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Abstract

The characterization of phenotypes in cells or organisms from microscopy data largely
depends on differences in the spatial distribution of image intensity. Multiple methods exist
for quantifying the intensity distribution - or image texture - across objects in natural images.
However, many of these texture extraction methods do not directly adapt to 3D microscopy
data. Here, we present Spherical Texture extraction, which measures the variance in intensity
per angular wavelength by calculating the Spherical Harmonics or Fourier power spectrum
of a spherical or circular projection of the angular mean intensity of the object. This method
provides a 20-value characterization that quantifies the scale of features in the spherical
projection of the intensity distribution, giving a different signal if the intensity is, for example,
clustered in parts of the volume or spread across the entire volume. We apply this method to
different systems and demonstrate its ability to describe various biological problems through
feature extraction. The Spherical Texture extraction characterizes biologically defined gene
expression patterns in Drosophila melanogaster embryos, giving a quantitative read-out for
pattern formation. Our method can also quantify morphological differences in Caenorhabditis

elegans germline nuclei, which lack a predefined pattern. We show that the classification of
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germline nuclei using their Spherical Texture outperforms a convolutional neural net when
training data is limited. Additionally, we use a similar pipeline on 2D cell migration data to
extract polarization direction, quantifying the alignment of fluorescent markers to the
migration direction. We implemented the Spherical Texture method as a plugin in ilastik,
making it easy to install and apply to any segmented 3D or 2D dataset. Additionally, this
technique can also easily be applied through a Python package to provide extra feature

extraction for any object classification pipeline or downstream analysis.

Author summary

We introduce a novel method to extract quantitative data from microscopy images by
precisely measuring the distribution of intensities within objects in both 3D or 2D. This method
is easily accessible through the object classification workflow of ilastik, provided the original
image is segmented into separate objects. The method is specifically designed to analyze
mostly convex objects, focusing on the variation in fluorescence intensity caused by
differences in their shapes or patterns.

We demonstrate the versatility of our method by applying it to very different biological
samples. Specifically, we showcase its effectiveness in quantifying the patterning in D.
melanogaster embryos, in classifying the nuclei in C. elegans germlines, and in extracting
polarization information from individual migratory cells. Through these examples, we illustrate
that our technique can be employed across different biological scales. Furthermore, we
highlight the multiple ways in which the data generated by our method can be used, including
quantifying the strength of a specific pattern, employing machine learning to classify diverse

morphologies, or extracting directionality or polarization from fluorescence intensity.
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Introduction

Patterns are widespread in nature and can be observed across scales from subcellular to
tissue and organism level. The complex interactions and mechanisms that underlie pattern
formation processes are a topic of great interest in various fields (Rombouts et al., 2023). On
a tissue- or cellular-scale, pattern formation is captured through 2D or 3D microscopy.
Analyzing patterns in such images requires specific image analysis tools. One such class of
analysis tools is texture extraction tools that describe the pattern, or generally, the
morphology of biological systems, in microscopy images as a texture: the variation in signal
intensity across an image (Armi & Fekri-Ershad, 2019). A number of different methods to
extract texture information from images currently exist (Armi & Fekri-Ershad, 2019; Humeau-
Heurtier, 2019). However, many of the methods rely on 2D natural images and cannot readily
be applied to 3D biological microscopy data. Additionally, with the recent rise in accessible
3D microscopy segmentation methods (Berg et al., 2019; Stringer et al., 2021; Weigert et al.,
2020), the number of applications in biology for accessible texture extraction from 3D data
has risen. This need is shown by the different solutions using frequency space quantification
for cell-cortical intensity (Mazloom-Farsibaf et al., 2023) and cell shape (van Bavel et al.,
2023).

For many biological systems, understanding and quantifying 3D morphology throughout the
object is a prerequisite to gaining new insight into different processes. For example, well-
described developmental pattern formation, such as those arising during Drosophila
melanogaster embryogenesis, are regulated by complex gene regulatory networks. The gene
shavenbaby (svb) produces a striped expression pattern in the epidermis of the embryo,
which later induces the formation of trichomes (Payre et al., 1999). Molecular changes in the
upstream enhancers of svb have been shown to perturb the expression pattern, which can
shape morphological evolution (Frankel et al., 2011) (Fig. 1A). To understand the phenotypic
effects caused by sequence variations in regulatory elements, it is essential to analyze
deviations from the typical wild-type expression pattern. Image texture can also provide
biological information in systems where the pattern is not predefined but an emergent result
of mechanical factors. A prime example here is the different chromatin morphologies that
characterize the different substages of meiotic prophase I. These distinct substages, along
with their corresponding DNA morphologies, are easily identified in the germline of the
nematode C. elegans (Fig. 1B). As these varied morphologies directly correspond to the
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Figure 1. Patterns and image texture reflect biological spatial variability. A) Expression patterns of a Lac-Z reporter
controlled by three different variants of the E3N enhancer: wild-type E3N, showing the expected striped ventral
‘shavenbaby’ phenotype patterning, the E3N mutant 10.1 with 10 mutations in E3N, with impaired patterning, and the
E3N mutant 10.2 with 10 other mutations in E3N that lacks the patterning. These phenotypes reflect how random
mutations disrupt the regulatory capacity of the E3N enhancer. B) C. elegans germline nuclei change DNA morphology
during meiotic prophase I. The cells remain in the proliferative zone, showing small DAPI patches until they complete
meiotic S-phase. In the transition zone, the chromatin is clustered as homologous chromosomes pair and co-align
through synapsis. They then separate into strands of paired homologs in pachytene, as they designate the locations of

crossovers, which are recombination events between maternal and paternal DNA.
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underlying molecular processes, any discrepancies in the spatial distribution of these
morphologies can serve as indicators for detecting defects in meiotic timing (Hillers et al.,
2017).

