and contrast with the ease of using 371 

a Random Forest, especially within software like ilastik.  372 

 373 

The incorporation of the Spherical Texture method into ilastik also facilitates the seamless 374 

combination with other object quantification features. At the same time, the Spherical 375 

Texture method can be combined with other signal analysis techniques applied to the radial 376 

projections. We illustrate this approach in the actin leading edge quantification. Peak finding 377 

algorithms applied to the Spherical Texture output of the fluorescent image of a migratory 378 

cell after circular projection allow for efficient measurements of cell polarization, providing 379 

information on both the direction and relative intensity of the leading edge. This peak-380 

finding feature in circular or spherical projections can be added to ilastik as a custom 381 

feature and can be used for both 2D and 3D data. 382 

 383 

We therefore anticipate that our Spherical Texture method makes texture extraction easily 384 

accessible to users, and allows for its application to diverse datasets.   385 
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Methods 386 

 387 

Spherical Texture implementation  388 

The Spherical Texture quantification requires either 3D z-stack or 2D image data and the 389 

corresponding segmentation masks where the centroid is inside the mask.  390 

For each object in the segmentation mask, the image data is scaled bilinearly to 80x80x80 391 

(or 80x80 in 2D) and masked out with the provided segmentation mask. Spherical rays are 392 

taken from the centroid to angles fitting a Gauss-Legendre Quadrature (Wieczorek & 393 

Meschede, 2018). This process yields a spherical projection of 251 by 512 rays. To obtain 394 

the value of a pixel in the spherical mean intensity projection, pixel intensities are averaged 395 

along each ray until it leaves the segmentation mask. Subsequently, the spherical projection 396 

map is normalized to achieve a mean of 0 and a variance of 1 using the formula 𝐹!"#$ =397 
%&	〈%〉
〈*%〉!

, where F represents the angular mean intensity projection. The normalized signal is 398 

then decomposed into geodesy 4-pi normalized spherical harmonics using the SHTOOLS 399 

4.10.3 (Wieczorek & Meschede, 2018) implementation of the Holmes and Featherstone 400 

algorithm (Holmes & Featherstone, 2002). Spectra are binned along a log2 scale to produce 401 

20 unique output values. Binning is performed through local integration to retain the area 402 

under the curve. Given that the mean of the signal is 0, the resulting spectrum can be 403 

interpreted as variance as a function of harmonic degree ℓ (Wieczorek & Meschede, 2018). 404 

 405 

To map the harmonic degree ℓ to the approximate cartesian wavelength λ, we use the Jeans 406 

relation 𝜆 = +,-
.ℓ(ℓ12)

 for the unit sphere with radius R = 1 (Wieczorek & Meschede, 2018). This 407 

relation does not hold well for lower values of ℓ. To address this limitation, we set the cartesian 408 

wavelength λ = 1 for ℓ = 1, where the basis functions exhibit only one peak and one valley 409 

across the sphere. For ℓ values greater than 1, we rely on the Jeans relation for simplicity. 410 

 411 

For two-dimensional data, we cast the rays only along the equator, resulting in a circular line 412 

comprising 251 values. This line is then decomposed using the discrete Fourier Transform 413 

implementation available in scipy (Virtanen et al., 2020).  414 

 415 

Polarization directions are calculated from the angle of the maximum value in the projection. 416 

Depending on data, it might be effective to first bandpass the signal.  417 

 418 

20

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 25, 2024. ; https://doi.org/10.1101/2024.07.25.605050doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.25.605050
http://creativecommons.org/licenses/by/4.0/


 

Integration into ilastik and code availability 419 

The Spherical Texture method is in the latest version of ilastik, starting at 1.4.1b19 (Berg et 420 

al., 2019). The ilastik implementation of Spherical Textures is integrated into the ilastik Object 421 

Classification workflow, where users provide a 2- or 3D image and segmentation mask for 422 

which different features can be extracted. The Spherical Texture spectrum and peak 423 

extraction are both easily selectable by checking the appropriate checkboxes. Within the 424 

software, one can then interactively train a Random Forest classifier to classify phenotypes 425 

based on the extracted features. The extracted features, including the Spherical Textures, 426 

can also be exported separately and used in subsequent custom analyses. 427 

 428 

The code is implemented in Python and accelerated with numba (Lam et al., 2015) with 429 

parallel computation of multiple objects. For users who want direct access to the code in 430 