Although their overall appearance is highly distinct, both the morphology of a fly embryo and
of nematode meiotic nuclei can be described as a radial variance in fluorescence texture from

their center of mass, allowing for robust quantitative analysis.

In this paper, we present a texture extraction tool for segmented microscopy data through
frequency analysis of radial variation of image intensity. Our analysis assumes that the
analyzed objects are mostly convex, which is true for many biological systems and has been
a basic assumption for other algorithms (Weigert et al., 2020). We show that our texture
extraction method can detect patterns in D. melanogaster embryos and distinguish different
morphologies in C. elegans nuclei. Simple machine learning models trained with this feature
perform as well in the classification of C. elegans germline nuclei as convolutional neural
network models, while being faster to train. We also include a 2D implementation that allows
us to quantify the actin leading edge of cultured cells and gives options for subsequent signal

analysis for directionality mapping.

To make this method accessible, the method is implemented as a plugin for the user-friendly
graphical software ilastik (Berg et al., 2019). Our implementation allows users to combine the
Spherical Texture feature with other image features and quickly assemble a simple Random
Forest classifier, which can be interactively trained within the program.
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Results

Spherical Texture Method

In C. elegans, the condensation and organization of chromatin in the nucleus changes
throughout meiosis. The nucleus shown in Fig. 2Ais in pachytene, where pairs of homologous
chromosomes are fully aligned as they perform the essential meiotic task of crossover
formation. A typical 2D visualization of a 3D microscopy dataset is the maximum intensity
projection over the Z-axis as shown in Fig. 2A. This projection loses detail in depth, especially
with data such as these nuclei, where chromosomes are radially oriented along the nuclear
envelope, avoiding a large central nucleolus. Because we assume that radial organization of
the signal explains most of the variation, we map the data to a sphere. This mapping is
achieved by first rescaling the data to a cube of 80 pixels per side (Fig. 2B). We subsequently
cast rays from the center of the cube, taking the mean intensity of the pixels along the ray.
This transformation yields a dataset of the average data in spherical coordinates, the
spherical projection. To compare different objects, we also normalize the spherical projection
map such that the total variance is 1 and the mean is 0 (Fig. 2C).

The spherical projection represents a meaningful dimension reduction while keeping the
variation that defines the radial signal. To extract texture information from the spherical
projection, we apply a Spherical Harmonics (SH) decomposition, a transformation to
frequency space that is analogous to a Fourier decomposition. We decompose the spherical
projection into a sum of waves (the spherical harmonics basis functions). These waves are a
combination of relative scale (harmonic degree, {) in different conformations (defined by
harmonic order, m) (Fig. 2D) up to the scale of 1-pixel differences (f = 251). By integrating
over all harmonic orders of the signal, we get a power spectrum with a single rotationally
invariant value for each degree (Fig. 2E). By normalizing to a mean of 0, the power
corresponds to the variance as a function of £ (Wieczorek & Meschede, 2018). Therefore, the
power spectrum can be reinterpreted as a measure of variance versus the approximate
wavelength of each harmonic degree (Fig. 2F). Furthermore, through normalizing the
projection to unit variance, the area under the curve of the Spherical Texture output equals

1. The method is also illustrated in video SV1.
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Figure 2. Spherical Texture method design. A) A C. elegans meiotic nucleus in the pachytene stage, stained with
DAPI, shown as maximum intensity projections over Z (left) and X, with the YZ view rescaled

isotropically (center) and square pixels (right) about the XY view. B) Data from A rescaled to 80x80x80 pixels in XY (left)
and YZ (right) views C) A graphic showing the mean intensity projection to spherical space, showing first a subset of the
radial rays (left, red lines) used to generate the mean-intensity spherical projection as spherical data and as planar map
projection (center). The mean intensities are normalized to mean=0 and variance=1 (right). D) Projections of the
spherical harmonics basis functions on the sphere of the first 7 spherical harmonic degrees. E) The spherical harmonics
power spectrum of the spherical projection in C shows a distinct peak around approx. the 10th harmonic degree. F)
Rescaling the harmonic degrees to approximate wavelength yields a spherical harmonics spectrum, which shows a
corresponding peak in the contribution to variance around a wavelength of approx. 0.1 rad/2m G) The standard output
of the Spherical Texture method corresponds to the binned spectrum shown in F. H) The Spherical Texture extraction is
implemented as a Python package and directly in ilastik, allowing for its adoption into the Object Classification workflow.
In this workflow, users can interactively train a Random Forest machine learning classifier. Shown here is a part of a C.
elegans gonad with segmented nuclei, where some nuclei were labeled as Class 1 and others as Class 2 (solid colors).

Based on the Spherical Texture of these labels, ilastik predicts the class of all other nuclei (transparent colors).
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For accessibility, we implemented the technique as a plugin for ilastik (Berg et al., 2019),
allowing users to quickly select the Spherical Texture features for a Random Forest object
classification algorithm. To reduce the number of features to a more relevant set, we
subsample the spectrum to 20 values along the log2 axis in this implementation for further
analysis (Fig. 2G-H). Here we bin these values by integrating, which ensures that the area

under the curve remains equal to 1.

Texture Extraction

To test the ability of the Spherical Texture technique to extract textures, we used synthetic
data generated with Perlin 3D noise (Fig. 3A). This synthetic data allows us to create 3D
patterns at varying spatial scales. Assessing these test patterns with the Spherical Texture
method yields a quantification that shows how much a certain spatial scale contributes to the
variance. Thus, we expect the fine patterns to have more power at small wavelengths, while
the coarser patterns have the most power at larger wavelengths. Indeed, as the synthetic
data gets coarser, the spectra of the Spherical Texture method shift from shorter wavelengths

(black) towards longer wavelengths (light gray) (Fig. 3A).

We next tested the ability of the Spherical Texture method to distinguish morphological
differences in 3D microscopy images. In D. melanogaster, the minimal E3N enhancer drives
shavenbaby (svb) expression in the ventral stripes of the embryo at developmental stage 15.
To dissect the regulatory activity encoded in this enhancer, Fuqua et al. (2020) created a
transgenic D. melanogaster library harboring random mutants of the E3N enhancer. The
mutants were generated via error-prone PCR, and their activity is actualized by a downstream
promoter (hsp70) and reporter gene (lacZ) (Fig. 3B). To further characterize this mutational
library, a subset of 91 lines ranging from 1-10 mutations were imaged using fluorescent
antibodies and confocal microscopy to study the patterns in more detail (Galupa et al., 2023).
However, the analysis of high-throughput data requires an accurate and automated
assessment of pattern formation. For this, the Spherical Texture can serve as a reliable
metric. When applied to both a wild-type E3N reporter and two unique variants of E3N each
harboring 10 point mutations (10.1 and 10.2), the Spherical Texture method distinctly
differentiates between the mutants and the WT E3N control: the WT shows a characteristic
profile, with a peak in variance at a wavelength A = 0.044 rad/21r. This peak is diminished in
E3N-10.1 embryos which showcase less defined stripes, and it is virtually absent in E3N-10.2
embryos, which lost all stripe formation (Fig. 3C). We can thus effectively analyze the
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Figure 3. The Spherical Textures reflect the coarseness of 3D data and can be applied to quantify patterning in
D. melanogaster embryos. A) Spherical Textures of synthetic 3D Perlin noise spheres. Coarser data corresponds to
more variance at large wavelengths. B) Graphic showing the design of the mutant E3N enhancer screen and genetic
setup. Wild-type E3N drives the expression of a lac-Z reporter in a striped pattern in the D. melanogaster embryo. By
introducing mutations in the enhancer via error-prone PCR, the effect of many variants on the activity of the E3N
enhancer can be tested by screening for changes in this pattern. C) Spherical Texture responses of embryos of three
genotypes of the assay in B. The WT embryo (n=13) shows a distinctive average profile with a peak at A = 0.044 (red
arrow), that is lost in the E3N-10.2 (n=17). The E3N-10.1 (n=18), with impaired patterning, shows an intermediate profile.
D) Average profiles of all genotypes in the screen, clustered by number of mutations. The red dashed line is the
characteristic WT wavelength, with a plane wave at the same wavelength (A = 0.044 /object length) shown as a simplified
interpretation of the wavelength. This plane wave corresponds to the distance between the stripes (inset, red stripes).
E) The effect of different E3N enhancer variants on the gene expression pattern is described by taking the average
power at A = 0.044 rad/2T for all genotypes. Separate dots are separate experiments for WT, and separate genotypes

for mutants.
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complete high-throughput screening data and assess the degree of pattern formation in 91
different lines (Fig. 3D-E). Our analysis reveals an abrupt decline in pattern formation fidelity
from the WT strain to any of the mutated strains. However, the introduction of more than three
mutations does not reveal a discernible trend. This finding suggests that the exact number of
mutations (up to 10) does not define the regulatory capacity of this minimal enhancer, and

some mutations may rescue other mutations in an epistatic manner.

Classification of meiotic nuclei

To showcase a very different type of biological data, we turn to C. elegans germline nuclei.
While the D. melanogaster embryos are large (500 ym diameter) and the pattern of the E3N
enhancer is clearly defined, the C. elegans germline nuclei are very small (2-5 ym diameter)
and lack a defined pattern. However, as the Spherical Texture is agnostic to the original size
of the object but quantifies the scale of the morphology, we hypothesized that this method
should also distinguish morphological differences in C. elegans germline nuclei.