Python, outside of the ilastik implementation, a Python package is installable through pip and 431 

conda as described on https://github.com/KoehlerLab/SphericalTexture.   432 

 433 

Synthetic data generation 434 

3D Perlin noise (Perlin, 1985) was generated in 128x128x128 pixel grids using the perlin-435 

numpy python implementation (Vigier, 2018/2024). The noise scale parameter is the relative 436 

‘periods of noise’ generated along each axis across the 128 grid. By design, Perlin noise 437 

periods are relatively arbitrary and do not decompose into clean waves. To obtain spherical 438 

synthetic data, we provided a central 80x80x80 sphere as a mask. For 2D synthetic data, 439 

only the middle plane was used. 440 

 441 

Fly strains, reporter gene expression staining and imaging 442 

As previously described in Galupa et al. (2023), a subset of 91 lines of the original 749 443 

variants, ranging from 1-10 mutations, of the mutant library generated by Fuqua et al. (2020) 444 

was used for this analysis. These transgenic Drosophila melanogaster lines were based on 445 

attP2 (Bloomington Stock Number: 5905). Fly rearing, embryo collection and fixation, and 446 

immunofluorescence was performed as described before (Fuqua et al., 2020; Galupa et al., 447 

2023). Z-stacks of every embryo were acquired using a confocal Zeiss LSM 880 microscope 448 

at 0.593x0.593x1.40 µm pixel size using a 20x 0.8 NA air plan-apochromatic objective. 449 

Masks were created in the 2D maximum intensity projections of the data using the ‘cyto’ 450 

pretrained cellpose model with a target diameter of 600 pixels, corresponding to 356 µm 451 
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(Pachitariu & Stringer, 2022; Stringer et al., 2021). These masks were then extended through 452 

the Z dimension. 453 

 454 

Imaging of C. elegans germlines 455 

To visualize C. elegans germline nuclei, young adult N2, CV87 [syp-4(tm2713)], or CA258 456 

[zim-2(tm574)] animals were dissected 24 hours post-L4 and stained with DAPI (Sigma-457 

Aldrich, D9542) as previously described (Köhler et al., 2017; Phillips et al., 2009). Dissected 458 

gonads were mounted in ProLong Glass antifade mounting medium (Invitrogen, P36984). 459 

Images were acquired on an Olympus spinning disk confocal IXplore SpinSR system using 460 

a 60X 1.4 NA oil plan-apochromatic objective. High-resolution images for Fig. 1B and Fig. 2 461 

were acquired with a SoRa disk at a 0.034x0.034x0.16 µm pixel size, while all other images 462 

of germline nuclei were acquired with a 50 µm disk and a 0.108x0.108x0.2 µm pixel size.  463 

Nuclei were segmented using a customized cellpose model 464 

(https://github.com/KoehlerLab/Cellpose_germlineNuclei/blob/main/Cellpose_germlineNucl465 

ei/cellpose_germlineNuclei_KoehlerLab) as previously described (Piñeiro López et al., 466 

2023). Regions containing distal germline nuclei from proliferative zone until the end of 467 

pachytene were manually annotated in Fiji (Schindelin et al., 2012), and only masks within 468 

this region were used in all downstream analyses.  469 

 470 

Gonad linearization 471 

Gonads were linearized by fitting a cubic spline to a LOWESS fit of the positions of 472 

segmented objects larger than 10 pixels in a manually annotated region of the gonad, 473 

excluding somatic cells. Nuclei position along gonad length is defined as the point along the 474 

spline where the distance to the nucleus is minimal. 475 

 476 

Manual annotation of C. elegans germline nuclei 477 

1665 nuclei were annotated in 11 gonads of WT C. elegans in ilastik, without the feedback of 478 

the ilastik interactive labeling to not bias the cross-validation dataset. Nuclei of unclear 479 

phenotypes or nuclei with incorrect segmentations were ignored in the annotation.  480 

 481 

ResNet implementation 482 

A 3D-ResNet was constructed from the pytorch implementation of ResNet18 (He et al., 2015), 483 

by changing the 2D convolutions into 3D convolutions. To give it similar information as the 484 

Random Forests, the data sent to the ResNet were masked segmented nuclei, normalized 485 
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between -1 and 1, and 0-padded to the size of the largest nucleus. Thus, the relative size of 486 

individual nuclei is retained in the image data. 487 

For Fig. 4B, where almost the whole dataset was used as training, the models were trained 488 

for 100 epochs, with the accuracy saturating already at around 25 epochs. Therefore, all 489 

other models in 4C were only trained for 25 epochs.  490 

 491 

Random Forest models 492 

To classify germline nuclei, we generated Random Forests using the default scikit-learn 493 

implementation (Pedregosa et al., 2011) with 100 estimators. We used the 20-value Spherical 494 