C. elegans germline nuclei are typically categorized into three morphological stages:
Proliferative zone nuclei are relatively small with chromatin distributed across the nucleus.
The proliferative nuclei are mitotically dividing stem cells, generating meiotic progenitor cells.
These nuclei undergo significant remodeling as they enter meiotic prophase [: the
chromosomes are partially condensed and polarized within relatively small "Transition Zone"
nuclei, resulting in a crescent-shaped and dense distribution of DNA. This morphological
stage is indicative of the meiotic stages involving homologous chromosome pairing and
synapsis. After completion of synapsis, nuclei enter the pachytene stage which is
characterized by larger nuclei and separated chromosome strands representing partially
condensed and synapsed homologous chromosome pairs (Hillers et al., 2017). If we apply
the Spherical Texture to these nuclei, we find that, indeed, the Spherical Texture spectra
represent the differences between these three morphological classes (Fig. 4A). Notably, the
transition zone nuclei, where chromosomes form a large crescent-shaped structure, exhibit
significantly increased variance at A = 1 rad/21r, which implies the chromatin is organized into
a half-moon-like organization. This matches the canonical description of crescent-shaped
DNA morphology. For pachytene nuclei, a local peak in the spectrum is observed around A =
0.1 rad/2tT, which we infer to reflect a typical distance of separation between chromosomes
in the nucleus (Fig. 4A). Thus, the Spherical Texture method accurately describes differences
in the nuclear morphology of nuclei in the distal germline of C. elegans.
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Texture spectra for manually classified wild-type C. elegans germline nuclei show characteristic differences for each
class. B) Classification accuracies of machine learning models classifying all annotated nuclei in one test image, trained
on all annotated nuclei from 10 images. The Spherical Texture model is a Random Forest with the Spherical Texture
and size in pixels as features. The Histogram of intensity model is a Random Forest with a 64-valued normalized
histogram of intensity values and size in pixels as features. The ResNet18 is a 3D CNN with unscaled 0-padded
normalized nuclei at original scale as input. The models behave similarly, but the ResNet slightly outperforms the
Random Forest models as expected. Stated p-values are from a Wilcoxon one-sided paired test, testing for accuracy
greater than Spherical Texture. C) The classification accuracy increases with increasing amount of training data for the
three models. The color denotes the number of images used for training, and the x-axis represents the fraction of nuclei
from each these images. Only the Spherical Texture trains monotonically and quickly, while the Histogram of intensity

overfits with few images, and the ResNet requires a large amount of training data to reach high accuracy.
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We then utilized the differences identified in the Spherical Texture spectra to classify the
different stages of nuclei within the C. elegans distal germline. To achieve this, we used a
machine-learning approach by training a Random Forest classifier. Random Forest classifiers
are simple and minimal to set up, and implemented in available software such as ilastik,
providing user-friendly interactive image classification and analysis (Berg et al., 2019). We
included the Spherical Texture spectrum (Fig. 2E) and the original size of the nuclei as
features. We compared this Spherical Texture classification to a Random Forest using the
ilastik histogram of intensities and nucleus size as a feature set, or a more complex
convolutional neural network model, a 3D ResNet18 (He et al., 2015), that learns a feature
set from the 3D segmented nuclei. After training on 10 different annotated images containing
over 1400 annotations, we found that all models had similar levels of accuracy. However, the
ResNet was the most consistent among them (Fig. 4B).

In bioimaging, the amount of training data is often limiting, as experimental techniques, the
time required for annotation, and the inconsistency in experimental conditions all hinder the
generation of comprehensive and consistent training datasets. Consequently, the efficiency
of model training becomes a critical consideration. We systematically shuffled and
subsampled our training set by the number of images and included objects, generating
smaller subsets of our cross-validation dataset. By creating these smaller subsets, we were
able to investigate how well the models learn to classify germline nuclei when training data
is limited (Fig. 4C, S1). This analysis reveals that the Spherical Texture model exhibits fast
and consistent training that improves monotonically with increasing training data size. The
Histogram of intensity model also trains rapidly, but the accuracy declines as more data is
added from a limited number of images. This decline is likely due to the highly sample-specific
variations in fluorescence intensities which can lead to overfitting when only training on a
small set of images. In contrast, the ResNet model, while accurate when trained on the full
dataset, was far less accurate when provided with less training data, which is consistent with

evaluations of 2D ResNet models (Brigato & locchi, 2020).

We can now leverage the Spherical Texture model for germline classification to assess
meiotic staging in the C. elegans gonad. This is feasible due to the temporo-spatial
organization of the C. elegans gonad, wherein nuclei progress through the gonad while
undergoing meiosis. Thus, the nuclei are separated into phenotypic zones (Hillers et al.,
2017). Traditionally, the manual annotation of these zones relies on marking the transition
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points where most nuclei change morphology (Fig. 5A). However, this approach becomes
challenging, and at times biased, especially when genetic defects give rise to gradual
transitions. We therefore use the Spherical Texture model, consisting of a Random Forest
trained using the Spherical Texture spectrum and nucleus size as features to predict the
stages of nuclei in germlines of wild-type animals (Fig. 5A, higher resolution in S2). Indeed,
we find that the Spherical Texture classifications of individual nuclei of wild-type germlines
mostly match the zones expected from the overall germline organization: nuclei in the distal
(here shown left) part of the gonad are classified as "proliferative zone" nuclei, moving
proximally to first transition zone and then pachytene nuclei. However, as the nuclei exit the
transition zone and shift to early pachytene, some early pachytene nuclei are misclassified
as "proliferative zone" nuclei. This finding suggests that the Spherical Texture model not only
identifies the three canonical zones but also detects morphological differences between
nuclei in early and mid/late pachytene, respectively.

Due to the temporo-spatial organization of the C. elegans germline, the length of individual
zones corresponds to the time individual nuclei spend within each stage (Hillers et al., 2017).
Therefore, the length of the transition zone within a gonad is a reliable metric to determine
the timely completion of homologous chromosome pairing and synapsis that take place in
this zone. In animals with mutations in genes involved in pairing or synapsis, the transition
zone length is altered. For instance, in zim-2 mutant animals pairing, and consequently
synapsis, of a single chromosome, namely chromosome V, is eliminated (Phillips & Dernburg,
2006), while in syp-4 mutant animals, synapsis is completely abolished (Smolikov et al.,
2009). Despite being trained solely on nuclei of wild-type germlines, the Spherical Texture
method, predicts elongated transition zones for both zim-2 and syp-4 animals (Fig. 5A).
With the Spherical Texture-based model, we can analyze meiotic progression across many
different animals by automatically classifying all nuclei across many gonads allowing for
automatic quantification of transition zone length (Fig. 5B). Notably, we observe robust
progression through the three zones which matches manual annotations. The machine-
learning-based prediction pinpoints not only the most probable position of the transition
between zones but also illustrates the steepness of this transition. In wild-type animals, shifts
between zones occur rapidly, while the progression from the transition zone to pachytene is
more gradual in both mutant animals. As a result, the Spherical Texture method predicts an

even longer transition zone for both mutants compared to our manual annotations.
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Figure 5. Automatic classification of germline nuclei provides quantifications of meiotic progression. A)

Representative images of C. elegans gonads of three genotypes (Wild-type, zim-2, syp-4) with manually annotated
zones, and automatic classifications of nuclear morphology using the Spherical Texture Random Forest model per
nucleus. Higher resolution images are available in S2. B) Bulk analysis of Spherical Texture annotations in gonads
reveals average zone sizes along the linearized gonad. The relative density distribution of nuclei per morphological
classification is plotted along the gonad central spline. The point where the means of the zones cross are annotated

(dashed lines) to compare against the manual annotations of these transition points.
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Utilizing the Spherical Texture predictions along the length of the gonad offers a clear, highly
informative, and easily interpretable representation of meiotic zones in C. elegans. This
method allows for a consistent analysis of large datasets in a streamlined manner. Moreover,
due to the model's fast training speed, the Spherical Texture model can easily be adapted to

other imaging modalities or experimental conditions.

2D texture and polarization quantification

Despite the popularity of 3D imaging, 2D imaging remains a prevalent and valuable tool for
addressing various biological questions. Similar to 3D, patterning and the distribution of
intensity across objects remain central features also in 2D. To analyze textures in 2D data
with the Spherical Texture method, we can project the intensities within the convex region of
an object to a circle instead of a sphere decomposing with a 1D Fourier transform (Fig. 6A).
This process results in a power spectrum of the projection, which yields a quantification
depicting the contribution to variance per wavelength, where the area under the curve equals
1 when normalized to mean 0 and variance 1. When applied to 2D Perlin noise patterns
corresponding to the middle slices of the 3D synthetic data depicted in Fig. 3A, a similar
distribution of 2D power spectra emerges, mirroring what we observed for 3D spherical data:
the peak of the power spectrum moves from short wavelengths to longer wavelengths as the
data becomes coarser (Fig. 6B). Therefore, our Spherical Texture method efficiently

quantifies textures not only in 3D but also 2D.

An application for employing this method in 2D is in quantifying actin dynamics during cell
polarization. In such assays, cells polarize forming a distinct ‘leading edge’ characterized by
actin-rich lamellipodia oriented towards the direction of movement. To precisely define the
position of the leading edge, we utilize an optogenetic approach. Here, a photosensitive tag
on the membrane anchor CAAX recruits TIAM, a Rac1-specific guanine nucleotide exchange
factor, upon light stimulation. With this setup, Rac1 can be activated at a specific site, thereby
inducing leading edge formation at that exact site (Fig. 6C, Video SV2) (de Beco et al., 2018).
We aim to quantify leading edge formation in this system, by using the Spherical Texture
method on the live-cell actin probe SiR-actin to visualize actin dynamics and polarization
together with CAAX and TIAM.
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Figure 6. Texture and polarization extraction of 2D data. A) Explanation graphic of the Spherical Texture for 2D data
(top left) — the data is sampled per angle (top right) and projected as mean intensity to a 1D circle (S space, middle),
and normalized to unit variance, mean 0. The contribution to variance per wavelength is then calculated through the
Fourier power spectrum (bottom). The ‘peak direction’ (red arrow) denotes the angle of the maximum value in the
projection. B) 2D Spherical Texture spectra for synthetic Perlin noise circles. The finer-detailed spectra have more power
at short wavelengths, while the coarse spectra only have power at long wavelengths. C) Graphic depicting the
optogenetic system for Rac1 activation (de Beco, 2018). The membrane anchor CAAX (blue) is tagged with the
photosensitive domain iLiD, which — upon activation with 470 nm light — recruits TIAM-SSPB (orange). TIAM acts as a
guanine nucleotide exchange factor for Rac1 (gray). The Rac1-GTP induces the formation of actin-rich lamellipodia
(green). D) Fluorescence images with E) projections (same axis as A) and F) spectra of an illuminated cell. The
illuminated region is shown in cyan. Three different time points are shown from left to right. As time post-illumination
progresses, both the TIAM (orange) and CAAX (blue) align to the illumination. By contrast, actin (green) switches from
a broader distribution to an almost bipolar distribution with peaks at the site of illumination, and directly opposite. These
changes are also reflected in the spectra where TIAM and CAAX gain power at 1 rad/21 and actin at 0.5 rad/2mr. G) The
graphic illustrates the measurement of the angle to illumination which denotes the shortest angle between the peak
direction of individual channels and the peak of the illumination. Therefore, the maximum angle to illumination is 1. H)
Angle to illumination for all channels of three cells over time (illumination at 0 min). TIAM aligns immediately to the
illumination angle, while CAAX aligns slower. Actin splits into two populations: one aligning to the illumination, and one