Texture output and the size in pixels of each object (total number of pixels) for the Spherical 495 

Texture model, or a 64-value normalized histogram as is the default in ilastik and the size in 496 

pixels of each object for the Histogram of intensities model as features. 497 

 498 

Photoactivation 499 

HT1080 fibrosarcoma cells (ATCC) were cultured in DMEM supplemented with 10% FBS and 500 

50 µg/ml penicillin/streptomycin at 37°C in 5% CO2. A stable cell line for optogenetic TIAM 501 

recruitment was produced using lentiviral transduction. pLenti-TIAM-tagRFP-SSPB-P2A-502 

mVenus-iLID-CAAX was used for production (a gift from M. Coppey). 503 

Lentivirus were produced by transfecting 10 cm dishes of HEK293T cells with 15µg pLenti 504 

construct, 10 µg psPAX2 lentivirus packaging plasmid (a gift from Didier Trono, Addgene 505 

#12260) and 5 µg lentivirus envelope plasmid (a gift from Didier Trono, Addgene #12259) 506 

with 90 µL 1 mg/mL MaxPEI. 24 and 48 hours following transfection, viral supernatant was 507 

harvested, filtered with a 0.45 µm syringe filter, and precipitated in 1X virus precipitation 508 

solution (from 5X solution: 66.6 mM PEG 6000, 410 mM NaCl, in ddH2O, pH 7.2). Following 509 

storage at 4°C for 24 hours, the viral supernatant was centrifuged for 30 min at 1500 x g at 510 

4°C, and the virus pellet was resuspended in 1X PBS for long term storage at -80°C.Wild-511 

type HT1080 cells were used as a target for lentiviral transduction. 24 h prior to transduction, 512 

HT1080 cells were seeded to a 24-well plate. On the day of transduction, the medium was 513 

refreshed with complete medium with 5 µg/mL polybrene, and 5 µL viral suspension was 514 

added. The medium was refreshed after 24 hours, and cells were selected in complete 515 

medium with 20 µg/mL blasticidin. 516 

18 hours prior to imaging, cells were plated on 25 mm coverslips and incubated with 10 nM 517 

SiR-actin in complete medium. Epifluorescent images with photostimulation were acquired 518 

using a Nikon Ti inverted microscope equipped with a 40× (Plan Fluor, NA 1.3) oil objective, 519 
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sample incubator (Tokai-Hit), ET 514-nm Laser Bandpass (49905), ET-mCherry (49008) and 520 

ET-Cy5 (49006) filter cubes (all Chroma), pco.edge cooled sCMOS camera (Excelitas) and 521 

a Polygon 400 digital mirror device (Mightex). µManager 1.4 (Edelstein et al., 2010) was used 522 

for controling the microscope, and Polyscan 2 (Mightex) was used for light patterns. Light 523 

exposure was synchronized with camera frames using camera-evoked TTL triggers. Cells 524 

were imaged with a 15 s interval and stimulated in a local region of interest with 2 mW/cm2 525 

470 nm LED (Mightex) between imaging frames. 526 

 527 

Data availability  528 

All code and software are available as indicated in the Material and Methods section. Data 529 

acquired for this manuscript are available at  https://doi.org/10.5281/zenodo.12745516. 530 
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Supplemental data 
 

 
Supplemental Figure S1. The average number of nuclei included for subsetting the C. elegans 

germline nucleus training dataset shown in Fig. 4C. 
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Supplemental Figure S2. High-resolution images of C. elegans germlines shown in Fig. 5A for 

representative images from three genotypes (Wild-type, zim-2, syp-4) with manually annotated 

zones (top) and automatic classifications of nuclear morphology using the Spherical Texture 

Random Forest model per nucleus (bottom). 
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Supplemental Video SV1. Illustration of the method showing the analysis of a single C. elegans 

nucleus to the Spherical Texture spectrum. 

 

Supplemental Video SV2. Video of photoactivation of a fibrosarcoma cell with quantification. A) 
Fluorescence video of TIAM-SSPB channel B) Fluorescence video of iLiD-CAAX channel C) 
Fluorescence video of SiR-actin channel D) Normalized angular intensity of all channels E) 
Spherical Texture spectrum of all channels 
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