that aligns directly opposite the illumination reflecting its bipolar distribution.
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In unstimulated cells, both TIAM (orange) and CAAX (blue) are randomly distributed across
the cell (Fig. 6D, 0 min). This random intensity distribution shows up as random fluctuations
in circular intensity projections (Fig. 6E, 0 min), leading to an unstructured variance spectrum
in the Spherical Texture quantification (Fig. 6F, 0 min,). Upon stimulation at 0 min, TIAM
quickly accumulates at the activation site which is reflected by a higher contribution of larger
wavelength to the variance of the signal reflecting the coarsening in the distribution of the
TIAM signal (Fig. 6D-F, at 4 and 13 min). Interestingly, the CAAX signal also intensifies at the
activation site and almost completely overlaps with the TIAM signal. This observation is
intriguing because CAAX is not specifically recruited by light stimulation. We infer that this
apparent accumulation is a consequence of membrane ruffling and lamellipodia formation. In
the circular projection at minute 4, the signals of TIAM and CAAX overlap, while we observe
that the actin intensity is only slightly increased at the activated site and is, instead,
concentrated at the rear of the cell as it retracts. However, at minute 13 we observe a clear
accumulation of actin at the activation site in the circular projection, indicating the polarization
of the cell.

To analyze this further, we measure the angle between the illumination and the polarization
direction of the circular projections to evaluate the alignment of TIAM, CAAX, or actin relative
to the illumination (Fig. 6E). Assessing these angles across three cells over time reveals that
TIAM aligns with the illumination almost immediately (time 0), and CAAX aligns within a few
minutes until it is fully aligned about 10 minutes post-illumination (Fig. 6F). By contrast, the
angle between illumination and peak actin intensity remains large throughout the imaging
time. However, upon closer examination, we find a bimodal distribution of the angles with
some peak intensities located at the activation site while most cluster around T, indicating
that actin accumulates both at the activation site and at the rear end opposite the activation
site, as previously observed in the circular projections. A modest accumulation of actin at the
site of illumination is consistent with induced Rac1-mediated branched actin polymerization
and lamellipodia formation. We infer that the increase in actin seen at the opposite side of
the cell is consistent with a restructuring of the cell membrane and morphological changes,
as a migratory rear edge is formed, where the intensity subsequently diminishes over time.
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Discussion

Here, we presented a texture extraction method designed for the quantification and
classification of objects in microscopy images. This method efficiently extracts texture
resolution from both 3D and 2D objects, operating under the assumption that many
biological objects are largely convex and can be described as angular variations from their
centroid. Our study showcases the effectiveness of this technique for diverse applications
ranging from pattern recognition in 3D images of D. melanogaster embryos to the
quantification of 3D nuclear morphology in C. elegans gonads. Furthermore, our texture
analysis approach extends to 2D scenarios such as real-time images of migratory cells.
When coupled with signal analysis and peak finding in circular projections, it provides a

measure for cell polarization and migration direction.

The Spherical Texture method yields a reliable metric to quantify pattern formation in gene
expression driven by the E3N enhancer in the Drosophila melanogaster embryo, which
features a clear and predefined biological pattern. The rotationally invariant signal produced
by the Spherical Texture method allows for robust and consistent quantification that is
independent of the orientation of the input image of the fly embryo. This independence of
sample mounting on the quantification result makes the Spherical Texture method ideal for

analysis of large-scale screens acquired by automated imaging.

On the other hand, nuclei in the distal C. elegans germline lack a predefined pattern but
exhibit general differences in their morphology that is a consequence of differences in DNA
condensation and nuclear organization. The Spherical Texture method extracts features
based on their scale which allows for the robust classification of nuclei based on their
morphology - a task that was previously only achievable by manual annotation. Therefore,
the Spherical Texture method can be applied to both structured patterns such as patterning
during Drosophila embryogenesis, and unpatterned data such as nuclear morphologies in
the C. elegans germline highlighting its versatility.

To utilize the texture information obtained by our Spherical texture method for object
classification, we integrated this tool into the easy-to-use interactive learning and
segmentation software ilastik (Berg et al., 2019). Employing Random Forests using features
derived from the Spherical Texture method to classify C. elegans nuclei demonstrated
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366 consistent performance and outperformed more complex CNNs in scenarios with sparse
367 training data. Even with a dataset of over 1400 annotations, the CNN-based model only
368 marginally surpasses the consistency of the Random Forest model. This is particularly

369 relevant since microscopy datasets are highly specific to the lab, microscope, and

370 experiment, necessitating frequent (re)training. Additionally, the challenges of implementing
371 a 3D CNN architecture require more expert knowledge and contrast with the ease of using
372 a Random Forest, especially within software like ilastik.

373

374  The incorporation of the Spherical Texture method into ilastik also facilitates the seamless
375 combination with other object quantification features. At the same time, the Spherical

376  Texture method can be combined with other signal analysis techniques applied to the radial
377  projections. We illustrate this approach in the actin leading edge quantification. Peak finding
378 algorithms applied to the Spherical Texture output of the fluorescent image of a migratory
379 cell after circular projection allow for efficient measurements of cell polarization, providing
380 information on both the direction and relative intensity of the leading edge. This peak-

381 finding feature in circular or spherical projections can be added to ilastik as a custom

382  feature and can be used for both 2D and 3D data.

383

384  We therefore anticipate that our Spherical Texture method makes texture extraction easily

385 accessible to users, and allows for its application to diverse datasets.
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Methods

Spherical Texture implementation

The Spherical Texture quantification requires either 3D z-stack or 2D image data and the
corresponding segmentation masks where the centroid is inside the mask.

For each object in the segmentation mask, the image data is scaled bilinearly to 80x80x80
(or 80x80 in 2D) and masked out with the provided segmentation mask. Spherical rays are
taken from the centroid to angles fitting a Gauss-Legendre Quadrature (Wieczorek &
Meschede, 2018). This process yields a spherical projection of 251 by 512 rays. To obtain
the value of a pixel in the spherical mean intensity projection, pixel intensities are averaged
along each ray until it leaves the segmentation mask. Subsequently, the spherical projection

map is normalized to achieve a mean of 0 and a variance of 1 using the formula F,,,,, =

F—(F)
(8F)2°

where F represents the angular mean intensity projection. The normalized signal is

then decomposed into geodesy 4-pi normalized spherical harmonics using the SHTOOLS
4.10.3 (Wieczorek & Meschede, 2018) implementation of the Holmes and Featherstone
algorithm (Holmes & Featherstone, 2002). Spectra are binned along a log> scale to produce
20 unique output values. Binning is performed through local integration to retain the area
under the curve. Given that the mean of the signal is 0, the resulting spectrum can be
interpreted as variance as a function of harmonic degree { (Wieczorek & Meschede, 2018).

To map the harmonic degree { to the approximate cartesian wavelength A, we use the Jeans

21

relation 1 = —fl) for the unit sphere with radius R = 1 (Wieczorek & Meschede, 2018). This

NG
relation does not hold well for lower values of £. To address this limitation, we set the cartesian
wavelength A = 1 for £ = 1, where the basis functions exhibit only one peak and one valley

across the sphere. For £ values greater than 1, we rely on the Jeans relation for simplicity.
For two-dimensional data, we cast the rays only along the equator, resulting in a circular line
comprising 251 values. This line is then decomposed using the discrete Fourier Transform

implementation available in scipy (Virtanen et al., 2020).

Polarization directions are calculated from the angle of the maximum value in the projection.

Depending on data, it might be effective to first bandpass the signal.
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Integration into ilastik and code availability

The Spherical Texture method is in the latest version of ilastik, starting at 1.4.1b19 (Berg et
al., 2019). The ilastik implementation of Spherical Textures is integrated into the ilastik Object
Classification workflow, where users provide a 2- or 3D image and segmentation mask for
which different features can be extracted. The Spherical Texture spectrum and peak
extraction are both easily selectable by checking the appropriate checkboxes. Within the
software, one can then interactively train a Random Forest classifier to classify phenotypes
based on the extracted features. The extracted features, including the Spherical Textures,

can also be exported separately and used in subsequent custom analyses.

The code is implemented in Python and accelerated with numba (Lam et al., 2015) with
parallel computation of multiple objects. For users who want direct access to the code in
Python, outside of the ilastik implementation, a Python package is installable through pip and
conda as described on https://github.com/KoehlerLab/Spherical Texture.

Synthetic data generation

3D Perlin noise (Perlin, 1985) was generated in 128x128x128 pixel grids using the perlin-
numpy python implementation (Vigier, 2018/2024). The noise scale parameter is the relative
‘periods of noise’ generated along each axis across the 128 grid. By design, Perlin noise
periods are relatively arbitrary and do not decompose into clean waves. To obtain spherical
synthetic data, we provided a central 80x80x80 sphere as a mask. For 2D synthetic data,

only the middle plane was used.

Fly strains, reporter gene expression staining and imaging

As previously described in Galupa et al. (2023), a subset of 91 lines of the original 749
variants, ranging from 1-10 mutations, of the mutant library generated by Fuqua et al. (2020)
was used for this analysis. These transgenic Drosophila melanogaster lines were based on
attP2 (Bloomington Stock Number: 5905). Fly rearing, embryo collection and fixation, and
immunofluorescence was performed as described before (Fuqua et al., 2020; Galupa et al.,
2023). Z-stacks of every embryo were acquired using a confocal Zeiss LSM 880 microscope
at 0.593x0.593x1.40 um pixel size using a 20x 0.8 NA air plan-apochromatic objective.
Masks were created in the 2D maximum intensity projections of the data using the ‘cyto’

pretrained cellpose model with a target diameter of 600 pixels, corresponding to 356 um
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(Pachitariu & Stringer, 2022; Stringer et al., 2021). These masks were then extended through

the Z dimension.

Imaging of C. elegans germlines

To visualize C. elegans germline nuclei, young adult N2, CV87 [syp-4(tm2713)], or CA258
[zim-2(tm574)] animals were dissected 24 hours post-L4 and stained with DAPI (Sigma-
Aldrich, D9542) as previously described (Kohler et al., 2017; Phillips et al., 2009). Dissected
gonads were mounted in ProLong Glass antifade mounting medium (Invitrogen, P36984).
Images were acquired on an Olympus spinning disk confocal IXplore SpinSR system using
a 60X 1.4 NA oil plan-apochromatic objective. High-resolution images for Fig. 1B and Fig. 2
were acquired with a SoRa disk at a 0.034x0.034x0.16 um pixel size, while all other images
of germline nuclei were acquired with a 50 ym disk and a 0.108x0.108x0.2 pym pixel size.
Nuclei were segmented using a customized cellpose model
(https://github.com/KoehlerLab/Cellpose_germlineNuclei/blob/main/Cellpose_germlineNucl
ei/cellpose_germlineNuclei_KoehlerLab) as previously described (Pifieiro Lépez et al.,
2023). Regions containing distal germline nuclei from proliferative zone until the end of
pachytene were manually annotated in Fiji (Schindelin et al., 2012), and only masks within

this region were used in all downstream analyses.

Gonad linearization

Gonads were linearized by fitting a cubic spline to a LOWESS fit of the positions of
segmented objects larger than 10 pixels in a manually annotated region of the gonad,
excluding somatic cells. Nuclei position along gonad length is defined as the point along the

spline where the distance to the nucleus is minimal.

Manual annotation of C. elegans germline nuclei

1665 nuclei were annotated in 11 gonads of WT C. elegans in ilastik, without the feedback of
the ilastik interactive labeling to not bias the cross-validation dataset. Nuclei of unclear
phenotypes or nuclei with incorrect segmentations were ignored in the annotation.

ResNet implementation

A 3D-ResNet was constructed from the pytorch implementation of ResNet18 (He et al., 2015),
by changing the 2D convolutions into 3D convolutions. To give it similar information as the
Random Forests, the data sent to the ResNet were masked segmented nuclei, normalized
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between -1 and 1, and 0-padded to the size of the largest nucleus. Thus, the relative size of
individual nuclei is retained in the image data.

For Fig. 4B, where almost the whole dataset was used as training, the models were trained
for 100 epochs, with the accuracy saturating already at around 25 epochs. Therefore, all
other models in 4C were only trained for 25 epochs.

Random Forest models

To classify germline nuclei, we generated Random Forests using the default scikit-learn
implementation (Pedregosa et al., 2011) with 100 estimators. We used the 20-value Spherical
Texture output and the size in pixels of each object (total number of pixels) for the Spherical
Texture model, or a 64-value normalized histogram as is the default in ilastik and the size in

pixels of each object for the Histogram of intensities model as features.

Photoactivation

HT1080 fibrosarcoma cells (ATCC) were cultured in DMEM supplemented with 10% FBS and
50 pg/ml penicillin/streptomycin at 37°C in 5% COa. A stable cell line for optogenetic TIAM
recruitment was produced using lentiviral transduction. pLenti-TIAM-tagRFP-SSPB-P2A-
mVenus-iLID-CAAX was used for production (a gift from M. Coppey).

Lentivirus were produced by transfecting 10 cm dishes of HEK293T cells with 15ug pLenti
construct, 10 pg psPAX2 lentivirus packaging plasmid (a gift from Didier Trono, Addgene
#12260) and 5 ug lentivirus envelope plasmid (a gift from Didier Trono, Addgene #12259)
with 90 uL 1 mg/mL MaxPEIl. 24 and 48 hours following transfection, viral supernatant was
harvested, filtered with a 0.45 uym syringe filter, and precipitated in 1X virus precipitation
solution (from 5X solution: 66.6 mM PEG 6000, 410 mM NaCl, in ddH20, pH 7.2). Following
storage at 4°C for 24 hours, the viral supernatant was centrifuged for 30 min at 1500 x g at
4°C, and the virus pellet was resuspended in 1X PBS for long term storage at -80°C.Wild-
type HT1080 cells were used as a target for lentiviral transduction. 24 h prior to transduction,
HT1080 cells were seeded to a 24-well plate. On the day of transduction, the medium was
refreshed with complete medium with 5 yg/mL polybrene, and 5 uL viral suspension was
added. The medium was refreshed after 24 hours, and cells were selected in complete
medium with 20 pg/mL blasticidin.

18 hours prior to imaging, cells were plated on 25 mm coverslips and incubated with 10 nM
SiR-actin in complete medium. Epifluorescent images with photostimulation were acquired
using a Nikon Ti inverted microscope equipped with a 40x (Plan Fluor, NA 1.3) oil objective,
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sample incubator (Tokai-Hit), ET 514-nm Laser Bandpass (49905), ET-mCherry (49008) and
ET-Cy5 (49006) filter cubes (all Chroma), pco.edge cooled sCMOS camera (Excelitas) and
a Polygon 400 digital mirror device (Mightex). uManager 1.4 (Edelstein et al., 2010) was used
for controling the microscope, and Polyscan 2 (Mightex) was used for light patterns. Light
exposure was synchronized with camera frames using camera-evoked TTL triggers. Cells
were imaged with a 15 s interval and stimulated in a local region of interest with 2 m\W/cm?
470 nm LED (Mightex) between imaging frames.

Data availability
All code and software are available as indicated in the Material and Methods section. Data
acquired for this manuscript are available at https://doi.org/10.5281/zenodo.12745516.
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Supplemental Figure S1. The average number of nuclei included for subsetting the C. elegans

germline nucleus training dataset shown in Fig. 4C.
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Supplemental Figure S2. High-resolution images of C. elegans germlines shown in Fig. 5A for
representative images from three genotypes (Wild-type, zim-2, syp-4) with manually annotated
zones (top) and automatic classifications of nuclear morphology using the Spherical Texture
Random Forest model per nucleus (bottom).
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Supplemental Video SV1. lllustration of the method showing the analysis of a single C. elegans
nucleus to the Spherical Texture spectrum.

Supplemental Video SV2. Video of photoactivation of a fibrosarcoma cell with quantification. A)
Fluorescence video of TIAM-SSPB channel B) Fluorescence video of iLiD-CAAX channel C)
Fluorescence video of SiR-actin channel D) Normalized angular intensity of all channels E)
Spherical Texture spectrum of all channels
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